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Significance

Despite the success of cancer 
immunotherapy, discovering 
actionable tumor antigens as 
immunotherapy targets remains 
a major challenge. Aberrant 
alternative splicing (AS) is 
widespread in cancer and 
generates a large repertoire of 
potential immunotherapy targets. 
However, there is no well-
established strategy to discover 
AS-derived immunotherapy 
targets. We describe an integrated 
computational workflow for 
comprehensive discovery and 
characterization of AS-derived 
immunotherapy targets, 
leveraging large-scale RNA-seq 
resources of tumor and normal 
tissues. We demonstrate the 
application of this workflow for 
target discovery of 
neuroendocrine prostate cancer, 
a highly lethal cancer with no 
effective therapies. 
We experimentally confirm 
the immunogenicity and T cell 
recognition of AS-derived T cell 
receptor targets. Collectively, this 
work introduces a broadly 
applicable framework for 
discovering cancer 
immunotherapy targets arising 
from AS.
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IMMUNOLOGY AND INFLAMMATION

IRIS: Discovery of cancer immunotherapy targets arising 
from pre-mRNA alternative splicing
Yang Pana,b,1, John W. Phillipsc,1, Beatrice D. Zhangb,1 , Miyako Noguchic,1, Eric Kutscherab , Jami McLaughlinc, Pavlo A. Nesterenkod , Zhiyuan Maoe, 
Nathanael J. Bangayane, Robert Wangb,f, Wendy Tranc, Harry T. Yanga , Yuanyuan Wanga,b, Yang Xub,f, Matthew B. Obusanc , Donghui Chengg, 
Alex H. Leee,h, Kathryn E. Kadash-Edmondsonb, Ameya Champhekari, Cristina Puig-Sausi,j,k , Antoni Ribase,g,i,j,k,l,m , Robert M. Prinse,h,j,k, 
Christopher S. Seetd,g,i,j, Gay M. Crooksg,j,n,o, Owen N. Wittec,d,e,g,j,k,2 , and Yi Xingb,c,p,q,2

Contributed by Owen Witte; received December 14, 2022; accepted April 5, 2023; reviewed by Yiwen Chen and Stephen P. Schoenberger

Alternative splicing (AS) is prevalent in cancer, generating an extensive but largely 
unexplored repertoire of novel immunotherapy targets. We describe Isoform peptides 
from RNA splicing for Immunotherapy target Screening (IRIS), a computational 
platform capable of discovering AS-derived tumor antigens (TAs) for T cell recep-
tor (TCR) and chimeric antigen receptor T cell (CAR-T) therapies. IRIS leverages 
large-scale tumor and normal transcriptome data and incorporates multiple screen-
ing approaches to discover AS-derived TAs with tumor-associated or tumor-specific 
expression. In a proof-of-concept analysis integrating transcriptomics and immuno-
peptidomics data, we showed that hundreds of IRIS-predicted TCR targets are pre-
sented by human leukocyte antigen (HLA) molecules. We applied IRIS to RNA-seq 
data of neuroendocrine prostate cancer (NEPC). From 2,939 NEPC-associated AS 
events, IRIS predicted 1,651 epitopes from 808 events as potential TCR targets for 
two common HLA types (A*02:01 and A*03:01). A more stringent screening test pri-
oritized 48 epitopes from 20 events with “neoantigen-like” NEPC-specific expression. 
Predicted epitopes are often encoded by microexons of ≤30 nucleotides. To validate 
the immunogenicity and T cell recognition of IRIS-predicted TCR epitopes, we 
performed in vitro T cell priming in combination with single-cell TCR sequencing. 
Seven TCRs transduced into human peripheral blood mononuclear cells (PBMCs) 
showed high activity against individual IRIS-predicted epitopes, providing strong 
evidence of isolated TCRs reactive to AS-derived peptides. One selected TCR showed 
efficient cytotoxicity against target cells expressing the target peptide. Our study 
illustrates the contribution of AS to the TA repertoire of cancer cells and demon-
strates the utility of IRIS for discovering AS-derived TAs and expanding cancer 
immunotherapies.

RNA splicing | immunotherapy | T cell receptors

Cancer immunotherapy has gained remarkable success in the past decade. Checkpoint 
inhibitors, like neutralizing PD-1 and CTLA-4 antibodies, are thought to be clinically 
effective by reactivating tumor-specific T cells (1). In contrast, adoptive cell therapies use 
genetically modified T cell receptors (TCRs) and chimeric antigen receptor T cells 
(CAR-T) to target antigens expressed in cancer cells (2). The insight that cancer cells 
express specific T cell-reactive antigens has galvanized antigen discovery efforts in recent 
years (3–6). Nevertheless, the discovery of tumor antigens (TAs) remains a major challenge 
(7, 8). Although somatic mutation-derived TAs have been successfully targeted by cancer 
therapies (9–12), this approach remains largely ineffective for tumors with low or moderate 
mutation load (3).

Post-transcriptional RNA processing is an essential layer of eukaryotic gene expression, 
and its dysregulation has a major impact on the cancer cell proteome (13–15). Various 
types of RNA-level dysregulation can generate aberrant proteins and immunogenic pep-
tides in cancer cells (16–20). In a pancancer analysis, Kahles et al. found that tumors 
harbor up to 30% more alternative splicing (AS) events than normal tissues, and some of 
the resulting peptides are predicted to be presented by HLA molecules (16). In another 
study, experimental evidence of HLA class I (HLA-I) presentation of peptides derived 
from intron retention, a specific type of AS, was reported based on mass spectrometry 
(MS) proteomics data (17). These findings have inspired a growing interest in AS as a rich 
source of potential immunotherapy targets (14, 21).

Currently, there are limited computational tools for discovering AS-derived TAs. Two 
recently published tools, ASNEO (22) and NeoSplice (23), sought to discover AS-derived 
TCR targets for cancer immunotherapy. Both tools use RNA-seq data of tumor tissues 
as well as selected normal tissues to identify putative tumor-specific AS events, followed 
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by HLA binding prediction. However, they lack the computa-
tional infrastructure to leverage large cohorts of tumor and normal 
transcriptomes in public repositories to comprehensively deter-
mine the tumor association and specificity of predicted targets. 
Importantly, neither study experimentally tested the immuno-
genicity of predicted targets or their ability to activate functional 
T cell responses.

