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Summary 

Adoption of electric vehicles is surging across the state, country, and world, driven by 

government policies to reduce carbon emissions from the transportation sector. To 

maximally reduce emissions of EVs, however, drivers must charge their vehicles when clean 

electricity generation, such as solar and wind power, is abundant. In California, this means 

charging during the daytime when most people are at work. 

Workplace charging plays a pivotal role in this context. Many EV drivers, especially those 

living in apartments or rented accommodations, lack access to home charging options. For 

these drivers, workplace charging provides a critical solution, enabling them to charge their 

vehicles during the day when renewable energy is most available. Moreover, workplace 

charging can significantly alleviate range anxiety, making EVs a more viable and attractive 

option for a broader segment of the population. Although the affordability of EVs has 

improved significantly, the challenge remains in finding reliable and accessible charging 

stations. Workplace charging addresses this issue, aligns with the goal of equitable access to 

charging infrastructure, promotes adoption, and supports the wider transition to electric 

mobility. 

This study examines drivers' charging behavior at charging facilities at the University of 

California San Diego and is extensible to any workplace. The primary motivation is to analyze 

the heterogeneity in where and how EV drivers charge their vehicles. By mining natural 

variations in the data, the study aims to inform institutional policies and planning that 

encourage workplace charging and deliver a positive charging experience for drivers.  

A. Project scope and methodology 

Using datasets on drivers’ preferences around charging, charging sessions, and UCSD’s EV 

charging network, this project conducted a detailed analysis of EV drivers’ charging 

behavior, focusing on both the spatial and temporal aspects of charging. The data for this 

study are derived from enrollment surveys of 806 real (anonymized) UCSD EV drivers, 

alongside more than 55,000 unique charging sessions retrieved from the two main charging 

service providers at UCSD—ChargePoint and PowerFlex. Key components of the study 

include: 

Imbalances in the demand for charging and the supply of chargers across campus. 

Understanding the demand-supply imbalance in charging sessions across various campus 

locations is crucial. The study identifies garages with high demand but relatively few 

chargers, leading to significant disparities and underutilization of network efficiencies. 

Driver preferences for campus charging location vs. what is revealed by their real charging 

behavior. The study compares drivers’ stated ideal campus charging location with actual 

charging session data to identify discrepancies and analyze supply-demand imbalances 

across the campus that may cause deviations in charging location. 
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The depth, or size, of sessions that drivers’ initiate. Analyzing whether drivers engage in deep 

or shallow sessions and how these behaviors are distributed spatially across campus. 

Frequent shallow sessions are identified as a significant factor leading to an underutilized 

and inefficient charging network. 

Identification of driver traits that affect session depth. The study emphasizes identifying 

commuter traits that influence EV charging infrastructure needs at both micro and macro 

scales. This includes demographic factors, such as their affiliation, where they live, access to 

home charging, and commute distances. 

The analysis of EV charging behavior at UCSD reveals critical insights into the utilization 

patterns, demand-supply imbalances, and session depths across different campus zones. By 

examining the data, several key findings have emerged that highlight the unique challenges 

and opportunities within the existing charging infrastructure. These findings provide a 

foundation for targeted improvements to enhance network efficiency, equity, and overall 

user satisfaction. While the study focuses on behaviors at UCSD, the lessons learned are 

anticipated to be generalizable to other workplaces outside the campus. 

B. Key findings 

Supply and demand imbalances: 

There are significant disparities in the availability of charging infrastructure across different 

campus zones. High-demand garages such as Athena, Gilman, and Scholars experience 

notable supply shortages, leading drivers to frequently deviate from their preferred charging 

location and charge elsewhere. Six garages with high demand but few forthcoming chargers 

were identified – Bachman, Campus Point East, Campus Point West, Rady, School of 

Medicine, and Keck. 

Charging session depth: 

Data reveal that garages with lower demand-supply ratios have higher rates of shallow 

charging sessions. These shallow sessions are less efficient and can contribute to congestion 

at charging stations. Encouraging deeper charging sessions can improve network efficiency 

and parking garage utilization. 

Influencing factors: 

Access to home charging, commute distance, and driver demographics significantly impact 

charging behavior. Drivers without home charging access, particularly those from lower-

income groups, face greater challenges in finding available charging spots and have higher 

deviation sessions. Temporal patterns show peak usage times coinciding with typical work 

hours, stressing the need for optimal charger placement and availability. 

C. Conclusion and recommendations 

This study on workplace EV charging behavior at UCSD provides crucial insights into the 

significant disparities and heterogeneity in the demand for charging and supply of charging 
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infrastructure across different campus zones. The findings reveal prevalent shallow charging 

sessions and high demand-supply imbalances in specific garages, leading to network 

inefficiencies and driver inconveniences. To address these issues, the following strategies 

are recommended: 

Prioritize installing new charging stations where supply-demand imbalances are greatest: 

Prioritizing the installation of new charging stations in garages with high demand-supply 

imbalances, such as Athena, Gilman, and Scholars, to address current imbalances is crucial 

for mitigating deviation sessions and encouraging deeper sessions. It is important to focus 

on maximizing kWh sales, EV throughput, and charger cost recovery while also considering 

goals of access and equity. 

Encourage deeper charging sessions: 

Implementing incentives such as kWh-based pricing may encourage deeper charging 

sessions, reducing the frequency of shallow sessions and optimizing charger usage. 

Additionally, developing targeted support programs for drivers lacking home charging 

options, including dedicated charging slots for long-hour charging. 

Optimize charging schedules: 

Introducing a reservation system or time-based access to manage peak usage times, 

distributing the charging load more evenly and reducing congestion during peak hours may 

influence behavior heterogeneity. 

Continuous monitoring and adaptation: 

Establishing a continuous monitoring system to assess the performance and utilization of 

the charging infrastructure will inform decisions on future expansions and improvements. 

Preferably, focus on those parking garages where actions are most required. The enrollment 

survey-led incentive mechanism already exists as an effective method to communicate 

behavioral benefits directly to users. 

Expand public awareness and education: 

Awareness campaigns to inform drivers about the benefits of optimal charging practices and 

the impact of their behavior on network efficiency may increase emphasis on deeper 

charging sessions, including improved commute efficiency and potential incentives. 

By adopting these recommendations, UCSD can enhance the performance and user 

satisfaction of its charging network, supporting the broader adoption of electric vehicles and 

contributing to sustainable transportation initiatives on campus. 
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I. Introduction 

The transportation sector accounts for roughly 16% of total GHG emissions, with road 

transportation contributing around 11% (2022) of the total global share.1,2 In the United 

States (US) it accounts for 29%, while more than half, i.e. about 58% of road transportation 

emissions stemming from light-duty vehicles, referred to as passenger cars.3 To address this 

issue, the transportation sector is undergoing a massive transition to cleaner and more 

affordable means of mobility options. Electrification of mobility is a crucial component of 

this transition. Among the variety of alternatives, the adoption of BEVs, PHEVs, and HFCVs is 

widely promoted and accepted. Both government and private players have leveraged a range 

of subsidies and technological advancements to drive these changes, resulting in significant 

strides toward sectoral decarbonization. The impact of these efforts is evident in the 

reduction of direct air pollution and overall GHG emissions. A study suggests that BEVs emit 

significantly lower lifecycle GHG emissions compared to conventional gasoline cars, even 

when considering the emissions from electricity generation.4 In California, cities with high 

EV adoption rates, such as Los Angeles and San Francisco, have reported substantial 

improvements in air quality, benefiting public health. 

Governments worldwide are implementing policies to encourage the adoption of BEVs. For 

instance, the US government has implemented several policies to encourage the adoption of 

electric vehicles. Federal tax credits of up to $7,500 for new and up to $4,000 for eligible used 

EV purchases are available, which has significantly boosted consumer interest and sales.5 

Additionally, many states offer incentives, such as California's Clean Vehicle Rebate Project, 

which provides rebates for the purchase or lease of qualifying EVs.6 Similarly, private sector 

initiatives are also playing a pivotal role. Light-duty EV manufacturers like Tesla, Rivian, and 

Lucid Motors are at the forefront of producing advanced BEVs with longer ranges and 

shorter charging durations, making EVs more appealing to the end consumers.7  

Technological advancements are further accelerating the shift to electric mobility. 

 

1 Our World Database, (2022). Greenhouse Gas Emissions by Sector. <https://ourworldindata.org/ghg-

emissions-by-sector> 
2 The Climate Watch Data, (2021). Historical GHG Emissions. <https://www.climatewatchdata.org/ghg-

emissions?end_year=2020&source=US&start_year=1990> 
3 U.S. Environment Protection Agency, (2023). < https://www.epa.gov/greenvehicles/fast-facts-

transportation-greenhouse-gas-emissions> 
4 International Council on Clean Transportation, (2022). The lifecycle emissions of electric vehicles. 

<https://theicct.org/publication/ghg-benefits-incentives-ev-mar22/> 
5 U.S. Department of Energy, (2023). Federal Tax Credits for New All-Electric and Plug-in Hybrid Vehicles. 

<https://www.energy.gov/save/electric-vehicles> 
6 California Air Resources Board, (2023). Clean Vehicle Rebate Project. 

<https://ww2.arb.ca.gov/resources/fact-sheets/clean-vehicle-rebate-project> 
7 U.S. Department of Energy, (2023). Federal Tax Credits for New All-Electric and Plug-in Hybrid Vehicles. 

<https://fueleconomy.gov/feg/tax2023.shtml> 
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Improvements in battery technology have increased energy density and reduced the cost of 

batteries, making BEVs more competitive with traditional internal combustion engine 

vehicles.8 The development of fast-changing technologies is also enhancing the convenience 

of driving EVs, reducing charging anxiety significantly. 

The future of light-duty transportation is electric mobility. EVs are now growing rapidly, 

with over 14 million global sales in 2023, which is a 35% increase from the 2022 trend 

globally.9 The global number of EVs has reached an all-time high at 40 million in 2023. 

