
UC San Diego
UC San Diego Previously Published Works

Title
Subcellular location of source proteins improves prediction of neoantigens for 
immunotherapy

Permalink
https://escholarship.org/uc/item/7km2f91d

Journal
The EMBO Journal, 41(24)

ISSN
0261-4189

Authors
Castro, Andrea
Kaabinejadian, Saghar
Yari, Hooman
et al.

Publication Date
2022-12-15

DOI
10.15252/embj.2022111071
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7km2f91d
https://escholarship.org/uc/item/7km2f91d#author
https://escholarship.org
http://www.cdlib.org/


Article

Subcellular location of source proteins improves
prediction of neoantigens for immunotherapy
Andrea Castro1,* , Saghar Kaabinejadian2,3 , Hooman Yari2 , William Hildebrand2,

Maurizio Zanetti4,5 & Hannah Carter5,6,**

Abstract

Antigen presentation via the major histocompatibility complex
(MHC) is essential for anti-tumor immunity. However, the rules that
determine which tumor-derived peptides will be immunogenic are
still incompletely understood. Here, we investigated whether con-
straints on peptide accessibility to the MHC due to protein subcellu-
lar location are associated with peptide immunogenicity potential.
Analyzing over 380,000 peptides from studies of MHC presentation
and peptide immunogenicity, we find clear spatial biases in both
eluted and immunogenic peptides. We find that including parent
protein location improves the prediction of peptide immunogenicity
in multiple datasets. In human immunotherapy cohorts, the location
was associated with a neoantigen vaccination response, and
immune checkpoint blockade responders generally had a higher
burden of neopeptides from accessible locations. We conclude that
protein subcellular location adds important information for opti-
mizing cancer immunotherapies.
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Introduction

The presence of immunogenic antigens is necessary for neoantigen-

based cancer treatments such as neoantigen vaccines, immune

checkpoint blockade, and adoptive T-cell therapy to be effective.

These immunotherapies all depend on cell surface display of tumor-

derived peptides by molecules of the major histocompatibility com-

plex (MHC) mediating immune surveillance by T cells. As such,

accurate characterization of the subset of immunogenic neoantigens

should improve the design and application of immunotherapy and

help identify potential responders.

A number of features have been identified as informative for pri-

oritizing immunogenic neopeptides (i.e., neopeptides that are both

displayed and recognized by T cells as foreign) including peptide–

MHC stability, agretopicity (Ghorani et al, 2018), foreignness

(Łuksza et al, 2017), hydrophobicity (Chowell et al, 2015; Zhou

et al, 2019; Borden et al, 2022; Wells et al, 2020), mutation position

within the neopeptide (Schmidt et al, 2021), and neopeptide RNA

abundance (Wells et al, 2020; Borden et al, 2022). These features

capture the potential for a peptide to be effectively presented by cell

surface MHC and address characteristics of the neopeptide itself.

While initial studies tie these features to immunogenicity, their util-

ity for predicting immunogenicity varies across experiments and

cohorts; for example, hydrophobicity was initially associated with

increasing T-cell epitope prediction (Chowell et al, 2015), but later

found to be unimportant for peptide filtering (Wells et al, 2020).

Ultimately, current tools still yield many false-positive neoantigen

predictions (Yadav et al, 2014; Castro et al, 2021), suggesting that

the current set of features fails to capture other factors that con-

tribute to T-cell recognition of peptide-bound MHC.

The canonical pathways by which peptides are added to the

MHC for binding differ for class I (MHC-I) and class II (MHC-II),

with class I peptides requiring transport to the endoplasmic

reticulum via TAP transporters (Wieczorek et al, 2017) and class II

peptides arriving via endosomes generated through phagocytosis or

B-cell receptor internalization by antigen-presenting cells (Roche &

Furuta, 2015). It stands to reason that these distinct pathways could

result in peptides from different proteins being more accessible to

MHC-I versus MHC-II molecules. Indeed, studies profiling eluted

peptide–MHC complexes noted enrichment for peptide origin from

intracellular compartments for MHC-I-eluted peptides, and for

secreted, cell membrane, and extracellular proteins for MHC-II-

eluted peptides (Bassani-Sternberg et al, 2015; Schellens et al, 2015;

Pearson et al, 2016; Abelin et al, 2019). Interestingly, a more recent
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work found a bias for MHC-I-presented peptides from proteins with

certain molecular functions such as intracellular structural proteins,

while MHC-II was biased to present membrane transport proteins

(preprint: Karnaukhov et al, 2021).

These observations imply that proteins in different cellular con-

texts such as location or molecular function, which are correlated (Lu

& Hunter, 2004), can have varying levels of access to MHC-I or MHC-

II presentation. This could further constrain the landscape of peptides

that are presented to T cells during thymic selection and cancer devel-

opment. In the first case, a tumor mutation that would otherwise be

effectively bound and displayed by the MHC may not be presented

because peptides from the source protein never reach the MHC. For

the second case, effective presentation of self-antigen during thymic

development is required for clonal deletion of corresponding T cells.

This pruning of the T-cell repertoire is essential to prevent inappropri-

ate activity against self; mutations to the AIRE gene that promotes

tissue-specific self-antigen expression during thymic selection result

in widespread, multi-organ autoimmunity (Xing & Hogquist, 2012).

However, if the peptide repertoire available for T-cell selection is con-

strained by cellular context, it is conceivable that a portion of the T-

cell repertoire would still be capable of mounting a response against

peptides from those hidden cellular contexts.

Based on this reasoning, we hypothesized that the subcellular

location of a source protein could influence the immunogenic poten-

tial of its derivative peptides. We collected and analyzed data on

peptides presented by the MHC and peptides documented to gener-

ate immune responses. To determine the extent to which cellular

location can predict neopeptide immunogenicity, we trained and

evaluated machine learning models on datasets of experimentally

tested neopeptides. Finally, we evaluated the source protein subcel-

lular location in the context of immunotherapy response and tumor

remodeling by immunotherapy. Together, these analyses support

the view that protein subcellular location is a determinant of

neopeptide immunogenicity.

