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The past decade has witnessed the surge of wireless communication technologies, one of which is

massive multiple-input-multiple-output (MIMO) which forms a prominent part of 5th generation (5G) and

future generations of wireless networks. Among distributed massive MIMO networks, where there are a very

large number of antennas physically spread out across a geographical area, one of the degrees of freedom

available is access point (AP) placement. In both the traditional small-cell and the more recent cell-free

networks, AP placement can be a key enabler of higher throughput or spectral efficiency. Thus, in this

dissertation, we study AP placement in both small-cell and cell-free regimes by examining the throughput

maximization problem. With the vector quantization (VQ) approach showing similarities to AP placement,

we study and utilize it as a starting point for our framework on AP placement formulations.

First, the AP placement problem in the small-cell scenario that addresses signal-to-interference-

plus-noise ratio (SINR) maximization (as opposed to signal-to-noise ratio (SNR) maximization alone) is

studied since inter-cell interference (ICI) is a prevalent feature of small-cell systems. By first establishing

that the Lloyd algorithm from VQ that utilizes the squared Euclidean distance as the distortion measure

forms a good enough solution for AP placement, the distortion is modified to include inter-cell interference

xvii



(ICI) and a Lloyd-type algorithm is proposed to solve for the AP locations.

Second, the placement solution is extended to hybrid networks consisting of both terrestrial (position-

fixed) and unmanned aerial vehicle (UAV) enabled (position-flexible) APs. In this scenario, a Lloyd-type

algorithm is used to solve for the positions of the UAV-APs while still accounting for ICI. Additionally, a

solution to initialize AP locations for the Lloyd and Lloyd-type algorithms is also discussed. As a further

extension, we consider load balancing, which is necessary due to the varied user-AP access resulting from un-

equal cell occupancies. To address this, two Lloyd-type algorithms are proposed to make the cell occupancies

more equal and hence enabling fairness in user-AP access.

Third, the throughput problems for AP placement in cell-free networks are studied, namely the sum

rate and minimum rate maximization problems. Their solution structures are analyzed and simple supporting

examples are provided. The VQ framework is motivated as a practical approach for these problems. Three

VQ-based techniques, namely the Lloyd algorithm, the tree-structured VQ (TSVQ), and probability density

function optimized VQ (PDFVQ), each with its own advantages for cell-free AP placement, are outlined and

their performances compared.

Finally, in addition to the AP placement and to make the cell-free system more viable, two important

and necessary features, namely user position determination and limited cooperation, are added. A multi-step

AP deployment process is designed and demonstrated incorporating these features.
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Chapter 1

Introduction

1.1 Massive Multiple-Input-Multiple-Output (MIMO) Systems

The concept of massive multiple-input-multiple-output (MIMO) [3] has emerged in recent decades

as a strong solution for 5G wireless communication systems [4–6], and for the upcoming 6G networks. By

having a large number of antennas, such systems enable higher spectral and energy efficiencies, and reduced

interference due to increased diversity [7, 8]. When all the antennas are at the same location, such systems

are called colocated antenna systems. On the other hand, when the antennas are all at different locations,

such systems are said to be distributed. Fig. 1.1 shows examples of both colocated and distributed cellular

systems.

Distributed antenna systems (DASs), especially in the form of distributed MIMO [9–15], give rise to

even higher average rates over co-located MIMO systems [10,16–18]. In general, distributed massive MIMO

can either be cooperative or non-cooperative. Small-cell networks, the traditional model where each AP

serves one user alone in its cell and do not share information with other APs, are non-cooperative systems.

On the contrary, the newer cell-free networks [19,20], where all APs serve all users and exchange information

among themselves, form cooperative systems. Fig. shows the comparison between small-cell and cell-free

massive MIMO systems.

(a) Colocated (b) Distributed

Figure 1.1: Colocated versus distributed MIMO systems [1].
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Figure 1.2: Small-cell and cell-free massive MIMO systems [2]. For cooperation, all APs in the cell-free system are

connected to a central processing unit (CPU) or network controller (NC).

