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ABSTRACT OF THE DISSERTATION

Probing Electronic and Optical Properties of Complex Chemical and Material
Systems

by

Niranjan Vasant Ilawe

Doctor of Philosophy, Graduate Program in Chemical and Environmental Engineering
University of California, Riverside, June 2018

Dr. Bryan M. Wong, Chairperson

Large, complex chemical and material systems are extremely difficult to calculate with cur-

rent density functional (DFT) based quantum calculation tools, due to their computational

cost and due to their sensitivity to the choice of exchange correlation functionals. While

classical methods can treat large material systems, they fail to account for quantum effects.

In the first part of this thesis, I utilize the density functional tight-binding methodology

to explore in detail the optical and excitation energy transfer properties of large plasmonic

nanoantenna systems. For nanoantennas with large interparticle distances, we analyze the

extremely long-ranged nature of electronic couplings in plasmonic systems. Additionally, for

nanoantennas with subnanometer interparticle spacings, we observe a dramatic change in

the nature of electronic couplings which reduces the energy transfer efficiency. Consequently,

both these results have important ramifications for predicting and analyzing energy transfer

in plasmonic systems. Our calculations show that classical models, which ignore quantum

effects, are inadequate for accurately characterizing excitation energy transfer in plasmo-

nic systems. Overall, these findings provide a real-time, quantum-mechanical perspective

vi



for understanding EET mechanisms and guide the enhancement of plasmonic properties in

energy harvesting and transport systems. In the next part of the thesis, I present a detailed

analysis of numerous DFT functionals for calculating polarizabilities of conjugated chain

molecules and the chemical and radiation stability of ionic liquids. Specifically, we find that

enhanced accuracy can be obtained with range-separated functionals by allowing the sy-

stem to relax to lower-energy broken-symmetry solutions. In addition, our calculations also

show that the ωB97XD range-separated functional is the most internally consistent method

for calculating chemical and radiation stabilities of ionic liquids. Ultimately, this thesis

emphasizes the importance of including quantum effects and range-separated functionals

for accurately calculating the electronic properties of large material and complex chemical

systems.
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Chapter 1

Introduction

1.1 Motivation

Over the past few decades, tremendous progress has been made in the develop-

ment and application of quantum chemical tools for predicting the properties of chemical,

biological, and material systems. These computational tools are being used not only to com-

pute the properties of known systems, but also for predictive design of functional materials

with desired properties. Among the various quantum chemical techniques currently in use,

density functional theory (DFT) based methods have emerged as one of the most accurate

and efficient methods for predicting electronic properties in chemistry, physics, and material

science. DFT has been successfully applied to a variety of systems to compute properties,

ranging from tensile strength of alloys[89] and band structures of carbon nanotubes[6] to

conformations of peptides[88] and polarizabilities of conjugated molecules[147]. However,

these DFT based methods are plagued with several shortcomings. This thesis is an attempt

to analyze two of these limitations, specifically, (1) the difficulty of quantum chemical met-
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hods for large scale material systems and (2) the varied accuracy of conventional DFT

functionals for computing properties of complex chemical systems.

The first limitation of DFT methods is their applicability to system size. While

DFT methods have been routinely used to calculate the electronic properties of systems

containing a few hundred atoms, larger systems remain beyond the reach of such methods

due to computational costs. However, as we approach new emerging areas in mesoscale

processes, such as quantum coherence in biological systems and collective excitations at the

nanoscale, we require quantum methodologies that can elucidate and interpret mechanistic

details of such complex systems. Accordingly, in the first part of this thesis, we introduce

the density functional tight binding (DFTB)[56] methodology which can be used to analyze

large material and chemical systems quantum mechanically at an atomistic level of detail.

This method is a tight-binding formalism, parameterized using DFT calculations, which can

handle extremely large systems (∼ 10,000 atoms) without compromising on the accuracy

of conventional DFT. We particularly look at utilizing the DFTB methodology to analyze

in detail local surface plasmon resonances (LSPRs) and the electronic excitation transfer

(EET) mechanisms mediated via these resonances in metal nanoparticle waveguides[86].

Due to the large size and highly correlated nature of electron dynamics found in such

systems, these nanoantennas are excellent candidates for the application of DFTB.

Moving on to the next limitation, DFT recasts the electronic problem into a simpler

yet mathematically equivalent 3-dimensional theory of non-interacting electrons. The exact

form of this electron density hinges on the mathematical form of the exchange-correlation

functional, which is crucial for providing accurate and efficient solutions to the many-body

2



Schrödinger equation. Unfortunately, the exact form of the exchange-correlation functional

is currently unknown, and all modern DFT functionals invoke various degrees of approxi-

mation. Therefore, the accuracy of calculations is sensitive to the selection of the specific

exchange-correlation functional. A well established strategy to improve upon semilocal DFT

methods is the construction of hybrid functionals. These range-separated functionals mix

short-range DFT with long-range Hartree-Fock (HF) exchange by partitioning the electron

repulsion operator into short and long-range terms. The inclusion of some short-range HF

exchange has been shown to improve the accuracy of computed properties.[147, 162, 55] Ac-

cordingly, in the second part of this thesis we study two specific chemical systems[147, 85]

and the implications of range-separated functionals and broken-symmetry effects on these

challenging systems.

Finally, it is worth mentioning that, while the presented thesis covers only a few

selected topics, in its entirety, this research resulted in a total of 10 papers, which can be

found in references [89, 6, 88, 147, 86, 85, 213, 7, 84, 87].

1.2 Outline

The first part of this thesis, Chapters 2-5, describe the application of the DFTB

methodology to study large plasmonic systems. The fundamental goal of this section is to

introduce the reader to the DFTB and real-time DFTB methodologies and demonstrate its

utility for studying large material systems such as plasmonic nanoantennas. These systems

are beyond the reach of classical methods (which consider various approximations and ignore

quantum effects) and DFT-based methodologies (due to size constrains). Specific topics in

3



this first section are as follows,

• Chapter 2 begins with an introduction to the density functional tight binding and

the real-time time-dependent DFTB theories. Next, we the introduce mathematical

equations/computational approaches to calculate the various metrics used to study

the optical properties and excitations in material systems. These approaches are used

throughout the remaining chapters of the thesis to study various systems. Finally,

we apply these methodologies to carry out benchmark calculations on simple sodium

clusters.

• In Chapter 3, we apply the approaches developed in the previous chapter to study the

dependence of LSPR energy on surface oxidation of titanium nitride nanoparticles.

We show that the reduction of plasmon energy in titanium nitride nanoparticles is

caused by the surface oxide layer.

• Chapter 4 utilizes a simple sodium nanoparticle chain to give mechanistic insight into

the electronic excitation transfer via plasmonic resonances. We specifically look at

nanoparticle chains with very large interparticle distances. This chapter demonstrates

EET in a nanoparticle chain using a full quantum dynamical simulation without any

approximations, such as the spectral overlap or dipole approximations for electronic

couplings. We further establish the highly long-range the nature of electronic couplings

in such plasmonic nanoantennas, which question the application of the commonly used

nearest-neighbor models and the Förster energy transfer cutoff limit.

• Chapter 5 continues the investigation of electronic excitation transfer in plasmonic

waveguides, specifically for waveguides with subnanometer distances. In particular, we
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study how the efficiency of EET in silver nanoparticle chains is affected due quantum

effects at subnanometer distances. We demonstrate a drop in EET efficiency for

subnanometer distances, previously unforeseen by classical methods. We attribute

this drop to the onset of an interparticle charge transfer between nanoparticles and

propose a visually intuitive way to classify various plasmonic excitations.

The next section of the thesis, Chapters 6-7, explores calculations of electronic properties

of complex chemical systems. In particular, we apply a variety of conventional and range-

separated DFT functionals to two specific chemical systems and analyze the accuracy of

these methods. This part of the thesis serves to propose tuning strategies and functionals

that can help improve electronic and optical property estimations.

• Chapter 6 contains a detailed discussion on the calculation and analysis of linear

polarizability and second-order hyperpolarizability of conjugated oligomers. Specifi-

cally, we examine the accuracy of a diverse set of empirically tuned and conventional

range-separated functionals and compare them against CCSD(T) benchmarks. We de-

monstrate an enhanced accuracy with range-separated functionals, particularly when

the systems are allowed to relax to a lower-energy broken-symmetry configuration.

• In Chapter 7, we propose a computational screening method for predicting chemical

and radiation stabilities of ionic liquids. We utilize a variety of DFT methods and

also the Hartree-Fock (HF) method to calculate the trends of ion stabilites. We

present simple correlations between ion stability as function of size, electronegativity,

and branching. We also show that the dispersion-corrected range-separated ωB97XD

functional performs substantially better when compared to the other DFT methods
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examined in this study.

Finally, Chapter 8 concludes this thesis by summarizing its findings. The appendix at the

end of the thesis consists of the computer codes that have been used throughout the thesis

for computing and plotting the various properties.
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Chapter 2

Density Functional Tight Binding

The real-time electron dynamics for very large systems (at an electronic and ato-

mistic level of detail) cannot be routinely probed with conventional linear-response TD-DFT

or other continuum models. To probe the large nanoparticle assemblies, such as the ones

studied in this thesis, we utilize the self-consistent density functional tight-binding (SCC-

DFTB) formalism along with its real-time, time-dependent counterpart, RT-TDDFTB.

This formalism has been previously used to probe the nonequilibirum electron dynamics

in several large chemical systems[148], including photoinjection dynamics in dye-sensitized

TiO2 solar cells[142, 151], many-body interactions in solvated nanodroplets[150], and long-

range couplings in plasmonic nanoantennas[86]. While we give a brief description of the

SCC-DFTB methodology here, a more detailed description can be found in refs [67, 65]
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2.1 Theory

DFTB is an application of the tight-binding (TB) approach to parameterize full

DFT. The main idea behind this method is to describe the Hamiltonian eigenstates with an

atomic-like basis set and replace the Hamiltonian with parameterized matrix elements that

depend only on the internuclear distances (neglecting integrals of more than two centers)

and orbital symmetries. The origin of DFTB begins with the expression of Kohn-Sham

total energy,

EKS =
occ∑
i

〈Ψi|(−
1

2
∇2
i + νext)|Ψi〉+ EH + Exc + EII (2.1)

On expanding the Kohn-Sham total energy in terms of a reference density and a small

correction n(r) = n0(r) + δn(r), it can be expressed as

EKS [n] =
occ∑
i

〈Ψi|T̂ + νH [n0] + νxc[n
0] + νext|Ψi〉 −

1

2

∫
drvH [n0]n0 + Exc[n

0]

−
∫
drvxc[n

0]n0 +
1

2

∫∫
drdr′

[
1

|r − r′|
+
δ2Exc
δnδn

∣∣∣∣
n0

]
δnδn′ + EII

(2.2)

where, Ψi are the Kohn-Sham orbitals, T̂ is the kinetic energy operator, νH is the Hartree

potential, n0 is a zeroth-order reference electron density, νxc is the exchange-correlation

potential, νext is the external potential due to the atomic potential, Exc is the exchange-

correlation energy and EII is the nuclear replusion energy. The first term in eq 2.1 corre-

sponds to a Kohn-Sham effective Hamiltonian, Ĥ0, evaluated at the reference density n0,

where the diagonal elements correspond to the Kohn-Sham eigenvalues and the nondiagonal

elements are calculated in a two-centered approximation as

Ĥ0 ≈ 〈ϕµ|T̂ + υeff [n0
A + n0

B]|ϕυ〉, µ ∈ A, υ ∈ B (2.3)
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where ϕµ forms a minimal Slater-type orbital basis centered on the atomic sites, n0
A is the

reference density of the neutral atom A, and veff is the effective Kohn-Sham potential. It

should be noted that the Hamiltonian matrix elements depend only on atoms A and B and,

therefore, only two-center Hamiltonian matrix elements, as well as two-center elements of the

Overlap matrix, are explicitly calculated using analytical functions as per the LCAO (linear

combination of atomic orbitals) formalism. These matrix elements are pre-tabulated for all

pairs of chemical elements, as a function of distance between atomic pairs, thus significantly

improving the computational efficiency of the DFTB approach. The second-to-last term in

eq 2.2 is defined as E2, and a multipole expansion of δnA, while keeping the monopole term,

preserves rotational invariance of the total energy to yield

E2 =
1

2

M∑
AB

γABδqAδqB (2.4)

γAB is a function of interatomic separation γAB(UA, UB, |RA−RB|) and interpolates smoothly

between onsite interactions with a strength UA = γAA and the bare Coulomb interaction at

large separation (the latter is related to the chemical hardness of the atomic species).The

quantity δq = qA − q0
A is the difference between the charge of the isolated atom q0

A and the

charge qA obtained via a Mulliken population analysis of atom A in the molecule.

qA =
1

2

∑
µ∈A

(ρ · S + S · ρ)µµ (2.5)

S is the overlap matrix, ρµν =
∑

i c
∗
µiniciν comprises the one-electron density matrix, ni are

the molecular orbitals occupations, and cµi are the expansion coefficients of Ψi obtained by

solving the eigenvalue problem in the atomic orbital basis. Lastly, the terms in eq 2.2 that

depend explicitly on n0 and EII are grouped into a repulsive term, Erep, that finally yields
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the following expression for the SCC-DFTB total energy,

EDFTB = E0 + E2 =

occ∑
i

〈Ψi|T̂ 0|Ψi〉+
1

2

M∑
AB

γABδqAδqb + Erep (2.6)

Erep is the distance-dependent diatomic repulsive potential. It contains the core electron

effects, ion-ion repulsion terms as well as some exchange-correlation effects. Erep can be

considered as a practical equivalent to an xc-functional in DFT as it approximates the

many-body correlation interactions with simple functions. As per the consideration of free

atoms, q0 is spherically symmetric; hence the ion-ion repulsion can be approximated to

depend only on the elements and their distance. Contributions of three and more centers

are rather small and can be neglected. These pair-wise repulsive functions are obtained by

fitting to DFT calculations using a suitable reference structure. With this assumption of

tightly bound electrons and a minimal local basis (only one radial function for each angular

momentum state), the DFTB Hamiltonian is given by

ĤDFTB = 〈ϕµ|Ĥ0|ϕυ〉+
1

2
Ŝµυ

M∑
X

(γAX + γBX)∆qX (2.7)

where the Hamiltonian matrix elements and the overlap matrix elements are pre-calculated

as discussed above. Since the DFTB Hamiltonian depends explicitly on the atomic charge,

a self-consistent charge (SCC) procedure is used in the SCC-DFTB approach to self consis-

tently solve eq 2.7.

2.2 Real-time time-dependent density functional tight-binding

For the quantum dynamics calculations, the real-time, time-dependent DFTB (RT-

TDDFTB) approach is utilized to propagate the one electron density matrix in the presence
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of external time-varying electric fields to obtain the time- dependent EET response of

the system. We carry out our real-time quantum dynamics calculations by applying a

time-dependent electric field to the initial ground state density matrix, resulting in the

Hamiltonian,

Ĥ(t) = Ĥ0 − E0 · µ̂(t) (2.8)

where E0(t) is the applied electric field, and µ̂ is the dipole moment operator. As we are

directly propagating the quantum system in the time domain, we can choose E0(t) to have

any time-dependent form. For example, if E0(t) is a Dirac delta function (= E0δ(t − t0)),

this corresponds to an optical absorption spectrum in the frequency domain (obtained after

a Fourier transform of the time-evolving dipole moment). However, if we choose E0(t) to

take the form of a sinusoidal perturbation, it represents a continuous interaction of the

system with monochromatic light in the time domain. Both of these different choices give

different but complementary viewpoints of quantum dynamics. Upon application of either of

these time-dependent fields, the density matrix, ρ̂ will evolve according to the Liouville-von

Neumann equation of motion which, in the non-orthogonal-DFTB basis, is given by

∂ρ̂

∂t
=

1

ih̄
(S−1 · Ĥ[ρ̂] · ρ̂− ρ̂ · Ĥ[ρ̂] · S−1) (2.9)

where Ĥ is the Hamiltonian matrix (which implicitly depends on the density matrix),

S−1 is the inverse of the overlap matrixm and h̄ is Planck’s constant. When the applied

incident fields are smaller than the internal fields within the matter, the system is found to

be in linear response regime[139]. Under these conditions, the time evolution of the dipole

moment operator can be expressed as the convolution between the applied electric field
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Figure 2.1: Pictorial representation of perturbation applied to the ground state density
matrix obtained from the DFTB calculations. The type of perturbation applied gives us
different insights into the quantum dynamics of the system. For example, a Dirac delta
perturbation gives us information about the electronic excitations and absorption spectrum
while a sinusoidal perturbation is used for analyzing excitation energy transfer and charge
transfer
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perturbation and the response function of the system

〈µ̂〉 =

∫ ∞
0

α(t− τ)E(τ)dτ (2.10)

where E(τ) is the electric field used to induce a perturbation in the system Hamiltonian,

and α(t − τ) is the polarizability tensor. Upon application of the convolution theorem, eq

2.10 can be expressed in the frequency (ω) domain as

〈µ̂(ω)〉 = α(ω)E(ω) (2.11)

The imaginary part of the average polarizability, ᾱ, is an experimentally measurable quan-

tity related to the photo-absorption cross section by the expression

σ(ω) = 4πω/c · Im(ᾱ) (2.12)

where c is the speed of light, and Im(ᾱ) is the imaginary part of the average polarizability.

2.3 Benchmarking Local Surface Plasmon Resonance in a

Single Sodium Nanoparticle

Using the above mentioned methodology, we now perform a benchmark calculation

on a single sodium nanocluster. We choose a 55 atom icosahedral shaped sodium cluster

(Na55), since other computational and experimental values are available for such a cluster.

We compute the ground state of the sodium nanoparticle using the DFTB+ code.[9] For

the quantum dynamical calculations, the sodium nanocluster was perturbed with a Dirac

delta perturbation and the absorption spectra was plotted as shown in Fig 2.2. It can

be seen that the DFTB calculated plasmon energy is 3.16 eV, which is very close to the
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Figure 2.2: (a) Induced dipole moment and (b) absorption spectra of the Na55 NP (inset)
calculated using RT-TDDFTB. The plasmon energy peak is observed at 3.16 eV.

TDDFT predicted value of 3.02 eV[111, 229] and the experimental value of 2.75 eV[102].

The difference between the theoretical and experimental values can be attributed to the

finer differences in the experimental and computational structures because particle shape

plays an important role in determining optical spectra.

2.4 Analyzing Plasmon Energy Dependence on Nanoparticle

Size and Shape

Next, we investigate the effect of size and shape on the LSPR of sodium nano-

particles. We are especially interested in the quantum size regime between 1 nm to 10 nm.

Accordingly, we construct icosahedral shaped sodium nanoparticles, of various sizes in the

previously mentioned regime. Such nanoparticles are reported to be experimentally sta-

ble.[63] Since, the particle shape influences optical spectra considerably, we examine the
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Figure 2.3: The plasmon energy values from absorption spectra as a function of a nanopar-
ticle diameter for (a) icosahedral particles and (b) spherical particles.

particles with the same shape to exclusively study the size dependence of LSPRs. In Fig.

2.3, the plasmon energy as a function of the particle diameter is shown. The calculated

plasmon energies lie between 2.9 and 3.2 eV for nanoparticles containing 13 to 2000 atoms,

which agree well with previous TD-DFT results[111] and another study done using TD-

OFDFT.[229] A notable blue-shift can be seen as the particle size decreases from 6 nm to

0.7 nm. This blue shift can be attributed to the quantum size effect. The quantum confine-

ment increases the energy-level separations and the excitation energies of surface plasmons,

leading to a blue shift with decreasing particle size. We also constructed spherical NPs,

ranging from 1 to 6 nm in diameter and having 58 to 1827 sodium atoms, by cutting a

spherical piece of bulk centered at an atom of a BCC lattice of sodium. Plasmon energy

calculated as a function of nanoparticle size is shown in Fig. 2.3. For spherical particles, a

blue-shift similar to the icosahedral particles, can be seen as the particle size decreases from

6 nm to 1 nm. A small non-monotonic trend can be observed between the 2 - 3 nm range.
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2.5 Calculating Electric Field Enhancement Around Plasmo-

nic Nanoparticles

Finally, to unequivocally classify the above observed excitations as plasmonic, we

also plot the field enhancement around the Na55 NP as shown in Figure 2.4(b). Specifically,

the sodium NP is excited with a sinusoidal electric field with its frequency equal to its

plasmonic energy (3.16 eV) and polarized in the direction of its transition dipole moment.