Results

Certain cellular components are enriched for immunogenic
peptides

We performed gene ontology cellular component enrichment analy-

sis on over 380,000 MHC-I- and MHC-II-eluted peptides from a

diverse set of normal tissues and tumor cell lines (Appendix Fig S1).

We confirmed enrichment for MHC-I-presented peptides in the

cytosol, nucleoplasm, and extracellular exosome components, and

for MHC-II-presented peptides in the extracellular exosome, region,

and space (Appendix Fig S1) as previously described (Bassani-

Sternberg et al, 2015; Schellens et al, 2015; Pearson et al, 2016; Abe-

lin et al, 2019). Expression analysis of genes from enriched locations

revealed increased expression compared to genes from depleted

locations (Appendix Fig S2), although 22% of highly expressed

genes were not significantly enriched in eluted peptide–MHC, reaf-

firming previous findings that gene expression alone does not drive

peptide elution (Pearson et al, 2016). We also evaluated protein

turnover rates from four human cell types including B cells, natural

killer cells, hepatocytes, and monocytes (Mathieson et al, 2018) as

peptides presented by MHC-I are derived from degraded peptides in

the cell (Milner et al, 2006). Thus, a high turnover rate could result

in more peptides being available for presentation. Instead, we found

that overall, proteins from enriched location categories tended to

have longer predicted half-lives (Appendix Fig S3), although the cell

types evaluated were limited. To understand the implications of

these findings for peptide-directed T-cell responses, we next sought

to correlate peptide immunogenicity with subcellular origin.

We hypothesized that the effects of protein subcellular localiza-

tion bias on peptide availability for presentation and T-cell selection

would influence the immunogenicity of tumor neoepitopes. To ulti-

mately test whether the incorporation of peptide parent protein loca-

tion as a feature could improve the prediction of neopeptide

immunogenicity, we first evaluated the effect of protein subcellular

location on the likelihood of observing peptides presented by the

MHC using peptide elution data.

Proteins have complex localization patterns; thus, we needed a

strategy that could capture whether any location of a protein would

contribute peptides that could be eluted fromMHCmolecules. To take

advantage of gene ontology (GO) cellular component annotations,

wherein proteins are annotated to multiple locations, we used a

recently published set of pre-trained, 200-dimensional gene ontology

embeddings (Kim et al, 2021). This approach represents each GO cel-

lular component in the Poincare ball hyperbolic space. In this space,

embedding vectors for multiple GO terms assigned to a single protein

can be summed to obtain a single new vector that represents the mul-

tiple locations of that protein. We used UMAP to reduce the large 200-

dimensional vectors into two features (see Materials and Methods)

allowing more convenient visualization (Fig 1A, Appendix Fig S4) as

well as providing a more compact feature set for machine learning.

Unsupervised clustering in UMAP space suggested 7 clusters, which

showed enrichment for particular cellular components (Fig 1B), con-

firming that the non-linear two-dimensional mapping preserves infor-

mation about complex protein subcellular location patterns.

To examine the relevance of these location features for predicting

peptide elution, we evaluated eluted peptides from 721.221 B cells

(n = 3,510). Gene expression has also been associated with cell sur-

face presentation (Abelin et al, 2017). Since we had matched expres-

sion data for these eluted peptides (discussed in Appendix Figs S1–

S4), we compared location to expression as predictors of whether a

protein would be represented in the eluted peptides from cell surface

MHC complexes. For a given protein, we labeled it as eluted

(n = 638) or not (n = 17,307) based on the presence of 1 or more pep-

tides mapping to that protein among the 3,510 eluted peptides (Mate-

rials and Methods). We trained a random forest model and found

that location alone (67% AUC) has significantly improved AUROC

compared to expression alone (49% AUC, DeLong’s test P-

value = 1.34 e-29). Location and expression features together achieve

81% AUROC and 15% AUPRC, respectively (Fig 1C and D). This sup-

ports an independent contribution of location overexpression.

Next, we sought to determine whether subcellular location

effects on presentation also translated to effects on immunogenicity.

We began by querying the immune epitope database (IEDB; Vita

et al, 2019) for neoepitopes that were assayed for immunogenicity.

After filtering (Materials and Methods), 2,943 neoepitopes

remained, of which 813 (27.6%) were reported to elicit a positive T-

cell assay result. Cellular component enrichment analysis of parent

proteins (n = 325) of immunogenic peptides did not reveal any

significantly enriched locations, likely due to the limited sample
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size. However, these peptides did tend to come from locations

where more eluted peptides were observed on average

(Appendix Fig S5). Analysis of unique non-immunogenic parent

proteins (n = 772) whose peptides passed the minimum MHC-I-

binding threshold (< 2 netMHCpan percentile rank) showed enrich-

ment for locations including an integral component of the plasma

membrane, which are depleted for not only eluted peptide–MHC

(Appendix Fig S1) but also some other membrane locations that

were enriched for MHC-bound peptides, such as the endoplasmic

and sarcoplasmic reticulum membranes.

We then used our 2D location embeddings to analyze the loca-

tions of unique source proteins across studies in the IEDB. We eval-

uated immunogenic and non-immunogenic neopeptide source

proteins and observed many overlapping locations between the two

groups (Appendix Fig S6A and B). However, we still observed that

certain locations generate more immunogenic peptides than others

(Appendix Fig S6C) and vice versa, although these may reflect selec-

tion biases involved in choosing the proteins and peptides evaluated

for immunogenicity in the various IEDB studies, and could change

as available datasets grow.

