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Summary

Adoption of electric vehicles is surging across the state, country, and world, driven by
government policies to reduce carbon emissions from the transportation sector. To
maximally reduce emissions of EVs, however, drivers must charge their vehicles when clean
electricity generation, such as solar and wind power, is abundant. In California, this means
charging during the daytime when most people are at work.

Workplace charging plays a pivotal role in this context. Many EV drivers, especially those
living in apartments or rented accommodations, lack access to home charging options. For
these drivers, workplace charging provides a critical solution, enabling them to charge their
vehicles during the day when renewable energy is most available. Moreover, workplace
charging can significantly alleviate range anxiety, making EVs a more viable and attractive
option for a broader segment of the population. Although the affordability of EVs has
improved significantly, the challenge remains in finding reliable and accessible charging
stations. Workplace charging addresses this issue, aligns with the goal of equitable access
to charging infrastructure, promotes adoption, and supports the wider transition to electric
mobility.

This study examines drivers' charging behavior at charging facilities at the University of
California San Diego and is extensible to any workplace. The primary motivation is to
analyze the heterogeneity in where and how EV drivers charge their vehicles. By mining
natural variations in the data, the study aims to inform institutional policies and planning
that encourage workplace charging and deliver a positive charging experience for drivers.

A. Project scope and methodology

Using datasets on drivers’ preferences around charging, charging sessions, and UCSD’s EV
charging network, this project conducted a detailed analysis of EV drivers’ charging
behavior, focusing on both the spatial and temporal aspects of charging. The data for this
study are derived from enrollment surveys of 806 real (anonymized) UCSD EV drivers,
alongside more than 55,000 unique charging sessions retrieved from the two main
charging service providers at UCSD—ChargePoint and PowerFlex. Key components of the
study include:

Imbalances in the demand for charging and the supply of chargers across campus.
Understanding the demand-supply imbalance in charging sessions across various campus
locations is crucial. The study identifies garages with high demand but relatively few
chargers, leading to significant disparities and underutilization of network efficiencies.

Driver preferences for campus charging location vs. what is revealed by their real charging
behavior. The study compares drivers’ stated ideal campus charging location with actual
charging session data to identify discrepancies and analyze supply-demand imbalances
across the campus that may cause deviations in charging location.
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The depth, or size, of sessions that drivers’ initiate. Analyzing whether drivers engage in deep
or shallow sessions and how these behaviors are distributed spatially across campus.
Frequent shallow sessions are identified as a significant factor leading to an underutilized
and inefficient charging network.

Identification of driver traits that affect session depth. The study emphasizes identifying
commuter traits that influence EV charging infrastructure needs at both micro and macro
scales. This includes demographic factors, such as their affiliation, where they live, access to
home charging, and commute distances.

The analysis of EV charging behavior at UCSD reveals critical insights into the utilization
patterns, demand-supply imbalances, and session depths across different campus zones. By
examining the data, several key findings have emerged that highlight the unique challenges
and opportunities within the existing charging infrastructure. These findings provide a
foundation for targeted improvements to enhance network efficiency, equity, and overall
user satisfaction. While the study focuses on behaviors at UCSD, the lessons learned are
anticipated to be generalizable to other workplaces outside the campus.

B. Key findings

Supply and demand imbalances:

There are significant disparities in the availability of charging infrastructure across
different campus zones. High-demand garages such as Athena, Gilman, and Scholars
experience notable supply shortages, leading drivers to frequently deviate from their
preferred charging location and charge elsewhere. Six garages with high demand but few
forthcoming chargers were identified – Bachman, Campus Point East, Campus Point West,
Rady, School of Medicine, and Keck.

Charging session depth:

Data reveal that garages with lower demand-supply ratios have higher rates of shallow
charging sessions. These shallow sessions are less efficient and can contribute to
congestion at charging stations. Encouraging deeper charging sessions can improve
network efficiency and parking garage utilization.

Influencing factors:

Access to home charging, commute distance, and driver demographics significantly impact
charging behavior. Drivers without home charging access, particularly those from
lower-income groups, face greater challenges in finding available charging spots and have
higher deviation sessions. Temporal patterns show peak usage times coinciding with
typical work hours, stressing the need for optimal charger placement and availability.

C. Conclusion and recommendations

This study on workplace EV charging behavior at UCSD provides crucial insights into the
significant disparities and heterogeneity in the demand for charging and supply of charging
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infrastructure across different campus zones. The findings reveal prevalent shallow
charging sessions and high demand-supply imbalances in specific garages, leading to
network inefficiencies and driver inconveniences. To address these issues, the following
strategies are recommended:

Prioritize installing new charging stations where supply-demand imbalances are greatest:

Prioritizing the installation of new charging stations in garages with high demand-supply
imbalances, such as Athena, Gilman, and Scholars, to address current imbalances is crucial
for mitigating deviation sessions and encouraging deeper sessions. It is important to focus
on maximizing kWh sales, EV throughput, and charger cost recovery while also considering
goals of access and equity.

Encourage deeper charging sessions:

Implementing incentives such as kWh-based pricing may encourage deeper charging
sessions, reducing the frequency of shallow sessions and optimizing charger usage.
Additionally, developing targeted support programs for drivers lacking home charging
options, including dedicated charging slots for long-hour charging.

Optimize charging schedules:

Introducing a reservation system or time-based access to manage peak usage times,
distributing the charging load more evenly and reducing congestion during peak hours may
influence behavior heterogeneity.

Continuous monitoring and adaptation:

Establishing a continuous monitoring system to assess the performance and utilization of
the charging infrastructure will inform decisions on future expansions and improvements.
Preferably, focus on those parking garages where actions are most required. The enrollment
survey-led incentive mechanism already exists as an effective method to communicate
behavioral benefits directly to users.

Expand public awareness and education:

Awareness campaigns to inform drivers about the benefits of optimal charging practices
and the impact of their behavior on network efficiency may increase emphasis on deeper
charging sessions, including improved commute efficiency and potential incentives.

By adopting these recommendations, UCSD can enhance the performance and user
satisfaction of its charging network, supporting the broader adoption of electric vehicles
and contributing to sustainable transportation initiatives on campus.
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I. Introduction

The transportation sector accounts for roughly 16% of total GHG emissions, with road
transportation contributing around 11% (2022) of the total global share.1,2 In the United
States (US) it accounts for 29%, while more than half, i.e. about 58% of road transportation
emissions stemming from light-duty vehicles, referred to as passenger cars.3 To address this
issue, the transportation sector is undergoing a massive transition to cleaner and more
affordable means of mobility options. Electrification of mobility is a crucial component of
this transition. Among the variety of alternatives, the adoption of BEVs, PHEVs, and HFCVs
is widely promoted and accepted. Both government and private players have leveraged a
range of subsidies and technological advancements to drive these changes, resulting in
significant strides toward sectoral decarbonization. The impact of these efforts is evident in
the reduction of direct air pollution and overall GHG emissions. A study suggests that BEVs
emit significantly lower lifecycle GHG emissions compared to conventional gasoline cars,
even when considering the emissions from electricity generation.4 In California, cities with
high EV adoption rates, such as Los Angeles and San Francisco, have reported substantial
improvements in air quality, benefiting public health.

Governments worldwide are implementing policies to encourage the adoption of BEVs. For
instance, the US government has implemented several policies to encourage the adoption of
electric vehicles. Federal tax credits of up to $7,500 for new and up to $4,000 for eligible
used EV purchases are available, which has significantly boosted consumer interest and
sales.5 Additionally, many states offer incentives, such as California's Clean Vehicle Rebate
Project, which provides rebates for the purchase or lease of qualifying EVs.6 Similarly,
private sector initiatives are also playing a pivotal role. Light-duty EV manufacturers like
Tesla, Rivian, and Lucid Motors are at the forefront of producing advanced BEVs with longer
ranges and shorter charging durations, making EVs more appealing to the end consumers.7

Technological advancements are further accelerating the shift to electric mobility.
Improvements in battery technology have increased energy density and reduced the cost of

7 U.S. Department of Energy, (2023). Federal Tax Credits for New All-Electric and Plug-in Hybrid Vehicles.
<https://fueleconomy.gov/feg/tax2023.shtml>

6 California Air Resources Board, (2023). Clean Vehicle Rebate Project.
<https://ww2.arb.ca.gov/resources/fact-sheets/clean-vehicle-rebate-project>

5 U.S. Department of Energy, (2023). Federal Tax Credits for New All-Electric and Plug-in Hybrid Vehicles.
<https://www.energy.gov/save/electric-vehicles>

4 International Council on Clean Transportation, (2022). The lifecycle emissions of electric vehicles.
<https://theicct.org/publication/ghg-benefits-incentives-ev-mar22/>

3 U.S. Environment Protection Agency, (2023). <
https://www.epa.gov/greenvehicles/fast-facts-transportation-greenhouse-gas-emissions>

2 The Climate Watch Data, (2021). Historical GHG Emissions.
<https://www.climatewatchdata.org/ghg-emissions?end_year=2020&source=US&start_year=1990>

1 Our World Database, (2022). Greenhouse Gas Emissions by Sector.
<https://ourworldindata.org/ghg-emissions-by-sector>
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batteries, making BEVs more competitive with traditional internal combustion engine
vehicles.8 The development of fast-changing technologies is also enhancing the convenience
of driving EVs, reducing charging anxiety significantly.