The electric field induced by plasmonic oscillations at any point in space is calculated using

the following expression:

E(r) =
∑
i

∆q

4πε0

(ri − r)

||ri − r||3
(2.13)

and the electric field enhancement, Γ, is calculated as follows:

Γ =
|E|2(ω)

|Eappl|2(ω)
(2.14)

where the applied field has the form Eappl(t)=E0sin(ωt) in the time domain, and ω is the

plasmon energy. As expected from plasmonic excitations, high values of field enhancements

are observed around the sodium NP, which are distributed in a dipolar fashion, as shown

in Figure 2.4. The black circles observed in Fig 2.4, have radius 2.9 Å, (approximately

the van der Waals radii for Na) and serve to identify the position of the Na atoms in the

cross section. When compared to the spherical NP, the icosahedral NP has electric fields

that are accumulated at the tips. This result looks familiar, because it is well known from

electrostatics that charges are concentrated at the surface; this, intensifying the electric

field. If the surface has features like edges or sharp tips, the electric field enhancement

will be higher.[182] Since the interparticle electric field enhancement produced between
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Figure 2.4: Distribution of electric field enhancement for the (a) spherical and (b) icosahe-
dral nanoparticles

nanoparticle dimers are of special importance to SERS and other imaging methodologies,

we also plotted the field enhancement between sodium dimers with varying interparticle

distances as shown in Figure 2.5. Both the polarization and direction of plasmon-induced

oscillation are collinear to the main axis that binds the particle. The first thing to stress is

the magnitude of the emerging field that is about 100 times higher than the incident field,

which agrees with the findings of Zuloaga et al.[248] At larger distances, field enhancement

decays; this is attributed to a purely coulombic effect. But when the NPs are very close

together, there is a decrease in the field enhancement. This can be explained by analogy

with a short-circuited capacitor; where when there is charge transfer between the two NPs,

the enhancement is zero. This is consistent with the simulations performed by Nordlander

et al. employing TDDFT.[248]
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Figure 2.5: Electric field enhancement as a function of interparticle distance between sodium
dimers.
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Chapter 3

Surface Composition Effects on

Plasmonic Properties of TiN

Nanoparticles

This chapter describes effect of surface composition, particularly surface oxidation,

on the optical properties of plasmonic titanium nitride nanoparticle. The majority of the

work in this chapter resulted from a collaboration with the experimental group of Dr.

Lorenzo Mangolini in the Department of Mechanical Engineering at University of California-

Riverside and was published as an article in the Journal of Physical Chemistry C.[7]

3.1 Introduction

The development of novel plasmonic structures and materials is essential for fields

such as biophotonics[78], photovoltaics[46], photocatalysis,[95] sensing,[113] and waveguiding.[105]
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Gold is well-known for having a localized surface plasmon resonance (LSPR) in the visible.[53,

41, 133] Its biocompatibility and high chemical stability make it a great candidate for several

applications, but its high cost and poor thermal stability, a problem exacerbated by the

reduction in melting point observed in nanostructures,[72] limit its utilization. In addition,

the design and realization of more complex structures such as gold nanoshells is needed to

red-shift the LSPR peak toward the so-called biological transparency window, a region in the

near-infrared regime where light is mostly transmitted through biological tissue.[145, 209]

These considerations motivate recent efforts on the development of alternative plasmonic

materials that can overcome the limitation of precious-metal-based plasmonics. The ob-

jectives of the work summarized in this chapter is to discuss the influence of oxidation on

the properties of small titanium nitride nanoparticles and complement the experimental

observations using computational techniques.

We focus on titanium nitride (TiN) because of its high melting point and good

chemical stability.[154] TiN shows an active LSPR in the NIR region,[160, 165] and TiN

nanoparticles outperform gold in local heating enhancement in the biological transparency

window.[74] A well-documented growth of a native oxide layer on TiN films motivates

the use of TiN-TiO2 nanostructures for photocatalytic applications in high-temperature

environments.[75] Moreover, TiN may offer an additional degree of freedom in the tuning

of its optical properties compared to silver and gold-based plasmonics, whose response is

typically controlled by engineering nanoparticle size and shape[115, 8]. In this chapter, we

highlight the possibility to tune the optical properties of TiN nanoparticles by modifying

the surface composition, as well as the effects of oxidation on their optical properties.
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We investigated the effect that a surface oxide layer has on the optical properties of TiN

nanoparticles by using large-scale, real-time density functional tight binding calculations.

3.2 Computational Details

We carried out our electronic calculations using the self-consistent density functi-

onal tight-binding (SCC-DFTB) formalism. For probing the optical properties (such as the

absorbance spectrum) of our nanoparticles, we implemented and utilized a locally modi-

fied real-time, time-dependent DFTB (RT-TDDFTB) code, which is based on the real-time

quantum mechanical propagation of the one electron density matrix. On the basis of our

XRD structure analyses, we optimized the rock-salt arrangement of bulk TiN using the

DFTB+ code.[9] Next, a 2.8 nm diameter spherical cluster was cut out of this bulk TiN

and used for the subsequent absorbance spectrum calculations. We chose a 2.8 nm diame-

ter cluster (which contains 1189 atoms) because this is near the limit of our computational

resources for the time-dependent DFTB calculations. Similarly, for generating the TiO2-

coated TiN cluster, we optimized the anatase structure of bulk TiO2, which is known to be

the more stable phase, particularly in nanocrystalline clusters of TiO2.[70, 140] A spherical

shell structure, cut out of the optimized TiO2 bulk, and a spherical core cut out of the

previously optimized TiN bulk were conjoined to form a coreshell structure. The TiO2 shell

thickness was set to 2 Å, and the TiN core diameter was set to 2.4 nm.
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Figure 3.1: The TiN(a) and the TiO2-coated TiN nanoparticles(b) structures.

3.3 Experiments and Observations

The experiment is a high-throughput method for synthesis of titanium nitride na-

noparticles. This technique, based on a continuous-flow nonthermal plasma process, leading

to formation of free-standing titanium nitride particles with crystalline structures and 10nm

and below in size. The synthesis of TiN nanoparticles is based on the continuous-flow nont-

hermal plasma reactor design described by Mangolini et al.,[128] and consists in supplying

the appropriate titanium and nitrogen precursors to a plasma sustained by a 13.56 MHz

(RF) power supply. The LSPR peak of plasmonic metallic nanoparticles is mainly depen-

dent on their shape, size, and surrounding medium.[115, 99] However, composition-based

control of optical properties is impossible with pure-metal nanoparticles. The nature of the

TiN system enables the use of this additional degree of freedom. The extinction spectra of

TiN nanoparticles produced with different ammonia flow rates and dispersed in methanol

are shown in Figure 3.2. The peak position varies with processing parameters, ranging from

1000 nm for the particles produced with the higher ammonia flow rate (NH3/TiCl4 = 6) to
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800 nm for those produced with the smaller ammonia flow rate (NH3/TiCl4 = 1.5). The

plasmon peak is narrower and more intense when its position is at a lower wavelength. The

analysis suggests that an increase in NH3/TiCl4 ratio leads to a smaller nanoparticle size,

yet these particles have a red-shifted LSPR peak compared to larger particles produced with

a smaller NH3/TiCl4 ratio. This trend is opposite to what the Mie theory predicts,[134, 212]

suggesting that there are additional factors affecting the optical response of the material.

To address this issue, we have carefully investigated the degree of nanoparticle oxidation for

materials produced with different processing parameters. The Ti 2p XPS spectra shown in

Figure 3 provide important insight on how oxygen is distributed in different-sized particles.

The TiO2 signal (458.2 and 463.7 eV)[171] is evident in both small and big particles (Figure

3a,b, respectively). However, shoulders at 455.0 and 461.3 eV clearly indicate the presence

of TiN,[171] especially in the bigger particles. The substantial amount of oxygen detected

may imply these are actually oxynitride nanoparticles. From this data, it is evident that

oxidation is relevant in TiN nanoparticles but that the extent of the oxidation is higher for

particles produced at a higher ammonia flow rate (smaller particles). Moreover, we have

confirmed that for the case of the bigger particles most of the oxidation occurs at the sur-

face, while the bulk is mainly composed of TiN. Overall the combination of the XPS and

the STEM/EDS data confirm that the bigger particles, produced with a lower NH3/TiCl4

ratio, are stoichiometric and have an oxide-rich surface. Smaller particles are nitrogen-poor

and show a clear sign of oxidation not only at the surface but at the core of the particle as

well.
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Figure 3.2: Extinction spectra of TiN nanoparticles produced with different ammonia-to-
titanium tetrachloride ratios.(Taken from: Barragan et al.; J. Phys. Chem. C2017, 121,
2316-2322)
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Figure 3.3: XPS spectra at the surface of (a) small particles produced with a NH3/TiCl4
ratio of 6 and (b) bigger particles produced with a NH3/TiCl4 ratio of 1.5. XPS spectra
after two sputtering steps on (c) small particles produced with a NH3/TiCl4 ratio of 6 and
(d) bigger particles produced with a NH3/TiCl4 ratio of 1.5.(Taken from: Barragan et al.;
J. Phys. Chem. C2017, 121, 2316-2322)
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3.4 Role of Oxidation on the Plasmonic Response

To complement and support the experimental results, we calculated the optical

properties of TiN nanoparticles to understand how the plasmon peak absorbance band is

modified by the surface layer properties. Figure 3.4 plots the RT-TDDFTB absorbance

spectrum of a 2.8 nm diameter TiN nanoparticle without a TiO2 shell (Figure 3.1(a))

and a 2.4 nm diameter TiN nanoparticle with a 2 Å thick TiO2 layer (Figure 3.1(b)). A

strong peak, corresponding to the plasmon energy, is observed at around 2 eV (615 nm)

for the pure TiN particle. Previous computational studies on various titanium nitride

nanostructures have reported plasmon energy values that match closely with these RT-

TDDFTB results.[74, 48] The absorbance spectrum of the TiN/TiO2 nanoparticle shows a

clear reduction in the energy of the LSPR peak relative to that of the pure TiN nanoparticle.

This observation directly supports our experimental results and strongly implies that the

surface oxide layer (1) plays an important part in controlling the optical properties of

the TiN nanoparticles and (2) even a thin oxide surface layer (2 Å) can significantly alter

the optical properties of these nanoparticles. These calculations support our experimental

findings that the LSPR peak position is strongly dependent on the degree of oxidation.

3.5 Conclusion

In this chapter, we have described a continuous-flow nonthermal plasma synthesis

technique to produce TiN nanoparticles. Plasma-produced TiN particles show a plasmonic

peak in the near-infrared part of the spectrum, and the position of the LSPR peak can be
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Figure 3.4: Absorbance spectra of the pure TiN (blue line) and the TiO2-coated TiN (red
line) nanoparticles. The same spectra are shown in the inset with wavelength on the x-axis.
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controlled by tuning process parameters such as the NH3/TiCl4 ratio. A combination of XPS

and STEM/EDS analysis suggest that the red-shift in the LSPR peak is observed in particles

with a lower N/Ti ratio (i.e., nitrogen-poor particles). Due to the high concentration

of vacancies, these particles are particularly prone to oxidation after production, upon

exposure to air. Particles produced at stoichiometric conditions still show an oxide-rich

surface layer and are susceptible to oxidation after annealing in air at temperatures as low

as 150◦C. The annealing in air is accompanied by a red-shift in plasmon peak position,

consistent with the explanation that the oxide layer reduces the energy of the plasmon

resonance. Experimental results are in good agreement with large-scale real-time, time-

dependent DFTB simulations performed on pure TiN and TiO2-coated TiN nanoparticles.

This contribution, while describing a novel approach to the production of novel plasmonic

nanoparticles with narrow size distribution and controllable composition, highlights the need

for more extensive studies on this complex material when in nanoparticle form, especially

with respect to oxidation kinetics and its influence on optoelectronic properties.
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Chapter 4

Exploring Long-Range Excitation

Energy Transfer in Plasmonic

Nanoantennas

This chapter describes the application of the RT-TDDFTB method to study the

excitation energy transfer in a plasmonic nanoparticle chain with very large interparticle

distances. The majority of the work in this chapter was published as an article in the

Journal of Chemical Theory and Computation.[86]

4.1 Introduction

The efficient harvesting of abundantly available solar energy for enhancing photo-

chemical reactions relies on the efficient capture of photons and subsequent transfer of this

excitation energy to the reactive site[109]. Taking inspiration from natural light-harvesting
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complexes, researchers have begun exploring novel plasmonic antenna systems for directing

and controlling this flow of excitation energy[178]. These excitation energy transfer me-

chanisms are mediated by local surface plasmonic resonances[24] (LSPR) that describe the

coherent oscillation of metal conduction electrons caused by the electric field of the inci-

dent photons. These LSPRs are characterized by a strong optical absorption and large

electric field enhancements that are highly dependent on the nanoparticle (NP) material,

size, shape, and surrounding environment[51, 206, 245, 31]. Moreover, due to the cohe-

rent nature of these oscillating electrons, LSPRs also exhibit large dipole moments, ena-

bling electronic excitation transfer (EET) to neighboring nanoparticles via electrostatic

coupling[126]. This electrostatic coupling is analogous to Förster resonance energy transfer

(FRET)[61] mechanisms seen ubiquitously in nature, and these strongly-coupled plasmonic

nanoparticles have allowed several advances in plasmon-mediated excitation energy trans-

fer processes[126, 28, 121, 152]. In particular, studies by Maier et al., have shown direct

experimental evidence of EET along a plasmon waveguide made up of silver nanorods[126].

EET has also been observed in noble materials such as gold and silver nanoclusters which

function as acceptors for EET[235]. Recently, Scholes and co-workers[178] have characteri-

zed plasmonic nanoantenna systems, inspired from naturally found light-harvesting systems,

for use in solar fuel production.

The most widely employed approaches for analyzing EET in the previously men-

tioned systems are Förster’s approach and classical electrodynamics theories based on sol-

ving Maxwell’s equations[228, 54, 247, 45]. Förster correlated the energy released by the

de-excitation of a donor (and subsequent energy uptake by the acceptor) to the spectral
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overlap between the emission and absorption spectra of the donor and acceptor respectively.

Förster’s equation is generally applicable when the following two conditions are satisfied i)

a dipolar approximation can be employed for the electronic coupling, and ii) a spectral over-

lap is present in the emission and absorption spectra of the donor and acceptor respectively.

This theory has been successfully used for predicting EET rates in various systems such

as proteins, membranes, and other biological systems[20]. The 1/R6 type distance depen-

dence of EET as predicted by Försters theory has been exploited to create chemical rulers

to determine nanoscale distances within chemical and biological species[158, 211, 21]. A

slightly modified variation of Försters equation has also been used specifically to model the

plasmon-induced EET for solar energy applications[110]. Classical electrodynamics theo-

ries based on solving Maxwells equations, have also been used frequently to investigate the

excitation transfer mechanisms in metal nanoparticle chains[228, 54, 247, 45]. However,

these models contain approximations, such as spectral overlap or the dipole approximation,

which limit their applicability to more complex systems. For example, when several do-

nor and/or acceptors are arranged in a complex or confined geometry, such as those found

in photosynthetic light-harvesting antennas[178], the applicability of the classical models

raises concerns[175, 172]. Particularly, London and others[50, 118] have revealed that for

large planar NPs, the multipole expansion averages away the shape of the donor and accep-

tor. In such cases, it is advisable to consider local interactions between different parts of

the NPs rather than the total electronic coupling as approximated by the dipole approx-

imation. Further studies have also found that spectral overlap, as considered by Förster,

neglects the contribution of optically dark states to the rate of EET[177, 200]. Some of
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these concerns have been resolved in recent years by fascinating studies, such as transi-

tion densities obtained directly through quantum-chemical calculations[176] and variants

such as distributed-monopoles[19], line-dipole approximations[18] and generalizations of

Försters theory[175]. Other studies have gone beyond the traditional dipole approximation

to overcome these limitations and have applied generalized multipole techniques to include

higher order multipoles in analyzing plasmon propagation along metal nanospheres[163],

nanorods[202], and photonic crystals[135]. However, as we approach new emerging areas

in mesoscale processes[60] (such as quantum coherence in biological systems and collective

excitations at the nanoscale), we must re-assess the potential limitations of these simplis-

tic models[228, 54, 247, 45, 110, 175, 172, 50, 225] which may be inapplicable to large,

strongly-interacting, electronic systems such as plasmonic nanoantennas. Moreover, a deep

understanding of the precise EET mechanisms at a quantum dynamical level of detail in

these large multi-particle electronic systems is essential for guiding future experimental work

to harness and control these complex systems.

In this section, we probe mechanistically the EET phenomena in large plasmonic

nanoantenna systems using the density functional tight-binding (DFTB) approach[57] and

its real-time time-dependent counterpart, RT-TDDFTB, without recourse to the spectral

overlap or point-dipole approximations for characterizing the electronic couplings. In par-

ticular, we reveal highly long-range electronic couplings in plasmonic nanosystems that are

more than twice the conventional Försters limit considered in traditional approaches[235].

Furthermore, we show that these long-range electronic couplings not only give rise to a

complex interplay of interactions between all the NPs in the nanoantenna system but also
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question the direct applicability of conventional theoretical models, based on classical the-

ories, to these plasmonic nanosystems. We also propose a representative analytical model

that captures the basic underlying dynamics of the full quantum dynamical method and

provides a phenomenological understanding of the EET mechanism. While we focus our

studies on a single representative nanoantenna system (4 icosahedral NPs, each containing

55 sodium atoms with 220 atoms total), our main qualitative results are expected to apply

to a broad range of other complex plasmonic systems.

4.2 Local Surface Plasmonic Resonances in a Single Sodium

Nanoparticle

Before proceeding to a detailed analysis of the EET mechanism in plasmonic nano-

antenna systems, we first characterize the LSPR of a single plasmonic NP. Accordingly, we

plot the absorption spectrum of a single icosahedral shaped sodium NP (Na55), containing

55 atoms and a diameter of 13 Å, using our RT-TDDFTB methodology. As shown in Figure

4.1(a), a prominent peak, which corresponds to the LSPR, is seen around 3.16 eV and is in

agreement with previously published computational[111, 229] and experimental results[102].

As stated earlier, LSPR excitations are associated with very large values of local field en-

hancements. Therefore, to unequivocally classify the observed excitation as plasmonic, we

also plot the field enhancement around the Na55 NP as shown in Figure 4.1(b). We begin

our investigation into the EET mechanism in plasmonic nanoantenna systems with an ana-

lysis of a simple donor-acceptor pair composed of two Na55 NPs. The methodology used
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Figure 4.1: (a) Absorption spectra of the Na55 NP (inset) calculated using RT-TDDFTB.
The plasmon energy peak is observed at 3.16 eV; (b) Electric field enhancement of the
Na55 NP distributed in a dipolar fashion in alignment with polarization vector E. The dark
spheres in (b) indicate the position of the Na atoms in the Na55 NP.

for calculating the time-dependent dipole moment due to a time-dependent electric field

perturbation and the two-level system model (described later) is based on a previous study

by one of the authors[149]. We placed a second identical Na55 NP next to the first Na55

at an edge-to-edge distance of 60 Å (= 73 Å center-to-center distance) with their transition

dipole moments aligned with the z-direction, as shown in the inset of Figure 4.2. As previ-

ously mentioned, plasmon induced EET processes are analogous to FRET processes, where

electronic excitation is transferred from a donor (NP1) to an acceptor (NP2) exclusively via

electrostatic interaction. Thus, maintaining large interparticle distances (= 73 Å center-to-

center distance) ensures that EET is attributed to purely electrostatic coupling between the

donor and acceptor NPs. We also do not account for relativistic effects such as the retarda-

tion time of electromagnetic propagation between the NPs. Next; we excite only the donor

(i.e. NP1) with a laser (sinusoidal electric field perturbation) with its frequency equal to

the plasmon energy and polarized in the direction of the transition dipole moments (the z-
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Figure 4.2: Time-dependent dipole moments induced in NP1 and NP2 nanoparticles upon
optical excitation of NP1 with a sinusoidal electric field perturbation calculated using RT-
TDDFTB. The induced dipole moment in NP2, is solely due to stimulation from NP1 and
is indicative of electronic excitation transfer.

direction). A very small intensity in the laser excitation (E0 = 0.0001 V/Å) is used to ensure

that we remain in the linear response regime[139]. We then allow the entire system to evolve

in time for 50 fs and plot the induced dipole moments of both the NPs, as shown in Figure

4.2. Note that due to the orientation of the individual NPs and the polarization of the inco-

ming radiation, the components of the dipole moment perpendicular to the NP chain (i.e.,

the x and y components) are essentially negligible compared to the z-component. We also

note that the formalism does not include any dissipative mechanism and, hence, the dipole

moments induced in the NPs are not damped with time. However, there have been a few

recent studies to include these damping effects in the RT-TDDFT Hamiltonian[144, 234],

and an equivalent approach could be applied to the RT-TDDFTB mechanism which we

reserve for future work. As shown in Figure 4.2, NP1 exhibits a linearly increasing dipole

moment as expected from a quantized system in the linear response regime (in the presence

of continuous excitation and in the absence of any dissipative mechanism)[149, 139]. In
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contrast, NP2 displays an induced dipole moment that is entirely due to the stimulation

provided by the oscillating electric field of NP1. This induced dipole moment in NP2 is

indicative of the EET process from the donor to the acceptor[156]. It is interesting to note

that, even at such large separation distances (73 Å), strong dipole moments are induced in

the second NP. We stress that this display of real-time EET between the acceptor-donor

pair is obtained from a full quantum dynamical simulation without any approximations,

such as the spectral overlap or dipole approximation for electronic couplings, typically con-

sidered in FRET based approaches[20]. The only approximations considered are the ones

implied in the nature of the DFTB Hamiltonian[57]. Our methodology of exciting only the

first NP in a closely spaced NP chain, though experimentally difficult, is based on previous

computational studies and is meant to present an intuitive representation of the complex

EET process[117, 161, 221]. We would like to point out that since we are exciting only the

first NP, no collective excitations are observed in the system. However, the RT-TDDFTB

calculations do not exclude the possibility of any energy back-transfer from the second to

the first NP. If the system was allowed to evolve for a longer time period and with shorter

interparticle distances, back-transfer of energy from the second to the first NP would be

seen (see Section 4.6).