Parent protein location improves peptide immunogenicity
prediction in multiple datasets

Next, we sought to test whether incorporating location as a feature

would improve immunogenicity prediction. We performed 10-fold

cross-validation using a random forest classifier on the IEDB

dataset (Materials and Methods) with and without adding location to

a feature set that comprised peptide–MHC-binding affinity (nM; Jurtz

et al, 2017), peptide–MHC stability (Rasmussen et al, 2016), and for-

eignness (Łuksza et al, 2017; Wells et al, 2020). This dataset did not

include many MHC-II peptides and did not provide enough informa-

tion about MHC-II alleles to calculate peptide–MHC affinities, there-

fore we focused on MHC-I peptides. We found that adding location

as a feature improved both the area under the receiver operating

characteristic (ROC) curve (Fig 1E) and precision–recall (PR) curve

(Fig 1F), and contributed to 38% of the model’s predictive power

(Fig 1G). As a control, we replaced location features with randomly

sampled values ranging from �1 to 1 and found that the AUROC and

AUPRC that incorporated these randomized values were greatly

decreased (69% AUROC and 37% AUPRC). Next, we examined the

predicted differences between the two models by using the median

Youden index to classify peptides as immunogenic or not for each

model. A total of 254 peptides were differentially classified between

the two models, with 134 now classified as immunogenic and 120

not immunogenic in the location model. The reclassified peptides

were enriched for true positives and negatives (Fisher’s exact OR:

1.74, P = 0.04), and true positives included peptides from the cytosol

while the true negatives included peptides from the nucleus

(Appendix Fig S7). Interestingly, among these newly classified pep-

tides, immunogenic versus non-immunogenic peptides had signifi-

cantly higher median GTEx gene expression but similar affinity,

stability, and foreignness scores (Appendix Fig S7), suggesting that

location may help predict gene expression. As gene expression was

correlated with peptide–MHC elution (Appendix Fig S2; Abelin

et al, 2017), we repeated the analysis; this time including median

gene expression obtained from GTEx as a feature. We found that the

benefit of including location as a feature persisted, suggesting that

location provides information to predict immunogenicity that is dis-

tinct from expression (Appendix Fig S8).

We then tested our model on unseen datasets not included in the

IEDB database. First, we analyzed around 900 peptides from Wells

et al (2020) as this dataset represents the largest collection of immuno-

logically tested peptides that we could identify. As these data were

designed to benchmark neoantigen prediction algorithms, they were

partitioned into a ~ 600 peptide discovery set and a ~ 300 peptide val-

idation set. Initial analysis revealed differences in the distribution of

MHC affinity and stability of immunogenic peptides between the IEDB

and Wells datasets (Appendix Fig S9), which may be attributable to

overall differences in MHC allele frequencies between the two data-

sets, and inherent differences in affinity and stability across MHC alle-

les themselves (Paul et al, 2013; Appendix Fig S10). We also found

that the parent proteins of immunogenic peptides identified by Wells

et al, originated from locations that were infrequently observed in the

IEDB (Appendix Fig S10G), likely reflecting the use of different criteria

for selecting proteins/peptides in the Wells study versus studies in

IEDB. Interestingly, while a model trained solely on IEDB did not per-

form as well as a model trained on the discovery partition provided in

the Wells study in ROC analysis (AUROC of 89% vs. 93%), it signifi-

cantly improved the precision–recall curve (AUPRC of 64% vs. 9.2%;

Appendix Fig S9). This suggests that filtering candidate neoantigens

based on location may significantly reduce false-positive predictions.

To address systematic differences in the feature sets, we trained a new

model combining the IEDB with the Wells discovery set. We were able

to achieve a higher recall on the test set (AUROC of 92%) while retain-

ing the benefit of reducing false positives (69% AUPRC), shown by

fewer non-immunogenic peptides (green points) falling above the

Youden index threshold for the model with location (vertical dashed

line) than in the model without location (horizontal dashed line;

Fig 2A–C).

Several peptide features including tumor abundance (expression)

and agretopicity that were identified in the Wells dataset as being

◀ Figure 1. Overview of location features from eluted peptides and T-cell assayed neoepitopes from IEDB.

A Scatterplot of clustered UMAP location features (Materials and Methods) for source proteins of IEDB T-cell assayed neoepitopes with COSMIC cancer genes high-
lighted.

B Table annotating location clusters from the scatterplot with highlighted COSMIC cancer genes. †PANTHER GO Slim CC used here for simplified terms. #Many terms
so only the top five are shown.

C, D (C) Area under the receiver operating characteristic curve (AUROC) and (D) area under the precision–recall curve (AUPRC) for 10-fold cross-validation using a Ran-
dom Forest model to predict protein elution in 721.221 B cells incorporating location, matched expression, or both (Materials and Methods). The faded lines indicate
the respective area under the curve for each split.

E, F (E) AUROC and (F) AUPRC for 10-fold cross-validation using a Random Forest model to predict immunogenicity in IEDB assayed neopeptides incorporating peptide
affinity, stability, and foreignness (Materials and Methods) with and without parent protein location features.

G Barplot of model feature importance.
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predictive of immunogenicity were not available in the IEDB

dataset. Therefore, we trained a separate model on the Wells discov-

ery set alone incorporating these additional features, and tested it

on the independent Wells test set. We found that incorporating loca-

tion improved both the AUROC (89% vs. 67%) and AUPRC (9.6%

vs. 7.5%). In this model, the location features contributed 22% of

feature importance, just below affinity (Appendix Fig S11). These

experiments suggest that location improves the prediction of

immunogenic peptides, with the greatest benefit likely coming from

a reduction in the number of false-positive predictions. The large

improvement in precision and recall when incorporating the IEDB

underscores the benefit of a large training set for capturing the infor-

mation provided by parent protein location.

We evaluated performance on a second independent dataset of

43 assayed MHC-I neoepitopes from advanced ovarian cancer

patients (Liu et al, 2019b) not seen in the IEDB cohort. Of these,

only three (6.9%) were validated as immunogenic, further empha-

sizing the scarcity of true neoantigens. The tested neopeptides once

again had a significantly different affinity and stability than the IEDB

dataset, and while 16 locations were shared between datasets, these

did not include the parent proteins for the three immunogenic pep-

tides (Appendix Fig S12). We ran the model trained on IEDB alone

with and without location features, as well as the model trained on

both the IEDB and Wells datasets. We observed improved perfor-

mance with the addition of datasets and incorporation of location

(Appendix Fig S13), 45% vs. 65% AUROC and 6.2% vs. 9%

AUPRC. Taken together, these findings suggest that immunogenicity

prediction benefits from incorporating parent protein subcellular

location and can be improved through the aggregation of indepen-

dent datasets across cancer types.