The future of light-duty transportation is electric mobility. EVs are now growing rapidly,
with over 14 million global sales in 2023, which is a 35% increase from the 2022 trend
globally.9 The global number of EVs has reached an all-time high at 40 million in 2023.
Although global sales of BEVs are on the rise, they are largely concentrated in China,
Europe, and the US. By 2023, nearly 60% of new electric cars were registered in China,
almost 25% in Europe, and only 10% in the US, which collectively accounts for about 95%
of global EVs on the road. This means that, out of all new cars registered, more than
one-third are EVs in China, one-fifth in Europe, and one in ten in the US. In terms of the US,
EV sales reached a record high with over 1.4 million in 2023, i.e. 40% year-over-year
growth compared to the 2022 trend in this segment.10 As shown in figure 1, the US EV
transportation sector is projected to undergo a 10 times growth by 2030, and will
consistently grow thereafter.

According to the PwC analysis of the US EV growth market, the infrastructure to support
such a growth segment is projected to grow over $100 billion by 2040. Being among the
early starters and widely spread across the nation, ChargePoint, a prominent charging
service provider in the US EV charging market, has a chance of generating most of the

10 Trend in Electric Cars, Global EV Outlook, International Energy Agency, (2024).
<https://www.iea.org/reports/global-ev-outlook-2024/trends-in-electric-cars#abstract>

9 Global EV Outlook, International Energy Agency, (2024).
<https://www.iea.org/reports/global-ev-outlook-2024>

8 BloombergNEF, (2023). Electric Vehicle Outlook 2023.
<https://assets.bbhub.io/professional/sites/24/2431510_BNEFElectricVehicleOutlook2023_ExecSummary.p
df>
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revenue. As shown in figure 2, growth is expected in the service and maintenance of
charging infrastructure. The largest growth is assumed to be in the advanced hardware
solutions that will drive over 20 billion market by 2030. Operations and
maintenance-related software will grow but contribute a smaller portion of the market.
What this indicates is the thriving state of the EV market ecosystem, both presently and in
the future, which is a positive sign for continuum investments in research and innovation.

Fig 2. Growth projection of EV infrastructure in the US by 2040. The upper range of revenue is assumed
to be full adoption by 2040, and the lower range is assumed by 2045. CPO refers to ChargePoint

operators, HW is hardware, and SW is software.

Source: PwC Analysis.11

California state emerged as a frontrunner in adoption, accounting for a 37% increase in
light-duty EVs in 2022.12 From 2016 to 2022, the number of registered EVs in California
quadrupled, from 0.24 million to 1.1 million.13 According to some estimates, there could be
12 million EVs on California roads by 2035.14 As EV adoption accelerates, the demand for
suitable charging infrastructure becomes increasingly critical. Currently, in the US there are
approximately 0.18 million public and private charging ports available, which is insufficient

14 California Energy Commission.
<https://www.energy.ca.gov/data-reports/energy-almanac/zero-emission-vehicle-and-infrastructure-statisti
cs/light-duty-vehicle>

13 Alternative Fuel Data Centre. <https://afdc.energy.gov/stations/#/find/nearest?show_about=true>

12 U.S. Energy Information Administration.
<https://www.eia.gov/state/seds/seds-data-fuel.php?sid=US#OtherIndicators>

11 The US electric vehicle charging market could grow nearly tenfold by 2030: How will we get there. PwC
Analysis.
<https://www.pwc.com/us/en/industries/industrial-products/library/electric-vehicle-charging-market-gro
wth.html>
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to support the growing EV population on the road.15 In California, there are 75 EVs per
charging location, the second highest in the nation, which is insufficient for the emerging
demand.16,17 California alone needs to expand the charging network significantly, aiming to
reach 0.25 million charging stations by 2025 to meet the state's ambitious EV goals.18 It is
projected that approximately 1.01 million public and shared private chargers will be
needed to support 7.1 million light-duty EVs by 2030. By 2035, this number is expected to
rise to 2.11 million chargers to accommodate 15.2 million passenger EVs. Additionally,
around 0.11 million chargers will be required to support 0.15 million medium- and
heavy-duty EVs by 2030.19 According to California’s government Executive Order N-79-20, it
has intermediate-term goals of including 5 million zero-emissions vehicles on roads by
2030 and 250,000 public and shared charging stations by 2025.20

20Governor Brown Takes Action to Increase Zero-Emission Vehicles, Fund New Climate Investments,
Governors’ Office. (2018).
<https://archive.gov.ca.gov/archive/gov39/2018/01/26/governor-brown-takes-action-to-increase-zero-emi
ssion-vehicles-fund-new-climate-investments/index.html>

19 California Energy Commission, (2023). Assembly Bill 2127.
<https://www.energy.ca.gov/publications/2024/assembly-bill-2127-second-electric-vehicle-charging-infrast
ructure-assessment>

18 California Energy Commission, (2023). Charging Infrastructure for Electric Vehicles in California.
<https://www.energy.ca.gov/data-reports/reports/electric-vehicle-charging-infrastructure-assessment-ab-2
127>

17 New ZEV Sales in California.
<https://www.energy.ca.gov/data-reports/energy-almanac/zero-emission-vehicle-and-infrastructure-statisti
cs/new-zev-sales>

16 Review Report, U.S. Energy Information Administration
<https://www.eia.gov/totalenergy/data/monthly/>

15 U.S. Department of Energy, (2023). Electric Vehicle Charging Infrastructure Trends.
<https://afdc.energy.gov/fuels/electricity-infrastructure-trends>
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II. Background

The rapid adoption of EVs has highlighted the need for extensive charging infrastructure to
support the growing EV usage. Despite the facilitation of several governments and private
sector incentives for EV adoption, adequate charging infrastructure remains the key factor
for miles-driving uptake. A major reason for this uptake is due to EVs’ competitive pricing
and improved driving efficiencies that cover long-range in a single charge. Public and
private charging infrastructures are expanding, and workplace charging emerges as a
crucial component for equitable and affordable access for low to middle-income families or
first-generation commuters. In the context of US government regulations, ‘workplace
charging’ refers to the dedicated provisions made of EV charging stations at the workplace
to support and encourage their employees to drive electric vehicles.21 The US Department
of Energy identifies workplace charging as a critical strategy to support the growing
demand for EVs.22, 23

A. Why is workplace charging infrastructure important?

Access to home charging is not universal, for example, for those living in apartments, rented
accommodations, or multi-unit dwellings where installing personal charging infrastructure
is often not feasible. Lack of home charging creates a significant barrier for new potential
EV adopters. Charging infrastructure at workplaces is therefore expected to play a pivotal
role in making EVs a more viable and attractive option for all segments of the population.

Fig 3. California state “duck curve”, indicating net electric load after considering variable renewable
energy generation, in GW. Data shown are for March-May, 2015-2023.

Source: California Independent System Operator (CASIO) Today’s Outlook and EIA.24

24 Today in Energy, EIA (2023). <https://www.eia.gov/todayinenergy/detail.php?id=56880>

23 How to Guide: Starting an electric vehicle workplace charging program. City of Boston Transportation.
(2020).
<https://www.boston.gov/sites/default/files/file/2020/03/1527-03%20-%20Workplace%20Charging.pdf>

22 Workplace Charging for Electric Vehicles. Alternative Fuels Data Center.
<https://afdc.energy.gov/fuels/electricity-charging-workplace>

21 Implementing Workplace Charging within Federal Agencies, Margaret Smith, Energetics Incorporated. U.S.
Department of Energy Vehicle Technologies Office. (2017).
<https://afdc.energy.gov/files/u/publication/federal_wpc_case_study.pdf>
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As California continues to increase its renewable energy capacity, a significant drop in net
load is becoming more apparent during the middle of the day when solar generation peaks.
This phenomenon, often referred to as the "duck curve" (illustrated in figure 3), represents
the net load curve, which sharply rises in the evening as people return home and consume
more electricity for different house purposes. This evening surge in demand occurs because
most of the workforce follows a similar daily pattern—leaving home in the morning and
returning in the evening. As a result, there is a widespread pattern of energy consumption
that leads to a sudden and substantial increase in electricity demand during the late
afternoon and early evening hours. This predictable surge puts significant stress on grid
suppliers, as they must quickly ramp up production from non-renewable sources, such as
natural gas or nuclear, to meet the heightened demand, often at a time when solar energy is
tapering off. This strain on the grid underscores the need for better demand management
strategies, such as encouraging daytime energy use through workplace EV charging, to
alleviate the evening peak and make better use of abundant daytime solar power.