Although global sales of BEVs are on the rise, they are largely concentrated in China, Europe, 

and the US. By 2023, nearly 60% of new electric cars were registered in China, almost 25% 

in Europe, and only 10% in the US, which collectively accounts for about 95% of global EVs 

on the road. This means that, out of all new cars registered, more than one-third are EVs in 

China, one-fifth in Europe, and one in ten in the US. In terms of the US, EV sales reached a 

record high with over 1.4 million in 2023, i.e. 40% year-over-year growth compared to the 

2022 trend in this segment.10 As shown in figure 1, the US EV transportation sector is 

projected to undergo a 10 times growth by 2030, and will consistently grow thereafter. 

 

According to the PwC analysis of the US EV growth market, the infrastructure to support 

such a growth segment is projected to grow over $100 billion by 2040. Being among the early 

 

8 BloombergNEF, (2023). Electric Vehicle Outlook 2023. 

<https://assets.bbhub.io/professional/sites/24/2431510_BNEFElectricVehicleOutlook2023_ExecSummary.p

df> 
9 Global EV Outlook, International Energy Agency, (2024). <https://www.iea.org/reports/global-ev-outlook-

2024> 
10 Trend in Electric Cars, Global EV Outlook, International Energy Agency, (2024). 

<https://www.iea.org/reports/global-ev-outlook-2024/trends-in-electric-cars#abstract> 

27 million 

92 million 

2.73 million  

2024 

Fig 1. Projected growth trend of EV sales in the US market. 

Source: PwC Analysis (Akshay Singh, A. M. (2021). 
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starters and widely spread across the nation, ChargePoint, a prominent charging service 

provider in the US EV charging market, has a chance of generating most of the revenue. As 

shown in figure 2, growth is expected in the service and maintenance of charging 

infrastructure. The largest growth is assumed to be in the advanced hardware solutions that 

will drive over 20 billion market by 2030. Operations and maintenance-related software will 

grow but contribute a smaller portion of the market. What this indicates is the thriving state 

of the EV market ecosystem, both presently and in the future, which is a positive sign for 

continuum investments in research and innovation.  

 

 

Fig 2. Growth projection of EV infrastructure in the US by 2040. The upper range of revenue is assumed 

to be full adoption by 2040, and the lower range is assumed by 2045. CPO refers to ChargePoint 

operators, HW is hardware, and SW is software. 

Source: PwC Analysis.11 

California state emerged as a frontrunner in adoption, accounting for a 37% increase in light-

duty EVs in 2022.12 From 2016 to 2022, the number of registered EVs in California 

quadrupled, from 0.24 million to 1.1 million.13 According to some estimates, there could be 

12 million EVs on California roads by 2035.14 As EV adoption accelerates, the demand for 

suitable charging infrastructure becomes increasingly critical. Currently, in the US there are 

approximately 0.18 million public and private charging ports available, which is insufficient 

 

11 The US electric vehicle charging market could grow nearly tenfold by 2030: How will we get there. PwC 

Analysis. <https://www.pwc.com/us/en/industries/industrial-products/library/electric-vehicle-charging-

market-growth.html> 
12 U.S. Energy Information Administration. <https://www.eia.gov/state/seds/seds-data-

fuel.php?sid=US#OtherIndicators> 
13 Alternative Fuel Data Centre. <https://afdc.energy.gov/stations/#/find/nearest?show_about=true> 
14 California Energy Commission. <https://www.energy.ca.gov/data-reports/energy-almanac/zero-emission-

vehicle-and-infrastructure-statistics/light-duty-vehicle> 
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to support the growing EV population on the road.15 In California, there are 75 EVs per 

charging location, the second highest in the nation, which is insufficient for the emerging 

demand.16,17 California alone needs to expand the charging network significantly, aiming to 

reach 0.25 million charging stations by 2025 to meet the state's ambitious EV goals.18 It is 

projected that approximately 1.01 million public and shared private chargers will be needed 

to support 7.1 million light-duty EVs by 2030. By 2035, this number is expected to rise to 

2.11 million chargers to accommodate 15.2 million passenger EVs. Additionally, around 0.11 

million chargers will be required to support 0.15 million medium- and heavy-duty EVs by 

2030.19 According to California’s government Executive Order N-79-20, it has intermediate-

term goals of including 5 million zero-emissions vehicles on roads by 2030 and 250,000 

public and shared charging stations by 2025.20 

  

 

15 U.S. Department of Energy, (2023). Electric Vehicle Charging Infrastructure Trends. 

<https://afdc.energy.gov/fuels/electricity-infrastructure-trends> 
16 Review Report, U.S. Energy Information Administration 

<https://www.eia.gov/totalenergy/data/monthly/> 
17 New ZEV Sales in California. <https://www.energy.ca.gov/data-reports/energy-almanac/zero-emission-

vehicle-and-infrastructure-statistics/new-zev-sales> 
18 California Energy Commission, (2023). Charging Infrastructure for Electric Vehicles in California. 

<https://www.energy.ca.gov/data-reports/reports/electric-vehicle-charging-infrastructure-assessment-ab-

2127> 
19 California Energy Commission, (2023). Assembly Bill 2127. 

<https://www.energy.ca.gov/publications/2024/assembly-bill-2127-second-electric-vehicle-charging-

infrastructure-assessment> 
20 Governor Brown Takes Action to Increase Zero-Emission Vehicles, Fund New Climate Investments, 

Governors’ Office. (2018). <https://archive.gov.ca.gov/archive/gov39/2018/01/26/governor-brown-takes-

action-to-increase-zero-emission-vehicles-fund-new-climate-investments/index.html> 
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II. Background 

The rapid adoption of EVs has highlighted the need for extensive charging infrastructure to 

support the growing EV usage. Despite the facilitation of several governments and private 

sector incentives for EV adoption, adequate charging infrastructure remains the key factor 

for miles-driving uptake. A major reason for this uptake is due to EVs’ competitive pricing 

and improved driving efficiencies that cover long-range in a single charge. Public and private 

charging infrastructures are expanding, and workplace charging emerges as a crucial 

component for equitable and affordable access for low to middle-income families or first-

generation commuters. In the context of US government regulations, ‘workplace charging’ 

refers to the dedicated provisions made of EV charging stations at the workplace to support 

and encourage their employees to drive electric vehicles.21 The US Department of Energy 

identifies workplace charging as a critical strategy to support the growing demand for EVs.22, 

23  

A. Why is workplace charging infrastructure important? 

Access to home charging is not universal, for example, for those living in apartments, rented 

accommodations, or multi-unit dwellings where installing personal charging infrastructure 

is often not feasible. Lack of home charging creates a significant barrier for new potential EV 

adopters. Charging infrastructure at workplaces is therefore expected to play a pivotal role 

in making EVs a more viable and attractive option for all segments of the population.  

 
Fig 3. California state “duck curve”, indicating net electric load after considering variable renewable 

energy generation, in GW. Data shown are for March-May, 2015-2023. 

Source: California Independent System Operator (CASIO) Today’s Outlook and EIA.24 

 

21 Implementing Workplace Charging within Federal Agencies, Margaret Smith, Energetics Incorporated. U.S. 

Department of Energy Vehicle Technologies Office. (2017). 

<https://afdc.energy.gov/files/u/publication/federal_wpc_case_study.pdf> 
22 Workplace Charging for Electric Vehicles. Alternative Fuels Data Center. 

<https://afdc.energy.gov/fuels/electricity-charging-workplace> 
23 How to Guide: Starting an electric vehicle workplace charging program. City of Boston Transportation. 

(2020). <https://www.boston.gov/sites/default/files/file/2020/03/1527-03%20-

%20Workplace%20Charging.pdf> 
24 Today in Energy, EIA (2023). <https://www.eia.gov/todayinenergy/detail.php?id=56880> 
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As California continues to increase its renewable energy capacity, a significant drop in net 

load is becoming more apparent during the middle of the day when solar generation peaks. 

This phenomenon, often referred to as the "duck curve" (illustrated in figure 3), represents 

the net load curve, which sharply rises in the evening as people return home and consume 

more electricity for different house purposes. This evening surge in demand occurs because 

most of the workforce follows a similar daily pattern—leaving home in the morning and 

returning in the evening. As a result, there is a widespread pattern of energy consumption 

that leads to a sudden and substantial increase in electricity demand during the late 

afternoon and early evening hours. This predictable surge puts significant stress on grid 

suppliers, as they must quickly ramp up production from non-renewable sources, such as 

natural gas or nuclear, to meet the heightened demand, often at a time when solar energy is 

tapering off. This strain on the grid underscores the need for better demand management 

strategies, such as encouraging daytime energy use through workplace EV charging, to 

alleviate the evening peak and make better use of abundant daytime solar power.  

From figure 4, it is evident that in California, renewable energy sources are insufficient for 

rapid ramping and can stress the grid, hence adding a load of charging does not make 

economic and environmental sense.  

 

Fig 4. California’s renewable energy supply and demand (in megawatts) over 24 hours, with every 5-
minute daily increment data, on June 1, 2024.  

Source: California Independent System Operator (CASIO) Today’s Outlook.25  

 

25 California ISO. <caiso.com/todays-outlook/supply> 
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Charging should be emphasized in hours when supply is adequate and environmentally 

sustainable. From a decarbonization perspective, it is the way future adoption needs to be 

planned as it has a significant impact on environmental outcomes throughout their lifecycle. 

As shown in figure 4 and 5, nighttime charging causes more emissions due to drawing energy 

from other than renewable sources. In contrast, daytime charging can leverage cheap 

renewable electricity that might have been sourced from solar power, which is more readily 

available during daylight hours. Adoption of such behavior has better possibilities of 

reducing reliance on fossil fuels and decreasing the overall CO2 emissions associated with 

EV charging. 

 

 

Fig 5. California electricity demand, March 12, 2019. 

Source: Scottmadden Management Consultants, White Paper 2019.26 

 

Adequate workplace charging infrastructure not only offers a convenient solution for 

emission reduction and helps to distribute the charging load throughout the day or reduce 

the strain on the power grid during peak hours but also encourages EV ownership, especially 

early adopters to consider as most reliable mobility for work. Allowing EV drivers to charge 

during their routine commute is more likely to access dependable and clean-sourced 

electricity, thus alleviating range anxiety and supporting their transportation needs.27 

Workplace charging offers multiple benefits to both employers and employees. For 

employers, it can add to an attractive employee benefit and address companies’ 

 

26 Charging Up: A Review of Electric Vehicle Workplace Charging, Scottmadden. (2019). 

<https://www.scottmadden.com/content/uploads/2019/04/ScottMadden_A_Review_of_EV_Workplace_Char

ging_2019_0401.pdf > 
27 Institute for Economic Policy Research, Stanford University, (2024).  Overcoming roadblocks to California’s 

public EV charging infrastructure. <https://siepr.stanford.edu/publications/policy-brief/overcoming-

roadblocks-californias-public-ev-charging-infrastructure> 
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sustainability commitments by reducing scope 3 emissions associated with employee 

commutes. For employees, they benefit from the convenience of charging while at work, 

potentially reducing the need for separate charging trips, and thus increasing workhour 

productivity.  