We have developed an in silico platform to discover and 
prioritize AS-derived immunotherapy targets of varying degrees 
of tumor association and specificity, by utilizing an “AS refer-
ence” that represents splicing profiles of tens of thousands of 
tumor and normal transcriptomes generated by large-scale con-
sortia (e.g. GTEx, TCGA) (24, 25). Our platform, Isoform 
peptides from RNA splicing for Immunotherapy target 
Screening (IRIS), enables a big-data informed discovery of 
AS-derived TCR and CAR-T targets through a streamlined 
framework (Fig. 1). IRIS is powered by the new generation of 
our widely used rMATS software (rMATS-turbo) (26) for AS 
analysis of RNA-seq data, with a substantial improvement in 
speed and computational efficiency enabling ultrafast analyses 
of AS events across massive RNA-seq datasets. We initially 
tested the utility of IRIS through a proof-of-concept analysis 
using immunopeptidomics data of human cell lines. We then 
applied IRIS to RNA-seq data of neuroendocrine prostate can-
cer (NEPC), a metastatic and highly lethal prostate cancer with 
no effective long-term treatments or targeted therapies (27). To 
validate the immunogenicity and T cell recognition of 
IRIS-predicted TCR targets, we performed in vitro T cell prim-
ing in combination with single-cell TCR sequencing, followed 
by reconstitution and functional characterization of TCRs 
transduced into human peripheral blood mononuclear cells 
(PBMCs). Collectively, our study illustrates the contribution 
of AS to the TA repertoire of cancer cells and demonstrates the 
utility of IRIS for discovering AS-derived TAs and expanding 
cancer immunotherapies.

Results

Overall Design of the IRIS Computational Framework. To identify 
AS-derived immunotherapy targets, IRIS incorporates three 
main modules: processing of RNA-seq data, in silico screening 
for tumor-associated or tumor-specific AS events, and integrated 
prediction and prioritization of TCR and CAR-T targets (Fig. 1). 
Briefly, IRIS first discovers and quantifies various types of AS 
events from user-provided RNA-seq data of a given tumor type 
(Fig.  1A). Then, AS events are fed into an in silico screening 
module to identify tumor-associated or tumor-specific events, 
based on a comparison against large-scale reference RNA-seq 
resources of tumor and normal tissues (Fig.  1B). Lastly, IRIS 
performs TCR and CAR-T target prediction for the identified 
AS events (Fig. 1C).

In IRIS’s RNA-seq data processing module, user-provided 
RNA-seq data of a given tumor type are analyzed by the 
rMATS-turbo software to comprehensively discover and quantify 
AS events corresponding to major types of AS patterns (Fig. 1A). 
The rMATS/rMATS-turbo software was developed by our group 
for AS analysis of RNA-seq data and has been widely used by the 
research community since 2014 (26, 28). Compared to the orig-
inal rMATS software (28), rMATS-turbo incorporates a refactored 
computational workflow with substantially improved data pro-
cessing speed and efficiency, allowing it to scale up to massive 
RNA-seq datasets with tens of thousands of samples (26). Powered 
by the speed and efficiency of rMATS-turbo, we uniformly pro-
cessed 18,956 RNA-seq samples in public data repositories gen-
erated by large-scale consortia (TCGA, GTEx), representing 33 
tumor types and 51 normal tissue types of 30 histological sites 
(SI Appendix, Fig. S1 and Table S1). Results of this analysis were 
organized into the IRIS Alternative Splicing Database (IRIS DB), 
which contains ratio-based [percent-spliced-in (PSI)] (29) and 
count-based [splice junction (SJ) read count] quantification of all 
major types of AS events detected in TCGA and GTEx (Fig. 1D). 
The IRIS DB is indexed, allowing for efficient query of AS events 
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Fig. 1. IRIS: A big-data informed computational platform for discovering AS-derived cancer immunotherapy targets. Overall workflow of IRIS, computational 
modules, large-scale reference database of AS profiles, and screening tests are illustrated. IRIS has three main computational modules: (A) RNA-seq data 
processing, (B) in silico screening, and (C) TCR/CAR-T target prediction. A flowchart illustrates the key components and analytical steps of IRIS. (D) Illustration of 
IRIS DB, a reference database of AS profiles across tumor and normal tissue samples, and two screening tests to assess tumor association and specificity. AS, 
alternative splicing; TCR, T cell receptor; CAR-T, chimeric antigen receptor T cell.
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in large-scale tumor and normal transcriptomes from diverse 
tumor types and tissue origins.

IRIS’s in silico screening module provides three distinct screen-
ing tests to identify targets of varying degrees of tumor association 
and specificity (Fig. 1B). Specifically, IRIS compares AS events 
from user-provided RNA-seq data of tumor samples to a reference 
panel of user-specified tumor and normal tissues selected from the 
IRIS DB. The default “tumor-association screen” uses the PSI met-
ric to identify tumor-associated AS events, via a differential AS 
(PSI value) analysis between tumor and normal tissues based on 
various user-defined criteria, such as p-value and change of PSI 
value (delta PSI), as well as fold-change (FC) of tumor-enriched 
isoform (Materials and Methods). Moreover, to identify AS events 
with “neoantigen-like” tumor specificity, defined as AS-derived SJs 
that are exclusively expressed in tumor tissues, IRIS performs a 
more stringent “tumor-specificity screen” by testing and comparing 
the presence-absence of a given SJ between tumor and normal 
tissues. Specifically, for each sample group (e.g., user-provided 
RNA-seq data of tumor samples, or a reference normal tissue type 
in the IRIS DB), IRIS calculates the percentage of samples express-
ing a given SJ of interest at or above a user-defined read count 
threshold. IRIS then performs a Fisher Exact test to identify 
“tumor-specific” SJs that are expressed in a significantly higher 
percentage of tumor samples than in normal tissue samples. IRIS 
reports a tumor-associated AS event as tumor-specific if all SJ(s) 
of its corresponding tumor-enriched isoform are tumor-specific as 
defined by the tumor-specificity screen. Finally, IRIS also incor-
porates a “tumor-recurrence screen” to compare AS events between 
user-provided RNA-seq samples of a given tumor type to 
user-selected tumor types of similar histology in the IRIS DB. This 
test allows IRIS to identify AS events that are recurrent (shared) 
among independent cohorts of the similar tumor type.

IRIS’s target prediction module incorporates various prediction 
tools and annotation resources to identify candidate targets for 
immunotherapies (Fig. 1C). The module first constructs SJ pep-
tides of identified AS events, and then predicts AS-derived targets 
for TCR or CAR-T therapies (Materials and Methods). The TCR 
target prediction function first performs tumor HLA typing using 
RNA-seq data or accepts user-specified HLA types, then integrates 
multiple HLA binding prediction algorithms for predicting TCR 
targets and/or peptide vaccines. Specifically, IRIS uses Immune 
Epitope Database (IEDB) (30) predictors to obtain the putative 
HLA binding affinities of candidate peptides. The IEDB “recom-
mended” mode runs multiple prediction tools to generate multiple 
predictions of binding affinity, which IRIS summarizes as a median 
IC50 value. In parallel, the CAR-T target prediction function maps 
AS-derived peptides to protein extracellular domain annotations 
curated by UniProtKB (31) (SI Appendix, Fig. S2). IRIS also 
includes an option to confirm predicted AS-derived targets using 
MS data via proteotranscriptomics data integration (Fig. 1C). This 
option provides an orthogonal approach for target discovery and 
validation by integrating RNA-seq data with various types of MS 
data, such as whole-cell proteomics, surfaceomics, or immunopep-
tidomics data. Specifically, IRIS builds a custom library of AS-derived 
peptides and then searches MS spectra against this library, allowing 
proteomic validation of AS-derived targets using MS data.