Immunotherapy response reflects neoepitope parent protein
subcellular location

Most T-cell-based immunotherapies, such as neoantigen vaccines

and immune checkpoint blockade (ICB), depend on the availability

of immunogenic peptides to drive effector T-cell responses. We

speculated that if the parent protein subcellular location constrains

the set of mutations in a tumor that could potentially be immuno-

genic, then we should find associations between location and

immunotherapy responses. We evaluated three ways in which loca-

tion might be apparent in human immunotherapy studies. First, we

sought to determine whether the location was a determinant of T-

cell response in a neoantigen vaccine study, then we asked whether

neopeptides from locations that were more immunogenic were more

likely to be depleted by immunotherapy (immunoediting), and

finally, investigated whether location could improve the estimation

of the effective neoantigen burden and consequently, stratification

of responders and non-responders to ICB.

We first investigated the association of location with immune

response in a neoantigen vaccine study (Sahin et al, 2017) and

found that parent proteins of neopeptides able to induce a post-

vaccination response (75/125 tested; 120 distinct parent proteins)

were enriched for locations previously observed to contain immuno-

genic peptides from the Wells, Liu (OV), and IEDB neoantigen data-

sets (Fisher’s exact 3.49, P = 0.029). Because neoantigen vaccine

studies have reported predominantly CD4+ T-cell responses (Ott

et al, 2017; Sahin et al, 2017; Hilf et al, 2019; Keskin et al, 2019), we

also investigated whether vaccine neopeptides associated with an

immune response came from locations from which more MHC-I or

MHC-II peptides were eluted by the HLA ligand atlas. The majority

of neopeptides tested (92/125, 73.6%) had parent proteins from

which MHC-I and MHC-II peptides had been previously eluted.

Nineteen neopeptides’ parent proteins were only observed to be

eluted from MHC-I and 7 were exclusive to MHC-II

(Appendix Fig S14A). Unlike having parent proteins in a location

previously associated with immunogenic peptides, the number of

MHC-eluted peptides from neopeptide parent proteins alone did not

correlate with immune response, although there was a weak trend

for neopeptide parent proteins exclusive to MHC-II to have higher

numbers of eluted peptides observed (Appendix Fig S14B). Thus,

although we observed a correlation between the number of eluted
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Figure 2. Predicting immunogenicity on the Wells validation dataset.

A, B (A) Area under the receiver operating characteristic curve (AUROC) (B) and area under the precision–recall curve (AUPRC) for the unseen validation dataset with and
without parent protein location features.

C Scatterplot of the predicted probabilities for unseen test neopeptides to be immunogenic with and without location as a feature. Dashed lines indicate the Youden
index for each model, used for optimal threshold predictions. False positives are reduced in the model with location.
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peptides and immunogenicity in general (Appendix Fig S4), the sub-

cellular location may be a more nuanced determinant of immuno-

genic potential.

In light of an association between parent protein subcellular loca-

tion and post-vaccine response, we speculated that tumor clones

present pre-treatment and eliminated during treatment would be

more likely to harbor mutations in proteins from immunogenic loca-

tions. To further explore this possibility, we evaluated 73 melanoma

patients with paired pre- and on-treatment samples to see if there

were notable differences between eliminated (present pre-treatment

and not on-treatment) and persistent (present both pre- and on-

treatment) neopeptides (Riaz et al, 2017). We focused on responders

(n = 38, partial/complete response, or > 6 months of stable disease)

as these patients should have a relatively intact immune response

compared to non-responders. While responders had a better overall

presentation of evaluated neopeptides, neopeptides eliminated

on-treatment did not have significantly better overall MHC

allele-specific presentation compared to neopeptides retained pre-

and on-treatment in both responders and non-responders

(Appendix Fig S15), suggesting that neopeptide elimination is not

driven solely by affinity or stability in this dataset. However, this

analysis is complicated by the non-independence of mutations that

coexist within the same subclones. To investigate further, we exam-

ined 12,915 retained neopeptides from responders that were pre-

dicted to be presented by MHC-I (NetMHCpan rank < 2) and,

therefore, should have been eliminated by the patient’s immune sys-

tem. We found that eliminated neopeptides tended to be enriched

for locations where immunogenic peptides were previously

observed (combining the immunogenic peptides from the IEDB,

Wells et al, Liu et al; Fisher’s exact OR: 1.08, P = 0.09).

Next, we studied the potential for parent protein location to

improve ICB response stratification. We evaluated cohorts with

whole-exome sequencing data, as well as one profiled using a deep-

sequenced gene panel. We began by looking for the association of

previously immunogenic locations with a response status. We

found that in four of six evaluated immunotherapy cohorts, includ-

ing melanoma, non-small-cell lung cancer (NSCLC), bladder, and

renal cancer patients (Snyder et al, 2014, 2017; Rizvi et al, 2015;

Van Allen et al, 2015; Miao et al, 2018; Liu et al, 2019a), consider-

ing only mutations from immunogenic locations in the TMB

improved stratification of responders versus non-responders, as

defined by their respective original studies (Fig 3A). To incorporate

other major determinants of immunogenicity such as affinity for the

MHC, we used a model trained on all datasets with immunogenicity

information (IEDB + Wells + Liu (ovarian)) to classify neopeptides

in both ICB cohorts as immunogenic or not based on the Youden

index of the trained model (Materials and Methods). We found that

in four of the six evaluated immunotherapy cohorts, the predicted

burden of immunogenic peptides based on location in responders

was significantly higher than in non-responders (Fig 3B). The

change in effect size relative to baseline (TMB vs. location filtered

TMB, and models with and without location vs. a basic < 500 nm

peptide–MHC affinity filter) is shown in Fig 3C and D, respectively.