From figure 4, it is evident that in California, renewable energy sources are insufficient for
rapid ramping and can stress the grid, hence adding a load of charging does not make
economic and environmental sense.

Fig 4. California’s renewable energy supply and demand (in megawatts) over 24 hours, with every
5-minute daily increment data, on June 1, 2024.

Source: California Independent System Operator (CASIO) Today’s Outlook.25

25 California ISO. <caiso.com/todays-outlook/supply>
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Charging should be emphasized in hours when supply is adequate and environmentally
sustainable. From a decarbonization perspective, it is the way future adoption needs to be
planned as it has a significant impact on environmental outcomes throughout their
lifecycle. As shown in figure 4 and 5, nighttime charging causes more emissions due to
drawing energy from other than renewable sources. In contrast, daytime charging can
leverage cheap renewable electricity that might have been sourced from solar power, which
is more readily available during daylight hours. Adoption of such behavior has better
possibilities of reducing reliance on fossil fuels and decreasing the overall CO2 emissions
associated with EV charging.

Fig 5. California electricity demand, March 12, 2019.
Source: Scottmadden Management Consultants, White Paper 2019.26

Adequate workplace charging infrastructure not only offers a convenient solution for
emission reduction and helps to distribute the charging load throughout the day or reduce
the strain on the power grid during peak hours but also encourages EV ownership,
especially early adopters to consider as most reliable mobility for work. Allowing EV
drivers to charge during their routine commute is more likely to access dependable and
clean-sourced electricity, thus alleviating range anxiety and supporting their transportation
needs.27 Workplace charging offers multiple benefits to both employers and employees. For
employers, it can add to an attractive employee benefit and address companies’
sustainability commitments by reducing scope 3 emissions associated with employee

27 Institute for Economic Policy Research, Stanford University, (2024). Overcoming roadblocks to California’s
public EV charging infrastructure.
<https://siepr.stanford.edu/publications/policy-brief/overcoming-roadblocks-californias-public-ev-charging
-infrastructure>

26 Charging Up: A Review of Electric Vehicle Workplace Charging, Scottmadden. (2019).
<https://www.scottmadden.com/content/uploads/2019/04/ScottMadden_A_Review_of_EV_Workplace_Char
ging_2019_0401.pdf >
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commutes. For employees, they benefit from the convenience of charging while at work,
potentially reducing the need for separate charging trips, and thus increasing workhour
productivity.

As shown in figure 6, the ideal workplace parking garage should be provided with adequate
space available for EV charging stations along with space for non-EVs to park. The goal
should be to provide charging spots when commuters need them and optimize the
operating costs of a well-planned charging station network (with the right charging
capacity per kilowatt delivered and number) distribution within the parking infrastructure.
Any long charging queues or higher costs of kWh delivery may lead to drivers’ anxiety, and
hence discourage EVs from workplace commutes.

Fig 6. Schematic of an ideal workplace parking garage with adequate EV charging stations (blue)
along with non-charging parking spaces (gray).

Source: Shutterstock.com – 2367860679

As the EV market is evolving as along with users’ perspectives on driving, better
understanding is required to explain the complexity of users’ behavior and their
synchronous responses to the infrastructure developed either by the private employer or
by the public sector for charging-enabled parking. For this study, the aim is to establish a
causal relationship between BEV drivers’ behavior? number? and the functional model of
workplace charging infrastructure. This means, that establishing the positive and negative
relationship between increasing BEV drivers has direct implications on energy
consumption and plug-in parking congestion and has indirect implications on drivers’
deviation from desired charging location and lesser charging or battery replenishment
cycle. It is assumed that there are fewer insights available to take decisive action on factors
affecting the charging infrastructure optimization and usability maximization, especially
among those drivers with no home charging access and who prefer driving BEV for work.
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B. UCSD campus charging infrastructure

As an expansion of the Scripps Institution of Oceanography established in 1904, UCSD is
founded as a public university in 1960. It is a locus of eminent research scholars and
practitioners from multidisciplinary fields. As one of the top 20 research universities in the
world, the campus is located near the Pacific Ocean on approximately 2178 acres of coastal
woodland in La Jolla, California. The campus sits on the ancestral homelands of the
Kumeyaay Nation. Its rich academic portfolio includes 12 academic, professional, and
graduate schools and over 200-degree programs, considered a public Ivy for academic
research and practice.28

The primary focus of this study is to identify a workplace parking structure which has a
significant attribution of EV drivers, vehicle type, and charging network. Adequate
demographic diversity and charging service utilization are assumed to be the key elements
to explain the workplace charging heterogeneity and driver’s response to it. For this
purpose, the University of California San Diego (UCSD) campus is found to be the most
adequate location. Being one of the prominent educational institutions in the Western
Hemisphere, it attracts more than 73,000 academic scholars and above 170,000
non-academic professionals every year. 29, 30

With such large footfall every year, the campus is grappling with increasing EV influx and
demand for public charging access, distributed for the proximity needs of professors,
students, staff, and other affiliates along with visitors who prefer parking within campus
premises. Due to its scale and diversity, it stands among the largest educational workplace
charging networks in the world. Furthermore, since the campus is committed to its
decarbonizing goals, with the support of the National Science Foundation, the California
Energy Commission, and other key stakeholders from San Diego County, it has installed one
of the largest public charging networks. As shown in figure 7, its installed capacity is 439

30 UCSD at Glance. 2024.
<https://www.universityofcalifornia.edu/about-us/information-center/uc-employee-headcount>

29 UCSD Campus Profile. 2023. <https://univcomms.ucsd.edu/about/campus-profile/#about-students>

28 Carnegie Classification of Institutions of Higher Education. 2020.
<https://carnegieclassifications.acenet.edu/institutions/?basic2021__du%5B%5D=15>
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Level 2 and 13 DCFC charging stations.31, 32 The future expansion is anticipated to add over
762 Level 2 and 22 DCFCs by the end of 2025.33 Although the current charging network is
half of the future expansion, it is distributed based on the vehicle influx within major
parking garages on the campus. For instance, as shown in figure 7 the intensity of color on
the heatmap indicates the frequency or density of charging sessions at each location, with
brighter or more intense colors (reds and yellows) representing higher usage, and cooler
colors (blues and greens) indicating lower usage. It is assumed that the east campus and
graduate housing parking garages are frequently engaged by visitors of the medical centers
and/or graduate residents.

Source: UCSD’s transportation services.34

C. Research questions and hypotheses

Findings from this study are expected to provide drivers’ behavior patterns and plausible
interventions for campus charging network optimization strategies. This study focuses on
two distinct sets of data sources. The individual drivers’ response (N=806) has been
recorded over a year through a voluntary incentive-led program, i.e., Triton EV Charging
Club survey. Another set of data has been retrieved from charging sessions (n=53572),
recorded over two seasons by charging service providers. The objective is to assess
demand-supply heterogeneity among charging sessions and drivers' behavior-attributed
responses from the enrollment survey. It is assumed the findings will be useful in
influencing new EV policies and infrastructure development planning on campus.

This study is focused on two research questions and associated hypotheses.

● First, does charging infrastructure distributed across the campus sufficiently meet the
demand for charging services by commuters? There is substantial spatial
heterogeneity across campus chargers, parking garages, and drivers’ working location.

While chargers are installed in salient locations with anticipated high demand, no
retrospective analysis of supply and demand has ever been done to calculate potential
demand-supply gaps and associated attribution heterogeneity. With the campus EV
network set to expand threefold over the coming years, this analysis looks to the

34 UCSD’s transportation services. <maps.ucsd.edu/map/Default.htm>

33 EV Project. <https://transportation.ucsd.edu/commute/drive-electric/projects.html >

32 Level 2 charging are typical and most common charging ports, supplies higher-rate AC charging through
240V (in residential applications) or 208V (in commercial applications) electrical service. Level 2 chargers
can charge a BEV to 80 percent from empty in 4-10 hours and a PHEV in 1-2 hours.
<https://www.transportation.gov/rural/ev/toolkit/ev-basics/charging-speeds >

31 Direct Current Fast Charging (DCFC) are made for rapid charging, preferably used around heavy-traffic and
long-range transportation corridors. DCFCs can charge a BEV up to 80 percent in just 20 minutes to 1 hour,
however these are not compatible with most of the PHEVs in the market.
<https://www.transportation.gov/rural/ev/toolkit/ev-basics/charging-speeds >
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network’s future to understand whether new chargers are being allocated in areas of
highest demand for charging, thereby encouraging network optimization and cost
recovery for the campus.