AS-Derived Peptides Are Present in Cell Line Immunopeptidomes. 
In a proof-of-concept analysis, we sought to identify AS-derived 
peptides that are presented by HLA molecules, i.e., AS-derived 
epitopes, by applying IRIS’s RNA-seq data processing and target 
prediction modules to RNA-seq and MS-based immunopeptidomics 
data of multiple cell lines (Fig. 2A). Specifically, we analyzed paired 
RNA-seq and immunopeptidomics data of two B lymphoblastoid 

cell lines (B-LCL) (32) and one cancer cell line (JeKo-1 lymphoma) 
(33). Focusing on predicting HLA-I binding to AS-derived 
peptides, we found 230, 178, and 85 peptides present in the 
immunopeptidomics data of JeKo-1, B-LCL-S1, and B-LCL-S2, 
respectively, after controlling for the target-decoy false discovery rate 
(FDR) at 5% (Fig. 2B and Dataset S1). Our results provide evidence 
that AS-derived peptides are presented by HLA-I molecules.

We assessed the concordance between AS-derived epitopes pre-
dicted by HLA binding algorithms (“IEDB recommended”, see 
Materials and Methods) and those detected from immunopeptid-
omics data. For all three cell lines, the percentage of AS-derived 
epitopes among all epitopes detected from immunopeptidomics 
data increased progressively with more stringent target-decoy FDR 
cutoffs (Fig. 2C). Among all epitopes detected from immunopep-
tidomics data, AS-derived peptides with high predicted HLA 
binding affinities (IC50 < 500 nM) substantially outnumbered 
AS-derived peptides with low predicted HLA binding affinities 
(IC50 ≥ 500 nM) (see Fig. 2D for data on JeKo-1). Moreover, in 
all three cell lines, we observed an increase in the fraction of 
AS-derived epitopes detected from immunopeptidomics data as 
a function of higher transcript expression levels and higher pre-
dicted HLA binding affinities (see Fig. 2E for data on JeKo-1). 
For example, only 52 out of 56,254 IRIS-predicted AS-derived 
epitopes were detected from immunopeptidomics data when the 
transcript expression level was lower than 10 fragments per 
kilobase million (FPKM) or the predicted HLA binding affinity 
was weaker than IC50 of 250 nM. In contrast, 178 out of 22,077 
AS-derived epitopes were detected from immunopeptidomics data 
when the transcript expression level was higher than 10 FPKM 
and the predicted HLA binding affinity was stronger than IC50 of 
250 nM. The largest fraction of AS-derived epitopes detected from 
immunopeptidomics data was observed in the bottom leftmost 
bin of Fig. 2E. This bin represents AS-derived epitopes with the 
highest transcript expression level (>100 FPKM) and strongest 
predicted HLA binding affinity (IC50 < 50 nM). Our results 
demonstrate that AS-derived epitopes supported by immunopep-
tidomics data are enriched for transcripts with high expression 
levels and peptides with strong predicted HLA binding affinities, 
consistent with the expected pattern of HLA-epitope binding (34).

Discovery of AS-Derived Immunotherapy Targets for NEPC. 
To demonstrate the utility of IRIS in discovering AS-derived 
immunotherapy targets in tumor specimens, we applied IRIS to 
a published RNA-seq dataset of 23 NEPC samples (Fig. 3A). For 
the normal tissue panel, we selected 11 vital tissues from the IRIS 
DB. In total, 270,914 skipped exon (SE) events were identified 
and quantified in the NEPC dataset (Fig. 3A; blue panel). Using 
the PSI-based tumor-association screen, IRIS identified 2,939 SE 
events as tumor-associated (Fig. 3A; yellow panel and Dataset S2a). 
As illustrated in Fig. 3B, hierarchical clustering based on PSI values 
confirmed that NEPC-associated SE events have distinct splicing 
profiles in most of the normal tissue types and modestly similar 
splicing profiles in the normal brain as compared to the splicing 
profiles in NEPC.

Next, for each NEPC-associated SE event, SJ(s) of the 
tumor-enriched isoform were translated into peptides, followed by 
TCR target prediction (Fig. 3A; purple panel). From 2,939 
NEPC-associated SE events, 2,433 tumor-enriched SJs can be trans-
lated into peptide sequences based on annotated reading frames. 
Of these, 1,651 epitopes from 808 NEPC-associated SE events were 
predicted as TCR targets for two common HLA types, HLA-A*02:01 
and HLA-A*03:01 (Dataset S2b). Using the same procedure, we 
predicted 385 epitopes from 207 NEPC-associated AS events cor-
responding to alternative 5′ splice sites (A5SS), alternative 3′ splice 
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sites (A3SS), and retained introns (RI) as additional TCR targets 
(SI Appendix, Figs. S3 and Dataset S2 d, e, g, h, j, and k).

IRIS also identifies tumor-associated SJ peptides located in anno-
tated extracellular regions of cell-surface proteins. In total, 168 
NEPC-associated AS events, including 119 SE events (five examples 
are shown in SI Appendix, Fig. S4), were identified as located in 
annotated extracellular regions of cell-surface proteins (SI Appendix, 
Fig. S3 and Dataset S2 c, f, i, and l). Such events may represent 
potential CAR-T targets.

NEPC-Specific SE Events Are Enriched for Microexons. To 
prioritize targets with greater tumor specificity, we used IRIS to 
perform a more stringent tumor-specificity screen by testing and 
comparing the presence-absence of a given SJ between tumor and 
normal tissues (Fig. 3C). This screen identified 1,802 SE events 
with NEPC-specific SJs. Intersecting these events with the 2,939 
NEPC-associated SE events identified by the tumor-association 
screen yielded a prioritized set of 87 NEPC-specific SE events that 
could potentially produce “neoantigen-like” AS-derived targets. 
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the number of AS-derived peptides detected in JeKo-1 immunopeptidomics data (y-axis) as a function of the MSGF+ target-decoy FDR (x-axis). Peptides with 
high (IC50 < 500 nM; orange) and low (IC50 ≥ 500 nM; gray) predicted HLA binding affinities are shown. (E) Heatmap illustration of the distribution of AS-derived 
peptides detected in JeKo-1 immunopeptidomics data as a function of predicted HLA binding affinity and transcript expression level. AS-derived peptides are 
binned by their corresponding transcript expression levels and IEDB-predicted HLA binding affinities. Heatmap is colored from red (high) to blue (low), reflecting 
the proportion of IRIS-predicted AS-derived epitopes that are MS-detected in each bin.

http://www.pnas.org/lookup/doi/10.1073/pnas.2221116120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2221116120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2221116120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2221116120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2221116120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2221116120#supplementary-materials
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Of the NEPC-specific peptides encoded by these events, 48 
epitopes from 20 events were predicted to bind to HLA-A*02:01 
or HLA-A*03:01.