Consistent with the approach of removing false positives, we saw a

larger reduction in putative neoantigens in non-responders than in

responders in both analyses (Appendix Fig S16). In most cases, fil-

tering out neopeptides predicted not to be immunogenic widened

the gap between responders and non-responders, supporting the

potential of location to improve stratification of patient groups pre-

treatment.

Finally, we analyzed a cohort of 83 diverse tumors treated with

immune checkpoint monotherapy that were profiled pre-treatment

with the Foundation Medicine gene panel (Goodman et al, 2020). In

this cohort, we previously found that presence of at least one pre-

sentable driver mutation could further stratify responders and non-

responders in the context of covariates including sex, ethnicity, age,

tumor type, TMB, and therapy type. Of the 325 genes on this panel,

40 (12.3%) encoded proteins with subcellular locations from which

immunogenic peptides had previously been observed, including

ABL1, ALK, APC, ARAF, C11ORF30, EMSY, CCND3, CDK4, CDKN1A,

CDKN2A, CREBBP, EGFR, EZH2, FAM46C, FGF19, FGF3, FGF4,

FUBP1, GATA3, ID3, INPP4B, JAK1, KDM5C, KMT2D, MLL2, KRAS,

MAP3K1, MDM4, MET, MYCL, MYCL1, NPM1, NT5C2, PALB2,

PBRM1, PTPRO, RARA, SMO, TBX3, TET2, TIPARP, and TP53.

First, we asked whether the burden of somatic mutations in the

40 genes was informative for stratifying patient outcomes. Focusing

on mutation burden in proteins from immunogenic locations

reduced the total number of mutations under consideration while

preserving the potential to distinguish responders from non-

responders and those with stable disease (SD; Fig 4A and B).

Second, we asked whether effective presentation of one or more

neopeptides from these 40 proteins was a better determinant of out-

come than presentation of one or more neopeptides across all pro-

teins in the panel. For this analysis, we focused on the 71 of 83

patients who carried at least one mutation in these 40 genes. While

patient MHC genotype-specific presentation scores (PHBR scores,

Marty et al, 2017) were able to stratify responders from non-

responders when all proteins were considered (Fig 4C), the stratifi-

cation improved when we focused on only the 40 proteins from

immunogenic locations overall (Fig 4D) and in high TMB patients

(Appendix Fig S17). We revisited this analysis using a Cox propor-

tional hazards model with covariates as described previously

(Goodman et al, 2020), and found that when we focused on the 40

panel genes encoding proteins from immunogenic locations, presen-

tation (PHBR score) was more significantly associated with out-

come in high TMB patients, and the model had an improved

(lower) Akaike information criterion score (Dataset EV1). Alto-

gether these results support that subcellular location of parent pro-

teins is a determinant of the effective neoantigen burden in the

setting of immunotherapy.

Discussion

While immunotherapy has the potential to generate durable

responses (Ledford, 2016), the fraction of patients who respond

remains relatively low. Notably, immunotherapy tends to have

higher response rates in tumor types with a high burden of somatic

mutations, which is thought to be a proxy for having a large number

of immunogenic mutations. Mapping the mutations in a tumor

genome to the subset that are likely to create immunogenic neoanti-

gens is therefore important to realistically assess the potential for

immunotherapy response as well as for designing effective cancer

vaccines. Consequently, a variety of metrics have been developed to

reveal putative neoantigens in tumor genomes, with the most com-

mon being peptide–MHC-binding affinity, peptide–MHC complex
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stability, peptide agretopicity, foreignness, and mutation expression.

Here, we analyzed peptides from eluted peptide–MHC and found

that the subcellular location of proteins also influences which pep-

tides are presented by the MHC. Using a high-dimensional cellular

location embedding that captured multi-localization mapped to a

two-dimensional representation, we analyzed the implications of

parent protein location relative to peptide immunogenicity and

immunotherapy response. Immunogenic peptides were biased

toward specific subcellular locations and a higher burden of muta-

tions from these regions was associated with more benefit from

immunotherapy in multiple cohorts. These findings provide the first

evidence that parent protein locations influence both neopeptide

presentation and T-cell recognition and elimination.

We evaluated both the subcellular locations of proteins from

which MHC-I- and MHC-II-bound peptides originate as well as those

associated with peptides labeled as immunogenic based on

A

B

DC

Figure 3. ICB responders carry a higher burden of mutations in proteins from immunogenic locations.

A Predicted neoantigen burden versus response category in immunotherapy cohorts when retaining only mutations in proteins from subcellular locations previously
observed to source immunogenic peptides.

B Predicted neoantigen burden versus response category in immunotherapy cohorts where neoantigen status is predicted using a model trained on three sources of
immunogenic peptide and features including peptide–MHC affinity, stability, and location.

C, D Barplots of effect sizes between responders and non-responders (C) where TMB is filtered to include only mutations from subcellular locations previously observed
to source immunogenic peptides and (D) where neoantigen status is predicted using a model trained on three sources of immunogenic peptide and MHC affinity
and stability, with and without location.

Data information: Panels A and B include the median line, the boxes denote the interquartile range (IQR), whiskers denote the rest of the data distribution, and outliers
are denoted by points determined by � 1.5 * IQR. Sample size indicates number of patients. The Mann–Whitney U statistical test was performed.
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B

C

D

Figure 4. Focusing on immunogenic locations improves response prediction in a gene panel profiled cohort.

A, B Tumor mutation burden focusing on (A) all genes in the gene panel and (B) the 40 genes whose proteins localize to previously observed immunogenic subcellular
locations.

C, D Kaplan–Meier curves showing the effect of the best presented mutation on progression-free survival (C) using all genes in the panel and (D) using only the 40 genes
of interest.