● Second, once commuters arrive at campus, how do they charge their vehicles?
Commuters might prefer to plug in frequently (e.g., every time they arrive at campus)
independent of the charge in their battery. But charging with frequent, shallow
sessions decreases network utilization because it blocks EV stalls for others who would
otherwise use them. Fewer deeper sessions, rather than frequent shallower sessions,
would improve network utilization and cost recovery. Encouraging drivers to charge
via less frequent longer sessions would allow for overall more charging sessions within
the existing infrastructure. One hypothesis is that drivers who commute long distances
do primarily deep charging, while those who reside closer to campus more commonly
do shallow charging.

This research aims to explore driver behavior heterogeneity in the following manner:

Supply and demand heterogeneity

● Are EV chargers at UCSD supplied (properly sited) across parking garages to meet
demand for charging?

● Is the expansion of UCSD’s EV charging network occurring in parking garages with the
highest demand-supply imbalances (where demand most exceeds supply)?

Session depth heterogeneity

● What is the nature of charging session depth across UCSD parking garages?
● What explains variation in session depth?

D. Driving and charging behavior

Any individual using a motorized means of transportation medium and taking specific
movement actions such as acceleration is referred to as driving (Higgs and Abbas, 2014).
The advantage of such acceleration provokes the capacity of mile coverage, which tends
drivers’ driving ability in different situations and circumstances (Guangchuan et al., 2016).
Services and infrastructure are essential elements of addressing driving anxiety. Especially,
in the emerging driving culture with EVs, it emerges as a major concern. Well-distributed
and reliable charging stations are crucial for preferring EVs for medium to long-range
mobility (Giuseppe et al., 2023).

Drivers’ charging demand is influenced by several factors, including access to private
charging, driving range, and commute requirements (Myers and Hanna, 2023). This
demand is shaped by individual charging behaviors such as the preferred plug-in time,
choice of garage, and the depth of charging sessions. Research indicates that human stress
or anxiety often arises when individuals perceive that the resources needed to meet a
situation or circumstance are unavailable or insufficient (Lazarus and Folkman, 1984). The
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decision to adopt EVs for commuting, along with the associated charging behaviors, is
governed by a complex interplay of social, environmental, economic, and psychological
factors. In this context, access to workplace charging becomes particularly vital. Providing a
convenient charging solution at the workplace, especially for those without access to home
charging, significantly enhances EV usability and mitigates range and cost anxieties, making
electric vehicles a more practical and appealing choice for daily commutes.35

35 Alternative Fuels Data Center, U.S Department of Energy.
<https://afdc.energy.gov/fuels/electricity-charging-workplace>
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III. Methodology and approach

This study analyzes drivers’ charging behavior to guide the UCSD’s transportation and
infrastructure policy. In-depth understanding of driver behavior is assumed to be
important to encourage the adoption of EVs, particularly among drivers who prefer EVs for
commuting to work. The first phase of analysis emphasizes establishing causal inferences
of demand-supply imbalance and charging session deviation. The second phase focuses on
estimating drivers’ engagement with the charging infrastructure campus provides,
estimating the charging session depth per driver and garage. Session depth is critical for
drivers’ charging experience and cost recovery on investment.

A. The challenge with estimating workplace charging behavior

Decreasing prices, modified technological advantage, and increased attraction within the
middle- and low-income classes have significantly increased EV adoption and hence
demand for the charging infrastructure. Simultaneously, due to stringent government
regulation and incentives for achieving decarbonization targets, more and more employers
are providing charging infrastructure to encourage EV adoption. Adequate availability of
charging stations like pots and parking spaces, incentives like free or minimum charging
costs, parking time limits, etc., at a workplace may influence usage patterns. For instance,
limited availability of parking slots and charging ports might lead to charging congestion,
thus influencing EV regular usage (especially among BEVs and PHEVs users) for workplace
commute.36

The biggest challenge with estimating workplace charging behavior or usage pattern is due
to variability in the employee and employer understanding (Shariatzadeh et al., 2024).
Employees coming from different socio-economic backgrounds vary greatly regarding the
type of car that they drive, the car usage, and the demand for charging during their working
schedule (Lihore et al., 2023). Another challenge is the availability of reliable and accessible
databases. The concept of workplace charging is relatively new, hence, there are few
databases available to guide research on historical trends and compare usage patterns in
practice.

Being progressive to address workplace charging infrastructure design and adoption
challenges, UCSDs transportation and planning departments have ensured routine and
exhaustive database generation in collaboration with respective service providers and
qualified researchers. To support this with primary data, the university has also ensured
regular collection of drivers’ responses through a charging enrollment survey.

36Charging Up: A Review of Electric Vehicle Workplace Charging. White Paper, Scottmadden Management
Consultants, (2019).
<https://www.scottmadden.com/content/uploads/2019/04/ScottMadden_A_Review_of_EV_Workplace_Char
ging_2019_0401.pdf/>
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B. Study methodology

In the first phase, drivers’ stated preferences, i.e., preferred plug-in time and location, are
considered to quantify charging demand. Here the drivers’ charging preferences based on
the garage and hours derived from their responses to the enrollment survey. It is subject to
their proximity to work or commute distance from the garages. For each campus garage, the
ratio of the number of drivers who stated their preference of charging at a particular garage
to the number of charging ports available in that garage is calculated and used to derive
insights regarding the demand-supply gap. Here the demand is defined as the unique driver
(as per their unique random identification number) plugged in per parking garage.
Whereas the supply is defined as the number of charging ports available per parking
garage.

Thereafter, drivers’ garage preference over deviation due to congestion is calculated to
explain the deviation session per garage. Here deviation session is considered a crucial
component of the analysis, as it will guide the drivers’ motivation for utilizing the charging
infrastructure facilitated by the campus and most importantly, the battery replenishment. It
is assumed that a higher driver deviation leads to lesser charging session depth. The
session depth is the percentage of battery replenishment per charging session. Two other
factors are also considered to be crucial for explaining drivers’ behaviors: the miles
travelled to campus, and the availability of home charging.

Drivers’ revealed preferences are quantified to build the causal inferences on behavioral
attribution to the demand and supply gap. For each driver, I identified their full set of
campus charging sessions and calculated the fraction of the total sessions they initiate at
each garage. This helped in explaining the pattern of drivers’ engagement with the charging
infrastructure. Given stated preferences for each preferred garage, I generated an N-by-N
matrix that describes the frequency with which drivers deviate from their preferred garage
when charging. Here, the N rows and N columns are distinct garages, and the matrix values
are the mean frequencies with which drivers charge at both their preferred and
non-preferred (i.e., deviations) garages. This matrix also quantifies the probability with
which a driver charges at any garage in reference to their chances of getting at preferred or
deviate among other garages.

Basic data clearing, analysis, statistical tests, and plotting is performed using the R library
packages such as tidyverse, readr, dplyr (Sanguesa, 2021), grid, and ggplot2 (Alrubaie,
2023). Key analysis objective it served as in to identify the charging demand-supply gaps
are different garages, deviation sessions per garage, and therefore overall garage utilization.
The analysis of garage utilization is also important to explain whether the drivers’ travel
distance and access to home chargers play a causal role in their deviation. Whereas Python
library packages such as numpy, panda, mapplotlib, seaburn, tenderflow (Abadi, 2016),
sklearn is used to perform deep learning predictive model, i.e., random forest model (Y. Lu,
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2018) and long-short term memory model (Shahriar S, 2020) which is important to train
the model for predicting the future behavior responses.

The second emphasis is on calculating the depth of drivers’ charging sessions. The depth is
determined by the median and mode from the full set of camping charging sessions per
garage, complemented with information on their model type and battery size. For each
session, I calculated the fraction of the battery replenished over the size of the battery. The
mean and standard deviation of the depth of campus charging sessions is used to explain
the deviation of the driver by their session depth. Furthermore, session depth was
discretized into three categories: shallow, intermediate, and deep charging (see further
details below).