4.3 A Two-Level System Model of Electronic Excitation Trans-

fer

While our RT-TDDFTB calculations fully incorporate electronic and atomistic de-

tails to characterize EET in this plasmonic donor-acceptor pair, to obtain deeper mechanis-
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Figure 4.3: Pictorial representation of the TLS model for a Na55 dimer. NP1 is optically
excited with monochromatic light which induces a time-dependent dipole moment in NP2.

tic insight into this complex quantum dynamical process, we formulate an analytical model

based on a two level system (TLS) to highlight the basic physics that mediate interactions

between the NP pair. As stated previously, this model is based on previous work carried out

by one of the authors on EET mechanisms between photosynthetic pigments[149]. LSPR[24]

is the coherent oscillation of electrons, between the ground and an excited state; therefore,

the individual NPs can be approximated by a TLS, where the difference between the energy

levels is equal to the plasmon energy. Additionally, since the size of the NPs is much smaller

than the separation between them, the dipole approximation is justified; i.e., a point dipole

interacting with another point dipole can be used to approximate the coupling between the

NPs.

We derive a simple TLS model based on the above approximations to predict the

induced dipole moment in NP2 as a result of the direct excitation of NP1 (Fig. 4.3). From

linear response theory[139], and considering each NP as a TLS, we can obtain closed-form

analytical expressions of the expectation values of the dipole moment. Within the linear

response regime, the response of the dipole moment to a laser perturbation is given by

µ(t) =

∫ ∞
0

dτR(τ) · E(t− τ) (4.1)

37



where E(t − τ) is the applied electric field and R(τ) is the linear response function given

by the expression

Rαβ(τ) = − i
h̄
〈[µ̂α(τ), µ̂β]〉

= 0

(4.2)

Here, 〈[µ̂α(τ), µ̂β]〉 is the polarizability tensor (expressed in terms of the commutator be-

tween µ̂α and µ̂β that describes the dipole moment response in direction α to an applied

electric field in direction β. The linear response function is, therefore, the sum of two cor-

relation functions with the order of the operators interchanged, which is further obtained

from the imaginary part of the correlation function C”(τ):

Rαβ(τ) = − i
h̄
{〈µ̂α(τ), µ̂β〉 − 〈µ̂β, µ̂α(τ)〉}

=
2

h̄
C”α,β(τ)

(4.3)

Expectation values of observables are related to the imaginary part of the correlation

function by the following definition:

C”α,β(τ) =
1

2i
[〈µ̂α(τ), µ̂β〉+ 〈µ̂β, µ̂ 6 (τ)〉] (4.4)

Furthermore, the dipole moment observable can be represented in the interaction picture

as

µ(τ) = e−iEPEτ/h̄ · µPE (4.5)

where EPE is the plasmon energy, and µPE is the transition dipole moment. Substituting

the above expressions into Eq. 4.2, we obtain the final expression for the response function

given by

Rα,β(τ) =
2

h̄
|µPE |2sin(ωPEτ)rαPEr

β
PE (4.6)
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where ω = ∆EPE/h̄ and r̂PE = r̂xPE î + r̂yPE î + r̂zPE î, such that the magnitude of r̂PE is

equal to 1.

As previously mentioned, to study the EET dynamics we apply a perturbation,

E(t− τ) in the form of a sinusoidal electric field given by

E(t− τ) = E0sin[ωPE(t− τ)] (4.7)

Considering the applied field is in the direction of the transition dipole moment and sub-

stituting for the response function in Eq. 4.1 yields the time-evolving expectation value of

the dipole moment in NP1:

µα(t) =
2

h̄
E0|µ1|2

∫ ∞
0

dτsin(ωPEτ)sin[ωPE(t− τ)]rαPE (4.8)

As mentioned previously, the transition dipole moment of the NP and the applied electric

field are both aligned in the z-direction. Hence, the solution of Eq. 4.8 for long times can

be approximated by evaluating the integral and retaining only the term proportional to t:

µ1(t) ≈ E0

h̄
|µ1|2t · cos(ωPEt)r̂PE (4.9)

With the dipole moment in NP1 calculated, we next analyze the effect of this oscillating

dipole on the acceptor NP (i.e., NP2). NP2 is located at a distance, r̂ from NP1 where |r̂| is

larger than the spatial extent of NP1 and NP2. The electric field generated by the oscillating

dipole of NP1 at r̂ is given by the following equation (i.e., the dipole approximation).

We again clarify that we only invoke the dipole approximation in the TLS model since

the electronic coupling between NPs at such large distances are well described by this

approximation.

E1(t) =
1

4πε0r3
(3(µ1(t) · r̂)r̂ − µ1(t)) (4.10)

39



where µ1(t) is the expectation value of the dipole moment of NP1 given by Eq. 4.9, ε0 is

the vacuum permittivity, and r is the distance between the nanoparticles. This oscillating

electric field induces a dipole moment in NP2 which we obtain by following the methodology

used previously for calculating the dipole moment in NP1. Particularly, we utilize Eq. 4.1

to calculate the expectation value of the dipole moment of NP2 due to the electric field

induced by NP1:

µ2(t) = − E0

4πε0h̄
2r3
|µ1|2|µ2|2sin(ωPEt)t

2(cos(β)cos(α)− 1

2
sin(β)sin(α))r̂PE (4.11)

where µ1 and µ2 are the transition dipole moments of NP1 and NP2, r̂PE is the direction of

the transition dipole moment of NP2, and α and β are the angles between each dipole mo-

ment and the distance vector, r̂. As mentioned previously, both nanoparticles are arranged

with their transition dipole moments aligned along the z-direction. Furthermore, NP1 and

NP2 are identical particles, and their transition dipole moments are equal to each other.

Due to these simplifications, the above equation can finally be simplified to calculate the

dipole moment induced in the z-direction as

µ2(t) ≈ E0

4πε0h̄
2r3
|µ1|4t2sin(ωPEt)r̂PE (4.12)

We denote Eqs. 4.9 and 4.12 as the TLS model. As previously mentioned, for the large inter-

particle distances and short time-periods considered, no back-transfer of energy is observed

from the second to the first NP. Consequently, we ignore this back-transfer phenomena in

our TLS approach and model the system as a unidirectional energy transfer system.

The value of the transition dipole moment for a single Na55 NP is an initial con-

dition parameter which we obtained from the RT-TDDFTB output of NP1 to Eq. 4.1.
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Figure 4.4: Comparison between the induced dipole moments calculated using the analytical
two-level system (TLS) and RT-TDDFTB for NP1 and NP2.

As mentioned previously, since both the NPs are identical to each other, this value is

used to describe the transition dipole moments of both the NPs. Figure 4.4 compares

the z-components of the dipole moments computed using the analytical TLS with the full

quantum-dynamical RT-TDDFTB calculations. A close match between the two results

suggests that our analytical model closely replicates the major results of the full quantum

dynamical method. Specifically, we deduce that the long-range EET in plasmonic systems

can be accurately described within the dipole approximation; that is, as long as the in-

terparticle distance is relatively larger than the NP cross-section, plasmonic NPs can be

treated as interacting point dipoles. While similar results have been analyzed in previ-

ous studies[28, 54, 45, 124], the RT-TDDFTB approach allows a fully electronic/atomistic

treatment of these systems without recourse to any of the approximations made by the

aforementioned studies.

With the EET in the simple plasmonic donor-acceptor pair fully characterized, we

next turn our attention to a multi-particle plasmonic nanoantenna composed of 4 identical
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Na55 NPs as shown in Figure 4.5. The inter-particle distance (center to center) is again

set to 73 Å, and each NP is oriented with their transition dipole moment aligned in the

z-direction. As before, we excite only NP1 using a laser with its energy tuned to the

single Na55 NP plasmon energy and polarized in the z-direction. Figure 4.5 plots the time-

dependent dipole moments induced in all of the NPs within the nanoantenna system. The

RT-TDDFTB calculations predict substantial dipole moments being induced in all of the

NPs, indicating EET from the excited NP1 to the remaining NPs along the nanoantenna,

corroborating previous experimental observations of EET observed in a chain of metallic

NPs[126]. We note that due to the large distances involved (73 Å) and in the small time

period considered (50 fs), the EET is unidirectional (NP1 to NP4) in nature; i.e., EET

back-transfer is negligible. Next, we extend our analytical TLS model to highlight the basic

physics of the EET mechanism in this multi-particle plasmonic nanosystem. However,

to expand the TLS model to capture the EET dynamics beyond the second NP, we first

approximate the interactions between the various NPs to be limited to only nearest neighbor

interactions. For instance, NP2 is only stimulated via oscillations in NP1, NP3 only due

to NP2, and so on. This approximation is a commonly used assumption used in many

classical electrodynamic approaches[124, 122, 123] and is also based on the maximum cutoff

distance (i.e., 10 nm), considered by FRET approaches[235, 42], beyond which the EET

is considered negligible. Specifically, in our plasmonic nanoantenna system, all the NPs,

except for the nearest neighbors lie well beyond this cutoff distance. Furthermore, we utilize

the dipole approximation, which we had shown in the previous section to accurately describe

the individual interactions between each NP pair.
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Figure 4.5: Time-dependent dipole moments induced in the four NPs of the plasmonic nano-
antenna system upon optical excitation of NP1 with a sinusoidal electric field perturbation
calculated using RT-TDDFTB. The induced dipole moments in the NPs are indicative of
the electronic excitation transfer in the multi-particle plasmonic nanosystem.
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Figure 4.6: Pictorial representation of the TLS model for a Na55 tetramer. The first NP is
optically excited with monochromatic light which induces a time-dependent dipole moment
in the following NPs. The arrows represent the couplings considered (i.e., nearest-neighbor)
in the TLS model for the plasmonic nanoantenna.

4.4 Two-Level System Model for Four NP System (Including

only Nearest-Neighbor Interactions)

We expand the two-particle analytical TLS model to describe the four-particle

plasmonic nanoantenna system depicted below in Figure 4.6. We utilize the previous des-

cribed theoretical approach to derive the induced dipole moment in NP3. Also, as previously

mentioned, we use the nearest-neighbor interaction model in which only interactions bet-

ween nearest neighbors are considered for EET. Therefore, the dipole moment induced in

the z-direction in NP3 is only due to the oscillating electric field of NP2, and the expectation

value of the dipole moment in NP3 is given by

µ3(t) ≈ E0

24π2ε20h̄
3r6
|µ1|6t3sin(ωPEt)r̂PE (4.13)

Similarly, the dipole moment in z-direction for NP4, considering its interaction only with

NP3, is given by

µ4(t) ≈ E0

192π3ε30h̄
4r9
|µ1|8t4sin(ωPEt)r̂PE (4.14)

Figure 4.7 compares the dipole moments calculated using the expanded TLS model with

the RT-TDDFTB results. While the results of our analytical TLS model match closely
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with the RT-TDDFTB results for NP1 and NP2, it grossly underestimates the dipole os-

cillations in NP3 and NP4. Since we have categorically examined the validity of the dipole

approximation in the previous section, the failure of the analytical model indicates that the

nearest-neighbor approximation considered in the multi-particle model is the culprit. The

validity of this nearest-neighbor approximation has also been previously contested by Citrin

and co-workers. Figure 4.7 compares the dipole moments calculated using the expanded

TLS model with the RT-TDDFTB results. While the results of our analytical TLS model

match closely with the RT-TDDFTB results for NP1 and NP2, it grossly underestimates

the dipole oscillations in NP3 and NP4. Since we have categorically examined the validity

of the dipole approximation in the previous section, the failure of the analytical model in-

dicates that the nearest-neighbor approximation considered in the multi-particle model is

the culprit. The validity of this nearest-neighbor approximation has also been previously

contested by Citrin and co-workers[45]. To prove this conjecture, we modify the TLS model

to include interactions between all the NPs in the entire nanoantenna. For example, NP4 is

stimulated collectively by NP1, NP2 and NP3, and so on; however, we still use the dipolar

approximation to describe the individual NP interactions.

4.5 Modified Two-Level System Model Including all Inte-

ractions

The primary modification in this version of the analytical model is that we now

consider all of the inter-particle interactions. For instance, the dipole moment in NP3 arises

45



Figure 4.7: Comparison between the dipole moments calculated using the analytical two-
level system model (TLS) that considers only the nearest-neighbor interactions and RT-
TDDFTB calculations for the plasmonic nanoantenna. The dipole moments in NP3 and
NP4 are severely underestimated by this analytical model.
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Figure 4.8: Pictorial representation of the TLS model for a Na55 tetramer. The first NP is
optically excited with monochromatic light which induces a time-dependent dipole moment
in the following NPs. The arrows represent the couplings considered (i.e., all interactions)
in the TLS model for the plasmonic nanoantenna.

from its interaction with NP2 and NP1 (only the interaction with NP2 was considered in

the previous nearest-neighbor TLS model). Similarly, the dipole moment in NP4 is due to

its interaction with all the other NPs; i.e., NP1, NP2, and NP3. This modified scheme with

all of the couplings is shown in Figure 4.8. Using the same approach described previously,

the new equations for calculating the dipole moments in NP3 and NP4 (in z-direction) are

µ3(t) ≈ E0

24π2ε20h̄
3r6
|µ1|6t3sin(ωPEt)r̂PE −

E0

4πε0h̄
2(2r)3

|µ1|4t2sin(ωPEt)r̂PE (4.15)

µ4(t) ≈ E0

192π3ε30h̄
4r9
|µ1|8t4sin(ωPEt)r̂PE +

E0

24π2ε20h̄
3(2r)6

|µ1|6t3sin(ωPEt)r̂PE

+
E0

24π2ε20h̄
3(2r)3

|µ1|6t3sin(ωPEt)r̂PE −
E0

4πε0h̄
2(3r)3

|µ1|4t2sin(ωPEt)r̂PE

(4.16)

respectively.

The induced dipole moments predicted by the new analytical model closely match

the RT-TDDFTB results and are summarized in Figure 4.9. This modified TLS model illu-

minates a few more significant features of the EET mechanism in plasmonic nanoantennas.

Most importantly, we note that the range of electronic couplings in plasmonic nanosystems
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is much larger than the FRET-based cutoff limits, and restricting couplings to the conven-

tional FRET limit severely underestimates the EET in the plasmonic nanoantenna. For

instance, when couplings only within the FRET limit are considered, the predicted EET in

NP4, as shown in Figure 4.7, is an order of magnitude lower than the true EET predicted

by the RT-TDDFTB calculations. Furthermore, as elucidated from the analytical model,

the commonly used nearest-neighbor interaction model falls short in accurately predicting

EET in plasmonic nanoantennas. A more complete multi-particle interaction model, which

considers interactions between all the NPs of the nanoantenna, is needed to fully charac-

terize such a system. Finally, we advise caution on the direct use of single donor-acceptor

based approaches[110, 172], to model even simple multi-particle plasmonic systems, such as

the one considered in this study. Comparisons between our full RT-TDDFB calculations

with the simplified nearest-neighbor analytical models emphasize the severe limitations in

single donor-acceptor models for accurately describing large multi-particle systems.

4.6 Back-Transfer of Electronic Excitation in the Four NP

System

In our analysis of EET in the NP system using the TLS model, we have excluded

energy back-transfer effects. While our RT-TDDFTB calculations do not explicitly omit

these effects, our assumption was based on the observation that negligible back-transfer

of EET occurs for the large interparticle distances and small time periods investigated

in this work. However, if we reduce the interparticle distances and evolve the electron
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Figure 4.9: Comparison between the dipole moments calculated using the analytical two-
level system (TLS) model, which considers interactions between all the particles and RT-
TDDFTB calculations for the plasmonic nanoantenna. The multi-particle analytical model,
that includes the long-range interactions, is accurately able to corroborate the RT-TDDFTB
results.
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Figure 4.10: Time-dependent dipole moments induced in a four NP plasmonic nanoantenna
system with an interparticle distance of 30 Å. NP1 is optically excited with a sinusoidal
electric field perturbation calculated using RT-TDDFTB.

dynamics for a longer period of time, we observe some energy back-transfer effects. To

further elucidate this phenomenon, we ran RT-TDDFTB calculations on a set of four-NP

systems with an interparticle distance of 30 Å (Fig. 4.10) and 15 Å (Fig. 4.11) for a 300 fs

time period. Due to the finite size of the system, the EET shuffles forwards and backwards

in the NP system which can be seen as envelopes of dipole moments. This is in contrast

to a pure unidirectional EET that would have been characterized by a linearly increasing

dipole moment in NP1 with second and higher order dipole moments in NP2 to NP4 as
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Figure 4.11: Time-dependent dipole moments induced in a four NP plasmonic nanoantenna
system with an interparticle distance of 15 Å. NP1 is optically excited with a sinusoidal
electric field perturbation calculated using RT-TDDFTB.

seen in Fig. 4.5.

4.7 Decomposing Induced Dipole Moment into Individual

Components

Furthermore, in order to analyze the long-range plasmonic interactions in greater

detail, we decomposed the RT-TDDFTB results for the total excitation induced in each of

the NP into individual contributions due to the other NPs. For instance, the total electronic
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Figure 4.12: Total dipole moments induced (a) NP3 and (b) NP4 of the plasmonic nanoan-
tenna decomposed into contributions by the other NPs in the system. Direct and substantial
electronic excitation transfer is observed even between the farthest NPs.

excitation in NP4 is decomposed into dipole moments due to individual stimulations from

NP3, NP2, and NP1. Figure 4.12 summarizes the total dipole moment induced in NP3 and

NP4 as a combination of dipole moments due to stimulation provided by the other NPs.

Note that NP1 and NP2 do not have such a decomposition since NP2 is stimulated solely

due to NP1 as the laser directly excites NP1. Figure 4.12 re-emphasizes the long-range of the

plasmonic EET that we had noted previously while developing the analytical model for the

multi-particle plasmonic system. In particular, we observe that there is a direct and rather

substantial EET even between the farthermost NPs. For instance, direct and substantial

EET is seen between NP1 and NP4, despite the fact that the interparticle distance between

these two NPs is ∼21 nm, which is more than twice the conventional FRET cutoff distance.
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The presence of EET over such exceedingly long distances points towards the long-range

nature of electrostatic couplings in plasmonic systems. We attribute this long range of

electronic coupling, to the coherent nature of the plasmon resonances, where a large number

of conduction electrons oscillate simultaneously to produce a large dipole moment. On

account of this larger dipole moment, the electronic couplings of plasmonic systems extend

well beyond the generally accepted FRET maximum cutoff limit for EET processes. We

deduce that these conventional FRET cutoff limits are unsuitable for plasmon-induced EET

because these cutoff limits were originally based on a single electron oscillating between the

excited and ground state, thereby reducing the amplitude of the dipole moment and hence

the coupling distance. Our prediction of these extremely long-range plasmonic couplings

is also supported by previous experimental observations[235], where EET was detected in

plasmonic rulers composed of gold NPs separated by more than 20 nm.