Although cooperation between the distributed antenna elements or APs in the cell-free approach

assists in mitigating interference between users and further increases spectral efficiency over non-cooperative

massive MIMO systems, cell-free systems come with a major disadvantage. The required user-related in-

formation exchange between APs and the network controller (NC) or the central processing unit, where all

or most processing is performed, occupies a significant portion of the usually limited back-haul capacity of

wireless systems [9,21,22]. These computational and processing requirements are expected to grow with the

anticipated network densification in Beyond 5G/6G wireless systems [23]. As a result, despite the benefits

of cell-free massive MIMO systems, near future deployments of 5G (3GPP Rel-15 and Rel-16 [24]) and WiFi

6 (IEEE 802.11ax [25]) will still be based on the concept of small-cells, possibly leaving cell-free approaches

to posterior deployments of the technology. Nevertheless, a multitude of problems has been explored based

on the cell-free network. Prior works investigate topics such as power optimization and energy efficiency

[20,26–28], rate maximization [29,30], clustering (user- and cell-centric) [31–35], limited fronthaul [36], pilot

assignment [37], reconfigurable intelligent surfaces [38], and federated learning [39].

1.2 Access Point (AP) Placement

The focus in this work is a degree of freedom in MIMO system design, namely AP placement. To

contextualize the discussion on AP placement, consider a large gathering such as a sporting event, where

sections in the stadium see a different number and arrangement of spectators depending on the crowd on the

day of the event. To avoid service interruption, more APs should be placed where the number of spectators

is larger, and vice versa, leading to the concept of smart stadiums. Additionally, flexible AP deployment is

of utmost importance in the infrequent emergency and disaster relief situations, where deployments should

be tailored to the time-specific coverage and service requirements, therefore following the dynamics of the

emergency event [40]. Thus, AP placement aims to answer the main question: How do we place APs optimally

for a given user distribution? The optimality can be in terms of a multitude of performance indicators, such

as throughput, resource allocation, and fairness.

Previous work in massive MIMO systems, both in the small-cell as well as cell-free regimes, have

not focused largely on AP placement. Most works assume some random placement of the APs or a uniform
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deployment and unfortunately, the throughput gains that can be obtained from placement have been ignored.

Perhaps, one of the initial works on AP or antenna placement has been [13], where the antenna location

design problem has been compared to vector quantization (VQ). More recent papers by other research groups

have also employed VQ and the Lloyd algorithm as a solution for their optimization problems. However, the

discussion on the applicability of VQ and its connection to the placement problem has been limited. In this

dissertation, we will thus discuss the VQ framework and we begin by providing a brief review of it.

1.3 A Primer on Vector Quantization (VQ)

VQ [41] is a coding scheme developed as an extension on scalar quantizers for multi-dimensional

vectors. In this framework, the data to be quantized, which typically has a probabilistic density (called

the source distribution), is quantized to represent it as a set of vectors (called the codebook). It has been

extensively used in applications such as image and video compression, clustering, and pattern recognition.

In VQ, the random vector to be quantized is x ∈ Rp, where p is the dimension, and the two main

steps to be designed are the encoding and decoding steps. The encoder E splits the source domain under

consideration into N regions (called Voronoi regions, each corresponding to a bit sequence of length log2N)

and assigns a region R to the input vector x. The encoder performs the following mapping

E : Rp → {R1,R2, . . . ,RN}. (1.1)

The decoder D then assigns to each region Rn, where n = 1, 2, . . . , N , a codepoint x̂n, and performs the

mapping

D : {R1,R2, . . . ,RN} → {x̂1, x̂2, . . . , x̂N}. (1.2)

The set of codepoints {x̂1, x̂2, . . . , x̂N} is collectively the codebook. Thus, the quantizer Q assigns for every

input x, one of N codepoints, and is given as

Q(x) = D(E(x)) = x̂E(x), (1.3)

where x̂E(x) specifies that the output codepoint is a function of the input vector and for simplicity in notation,

we assume that E(x) denotes the index of the region that it specifies. The encoder E assigns to the input

x, the region Rn whose corresponding codepoint x̂n is closest to it, defined in terms of a distortion function

d between the input vector and a codepoint. The codepoint corresponding to the region can formally be

written as

x̂E(x) = arg min
x̂n

d(x, x̂n). (1.4)

Taking the average of the distortion function over the distribution of the input vector, the VQ optimization

problem is

arg min
x̂1,x̂2,...,x̂N

Ex

{
d(x, x̂E(x))

}
. (1.5)

To solve the optimization of (1.5), the goal is to find the optimal encoder and decoder jointly, which

is difficult. Hence, it is split into two tasks, which are to find a optimal encoder given a fixed decoder and a
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optimal decoder given a fixed encoder, and form the two necessary conditions for quantizer optimality. The

main methodology then is to alternate between these two tasks in order to converge to a reasonable solution.