C. Data analysis and inference building

Data on drivers' demographic diversity, type of EV, preference of charging session as a
function of time of plug-in and plug-out, parking garage as the location of charging,
duration of charging or sitting idle, session depth, distance travelled, access to home
charging, university affiliation type, and many more variables were collected from the
drivers’ survey response and charging sessions data from the service provider. Some of
these variables, including commute distance, university affiliation, vehicle type, income,
and access to home network
utilization and sufficiency, as well as on driver attributes and behaviors that explain
charging outcomes.37 This study focuses on two primary analysis approaches:

● Analysis of charging session depth adopted by drivers on any day of their plug-in
preference and their spatial distribution relative to existing and future charging
infrastructure facilitated.

● Statistical tests to analyze drivers’ attribution to the category of charging session
engaged in. This is to quantify the causal association between commuter type defined
by a subset of key attributes, and their charging behavior.

This study used three data sources, i.e., a) driver-stated preference collected from the
charging club survey response, b) driver-revealed preference collected from the charging
session data from the two service providers—ChargePoint and PowerFlex, and 3) charging
network data collected from the UCSD’s transportation planning. The data attributes for
this study are classified as drivers’ attribution and charging network as illustrated in Table
1 and Table 2.

37 An optimal coordinated planning strategy for distributed energy stations based on characteristics of electric
vehicle charging behavior under carbon trading mechanism.
<https://www.sciencedirect.com/science/article/pii/S0142061522008808>,
<https://ieeexplore.ieee.org/document/9194702>
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Table 1. Driver and charging session attributes.

Data points Attributes

Demographic Age, gender, education, income, home ownership

Affiliation Faculty, student, staff

Commute distance Distance from home zip code to central UCSD campus

Living arrangement Campus residence, own house, or rental apartment

Charging access Home charging, public charging, and other charging options.

EV type Year, make, model, type (BEV or PHEV)

Charging session Plug-in and plug-out time, charging and idling durations,
energy consumed, session depth, and preferred and deviation
sessions.

Table 2. Attribution of charging network to drivers’ demand and supply and service
utilization.

Data points Attributes

Spatial distribution Zones and charging garages, proximity to the work location,
residential, and other engagement priorities.

Charging utilization Charging garage preference and deviation, charging
durations by parking garages and zones.

D. Data sources and analysis objective

Primary analysis is performed on a dataset comprising 66,346 individual charging sessions
collected between September 2023 and February 2024. The data is sourced from two major
charging service providers to the UCSD campus – ChargePoint and PowerFlex. The data is
collected online while signing up for the charging session, and the feed lives on the cloud
server. Key data outputs from this source are shown in Table 3. To avoid errors, the data set
was cleaned of missing data, irrelevant information, and duplicate data. Individual drivers
have a unique random number, which is followed by their attributes. After the data was
sanitized, a total of 16,023 individual drivers charging attributions, i.e. network, driver, and
vehicle, were considered for heterogeneity analysis.
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Table 3. Example of key session outputs, as generated by the service providers when a driver
initiates a session.

Attributes Output

Driver unique ID 2649
Garage Arbor
Zone Hillcrest
EVSID 779181
Session starts date 11/21/2023
Session starts time 18:10:00
Session starts minute 117730
Session end date 11/21/2023
Session end time 18:40:00
Session end minute 117760
Session duration 30
Charging duration 22
Session idle 8
kWh delivered 1.812999964
Success charge 1
Charging port type Level 2
Port number 1
Plug type J1772
Session cost to the driver 0.54
Lower kW at the initial 3.751034498

To quantify the significance of network attributes on the driver’s charging behavior, the
entire charging network of thirty-one parking garages is divided into five geographic zones
(as shown in Table 4). Garages can be supplied by either ChargePoint (consisting of
dual-port stations), PowerFlex (consisting of single-port stations), or both. It is assumed
that the driver who plugs in has the intention of battery replenishment, and therefore that
parking garage cannot be occupied and uncharged. To analyze the charging supply, the
session start time is considered to quantify day-to-night charging cycle and peak and
non-peak charging hours. Likewise, session duration is the sum of actual energy consumed
by the battery per charging session, with the remaining being session idle, which means the
vehicle is not consuming any energy but occupying the parking space. A larger session idle
duration indicates a larger deviation from the driver’s preferred garage.

Table 4. Distribution of charging ports across the UCSD campus by zone and parking garage.

Zone Garage Vendor Ports
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East campus Athena ChargePoint 10
Athena PowerFlex 27
CP East ChargePoint 2
CP West ChargePoint 2
Med Center ChargePoint 10

Graduate housing Mesa Nuevo ChargePoint 10
Nuevo East ChargePoint 4
Nuevo West ChargePoint 30
OMS ChargePoint 2
South Mesa ChargePoint 2

Hillcrest Arbor ChargePoint 12
Bachman ChargePoint 6

Seaside forum Birch ChargePoint 2
Hubbs ChargePoint 4
Keck ChargePoint 2
MESOM ChargePoint 2
Ritter ChargePoint 2
Seaside Forum ChargePoint 4

West Campus CSC ChargePoint 12
CUP ChargePoint 2
Faculty Club ChargePoint 2
Gilman ChargePoint 8
Gilman PowerFlex 25
Hopkins PowerFlex 20
Pangea ChargePoint 12
Pangea PowerFlex 4
Rady ChargePoint 10
Som ChargePoint 10
Scholars ChargePoint 28
South ChargePoint 26
Torrey Pines ChargePoint 14

The analysis is complemented by a second dataset comprised of 804 individual charging
enrollment survey responses gathered over a year from April 2023 to March 2024. Since it
is an incentive-driven voluntary enrollment, the feed gathered is random and diverse. The
survey captured more than fifty responses which vary across basic demographic
information to specific stated preferences like garage preferences, vehicle type, distance
travelled, home charging access, residence, etc., (see Table 5). Selective attributions are
considered to quantify their implication of charging behavior.
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Table 5. Example of key stated preferences as collected by the enrollment survey.

Prompt Response

Start date and time 1/28/2024 3:12
End date and time 1/28/2024 3:27
Charging duration 933
UCSD affiliation Staff
Work location UC San Diego Health-Sulpizio

Cardiovascular Center
Home location zip 92128
Home type Owned
Living on-campus Off-campus
Home charging access No
Home charger type Unsure
Vehicle make Hyundai
Vehicle category Hyundai Ioniq BEV
Vehicle make year 2022
Vehicle model 2022 Ioniq 5 AWD (Long Range)
vehicle operating type BEV
battery size 88 kWh
PowerFlex ID NA
ChargePoint ID 31929381
Garage preference East Campus (Athena, Medical

Center, Skaggs)
Garage preference others NA
Household income $150,000 or more
Age 36-45
Gender Female
Qualification Bachelor’s degree
Charging operator No
Modal charging time 06 to12
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IV. Results and discussion

The analysis was focused on a new method of appraising supply and demand imbalance by
looking at the driver’s preference for garages, their deviation sessions from said preference,
and the session depth, especially among those who have no access to home charging.

A. Demand-supply imbalances

From the enrollment survey response, stated preference is considered to quantify the user’s
demand. Based on a unique identification number, autogenerated during enrollment, each
respondent is considered a unique EV driver. Their stated preference for garages is
considered as demand for charging. Likewise, supply is considered as the number of ports
available per installed charging station. The fraction of supply and demand is estimated as
shown in figure 8.
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Here, the distribution of the charging stations indicates that the usability of the parking
garages closer to prominent working locations within campus is likely high. This means
that the higher the gap is, the more demanded the garage like Athena, Gilman, and Scholars,
all of which are located at the center of major engagement locations, are highly demanded.
As demand is high and charging stations are insufficient, drivers likely tend to deviate from
their preferred garages to the nearest available garages. On the contrary, garages like
Pangea, which is in the center of major colleges, are in less demand. It is likely that a
multimodal parking facility available nearby which allows access to parking space even for

long hours is driving this pattern. CSC, Mesa Nuevo, Nuevo East, and CUP all exhibit low
demand-supply gaps, which could be due to either fewer people driving EVs who work or
live there, or to less deviation and deeper session charging. From figure 9, it is evident that
there is a wide variation in demand-supply balance across garages. Some places are heavily
engaged, and some are less. This also indicates a potential challenge with fulfilling the gap
across the network. The question arises, are new chargers being installed in high-demand
garages?
Future charging stations, shown in Figure 10, are unlikely to close the current
demand-supply gap. While some forthcoming stations are planned for garages that show a
large gap, their planned distribution does not always match current needs. For example,
garages such as CP East and West, Keck, and Rady are all facing high to medium gaps and
are not considered in future planning. The uneven distribution of forthcoming stations is
clearly shown in Figure 11. A subset of garages that have high demand relative to existing
chargers have relatively few new chargers scheduled for installation. Such a scenario will
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result in fewer charging sessions at preferred garages, producing congestion and leading to
deviation sessions at adjacent garages. Therefore, current growth plans will not improve
equity.