Returning to Figure 4.12, a closer look at the results also implies that each of

the NPs in the nanoantenna system works simultaneously as a donor and a receiver. For

instance, in Figure 4.12(a), NP3 while behaving as an acceptor for EET from NP1 and NP2

simultaneously behaves as a donor to NP4 (as indicated by its EET contribution to NP4

in Figure 4.12(b)). To highlight the uniqueness of this mechanism for plasmonic systems,

we compare these results to a similar nanoantenna composed of non-plasmonic coronene

nanoflakes.
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Figure 4.13: Pictorial representation of a non-plasmonic nanoantenna composed of four
coronene flakes. The first coronene molecule is optically excited with monochromatic light
which induces a time-dependent dipole moment in the following coronene molecules.

4.8 Non-Plasmonic Nanoantenna Composed of Coronene Na-

noflakes

To emphasize the long-range nature of plasmonic interactions, we construct a non-

plasmonic antenna composed of coronene nanoflakes, as shown in Figure 4.13. To maintain

a fair and consistent comparison between the two systems, the nanoflakes were constructed

with a diameter equal to the plasmonic NPs used previously (∼13 Å) and aligned in the

same spatial arrangement as the plasmonic nanoantenna. Analogous to the plasmonic

case, only the first coronene flake was excited with a laser tuned to the first excitation

peak (1.86 eV) observed in the coronene flake absorption spectrum. The dipole moments

induced in each of the coronene flakes, calculated using the RT-TDDFTB calculations

and decomposed into their contributions, are shown in Figure 4.14. We observe that,

unlike in the plasmonic case, the excitation reaching any nanoflake is almost entirely due

to the oscillating electric field of the directly excited nanoflake (C1). For example, the

EET in C4 is entirely contributed by C1, with the other nanoflakes in the nanoantenna

54



Figure 4.14: Total dipole moments induced in (a) C3 and (b) C4 of the non-plasmonic
nanoantenna decomposed into contributions due to the other coronene nanoflakes in the
system.
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contributing minimal excitation. Specifically, the directly-excited coronene flake acts like a

dipole antenna, with all of the other coronene flakes acting as receivers. As a result, the EET

mechanism in non-plasmonic antennas can be simplified to a single-donor, multiple-acceptor

system and is much closer to the FRET mechanism. Therefore, contrary to the plasmonic

case, in non-plasmonic antennas, the excited nanoflake works as the sole donor with the

other nanoflakes behaving as acceptors. Thus, the EET mechanism in plasmonic antennas

is unique and involves a multitude of multiple-donor, multiple-acceptor interactions that

go beyond the single donor-acceptor mechanism found in non-plasmonic systems. It is

also worth mentioning that even though EET occurs in non-plasmonic nanoantennas, the

amplitude of the induced dipole moment is several orders of magnitude lower than the

comparable plasmonic case. For example, the magnitude of the dipole moment in nanoflake

C4 is at least three orders of magnitude lower than the dipole moment in NP4. This

highlights the effectiveness of plasmonic systems for long-range energy transfer compared

to an organic / non-plasmonic system.

4.9 Conclusion

In summary, we have thoroughly characterized the EET mechanism in a repre-

sentative plasmonic nanoantenna system using large-scale RT-TDDFTB calculations that

are further rationalized by various analytical two-level model systems. Most importantly,

the RT-TDDFTB simulations provide a natural approach to probe in atomistic detail the

time-dependent electorn dynamics in multibody plasmonic systems without recourse to

customary approximations, such as nearest-neighbor, spectral overlap, or the dipole ap-
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proximations to describe electronic couplings. Furthermore, we reveal highly long-range

plasmonic couplings that are more than twice the conventional cutoff limit considered by

FRET based approaches. We attribute this unusually higher range of electronic couplings

to the coherent oscillation of conduction electrons in the plasmonic NPs. Due to the col-

lective nature of the oscillating electrons, the magnitude of the dipole moment produced

is substantially larger than the dipole moment of a single oscillating electron, typically

considered in FRET approaches, thereby increasing the range of plasmonic interactions.

An important ramification of this long-range nature of plasmonic EET is that the nearest-

neighbor interaction model commonly used to characterize EET is highly inadequate for

plasmonic systems, even in unidirectional plasmonic antennas such as the one considered

in this study. A more complete model, which considers interactions between all of the con-

stituents in the nanoantenna system, is therefore needed to correctly determine the EET

processes. These analytical models both complement and corroborate the RT-TDDFTB

calculations to highlight mechanistic details that go beyond nearest-neighbor approaches

for plasmonic nanoantennas. While the use of short-ranged FRET-based approaches have

long been used to characterize plasmonic systems, our findings strongly emphasize the im-

portance of long-range, multiple-particle interactions in mediating the EET dynamics of

these systems. Consequently, our results provide a new viewpoint for characterizing and

understanding these systems for harnessing and controlling long-range transfer of excitation

energy in increasingly complex plasmonic nanosystems.
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Chapter 5

Effect of Quantum Tunneling on

the Efficiency of Excitation Energy

Transfer

While the previous chapter analyzes the excitation energy transfer in nanoparti-

cles with large interatomic distances, this chapter describes the excitation energy transfer

in plasmonic nanoparticle chains with subnanometer interparticle distances. In particular,

this chapter explores the effect of quantum tunneling on the efficiency of excitation energy

transfer in these systems. The majority of the work in this chapter resulted from a col-

laboration with Dr. M. Belén Oviedo and was published as an article in the Journal of

Materials Chemistry C [87].
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5.1 Introduction

Achieving a controlled transfer of energy and information at high speeds and mi-

nimal losses has been a continual research goal in technological fields ranging from energy

harvesting to nanophotonic circuits.[25, 30, 194, 214] Coupling light to localized surface

plasmon resonances (LSPRs)[23] in metallic nanoparticle ensembles provides an electro-

magnetic pathway to direct and control this flow of energy. Starting with the ground-

breaking experimental demonstration of this phenomena by Maier et al.,[126] many other

researchers[26, 207] have also shown experimental evidence of other excitation energy trans-

fer (EET) mechanisms. In terms of applications, others have also recently examined waveg-

uides with various shapes such as L-bends,[192] T-joints,[29] Y-splitters,[105] and other more

complex ensembles that are inspired from natural light-harvesting antenna systems.[178]

One of the recurring issues with the practical application of these plasmonic en-

sembles in fields such as photonic circuits and energy harvesting is that the propagation

distance of energy remains too short.[126] A possible way for increasing this propagation

distance in plasmonic chains is to decrease the interparticle spacings, which results in stron-

ger plasmon couplings.[16, 137, 43] Another factor, particularly for applications in photonics

circuits, is that the overall size of the electronic components in such circuits has reached

subnanometer sizes. This has made it necessary to reduce the size of the transport struc-

tures, i.e. the nanoparticle ensembles, to subnanometer sizes.[152] While the production of

both smaller interparticle spacings and small nanoparticles were limited with lithographic

manufacturing methods, the advent of bottom-up assembly techniques for metallic nano-

particle ensembles have partially solved this problem.[16, 137, 43, 232, 49] This approach is

59



not only cost-effective, but has also made possible the fabrication of complex nanoparticle

assemblies with subnanometer interparticle spacings.[114, 218]

These nanoscale structures, which are separated by small interparticle gaps, sup-

port hybridized plasmon resonances as a result of interactions between the basic plasmon re-

sonances of the elementary nanoparticles. For example, the Bonding Dipole hybridized Plas-

mon (BDP) is characterized by in-phase charge oscillations in each of the nanoparticles.[220]

Another hybridized plasmon mode, the Charge Transfer Plasmon (CTP), is observed in the

structure when the nanoparticles touch each other or a conductive junction is established

between them, allowing for a direct charge transfer from one nanoparticle to the other.[246]

The onset of such hybridized plasmon resonances drastically modify the near and far field

properties of the systems and has led to increased interest in their applicability in novel

devices.[1, 106, 217, 4, 138, 180, 97] However, recent studies have shown that as the in-

terparticle spacing enters the subnanometer regime, the quantum nature of the electrons

significantly alters the plasmonic response of the system.[246] In particular, in the quan-

tum regime, electrons can tunnel through the flat energy barrier between nanoparticles and

thus enable a CTP before the particles touch each other. This is known as direct tunne-

ling. Another form is Fowler-Nordheim tunneling, where tunneling occurs in the presence

of strong electric fields.[226]

As such, the need to fabricate subnanometer nanoparticle assemblies has posed

additional problems for the theoretical analysis of these structures. The most widely em-

ployed approaches for analyzing EET in nanoparticle assemblies has been finite-difference

time-domain (FDTD) calculations or similar methods based on solving Maxwell’s equations.
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These methods rely on the Drude model to characterize bulk metal properties such as the

plasma frequency.[193, 192, 221, 216] Other approaches have also employed Förster reso-

nance energy transfer (FRET) models to study EET in plasmonic structures,[20, 158, 211]

but these methodologies contain various approximations, such as the spectral overlap and

dipole approximation, which limit their applicability to complex systems.[175, 172, 86] Al-

ong with these approximations, most of these studies limit their analyses to systems with a

minimum interparticle spacing of 1 nm and above.[29, 125, 221, 193, 192] Also, as mentio-

ned previously, with smaller dimensions, quantum effects will ultimately play an important

role, and it is essential to consider these non-classical effects. Recent studies have begun to

address this problem by proposing quantum-corrected models within classical electromag-

netic simulations;[59, 79] however, these models do not provide an atomistic treatment of

the systems under study. While first-principle methods such as DFT can correctly predict

quantum effects, the large size of nanoparticle assemblies remain beyond their reach with

current computational resources. In this work, we probe in atomistic detail the electronic

couplings in metal nanoparticle chains with varying inter-particle spacings using the density

functional tight-binding (DFTB) approach and its real-time, time-dependent counterpart,

RT-TDDFTB. In contrast to our previous study on long-range EET mechanisms,[86] this

study investigates extremely small inter-particle spacings, where quantum effects play an

important role and are beyond the scope of classical FDTD methods. Based on our RT-

TDDFTB calculations, we reveal two different regimes of EET efficiency: (1) For large

inter-particle separations, EET efficiency increases with decreasing inter-particle spacing,

which is consistent with classical calculations; (2) a sudden drop in efficiency is observed
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as the inter-particle distance is further reduced, even before the nanoparticles touch each

other. We attribute this drop in efficiency to the onset of an interparticle charge transfer

between the nanoparticles of the chain. We also show that the onset of this charge transfer

mechanism in the nanoparticle chain dramatically alters the nature of the coupling between

the plasmonic nanoparticles. In particular, the bonding dipole plasmon (BDP) is conver-

ted to a hybridized-BDP with some charge transfer character, which is responsible for the

decrease in the capacitive coupling in the nanoparticle chain. We also propose a visually

intuitive way to classify the peaks in the absorption spectrum of the nanoparticles as various

types of plasmonic excitations. While we focus our study on a simple chain-like ensemble

of nanoparticles, our methodology is expected to apply to a broad range of other complex

plasmonic ensembles.

5.2 Local Surface Plasmonic Resonances in a Single Silver

Nanoparticle

As mentioned previously, the transfer of excitation energy along metal nanopar-

ticle chains takes place via an electromagnetic pathway provided by local surface plasmon

resonances. Therefore, we begin the analysis of EET along plasmonic chains by first charac-

terizing the plasmon resonance energy of a single silver NP containing 55 atoms and having

an icosahedral shape. Accordingly, we optimize the geometry of the NP and plot its ab-

sorption spectrum. We use the hyb-0-2 set of DFTB parameters (available at dftb.org) for

computing these properties. As can be seen in Figure 5.1, a prominent peak, corresponding
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Figure 5.1: Absorption spectra of a 55 atom icosahedral silver nanoparticle. A prominent
plasmon resonance peak is observed around 3.23 eV.
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to the plasmon resonance is observed around 3.23 eV. This result is in good agreement with

a time-dependent density functional theory (DFT) calculation of 3.6 eV[120] and a recent

experimental result of 3.8 eV[119] for similar-sized Ag nanoparticles.

Along with the absorption spectrum, we also plot the field enhancement of a single

Ag NP in Figure 5.2. Specifically, the Ag NP is excited with a sinusoidal electric field with

its frequency equal to its plasmonic energy (3.23 eV) and polarized in the direction of its

transition dipole moment. The electric field induced by plasmonic oscillations at any point

in space is calculated using the following expression:

E(r) =
∑
i

qi
4πε0

(ri − r)

||ri − r||3
(5.1)

and the electric field enhancement, Γ, is calculated as follows:[141]

Γ =
|E|2(ω)

|Eappl|2(ω)
(5.2)

where the applied field has the form Eappl(t)=E0sin(ωt) in the time domain, and ω is the

plasmon energy. As expected from plasmonic excitations, high values of field enhancements

are observed around the Ag NP, which are distributed in a dipolar fashion, as shown in

Figure 5.2.

5.3 Exploring excitation energy transfer in Ag NP chains

With the energy of a single Ag nanoparticle (NP) characterized, we now proceed

to an analysis of the EET in plasmonic NP assemblies. Accordingly, we use the single Ag

NP to construct model NP chains, each containing 8 Ag NPs and with varying interparticle

spacings. As mentioned earlier, previous studies have mostly investigated the EET in NP
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Figure 5.2: Electric field enhancement of the Ag55 NP distributed in a dipolar fashion in
alignment with the polarization vector E. The dark spheres indicate the position of the Ag
atoms.

chains with considerably larger interparticle distances where quantum effects can be safely

neglected,[161, 221] and approximations such as the dipolar approximation are valid.[86]

Here, we are specifically interested in the subnanometer interparticle spacings where both

these approximations do not hold. Therefore, we construct model NP chains with interpar-

ticle distances (d) varying between 5 Å to 0.5 Å. We define the interparticle distance as the

edge-to-edge distance between the NPs, and two of the model NP waveguides are shown

in Figure 5.3. We also construct a NP chain where the NPs touch each other (d=0 Å).

Note that we define particles to be touching each other when the center-to-center distance
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Figure 5.3: Pictorial representation of two of the finite chains with 8 Ag NPs with radius a
≈ 1.23 nm and interparticle (center to center) distance equal to (a) 1 Å and (b) 5 Å.

between two atoms from adjacent NPs is less than the Ag-Ag bond-forming distance (the

Ag-Ag atom bond length is 3.00 Å). We would also like to point out that all of these chains

are extremely large systems, each containing a total of 440 atoms. To simulate EET al-

ong the NP chains, we excite only the first Ag NP in the chain using a monochromatic

laser with an energy equal to the plasmonic resonance energy of a single Ag NP (3.23 eV).

To quantify the EET efficiency along the chain, we compute the electric field intensities,

I =
√
ε0/µ0×|E|2, where E is the total electric field, at identical points between each of the

NPs along the axial direction shown in Figure 5.4, and ε0 and µ0 are the permittivity and

permeability of free space, respectively. We utilize this metric of computing electric field

intensities along the NP chain to allow for a direct comparison of EET efficiencies obtai-

ned in other previous studies.[193, 192, 161, 221] Figure 5.5 shows the intensity trends of
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Figure 5.4: The values of field intensity are taken at identical positions of each nanoparticle
chain as shown by the black dots. The points lie exactly between two nanoparticles and on
a line approximately 1 Å below the lowest atom in the NP.

the NP chains with interparticle distances ranging from 0 to 5 Å. Transmission loss factors

were calculated from Figure 5.5 by fitting to an exponential decay, I = I0 exp(−bz) with

the transmission loss factor, b. The loss factors and decay lengths for all the chains are

shown in Table 5.1. Table 5.1 also shows the group velocities for each of the chains (details

on the calculation of group velocities are shown in the Supplementary Information of ref

[87]). From the intensity trends in Figure 5.5 and transmission loss factors in Table 5.1, we

observe a monotonic increase in the EET efficiency (i.e. the slope of the intensity lines and

transmission loss factor both decrease) as the interparticle distance is reduced from 5 Å to

about 2 Å. This result is in qualitative agreement with results obtained by previous studies

on similar systems using classical electrodynamic methods.[161, 221] This increase in EET

efficiency can be attributed to an increase in capacitive coupling between the Ag NPs as

the interparticle distance between them is reduced. This phenomenon is analogous to a

charged capacitor,[227] where the capacitance of a capacitor increases as the charged plates

are brought closer together. However, as the interparticle distance is further reduced below

2 Å, we observe an opposite trend of the EET efficiency. In particular, we see a sudden drop

in EET efficiency for interparticle distances below 2 Å (i.e. the slope of the intensity line

and transmission loss factor both increase). This result is qualitatively opposite to what has

67



been predicted by previous computational studies.[161, 221] Specifically, previous studies

have observed a decrease in EET when the interparticle distance is reduced to a distance

where the NPs directly touch each other.[161] In contrast, we observe a decrease in EET

efficiency even before the instance when the NPs touch each other. At this point we would

also like to mention that due to the finite nature of the chains, some end effects, such as

the back transfer of electronic excitation energy, are seen in the shorter chains (interparticle

spacings of 1 Å, 0.5 Å, and 0 Å). These end effects result in the non-monotonic intensity

trends seen in the last few NPs and, hence, only a general trend of the chain is considered.

A brief description of these end effects can be found in our previous study.[86]

Table 5.1: Transmission Loss Factor, Decay Length, and Group Velocity for the silver NP
chains

Interparticle Transmission Decay Group

Distance Loss Factor Length Velocity

(Å) (1/Å) (Å) (m/s (105))

5.0 0.057 17.54 2.341

4.0 0.048 20.83 2.570

3.0 0.041 24.39 2.802

2.0 0.035 28.57 3.295

1.5 0.038 26.32 2.937

1.0 0.186 5.38 1.775

0.5 0.199 5.03 1.523
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Figure 5.5: Field intensities along silver NP chains with varying interparticle distances. The
first nanoparticle in each of the chains is excited at the plasmon resonance energy, and the
intensity values are computed at the interparticle gaps of the NPs as shown in Figure 5.3.
The excitation energy used in the simulation is equal to the plasmon resonance energy of
the single Ag nanoparticle. A drastic drop in the field intensity is seen for Ag chains with
interparticle spacings less than 2 Å.
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5.4 Analyzing the electronic couplings in NP chains

We next investigate the decrease in EET efficiency by analyzing in detail the

electronic couplings between the NPs in the plasmonic chain. For this purpose, we plot the

absorption spectrum of Ag NP dimers with varying interparticle distances in Figure 5.6.

On careful observation of Figure 5.6, we note that for all interparticle distances, a single

prominent peak, close to the value of the single NP plasmonic energy is observed. However,

for interparticle spacings less than 2 Å, an additional peak, at an energy lower than the

prominent peak, forms in the absorption spectrum. This peak, marked with red arrows

in Figure 5.6, is seen clearly in the absorption spectrum of the dimers with interparticle

distances of 1, 0.5, and 0 Å. The prominent peak, close to the single NP plasmon energy,

normally arises due to interactions (hybridizations) between the basic plasmon resonances

of the elementary nanostructures (in this case, the single Ag NP). This excitation is the

bonding (symmetric) mode, normally known as the Bonding Dipole Plasmon, or BDP,

and is characterized by charge oscillations of the NPs in phase with each other.[220] The

other peak appearing at lower energies and smaller interparticle distances, is normally

observed when an optical-frequency conductive pathway is established between two NPs,

enabling the transfer of charge between them. This conductive pathway can be physical,

due to a physical bridge or due to quantum tunneling. This is known as a Charge Transfer

Plasmon, or CTP.[246] Unlike the BDP, the CTP is characterized by a total charge moving

between the two nanoparticles of the dimer, which we observe as the lower-energy peak

in our absorption spectrum. In our case of non-touching NPs, the CTP excitation can be

attributed completely to quantum tunneling that establishes a conductive pathway between
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Figure 5.6: Absorption spectrum for Ag NP dimers with varying interparticle separations.
An additional lower-energy peak (corresponding to a charge transfer plasmon excitation)
emerges in the absorption spectrum for dimers having an interparticle spacing less than 2 Å,
denoted by red arrows.

the two NPs of the dimer. While charge transfer plasmons have been previously observed

theoretically in DFT and quantum-corrected classical models,[227, 246, 226] to the best of

our knowledge, this study is the first to predict CTPs using RT-TDDFTB calculations. The

presence of a CTP peak is examined further below with our RT-TDDFTB calculations to

understand the drop in EET efficiency.
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5.5 Investigating the nature of plasmonic excitations

To analyze in detail the different plasmon modes and to assess changes in their

nature, we need an intuitive way to analyze these excitations. For example, the BDP is

characterized by charge oscillations within individual NPs that are in phase with each other,

while the CTP is characterized by the total charge oscillating from one NP to the other.