As shown in figure 6, the ideal workplace parking garage should be provided with adequate 

space available for EV charging stations along with space for non-EVs to park. The goal 

should be to provide charging spots when commuters need them and optimize the operating 

costs of a well-planned charging station network (with the right charging capacity per 

kilowatt delivered and number) distribution within the parking infrastructure. Any long 

charging queues or higher costs of kWh delivery may lead to drivers’ anxiety, and hence 

discourage EVs from workplace commutes.  

 

Fig 6. Schematic of an ideal workplace parking garage with adequate EV charging stations (blue) 

along with non-charging parking spaces (gray).  

Source: Shutterstock.com – 2367860679  

  

As the EV market is evolving as along with users’ perspectives on driving, better 

understanding is required to explain the complexity of users’ behavior and their 

synchronous responses to the infrastructure developed either by the private employer or by 

the public sector for charging-enabled parking. For this study, the aim is to establish a causal 

relationship between BEV drivers’ behavior? number? and the functional model of 

workplace charging infrastructure. This means, that establishing the positive and negative 

relationship between increasing BEV drivers has direct implications on energy consumption 

and plug-in parking congestion and has indirect implications on drivers’ deviation from 

desired charging location and lesser charging or battery replenishment cycle. It is assumed 

that there are fewer insights available to take decisive action on factors affecting the charging 

infrastructure optimization and usability maximization, especially among those drivers with 

no home charging access and who prefer driving BEV for work.  
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B. UCSD campus charging infrastructure 

As an expansion of the Scripps Institution of Oceanography established in 1904, UCSD is 

founded as a public university in 1960. It is a locus of eminent research scholars and 

practitioners from multidisciplinary fields. As one of the top 20 research universities in the 

world, the campus is located near the Pacific Ocean on approximately 2178 acres of coastal 

woodland in La Jolla, California. The campus sits on the ancestral homelands of the 

Kumeyaay Nation. Its rich academic portfolio includes 12 academic, professional, and 

graduate schools and over 200-degree programs, considered a public Ivy for academic 

research and practice.28  

The primary focus of this study is to identify a workplace parking structure which has a 

significant attribution of EV drivers, vehicle type, and charging network. Adequate 

demographic diversity and charging service utilization are assumed to be the key elements 

to explain the workplace charging heterogeneity and driver’s response to it. For this purpose, 

the University of California San Diego (UCSD) campus is found to be the most adequate 

location. Being one of the prominent educational institutions in the Western Hemisphere, it 

attracts more than 73,000 academic scholars and above 170,000 non-academic 

professionals every year. 29, 30   

With such large footfall every year, the campus is grappling with increasing EV influx and 

demand for public charging access, distributed for the proximity needs of professors, 

students, staff, and other affiliates along with visitors who prefer parking within campus 

premises. Due to its scale and diversity, it stands among the largest educational workplace 

charging networks in the world. Furthermore, since the campus is committed to its 

decarbonizing goals, with the support of the National Science Foundation, the California 

Energy Commission, and other key stakeholders from San Diego County, it has installed one 

of the largest public charging networks. As shown in figure 7, its installed capacity is 439 

Level 2 and 13 DCFC charging stations.31, 32 The future expansion is anticipated to add over 

762 Level 2 and 22 DCFCs by the end of 2025.33 Although the current charging network is 

 

28 Carnegie Classification of Institutions of Higher Education. 2020. 

<https://carnegieclassifications.acenet.edu/institutions/?basic2021__du%5B%5D=15> 
29 UCSD Campus Profile. 2023. <https://univcomms.ucsd.edu/about/campus-profile/#about-students> 
30 UCSD at Glance. 2024. <https://www.universityofcalifornia.edu/about-us/information-center/uc-

employee-headcount> 
31 Direct Current Fast Charging (DCFC) are made for rapid charging, preferably used around heavy-traffic and 

long-range transportation corridors. DCFCs can charge a BEV up to 80 percent in just 20 minutes to 1 hour, 

however these are not compatible with most of the PHEVs in the market. 

<https://www.transportation.gov/rural/ev/toolkit/ev-basics/charging-speeds > 
32 Level 2 charging are typical and most common charging ports, supplies higher-rate AC charging through 

240V (in residential applications) or 208V (in commercial applications) electrical service. Level 2 chargers 

can charge a BEV to 80 percent from empty in 4-10 hours and a PHEV in 1-2 hours. 

<https://www.transportation.gov/rural/ev/toolkit/ev-basics/charging-speeds > 
33 EV Project. <https://transportation.ucsd.edu/commute/drive-electric/projects.html > 
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half of the future expansion, it is distributed based on the vehicle influx within major parking 

garages on the campus. For instance, as shown in figure 7 the intensity of color on the 

heatmap indicates the frequency or density of charging sessions at each location, with 

brighter or more intense colors (reds and yellows) representing higher usage, and cooler 

colors (blues and greens) indicating lower usage. It is assumed that the east campus and 

graduate housing parking garages are frequently engaged by visitors of the medical centers 

and/or graduate residents.  

 

Source: UCSD’s transportation services.34 

C. Research questions and hypotheses 

Findings from this study are expected to provide drivers’ behavior patterns and plausible 

interventions for campus charging network optimization strategies. This study focuses on 

two distinct sets of data sources. The individual drivers’ response (N=806) has been 

recorded over a year through a voluntary incentive-led program, i.e., Triton EV Charging Club 

survey. Another set of data has been retrieved from charging sessions (n=53572), recorded 

over two seasons by charging service providers. The objective is to assess demand-supply 

heterogeneity among charging sessions and drivers' behavior-attributed responses from the 

 

34 UCSD’s transportation services. <maps.ucsd.edu/map/Default.htm> 

Fig 7. EV charging network of UCSD campus, described in zones and garages. The parking garages are 

segregated within five zones, that are illustrated in test word with different color code. The color 

density is reflecting the number of charging stations in different garages. 
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enrollment survey. It is assumed the findings will be useful in influencing new EV policies 

and infrastructure development planning on campus.  

This study is focused on two research questions and associated hypotheses.  

• First, does charging infrastructure distributed across the campus sufficiently meet the 

demand for charging services by commuters? There is substantial spatial heterogeneity 

across campus chargers, parking garages, and drivers’ working location. While chargers 

are installed in salient locations with anticipated high demand, no retrospective analysis 

of supply and demand has ever been done to calculate potential demand-supply gaps 

and associated attribution heterogeneity. With the campus EV network set to expand 

threefold over the coming years, this analysis looks to the network’s future to 

understand whether new chargers are being allocated in areas of highest demand for 

charging, thereby encouraging network optimization and cost recovery for the campus.  

• Second, once commuters arrive at campus, how do they charge their vehicles? 

Commuters might prefer to plug in frequently (e.g., every time they arrive at campus) 

independent of the charge in their battery. But charging with frequent, shallow sessions 

decreases network utilization because it blocks EV stalls for others who would 

otherwise use them. Fewer deeper sessions, rather than frequent shallower sessions, 

would improve network utilization and cost recovery. Encouraging drivers to charge via 

less frequent longer sessions would allow for overall more charging sessions within the 

existing infrastructure. One hypothesis is that drivers who commute long distances do 

primarily deep charging, while those who reside closer to campus more commonly do 

shallow charging. 

This research aims to explore driver behavior heterogeneity in the following manner:  

Supply and demand heterogeneity 

• Are EV chargers at UCSD supplied (properly sited) across parking garages to meet 

demand for charging?  

• Is the expansion of UCSD’s EV charging network occurring in parking garages with the 

highest demand-supply imbalances (where demand most exceeds supply)?  

Session depth heterogeneity 

• What is the nature of charging session depth across UCSD parking garages? 

• What explains variation in session depth? 

D. Driving and charging behavior  

Any individual using a motorized means of transportation medium and taking specific 

movement actions such as acceleration is referred to as driving (Higgs and Abbas, 2014). The 

advantage of such acceleration provokes the capacity of mile coverage, which tends drivers’ 

driving ability in different situations and circumstances (Guangchuan et al., 2016). Services 

and infrastructure are essential elements of addressing driving anxiety. Especially, in the 
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emerging driving culture with EVs, it emerges as a major concern. Well-distributed and 

reliable charging stations are crucial for preferring EVs for medium to long-range mobility 

(Giuseppe et al., 2023).  

Drivers’ charging demand is influenced by several factors, including access to private 

charging, driving range, and commute requirements (Myers and Hanna, 2023). This demand 

is shaped by individual charging behaviors such as the preferred plug-in time, choice of 

garage, and the depth of charging sessions. Research indicates that human stress or anxiety 

often arises when individuals perceive that the resources needed to meet a situation or 

circumstance are unavailable or insufficient (Lazarus and Folkman, 1984). The decision to 

adopt EVs for commuting, along with the associated charging behaviors, is governed by a 

complex interplay of social, environmental, economic, and psychological factors. In this 

context, access to workplace charging becomes particularly vital. Providing a convenient 

charging solution at the workplace, especially for those without access to home charging, 

significantly enhances EV usability and mitigates range and cost anxieties, making electric 

vehicles a more practical and appealing choice for daily commutes.35   

 

35 Alternative Fuels Data Center, U.S Department of Energy. <https://afdc.energy.gov/fuels/electricity-

charging-workplace> 
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III. Methodology and approach 

This study analyzes drivers’ charging behavior to guide the UCSD’s transportation and 

infrastructure policy. In-depth understanding of driver behavior is assumed to be important 

to encourage the adoption of EVs, particularly among drivers who prefer EVs for commuting 

to work. The first phase of analysis emphasizes establishing causal inferences of demand-

supply imbalance and charging session deviation. The second phase focuses on estimating 

drivers’ engagement with the charging infrastructure campus provides, estimating the 

charging session depth per driver and garage. Session depth is critical for drivers’ charging 

experience and cost recovery on investment.  