Fig 10. The number of installed and forthcoming charging stations.
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B. “Preferred” and “Deviation” charging sessions

Drivers who look for charging stations at the campus either drive fully battery electric
vehicles or plug-in hybrid electric vehicles that partially need battery as backup to improve
driving milage efficiencies. Figure 12 illustrates the distribution of vehicle charging
sessions at garage by plug-in time, BEV, and PHEV. The most significant charging sessions
occur between 6:00am and 8:00am, with a sharp peak around 7:00am. This peak indicates
a high demand for charging in the early morning hours, likely due to drivers plugging in
their vehicles as they arrive at their destination. Another smaller peak is observed around
6:00pm, which might correspond to drivers plugging in their vehicles after their workday,
might be those who either live in the campus housing or leave their service vehicles at the
campus. Most of the charging sessions are by BEV across almost all hours, particularly
during the peak morning hours. Also, it shows that BEVs are plugged in much more
frequently than PHEVs, especially during the peak hours, suggesting that BEV drivers are
more reliant on these sessions at the campus. Whereas, PHEVs show a more dispersed
distribution of sessions throughout the day, with a noticeable presence during the early
morning hours but significantly fewer sessions compared to BEVs during the peak times
that might be an indication of least reliance on battery over gas as alternative sources.

Fig 12. Average vehicle charging sessions by plug-in time and vechile type.

Session deviation means drivers deviating from their preferred garages in search of
charging space close to their work location. As shown in figure 13, about 23% of all
charging sessions are deviation sessions. This is one of the consequences of a
demand-supply imbalance. Deviation sessions are important to notice as there is a dollar
value attached to the drivers who deviate more and waste their time in finding an available
parking garage with a charger.
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Figure 14 illustrates the relationship between the number of charging sessions and the
frequency of deviations from preferred charging garages among drivers with home
charging access. It differentiates between BEV and PHEV sessions, with BEV sessions
shown in red and PHEV sessions in blue. The positive linear relationship observed in the
trend lines for both vehicle types indicates that as the number of charging sessions
increases, the frequency of deviations also rises. Notably, BEV drivers tend to deviate more
frequently from their preferred garages as their total number of sessions increases, which
is reflected in the steeper slope of the BEV trend line compared to the PHEV line.

Fig 14. Average frequency of charging sessions deviation of BEV and PHEV drivers who have access to
home charging.

The plot also reveals that most deviations occur among drivers with fewer sessions,
suggesting that those who charge less frequently might have less consistent charging
routines, leading to more deviations. Additionally, the presence of outliers, particularly
among BEV drivers, indicates that some individuals exhibit high deviation frequencies even
with relatively few sessions, possibly due to the greater flexibility or unpredictability in
their charging patterns. The confidence intervals around the trend lines suggest greater
variability in deviations for drivers with many sessions, particularly in the BEV group. It
highlights that BEV drivers, who rely more heavily on charging infrastructure, may face
more frequent deviations, underscoring the potential need for more dependable or
increased charging options at their preferred garages to better accommodate their charging
behaviors.

Now, the question is, does deviation sessions of BEV occur more with no or less access to
home charging? If an association exists between the two, this can be considered an issue of
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equity. As shown in figure 15, BEV drivers who have no access to home charging have more
deviation sessions compared to those who have access. More than 2000 drivers have no
access to home charging. These tended to deviate more frequently from their preferred
garage, although comparatively they participated less in charging sessions. Drivers who
have access participate more in charging sessions and are less likely to deviate from their
preferred garage. Assuming that the lack of a home charger is to some extent indicative of
the overall household income, this difference means that less affluent drivers who do not
have home charges are suffering the most from the lack of adequate charging supply. This
supports the idea that this can be considered an equity issue that could affect the adoption
of EV vehicles for a subset of the campus community.

When looking at the deviation sessions by the commute distance, a relationship between
the two is evident (figure 16). Travel distance is estimated as the number of miles
separating the UCSD campus from the zip code of their residence. This might not be the
actual travelled distance between the drivers’ home and their preferred parking garage, but
it still provided a fair understanding of overall commuting distance. The distance is binned
into five categories: drivers living on-campus housing (<1 mile), off-campus but within the
county (<=10 miles), short (>10, <=25 miles), medium (>25, <=50 miles), and long (>=50
miles).

The results reveal an unexpected pattern – deviation sessions are most prevalent among
drivers who commute short distances, particularly those living on-campus or in near
proximity to the campus. This pattern suggests that individuals who are closer to their
preferred charging locations may be experiencing the most difficulty in securing a charging
spot. This is likely because these drivers might rely heavily on the convenience of nearby
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charging stations, and when these stations are fully occupied or unavailable, they are forced
to deviate to less convenient locations.

Fig 16. Fraction of deviation sessions by drivers’ commuting distance to the main campus.

One potential reason for this trend could be the timing of charging sessions. Early morning
arrivals, typically staff and faculty, likely occupy the charging stations first, leaving fewer
options for those arriving later in the day, such as students. Additionally, the concentration
of lecture hours starting after 9 am may further contribute to this deviation, as a surge in
campus arrivals during this time could exacerbate the competition for available charging
spots. This pattern underscores the importance of strategic planning in the distribution and
availability of charging stations to ensure that those who need them most—particularly
those with less flexibility in their schedules—can access them without undue
inconvenience.

Although the data available does not clearly support this claim, it seems like most of the
charging stations plug-in early in the morning, from 6 to 8, as shown in figure 17. The
highest concentration of charging sessions occurs between 7:00am and 10:00am, with a
sharp peak around 8:00am. It is evident that the bulk of the charging peaks in the morning
and then towards noon onward as second slot, which are 4hrs charging slots, mostly
preferred by the drivers. Whereas other available charging slots offer 1hr and 12hrs slots
which are least preferred at the campus. This indicates that many users plug in their
vehicles early in the morning, corresponding to when most employees arrive at work. This
suggests that as demand increases, the availability of preferred charging spots decreases,
forcing many drivers to use alternative locations. After 10:00 AM, there is a gradual decline
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in the number of charging sessions throughout the day. This drop-off indicates that most
users plug in early in the day and that the availability of charging stations likely improves as
the day progresses, resulting in fewer deviation sessions later in the day. There are very few
charging sessions between midnight and 5:00am, which is expected as most users are not
on campus during these hours. The probability of deviation during these hours is also
minimal.

From the average sum of probability distribution, it evident that a larger proportion of
sessions occur at preferred garages, however quite significant drivers have to move at
non-preferred ones. The total number of sessions shown at the top is 539 sessions at
preferred garages and 359 at non-preferred garages, suggesting a stronger tendency for
drivers to willingness to stick to their preferred garages.

Fig 17. Preferred and deviation sessions by plug-in time.

When looked to the gender and affiliation distribution of charging sessions across the
garages, as illustrated in figure 18, the distribution is even across diverse groups of people
categorized by gender and working affiliation, i.e., female faculty, students, and staff,
likewise for male and others. It is interesting to observe that most charging sessions is
being practiced by female drivers and staff, the latter of which includes a wide array of
working groups excluding faculty. For instance, Athena has a remarkably high count of
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female staff (depicted as pink bar) and a lesser count of male staff (depicted as light green),
indicating that these two groups are the predominant users of this garage, which is
surrounded by medical/ health care facilities. Bachman garage, which is also surrounded by
health care facilities, shows a similar trend.

Fig 18. Distribution of charging session utilization by gender and their affiliation to the UCSD.

To identify which garages, have the most frequent transitions or deviation, either within the
same garage or among different garages, the garage-by-garage transition matrix is plotted
as shown in figure 19. This is important to understand charging sessions depth which
simply explains the total energy drawn within a particular charging duration adopted by a
driver. Therefore, the dependent variable for session depth is the battery recharging needs
and availability of the charging spot. For instance, the more the empty battery, the more the
need for finding longer hours charging spot, which simply means more energy drawn and
time spent. Since finding charging spot is time and location dependent, often driver deviate
or engage with lesser battery charging session. The transition matrix as illustrated is
crucial to determine the charging pattern in terms of driver’s deviation from their stated
preference to non-preferred garages. Each cell in the matrix represents the frequency with
which drivers charge at garages other than their preferred one. The color intensity of each
cell represents the frequency. Garages such as Gilman and Scholars have high frequencies of
deviation sessions, and are often interchanged by drivers, indicating that deviation sessions
often occur among garages that are geographically closer. The overall pattern can also be
interpreted to depict some garages being more central to the transition compared to others,
and thus peripheral garages face congestion. For instance, garages like Athena, Gilman, and
Scholars are central hubs with high charging frequencies, both by preferred drivers and by
drivers from other garages who are deviated. On the other hand, garages like OMS, Ritter,
and South Mesa have low deviation frequencies, indicating they are less centrally located or
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less frequently used. There are clear patterns of transitions, with certain garages being
more popular destinations or points of origin for transitions than others, which is also an
indication of heterogeneity within charging stations at different garages.