Hence, we plot the Mulliken charge distribution in the 5 Å NP dimer at a single instance

in time, excited at the BDP peak as shown in Figure 5.7(a). In particular, we observe a

dipolar distribution of atomistic charges in each of the NPs that are in phase with each

other. Furthermore, to get a quantitative picture of this particular excitation, we plot

the changes in the Mulliken charges (∆q) for both NP1 and NP2, with respect to their

ground state values as a function of time in Fig 5.7(b). In particular, we find that the

time-dependent change in Mulliken charges in both the NPs remains constant with time.

In conjunction with Figure 5.7(a), this shows that the charge oscillations only take place

within individual NPs, confirming the BDP nature of the excitation. We now apply a similar

analysis to a NP dimer, where the additional low-energy (CTP) peak appears. Figure 5.8

shows the charge distributions and the time-dependent changes in Mulliken charges for the

NP dimer with an interparticle spacing of 1 Å. In this case, however, we compare the charge

distributions when the NP dimer is excited at either the BDP or CTP energy peak. When

excited at the BDP peak, the 1 Å NP dimer shows charge distributions very similar to

the charge distributions shown by the 5 Å dimer (Figure 5.8(b)), suggesting that it is a

BDP-type excitation. However, the time-dependent changes in Mulliken charges shows a

rather different picture (Figure 5.8(d)), and we observe some charge transfer from one NP
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Figure 5.7: (a) Snapshot of charge distributions at one time moment and (b) time-dependent
total charge fluctuations at the BDP peak for a Ag NP dimer with interparticle distance
equal to 5 Å. The charge distributions show a dipolar distribution of charges within each of
the NPs. Time-dependent total charge oscillation shows no charge moving between the two
NPs.
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to the other. This is uncharacteristic of a BDP excitation, and we discuss this in detail

later. Likewise, when excited at the CTP peak, one of the NPs shows a predominantly

positive charge, while the other one shows a negative charge (Figure 5.8(a)). The time-

dependent changes in Mulliken charges confirm this observation in Figure 5.8(c). This

behavior is characteristic of a CTP excitation, where an oscillating current occurs between

the two NPs of the dimer. A previous study[220] has similarly characterized CTP plasmons

by plotting the charge distribution (at a single moment in time) and the electric current

oscillating across a physical junction between two Ag dimers, at a frequency corresponding

to the energy of this mode (i.e. the CTP mode). However, to the best of our knowledge, this

study is the first to classify plasmonic excitations using time-dependent changes in Mulliken

charges. We also note in Figure 5.8(a) that we observe a slight dipolar nature of charge

distributions near the particle edges. This can be attributed to the atomistic treatment

of the nanoparticles, whereby the charge transfer plasmon induced on the nanoparticle

dimers also establishes a small opposing dipole on the inner edges of the same nanoparticles

due to inter-atomic electrodynamic interactions. A previous study[217] has also observed

a similar effect when they studied complex plasmonic clusters. Although this previous

study investigated large plasmonic nanoparticles arranged in complex formations, the basic

electrodynamics reasoning holds, even for our clusters.

The CTP-type behavior seen at the BDP peak (Figure 5.8(d)) confirms the pre-

vious hypothesis that the appearance of the CTP peak changes the nature of the original

excitations in the dimer. In particular, we observe that at subnanometer interparticle spa-

cings, the pure BDP excitation forms a hybridized excitation that has some CTP character.
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This hybridized BDP has also been called the screened BDP (S-BDP) or a higher-order

charge transfer plasmon (CTP’) in previous studies.[220, 179] We attribute the decrease in

the EET efficiency in smaller interparticle spacing chains to the formation of this hybridi-

zed BDP. Since the hybridized BDP allows for a small charge transfer between the NPs,

it reduces the capacitive coupling between the NPs. Going back to the capacitor analogy

used previously, this can be thought of as a leaking capacitor. Overall, the formation of

such a hybridized BDP reduces the EET efficiency for subnanometer interparticle distances,

unforeseen by classical models.

5.6 Conclusion

In summary, we utilize a real-time, time-dependent density functional tight-binding

(RT-TDDFTB) approach to study, in atomistic detail, the electron dynamics of excitation

energy transfer in large plasmonic nanoantenna systems. In particular, we study NP chains

with subnanometer interparticle spacings that are beyond the capabilities of classical met-

hods. Such systems are beyond the scope of classical methods such as FDTD and the FRET

formalism due to the neglect of quantum effects (such as tunneling and hybridization) and

beyond the routine use of conventional DFT due to size constraints. We also propose a

visually intuitive way to classify the plasmonic resonances in nanoparticle systems, such as

BDP, CTP, and hybridized excitations. Using the above methodologies, we find an initial

monotonic increase in EET efficiency as the interparticle spacing in the chains is reduced,

which is in qualitative agreement with classical studies. However, as the distance is furt-

her reduced we observe a drastic drop in EET efficiency. While classical electrodynamics

75



Figure 5.8: Snapshot of charge distributions at one instance in time for a Ag NP dimer
with an interparticle distance equal to 1 Å excited at (a) the CTP peak and (b) the BDP
peak. The CTP peak distributions show a total charge separation between the two NPs,
while the BDP peak distributions show a dipolar charge distributions within each of the
NPs. The time-dependent changes in Mulliken charges are shown for the (c) CTP and (d)
BDP peak for the same Ag NP dimer. For both the CTP and the BDP excitations, a net
charge fluctuation is seen between the NPs which indicates a hybridized nature of the BDP
peak at subnanometer spacings.
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methods have predicted this drop for NPs touching each other, our study shows this drop

in efficiency occurs even before the NPs touch. We attribute this drop in efficiency to the

interparticle charge transfer between the closely spaced nanoparticles. We further show that

this charge transfer dramatically changes the nature of couplings between the nanoparticles

in the chain. In particular, we demonstrate that the regular bonding dipole plasmon is

converted to a hybridized bonding dipole plasmon, which possesses some charge transfer

character. This, in turn, is ultimately responsible for the reduction in capacitive coupling

between the NPs and hence the drop in EET efficiency. Consequently, our study has two

important ramifications on EET in plasmonic nanosystems: (1) while classical methods

based on solving Maxwell’s equations have long been used to analyze a variety of nanoan-

tenna systems, our findings show that the inclusion of quantum effects has a nontrivial effect

on EET dynamics, especially in plasmonic nanoantennas with subnanometer interparticle

spacings, and (2) decreasing the interparticle spacing beyond a certain limit may not have

the intended effect of increasing EET efficiency and, therefore, a more careful considera-

tion of other strategies may be necessary in improving energy transfer in plasmonic devices

fabricated with subnanometer dimensions.
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Chapter 6

Polarizabilities of π-Conjugated

Chains from Broken-Symmetry

Range-Separated DFT

The primary objective of this chapter is to highlight the importance of broken-

symmetry effects and short-range exchange when calculating the polarizabilities and hyper-

polarizabilities of conjugated chains. The majority of the work in this chapter resulted from

a collaboration with Dr. M. Belén Oviedo and was published as an article in the Journal

of Chemical Theory and Computation.[147]

6.1 Introduction

Since the early 1960s,[66, 12, 22] the linear and nonlinear optical (NLO) proper-

ties of π-conjugated polymers have garnered immense interest from both theorists[35, 36]
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and experimentalists[52, 174] for their use as novel optical materials. Specifically, recent

developments in these NLO materials have led to a wide variety of technological advan-

cements including optical memory, holography, optical computing, nonlinear microscopy,

and electro-optic waveguide devices.[104] Predictive computational design, particularly with

quantum chemical methods, will play an important role in these advancements by providing

a rational and guided path for accurately calculating the NLO properties in these conju-

gated materials. Among the various quantum chemical techniques currently in use, the

most accurate calculations of polarizabilities and second hyperpolarizabilities of polymers

have been obtained with wavefunction-based techniques (such as coupled cluster methods);

however, these calculations have been limited to short polyenes due to their high compu-

tational costs.[91] In contrast, the simple Hartree-Fock method is sometimes still employed

for the calculation of hyperpolarizabilities of large molecules; unfortunately, the Hartree-

Fock formalism by definition does not fully account for dynamic electron correlation, which

plays an important role in the estimation of polarizabilities and hyperpolarizabilities (see

Refs. [90], [112] and references therein). Kohn-Sham density functional theory (DFT),

which includes an approximate treatment of electron correlation, has become an extremely

popular and versatile method for its excellent balance between accuracy and computational

cost;[47] nevertheless, the selection of appropriate exchange-correlation (XC) functionals for

calculating polarizabilities and hyperpolarizabilities still remains.

Historically, the accurate calculation of polarizabilites in π-conjugated systems

has presented an immense challenge for conventional DFT methods. In particular, previous

work by others[35, 36, 38, 39, 37] has demonstrated that DFT calculations with common
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XC-functionals, including LDA, GGA, and functionals constructed with a fixed percen-

tage of exact exchange, dramatically fail to provide an accurate description of both the

linear polarizability (α) and the second hyperpolarizability (γ) of one-dimensional poly-

mers. These difficulties stem from the fact that polarizabilities are second-order electronic

properties and, as mentioned previously, will be extremely sensitive to exchange-correlation

approximations in Kohn-Sham DFT methods (in particular, for computing γ). In a pa-

per by Champagne and co-workers,[143] the authors employed both standard and non-

empirically tuned range-separated functionals (specifically CAM-B3LYP and LC-BLYP) to

calculate the longitudinal linear polarizability and second hyperpolarizability of polydiace-

tylene (PDA) and polybutatriene (PBT) oligomers (Figure 6.1). To test the accuracy of

these various range-separated methods, the authors utilized a limited set of coupled-cluster

methods with single and double excitations and perturbative triple excitations, CCSD(T),

in conjunction with second-order and fourth-order Møller-Plesset perturbation theory (MP2

and MP4) as benchmark standards. Based on these benchmarks, the authors concluded with

the following statements: (1) “it is not expected that (adjusting the fraction of short-range

HF exchange) will improve the polarizability and the second polarizability,” (2) “for all le-

vels of approximation, the overestimation of the α values (was observed),” and (3) “the bad

performance of all levels of approximation to estimate γ of PBT chains (was observed).”

To shed additional light on these previous conclusions, we present a new, detailed investi-

gation using (1) non-empirically tuned range-separated functionals that include a portion

of short-range HF exchange, and (2) an extensive analysis of broken-symmetry effects in

range-separated functionals for calculating polarizabilities and second hyperpolarizabilies
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Figure 6.1: Molecular structures of the PBT and PDA oligomers (N = 1 - 6) studied in
this work. The longitudinal linear polarizability and second hyperpolarizability of both
structures are computed along the z-axis shown in the figure.

in PDA and PBT chains. In regards to the first point, previous work by our group[162] and

others[55, 164, 169, 195] has suggested that the inclusion of some short-range HF exchange

does improve the accuracy of computed excited-state properties, and we demonstrate that

this also enhances the accuracy of computed polarizabilities. Addressing the second point,

broken-symmetry effects arise when the restricted (closed-shell) wavefunction becomes un-

stable towards an unrestricted (open-shell) solution.[153, 184] In particular, we find that the

lowest-energy electronic states for PBT are not closed-shell singlets, and enhanced accuracy

with range-separated DFT can be obtained by allowing the system to relax to a lower-energy

broken-symmetry solution. To both supplement and verify our findings, we also provide new

large-scale CCSD(T) and explicitly correlated CCSD(T)-F12 benchmarks for the PDA and

PBT systems. It is worth mentioning that in the original work by Champagne and co-

workers,[143] only a limited set of CCSD(T) benchmark calculations were carried out due

to the immense computational cost of these wavefunction-based methods (i.e. the largest

PDA and PBT chains with 5 and 6 oligomers were not computed). For this reason, the

authors commented that their range-separated calculations could not be checked to assess if
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the extrapolated DFT trends would either degrade or improve as a function of oligomer size.

In this chapter, we complete these computationally intense CCSD(T) calculations as well

as provide a new set of explicitly-correlated CCSD(T)-F12 benchmarks which comprise the

most complete and accurate calculations of polarizabilities and second hyperpolarizabilities

on these systems to date. Taken together, our new broken-symmetry range-separated DFT

calculations in conjunction with these high-level CCSD(T) and CCSD(T)-F12 benchmarks

highlight the importance of broken-symmetry effects when calculating polarizabilities and

hyperpolarizabilties of -conjugated chains. Finally, we give a detailed analysis for all of these

effects on various PDA and PBT oligomers and discuss the implications of both short-range

exchange and broken-symmetry effects in calculating polarizabilities in these challenging

systems.

6.2 Theory and Methodology

Since one of the main purposes of this chapter is to assess the accuracy of va-

rious range-separated functionals for computing polarizabilities, we briefly review the un-

derlying theory for these methods. In contrast to conventional hybrid functionals, the

range-separated formalism[203, 208] mixes short range density functional exchange with

long range Hartree-Fock exchange by partitioning the electron repulsion operator into short

and long range terms (i.e., the mixing parameter is a function of electron coordinates).

In the most general form of the range-separated approach, the interelectronic Coulomb

operator is given by:[203, 208]

1

r12
=

1− [α+ β · erf(µ · r12)]

r12
+

[α+ β · erf(µ · r12)]

r12
(6.1)

82



The erf term denotes the standard error function, r12 is the interelectronic distance bet-

ween electrons 1 and 2, and µ is the range-separation parameter in units of Bohr−1. The

parameters, α and β, satisfy the following relations: 0 ≤ α + β ≤ 1, 0 ≤ α ≤ 1, and

0 ≤ β ≤ 1. The parameter α in the partitioning allows a contribution of HF exchange over

the entire range by a factor of α, and the parameter β allows us to incorporate long-range

asymptotic HF exchange by a factor of (α+ β). For example, the CAM-B3LYP functional

of Yanai and co-workers[230] uses α = 0.19, (α + β) = 0.65, and µ = 0.33; however, the

CAM-B3LYP functional does not incorporate a full range-separation as it only has 65%

HF exchange at long-range (instead of the correct 100% asymptotic HF exchange). In

our previous work on range-separated functionals,[222, 63, 223, 62, 224] we have used and

parameterized full range-separation schemes that correspond to setting α = 0.0 and β =

1.0. In particular, we[223] and others[167, 103] have previously shown that maintaining a

full 100% contribution of asymptotic HF exchange is essential for accurately describing va-

lence excitations in even relatively simple molecular systems. For the two range-separated

LC-BLYP methods used in this work, we fix (α + β) = 1.0 (with different values of α)

in conjunction with self-consistently tuning the range-separation parameter µ by satisfying

DFT-Koopmans theorem.[196, 100, 197] In summary, this theorem states that the energy

of the highest occupied molecular orbital (HOMO) equals the negative of the ionization

potential (IP), which is defined as the (SCF) difference between the ground-state energy of

the N electron and the N - 1 electron systems. Within the Kohn-Sham DFT formalism, this

condition is fulfilled for the exact XC-functional; therefore, adjusting the range-separation

parameter in this self-consistent manner provides a theoretical justification for this proce-
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dure. Although several numerical schemes exist, one practical approach for self-consistently

tuning the range-separation parameter µ is to numerically minimize the following function:

J2(µ) = [ε2
HOMO(N) + IPµ(N)]2 + [ε2

HOMO(N + 1) + IPµ(N + 1)]2 (6.2)

where ε2
HOMO(N) is the HOMO energy of the N-electron system, and IPµ(N) is the ground

state energy difference between the N and N - 1 electron systems with the same range-

separation parameter. The second term in this equation takes into account the N + 1

system to indirectly tune the LUMO energy of the N electron system. The LUMO energy

cannot be directly incorporated in this equation since DFT-Koopmans theorem does not

explicitly relate the electron affinity (EA) to the negative of the LUMO energy.

To obtain the optimal µ values for each oligomer, several single-point energy cal-

culations on fixed geometries (discussed further below) were carried out by varying from

0.0 to 0.4 (in increments of 0.02) for each of the N, N + 1, and N - 1 electron states. These

calculations were computed using two non-empirically tuned LC-BLYP methods: the first

method does not include any short-range exchange (i.e., α = 0.0, β = 1.0), and the second

method contains 20% exchange over the entire range (i.e., α = 0.2, β = 0.8). It is important

to emphasize that each of the different LC-BLYP parametrizations used in this work still

recover the full 100% exchange at asymptotic distance (α + β = 1.0) even though each

parametrization has a different exchange contribution at short range. In addition, we also

tested the performance of the LC-BLYP (µ = 0.47) method since there has been recent work

demonstrating that hyperpolarizabilities of various chromophores are more accurately des-

cribed without utilizing the non-empirically tuned procedure.[71] For all of the oligomers,

we carried out a DFT stability analysis at all LC-BLYP levels of theory to converge (if pos-

84



sible) towards a lower-energy, broken-symmetry solution, which allows for an unrestricted

spin state as well as a reduction in symmetry of the orbitals. With the broken-symmetry

solutions in hand, J2 was computed (Eq. 6.2) as a function of µ for each polyene and all of

the various monomers. Spline interpolation was subsequently used to refine the minimum

for each individual system. All DFT calculations were carried out with the Gaussian 09

package[68] using default SCF convergence criteria (density matrix converged to at least

10-8) and the default DFT integration grid (75 radial and 302 angular quadrature points).

In order to maintain a consistent comparison with the previous study of Cham-

pagne and co-workers, identical molecular geometries obtained from Ref. [143] were used

throughout this work. Similarly, we utilized the same 6-31+G(d) basis set to compute the

longitudinal static polarizability and second hyperpolarizability of the various PDA and

PBT chains, ranging from one to six monomer units. Following the same approach by

Champagne et al., all of the polarizabilities obtained with all DFT methods were calculated

using analytical derivatives of the energy with respect to field strength within the coupled-

perturbed Kohn-Sham (CPKS) method. Second hyperpolarizabilities for all DFT methods

were evaluated as second-order numerical derivatives of the polarizability with respect to

the applied external electric field. At the wavefunction-based CCSD(T) and explicitly-

correlated CCSD(T)-F12 levels of theory, polarizabilities and hyperpolarizabilities were ma-

nually calculated with a custom-developed code as the second- or fourth-order numerical de-

rivatives of the energy with respect to the applied external electric field. In these finite field

approaches, the following field amplitudes in atomic units (1 a.u. = 5.142206×1011 V/m)

were chosen: F=0.0, ±1×10−4, ±2×10−4, ±4×10−4, ±8×10−4, ±16×10−4, and ±32×10−4
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a.u. To maintain a consistent comparison with the various DFT methods, the CCSD(T)

calculations were also performed with the same 6-31+G(d) basis set. In addition to the

CCSD(T)/6-31+G(d) calculations, new CCSD(T)-F12 calculations were also carried out to

verify both the overall trends and quality of the CCSD(T) benchmarks. The CCSD(T)-F12

methods have attracted recent attention for their ability to calculate extremely accurate

electronic energies (typically at a higher level of accuracy than conventional CCSD(T) with

the same basis), by constructing a wavefunction that depends explicitly on the interelectro-

nic coordinates. As such, the explicitly-correlated CCSD(T)-F12 methods exhibit drama-

tic improvements in basis set convergence, and results of quintuple-zeta quality that were

obtained with smaller triple-zeta basis sets have previously been shown.[204] To this end,

we carried out our CCSD(T)-F12 calculations with the cc-pVDZ basis, which is the largest

basis set available commensurate with both the density-fitting algorithm in Molpro and our

computational resources. As a side note, both the CCSD(T) and CCSD(T)-F12 calculations

were extremely computationally intensive, especially for the large PDA[5], PDA[6], PBT[5],

and PBT[6] structures. For example, the largest of these structures, PDA[6], took up to 18

continuous days (for each of the finite field F amplitudes) on 16 x 2.3 GHz AMD Opteron

CPUs, and each calculation consumed up to 356 GB of disk space on rapid-access solid state

drive storage. Finally, all of the CCSD(T)-F12 polarizabilities and second hyperpolarizabi-

lites reported in this work were obtained from self-consistent CCSD(T)-F12a energies. The

CCSD(T)-F12a energies were chosen over the CCSD(T)-F12b results since extensive ben-

chmarks have shown that the CCSD(T)-F12a method gives better results for smaller basis

sets (such as the cc-pVDZ basis set used in this work) than CCSD(T)-F12b.[98] The F12b
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variant differs from the F12a method by the inclusion of an additional energy correction

which approximately doubles the magnitude of the coupling between the conventional and

explicitly correlated pieces of the calculation.[98, 3] Taken together, the CCSD(T)-F12 po-

larizabilities and second hyperpolarizabilities offer a second check on both the DFT and

CCSD(T) results as well as provide new, additional high-quality benchmarks for the PDA

and PBT systems.