A. The challenge with estimating workplace charging behavior  

Decreasing prices, modified technological advantage, and increased attraction within the 

middle- and low-income classes have significantly increased EV adoption and hence demand 

for the charging infrastructure. Simultaneously, due to stringent government regulation and 

incentives for achieving decarbonization targets, more and more employers are providing 

charging infrastructure to encourage EV adoption. Adequate availability of charging stations 

like pots and parking spaces, incentives like free or minimum charging costs, parking time 

limits, etc., at a workplace may influence usage patterns. For instance, limited availability of 

parking slots and charging ports might lead to charging congestion, thus influencing EV 

regular usage (especially among BEVs and PHEVs users) for workplace commute.36 

The biggest challenge with estimating workplace charging behavior or usage pattern is due 

to variability in the employee and employer understanding (Shariatzadeh et al., 2024). 

Employees coming from different socio-economic backgrounds vary greatly regarding the 

type of car that they drive, the car usage, and the demand for charging during their working 

schedule (Lihore et al., 2023). Another challenge is the availability of reliable and accessible 

databases. The concept of workplace charging is relatively new, hence, there are few 

databases available to guide research on historical trends and compare usage patterns in 

practice.  

Being progressive to address workplace charging infrastructure design and adoption 

challenges, UCSDs transportation and planning departments have ensured routine and 

exhaustive database generation in collaboration with respective service providers and 

qualified researchers. To support this with primary data, the university has also ensured 

regular collection of drivers’ responses through a charging enrollment survey.  

 

36Charging Up: A Review of Electric Vehicle Workplace Charging. White Paper, Scottmadden Management 

Consultants, (2019). 

<https://www.scottmadden.com/content/uploads/2019/04/ScottMadden_A_Review_of_EV_Workplace_Char

ging_2019_0401.pdf/> 
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B. Study methodology 

In the first phase, drivers’ stated preferences, i.e., preferred plug-in time and location, are 

considered to quantify charging demand. Here the drivers’ charging preferences based on 

the garage and hours derived from their responses to the enrollment survey. It is subject to 

their proximity to work or commute distance from the garages. For each campus garage, the 

ratio of the number of drivers who stated their preference of charging at a particular garage 

to the number of charging ports available in that garage is calculated and used to derive 

insights regarding the demand-supply gap. Here the demand is defined as the unique driver 

(as per their unique random identification number) plugged in per parking garage. Whereas 

the supply is defined as the number of charging ports available per parking garage.  

Thereafter, drivers’ garage preference over deviation due to congestion is calculated to 

explain the deviation session per garage. Here deviation session is considered a crucial 

component of the analysis, as it will guide the drivers’ motivation for utilizing the charging 

infrastructure facilitated by the campus and most importantly, the battery replenishment. It 

is assumed that a higher driver deviation leads to lesser charging session depth. The session 

depth is the percentage of battery replenishment per charging session. Two other factors are 

also considered to be crucial for explaining drivers’ behaviors: the miles travelled to campus, 

and the availability of home charging. 

Drivers’ revealed preferences are quantified to build the causal inferences on behavioral 

attribution to the demand and supply gap. For each driver, I identified their full set of campus 

charging sessions and calculated the fraction of the total sessions they initiate at each garage. 

This helped in explaining the pattern of drivers’ engagement with the charging 

infrastructure. Given stated preferences for each preferred garage, I generated an N-by-N 

matrix that describes the frequency with which drivers deviate from their preferred garage 

when charging. Here, the N rows and N columns are distinct garages, and the matrix values 

are the mean frequencies with which drivers charge at both their preferred and non-

preferred (i.e., deviations) garages. This matrix also quantifies the probability with which a 

driver charges at any garage in reference to their chances of getting at preferred or deviate 

among other garages. 

Basic data clearing, analysis, statistical tests, and plotting is performed using the R library 

packages such as tidyverse, readr, dplyr (Sanguesa, 2021), grid, and ggplot2 (Alrubaie, 

2023). Key analysis objective it served as in to identify the charging demand-supply gaps are 

different garages, deviation sessions per garage, and therefore overall garage utilization. The 

analysis of garage utilization is also important to explain whether the drivers’ travel distance 

and access to home chargers play a causal role in their deviation. Whereas Python library 

packages such as numpy, panda, mapplotlib, seaburn, tenderflow (Abadi, 2016), sklearn is 

used to perform deep learning predictive model, i.e., random forest model (Y. Lu, 2018) and 

long-short term memory model (Shahriar S, 2020) which is important to train the model for 

predicting the future behavior responses.  
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The second emphasis is on calculating the depth of drivers’ charging sessions. The depth is 

determined by the median and mode from the full set of camping charging sessions per 

garage, complemented with information on their model type and battery size. For each 

session, I calculated the fraction of the battery replenished over the size of the battery. The 

mean and standard deviation of the depth of campus charging sessions is used to explain the 

deviation of the driver by their session depth. Furthermore, session depth was discretized 

into three categories: shallow, intermediate, and deep charging (see further details below).  

C. Data analysis and inference building 

Data on drivers' demographic diversity, type of EV, preference of charging session as a 

function of time of plug-in and plug-out, parking garage as the location of charging, duration 

of charging or sitting idle, session depth, distance travelled, access to home charging, 

university affiliation type, and many more variables were collected from the drivers’ survey 

response and charging sessions data from the service provider. Some of these variables, 

including commute distance, university affiliation, vehicle type, income, and access to home                                                                                                                         

network utilization and sufficiency, as well as on driver attributes and behaviors that explain 

charging outcomes.37 This study focuses on two primary analysis approaches: 

• Analysis of charging session depth adopted by drivers on any day of their plug-in 

preference and their spatial distribution relative to existing and future charging 

infrastructure facilitated.  

• Statistical tests to analyze drivers’ attribution to the category of charging session 

engaged in. This is to quantify the causal association between commuter type defined 

by a subset of key attributes, and their charging behavior.  

This study used three data sources, i.e., a) driver-stated preference collected from the 

charging club survey response, b) driver-revealed preference collected from the charging 

session data from the two service providers—ChargePoint and PowerFlex, and 3) charging 

network data collected from the UCSD’s transportation planning. The data attributes for this 

study are classified as drivers’ attribution and charging network as illustrated in Table 1 and 

Table 2.  

 

Table 1. Driver and charging session attributes. 

Data points  Attributes 

Demographic Age, gender, education, income, home ownership  

Affiliation Faculty, student, staff 

 

37 An optimal coordinated planning strategy for distributed energy stations based on characteristics of 

electric vehicle charging behavior under carbon trading mechanism. 

<https://www.sciencedirect.com/science/article/pii/S0142061522008808>, 

<https://ieeexplore.ieee.org/document/9194702> 

https://www.sciencedirect.com/science/article/pii/S0142061522008808
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Commute distance  Distance from home zip code to central UCSD campus 

Living arrangement Campus residence, own house, or rental apartment 

Charging access Home charging, public charging, and other charging options. 

EV type Year, make, model, type (BEV or PHEV) 

Charging session  Plug-in and plug-out time, charging and idling durations, 

energy consumed, session depth, and preferred and deviation 

sessions. 

 
Table 2. Attribution of charging network to drivers’ demand and supply and service 

utilization. 

Data points  Attributes 

Spatial distribution Zones and charging garages, proximity to the work location, 

residential, and other engagement priorities. 

Charging utilization  Charging garage preference and deviation, charging durations 

by parking garages and zones.  

 

D. Data sources and analysis objective 

Primary analysis is performed on a dataset comprising 66,346 individual charging sessions 

collected between September 2023 and February 2024. The data is sourced from two major 

charging service providers to the UCSD campus – ChargePoint and PowerFlex. The data is 

collected online while signing up for the charging session, and the feed lives on the cloud 

server. Key data outputs from this source are shown in Table 3. To avoid errors, the data set 

was cleaned of missing data, irrelevant information, and duplicate data. Individual drivers 

have a unique random number, which is followed by their attributes. After the data was 

sanitized, a total of 16,023 individual drivers charging attributions, i.e. network, driver, and 

vehicle, were considered for heterogeneity analysis.  

 
Table 3. Example of key session outputs, as generated by the service providers when a driver 

initiates a session. 

Attributes  Output 

Driver unique ID 2649 

Garage Arbor 

Zone Hillcrest 

EVSID 779181 

Session starts date 11/21/2023 

Session starts time 18:10:00 

Session starts minute 117730 

Session end date 11/21/2023 
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Session end time 18:40:00 

Session end minute 117760 

Session duration 30 

Charging duration 22 

Session idle 8 

kWh delivered 1.812999964 

Success charge 1 

Charging port type Level 2 

Port number 1 

Plug type J1772 

Session cost to the driver 0.54 

Lower kW at the initial  3.751034498 

 

To quantify the significance of network attributes on the driver’s charging behavior, the 

entire charging network of thirty-one parking garages is divided into five geographic zones 

(as shown in Table 4). Garages can be supplied by either ChargePoint (consisting of dual-

port stations), PowerFlex (consisting of single-port stations), or both. It is assumed that the 

driver who plugs in has the intention of battery replenishment, and therefore that parking 

garage cannot be occupied and uncharged. To analyze the charging supply, the session start 

time is considered to quantify day-to-night charging cycle and peak and non-peak charging 

hours. Likewise, session duration is the sum of actual energy consumed by the battery per 

charging session, with the remaining being session idle, which means the vehicle is not 

consuming any energy but occupying the parking space. A larger session idle duration 

indicates a larger deviation from the driver’s preferred garage.  

Table 4. Distribution of charging ports across the UCSD campus by zone and parking garage. 