Accordingly, finding the best encoder given the decoder involves determining the best regions given fixed

codepoints. This leads to the Nearest Neighbor Condition (NNC), defined as

Rn = {x : d(x, x̂n) ≤ d(x, x̂l),∀l ̸= n}. (1.6)

Next, finding the best decoder given the encoder involves determining the best codepoints given the regions.

This is the Centroid Condition (CC), given by

x̂n = Cent{x|x ∈ Rn}, (1.7)

where the centroid Cent1 of region Rn gives the codepoint x̂n for the region. Alternating between the NNC

and CC steps until convergence is reached yields the optimal codebook and the algorithm is called the Lloyd

algorithm.

1.4 Dissertation Contributions and Organization

It is quite evident that APs should be placed in an area of interest such that the performance

(throughput, quality of service, etc.) of all the users in that area are improved, instead of a uniform

or random placement (as considered by the majority of popular MIMO works, e.g., [3]). Compared to

traditional networks consisting of fixed (in position) base stations (BS), new-age APs could consist, for

example, of unmanned aerial vehicles (UAVs) fitted with AP capabilities, and even APs in buildings that can

move around on ceiling rails, both of whose flexibilities in positions allow for increased network performance.

Solutions to the AP placement problem for both small-cell and cell-free systems in the context of throughput

optimality, along with the suitability of the VQ framework and the application of VQ-based methods to

solve the same have not been addressed in the literature.

Thus, to start the discussion, AP placement in the small-cell scenario is first considered in Chapter

2. Inter-cell interference (ICI) is a fundamental part of small-cell networks, which for the purposes of

AP placement has not been covered in many works. While the standard VQ approach, namely the Lloyd

algorithm, has been applied to small-cell AP placement, either a single-cell consideration has been applied or

the interference component has been neglected completely. Noting still that the Lloyd algorithm is useful and

convenient for signal-to-noise ratio (SNR) improvement, the distortion function used is modified to include

the important ICI quantity. The optimization problem in this case now focuses on the signal-to-interference-

plus-noise ratio (SINR) as opposed to SNR. Consequently, we come up with two Lloyd-type algorithms,

namely the Interference Lloyd algorithm and the Inter-AP Lloyd algorithm that improve the minimum rate

of the system compared to when the popular Lloyd algorithm is used.

1The centroid is defined [41] as
Cent{x|x ∈ Rn} = arg min

x̂n

E{d(x, x̂n)|x ∈ Rn}.
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Second, we expand the discussion on small-cell AP placement along two fronts in Chapter 3. The

first front considers a situation where there both position-fixed (terrestrial) and position-flexible (UAV-

enabled) APs exist. We again follow throughput optimality and the inclusion of ICI in the objective function.

However, as an alternative to considering SINR above, we include ICI in a metric called signal-to-generated-

interference-plus-noise ratio (SGINR). A Lloyd-type algorithm that considers this metric and works on the

network consisting of both terrestrial APs and UAV-APs (a hybrid network) is designed for throughput-

optimal AP placement. This algorithm is termed Hybrid AP placement algorithm (HAPPA). Further, a

common problem encountered in the implementation of Lloyd and Lloyd-type algorithms is the initialization

of the AP locations, which ultimately determine the local (or global) optimum to which the AP positions

converge. The popular k-means++ method that alleviates this problem to a certain degree is still prone to

inconsistent results when the placement algorithms are run multiple times. Hence, utilizing bit allocation

from VQ, we design another initialization procedure to improve this inconsistency. On the second front, we

address load balancing among the APs for fairness in user access. When the Lloyd algorithm determines the

AP positions and associates users to the APs, the resulting unequal occupancies of the cells causes users in

some cells to have a more frequent access to their APs than users in other cells. We incorporate tackling this

fairness into the Lloyd algorithm through two methods. The first method modifies the distortion function

of the Lloyd algorithm by the use of weights that are proportional to the cell occupancies and is called the

Occupancy Weighted Lloyd Algorithm (OWLA). The second method involves adding an additional step that

prioritizes the re-assignment of users and adopts a distance threshold to cap the resulting throughput loss

and is termed the Cell Equalized Lloyd Algorithm-α (CELA-α). Both algorithms show significant gains in

enabling fairness in user-AP access while showing minimum throughput losses.