Data information: Panels A and B include the median line, the boxes denote the interquartile range (IQR), whiskers denote the rest of the data distribution, and outliers
are denoted by points determined by � 1.5 * IQR. Sample size indicates number of patients. The Mann–Whitney U statistical test was performed.
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experimental assays. We note that these locations may not fully

overlap. While stable presentation by the MHC is a prerequisite for

immunogenicity, it is possible that not all locations from which pep-

tides are sourced generate immunogenic peptides. This is dependent

in part on the extent of thymic selection. Furthermore, we note that

not all experimental assays used to profile immunogenicity fully

recapitulate the dependence on protein location, which could lead

to the appearance of some immunogenic peptides coming from

regions leading to no peptide presentation by the MHC. Further-

more, there was substantially less information about MHC-II pep-

tides than MHC-I, leading to more limited assessment of

immunogenicity in locations where peptides are predominantly

eluted from MHC-II. Nonetheless, more MHC-II presented peptides

than MHC-I presented peptides were associated with vaccine

response in multiple vaccine studies (Ott et al, 2017; Sahin

et al, 2017; Hilf et al, 2019; Keskin et al, 2019).

In general, we speculate that the location constraint could more

strongly affect peptide availability for MHC-I. Peptides from differ-

ent compartments within the cell may have more variable access to

the ER, which depends largely on transport from the cytoplasm by

TAP family transporters (Yewdell & Bennink, 1999). Peptides dis-

played by MHC-II come mainly but not exclusively from proteins

internalized by antigen-presenting cells. However, MHC-I and MHC-

II have been found abundantly in exosomes derived from B cells,

which may explain the significant enrichment in eluted peptides for

both classes I and II (Wubbolts et al, 2003; Colombo et al, 2014). In

addition, the diversity and availability of such proteins could change

drastically in the presence of apoptotic or necrotic cells in the tumor

immune microenvironment, making proteins from previously

unavailable locations more accessible. Cross-priming may allow

some exceptions to location constraints as well (Kurts et al, 2010).

These considerations are particularly important in the context of

neoantigen vaccines. Effective vaccine design depends on selecting

peptides that will induce robust immune responses. Inclusion of

peptides that stimulate T-cell expansion but are not effectively dis-

played by the MHC at the tumor site creates the risk of generating

immunodominance toward ineffective targets (Yewdell & Ben-

nink, 1999). The resulting T-cell expansions could be dominated by

clones incapable of suppressing the tumor, while more relevant

clones are outcompeted in competition for antigen on the APCs

(Garcia et al, 2007), nutrient starved (Kedia-Mehta & Finlay, 2019),

and may become more easily exhausted (Malandro et al, 2016).

Thus, it may be important to avoid including peptides from parent

proteins that are less accessible to the MHC. More stringent con-

straints on peptide accessibility to MHC-I might make selection of

effective peptides for MHC-I more challenging than for MHC-II.

Biases in protein location during thymic selection could render

the T-cell repertoire more sensitive to proteins from certain loca-

tions. Therefore, including peptides from these locations could be

beneficial. This also leads to the speculation that protein localization

changes in tumor cells could alter accessibility to the MHC. If these

proteins are less subject to thymic tolerance, they could potentially

be more potently immunogenic in the available T-cell repertoire of

adult individuals. One study found that an inverted form of mela-

noma antigen with altered localization, Melan-A, was recognized by

T cells while the native orientation and a variant expressed in the

cytosol were not (Rimoldi et al, 2001). Although alterations in local-

ization signals are reportedly rare (Laurila & Vihinen, 2009; Wang &

Li, 2014), differences in trafficking could be more common (Tzeng

& Wang, 2016). For example, we found that some mitochondrial

regions were depleted for immunogenic proteins, however,

mitochondrial-derived vesicles may provide a pathway to the MHC

to proteins from these regions (Matheoud et al, 2016).

We note several limitations to our study. The pre-trained location

embeddings were based on characteristics of normal cells, and will

reflect any biases or gaps present in the gene ontology (Gaudet &

Dessimoz, 2017). Furthermore, many proteins map to multiple loca-

tions (Thul et al, 2017) and have multiple associated cellular compo-

nent terms. In this study, we weighted each component equally, but

it is likely that some locations may be predominant or transient.

Immunogenicity is based on experimental assays in the IEDB per-

formed on 325 proteins by various groups using various assays.

These proteins could reflect selection bias. Similarly, locations asso-

ciated with MHC-eluted peptides may reflect the specific alleles that

were profiled. In addition, MHC-II datasets may be biased toward B

cells, whereas differences in internalization mechanisms among

antigen-presenting cell types such as dendritic cells or macrophages

could create differences in which proteins are more accessible.

Despite these limitations, we found that incorporating protein loca-

tion into analysis of immunotherapy cohorts was helpful in several

ways. We used location to revise the effective neoantigen burden in

tumors and better stratify potential for immunotherapy response,

although the best performance was observed in tumor types similar to

the training data, namely melanoma, lung, and bladder, as well as

datasets with higher overlap in the locations of the source proteins

studied. Studying the effects of location in the context of tumor immu-

noediting is further made difficult by patterns of co-segregating muta-

tion, and subclone-specific mechanisms of immune evasion can

confound the association with neoantigen characteristics. More insight

may be gained from future single-cell studies where it is possible to

define the clonal architecture of tumors and determine which muta-

tions coexist within the same clones. Indeed, preprint: Mehrabadi

et al (2021) found that location bias of mutated proteins correlated

with immunoediting of specific tumor subclones in a murine model of

melanoma. Location information was also beneficial in a cohort that

was profiled with a gene panel, suggesting that this information could

still be relevant for the more limited data commonly generated in clini-

cal settings. Thus, we conclude that protein subcellular location con-

tributes to shaping the tumor–immune interface and can potentially be

leveraged to improve the effective application of immunotherapies.

Materials and Methods

GO analysis

Gene ontology enrichment analysis was performed using

GOATOOLS (https://github.com/tanghaibao/goatools; Klopfenstein

et al, 2018) using the standard parameters, and retaining enriched

or depleted results if the Benjamini–Hochberg corrected P-value was

< 0.05 (Dataset EV2).