Additionally, we performed an optional secondary tumor- 
association screen, based on normalized SJ read counts in the unit 
of counts per million (CPM) (Materials and Methods). This screening 
test directly compares the expression level of a given SJ between 

tumor and normal tissues, thus accounting for the joint effects of 
overall gene expression and AS. We found that 1,317 of the 2,939 
NEPC-associated events identified by the default PSI value-based 
tumor-association screen also passed this secondary tumor-association 
screen based on SJ CPM values. Moreover, 78 of the 87 NEPC-specific 
events identified by the tumor-specificity screen also passed this sec-
ondary tumor-association screen.
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Fig. 3. IRIS discovery of AS-derived targets for NEPC. (A) Stepwise results of IRIS to identify AS-derived cancer immunotherapy targets from 23 NEPC samples. 
Skipped exon (SE) events identified by the IRIS RNA-seq data processing module were screened against 11 normal tissue types from the IRIS DB to identify 
tumor-associated events and predict corresponding TCR targets. (B) Heatmap of AS profiles of 2,939 NEPC-associated SE events across NEPC and 11 normal 
tissue types. (C) Summary of NEPC-associated/-specific targets. “Events w/ Specific SJs” are SE events that contain tumor-specific SJ(s) identified from the SJ count 
(SJC)-based tumor-specificity screen. (D) Bar plots showing the percentage of NEPC-associated and NEPC-specific SE events involving inclusion (Left) or skipping 
(Right) of microexons in NEPC. (E) Heatmap of gene expression levels of 220 splicing factors across NEPC and 11 normal tissue types. (F) Violin plots of log-
transformed gene expression levels of serine/arginine repetitive matrix protein 4 (SRRM4) across NEPC, metastatic castration-resistant prostate cancer (CRPC), 
primary prostate adenocarcinoma (PRAD), and 11 normal tissue types. Two-sided Mann–Whitney U test was conducted to compare SRRM4 gene expression 
levels between NEPC and every other group. Red asterisks represent P-values (*: P ≤ 0.05, **: P ≤ 0.01, ***: P ≤ 0.001, ****: P ≤ 0.0001). Groups are colored by 
tumor (red) and normal (blue) tissue.
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We found that these 87 NEPC-specific SE events were signifi-
cantly enriched for events corresponding to NEPC-specific inclu-
sion of microexons [i.e., exons no more than 30 nucleotides in 
length (35)] (Fig. 3D). Among the 55 events corresponding to 
NEPC-specific exon inclusion, 46 (83.6%) involved a microexon. 
Among the 666 events corresponding to NEPC-associated exon 
inclusion, 145 (21.8%) involved a microexon (Fig. 3D; Left). In 
contrast, the percentage of events involving microexons was much 
lower for those corresponding to NEPC-specific or NEPC-associated 
exon skipping [2 out of 32 (6.3%) and 56 out of 2,273 (2.5%), 
respectively; Fig. 3D; Right]. To investigate whether NEPC-specific 
microexon inclusion is correlated with the expression of splicing 
factors, we examined gene expression levels of 220 splicing factors 
(36) across NEPC and the normal tissue panel. Hierarchical clus-
tering of splicing factor gene expression levels revealed a cluster of 
11 splicing factors with elevated expression in NEPC and the nor-
mal brain compared to the rest of the normal tissue panel (Fig. 3E). 
Notably, serine/arginine repetitive matrix 4 (SRRM4), which was 
previously reported to promote neuronal-specific inclusion of 
microexons through an evolutionarily conserved mechanism (35), 
was among the 11 splicing factors overexpressed in NEPC and the 
normal brain. Further comparison of SRRM4 gene expression 
levels among NEPC, metastatic castration-resistant prostate cancer 
(CRPC), and primary prostate adenocarcinoma (PRAD) samples 
revealed that overexpression of SRRM4 is unique to NEPC 
(Fig. 3F), a finding that is consistent with a previous report (37). 
Together, these observations point to SRRM4, among other splic-
ing factors, as a likely contributor to NEPC-specific inclusion of 
microexons and consequently the TA repertoire of NEPC.

Big-Data Informed Evaluation and Visualization of AS-Derived 
Immunotherapy Targets. IRIS generates an integrated report 
that allows researchers to evaluate and visualize predicted targets 

based on multiple criteria (Fig. 4). The three main criteria are: 
degree of tumor association, FC of the tumor-enriched isoform 
between tumor and normal tissues, and gene expression level 
in tumor tissues (see Fig.  4A for visualization of these criteria 
for predicted tumor-associated NEPC targets). The “degree of 
tumor association” is defined as the number of normal tissue 
types compared to which the tumor tissues have consistently 
and significantly higher or lower PSI values. The “FC of tumor-
enriched isoform” is calculated as the fold-change of the proportion 
of the tumor-enriched isoform in tumor tissues over the average 
proportion of the tumor-enriched isoform in all normal tissue 
types of the normal tissue panel. The gene expression level is the 
median gene expression level of the corresponding gene in tumor 
tissues. IRIS also reports additional features for predicted targets, 
including tumor specificity, predicted HLA binding affinity, as 
well as various genome or protein annotations [e.g., mappability, 
peptide uniqueness, etc. (SI Appendix, Supplementary Materials 
and Methods)].

Representative examples of 10 NEPC-associated TCR targets 
are shown in paired violin and bar plots generated by IRIS 
(Fig. 4B; the first 8 are also NEPC-specific). To illustrate tumor 
association, violin plots show the PSI value of each target in 
NEPC and the normal tissue panel (Fig. 4B; Left). To visualize 
tumor specificity, bar plots show the fraction of samples express-
ing the SJ(s) of the tumor-enriched isoform in NEPC and the 
normal tissue panel (Fig. 4B; Right). As expected, predicted TCR 
targets display distinct splicing profiles in NEPC relative to most 
of the normal tissue types, with the occasional exception being 
the normal brain. For example, an SE event in protein tyrosine 
phosphatase receptor type K (PTPRK) is selected by both 
tumor-association and tumor-specificity screens, with the 
tumor-enriched isoform including a microexon. Its tumor asso-
ciation is reflected by violin plots of PSI values, showing that the 
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Fig. 4. Evaluation and visualization of IRIS-predicted targets for NEPC. (A) The target evaluation process for NEPC. The three-dimensional scatterplot illustrates 
the three main criteria used to evaluate IRIS-predicted targets: degree of tumor association, FC of the tumor-enriched isoform between tumor and normal 
tissues, and gene expression level in tumor tissues. These and additional criteria to evaluate targets are listed below the scatterplot. Criteria illustrated in 
the scatterplot are bolded. (B) Representative examples of 10 IRIS-predicted TCR targets are visualized by IRIS in paired violin and bar plots. Each row shows 
one IRIS-predicted TCR target. Violin plots show the PSI values of each target in NEPC and the normal tissue panel. Bar plots show the fraction of samples 
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http://www.pnas.org/lookup/doi/10.1073/pnas.2221116120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2221116120#supplementary-materials
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SE event has an average PSI value of 27% among NEPC samples 
as compared to almost 0% (no exon inclusion) across the normal 
tissue panel. The bar plots show that the two SJs of the exon 
included isoform are present in approximately half of NEPC 
samples, whereas they are absent in nearly all tissue types in the 
normal tissue panel except for one SJ in the normal brain. 
Likewise, a known microexon target of SRRM4 in eukaryotic 
translation initiation factor 4 gamma 1 (EIF4G1) (38) exhibits 
elevated exon inclusion in NEPC (and in the normal brain), as 
shown by both screens (Fig. 4B). To facilitate data exploration 
and visualization, we developed IRIS Explorer (https://xing-
shiny2.research.chop.edu/shiny/IRIS/), a web-based tool to 
explore and visualize IRIS results (SI Appendix, Fig. S5).