Zone Garage Vendor Ports 

East campus Athena ChargePoint 10 

 Athena PowerFlex 27 

 CP East ChargePoint 2 

 CP West ChargePoint 2 

 Med Center ChargePoint 10 

Graduate housing Mesa Nuevo ChargePoint 10 

 Nuevo East ChargePoint 4 

 Nuevo West ChargePoint 30 

 OMS ChargePoint 2 

 South Mesa ChargePoint 2 

Hillcrest Arbor ChargePoint 12  
Bachman ChargePoint 6 
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Seaside forum Birch ChargePoint 2 

 Hubbs ChargePoint 4 

 Keck ChargePoint 2 

 MESOM ChargePoint 2 

 Ritter ChargePoint 2 

 Seaside Forum ChargePoint 4 

West Campus CSC ChargePoint 12 

 CUP ChargePoint 2 

 Faculty Club ChargePoint 2 

 Gilman ChargePoint 8 

 Gilman PowerFlex 25 

 Hopkins PowerFlex 20 

 Pangea ChargePoint 12 

 Pangea PowerFlex 4 

 Rady ChargePoint 10 

 Som ChargePoint 10 

 Scholars ChargePoint 28 

 South ChargePoint 26 

 Torrey Pines ChargePoint 14 

 

The analysis is complemented by a second dataset comprised of 804 individual charging 

enrollment survey responses gathered over a year from April 2023 to March 2024. Since it 

is an incentive-driven voluntary enrollment, the feed gathered is random and diverse. The 

survey captured more than fifty responses which vary across basic demographic information 

to specific stated preferences like garage preferences, vehicle type, distance travelled, home 

charging access, residence, etc., (see Table 5). Selective attributions are considered to 

quantify their implication of charging behavior.  

Table 5. Example of key stated preferences as collected by the enrollment survey. 

Prompt Response 

Start date and time 1/28/2024 3:12 

End date and time 1/28/2024 3:27 

Charging duration 933 

UCSD affiliation Staff 

Work location UC San Diego Health-Sulpizio 

Cardiovascular Center 

Home location zip 92128 

Home type  Owned 

Living on-campus Off-campus 

Home charging access  No 
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Home charger type Unsure 

Vehicle make Hyundai 

Vehicle category Hyundai Ioniq BEV 

Vehicle make year 2022 

Vehicle model 2022 Ioniq 5 AWD (Long Range) 

vehicle operating type BEV 

battery size  88 kWh 

PowerFlex ID NA 

ChargePoint ID 31929381 

Garage preference East Campus (Athena, Medical 

Center, Skaggs) 

Garage preference others NA 

Household income $150,000 or more 

Age 36-45 

Gender Female 

Qualification Bachelor’s degree 

Charging operator No 

Modal charging time 06 to12 
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IV. Results and discussion 

The analysis was focused on a new method of appraising supply and demand imbalance by 

looking at the driver’s preference for garages, their deviation sessions from said preference, 

and the session depth, especially among those who have no access to home charging.  

A. Demand-supply imbalances 

From the enrollment survey response, stated preference is considered to quantify the user’s 

demand. Based on a unique identification number, autogenerated during enrollment, each 

respondent is considered a unique EV driver. Their stated preference for garages is 

considered as demand for charging. Likewise, supply is considered as the number of ports 

available per installed charging station. The fraction of supply and demand is estimated as 

shown in figure 8.  

Here, the distribution of the charging stations indicates that the usability of the parking 

garages closer to prominent working locations within campus is likely high. This means that 

the higher the gap is, the more demanded the garage like Athena, Gilman, and Scholars, all of 

which are located at the center of major engagement locations, are highly demanded. As 

demand is high and charging stations are insufficient, drivers likely tend to deviate from their 

preferred garages to the nearest available garages. On the contrary, garages like Pangea, 

which is in the center of major colleges, are in less demand. It is likely that a multimodal 

Number of drivers who prefer each garage (demand) 

Number of chargers installed (supply)   

Fig 8. Numbers of charging stations and drivers, by garage. The demand-
supply ratio is the ratio of charging stations to number of drivers who “prefer” 

that garage. 
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parking facility available nearby which allows access to parking space even for long hours is 

driving this pattern. CSC, Mesa Nuevo, Nuevo East, and CUP all exhibit low demand-supply 

gaps, which could be due to either fewer people driving EVs who work or live there, or to 

less deviation and deeper session charging. From figure 9, it is evident that there is a wide 

variation in demand-supply balance across garages. Some places are heavily engaged, and 

some are less. This also indicates a potential challenge with fulfilling the gap across the 

network.  

The question arises, are new chargers being installed in high-demand garages? Future 

charging stations, shown in figure 10, are unlikely to close the current demand-supply gap. 

While some forthcoming stations are planned for garages that show a large gap, their 

planned distribution does not always match current needs. For example, garages such as CP 

East and West, Keck, and Rady are all facing high to medium gaps and are not considered in 

future planning. The uneven distribution of forthcoming stations is clearly shown in figure 

11. A subset of garages that have high demand relative to existing chargers have relatively 

few new chargers scheduled for installation. Such a scenario will result in fewer charging 

sessions at preferred garages, producing congestion and leading to deviation sessions at 

adjacent garages. Therefore, current growth plans will not improve equity.  

 

Fig 9. Charging demand-supply gap by high, medium, and low ratio. 

demand-supply ratio 

lower 

medium 

higher 
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Fig 10. The number of installed and forthcoming charging stations.  

 

 
 

Fig 11. Distribution of demand-supply ratio by garage. Results are plotted across four 

quadrants and color distinguishes different garages with demand-supply ratio. 
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B. “Preferred” and “Deviation” charging sessions 

Drivers who look for charging stations at the campus either drive fully battery electric 

vehicles or plug-in hybrid electric vehicles that partially need battery as backup to improve 

driving milage efficiencies. Figure 12 illustrates the distribution of vehicle charging sessions 

at garage by plug-in time, BEV, and PHEV. The most significant charging sessions occur 

between 6:00am and 8:00am, with a sharp peak around 7:00am. This peak indicates a high 

demand for charging in the early morning hours, likely due to drivers plugging in their 

vehicles as they arrive at their destination. Another smaller peak is observed around 6:00pm, 

which might correspond to drivers plugging in their vehicles after their workday, might be 

those who either live in the campus housing or leave their service vehicles at the campus. 

Most of the charging sessions are by BEV across almost all hours, particularly during the peak 

morning hours. Also, it shows that BEVs are plugged in much more frequently than PHEVs, 

especially during the peak hours, suggesting that BEV drivers are more reliant on these 

sessions at the campus. Whereas, PHEVs show a more dispersed distribution of sessions 

throughout the day, with a noticeable presence during the early morning hours but 

significantly fewer sessions compared to BEVs during the peak times that might be an 
indication of least reliance on battery over gas as alternative sources.  

 

Fig 12. Average vehicle charging sessions by plug-in time and vechile type. 
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Session deviation means drivers deviating from their preferred garages in search of charging 

space close to their work location. As shown in figure 13, about 23% of all charging sessions 

are deviation sessions. This is one of the consequences of a demand-supply imbalance. 

Deviation sessions are important to notice as there is a dollar value attached to the drivers 

who deviate more and waste their time in finding an available parking garage with a charger. 

 

 

Figure 14 illustrates the relationship between the number of charging sessions and the 

frequency of deviations from preferred charging garages among drivers with home charging 

access. It differentiates between BEV and PHEV sessions, with BEV sessions shown in red 

and PHEV sessions in blue. The positive linear relationship observed in the trend lines for 

both vehicle types indicates that as the number of charging sessions increases, the frequency 

of deviations also rises. Notably, BEV drivers tend to deviate more frequently from their 

preferred garages as their total number of sessions increases, which is reflected in the 
steeper slope of the BEV trend line compared to the PHEV line. 

Fig 13. Percentage of deviation and preferred sessions. 
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Fig 14. Average frequency of charging sessions deviation of BEV and PHEV drivers who have access to 

home charging. 

The plot also reveals that most deviations occur among drivers with fewer sessions, 

suggesting that those who charge less frequently might have less consistent charging 

routines, leading to more deviations. Additionally, the presence of outliers, particularly 

among BEV drivers, indicates that some individuals exhibit high deviation frequencies even 

with relatively few sessions, possibly due to the greater flexibility or unpredictability in their 

charging patterns. The confidence intervals around the trend lines suggest greater variability 

in deviations for drivers with many sessions, particularly in the BEV group. It highlights that 

BEV drivers, who rely more heavily on charging infrastructure, may face more frequent 

deviations, underscoring the potential need for more dependable or increased charging 
options at their preferred garages to better accommodate their charging behaviors. 

Now, the question is, does deviation sessions of BEV occur more with no or less access to 

home charging? If an association exists between the two, this can be considered an issue of 

equity. As shown in figure 15, BEV drivers who have no access to home charging have more 

deviation sessions compared to those who have access. More than 2000 drivers have no 

access to home charging. These tended to deviate more frequently from their preferred 

garage, although comparatively they participated less in charging sessions. Drivers who have 

access participate more in charging sessions and are less likely to deviate from their 

preferred garage. Assuming that the lack of a home charger is to some extent indicative of 

the overall household income, this difference means that less affluent drivers who do not 

have home charges are suffering the most from the lack of adequate charging supply. This 

supports the idea that this can be considered an equity issue that could affect the adoption 
of EV vehicles for a subset of the campus community.  
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When looking at the deviation sessions by the commute distance, a relationship between the 

two is evident (figure 16). Travel distance is estimated as the number of miles separating the 

UCSD campus from the zip code of their residence. This might not be the actual travelled 

distance between the drivers’ home and their preferred parking garage, but it still provided 

a fair understanding of overall commuting distance. The distance is binned into five 

categories: drivers living on-campus housing (<1 mile), off-campus but within the county 
(<=10 miles), short (>10, <=25 miles), medium (>25, <=50 miles), and long (>=50 miles).  

The results reveal an unexpected pattern – deviation sessions are most prevalent among 

drivers who commute short distances, particularly those living on-campus or in near 

proximity to the campus. This pattern suggests that individuals who are closer to their 

preferred charging locations may be experiencing the most difficulty in securing a charging 

spot. This is likely because these drivers might rely heavily on the convenience of nearby 

charging stations, and when these stations are fully occupied or unavailable, they are forced 

to deviate to less convenient locations. 

 

Fig 15. The trend in deviation sessions for BEV drivers who have (right, 

blue) and don’t have (left, red) access to home charging. The red and blue 

dots are charging sessions adopted. 
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Fig 16. Fraction of deviation sessions by drivers’ commuting distance to the main campus. 