Abelin 2019 peptides

Peptides were obtained from the published data from Abelin

et al (2019). Peptides were mapped to parent UniProt sequences and
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filtered out if they mapped to multiple parent proteins. A total of

69,653/76,561 (90.7%) peptides were uniquely mapped to one par-

ent protein sequence.

Isolation and purification of HLA-DR-bound peptides

The human B-cell lymphoblastoid cell lines 721.221, JThom (9004),

OLL (9100), and SPACHECO (9072) were grown in complete RPMI

1640 medium (Gibco) supplemented with 10% fetal bovine serum

(FBS; Gibco/Invitrogen Corp). The HeLa cell line was grown in

DMEM/F12K (Gibco) supplemented with 10% fetal bovine serum

(FBS; Gibco/Invitrogen Corp). The cells were grown in large-scale

cultures in roller bottles and the cell viability was maintained at

> 90% throughout the experiments. To induce HLA Class II surface

expression, HeLa cells were treated with IFNɣ (500 U/ml) for 72 h

after which the cells were harvested, washed twice with ice-cold

PBS, and spun down at 2,500 g for 10 min. The cell pellets were

snap frozen in LN2 and stored at �80 until downstream processing.

All cell lines were subjected to high-resolution sequence-based HLA

typing (HLA-A, -B, -C, DR, DP, and DQ) for authentication prior to

large-scale culture and data collection.

HLA-DR molecules were purified from the cells by affinity chro-

matography using the anti-human HLA-DR antibody (clone L243)

coupled to CNBr-activated Sepharose 4 Fast Flow (Amersham Phar-

macia Biotech, Orsay, France) as described previously (Kaabineja-

dian et al, 2022). Briefly, frozen cell pellets were pulverized using

Retsch Mixer Mill MM400, resuspended in lysis buffer comprised of

Tris pH 8.0 (50 mM), Igepal, 0.5%, NaCl (150 mM), and complete

protease inhibitor cocktail (Roche, Mannheim, Germany). Lysates

were centrifuged in an Optima XPN-80 ultracentrifuge (Beckman

Coulter, IN, USA) and filtered supernatants were loaded on

immunoaffinity columns. After a minimum of three passages,

columns were washed sequentially with a series of wash buffers

(Purcell et al, 2019) and were eluted with 0.2 N acetic acid. The

HLA was denatured, and the peptides were isolated by adding

glacial acetic acid and heat. The mixture of peptides and HLA-DR

was subjected to reverse-phase high-performance liquid chromatog-

raphy (RP-HPLC).

Fractionation of the HLA/peptide mixture by RP-HPLC

Reverse-phase high-performance liquid chromatography was used

to reduce the complexity of the peptide mixture eluted from the

affinity column. First, the eluate was dried under vacuum using a

CentriVap concentrator (Labconco, Kansas City, Missouri, USA).

The solid residue was dissolved in 10% acetic acid and fractionated

using a Paradigm MG4 instrument (Michrom BioResources, Auburn,

California, USA). An acetonitrile (ACN) gradient was run at pH 2

using a two-solvent system. Solvent A contained 2% ACN in water,

and solvent B contained 5% water in ACN. Both solvent A and sol-

vent B contained 0.1% trifluoroacetic acid (TFA). The column was

pre-equilibrated at 2% solvent B. Then, the sample was loaded at a

flow rate of 120 ll/min and a two-segment gradient was run at

160 ll/min flow rate as described in detail in Kaabinejadian

et al (2022). Fractions were collected in 2 min intervals using a Gil-

son FC 203B fraction collector (Gilson, Middleton, Wisconsin, USA),

and the ultra-violet (UV) absorption profile of the eluate was

recorded at 215 nm wavelength.

Nano-LC–MS/MS analysis

Peptide-containing HPLC fractions were dried, resuspended in a sol-

vent composed of 10% acetic acid, 2% ACN, and iRT peptides

(Biognosys, Schlieren, Switzerland) as internal standards. Fractions

were applied individually to an Eksigent nanoLC 415 nanoscale RP-

HPLC (AB Sciex, Framingham, Massachusetts, USA), including a 5-

mm-long, 350 lm of internal diameter Chrom XP C18 trap column

with 3 lm particles and 120 �A pores, and a 15-cm-long ChromXP

C18 separation column (75 lm internal diameter) packed with the

same medium (AB Sciex, Framingham, Massachusetts, USA). An

ACN gradient was run at pH 2.5 using a two-solvent system. Solvent

A was 0.1% formic acid in water, and solvent B was 0.1% formic

acid in 95% ACN in water. The column was pre-equilibrated at 2%

solvent B. Samples were loaded at 5 ll/min flow rate onto the trap

column and run through the separation column at 300 nl/min with

two linear gradients: 10–40% B for 70 min, followed by 40–80% B

for 7 min.

The column effluent was ionized using the nanospray III ion

source of an AB Sciex TripleTOF 5600 quadrupole time-of-flight

mass spectrometer (AB Sciex, Framingham, MA, USA) with the

source voltage set to 2,400 V. Information-dependent analysis (IDA)

method was used for data acquisition (Kaabinejadian et al, 2022).

PeakView Software version 1.2.0.3 (AB Sciex, Framingham, MA,

USA) was used for data visualization.

Peptide identification and source protein information

Peptide sequences were identified using PEAKS Studio 10.5 software

(Bioinformatics Solutions, Waterloo, Canada). A database composed

of SwissProt Homo sapiens (taxon identifier 9606) and iRT peptide

sequences was used as the reference for database search. Variable

post-translational modifications (PTM) including acetylation, deami-

nation, pyroglutamate formation, oxidation, sodium adducts, phos-

phorylation, and cysteinylation were included in database search.

Identified peptides were further filtered at a false discovery rate

(FDR) of 1% using PEAKS decoy-fusion algorithm.