Isolation and Characterization of TCRs Reactive to IRIS-Predicted 
NEPC Epitopes. From 1,651 NEPC-associated epitopes, 76 unique 
epitopes were selected from 216 epitopes that met additional 
criteria for FC of the tumor-enriched isoform and gene expression 
level in tumor tissues and had predicted HLA-A*02:01 binding 
affinity < 500 nM (30). These epitopes were selected as candidates 
to study their immunogenicity and identify their cognate TCRs 
(Materials and Methods and Dataset S3a).

To expand and isolate cognate T cells targeting predicted 
epitopes, PBMCs were stimulated with exogenously added pep-
tides using two types of antigen-presenting cell (APC) systems, 
including: 1) dendritic cells (DCs) differentiated from autologous 
CD34+ progenitor cells, and 2) existing APCs (e.g., B cells, mono-
cytes) from PBMCs (Fig. 5A). Following 10 d of priming and 
expansion, reactive T cells were isolated by fluorescence-activated 
cell sorting (FACS) based on either a surface activation marker 
(CD137) or intracellular markers (IFNγ and TNFα) using a pre-
viously published CLInt-seq protocol (39–41). 10X single-cell 
V(D)J sequencing was performed to recover paired TCR 
sequences. PBMCs from nine healthy individuals were screened. 
Five healthy donors showed T cell responses when stimulated by 
IRIS-predicted epitope pool by either CLInt-seq (Fig. 5B) or 
CD137 (Fig. 5C).

Isolated candidate TCRs were tested in a Jurkat-NFAT-GFP 
reporter system for rapid functional screening and cognate epitope 
deconvolution. NFAT-binding motifs followed by a GFP expres-
sion sequence were introduced in Jurkat cells coexpressing CD8. 
Upon T cell activation, GFP expression would be induced by 
transcription factor NFAT (42). TCRα/β pairs isolated from 
sequencing were synthesized and reconstructed into a single frag-
ment by the F2Aopt linker in the pMAX plasmid to ensure equal 
copies of both alpha and beta chains (Fig. 5D). Plasmids were 
then transfected into Jurkat-NFAT-GFP cells via electroporation. 
For higher throughput, we adopted a pooling strategy to decon-
volute reactive pools to a single peptide (Fig. 5E and SI Appendix, 
Supplementary Materials and Methods). A total of 21 TCRs derived 
from the five healthy donors recognized the peptide pool (Dataset 
S3b). Of these, seven TCRs reacted to a single IRIS-predicted 
epitope in Jurkat-NFAT-GFP cells.

TCRs that showed a response in the Jurkat-NFAT-GFP screen-
ing were then selected for engineering into healthy donor PBMCs 
via retroviral transduction to confirm functional reactivity and 
cytotoxicity (SI Appendix, Supplementary Materials and Methods). 
When expressed in PBMCs, the seven TCRs recognized four exog-
enously added IRIS-predicted epitopes, as measured by the pro-
duction of IFNγ (SI Appendix, Fig. S6A and Dataset S3c). One 
TCR (JPTCR_47) showed similar reactivity toward its target as 
compared to the clinically tested F5 TCR toward its cognate anti-
gen (MLANA, also known as MART1) (43), as measured by pep-
tide serial-dilution assays (SI Appendix, Fig. S6B).

To test if the isolated TCRs could recognize processed epitopes 
on HLA-A*02:01, truncated isoforms for five TCR-epitope pairs 
were introduced into target K562 cells that coexpressed A*02:01 
(K562-A2). IFNγ ELISA results confirmed the reactivity of 
JPTCR_238 in PBMCs when cocultured with both truncated 
and full-length cytoplasmic linker associated protein 1 (CLASP1) 
isoforms containing the IRIS-predicted epitope of interest (Fig. 5F). 
Cytotoxicity results measured by Incucyte live-cell analysis showed 
recognition and killing of target cells by JPTCR_238 (Fig. 5G). 
In contrast, cells under all three negative control conditions 
(NGFR, F5, untransduced) were growing during the entire 
Incucyte live-cell analysis, with minor differences in their growth 
rates. Taken together, our data provide experimental evidence that 
antigen-reactive TCRs can target IRIS-predicted AS-derived 
epitopes with high potency and specificity.

Discussion

We introduce IRIS, a computational framework that leverages 
large-scale RNA-seq data for the discovery of AS-derived TAs. We 
demonstrated the utility of IRIS with a proof-of-concept analysis 
using paired RNA-seq and immunopeptidomics data of three 
human cell lines. We performed an in-depth analysis of a meta-
static and highly lethal prostate cancer, NEPC, to evaluate the 
ability of IRIS to discover AS-derived immunotherapy targets in 
tumor specimens. The NEPC-specific AS events that we identified 
were highly enriched for inclusion of microexons, pointing to a 
distinct program of splicing dysregulation in this aggressive disease 
(37). By employing in vitro T cell priming and subsequent sin-
gle-cell TCRα/β sequencing based on T cell activation markers, 
we established that IRIS-predicted NEPC epitopes could be rec-
ognized by T cells. These data provide experimental evidence for 
antigen-reactive TCR efficacy against AS-derived epitopes.

IRIS represents a systematic and generalizable strategy for exploit-
ing AS as a source of cancer immunotherapy targets. By performing 
multiple types of in silico screening tests against a large-scale refer-
ence database of AS profiles of tumor and normal tissues (IRIS DB), 
IRIS can identify and prioritize AS-derived targets with varying 
degrees of tumor association and specificity. Importantly, to prior-
itize tumor-specific targets, IRIS incorporates a SJ count-based 
tumor-specificity screen to test the presence-absence of any given SJ 
in tumor and normal tissue samples, allowing detection of AS-derived 
targets with “neoantigen-like” tumor specificity. Additionally, by 
examining RNA-seq data from the same cancer type through the 
tumor-recurrence screen, IRIS can discover TAs shared among 
patients from multiple cohorts. Collectively, IRIS’s ability to perform 
comprehensive screening tests along with its associated data resource 
(IRIS DB) provides a significant advantage over existing target dis-
covery pipelines (16, 17, 22, 23) and facilitates selection of 
AS-derived targets with low off-tumor toxicity and broad clinical 
applicability.