6.3 Tuning the µ Parameter

Figure 6.2 shows the smooth curves that result from computing J2 as a function

of µ for (a) PDA without short-range exchange (LC-BLYPα=0.0,β=1.0), (b) PDA including

short-range exchange (LC-BLYPα=0.2,β=0.8), (c) PBT without short-range exchange (LC −

BLY Pα=0.0,β=1.0), and (d) PBT including short-range exchange (LC-BLYPα=0.2,β=0.8). As

discussed in the Theory and Methodology Section, we carried out a full DFT stability analy-

sis at all LC-BLYP levels of theory for both PDA and PBT to allow (if possible) for a lower-

energy, broken-symmetry solution. As shown in Figure 6.2, only closed-shell solutions were

obtained for PDA (regardless of µ value), whereas a broken-symmetry configuration was

obtained for large values of µ in PBT for both LC-BLYPα=0.0,β=1.0 and LC-BLYPα=0.2,β=0.8.

These results can be rationalized from the chemical structures of these systems since PDA

is composed of successive double-single-triple-single CC bonds (cf. Figure 6.1) and is more

alternant than PBT, which exhibits a single-double-double-double bond CC bond pattern

(i.e., the π orbitals are much more strongly conjugated along the backbone of PBT compared

to PDA). From a more theoretical viewpoint, range-separated functionals with higher values
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of µ inherently contain larger contributions of HF exchange in the XC potential, and it is

well-known[94, 130, 184, 205, 231] that DFT methods containing a large percentage of HF

exchange will favor a lower-energy, broken-symmetry configuration.[94, 130, 184, 205, 231]

It is interesting to note that for sufficiently large values of µ, all PBT oligomers (even the

smallest PBT[2] structure) will exhibit a broken-symmetry solution where the alpha and

beta spin densities alternate through the whole backbone of the molecule, and a long-range

ordering of the spin density persists as the length of the oligomer increases. This phe-

nomenon corresponds to electrons localizing in the p orbitals of the carbon atoms in an

antiferromagnetic pattern, which can be visualized as the spin density differences in Figure

6.3. Note that we do not obtain an antiferromagnetic pattern for PDA since the ground

states for all of the PDA structures (regardless of µ) are closed-shell singlets, and the alpha

and beta spatial distributions are the same. The optimally-tuned µ values for PDA and

PBT as obtained by both the LC-BLYPα=0.0,β=1.0 and LC-BLYPα=0.2,β=0.8 functionals are

summarized in Table 1. It is interesting to note that the optimal µ values for both PDA and

PBT are not affected by the broken-symmetry solutions since the shaded regions (where a

broken-symmetry solution is obtained) in Figure 6.2 lie to the right of the minima of all the

J2 curves. In other words, the ground-state wavefunction at the optimal µ values for PBT

are closed-shell singlets and are not within the shaded regions in Figure 6.2. From these

tabulated data entries, we observe an inverse correlation between the optimal µ values and

the length of the oligomers, where µ decreases as the number of monomers increases. This

general size-dependence in other chemical systems has been previously reported by several

groups[169, 223, 222, 168, 196] and also in the previous study on PDA and PBT in Ref.
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Figure 6.2: Plots of J2 as a function of µ for (a) PDA without short-range exchange (LC-
BLYPα=0.0,β=1.0), (b) PDA including short-range exchange (LC-BLYPα=0.2,β=0.8), (c) PBT
without short-range exchange (LC-BLYPα=0.0,β=1.0), and (d) PBT including short-range
exchange (LC-BLYPα=0.2,β=0.8). The shaded regions in (c) and (d) denote the values of µ
where a symmetry-broken solution is obtained.
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Figure 6.3: Spin density difference (blue = positive spin density and red = negative spin
density) obtained with LC-BLYP (µ = 0.47) for the various PBT oligomers.

90



Table 6.1: Non-empirically-tuned µ values for all oligomers of PDA and PBT at the LC-
BLYP/6-31+G(d) level of theorya.

PDA PBT

N
LC-BLYP LC-BYLP LC-BYLP LC-BYLP

(α = 0.0, β = 1.0) (α = 0.2, β = 0.8) (α = 0.0, β = 1.0) (α = 0.2, β = 0.8)

1 0.289 (0.294) 0.240 - -

2 0.241 (0.246) 0.196 0.254 (0.260) 0.205

3 0.212 (0.216) 0.170 0.213 (0.214) 0.168

4 0.194 (0.194) 0.153 0.185 (0.183) 0.142

5 0.181 (0.178) 0.142 0.166 (0.160) 0.125

6 0.172 (0.166) 0.134 0.151 (0.145) 0.111

aNumbers in parentheses are µ values obtained by Champagne et al.[143]

16. Our optimally-tuned µ values are in excellent agreement with the LC-BLYPα=0.0,β=1.0

calculations given in the previous study by Champagne et al., shown in parentheses in Table

1. Specifically, we observe a negligible difference of ∼0.005 Bohr−1, and this deviation can

be attributed to the difference between both tuning schemes: Ref. [143] directly employs

the DFT-Koopmans theorem, where µ is tuned such that the energy of the HOMO is equal

to the IP, whereas we obtain µ by adjusting both the energy of the HOMO to the IP and,

in an indirect manner, the LUMO energy via the N + 1 electron system. All subsequent

linear polarizability and second hyperpolarizability calculations were carried out using all

of the optimal µ values listed in Table 1.
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6.4 Calculating the Longitudinal Linear Polarizability and

Second Hyperpolarizability

Tables 2 and 3 summarize the static longitudinal linear polarizability and se-

cond hyperpolarizability for the PDA and PBT oligomers, respectively, computed by the

CAM-B3LYP, LC-BLYPα=0.0,β=1.0, LC-BLYPα=0.2,β=0.8, LC-BLYP(µ=0.47), CCSD(T),

and CCSD(T)-F12 methods. The broken-symmetry (BS) results for CAM-B3LYP and

LC-BLYP(µ=0.47) are also given in the tables for direct comparison to their closed-shell

counterparts recall that the optimally-tuned LC-BLYP methods for both PDA and PBT

were not affected by the broken-symmetry solutions. In addition, we also tabulated the 〈S2〉

values for both CAM-B3LYP (BS) and LC-BLYP (BS) (µ=0.47) and found that while 〈S2〉

increases with size for PBT[2] PBT[6], these systems are more accurately characterized as

diradicals, without higher-lying spin states contributing to the trends in polarizability. All

mean absolute errors (MAE) were computed with respect to the CCSD(T)/6-31+G(d) ben-

chmarks to allow for a consistent comparison with the DFT calculations that were computed

with the same 6-31+G(d) basis set. It is worth mentioning that the discrepancy between our

results and previous CCSD(T) calculations of the hyperpolarizability[143] arise from the dif-

ferent numerical methodology and computational hardware used in these previous studies.

Specifically, Champagne and co-workers utilized a Romberg differentiation procedure[131]

for their calculations, whereas we directly fitted the CCSD(T) energies (as a function of the

applied external field) to second- and fourth-order polynomials to obtain the linear polari-

zability and second hyperpolarizability, respectively. We found that the Romberg procedure

was extremely sensitive to very small energy differences (even as small as 10−8 Hartrees),
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which can easily arise from different versions of software and machine architectures used in

these previous studies. As such, all of the CCSD(T) results reported in this paper utilize the

polynomial fitting procedure, which we found to be more numerically stable, for obtaining

the linear polarizability and second hyperpolarizability. Furthermore, to check for possible

non-dynamical correlation effects in our CCSD(T) calculations, we also computed the T1

diagnostic for all of the oligomers and obtained T1 values ranging from 0.0125 0.0131 and

0.0156 0.0164 for PDA[1] PDA[6] and PBT[2] PBT[6], respectively (T1 values greater

than 0.02 indicate that a multireference electron correlation method is necessary[107]). In

addition, we also carried out broken-symmetry unrestricted CCSD(T) (UCCSD(T)) calcu-

lations for all of the PBT oligomers and found that all of the UCCSD(T) energies using

the broken-symmetry HF reference determinant were larger than their restricted CCSD(T)

counterparts, further verifying (in conjunction with the T1 diagnostic discussed previously)

that correlation effects are properly handled at the single-reference restricted CCSD(T) le-

vel of theory. Finally, we also did additional CCSD(T) calculations using the non-diffuse

triple-zeta 6-311G(d,p) basis to assess the convergence of the 6-31+G(d,p) results used as

benchmarks in both our study and the previous study by Champagne. We find that the

presence of diffuse functions in the 6-31+G(d,p) basis plays a larger role than the additional

valence basis functions in the 6-311G(d,p) basis, which is consistent with previous studies

by Champagne and co-workers.[36, 39] Furthermore, the explicitly-correlated CCSD(T)-F12

calculations closely mirror the overall trends in the CCSD(T)/6-31+G(d) methods, giving

additional indication of the basis-set convergence of our calculations. Figure 6.4 presents

a graphical summary of Tables 2 and 3 by plotting the percent relative error for each of
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Table 6.2: Longitudinal linear polarizability and second hyperpolarizability for increasingly
large PDA oligomers at various levels of theory.a

N

{CAM-B3LYP} {CAM-B3LYP(BS)} {LC-BLYP} {LC-BLYP} {LC-BLYP} {LC-BLYP(BS)} {CCSD(T)} { CCSD(T)-F12}

(α = 0.0, β = 1.0) (α = 0.2, β = 0.8) µ=0.47 µ=0.47

µ=adj. µ=adj.

α (a.u.)

1 140.14 140.14 139.14 139.50 131.73 131.73 123.33 (123.33) 123.92

2 323.26 323.26 327.87 327.03 290.62 290.62 267.20 (267.03) 272.71

3 558.04 558.04 584.22 577.84 483.61 483.61 439.70 (439.50) 454.19

4 825.12 825.12 893.36 875.60 695.05 695.05 627.67 (627.39) 654.38

5 1111.36 1111.36 1241.75 1206.20 916.30 916.30 824.27 865.75

6 1408.90 1408.90 1618.19 1558.40 1142.92 1142.92 1024.23 1081.85

{MAE} 176.64 176.64 249.69 229.70 58.97 58.97

γ ( ×103 a.u.)

1 116 116 115 112 93 93 110 (105) 104

2 964 964 982 951 666 666 522 (693) 624

3 3,785 3785 4131 3952 2228 2228 2657 (2344) 2302

4 9,670 9670 11592 10894 4949 4949 5366 (5146) 5231

5 18,913 18913 25091 23088 8658 8658 8468 7909

6 31,133 31133 45508 40903 13086 13086 13866 11220

{MAE} 5599 5599 9405 8152 330 330

aAll DFT and CCSD(T) calculations utilized the 6-31+G(d) basis with the CCSD(T)-F12 calculations using the cc-pVDZ basis and

density-fitting approach described in the main text. The abbreviations BS and µ = adj. indicate a broken-symmetry calculation and a

non-empirically tuned value of µ, respectively. Values in parentheses denote the CCSD(T) values obtained by Champagne et al.[143]
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Table 6.3: Longitudinal linear polarizability and second hyperpolarizability for increasingly
large PBT oligomers at various levels of theory.a

N

CAM-B3LYP CAM-B3LYP(BS) LC-BLYP LC-BLYP LC-BLYP LC-BLYP(BS) CCSD(T) CCSD(T)-F12

(α = 0.0, β = 1.0) (α = 0.2, β = 0.8) µ=0.47 µ=0.47

µ=adj. µ=adj.

α (a.u.)

2 322.62 322.62 320.13 323.19 309.09 306.00 271.53 (271.51) 271.39

3 688.28 684.84 693.53 698.06 636.98 596.55 542.98 (542.83) 550.57

4 1196.72 1143.86 1235.13 1236.96 1069.64 955.85 894.94 (894.28) 918.93

5 1836.27 1693.92 1951.31 1942.37 1587.36 1363.60 1311.41 1364.21

6 2589.62 2315.23 2842.01 2811.11 2170.35 1804.02 1777.08 1870.96

MAE 367.11 272.51 448.83 442.75 195.10 45.62

γ ( ×103 a.u.)

2 363 363 403 374 341 552 543 (542) 303

3 2652 4387 2902 2698 2385 3469 3272 (3181) 1909

4 11535 17960 12623 11793 9361 11804 10874 (11042) 9608

5 35815 50818 40298 37788 25697 28113 30172 25531

6 87968 112605 104413 98032 55568 53443 68510 59783

MAE 5312 14624 9658 7760 4004 3652

aAll DFT and CCSD(T) calculations utilized the 6-31+G(d) basis with the CCSD(T)-F12 calculations using the cc-pVDZ basis and

density-fitting approach described in the main text. The abbreviations BS and µ = adj. indicate a broken-symmetry calculation and a

non-empirically tuned value of µ, respectively. Values in parentheses denote the CCSD(T) values obtained by Champagne et al.[143]
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the various DFT methods using the CCSD(T)/6-31+G(d) calculations as benchmarks. Our

calculations of the PDA linear polarizabilities (α) in Figure 6.4(a) using CAM-B3LYP, LC-

BLYP(µ=0.47), and CCSD(T) are in accordance with the values computed in Ref. [143].

As mentioned in the Introduction, the previous work by Champagne and co-workers did

not compute the CCSD(T) polarizabilities for the largest PDA and PBT chains with 5 and

6 oligomers and, therefore, the overall trends in their range-separated calculations could

not be checked to see if the extrapolated DFT trends would either degrade or improve as

a function of oligomer size. By completing these computationally expensive benchmarks,

we can now state that the same dramatic overestimation of the longitudinal linear pola-

rizability with the non-empirically tuned LC-BLYPα=0.0,β=1.0 functional persists for large

oligomers. However, in contrast to previous findings,[143] we find that the accuracy of

the linear polarizability does improve when a small amount of HF exchange is included at

short-range (LC-BLYPα=0.2,β=0.8) compared to the base LC-BLYPα=0.0,β=1.0 approach (a

reduction in the MAE from 249.69 to 229.70 a.u. is observed). Moreover, the accuracy of

LC-BLYPα=0.2,β=0.8 appears to further improve as a function of the number monomer units,

N, particularly for N ≥ 3. The CAM-B3LYP functional gives more accurate predictions of

the linear polarizability than either of the non-empirically tuned LC-BLYP methods, but

the LC-BLYP(µ=0.47) functional gives the best agreement (with the lowest MAE values

of 58.97 a.u.) compared to CCSD(T) benchmarks, which is consistent with Ref. [143] and

previous work on polarizabilities by other groups.[71] Turning to the second hyperpolari-

zabilities (γ) of PDA, Figure 6.4(b) shows a similar trend in accuracy compared to Figure

6.4(a) for the linear polarizabilities. As before, incorporating some portion of short-range
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Figure 6.4: Percent relative error (compared to CCSD(T)) in and as a function of number
of monomer units in PDA (upper panel) and PBT (lower panel) for different levels of theory.

HF exchange does improve the overall accuracy as a function of oligomer size; however, the

most accurate second hyperpolarizabilities are still obtained with the LC-BLYP(µ=0.47)

functional (MAE = 330 a.u.). Moreover, as shown in Figures 6.4(a) and 6.4(b), there is no

change in either α or γ when the stability of the wavefunction is taken into consideration

since the ground states of all the PDA oligomers have a closed-shell solution regardless

of µ value. Turning to the PBT oligomers, we find that the overestimation of the static

linear polarizability (α) is more severe than for PDA. Similar to Figure 6.4(a), we also

find that the polarizabilities are improved by including some short-range HF exchange,
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although the difference between these methods is smaller in the PBT system (MAEs for

LC-BLYPα=0.0,β=1.0 vs. LC-BLYPα=0.0,β=1.0 in PBT are 448.83 and 442.75 a.u., respecti-

vely). However, in contrast to the PDA chains, the PBT oligomers are much more strongly

conjugated along their backbone and can converge towards a lower-energy broken-symmetry

solution. As mentioned previously, DFT methods that contain a large percentage of HF

exchange will favor an unrestricted open-shell configuration, and we find that a lower-energy

broken-symmetry solution is actually preferred in CAM-B3LYP and LC-BLYP(µ=0.47) for

PBT. Interestingly, as the amount of HF exchange is increased in the XC-functional, the

slope in the error of the static linear polarizability (as a function of oligomer size) decre-

ases, as shown in Figure 6.4(c). However, it is worth noting that increasing the amount

of HF exchange to 100% (i.e., pure Hartree-Fock) will lead to severe overestimations for

both α and γ as a function of size. In the case of PBT, the characteristic plateau in the

asymptotic limit, which still corresponds to a fairly large ∼ 20% percent error, is reached for

LC-BLYP(µ=0.47). However, for the PBT linear polarizabilities, the broken-symmetry so-

lutions give a more accurate result compared to their restricted, closed-shell counterparts in

all cases. Specifically, allowing the system to relax to a lower-energy broken-symmetry solu-

tion with CAM-B3LYP leads to a constant value for the linear polarizability as N increases,

where the associated error is less than 30%. This is in stark contrast to the growing error of

∼45% in the restricted, closed-shell CAM-B3LYP method. A remarkably different behavior

is obtained with the broken-symmetry LC-BLYP(µ=0.47) method where a negative slope

as a function of oligomer size is obtained, resulting in a relative error of less than 5% when

N > 4. As mentioned previously, we also carried out LC- BLYP (BS) (µ=0.47) calculations
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of the triplet state and found that the errors in the linear polarizability were larger than

their LC-BLYP (BS) singlet state counterparts, further confirming that these systems are

more accurately characterized as diradicals, without higher-lying spin states contributing

to the trends in polarizability. In summary, the MAEs for the linear polarizabilities in

PBT can be summarized as follows: α[LC-BLYP(µ=0.47) (BS)] << α[LC-BLYP(µ=0.47)]

< α[CAM-B3LYP (BS)] < α[CAM-B3LYP] < α[LC-BLYPα=0.2,β=0.8 (µ adj.)] < α[LC-

BLYPα=0.0,β=1.0 (µ adj.)]. Finally, we now turn to the second hyperpolarizabilities of PBT,

whose relative errors are smaller in comparison to the values obtained for PDA. From Figure

6.4(d), we observe that a poor accuracy is obtained in the hyperpolarizability values when

a broken-symmetry CAM-B3LYP approach is applied. However, similar to our findings

with the linear polarizabilities in PDA, the use of LC-BLYP(µ=0.47) with the lower-energy

broken-symmetry solution improves the accuracy of the second hyperpolarizability. As such,

the MAEs for the second hyperpolarizabilites in PBT can be summarized as follows: γ[LC-

BLYP(µ=0.47) (BS)] < γ[LC-BLYP(µ=0.47)] < γ[CAM-B3LYP] < γ[LC-BLYPα=0.2,β=0.8

(µ adj.)] < γ[LC-BLYPα=0.0,β=1.0 (µ adj.)] < γ[CAM-B3LYP (BS)]. Among all the DFT

methods examined here, the broken-symmetry LC-BLYP(µ=0.47) functional is the most

accurate for both α and γ in PBT, highlighting the importance of broken-symmetry effects

when calculating polarizabilities and hyperpolarizabilties of these π-conjugated oligomers.

6.5 Conclusions

In this chapter, we have calculated and analyzed the static linear polarizability

and second-order hyperpolarizabilities for several PDA and PBT oligomers using a variety
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of range-separated DFT methods. Specifically, we have examined a diverse set of non-

empirically tuned range-separated functionals with both short- and long-range exchange as

well as conventional CAM-B3LYP and LC-BLYP range-separated hybrids with fixed values

of µ (namely LC-BLYP(µ=0.47)). To test the accuracy of these various range-separated

methods, we calculated new large-scale CCSD(T) and explicitly-correlated CCSD(T)-F12

benchmarks for the PDA and PBT systems, which extends previous benchmarks on these

systems that were limited to smaller oligomers. Most importantly, these new CCSD(T) and

CCSD(T)-F12 calculations comprise the most complete and accurate calculations of linear

polarizabilities and second hyperpolarizabilites on these systems to date.