One potential reason for this trend could be the timing of charging sessions. Early morning 

arrivals, typically staff and faculty, likely occupy the charging stations first, leaving fewer 

options for those arriving later in the day, such as students. Additionally, the concentration 

of lecture hours starting after 9 am may further contribute to this deviation, as a surge in 

campus arrivals during this time could exacerbate the competition for available charging 

spots. This pattern underscores the importance of strategic planning in the distribution and 

availability of charging stations to ensure that those who need them most—particularly 
those with less flexibility in their schedules—can access them without undue inconvenience. 

Although the data available does not clearly support this claim, it seems like most of the 

charging stations plug-in early in the morning, from 6 to 8, as shown in figure 17. The highest 

concentration of charging sessions occurs between 7:00am and 10:00am, with a sharp peak 

around 8:00am. It is evident that the bulk of the charging peaks in the morning and then 

towards noon onward as second slot, which are 4hrs charging slots, mostly preferred by the 

drivers. Whereas other available charging slots offer 1hr and 12hrs slots which are least 

preferred at the campus. This indicates that many users plug in their vehicles early in the 

morning, corresponding to when most employees arrive at work. This suggests that as 

demand increases, the availability of preferred charging spots decreases, forcing many 

drivers to use alternative locations. After 10:00 AM, there is a gradual decline in the number 

of charging sessions throughout the day. This drop-off indicates that most users plug in early 

in the day and that the availability of charging stations likely improves as the day progresses, 

resulting in fewer deviation sessions later in the day. There are very few charging sessions 

between midnight and 5:00am, which is expected as most users are not on campus during 

these hours. The probability of deviation during these hours is also minimal. 

From the average sum of probability distribution, it evident that a larger proportion of 

sessions occur at preferred garages, however quite significant drivers have to move at non-
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preferred ones. The total number of sessions shown at the top is 539 sessions at preferred 

garages and 359 at non-preferred garages, suggesting a stronger tendency for drivers to 

willingness to stick to their preferred garages. 

 

 

Fig 17. Preferred and deviation sessions by plug-in time. 

When looked to the gender and affiliation distribution of charging sessions across the 

garages, as illustrated in figure 18, the distribution is even across diverse groups of people 

categorized by gender and working affiliation, i.e., female faculty, students, and staff, likewise 

for male and others. It is interesting to observe that most charging sessions is being practiced 

by female drivers and staff, the latter of which includes a wide array of working groups 

excluding faculty. For instance, Athena has a remarkably high count of female staff (depicted 

as pink bar) and a lesser count of male staff (depicted as light green), indicating that these 

two groups are the predominant users of this garage, which is surrounded by medical/ 

health care facilities. Bachman garage, which is also surrounded by health care facilities, 

shows a similar trend. 
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Fig 18. Distribution of charging session utilization by gender and their affiliation to the UCSD. 

To identify which garages, have the most frequent transitions or deviation, either within the 

same garage or among different garages, the garage-by-garage transition matrix is plotted as 

shown in figure 19. This is important to understand charging sessions depth which simply 

explains the total energy drawn within a particular charging duration adopted by a driver. 

Therefore, the dependent variable for session depth is the battery recharging needs and 

availability of the charging spot. For instance, the more the empty battery, the more the need 

for finding longer hours charging spot, which simply means more energy drawn and time 

spent. Since finding charging spot is time and location dependent, often driver deviate or 

engage with lesser battery charging session. The transition matrix as illustrated is crucial to 

determine the charging pattern in terms of driver’s deviation from their stated preference to 

non-preferred garages. Each cell in the matrix represents the frequency with which drivers 

charge at garages other than their preferred one. The color intensity of each cell represents 

the frequency. Garages such as Gilman and Scholars have high frequencies of deviation 

sessions, and are often interchanged by drivers, indicating that deviation sessions often 

occur among garages that are geographically closer. The overall pattern can also be 

interpreted to depict some garages being more central to the transition compared to others, 

and thus peripheral garages face congestion. For instance, garages like Athena, Gilman, and 

Scholars are central hubs with high charging frequencies, both by preferred drivers and by 

drivers from other garages who are deviated. On the other hand, garages like OMS, Ritter, 

and South Mesa have low deviation frequencies, indicating they are less centrally located or 

less frequently used. There are clear patterns of transitions, with certain garages being more 

popular destinations or points of origin for transitions than others, which is also an 
indication of heterogeneity within charging stations at different garages.  
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Fig 19. A garage “transition” matrix, indicating the garages that drivers charge in and when they do 
not charge in at their preferred garages. Color density and size indicate average charging fraction. 

C. Charging session depth 

When focusing on the charging behavior of the completely battery-operated cars, the drivers’ 

revealed preference indicated that they participate less in deeper sessions compared to 

shallow sessions. Figure 20 shows that less than 20% of BEV drivers engaged in deeper 

sessions, while over 50% engaged in shallow sessions. The depth of the session is defined as 

the kWh delivered during a charging session. If an EV replenishes more than 50% of their 

battery, they were considered to have engaged in a deeper session, likewise, charging below 

25% was considered a shallow session; values in between are intermediate sessions. The 

predominance of shallow sessions might be due to the lower availability of charging stations 

for deeper or might be an issue of proximity of charging stations to the workplace. Such a 

large fraction of sessions that are shallow is alarming. These sessions are problematic 

because they put additional stress on network efficiency to deliver adequate electricity 

throughout the day, and thus worsen the demand-supply gap. A charging behavior where 

most drivers are engaging in lower kWh delivery can be a main driver of congestion at 
parking garages.  
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Fig 20. Depth of charging sessions by BEV drivers. Depth categories are defined as Deep: ≥50%, 
Intermediate: <50% - >25%, and Shallow: ≤25% 

It is important to understand how categorization of the session’s depth is defined, as it 

cannot just rely on the responses gathered from drivers. To get such a category range, the 

session data is analyzed, and the probability distribution curve is plotted. As shown in figure 

21, probability distribution modes occur at two values, 25% and 84%. In some cases, due to 

varied information about battery size which is collected through the enrollment survey the 

replenishment percentages are inflated to values above 100%. However, it helped in defining 
the range of charging session depth, from deep to shallow.  
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Fig 21. Probability distribution function of session depth, or the kWh delivered to the vehicle with 

respect to the vehicle’s battery size. 

This brings us to a question, is the behavior of choosing shallow sessions influenced or 

correlated with demand-supply imbalance? The results from the analysis reveal a strong 

correlation. As shown in figure 22, session depth has high variability across garages. 

Especially at garages with high demand-supply imbalance. This plot illustrates the 

distribution of charging sessions by BEV drivers across various campus parking garages, 

categorized into three session depths – Deep, Intermediate, and Shallow.  

The separate bar charts for each session type reveal distinct charging patterns across the 

garages. Garages like Ritter, CUP, and Keck have a high fraction of deep sessions, indicating 

that drivers tend to charge their vehicles for longer durations at these locations. In contrast, 

garages such as Nuevo East, Pangea, and Birch have higher fractions of shallow sessions, 

suggesting that drivers often engage in shorter, quick top-up charging sessions. The 

intermediate sessions are more evenly distributed, reflecting moderate charging behavior 

across multiple garages. This variability is more at garages where driver’s diversity is more. 

This analysis highlights specific garages favored for different charging needs, providing 

valuable insights for optimizing the placement and management of charging infrastructure 

to cater to the varying demands of EV drivers.  
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Fig 22. The fraction of BEV charging sessions that are “deep,” “intermediate,” and “shallow,” by 
parking garage. 

Since shallow sessions are a commonly adopted behavior across garages, it is worth 

exploring how these charging demand-supply imbalances affect shallow sessions. 

Interestingly, the analysis suggests that the garages with higher demand are associated with 

fewer shallow sessions. The scatter plot shown in figure 23 displays the indicative 

relationship with some mild trend between the demand-supply gap ratio on the x-axis and 

the fraction of shallow charging sessions on y-axis. Each blue dot represents an observation 

point, i.e., a garage. The slope represents a linear regression fit to the data, indicating the 

overall trend in the relationship between the demand-supply ratio and the fraction of 

shallow sessions. This explains that the fraction of charging sessions is more where the 

demand-supply gap is high and likewise session is less where the gap is low. The number of 

data points is low, and there is quite some spread around the trend line, indicating a 

considerable amount of variability in the fraction of shallow sessions for given demand-

supply ratios. This suggests that while there may be a general trend, other factors are also 

influencing the adoption of shallow session behavior. 
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Fig 23. The fraction of shallow sessions by garage as a function of the demand-supply ratio of the 
garage. The blue dots are individual garages with charging stations, and red line is trend of demand-

supply gap.  

To further evaluate the session distribution, a k-mean cluster is plotted. As illustrated in 

figure 24, the scatter plot has EV battery charged percent per session in the x-axis and 

kilowatt-hours of charging delivered during that session in the y-axis. The points are colored 

based on their allocated cluster. Orange and blue clusters represent a group of charging 

sessions where they replenish up to 25 kWh of charging and are thus located primarily at 

the lower end of the y-axis. This charging behavior could be typical of drivers who regularly 

replenish their batteries rather than performing full charging at once. On the contrary, the 

green cluster has a comparatively wide range of charged percentage but tends to have higher 

kWh energy delivered. These indicate medium to long charging sessions that delivered a 

substantial amount of energy. These clusters help in understanding the depth of the session, 

as well as where optimization of charging infrastructure is needed the most. For instance, 

locations with more users from cluster two might need higher capacity chargers or more 

charging stations to accommodate deeper sessions. 
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Fig 24. K-mean clustering for percent of charging session by kWh charge delivered. 

As the campus network expands, a higher supply of chargers might lead drivers to charge 

more frequently with shallower sessions, a behavior that should be discouraged when 

possible. 

 

V. Future work 

Training LSTM learning model to better predict future workplace charging behavioral 

patterns from the revealed and stated preference of identified drivers. Based on the current 

scope, for training the model, the task involves building and evaluating a deep learning model 

to predict EV charging behavior, which is crucial for optimizing the charging network or 

infrastructure.  

A. Dataset preparation 

A similar dataset is used for this purpose, with a focus on attributes such as date, day, time, 

garage, vehicle type, charged percent, and session depth. Data preparation involved filtering 

for BEVs, converting date and time formats, normalizing features, and creating sequences for 

the LSTM model. 