We assessed and validated IRIS-predicted epitopes via inde-
pendent approaches. We initially performed a proof-of-concept 
analysis integrating RNA-seq and immunopeptidomics data. We 
confirmed the presence of IRIS-predicted epitopes in the HLA-I 
immunopeptidome of multiple human cell lines (Fig. 2). As 
expected, predicted AS-derived epitopes from transcripts with 
higher expression levels and corresponding to peptides with 
stronger predicted HLA binding affinities were more likely to be 
detected in immunopeptidomics data (Fig. 2E). We then applied 
IRIS for TCR target discovery for NEPC, a highly lethal prostate 
cancer with no effective long-term treatments or targeted thera-
pies. IRIS identified 2,939 NEPC-associated SE events, among 
which 87 were identified as NEPC-specific. NEPC-specific SE 

https://xingshiny2.research.chop.edu/shiny/IRIS/
https://xingshiny2.research.chop.edu/shiny/IRIS/
http://www.pnas.org/lookup/doi/10.1073/pnas.2221116120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2221116120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2221116120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2221116120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2221116120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2221116120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2221116120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2221116120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2221116120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2221116120#supplementary-materials
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Fig. 5. Isolation and characterization of TCRs reactive to IRIS-predicted NEPC epitopes. (A) IRIS-epitope priming using two APC systems: (1) conventional type 1 
dendritic cell (cDC1)-like cells differentiated from autologous CD34+ hematopoietic stem cells (HSCs), and (2) existing APCs from PBMCs. (B) Example of reactive 
T cell populations primed with a DMSO negative control, IRIS epitope pool, or PMA/Ionomycin using the CLInt-seq TNFα/IFNγ intracellular marker staining 
strategy. (C) Example of reactive T cell populations primed with a DMSO negative control, IRIS epitope pool, or PMA/Ionomycin by the CD137 surface marker 
staining strategy. (D) Overview of the cloning strategy for TCRα/β chains in the pMAX system for Jurkat-NFAT-GFP screening. (E) Overview of the Jurkat-NFAT-GFP 
reporter system. (F) IFNγ ELISA of one specific TCR (JPTCR_238) targeting an IRIS-predicted AS-derived epitope in CLASP1, when co-cultured with K562-A2-GFP 
single-cell clones transduced to express a full-length or truncated CLASP1 protein isoform. Error bars indicate SD (n = 3). JPTCR_238: an isolated TCR targeting an 
IRIS-predicted epitope in CLASP1; F5: a clinically tested TCR targeting the MART1 melanoma antigen; NGFR: empty vector with no introduced TCR as a negative 
control; Untransduced: untransduced as a negative control. (G) Cytotoxicity analysis by live cell imaging of a K562-A2-GFP single-cell clone transduced with a 
full-length CLASP1 protein isoform containing an IRIS-predicted epitope targeted by JPTCR_238. F5 TCR, NGFR (no TCR introduced), and untransduced were 
used as negative controls.
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events were significantly enriched for NEPC-specific inclusion of 
microexons (Fig. 3D), which are known to be up-regulated in 
neuronal cell lineages and may underlie the neuroendocrine trans-
formation of prostate cancer cells in NEPC (44). We noted that 
elevated expression of the splicing factor SRRM4 in NEPC corre-
lated with these results (Fig. 3F). We experimentally isolated seven 
unique TCRs specifically recognizing four unique IRIS-predicted 
epitopes. We tested one TCR that showed efficient killing of target 
cells expressing the target protein (Fig. 5G). Our work demonstrates 
that AS-derived epitopes predicted by IRIS can be processed and 
presented on HLA-I and recognized by a cognate TCR discovered 
from healthy donor PBMCs. Further applications of the workflow 
shown in this work should eventually result in new targets and 
therapeutic TCRs for many types of cancer. Combining advanced 
experimental tools, such as using the artificial thymic organoid 
(ATO) system (45, 46) as an alternative source of T cells, could 
benefit target validation and TCR discovery.

We note that user-provided RNA-seq data may have different read 
lengths from the RNA-seq data in the IRIS DB (e.g., GTEx and 
TCGA). Although rMATS-turbo accounts for RNA-seq read length 
in estimating PSI values and the effect of read length on AS quanti-
fication and consequently target discovery is minor (28), we cannot 
rule out the possibility that certain IRIS-predicted targets may be 
sensitive to variation in RNA-seq read length. It is possible to identify 
and flag such AS events by 1) trimming RNA-seq reads from 
user-provided RNA-seq data to match the read lengths in the IRIS 
DB, and then 2) assessing changes in the estimated PSI values.

The current IRIS platform has several limitations. IRIS uses 
short-read RNA-seq data for AS analysis. Although short-read 
RNA-seq has been the standard technology for transcriptome anal-
ysis, it has an inherent limitation for inferring full-length transcript 
isoforms and their corresponding protein products (47). Because 
short-read RNA-seq only examines fragments of full-length tran-
scripts, protein products that correspond to the identified AS events 
often cannot be reliably inferred, particularly for events involving 
complex AS patterns or novel unannotated SJs. Currently, target 
discovery in IRIS is limited to peptides encoded by SJs corresponding 
to five basic types of binary AS patterns (Fig. 1); thus, a considerable 
number of potential epitopes, including those derived from complex 
AS events, are not considered. The long-read RNA-seq technology, 
which is ideally suited for analyzing full-length transcript and protein 
isoforms, may overcome the limitation of short-read RNA-seq and 
enable a more comprehensive and robust approach for TA discovery 
(14, 48–50). Additionally, the current IRIS platform and its associ-
ated IRIS DB are based on bulk RNA-seq data and lack single-cell 
and spatial resolution. The clonality, heterogeneity, and plasticity of 
AS-derived immunotherapy targets represent important biological 
features that may affect therapy efficacy and outcome (14). Although 
IRIS is designed to discover AS-derived targets with significantly 
higher expression in tumor tissues over normal tissues, including 
those with “neoantigen-like” tumor-specific expression, we currently 
do not know the clonality of these AS-derived targets. Whether all 
or a subset of cancer cells in a given tumor express an AS-derived 
target of interest remains an open question. Going forward, 
isoform-resolved single-cell or spatial RNA-seq datasets may enhance 
the resolution of transcriptome profiles in IRIS, by providing cell 
type-specific or spatial information (14). Of note, long-read 
single-cell RNA-seq has emerged as a powerful technology for tran-
script isoform analysis in single cells (51–53). We plan to incorporate 
long-read RNA-seq data, at both bulk and single-cell levels, in our 
future development of IRIS.

In summary, IRIS represents a big-data informed computa-
tional platform to discover AS-derived cancer immunotherapy 
targets. In this study, we focused on the application and validation 

of IRIS for discovering TCR targets. Our results provide experimen-
tal evidence for the immunogenicity of AS-derived epitopes and 
suggest their potential for therapy development. The IRIS software 
can be downloaded from https://github.com/Xinglab/IRIS.