Fig 19. A garage “transition” matrix, indicating the garages that drivers charge in and when they do
not charge in at their preferred garages. Color density and size indicate average charging fraction.

C. Charging session depth

When focusing on the charging behavior of the completely battery-operated cars, the
drivers’ revealed preference indicated that they participate less in deeper sessions
compared to shallow sessions. Figure 20 shows that less than 20% of BEV drivers engaged
in deeper sessions, while over 50% engaged in shallow sessions. The depth of the session is
defined as the kWh delivered during a charging session. If an EV replenishes more than
50% of their battery, they were considered to have engaged in a deeper session, likewise,
charging below 25% was considered a shallow session; values in between are intermediate
sessions. The predominance of shallow sessions might be due to the lower availability of
charging stations for deeper or might be an issue of proximity of charging stations to the
workplace. Such a large fraction of sessions that are shallow is alarming. These sessions are
problematic because they put additional stress on network efficiency to deliver adequate
electricity throughout the day, and thus worsen the demand-supply gap. A charging
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behavior where most drivers are engaging in lower kWh delivery can be a main driver of
congestion at parking garages.

Fig 20. Depth of charging sessions by BEV drivers. Depth categories are defined as Deep: ≥50%,
Intermediate: <50% - >25%, and Shallow: ≤25%

It is important to understand how categorization of the session’s depth is defined, as it
cannot just rely on the responses gathered from drivers. To get such a category range, the
session data is analyzed, and the probability distribution curve is plotted. As shown in
figure 21, probability distribution modes occur at two values, 25% and 84%. In some cases,
due to varied information about battery size which is collected through the enrollment
survey the replenishment percentages are inflated to values above 100%. However, it
helped in defining the range of charging session depth, from deep to shallow.
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Fig 21. Probability distribution function of session depth, or the kWh delivered to the vehicle with
respect to the vehicle’s battery size.

This brings us to a question, is the behavior of choosing shallow sessions influenced or
correlated with demand-supply imbalance? The results from the analysis reveal a strong
correlation. As shown in figure 22, session depth has high variability across garages.
Especially at garages with high demand-supply imbalance. This plot illustrates the
distribution of charging sessions by BEV drivers across various campus parking garages,
categorized into three session depths – Deep, Intermediate, and Shallow.

The separate bar charts for each session type reveal distinct charging patterns across the
garages. Garages like Ritter, CUP, and Keck have a high fraction of deep sessions, indicating
that drivers tend to charge their vehicles for longer durations at these locations. In contrast,
garages such as Nuevo East, Pangea, and Birch have higher fractions of shallow sessions,
suggesting that drivers often engage in shorter, quick top-up charging sessions. The
intermediate sessions are more evenly distributed, reflecting moderate charging behavior
across multiple garages. This variability is more at garages where driver’s diversity is more.
This analysis highlights specific garages favored for different charging needs, providing
valuable insights for optimizing the placement and management of charging infrastructure
to cater to the varying demands of EV drivers.
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Fig 22. The fraction of BEV charging sessions that are “deep,” “intermediate,” and “shallow,” by parking
garage.

Since shallow sessions are a commonly adopted behavior across garages, it is worth
exploring how these charging demand-supply imbalances affect shallow sessions.
Interestingly, the analysis suggests that the garages with higher demand are associated with
fewer shallow sessions. The scatter plot shown in figure 23 displays the indicative
relationship with some mild trend between the demand-supply gap ratio on the x-axis and
the fraction of shallow charging sessions on y-axis. Each blue dot represents an observation
point, i.e., a garage. The slope represents a linear regression fit to the data, indicating the
overall trend in the relationship between the demand-supply ratio and the fraction of
shallow sessions. This explains that the fraction of charging sessions is more where the
demand-supply gap is high and likewise session is less where the gap is low. The number of
data points is low, and there is quite some spread around the trend line, indicating a
considerable amount of variability in the fraction of shallow sessions for given
demand-supply ratios. This suggests that while there may be a general trend, other factors
are also influencing the adoption of shallow session behavior.
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Fig 23. The fraction of shallow sessions by garage as a function of the demand-supply ratio of the
garage. The blue dots are individual garages with charging stations, and red line is trend of

demand-supply gap.

To further evaluate the session distribution, a k-mean cluster is plotted. As illustrated in
figure 24, the scatter plot has EV battery charged percent per session in the x-axis and
kilowatt-hours of charging delivered during that session in the y-axis. The points are
colored based on their allocated cluster. Orange and blue clusters represent a group of
charging sessions where they replenish up to 25 kWh of charging and are thus located
primarily at the lower end of the y-axis. This charging behavior could be typical of drivers
who regularly replenish their batteries rather than performing full charging at once. On the
contrary, the green cluster has a comparatively wide range of charged percentage but tends
to have higher kWh energy delivered. These indicate medium to long charging sessions that
delivered a substantial amount of energy. These clusters help in understanding the depth of
the session, as well as where optimization of charging infrastructure is needed the most.
For instance, locations with more users from cluster two might need higher capacity
chargers or more charging stations to accommodate deeper sessions.
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Fig 24. K-mean clustering for percent of charging session by kWh charge delivered.

As the campus network expands, a higher supply of chargers might lead drivers to charge
more frequently with shallower sessions, a behavior that should be discouraged when
possible.

V. Future work

Training LSTM learning model to better predict future workplace charging behavioral
patterns from the revealed and stated preference of identified drivers. Based on the current
scope, for training the model, the task involves building and evaluating a deep learning
model to predict EV charging behavior, which is crucial for optimizing the charging network
or infrastructure.

A. Dataset preparation

A similar dataset is used for this purpose, with a focus on attributes such as date, day, time,
garage, vehicle type, charged percent, and session depth. Data preparation involved filtering
for BEVs, converting date and time formats, normalizing features, and creating sequences
for the LSTMmodel.

B. Baseline model - LSTM

Model architecture

A linear regression model is implemented as a sample baseline to provide a reference
regression line for evaluating the performance of the LSTM model prediction. Linear
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regression is straightforward and offers a quick way to assess the predictive power of basic
statistical methods.

Data preparation

The dataset is normalized, and sequences are created for the LSTM model. For the linear
regression model, the sequences are flattened to fit the model requirements.

Training and evaluation

The linear regression model is trained on the flattened training data. Predictions are made
using the linear regression model on the test data, and the MSE is calculated to evaluate its
performance.

C. Deep learning - LSTM

Model architecture

An LSTM-based Neural Network is adopted due to its ability to capture temporal
dependencies in sequential data. It consists of two LSTM layers with 150 units each,
followed by dropout layers for regularization, and a dense output layer.

Model training

The model is trained using the Adam Optimizer with a learning rate of 0.001, batch size of
64, and early stopping based on validation loss to prevent overfitting. The training is
conducted over 100 epochs with a validation split of 20%.

Fig 25. Training and validation loss curve with 40 epoch

Model implementation

The dataset is split into training and test sets, sequences are created, and the model is
trained on the processed data. The training included plotting the loss curves for analysis as
shown in figures 25 and 26. Initially, the model is trained for 40 epochs to prevent
overfitting, which is expected to occur when the model is closely aligned to the training
data, capturing noise instead of general patterns, leading to poor performance. By stopping

46



the training early (at 40 epochs), it prevented model’s overfitting. After the training run, it
is noticed that the model could smooth with additional training, therefore, run for another
10 epochs. This additional step is to fine-tune the model to achieve the best possible
outcomes, specifically to check how the loss (error) evolves over time.

D. Analysis and result

Comparison of Models

The linear regression model is adopted for the baseline comparison. The MSE used for the
baseline model is calculated to gauge its performance. The LSTM model's effectiveness is
also analysed by the MSE on the test set. The comparison showed that the LSTM model
provided a more accurate prediction of the charged percent compared to the baseline linear
regression model. The results of the simulation are–baseline model MSE is 0.0339, and
LSTMmodel MSE is 0.0328.

Fig 26. Training and validation loss curve with 50 epoch

Effectiveness of adjustments

Key adjustments in the LSTM model included the use of dropout layers to prevent
overfitting and the implementation of early stopping to halt training when the validation
loss stopped improving. These adjustments are crucial in stabilizing the training process
and improving the generalization of the LSTMmodel.