B. Baseline model - LSTM 

Model architecture 

 A linear regression model is implemented as a sample baseline to provide a reference 

regression line for evaluating the performance of the LSTM model prediction. Linear 
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regression is straightforward and offers a quick way to assess the predictive power of basic 

statistical methods. 

Data preparation 

The dataset is normalized, and sequences are created for the LSTM model. For the linear 

regression model, the sequences are flattened to fit the model requirements. 

Training and evaluation  

The linear regression model is trained on the flattened training data. Predictions are made 

using the linear regression model on the test data, and the MSE is calculated to evaluate its 

performance. 

C. Deep learning - LSTM 

Model architecture  

An LSTM-based Neural Network is adopted due to its ability to capture temporal 

dependencies in sequential data. It consists of two LSTM layers with 150 units each, followed 

by dropout layers for regularization, and a dense output layer. 

Model training  

The model is trained using the Adam Optimizer with a learning rate of 0.001, batch size of 64, 

and early stopping based on validation loss to prevent overfitting. The training is conducted 

over 100 epochs with a validation split of 20%. 

 

Fig 25. Training and validation loss curve with 40 epoch 

Model implementation 

The dataset is split into training and test sets, sequences are created, and the model is trained 

on the processed data. The training included plotting the loss curves for analysis as shown 

in figures 25 and 26. Initially, the model is trained for 40 epochs to prevent overfitting, which 

is expected to occur when the model is closely aligned to the training data, capturing noise 

instead of general patterns, leading to poor performance. By stopping the training early (at 
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40 epochs), it prevented model’s overfitting. After the training run, it is noticed that the 

model could smooth with additional training, therefore, run for another 10 epochs. This 

additional step is to fine-tune the model to achieve the best possible outcomes, specifically 

to check how the loss (error) evolves over time. 

D. Analysis and result 

Comparison of Models 

The linear regression model is adopted for the baseline comparison. The MSE used for the 

baseline model is calculated to gauge its performance. The LSTM model's effectiveness is also 

analysed by the MSE on the test set. The comparison showed that the LSTM model provided 

a more accurate prediction of the charged percent compared to the baseline linear 

regression model. The results of the simulation are–baseline model MSE is 0.0339, and LSTM 

model MSE is 0.0328.  

 

Fig 26. Training and validation loss curve with 50 epoch 

 

Effectiveness of adjustments 

Key adjustments in the LSTM model included the use of dropout layers to prevent overfitting 

and the implementation of early stopping to halt training when the validation loss stopped 

improving. These adjustments are crucial in stabilizing the training process and improving 

the generalization of the LSTM model.  

The plot shown in figure 27 and 28 is for a subset of predictions that demonstrate the model's 

ability to capture temporal patterns effectively. Figure 29 illustrates the predicted vs. actual 

charging percent for both the baseline and LSTM models, providing a visual comparison of 

their performance across different feature classes. 
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Fig 27. LSTM model performance with a subset of actual and predicted charging percentage data 
simulation at 100 epoch 

 

Fig 28. Baseline model performance with a subset of actual and predicted charging data simulation at 
100 epoch 

 

 
Fig 29. Prediction of percentage battery charged with both baseline and LSTM performance on feature 

classes.   
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E. Early findings 

 

Fig 30. Heatmap of predicted charging percentage by week and day of the recorded year. 

 
The heatmap shown in figure 30 is an illustration of how charging behavior varies 

temporally. Here, the x-axis is the days of the week, from Monday, i.e., zero to Sunday, i.e., 1, 

and the y-axis is the weeks of the year, from 1 to 52. In terms of weekly trend, the yellow 

sheds indicate higher average charging percentages around weeks of 36 to 40 and 48 to 50, 

whereas lower average charging percentages are observed around weeks 1 to 9 and week 

52, indicated with blue shades. In terms of seasonal variation, week 1 to 9 indicates lower 

less intensive use or different charging behavior, and by weeks 36 to 50 more consistent 

average charging percentages behavior. This could be due to seasonal factors, increased EV 

usage, or other external factors influencing charging behavior which is a matter of further 

investigation.  

The heatmap reveals clear temporal patterns in charging behavior, with distinct periods of 

high and low charging activity. Consistency in certain weeks suggests predictable charging 

behavior, which can be useful for planning and optimizing charging garage utilization. In 

terms of seasonal variation, the higher average activity is in the mid to late year and might 

be influenced by academic calendar or seasonal factors such as weather, long-off due to 

summer break, or changes in commuting patterns due to work priority.  

Figure 31 illustrates the predicted charging percent of EVs over the weeks of the year, 

compared with the actual charging percentage predictions. This prediction is made by the 

baseline linear regression model about the results retrieved from the LSTM model. The x-

axis represents weeks of the year and the y-axis charging percentage, is normalized to a scale 

from 0 to 1. Here, the blue line is the actual charging percentage, whereas the orange 
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represents the predicted charging percentage by the baseline linear regression model and 

the green line is the predicted charging percentage by the LSTM model. The shades represent 

uncertainty in this prediction. 

 

Fig 31. Predicted charging percent of EVs over the weeks of the year 

 

In the early weeks of the year, i.e., represented as 0.0 to 0.1, both the baseline and LSTM 

models could not capture the high variance in the actual charging percentages. The 

predictions show significant deviation from the actual values, indicated by the wider shaded 

areas. Whereas towards the mid-year, i.e., represented from 0.1 to 0.6, explains that as the 

weeks progress, both models begin to stabilize. The LSTM model shows better alignment 

with the actual values compared to the baseline model, although some deviations still exist. 

In the remaining part of the year, the LSTM model closely follows the trend of the actual 

charging percentages, indicated by the narrower shaded areas, revealing lower variance and 

higher confidence in predictions.  

What this means is the actual charging percentage shows a general increasing trend over the 

weeks, which is better captured by the LSTM model than the baseline model. This indicates 

that the LSTM model is more effective in capturing the temporal patterns in the data. While 

both models show improvement over time, the LSTM model's performance is consistently 

better, highlighting the advantage of using a more complex model for time-series data. 

The LSTM model, with its ability to capture temporal dependencies of stated preferences, 

provides a more accurate and confident prediction of EV charging percentages over time 

compared to the baseline linear regression model. This enhanced understanding can 

significantly benefit planning strategies for charging session optimization in several ways as 
elaborated in the recommendation. 
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F. Future work 

Future work could be to explore incorporating additional features such as deviation 

patterns, energy consumption, travel distance, and user demographics to further refine 

predictions. Additionally, experimenting with different model architectures and 

hyperparameter tuning could yield further improvements. Investigating other types of 

models such as RNNs and ensemble methods could also provide valuable insights and 

potentially enhance prediction accuracy to aid the strategic planning of workplace charging 

infrastructure.  
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VI. Conclusion and recommendations 

This study on workplace EV charging behavior at UCSD provides crucial insights into the 

heterogeneity of charging practices among diverse EV drivers. The findings emphasize the 

significant disparities in the supply of charging infrastructure across campus parking 

garages relative to demand for charging at those garages. Some garages experience high 

demand-supply imbalances, leading to frequent deviations from preferred charging 

locations and underutilization of the network. It also highlights the predominance of shallow 
charging sessions, which are less efficient and contribute to congestion at charging stations. 

The study identifies key factors influencing charging behavior, including access to home 

charging, commute distance, and drivers’ demographics. Drivers without home charging 

access, particularly those with no-access to home charging face greater challenges in finding 

available charging spots, resulting in higher deviation rates. The temporal patterns of 

charging sessions indicate peak usage times that coincide with typical work hours, further 

stressing the importance of optimal charger placement and availability. To optimize the 

effectiveness of the EV charging infrastructure provided at the workplace, the following 
recommendations are proposed: 

I. Enhancing the charging network by targeted distribution. 

Prioritize the installation of new charging stations in high-demand garages identified in the 

study to address current imbalances. Focus on areas such as Athena, Gilman, and Scholars, 

where the demand-supply gap is most pronounced. While other goals such as access and 

equity are important, prioritizing charger placement in these high-demand areas will 

maximize kWh sales, EV throughput, and charger cost recovery. The analysis identified six 

garages with high demand but few forthcoming chargers: Bachman, Campus Point East, 

Campus Point West, Rady, School of Medicine, and Keck. Strategically increasing the number 

of chargers in such garages will address the current imbalances and improve overall network 

efficiency. 

II. Encouraging deeper charging sessions over shallow and intermediate sessions. 

Currently, garages with lower demand-supply gap ratios have higher rates of shallow 

charging sessions, leading to underutilization of the charging infrastructure. To mitigate this, 

there should be consideration for implementing ‘driving more incentives’ such as kWh-

based pricing to encourage drivers to engage in deeper charging sessions. This approach will 

enhance the efficiency of the charging network by reducing the frequency of shallow sessions 

and optimizing charger usage. 

By adopting these recommendations, the workplaces can enhance the performance and user 

satisfaction of its EV charging network, supporting the broader adoption of EVs, and 

contributing to sustainable transportation initiatives on campus. Implement policies and 

incentives to encourage deeper charging sessions over shallow ones. This could include 

providing discounted rates for longer charging durations or offering priority access to 
charging stations for drivers who have a considerable trend of engaging in deeper charging. 
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III. Improving equity among drivers with no access to home charging. 

Develop targeted support programs for drivers who lack home charging options. This could 

involve providing dedicated charging slots or offering financial assistance for home charger 
installations, particularly for lower-income employees. 

Introducing a reservation system or time-based access for EV charging can significantly 

enhance the efficiency and fairness of charging infrastructure utilization. Such systems can 

help manage peak usage times, ensuring that charging opportunities are distributed more 

evenly throughout the day. Key aspects and benefits of this approach could be: 

a. Allowing drivers to reserve charging slots in advance, ensuring they have access to 

charging when and where they need it. This can reduce uncertainty and stress for 

drivers, especially those who perform deep charging sessions. This may discourage 

randomness by choosing multiple shallow or intermediate sessions.  

b. Introducing penalties for no-shows or delayed cancellations to ensure that reserved 

slots are utilized efficiently. This can include fines or non-rebated costs of charging 

privileges. Charging club members who avail discounted changing costs might get 

discouraged for the next plug-in session.  

c. Providing real-time updates on available charging slots would allow drivers to make 

informed decisions about when and where to charge. 

d. Introducing variable pricing based on peak and off-peak hours charging. Charging 

during off-peak hours could be cheaper, incentivizing users to charge during times 

when the grid is less stressed. 