Chapter 4 switches the discussion to AP placement in cell-free networks. Throughput-optimality

is considered in the form of two main optimization problems, namely the sum rate and minimum rate

optimization problems. With some simple examples, these problems are shown to be challenging to solve.

Hence, we again resort to utilizing VQ as a practical approach. Apart from the standard approach, i.e., the

Lloyd algorithm, two other VQ-based approaches, namely the tree structured VQ (TSVQ) and probability

density function (PDF) optimized VQ (PDFVQ) algorithms, are motivated and described to be used in

cell-free AP placement. Each of these methods has their own advantages and offer rate performances. Of

the three algorithm, PDFVQ enables a good trade-off between sum and minimum rates in cell-free systems.

The cell-free AP placement paradigm continues in Chapter 5, however, the work described here

serves to outline a practical approach to AP deployment. In previous works concerning cell-free AP place-

ment, the user positions or densities are assumed to be known. Further, the concept of limited cooperation

has not be integrated into the placement procedure. Thus, to make the cell-free system more viable, we

develop a multi-step AP deployment procedure that addresses these two main challenges. Starting from an

existing deployment, clustering of the APs for limited cooperation is performed, for which agglomeration

clustering is selected as the technique. Then, the user positions can be determined through multilateration

by information exchange among within-cluster APs. Utilizing the user locations, a suitable AP placement

algorithm can be executed to calculate the new AP locations. Finally, based on the throughput problem of
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interest, that is either sum or minimum rate maximization, the fine-tuning of the individual AP locations can

be performed by local max-sum gradient and local majorization-minimization, and local max-min gradient

methods, respectively.

Finally, it is to be noted that each of the chapters are written to be mostly self-contained. However,

it is recommended that Chapters 2 and 3 are read in order, and Chapters 4 and 5 are also read in order since

they pertain to small-cell and cell-free AP placement, respectively. Chapter 6 provides concluding remarks

for this dissertation.
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Chapter 2

Small-Cell AP Placement

In this chapter, we explore the small-cell uplink access point (AP) placement problem in the context

of throughput optimality and provide solutions while taking into consideration inter-cell interference (ICI).

First, we briefly review the vector quantization (VQ) approach and related single user throughput-optimal

formulations for AP placement. Then, we investigate the small-cell case with multiple users and expose the

limitations of mean squared error based VQ for solving this problem. While the Lloyd algorithm from the

VQ approach is found not to strictly solve the small-cell case, based on the tractability and quality of the

resulting AP placement, we deem it suitable as a simple and appropriate framework to solve more complicated

problems. Accordingly, to minimize ICI and consequently enhance achievable throughput, we design two

Lloyd-type algorithms, namely the Interference Lloyd algorithm and the Inter-AP Lloyd algorithm, both

of which incorporate ICI in their distortion functions. Simulation results show that both of the proposed

algorithms provide superior 95%-likely rate (the best rate among the worst 5% of the users in the network)

over the traditional Lloyd algorithm and the Inter-AP Lloyd algorithm yields a significant increase of up to

36.34% in achievable rate over the Lloyd algorithm.

2.1 Introduction

Due to the large backhaul processing requirements characteristic of cooperative cell-free systems,

the non-cooperative small-cell systems will still be useful for the current and future deployments of 5G and

Beyond 5G networks. Hence, controlling inter-cell interference (ICI) continues to be a major system design

problem, which will actually assume much greater significance with the expected network densification of

Beyond 5G systems. Currently, ICI is dealt with in the standards by advanced scheduling techniques such

as basic service set (BSS) coloring [25] and dynamic time division duplex (D-TDD) [42]. Also, controlling

ICI is of great importance to public protection and disaster relief (PPDR) wireless networks occupying the

700 MHz (and below) frequency bands due to their desirable propagation characteristics and higher signal

penetration capabilities, which can cause severe service outages to adjacent emergency networks even in

not-so-dense deployments [40,43–45].
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Within the small-cell paradigm, and in recent times, the AP (or antenna) placement problem has

attracted a great deal of attention [13–15, 46], however, optimizing the AP or antenna locations by maxi-

mizing a signal-to-noise ratio (SNR) objective function alone has traditionally been the standard approach.