Materials and Methods

IRIS Module for RNA-seq Data Processing. IRIS accepts raw short-read RNA-seq 
data (FASTQ files) and/or tab-delimited files of AS events quantified by rMATS-
turbo (26, 28) as input data. For raw RNA-seq data, IRIS provides a stand-alone 
pipeline that aligns RNA-seq reads to the reference human genome, quantifies 
gene expression, and characterizes AS events. In this work, the IRIS RNA-seq data 
processing module used the reference human genome hg19 and STAR 2.6.1d 
(54) under the two-pass mode for RNA-seq read alignment. Gene expression 
and AS events were quantified using Cufflinks v2.2.1 (55) and rMATS v4.1.0 
under default parameters, respectively, based on the GENCODE (V26) (56) gene 
annotation. To quantify AS events, IRIS extracts PSI values (29) for all AS events 
in the rMATS-turbo output file and read counts for all SJs in the RNA-seq align-
ment file. To remove low-confidence PSI estimates, AS events with low RNA-seq 
coverage, defined as events with an average read count of less than 10 for the 
sum of all corresponding SJs in a given sample or sample group (e.g., tumor or 
normal tissue type), are masked as having missing values in the output file of 
IRIS-characterized AS events. This pipeline discovers and quantifies all major types 
of AS events, including SE, A5SS, A3SS, and RI events. AS events characterized 
by IRIS may involve either annotated or novel SJs of annotated splice sites. The 
option to discover and quantify AS events involving novel splice sites is also avail-
able through the --novelSS option of rMATS-turbo. This pipeline was uniformly 
applied to all RNA-seq datasets in this work, including the reference datasets of 
tumor and normal tissue samples (TCGA, GTEx) used for generating the IRIS DB.

IRIS DB: A Reference Database of AS Profiles across Tumor and Normal 
Tissue Samples. IRIS utilizes IRIS DB, a reference database of AS profiles across 
a diverse panel of tumor and normal tissue samples, to identify AS events with 
varying degrees of tumor association and specificity. Specifically, 9,932 tumor 
tissue samples from TCGA (16, 25) representing 33 tumor types were uniformly 
processed as described above. In addition, 9,024 normal tissue samples from 
GTEx (V7) (57), representing 51 normal tissue types of 30 histological sites, 
were also processed. Cell line samples from GTEx were excluded from the IRIS 
DB. The IRIS DB contains ratio-based (PSI) (29) and count-based (SJ read count) 
quantification of all AS events detected in TCGA and GTEx. A summary of the IRIS 
DB is provided in SI Appendix, Table S1. PSI values and SJ read counts stored in 
the IRIS DB are indexed using their genomic coordinates, gene identifiers, and 
gene symbols as keys. The IRIS DB, together with the IRIS functions to retrieve 
user-selected tumor and normal tissue types from the IRIS DB to create custom 
reference panels, are made available as stand-alone resources. In addition, IRIS 
provides functions for users to build and index their own RNA-seq datasets into 
custom reference panels.

IRIS Module for In Silico Screening. IRIS performs in silico screening to identify 
AS events of varying degrees of tumor association and specificity, by comparing 
user-provided RNA-seq data of tumor samples to a reference panel of user-spec-
ified tumor and normal tissue types selected from the IRIS DB. IRIS’s in silico 
screening module provides three types of screening tests, including a tumor-as-
sociation screen, a tumor-specificity screen, and a tumor-recurrence screen.

The default tumor-association screen performs a differential AS analysis 
between tumor and normal tissues based on the PSI metric. For each AS event, 
IRIS compares its PSI values between user-provided RNA-seq data of tumor sam-
ples and a given normal tissue type in the reference panel selected from the IRIS 
DB. IRIS reports a differential AS event based on various user-defined criteria, 
such as the P-value, the change of PSI value (delta PSI), and the fold-change (FC) 
of the tumor-enriched isoform (see below for a detailed definition). Specifically, 
to define a differential AS event, IRIS sets two default requirements: 1) a signif-
icant P-value from a statistical test (default: two-sided t test P < 0.01, unequal 
variance allowed), and 2) a threshold of average PSI value difference [default: 
abs(ΔPSI) > 0.05]. For each AS event, IRIS defines its degree of tumor association 
as the number of normal tissue types compared to which the tumor samples have 
consistently and significantly higher or lower PSI values. An AS event is defined 

https://github.com/Xinglab/IRIS
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as tumor-associated if its degree of tumor association reaches a user-defined 
threshold. In this work, we selected 11 normal tissue types from the IRIS DB into 
the reference panel, and the threshold for the degree of tumor association is set as 
8. For each AS event defined as tumor associated, IRIS defines the tumor-enriched 
isoform as the isoform that is more abundant in the tumor samples compared 
to the normal tissue panel. The FC of the tumor-enriched isoform is calculated 
as the fold-change of the proportion of the tumor-enriched isoform in tumor 
tissues over the average proportion of the tumor-enriched isoform in all normal 
tissue types of the normal tissue panel. This metric can be used to evaluate and 
visualize predicted targets (Fig. 4).

IRIS also provides an optional, secondary tumor-association screen based on 
normalized SJ read counts in the unit of counts per million (CPM). For a given SJ 
in a given sample, the CPM value is the raw SJ read count multiplied by a normal-
ization factor, 106/R, where R is the total count of all mapped RNA-seq reads in the 
sample. This screening test directly compares the expression level of a given SJ 
between tumor and normal tissues. A one-sided t test is used to assess if a given 
SJ is expressed at a significantly higher level in tumor samples as compared to 
normal tissue samples. Similar to the PSI-based screening test described above, 
a one-sided t test P < 0.01 is required to call the SJ CPM-based screening test 
significant against a given normal tissue type. For each SJ, the degree of tumor 
association is similarly defined as the number of normal tissue types compared 
to which the tumor samples have significantly higher CPM values.

The tumor-specificity screen tests and compares the presence-absence of a given 
SJ between tumor and normal tissues. Specifically, for each sample group (e.g., 
user-provided RNA-seq data of tumor samples, or a reference normal tissue type 
in the IRIS DB), IRIS calculates the percentage of samples expressing a given SJ at 
or above a user-defined read count threshold. The default threshold is set as 5 for 
tumor samples and 2 for normal tissue samples. IRIS then performs a one-sided 
Fisher Exact test to determine if a given SJ is expressed in a significantly higher 
percentage of tumor samples than in normal tissue samples of a given normal 
tissue type (default: P < 1 × 10−6). IRIS defines a SJ as tumor-specific, if the number 
of significant tests against the normal tissue panel reaches a user-defined threshold 
(8 out of 11 normal tissue types tested in this work). Finally, IRIS reports a tumor-as-
sociated AS event as tumor-specific if all SJ(s) of its corresponding tumor-enriched 
isoform are tumor-specific as defined by the tumor-specificity screen.

Finally, IRIS provides a tumor-recurrence screen, to identify AS events that are 
recurrent (shared) among independent cohorts of the similar tumor type. This 
screening test is described in detail in SI Appendix, Supplementary Materials 
and Methods.