IV. Expanding public awareness and education about workplace charging, plug-in 
hours, and depth of charging sessions.  

Conducting educational campaigns to inform charging infrastructure users about the 

benefits of optimal charging practices and the impact of their charging behavior on the 

overall efficiency of the network. Raising awareness about the advantages of deeper charging 

sessions, including improved commute efficiency and potential incentives, should be 

prioritized. These campaigns will help drivers understand how their charging habits affect 

both their own experience and the broader charging infrastructure.  

V. Continuous monitoring of access and garage utilization. 

Establish a robust monitoring system to continuously assess the performance and utilization 

of the charging infrastructure. Using this data to conduct a similar kind of analysis at regular 
intervals could help inform decisions on future expansions and required improvements. 
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VIII. Annexure 

Table 6. Count of drivers’ affiliation by their gender engaged in charging sessions over different 
garages. 

 

Table 7. Count of charging sessions occurred by relevant garages and their zone. 

 

Garage Female_Faculty Female_Student Female_Other Female_Staff Male_Faculty Male_Student Male_Other Male_Staff Others_Student Others_Staff

Arbor 41 2 0 175 166 0 0 252 0 0

Athena 94 0 0 1141 53 45 0 702 0 21

Bachman 0 13 0 320 89 0 0 109 0 0

Birch 1 3 0 1 6 3 0 44 0 0

CP East 19 0 0 51 68 1 0 31 0 0

CP West 1 3 0 78 0 4 0 36 0 0

CSC 0 0 0 47 25 25 0 113 0 0

CUP 2 0 0 1 0 0 0 109 0 0

Faculty Club 3 22 0 75 7 87 0 7 0 0

Gilman 80 209 0 495 126 318 70 472 8 16

Hopkins 10 163 0 266 122 173 32 349 7 0

Hubbs 1 14 13 2 1 61 0 151 0 0

Keck 1 6 0 1 0 76 0 21 0 0

Med Center 0 1 0 135 14 9 0 37 0 87

Mesa Nuevo 0 142 0 177 1 94 0 33 0 0

Mesom 18 9 0 36 0 4 0 3 0 0

Nuevo East 0 6 0 4 0 79 0 4 0 0

Nuevo West 49 166 0 411 128 209 0 394 0 0

OMS 0 0 0 0 0 51 0 0 0 0

Pangea 1 33 0 110 12 64 0 39 1 0

Rady 10 170 0 81 53 287 0 110 1 0

Ritter 0 0 0 0 0 0 0 5 0 0

Seaside Forum 18 45 0 20 74 9 0 96 0 0

SOM 98 139 0 151 196 194 3 246 3 0

Scholars 82 404 0 266 144 1034 0 139 19 26

South 39 225 0 102 47 216 46 415 34 29

South Mesa 0 33 0 0 0 17 0 0 0 0

Torrey Pines 1 58 0 142 4 100 0 218 0 0

Garage Zone Sessions

CUP West Campus 13

Ritter SIO 13

South Mesa Graduate Housing 21

OMS Graduate Housing 44

Mesom SIO 49

CSC West Campus 60

Keck SIO 68

Hubbs SIO 107

Nuevo East Graduate Housing 107

Bachman Hillcrest 142

CP East East Campus 144

Pangea West Campus 161

Med Center East Campus 163

Torrey Pines West Campus 175

Faculty Club West Campus 202

CP West East Campus 237

Mesa Nuevo Graduate Housing 239

Seaside Forum SIO 241

Arbor Hillcrest 263

Rady West Campus 429

SOM West Campus 429

Hopkins West Campus 448

Nuevo West Graduate Housing 481

Birch SIO 558

South West Campus 615

Athena East Campus 866

Scholars West Campus 932

Gilman West Campus 1335



57 

 

Table 8. Count of charging ports installed in different garages and zones by their coordinates and 
service providers.  

 

 

Table 9. Charging session matrix by garages.  

 

Zone Garage Vendor Port Latitude Longitude

East Campus Athena Charge Point 10 32.87959 -117.222

East Campus Athena Power Flex 27 32.87961 -117.222

East Campus CP East Charge Point 2 32.88022 -117.226

East Campus CP West Charge Point 2 32.87972 -117.226

East Campus Med Center Charge Point 10 32.88089 -117.221

Graduate Housing Mesa Nuevo Charge Point 10 32.8755 -117.224

Graduate Housing Nuevo East Charge Point 4 32.87462 -117.219

Graduate Housing Nuevo West Charge Point 30 32.8763 -117.222

Graduate Housing OMS Charge Point 2 32.87387 -117.226

Graduate Housing South Mesa Charge Point 2 32.87242 -117.221

Hillcrest Arbor Charge Point 12 32.7542 -117.168

Hillcrest Bachman Charge Point 6 32.75517 -117.163

Seaside Forum Birch Charge Point 2 32.86626 -117.249

Seaside Forum Hubbs Charge Point 4 32.86707 -117.254

Seaside Forum Keck Charge Point 2 32.86955 -117.251

Seaside Forum Mesom Charge Point 2 32.87012 -117.252

Seaside Forum Ritter Charge Point 2 32.86549 -117.254

Seaside Forum Seaside Forum Charge Point 4 32.86438 -117.254

West Campus CSC Charge Point 12 32.86408 -117.254

West Campus CUP Charge Point 2 32.87445 -117.239

West Campus Faculty Club Charge Point 2 32.8793 -117.24

West Campus Gilman Charge Point 8 32.87749 -117.234

West Campus Gilman Power Flex 25 32.87812 -117.234

West Campus Hopkins Power Flex 20 32.88381 -117.239

West Campus Pangea Charge Point 12 32.88409 -117.243

West Campus Pangea Power Flex 4 32.88441 -117.243

West Campus Rady Charge Point 10 32.88718 -117.241

West Campus SOM Charge Point 10 32.87504 -117.238

West Campus Scholars Charge Point 28 32.87986 -117.242

West Campus South Charge Point 26 32.87986 -117.242

West Campus Torrey Pines Charge Point 14 32.89002 -117.243

Garage Torrey Pines Pangea Hopkins Gilman South Faculty Club Bachman CP East CP West Mesa Nuevo Nuevo East Nuevo West CSC CUP Birch Athena Arbor Keck Mesom Med Center Ritter South Mesa OMS SOM Hubbs

Arbor 9 0 0 393 342 23 299 743 2 90 43 7499 0 0 0 1247 0 0 0 0 0 0 0 299 0

Athena 35 0 237 816 666 7 658 206 1253 176 5 4563 95 3 41 0 1247 57 1 916 0 0 0 170 2

Bachman 90 0 0 52 343 43 0 481 12 12 6 539 0 0 7 658 299 0 0 0 0 0 0 41 0

Birch 0 0 0 3 29 1 7 1 1 2 2 20 0 0 0 41 0 21 10 0 0 33 0 14 15

CP East 0 0 0 31 91 15 481 0 410 6 6 1631 0 0 1 206 743 0 0 117 0 0 0 125 0

CP West 0 0 0 7 70 30 12 410 0 4 2 483 0 1 1 1253 2 3 0 4 0 0 0 71 0

CSC 6 0 0 1118 279 50 0 0 0 128 0 1162 0 0 0 95 0 0 0 9 0 0 0 586 89

CUP 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 3 0 0 0 0 0 0 0 0 0

Faculty Club 249 0 0 891 554 0 43 15 30 188 113 19 50 0 1 7 23 0 0 3 0 0 0 1005 3

Gilman 578 93 6153 0 2571 891 52 31 7 729 183 948 1118 0 3 816 393 50 2 7 0 0 0 4568 32

Hopkins 0 2681 0 6153 0 0 0 0 0 0 0 0 0 0 0 237 0 0 0 0 0 0 0 0 0

Hubbs 15 0 0 32 45 3 0 0 0 186 9 11 89 0 15 2 0 37 67 1 670 189 0 61 0

Keck 4 0 0 50 164 0 0 0 3 92 0 920 0 0 21 57 0 0 85 0 0 0 322 79 37

Med Center 15 0 0 7 0 3 0 117 4 0 4 406 9 0 0 916 0 0 0 0 0 0 0 12 1

Mesa Nuevo 0 0 0 729 2302 188 12 6 4 0 469 3127 128 0 2 176 90 92 9 0 0 47 195 6153 186

Mesom 0 0 0 2 13 0 0 0 0 9 9 9 0 0 10 1 0 85 0 0 0 243 0 4 67

Nuevo East 9 0 0 183 45 113 6 6 2 469 0 724 0 0 2 5 43 0 9 4 0 33 0 108 9

Nuevo West 118 0 0 948 1045 19 539 1631 483 3127 724 0 1162 1 20 4563 7499 920 9 406 0 89 335 372 11

OMS 0 0 0 0 75 0 0 0 0 195 0 335 0 0 0 0 0 322 0 0 0 30 0 0 0

Pangea 0 0 2681 93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ritter 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 670

SOM 136 0 0 4568 9681 1005 41 125 71 6153 108 372 586 0 14 170 299 79 4 12 0 0 0 0 61

South 509 0 0 2571 0 554 343 91 70 2302 45 1045 279 0 29 666 342 164 13 0 0 10 75 9681 45

South Mesa 0 0 0 0 10 0 0 0 0 47 33 89 0 0 33 0 0 0 243 0 0 0 30 0 189

Torrey Pines 0 0 0 578 509 249 90 0 0 0 9 118 6 0 0 35 9 4 0 15 0 0 0 136 15

Rady 1879 0 0 1652 681 601 0 11 13 169 95 255 321 0 4 105 202 65 1 0 0 0 140 672 12

Seaside Forum 66 0 0 122 164 14 39 16 0 188 3 247 192 0 205 275 25 40 11 18 0 27 0 222 144

Scholars 1549 0 0 8038 4964 2841 43 37 49 367 29 376 121 32 37 213 16 37 1 175 0 0 0 2144 20