Cellular component location embedding

Gene ontology (GO) cellular component (CC) annotations for all

UniProt protein IDs was obtained from uniprot.org. Pre-trained 200-

dimensional vectors for 64,649 GO terms were obtained from Kim

et al (2021). Vectors were mapped to UniProt IDs and summed if a

UniProt ID had more than one associated GO CC term. UMAP

dimensionality reduction (preprint: McInnes et al, 2018) using the

“hyperboloid” metric was applied, then mapped to the Poincare disk

model. The resulting two values for each protein were used as fea-

tures.

Prediction of elution using location and expression features

Dataset: Eluted peptides from 721.221 B cells (n = 3,510) with

matched expression (discussed in Appendix Figs S1–S4).

Method: We retained only one parent protein for observed/eluted

peptides, resulting in n = 638 positive labels and n = 17,307 negative

labels (the remaining proteins for which we had expression values)

for eluted proteins. We trained a random forest model using these
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data with the parameters described in the “Random forest model”

section (see below) to account for an imbalanced dataset.

IEDB data

Peptides were selected from the Immune Epitope Database and

Analysis Resource (www.iedb.org; Vita et al, 2019) on July 16,

2021, using filters “Epitope Structure: Linear Sequence,” “Included

Related Structures: neo-epitope,” “No B cell Assays,” “No MHC

assays,” “MHC Restriction Type: Class I,” “Host: Homo sapiens (hu-

man)” and “Include Positive Assays,” and “Include Negative

Assays” (T-cell assays). This resulted in 3,754 peptides. Peptides

whose “Assay Antigen Antigen Description” sequence did not match

“Epitope Description” sequence were filtered, resulting in 3,521 pep-

tides. Peptides were also filtered out if they did not have an associ-

ated UniProt ID found in the “Related Object Parent Protein IRI”

field, resulting in 3,367 peptides. Peptides were additionally

removed if they were not in the UniProt CC file (downloaded on

April 17, 2020, from uniprot.org by selecting all human peptides

and choosing “Gene ontology (cellular component)” in the column

selection; see Cellular Component Location Embedding), resulting in

3,125 peptides. Peptides were dropped if they did not have a specific

associated HLA allele (e.g., Allele Name = “HLA class I” or Allele

Name = “HLA-A2”) or if they were not a simple linear sequence

(e.g., ILCETCLIV + AIB (C3, C6)). This resulted in 2,943 peptides.

Affinity, stability, and foreignness features were calculated as

described in “Validation Data.”

Hex plots: Parent protein locations were plotted for each unique

protein and immunogenic state for each study (i.e., if peptides from

Protein A had positive and negative tests, the parent protein would

be retained twice, once in each immunogenic category).

Clustering of UMAP location features: We clustered the UMAP

location values using a K-means model specifically designed for the

hyperbolic space (Popoff). We used the elbow method to select

seven clusters. We then annotated each cluster with gene ontology

(GO) cellular components using default parameters (Ashburner

et al, 2000; Mi et al, 2019; Gene Ontology Consortium, 2021).

Random forest model

The RandomForestClassifier from sklearn v0.24.2 was trained using

random state 2021. The StratifiedKFold function was used to per-

form the 10-fold splits, also using random state 2021. The Youden

indices for each fold were obtained by taking the threshold that had

the greatest TPR-FPR (i.e., greatest area under the curve). The

median Youden index was used to classify peptides as immunogenic

or not for downstream analyses.

Wells data

Experimentally validated peptides were obtained from published

appendix tables S4 and S7 in Wells et al (2020). Peptides were

mapped to parent proteins by iterating through all UniProt proteins

and looking for a match to any peptide with a wildcard in the given

mutated position (e.g., Python code to find the wild-type peptide cor-

responding to “FLCEILRSMSI” with mutated position 10: re.findall

(r’? = (“FLCEILRSM.I”)), protein_sequence). Ten peptides without a

mutated position were excluded. A total of 584 (97.6%) of neopeptide

sequences were mapped to one unique parent wild-type sequence.

Peptides with matched wild-type sequences mapping to multiple

UniProt IDs were dropped. Missing foreignness or agretopicity scores

were re-calculated using the methods described in Wells et al The

resulting 558 peptides (Dataset EV3) from the discovery set were used

to train a Random Forest classifier using sklearn (v0.24.2).

Wells validation data

The trained model was tested on the 310 peptides validation dataset

from Wells et al, as well as 43 peptides from ovarian tumors (Liu

et al, 2019b). As these datasets did not include all features from the

discovery dataset, NetMHCstabpan (v1.0; Rasmussen et al, 2016)

was used to predict peptide–MHC stability, NetMHCpan (v4.0; Jurtz

et al, 2017) was used to predict peptide–MHC-binding affinity, and

the antigen.garnish package (https://github.com/andrewrech/

antigen.garnish) was used to calculate foreignness as described in

Luksa, Wells. Finally, agretopicity was calculated by taking the ratio

of mutant-to-wild-type–binding affinity.

Validation immunotherapy cohorts

For cohorts with provided neoepitope data analyzed in respective

original manuscripts (Snyder et al, 2014, 2017; Rizvi et al, 2015;

Van Allen et al, 2015), we re-calculated affinity with NetMHCpan

(v4.0), stability with NetMHCstabpan (v1.0), and foreignness with

the antigen.garnish package as described above, and annotated loca-

tion. For cohorts without neoepitope data provided (Hugo et al,

2017; Miao et al, 2018; Liu et al, 2019), we performed the same cal-

culations for all HLA alleles and designated the best presented

neopeptide for each mutation as the neoepitope. We utilized the

original labels of responder/non-responder from each respective

manuscript without extra grouping. For example, we kept the three

separate groupings from the Van Allen cohort: “responders,” “long-

term survival with no clinical benefit,” and “nonresponders.”

Data availability

The codes generated in this study have been deposited on GitHub

(https://github.com/cartercompbio/Ploc).

Expanded View for this article is available online.
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