Contrary to previous studies on these systems, we find that the inclusion of some

amount of short-range exchange does improve the accuracy of the computed polarizabilities

for both PDA and PBT, although the degree of improvement is more modest for the linear

polarizability compared to the second hyperpolarizability. More importantly, in contrast to

prior studies on these same systems, we find that the lowest-energy electronic states for PBT

are not closed-shell singlets, and improved accuracy with range-separated functionals can be

obtained by allowing the system to relax to a lower-energy broken-symmetry solution. This

enhanced accuracy is most pronounced in the broken-symmetry LC-BLYP(µ=0.47) functi-

onal, which attains a relative error of less than 10% for the linear polarizability. Similarly,

the computed second hyperpolarizabilities are also significantly improved by allowing for

a lower-energy broken-symmetry solution in the LC-BLYP(µ=0.47) calculations. Recent

studies on molecular polarizabilities have advocated for the use of range-separated methods

with large µ values (which correspond to larger amounts of HF exchange), and it is well-
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known that DFT methods containing a large contribution of HF exchange will naturally

favor an unrestricted open-shell configuration. We now expand these statements to add that

one should carefully check for a broken-symmetry solution when computing linear polariza-

bilities and second hyperpolarizabilites with range-separated functionals, particularly for π-

conjugated systems. To the best of our knowledge, this present study is the first to highlight

the improved accuracy of range-separated methods for polarizabilities and second hyperpo-

larizabilites when a lower-energy broken-symmetry solution is obtained. On a practical note,

since many novel NLO polymer materials are strongly conjugated, it is crucial to test for a

lower-energy open-shell configuration in their ground state when calculating NLO proper-

ties with range-separated functionals. Taken together, these new broken-symmetry range-

separated DFT calculations in conjunction with our high-level CCSD(T) and CCSD(T)-F12

benchmarks emphasize and highlight the importance of broken-symmetry effects when cal-

culating linear polarizabilities and second hyperpolarizabilties of π-conjugated chains.
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Chapter 7

Chemical and Radiation Stability

of Ionic Liquids

This chapter describes a computational screening approach to compute the che-

mical and radiation stability of a large number of ionic liquids using various HF/DFT

calculation methods. The majority of the work in this chapter resulted from a collabora-

tion with the computational group of Dr. Jianzhong Wu in the Department of Chemical &

Environmental Engineering at University of California-Riverside and was published as an

article in the Journal of Physical Chemistry C.[85]

7.1 Introduction

Room temperature ionic liquids (RTILs) are low-melting salts composed entirely

of cations and anions that are liquids at room temperature. They continue to garner

immense interest due to their unique properties such as good conductivity, high thermal
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stability, negligible volatility, and low flammability. Most notably, RTILs are often descri-

bed as designer solvents since their properties can be tailored to fit specific applications

by altering the chemical structure and composition in their ionic components.[241, 77, 181]

Therefore, while being key candidates for further development of traditional technologies

like extraction,[82, 155, 219] catalysis,[146, 239] and electrodeposition,[58, 40, 199] RTILs

are also being exploited for other nonconventional and emerging technologies such as stable

electrolytes in supercapacitors, batteries and fuel cells.[166, 10, 190] The current generation

of electrolytes are plagued by various safety concerns (for example short-circuiting[11, 13]

and local heating[2, 44]) that are caused by undesired reactions between device components

and electrolytes. Since RTILs are practically inflammable, they offer a significant advan-

tage to circumvent these safety issues.[32, 33, 96, 108, 210] Other technologies that can

benefit from the use of RTILs in lieu of traditional electrolytes are electrochemical storage

systems such as supercapacitors, which can store electrical energy in the interface between

an electrolyte and porous electrodes. RTILs have in principle a wide chemical potential

window (i.e. the voltage range in which the substance is neither oxidized nor reduced), and

can greatly enhance the overall performance of supercapacitors.[15, 69, 116] Finally, owing

to their low volatility, high electrical conductivity, and fire retardant properties, RTILs are

also appealing as diluents in nuclear separations.[201, 170, 76]

Although the use of RTILs would clearly improve the efficiency and safety of all the

aforementioned technologies, one important aspect that needs further attention for large-

scale applications is a detailed investigation of their stability. In particular, for battery

and supercapacitor applications, an electrolyte must be stable in the presence of both the

103



reducing conditions imposed by the negative electrode and the oxidizing conditions imposed

by the positive electrode. Furthermore, such electrolytes must also be stable with respect

to reactions with other species in their environments and, hence, a thorough study of the

chemical and thermochemical stability of RTILs in these extreme conditions is essential.[10,

32, 27, 92] Similarly, examining the long term stability of RTILs in the presence of ionizing

radiation (radiation with sufficient energy to cause ionization in the medium through which

is passes) is a pressing concern for nuclear applications.[92, 186] While previous studies

have addressed some of these stability concerns for a few RTILs,[237, 233, 189, 159, 136] a

majority of them remain uninvestigated. Carrying out these stability studies also presents a

formidable challenge due to the enormous number of RTILs currently being investigated for

various applications.[181] As RTILs are a mixture of cations and anions, designing an ionic

liquid with specific properties is also possible by combining/mixing different permutations

of ionic species. Furthermore, optimization of these properties is possible by fine-tuning

the variation of the alkyl groups attached to the ions.[129] Because of the sheer number of

such ions and their alkyl derivatives,[240] at least a million combinations of RTILs[181] are

possible which is an impractical scenario for brute force experimental analysis.

Computational calculations provide a manageable solution to this colossal task.

Electronic properties such as the ionization potential (IP), electron affinity (EA), and energy

gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied

molecular orbital (LUMO), which is directly correlated to chemical and radiation stability,

can be reliably computed using first-principles-based calculations.[238] Specifically, a large

HOMO-LUMO gap implies low chemical reactivity because it hinders adding electrons to a
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high-lying LUMO or extracting electrons from a low-lying HOMO and prevents the forma-

tion of the activated complex of any further reaction.[5] Thus, the HOMO-LUMO gap can

be used as a simple indicator for RTIL stability in reactive environments found in batteries

and supercapacitors. Similarly, the ionization potential (IP) and electron affinity (EA),

which measure the proclivity of compounds to lose or gain an electron, are good indica-

tors of RTIL stability in extreme redox environments found near the charged electrodes of

electrochemical devices.[238, 93] Finally, in the presence of radiation, RTILs can undergo

ionization or form radicals and excited species, which lead to further degradation, and the

IP can be used as metrics of stability in these environments.

A primary step in analyzing the stabilities of RTILs is the prediction of how the

constituent ions respond to extreme environments. Specifically, previous studies[187, 188,

185] have demonstrated various reaction and fragmentation pathways that the individual

ions undergo in the presence of radiation or redox environments. Such pathways behave

in a complimentary manner depending on the ions and the environment involved, which

dictate the overall stability of RTILs. Rather than provide an exhaustive catalog of all such

reactions, our study aims to survey a wide variety of individual ions and identify general

trends that can be further probed by detailed computational or experimental analysis.

Hence, to shed some mechanistic insight into the stability of RTILs, we compute various

metrics of stability (ionization energy, electron affinity, and orbital energy gaps) for anions

and cations that constitute various RTILs. Furthermore, since electronic properties are

sensitive to the quantum-mechanical method used, we also analyze metrics of stability

using various calculation methods. We perform all the calculations using a variety of density
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functional theory (DFT) methods and the Hartree-Fock (HF) method (the latter is used

as a basis of comparison for the higher-level DFT methods). Based on the calculated

trends, we show that the dispersion-correction range-separated ωB97XD functional performs

substantially better and is more internally consistent compared to the other DFT methods

examined in this study. Although there have been previous computational studies on a few

pairs of cations and anions,[237, 233, 189, 159, 136] to the best of our knowledge, this is the

first computational screening effort that has been applied to assess the stabilities of such an

extensive list of ions (a combination of 42 anions and 42 cations). These calculations allow

us to present simple correlations between ion stability as a function of size, electronegativity,

and branching to guide future experimental and theoretical efforts.

7.2 Computational Methods

All of the electronic and stability properties were computed using a variety of DF-

T/HF methods as implemented in the Gaussian 09 package.[68] Among the various methods,

we examine the performance of HF, B3LYP,[198, 215, 107, 17] B3LYP-D3,[73] M062XD,[244]

and ωB97XD.[34] B3LYP is one of the most popular functionals which uses a three parame-

ter mixing scheme and includes 20% HF exact exchange. The B3LYP-D3 scheme represents

a significant improvement over the B3LYP method, which accounts for long-range disper-

sion interactions and shows improvement for noncovalent interactions.[157, 183] Within the

same family of global hybrid functionals, the dispersion-corrected M062XD functional in-

cludes 54% HF exchange and has been utilized to study a broad spectrum of elements,

compounds and reactions.[243, 80, 242] Finally, beyond the hybrid functional approaches,
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we also assess the accuracy of a range-separated, dispersion-corrected ωB97XD functional,

which has been parameterized for a variety of applications.[101, 132] Finally, in addition

to benchmarking the various DFT functionals, we investigated the HF method[191] as a

baseline comparison to understand the importance of exchange-correlation effects beyond

the approximation of a single Slater determinant approach. All of the DFT geometries were

optimized for each of the functionals with the 6-311++G** basis set (harmonic vibrational

frequencies were also calculated to verify that these geometries were local minima) whereas

the HF method utilized the 3-21G basis set.

We calculate the energy gap from the difference between the HOMO and LUMO

energies obtained from self-consistent quantum chemical calculations:

Eg = HHOMO − ELUMO (7.1)

The IP and EA for both cations and anions are calculated from,

IP = EN−1 − EN (7.2)

EA = EN − EN+1 (7.3)

respectively, where EN , EN−1, and EN+1 are the ground-state energies (all of which include

the vibrational zero-point energy) of the N, N-1, and N+1 electron-containing systems.

7.3 Chemical Structures of Ions

In this investigation we examine a total of 84 cations and anions that constitute

most of the commercially and scientifically significant RTILs. This extensive selection of
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ions includes anion families such as bistrifluoromethanesulfonylimide, tetrafluoroborate, trif-

luoromethanesulfonate, and cation families such as pyridinium, imidazolium, ammonium,

phosphonium along with their alkyl derivatives. Figure 7.1 shows the entire list of the

chemical structures studied in this investigation.

7.4 HOMO-LUMO Gap

The HOMO-LUMO gap for the 42 anions and 42 cations, computed by the previ-

ously mentioned methods are summarized in Fig 7.2(a) and (b). Although the individual

methods demonstrate a quantitative difference in the calculated energy gap values, they all

follow the same qualitative trend in both the cations as well as anions. As expected, the

dispersion-corrected B3LYP does not show much improvement when compared to the nor-

mal B3LYP since B3LYP-D3 method augments the conventional B3LYP functional with

a subsequent (post-SCF) dispersion correction energy term, which is a relatively simple

function of interatomic distances[73]. Since the dispersion correction is an add-on term, it

does not directly alter any electronic property such as the HOMO-LUMO gap. We note

that some smaller anions like BF−4 , PF−6 , and BCN−4 exhibit a large HOMO-LUMO gap,

implying a higher chemical stability, whereas larger anions like C8F17SO−3 and HCAP−

show a lower energy gap, suggesting a relatively low chemical stability. Likewise, smaller

cations such as MeNH+
3 and P1333+, display a higher chemical stability, whereas larger

cations like H-Py-Ph2+ and tBu2-OH-Bz-Py+ show an opposite trend. Further analyses

reveal that some of the ion families display a reduction in the energy gap with an increase
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Figure 7.1: Chemical structures of 84 anions and cations examined in this chapter.
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in the substituent alkyl chain length and branching. For example, as the constituent alkyl

chain length in the phosphate anion family increases from methyl to butyl, the chemical

stability decreases. Similarly, in the ammonium cation family, a decrease in chemical sta-

bility is observed as a result of the increase in branching of the constituent alkyl groups.

This trend is also seen in conjugated oligomers[236] and conducting polymers[64, 173] and

can be attributed to energy gaps that decrease with increase in molecule size (quantum-

confinement effects). Hence, the HOMO-LUMO gap analyses imply that smaller anions are

highly stable with respect to reactions, while the cation chemical stability decreases with

increasing ion size as well as with increasing alkyl chain length and branching.

7.5 Ionization Potential

Figure 7.3 presents the predicted IP values for (a) 42 anions and (b) 42 cations.

All of the calculation methods, except for the HF method, show a reasonable quantitative

agreement, not just for the anion but also the cation results. The HF method does not

account for dynamic electron correlation beyond the single Slater approximation, which

is a source of discrepancy in the results[191]. The anion IP trend (Fig. 7.3(a)) is mostly

monotonic, but some of the anions, such as BF−4 , PF−6 , BCN−4 , and BOB−, exhibit unusually

high IP values. In addition, some entire anion families such as the sulfate family display

higher IP values. Careful consideration of such families and aforementioned anions reveals

that each of these ions are comprised of either fluorine, oxygen and nitrogen three of the

most electronegative elements in the periodic table.[83] Conceptually, high electronegativity

values imply that it is energetically unfavorable to extract electrons from such elements,
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Figure 7.2: HOMO-LUMO gap in eV for (a) 42 anions and (b) 42 cations.
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making them difficult to ionize, which explains the unusually high values of IP observed

in these ions. Thus, anions with high electronegativity are relatively more stable in the

presence of oxidizing conditions and also ionizing radiation. The IP results for the cations

(Fig. 7.3(b)) display a similar alkyl chain length dependence as previously seen in the

HOMO-LUMO gap results. Here too, the IP decreases, implying lower radiation stability,

with an increase in the substituent alkyl chain length and branching, particularly for the

pyridinium and ammonium families. This correlation between compound length/size and

IP has been previously reported in the literature for various compounds such as alkanes,

cyclic ethers, and polycyclic hydrocarbons[238, 81, 127] and is attributed to the increasing

energy gap between the HOMO and vacuum energy levels. A previous experimental study

on a limited number of ionic liquids has shown that ions with aliphatic chains and aromatic

groups are subject to radiation damage.[187] While a quantitative comparison is difficult,

this prior experimental study correlates well with the general trends highlighted by our

calculations.

7.6 Electron Affinity

Finally, Figure 7.4 presents the electron affinity (EA) for anions and cations.

Similar to the IP results, different theoretical methods display a reasonable quantitative

agreement, the only exception is that, as discussed above, the HF method overestimates

the EA values for both cations and anions. Some cations, particularly, NO−3 and CH3SO3-

anions exhibit very large EA values (high stability in reduction conditions), whereas the

HCAP− anion displays a very low EA value (low stability in reduction conditions). The

114



Figure 7.3: Ionization potential (IP) in eV for (a) 42 anions and (b) 42 cations.
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Table 7.1: Comparison of the root mean squared (RMS) error for cations and anions com-
puted using various HF/DFT methods

Ions HF/3-21G B3LYP/6-311++G** B3LYP/6-311++G**/D3 M062X/6-311++G**/D3 ωB97XD/6-311++G**/D3

Anions 2.75 2.01 2.00 0.73 0.42

Cations 2.11 1.43 1.38 0.42 0.48

electronic property dependence on compound size/length, as previously seen in the IP and

HOMO-LUMO gap results, is yet again observed in the EA results but this time only in

some ion families. Notably, while the imidazolium family shows a direct correlation between

compound size/length and EA values, this relationship is completely unnoticeable in other

families such as pyridinium and ammonium. As with anions, some cations such as N4444+

show extraordinarily high EA values, whereas others like (MeO)2Im+ and 1-Bz-4-CN-Py+

display very low EA values.

7.7 Accuracy of HF/DFT Methods

To quantify the accuracy of the HF/DFT methods used in this study, we examine

Koopmans theorem.[100, 196] In essence, this theorem states that negative of the HOMO

energy (-EHOMO) equals the ionization energy (IE). Hence, an exact functional (if one

had access to such a functional), would yield an IE exactly equal to EHOMO. Therefore,

the root mean squared (RMS) error between the IP and EHOMO for all the ions, can be

used as a metric to quantify the internal consistency of all the methods used in this study.

The RMS results obtained for the anions and cations using all the calculation methods are

tabulated in Table 7.1. We find that the HF and both of the B3LYP methods perform
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Figure 7.4: Electron affinities (EA) in eV for (a) 42 anions and (b) 42 cations.
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poorly for the anions as well as cations. The M06XD functional has the lowest error for the

cation calculations (0.42) but has a comparatively higher error for the anion calculations

(0.73). The best overall performance is observed for the ωB97XD functional, which displays

very low RMS values for both cation and anion calculations (0.42 and 0.48 for anions and

cations, respectively). We are aware that the amount of short- and long-range exchange

can be tuned non-empirically to satisfy Koopmans theorem as close as possible;[162, 14]

however, due to the immense number of anions and cations investigated here, we chose

the default parameters that are pre-parameterized in the ωB97XD functional. To further

validate the accuracy of our ωB97XD results, we also carried out benchmark calculations

at the MP2 and CCSD(T) levels of theory on a number of smaller ions. We find that the

ωB97XD functional can predict both the ionization potential and electron affinity on par

with the higher-level CCSD(T) calculations but at a much lower computational cost. The

RMS for all ions can be summarized as follows: ωB97XD < M062XD < B3LYP-D3 ∼

B3LYP < HF. We find that the ωB97XD functional is the most internally consistent with

Koopmans theorem and exhibits the best performance among all the functionals considered

in this study.

7.8 Conclusions

We presented a systematic computational screening effort to analyze the chemical

and radiation stability of a large number of anions and cations using various quantum

calculation methods. Several electronic properties such as the HOMO-LUMO gap, the

ionization potential, and the electron affinities were computed which give electronic metrics
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for chemical and radiation stability. We found that, within individual cation families, the

stability is closely related to the constituent alkyl chain length and branching, whereas the

anion stability is mostly dictated by ion size and ion electronegativity. We also demonstrated

that, among the methods considered here, the ωB97XD functional is the most internally

consistent for predicting the electronic properties of the various ions. To the best of our

knowledge, this present study is the largest effort (42 different anions and cations each) for

a characterization of the chemical and radiation stability of individual ions.

Our study has two important ramifications for a guided chemical design of RTILs:

(1) The tabulated data and recommended theoretical procedures provide a database of

chemical stabilities that can be further utilized for future experimental and computational

studies of RTILs. (2) The stability correlations identified in this study highlight the che-

mical versatility of RTILs. In particular, we advocate the possibility of designing RTILs

with specific stabilities by adjusting the chain length and branching of the alkyl constitu-

ent attached to the base cations or alternately by selecting anions with different sizes or

electronegativities.
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Chapter 8

Conclusions

The optical and electronic properties of various complex chemical and large ma-

terial systems have been analyzed in this thesis. Using these calculations we propose ways

to address two of the most important limitations currently facing DFT based methods: (1)

system size limitations due to computational cost, and (2) implications of DFT functionals

on prediction accuracy.

In particular, Chapters 3-5 illustrate the use of the density functional tight-binding

methodology applied to study the optical and excitation energy transfer properties of large

plasmonic material systems. These chapters establish that not only can DFTB handle

mesoscale processes with atomistic details, but also highlight the importance of considering

quantum effects in such calculations. In particular, we show that (1) local surface plasmon

resonances are highly sensitive to surface compositions, (2) electronic couplings in plasmonic

systems are extremely long-ranged in nature, and (3) quantum effects can dramatically alter

the nature of electronic couplings in plasmonic systems. We further reveal that as a direct
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consequence of these effects, the traditionally used classical methods and approximations

are inadequate to characterize even the simplest of plasmonic nanoantennas. Consequently,

our results provide a new viewpoint for characterizing and understanding these plasmonic

systems and also advise caution and a more careful consideration of strategies for harnessing

and controlling energy transfer in complex plasmonic devices.

Chapters 6-7 emphasize the importance of DFT functionals in the accurate pre-

diction of electronic and optical properties of complex chemical systems. In particular, we

find that inclusion of some amount of short-range exchange in range-separated DFT met-

hods improves the accuracy of computated polarizabilities and second-hyperpolarizabilities

of conjugated-chain molecules. We also present a computational screening effort to analyze

the chemical and radiation stability of a large number of ionic liquids ions using several DFT

functionals. We show that the ωB97XD functional is the most internally consistent among

all the considered functionals for predicting these electronic properties. Our calculations

also find that the cation stability is closely related to chain length and branching, whereas

the anion stability is dictated by ion size and electronegativity.

In conclusion, this thesis demonstrates the importance of quantum effects for accu-

rately characterizing large materials systems and also gives various examples showing the

increased accuracy of DFT calculations when using range-separated functionals.
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[49] Y. Cui, M. T. Björk, J. A. Liddle, C. Sönnichsen, B. Boussert, and A. P. Alivisatos.
Integration of colloidal nanocrystals into lithographically patterned devices. Nano
Lett., 4(6):1093–1098, 2004.