The plot shown in figure 27 and 28 is for a subset of predictions that demonstrate the
model's ability to capture temporal patterns effectively. Figure 29 illustrates the predicted
vs. actual charging percent for both the baseline and LSTM models, providing a visual
comparison of their performance across different feature classes.
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Fig 27. LSTM model performance with a subset of actual and predicted charging percentage data
simulation at 100 epoch

Fig 28. Baseline model performance with a subset of actual and predicted charging data simulation at
100 epoch
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Fig 29. Prediction of percentage battery charged with both baseline and LSTM performance on feature
classes.

E. Early findings

Fig 30. Heatmap of predicted charging percentage by week and day of the recorded year.

The heatmap shown in figure 30 is an illustration of how charging behavior varies
temporally. Here, the x-axis is the days of the week, from Monday, i.e., zero to Sunday, i.e., 1,
and the y-axis is the weeks of the year, from 1 to 52. In terms of weekly trend, the yellow
sheds indicate higher average charging percentages around weeks of 36 to 40 and 48 to 50,
whereas lower average charging percentages are observed around weeks 1 to 9 and week
52, indicated with blue shades. In terms of seasonal variation, week 1 to 9 indicates lower
less intensive use or different charging behavior, and by weeks 36 to 50 more consistent
average charging percentages behavior. This could be due to seasonal factors, increased EV
usage, or other external factors influencing charging behavior which is a matter of further
investigation.

The heatmap reveals clear temporal patterns in charging behavior, with distinct periods of
high and low charging activity. Consistency in certain weeks suggests predictable charging
behavior, which can be useful for planning and optimizing charging garage utilization. In
terms of seasonal variation, the higher average activity is in the mid to late year and might
be influenced by academic calendar or seasonal factors such as weather, long-off due to
summer break, or changes in commuting patterns due to work priority.

Figure 31 illustrates the predicted charging percent of EVs over the weeks of the year,
compared with the actual charging percentage predictions. This prediction is made by the
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baseline linear regression model about the results retrieved from the LSTM model. The
x-axis represents weeks of the year and the y-axis charging percentage, is normalized to a
scale from 0 to 1. Here, the blue line is the actual charging percentage, whereas the orange
represents the predicted charging percentage by the baseline linear regression model and
the green line is the predicted charging percentage by the LSTM model. The shades
represent uncertainty in this prediction.

Fig 31. Predicted charging percent of EVs over the weeks of the year

In the early weeks of the year, i.e., represented as 0.0 to 0.1, both the baseline and LSTM
models could not capture the high variance in the actual charging percentages. The
predictions show significant deviation from the actual values, indicated by the wider
shaded areas. Whereas towards the mid-year, i.e., represented from 0.1 to 0.6, explains that
as the weeks progress, both models begin to stabilize. The LSTM model shows better
alignment with the actual values compared to the baseline model, although some
deviations still exist. In the remaining part of the year, the LSTM model closely follows the
trend of the actual charging percentages, indicated by the narrower shaded areas, revealing
lower variance and higher confidence in predictions.

What this means is the actual charging percentage shows a general increasing trend over
the weeks, which is better captured by the LSTM model than the baseline model. This
indicates that the LSTM model is more effective in capturing the temporal patterns in the
data. While both models show improvement over time, the LSTM model's performance is
consistently better, highlighting the advantage of using a more complex model for
time-series data.

The LSTM model, with its ability to capture temporal dependencies of stated preferences,
provides a more accurate and confident prediction of EV charging percentages over time
compared to the baseline linear regression model. This enhanced understanding can
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significantly benefit planning strategies for charging session optimization in several ways
as elaborated in the recommendation.

F. Future work

Future work could be to explore incorporating additional features such as deviation
patterns, energy consumption, travel distance, and user demographics to further refine
predictions. Additionally, experimenting with different model architectures and
hyperparameter tuning could yield further improvements. Investigating other types of
models such as RNNs and ensemble methods could also provide valuable insights and
potentially enhance prediction accuracy to aid the strategic planning of workplace charging
infrastructure.
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VI. Conclusion and recommendations

This study on workplace EV charging behavior at UCSD provides crucial insights into the
heterogeneity of charging practices among diverse EV drivers. The findings emphasize the
significant disparities in the supply of charging infrastructure across campus parking
garages relative to demand for charging at those garages. Some garages experience high
demand-supply imbalances, leading to frequent deviations from preferred charging
locations and underutilization of the network. It also highlights the predominance of
shallow charging sessions, which are less efficient and contribute to congestion at charging
stations.

The study identifies key factors influencing charging behavior, including access to home
charging, commute distance, and drivers’ demographics. Drivers without home charging
access, particularly those with no-access to home charging face greater challenges in
finding available charging spots, resulting in higher deviation rates. The temporal patterns
of charging sessions indicate peak usage times that coincide with typical work hours,
further stressing the importance of optimal charger placement and availability. To optimize
the effectiveness of the EV charging infrastructure provided at the workplace, the following
recommendations are proposed:

I. Enhancing the charging network by targeted distribution.

Prioritize the installation of new charging stations in high-demand garages identified in the
study to address current imbalances. Focus on areas such as Athena, Gilman, and Scholars,
where the demand-supply gap is most pronounced. While other goals such as access and
equity are important, prioritizing charger placement in these high-demand areas will
maximize kWh sales, EV throughput, and charger cost recovery. The analysis identified six
garages with high demand but few forthcoming chargers: Bachman, Campus Point East,
Campus Point West, Rady, School of Medicine, and Keck. Strategically increasing the number
of chargers in such garages will address the current imbalances and improve overall
network efficiency.

II. Encouraging deeper charging sessions over shallow and intermediate sessions.

Currently, garages with lower demand-supply gap ratios have higher rates of shallow
charging sessions, leading to underutilization of the charging infrastructure. To mitigate
this, there should be consideration for implementing ‘driving more incentives’ such as
kWh-based pricing to encourage drivers to engage in deeper charging sessions. This
approach will enhance the efficiency of the charging network by reducing the frequency of
shallow sessions and optimizing charger usage.

By adopting these recommendations, the workplaces can enhance the performance and
user satisfaction of its EV charging network, supporting the broader adoption of EVs, and
contributing to sustainable transportation initiatives on campus. Implement policies and
incentives to encourage deeper charging sessions over shallow ones. This could include
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providing discounted rates for longer charging durations or offering priority access to
charging stations for drivers who have a considerable trend of engaging in deeper charging.

III. Improving equity among drivers with no access to home charging.

Develop targeted support programs for drivers who lack home charging options. This could
involve providing dedicated charging slots or offering financial assistance for home charger
installations, particularly for lower-income employees.

Introducing a reservation system or time-based access for EV charging can significantly
enhance the efficiency and fairness of charging infrastructure utilization. Such systems can
help manage peak usage times, ensuring that charging opportunities are distributed more
evenly throughout the day. Key aspects and benefits of this approach could be:

a. Allowing drivers to reserve charging slots in advance, ensuring they have access to
charging when and where they need it. This can reduce uncertainty and stress for
drivers, especially those who perform deep charging sessions. This may discourage
randomness by choosing multiple shallow or intermediate sessions.

b. Introducing penalties for no-shows or delayed cancellations to ensure that reserved
slots are utilized efficiently. This can include fines or non-rebated costs of charging
privileges. Charging club members who avail discounted changing costs might get
discouraged for the next plug-in session.

c. Providing real-time updates on available charging slots would allow drivers to make
informed decisions about when and where to charge.

d. Introducing variable pricing based on peak and off-peak hours charging. Charging
during off-peak hours could be cheaper, incentivizing users to charge during times
when the grid is less stressed.

IV. Expanding public awareness and education about workplace charging, plug-in
hours, and depth of charging sessions.

Conducting educational campaigns to inform charging infrastructure users about the
benefits of optimal charging practices and the impact of their charging behavior on the
overall efficiency of the network. Raising awareness about the advantages of deeper
charging sessions, including improved commute efficiency and potential incentives, should
be prioritized. These campaigns will help drivers understand how their charging habits
affect both their own experience and the broader charging infrastructure.

V. Continuous monitoring of access and garage utilization.

Establish a robust monitoring system to continuously assess the performance and
utilization of the charging infrastructure. Using this data to conduct a similar kind of
analysis at regular intervals could help inform decisions on future expansions and required
improvements.
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VIII. Annexure

Table 6. Count of drivers’ affiliation by their gender engaged in charging sessions over different
garages.
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Table 7. Count of charging sessions occurred by relevant garages and their zone.
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Table 8. Count of charging ports installed in different garages and zones by their coordinates and
service providers.

Table 9. Charging session matrix by garages.
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