IRIS Module for Target Prediction. To obtain peptide sequences of AS-derived 
tumor-enriched isoforms, IRIS translates SJ sequences into peptide sequences 
using annotated reading frames from the UniProtKB database (31). Specifically, 
for the upstream exon of a given SJ in a given AS event, IRIS identifies its reading 
frame based on the corresponding protein product annotated in UniProtKB. The 
identified reading frame of the upstream exon is then used for translating the SJ 
of interest into its corresponding peptide. For each AS event, the SJ peptide of the 
tumor-enriched isoform is compared to the SJ peptide of the normal-enriched 
isoform to ensure that they produce distinct peptide sequences. By default, SJ 
peptides are 21 amino acids in length and centered at the splice sites, but the 
actual lengths may vary depending on the exon lengths.

For TCR target prediction, IRIS employs seq2HLA (58), which uses RNA-seq 
data to determine HLA class I alleles for each tumor sample. IRIS then uses the 
IEDB API (30) predictors to obtain putative HLA binding affinities of candidate 
peptides. The IEDB “recommended” mode runs multiple tools to generate pre-
dictions of binding affinity, which IRIS summarizes as a median IC50 value. By 
default, a threshold of median(IC50) < 500 nM defines a positive prediction for 
an AS-derived TCR target. For CAR-T target prediction, detailed descriptions are 
available in SI Appendix, Supplementary Materials and Methods and Fig. S2.

Proteotranscriptomics Data Integration for MS Validation. IRIS includes an 
optional proteotranscriptomics data integration function that incorporates various 
types of MS data, such as whole-cell proteomics, surfaceomics, and immunopep-
tidomics data, to validate RNA-seq-based target discovery at the protein level 
(Fig. 2). Specifically, sequences of AS-derived peptides are added to canonical 
and isoform sequences of the reference human proteome (downloaded from 
UniProtKB in September 2018). For immunopeptidomics data, fragment MS 

spectra are searched against the RNA-seq-augmented custom proteome library 
with no enzyme specificity using MSGF+ (59) with the search length limited to 
7 to 15 amino acids. The target-decoy approach is employed to control the FDR 
or “QValue” at 5%.

IRIS Analysis of Immunopeptidomics Data. Data sources for the IRIS immu-
nopeptidomics data analysis are reported in Data, Materials, and Software 
Availability. RNA-seq data of normal (B-LCL-S1 and B-LCL-S2) and cancer (JeKo-1) 
cell lines were analyzed by IRIS as described above, with minor modifications. 
Specifically, AS events identified by the IRIS RNA-seq data processing module 
(with STAR v2.5.3a and rMATS v4.0.2) were not subjected to the in silico screening 
module, but instead were directly used for the MS search. For MSGF+, FDR was 
set at 5% for Fig. 2 B and E. For the comparison of AS-derived peptides with high 
and low predicted HLA binding affinities (Fig. 2D), a set of low-affinity peptides 
was created by randomly selecting peptides with median(IC50) ≥ 500 nM to the 
same number of high-affinity peptides [median(IC50) < 500 nM]. The transcript 
expression level was approximated by taking the product of the gene expression 
level (FPKM) of the AS event’s corresponding gene and the PSI or 1-PSI value for 
exon inclusion or skipping SJ(s), respectively.

IRIS Analysis of 23 NEPC Samples. Database accession numbers for the NEPC, 
CRPC, and PRAD RNA-seq data are reported in Data, Materials, and Software 
Availability. In total, 23 NEPC samples were included in this study. Splicing fac-
tor (36) gene expression levels were quantified by FeatureCounts v2.0.1 (60), 
followed by DESeq2 v1.26.0 (61) normalization.

Default screening parameters were used for the IRIS analysis of NEPC, with 
minor modifications. Default parameters were used to perform both tumor-as-
sociation and tumor-specificity screens. For the reference panel, the normal tis-
sue panel was comprised of 11 normal tissue types selected from the IRIS DB, 
including heart, blood, lung, liver, brain, nerve, muscle, spleen, thyroid, skin, 
and kidney. We did not have RNA-seq data for a second cohort of NEPC samples 
to perform the tumor-recurrence screen. For each test, the minimum number of 
NEPC samples with nonmissing values was required to be three, and the equal 
variance option was enabled for the t test. For TCR target discovery, two common 
HLA types, HLA-A*02:01 and HLA-A*03:01, were used for prediction. Default 
parameters for TCR target prediction were used.

Target Selection for Experimental Validation. From the pool of 1,651 IRIS-
predicted tumor-associated TCR epitopes, a subset of candidate epitopes was 
selected for experimental validation. We applied three additional criteria: 1) restric-
tion to HLA-A*02:01; 2) high FC of the tumor-enriched isoform (FC ≥ 2); and 3) high 
gene expression level (average FPKM ≥ 20). We obtained 164 candidate epitopes 
that met these criteria. From these epitopes, and additional 52 epitopes derived 
from NEPC-specific SJs identified by the tumor-specificity screen, we selected 76 
epitopes to test for immunogenicity and T cell recognition (Dataset S3a).

Additional Information of Computational and Experimental Procedures. 
Additional technical information of IRIS (e.g., additional features of IRIS screening 
and prediction modules, target annotations) as well as experimental procedures 
for target validation and TCR analysis [e.g., cell culture, T cell priming and activa-
tion, single-cell V(D)J sequencing, TCR screening, and functional analyses] are 
described in SI Appendix, Supplementary Materials and Methods.

Data, Materials, and Software Availability. The IRIS source code is accessible 
on GitHub at https://github.com/Xinglab/IRIS. The IRIS Explorer for exploring and 
visualizing IRIS results is available at https://xingshiny2.research.chop.edu/shiny/
IRIS/. The RNA-seq data of 23 NEPC samples were retrieved from a Beltran et al. 
study (accession no. phs000909) (62) and a Stand Up To Cancer (SU2C) study 
(accession no. phs000915) (63). FASTQ files were downloaded from the database 
of Genotypes and Phenotypes (dbGAP). RNA-seq data of CRPC samples were 
obtained from the Beltran et al. study (accession no. phs000909) (62), the SU2C 
study (accession no. phs000915) (63), and a Robinson et al. study (accession no. 
phs000673) (64). RNA-seq data of PRAD samples were downloaded as part of 
the TCGA data for the IRIS DB from GDC via gdc-client (65). RNA-seq data used 
to construct the IRIS DB are available from TCGA (https://portal.gdc.cancer.gov/
legacy-archive/) (25) and GTEx (https://gtexportal.org/) (57). For the IRIS prote-
otranscriptomics analysis, matching RNA-seq data and MS immunopeptidomics 
data of B-LCL-S1 and B-LCL-S2 cell lines were retrieved from Laumont et al. (GEO: 
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GSM1641206, GSM1641207, and PRIDE: PXD001898) (32). RNA-seq data of the 
JeKo-1 lymphoma cell line were obtained from the Cancer Cell Line Encyclopedia 
(66) via the NCI Genomic Data Commons (https://portal.gdc.cancer.gov/legacy-ar-
chive/). Corresponding MS immunopeptidomics data of JeKo-1 were retrieved 
from Khodadoust et al. (PRIDE: PXD004746) (33).
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