[50] V. Czikklely, H. D. Forsterling, and H. Kuhn. Extended dipole model for aggregates
of dye molecules. Chem. Phys. Lett., 6(3):207–210, 1970.

[51] S. D’Addato, D. Pinotti, M. C. Spadaro, G. Paolicelli, V. Grillo, S. Valeri, L. Pasquali,
L. Bergamini, and S. Corni. Influence of size, shape and core-shell interface on surface
plasmon resonance in Ag and Ag@MgO nanoparticle films deposited on Si/SiO x.
Beilstein J Nanotechnol, 6:404–413, 2015.

125



[52] L. Dalton. Nonlinear optical polymeric materials: from chromophore design to com-
mercial applications. In Polymers for Photonics Applications I, pages 1–86. Springer,
2002.

[53] M. C. Daniel and D. Astruc. Gold Nanoparticles: Assembly, Supramolecular Chemi-
stry, Quantum-Size-Related Properties, and Applications Toward Biology, Catalysis,
and Nanotechnology, 2004.

[54] W. Ding, L. Y. Hsu, and G. C. Schatz. Plasmon-coupled resonance energy transfer:
A real-time electrodynamics approach. J. Chem. Phys., 146(6), 2017.

[55] D. A. Egger, S. Weissman, S. Refaely-Abramson, S. Sharifzadeh, M. Dauth, R. Baer,
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Romberg differentiation procedure for calculation of hyperpolarizabilities. J. Mol.
Struct., 847(1):39–46, 2007.

131
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Appendix A

Computer Codes for Calculating

Absorption Spectra and Electric

Field Enhancement

This appendix contains the source codes for calculating the absorption spectrum

and electric field enhancement described in Chapter 2.

141



A.1 abs-spectra.m

The MATLAB m-file abs-spectra.m calculates and plots the absorption spectrum

of any general system given the diagonal elements of the polarizability tensor (files named

as muxx.dat, muyy.dat, and muzz.dat by the RT-DFTB code).

1 % THIS PROGRAM PLOTS THE ABSORPTION SPECTRUM OF ANY SYSTEM

2 % GIVEN THE TIME−DEPENDENT DIPOLE MOMENTS OBTAINED BY

3 % RUNNING THE REAL−TIME DFTB CALCULATIONS

4

5 % F i r s t open the f i l e s and e x t r a c t a l l the in fo rmat ion

6 % r e l a t e d to the d i p o l e moments .

7

8 f i l e I D x = fopen ( ’muxx . dat ’ , ’ r ’ ) ;

9 f i l e I D y = fopen ( ’muyy . dat ’ , ’ r ’ ) ;

10 f i l e I D z = fopen ( ’muzz . dat ’ , ’ r ’ ) ;

11

12 formatSpecx = ’%f %f ’ ;

13 formatSpecy = ’%f %f ’ ;

14 formatSpecz = ’%f %f ’ ;

15

16 s izeX = [ 2 I n f ] ;

17 s izeY = [ 2 I n f ] ;

18 s i z eZ = [ 2 I n f ] ;

19

20 X = f s c a n f ( f i l e IDx , formatSpecx , s izeX ) ;

21 Y = f s c a n f ( f i l e IDy , formatSpecy , s izeY ) ;
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22 Z = f s c a n f ( f i l e I D z , formatSpecz , s i z eZ ) ;

23

24 % Close the f i l e s

25

26 f c l o s e ( f i l e I D x ) ;

27 f c l o s e ( f i l e I D y ) ;

28 f c l o s e ( f i l e I D z ) ;

29

30 % Normalize the three d i p o l e moments around zero and then

31 % taking the average o f the three

32 x i n i = X(2 , 1 ) ;

33 y i n i = Y(2 , 1 ) ;

34 z i n i = Z(2 , 1 ) ;

35 x = X( 2 , : )−x i n i ;

36 y = Y( 2 , : )−y i n i ;

37 z = Z ( 2 , : )−z i n i ;

38 avg mu = ( x+y+z ) . / 3 ;

39

40 % Extract time s c a l e from any one o f the f i l e s

41 t=X( 1 , : ) ;

42

43 % Time step in a . u . ( This must match the value used whi le

44 % running the RT−DFTB c a l c u l a t i o n s

45 dt = 0 . 2 ;

46

47 % Since we need to take a Four ie r Transform o f the time−varying d i p o l e

48 % moments , we need to apply a damping func t i on to make the d i p o l e
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49 % moment go to zero a f t e r some time . pdamp v a r i a b l e i s that damping .

50 % I n c r e a s i n g the damping i n c r e a s e s the width o f the peak .

51 % Standard has been dec ided as 0 .008 f o r pdamp

52 pdamp = 0 . 0 0 8 ;

53

54 % Find the time per iod f o r which dynamics has been done

55 cnt = length ( t ) ;

56 damp = ze ro s (1 , cnt ) ;

57

58 % Applying damping func t i on

59 f o r i =1: cnt

60 damp( i )=exp(− i ∗dt∗pdamp) ;

61 end

62 avg mu = avg mu .∗damp ;

63

64 % I n c r e a s e time s c a l e to 400 f s and add z e r o e s to the expanded array

65 expanded = ze ro s (1 ,62016) ;

66 avg mu = cat (2 , avg mu , expanded ) ;

67

68 N=82688;

69

70 % Compute the Four i e r trans form o f the average d i p o l e moment

71 MU = f f t ( avg mu ,N) ;

72

73 % Extract the imaginary part o f the d i p o l e moment

74 mu mag = imag (MU) ;

75
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76 % Absolute va lue o f the imaginary part o f the d i p o l e moment

77 mu mag = −(mu mag) ;

78

79 % Calcu la t e energy s c a l e

80 E = ( 0 :N−1)/(N∗0 . 2 ) ∗2∗ pi ∗27.211396641344194;

81

82 % Absorbance i s energy ∗ imag part o f ( f f t o f d i p o l e )

83 mu mag=E.∗mu mag ;

84

85 % Plot absorbance Vs energy but only f i r s t 5000 po in t s

86 np = 5000 ;

87 Ep = E( 1 : np) ;

88 mu mag = mu mag ( 1 : np ) ;

89

90 % Plo t t i ng the absorpt ion spectrum

91 f i g u r e ;

92 hold on ;

93 box on ;

94 p lo t (Ep , mu mag , ’ r ’ , ’ Linewidth ’ , 1 . 5 ) ;

95 % Set energy a x i s

96 xlim ( [ 0 1 0 ] ) ;

97 x l a b e l ( ’ Energy (eV) ’ , ’ Fonts i z e ’ ,18 , ’ Fontweight ’ , ’ normal ’ , ’ Fonts i z e ’ ,24) ;

98 y l a b e l ( ’ Absorbance ( arb . un i t s ) ’ , ’ Font s i z e ’ ,18 , ’ Fontweight ’ , ’ normal ’ , ’ Font s i z e

’ ,24) ;

99 t i t l e ( ’ Absorption Spectrum ’ , ’ Fonts i z e ’ ,11 , ’ Fontweight ’ , ’ normal ’ , ’ Fonts i z e ’ , 18)

;
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100 s e t ( gca , ’ XMinorTick ’ , ’ on ’ , ’ YMinorTick ’ , ’ on ’ , ’ t i c k l e n g t h ’ ,2∗ get ( gca , ’ t i c k l e n g t h

’ ) , ’ LineWidth ’ , 1 . 5 , ’ FontSize ’ ,24) ;

101 pr in t ( ’ abs−spec t ra ’ , ’−dpng ’ , ’−r600 ’ ) ;

102 hold o f f ;

146



A.2 field-enhancement.m

The MATLAB m-file field-enhancement.m calculates and plots the electric field

enhancement of any general system given the coordinate file and time-dependent Mulliken

charges of each atom (files named as coords.xyz and qsvst.dat by the RT-DFTB code).

This MATLAB code generates the enhance.mat file. This file is further processed by plot-

efe.m code shown in appendix A.3 to plot the final picture of field enhancement. This is

a computationally expensive code. Should be run on a cluster or supercomputer .

1 % This program p l o t s the f i e l d enhancement o f a n a n o p a r t i c l e produced when

2 % a NP i s i l l um ina t ed by a l a s e r at the plasmon energy f requency o f the NP

3 % For us ing t h i s program , we need the qsvs t . dat f i l e that i s produced by

4 % KRONOS f o r l a s e r per tubat ion and the coords . xyz f i l e o f the NP

5

6 % F i r s t s e t t i n g up a l l the parameters that the program w i l l need

7 c o n v e r f a c t o r = 180 .951262710 ; % This i s needed to convert the c a l c u l a t e d

e l e t r i c f i e l d from a . u to V/Ang

8 n p o i n t s a l o n g v e c t o r 1 =300; % number o f po in t s a long each o f the v e c t o r s

9 n p o i n t s a l o n g v e c t o r 2 =300; % These 2 cons tant s s e t the f i n e n e s s o f the

mesh

10 t ime loop = 10 ; % Time pe r i od s f o r which c a l c u l a t i o n s should

be done

11 E0 = 0 . 1 ; % Laser energy

12 plasmon e = 2 . 1 1 9 4 ; % Plasmon energy (eV)

13 hbar = 6.582119∗10ˆ −16; % Plancks constant

14
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15 f i l e I D q s = fopen ( ’ q svs t . dat ’ , ’ r ’ ) ;

16 f i l e I D c o o r d s = fopen ( ’ coords . xyz ’ , ’ r ’ ) ;

17 t l i n e 1 = f g e t l ( f i l e I D c o o r d s ) ;

18 t l i n e 2 = f g e t l ( f i l e I D c o o r d s ) ;

19

20 formatSpecqs = ’%f %f ’ ;

21 formatSpeccoords = ’%s %f %f %f ’ ;

22

23 s i z e q s = [ 2 I n f ] ;

24 s i z e c o o r d s = [ 5 I n f ] ;

25

26 Q = f s c a n f ( f i l e I D q s , formatSpecqs , s i z e q s ) ;

27 coords = f s c a n f ( f i l e I D c o o r d s , formatSpeccoords , s i z e c o o r d s ) ;

28

29 f c l o s e ( f i l e I D q s ) ;

30 f c l o s e ( f i l e I D c o o r d s ) ;

31

32 om atom = max( s q r t ( coords ( 3 , : ) .ˆ2+ coords ( 4 , : ) .ˆ2+ coords ( 5 , : ) . ˆ 2 ) ) ;

33 p l a n a r v e r t e x x = om atom ∗ 1 . 2 ;

34

35 p l ana r ve r t ex=[−p l a n a r v e r t e x x ∗1 .2 0 −p l a n a r v e r t e x x ∗ 1 . 2 ] ;%[ 3 4 5 ]

36 % coord ina t e s f o r the ver tex o f the planar s l i c e

37

38 p l a n a r v e c t o r 1 =[ p l a n a r v e r t e x x ∗2 .4 0 0 ] ;%[ 1 2 2 ]

39 p l a n a r v e c t o r 2 =[0 0 p l a n a r v e r t e x x ∗ 2 . 4 ] ;%[ 2 −1 0 ]

40 % v ec t o r s cor re spond ing to the d i f f e r e n t s i d e l eng th s o f the planar s l i c e

41 % note that these v e c t o r s are orthogona l ( t h e i r dot product i s ze ro )
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42

43 pa ramet r i c va lu e a l ong 1=l i n s p a c e (0 , 1 , n p o i n t s a l o n g v e c t o r 1 ) ’ ;

44 pa ramet r i c va lu e a l ong 2=l i n s p a c e (0 , 1 , n p o i n t s a l o n g v e c t o r 2 ) ’ ;

45 % column v ec t o r s conta in ing parametr ic parameter va lue s a long each vec to r

46

47 p l a n a r c o o r d i n a t e s=ze ro s ( n p o i n t s a l o n g v e c t o r 1 ∗ n p o i n t s a l o n g v e c t o r 2 , 3 ) ;

48

49 index =1;

50

51 f o r i =1: n p o i n t s a l o n g v e c t o r 1

52

53 p l a n a r c o o r d i n a t e s ( index : index+n p o i n t s a l o n g v e c t o r 2 −1 , : )=ones (

n p o i n t s a l o n g v e c t o r 2 , 1 ) ∗( p l ana r ve r t ex+paramet r i c va lu e a l ong 1 ( i ) ∗

p l a n a r v e c t o r 1 ) + . . .

54 pa ramet r i c va lu e a l ong 2 ∗ p l a n a r v e c t o r 2 ;

55 % t h i s i s r e a l l y j u s t a parametr ic equat ion o f a plane ; the above

56 % expre s s i on uses matrix m u l t i p l i c a t i o n to generate a 3−column matrix

57

58 index=index+n p o i n t s a l o n g v e c t o r 2 ;

59 end

60

61 E x=ze ro s ( n p o i n t s a l o n g v e c t o r 1 ∗ n p o i n t s a l o n g v e c t o r 2 , 1 ) ;

62 E y=ze ro s ( n p o i n t s a l o n g v e c t o r 1 ∗ n p o i n t s a l o n g v e c t o r 2 , 1 ) ;

63 E z=ze ro s ( n p o i n t s a l o n g v e c t o r 1 ∗ n p o i n t s a l o n g v e c t o r 2 , 1 ) ;

64 E f = ze ro s ( t ime loop , n p o i n t s a l o n g v e c t o r 1 ∗ n p o i n t s a l o n g v e c t o r 2 ) ;

65 E x compo = ze ro s ( t ime loop , n p o i n t s a l o n g v e c t o r 1 ∗ n p o i n t s a l o n g v e c t o r 2 ) ;

66 E y compo = ze ro s ( t ime loop , n p o i n t s a l o n g v e c t o r 1 ∗ n p o i n t s a l o n g v e c t o r 2 ) ;
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67 E z compo = ze ro s ( t ime loop , n p o i n t s a l o n g v e c t o r 1 ∗ n p o i n t s a l o n g v e c t o r 2 ) ;

68 % a l l o f the se are 1−column matr i ce s

69

70 %Time loop

71 atom count = 1 ;

72 f o r t =1: t ime loop ;

73 E x=ze ro s ( n p o i n t s a l o n g v e c t o r 1 ∗ n p o i n t s a l o n g v e c t o r 2 , 1 ) ;

74 E y=ze ro s ( n p o i n t s a l o n g v e c t o r 1 ∗ n p o i n t s a l o n g v e c t o r 2 , 1 ) ;

75 E z=ze ro s ( n p o i n t s a l o n g v e c t o r 1 ∗ n p o i n t s a l o n g v e c t o r 2 , 1 ) ;

76 f o r i =1: l ength ( coords ( 2 , : ) )

77

78 X coord inate=coords (3 , i ) ;

79 Y coord inate=coords (4 , i ) ;

80 Z coord inate=coords (5 , i ) ;

81 % each i s a s c a l a r va lue

82

83 denominator =(( X coordinate−p l a n a r c o o r d i n a t e s ( : , 1 ) ) .ˆ2+( Y coordinate−

p l a n a r c o o r d i n a t e s ( : , 2 ) ) .ˆ2+( Z coord inate−p l a n a r c o o r d i n a t e s ( : , 3 ) ) . ˆ 2 )

. ˆ ( 3 / 2 ) ;

84 % t h i s i s a 1−column matrix

85

86 E x=E x+Q(2 , atom count ) ∗( X coordinate−p l a n a r c o o r d i n a t e s ( : , 1 ) ) . / ( 4∗ pi ∗

denominator ) ;

87 E y=E y+Q(2 , atom count ) ∗( Y coordinate−p l a n a r c o o r d i n a t e s ( : , 2 ) ) . / ( 4∗ pi ∗

denominator ) ;

88 E z=E z+Q(2 , atom count ) ∗( Z coord inate−p l a n a r c o o r d i n a t e s ( : , 3 ) ) . / ( 4∗ pi ∗

denominator ) ;
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89 % a l l o f the se are 3−column matr i ce s

90 atom count = atom count + 1 ;

91 end

92

93 c l e a r denominator

94 % f r e e up some memory

95 E x = c o n v e r f a c t o r .∗ E x ;

96 E y = c o n v e r f a c t o r .∗ E y ;

97 E z = c o n v e r f a c t o r .∗ E z ;

98 E x compo ( t , : ) = E x ;

99 E y compo ( t , : ) = E y ;

100 E z compo ( t , : ) = E z ;

101 c l e a r E x E y E z ;

102 end ;

103

104 %Four ie r trans form o f i n d i v i d u a l components

105 E x f f t = f f t ( E x compo ) ;

106 E y f f t = f f t ( E y compo ) ;

107 E z f f t = f f t ( E z compo ) ;

108 %c l e a r E x compo E y compo E z compo ;

109

110 E f abs = ze ro s ( t ime loop , n p o i n t s a l o n g v e c t o r 1 ∗ n p o i n t s a l o n g v e c t o r 2 ) ;

111 %E omega = ze ro s ( t ime loop ) ;

112 t ime va lue = Q(1 , t ime loop ∗ l ength ( coords ) ) ;

113 t = l i n s p a c e (0 , t ime value , t ime loop ) ;

114 omega = plasmon e /hbar ;

115 % This omega has the un i t s 1/ s we need i t i s 1/ f s .
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116 % Converting to f s

117 omega = omega / 10ˆ15 ;

118 E t = (E0∗ s i n ( omega∗ t ) ) ;

119 E t = E t ’ ;

120 E t = f f t ( E t ) ;

121 f o r t =1: t ime loop

122 f o r i =1: n p o i n t s a l o n g v e c t o r 1 ∗ n p o i n t s a l o n g v e c t o r 2

123 E f abs ( t , i ) = (norm ( [ E x f f t ( t , i ) E y f f t ( t , i ) E z f f t ( t , i ) ] ) ) . ˆ 2 ;

124 end

125 E omega ( t ) = (norm( E t ( t ) ) ) . ˆ 2 ;

126 end

127

128 E omega = E omega ’ ;

129

130 %Find the index number o f the E omega vec to r cor re spond ing to the d e l t a

131 %d i ra c o f the E t func t i on

132 n omega = length ( E omega ) ;

133 %Ignore the d e l t a d i r a c in the second h a l f o f the func t i on

134 E omega hal f = E omega ( 1 : n omega /2) ;

135 max delta = max( E omega hal f ) ;

136 d e l t a i n d = f i n d ( E omega hal f==max delta ) ;

137

138 % Calcu la t ing enhancement

139 enhancement = bsxfun ( @rdivide , E f abs , E omega ) ;

140 c l e a r E f abs ;

141 c l e a r E omega ;

142
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143 %Extract enhancement corre spond ing to plasmon energy

144 enhancement = enhancement ( de l t a ind , : ) ;

145

146 E f p l ane=reshape ( enhancement , n p o i n t s a l o n g v e c t o r 2 , n p o i n t s a l o n g v e c t o r 1 )

;

147 [ X xy plane , Y xy plane ]= meshgrid ( l i n s p a c e (0 , norm( p l a n a r v e c t o r 1 ) ,

n p o i n t s a l o n g v e c t o r 1 ) , l i n s p a c e (0 , norm( p l a n a r v e c t o r 2 ) ,

n p o i n t s a l o n g v e c t o r 2 ) ) ;

148

149 save enhance . mat −v7 . 3 X xy plane Y xy plane E f p l ane d e l t a i n d
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A.3 plot-efe.m

The MATLAB m-file plot-efe.m plots the electric field enhancement of any general

system given the enhance.mat file generated by the field-enhancement.m file as mentioned

in appendix A.2.

1 % Load the enhance . mat f i l e generated by the f i e ld enhancement .m code

2 load ( ’ enhance . mat ’ ) ;

3

4 % Plo t t i ng the f i e l d enhancement

5 f i g u r e

6 s u r f ( X xy plane , Y xy plane , E f p lane , ’ EdgeColor ’ , ’ none ’ , ’ L ineSty l e ’ , ’ none ’ ) ;

7 hold on

8 view (0 ,90 ) ;

9 a x i s equal

10 co l o rba r

11

12 % Play around with t h i s va lue to get a b e t t e r r e s o l u t i o n

13 c a x i s ( [ 0 1 0 ] ) ;

14

15 x l a b e l ( ’ x (Å) ’ , ’ Fonts i z e ’ ,11 , ’ Fontweight ’ , ’ normal ’ , ’ Fonts i z e ’ , 18) ;

16 y l a b e l ( ’ z (Å) ’ , ’ Fonts i z e ’ ,11 , ’ Fontweight ’ , ’ normal ’ , ’ Fonts i z e ’ , 18) ;

17 pr in t ( ’FE ’ , ’−dpng ’ , ’−r600 ’ ) ;
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