The authors of [13] consider a distributed antenna system (DAS) and optimize the cell averaged ergodic

capacity based only on SNR and neglect ICI. Using the square distance criterion, they notice similarities

with codebook design in VQ, which enables the utilization of the well-known (for ease of implementation)

Lloyd algorithm to solve the antenna placement problem. In [15], the average achievable per-user rate of

uniformly distributed users is optimized in order to find the radius of a circular antenna array; however, due

to the adoption of a single-cell model, no ICI is considered. Circular antenna array deployments based on

average rate optimization are also considered in [14] based on one-cell and two-cell models, with the latter

model accounting for leakage interference alone. Additionally, the authors of [46] simulated an indoor wire-

less environment where they generated a 10-fold improvement in the distributed system capacity over the

co-located one. Further, placing APs in accordance with the user densities generated a significant increase

(40% over uniform AP placement) in system capacity. The authors of [47] and the subsequent works by their

group [48–51] have discussed heterogeneous wireless sensor network deployment as a source coding problem.

In these works, the optimal deployment is solved while studying limited communication range and optimal

total power consumption to place both APs and fusion centers, but without addressing ICI. Recently, un-

manned aerial vehicles (UAVs) equipped with base stations have also been considered in the context of AP

placement [52–59].

In the abovementioned works, the suitability of the Lloyd algorithm from VQ to throughput-optimal

AP placement has not been investigated. VQ considers only a single user, and the objective function is

averaged over the position of this user. This approach, however, does not conform with the small-cell

scenario where there are multiple users, one from each cell, communicating with the serving AP in its cell.

Further, ICI has been neglected, therefore leading to AP placements that yield sub-optimal throughput.

Hence, in this chapter, we devise a non-cooperative small-cell system based on the Lloyd algorithm, which

we show can solve for near-optimal AP locations, in terms of the fundamental performance measure of

throughput, while considering ICI.

Contributions

To the best of our knowledge, solutions to the AP placement problem based on the Lloyd algorithm

and that are derived from a detailed analysis of throughput optimality, while incorporating ICI, have not

been provided in the literature. Hence, in this chapter on small-cell AP placement, our contributions are as

follows.

• We first formulate various single user AP placement problems for throughput optimality in terms

of rate, SNR, and a higher exponent for the user-AP distance (as opposed to squared distance). We

explore the relationship of the Lloyd algorithm from VQ to these problems. We then study the multiple

user case and address the small-cell AP placement problem. Although our analysis determines that

the application of the Lloyd algorithm to small-cell AP placement is not ideal, we find that the Lloyd
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algorithm, apart from being easy to implement, is quite effective in solving the placement problem as

a baseline algorithm and yields near-optimal AP locations.

• We present two methods to incorporate ICI into the optimization function of the Lloyd algorithm.

Consequently, the distortion function of the Lloyd algorithm is modified and two Lloyd-type algorithms

for AP placement that are aware of ICI and, as a result, maximize achievable per-user signal-to-

interference-plus-noise ratio (SINR), are proposed, namely the Interference Lloyd algorithm and Inter-

AP Lloyd algorithm.

2.2 System Model

We use the small-cell model detailed in [60] and [61, Ch. 4], which is reproduced here for complete-

ness. Now, consider a geographical area where K single-antenna users are distributed, according to some

probability density function (pdf) fP(p), where p ∈ R2 is the random vector denoting the position of a

user. There are M single-antenna APs that serve the users in this area. The location of an AP is denoted

by q ∈ R2. All APs are connected via error-free backhaul links to the network controller1 (NC), so that it

knows the positions of the APs and their respective users. For simplicity, a narrowband flat-fading channel

is considered. With m = 1, 2, . . . ,M and k = 1, 2, . . . ,K, the channel coefficient between the mth AP and

kth user is

gmk =
√
βmkhmk, (2.1)

where βmk and hmk ∼ CN (0, 1) are the large-scale and small-scale fading coefficients, respectively. hmk

is assumed to remain constant during a coherent interval and change independently in the next, and is

independent of βmk. The large-scale fading coefficients are modeled as

βmk =

{
c0, ||pk − qm|| ≤ r0,

c1zmk

||pk−qm||γ , ||pk − qm|| > r0,
(2.2)

where pk and qm represent the locations of the kth user and mth AP, respectively. Here, γ is the pathloss

exponent, zmk is the log-normal shadow fading coefficient, and c0, c1, and r0 are constants. These coefficients

can also be estimated by either ray-tracing [62] or data-driven [63] approaches.

The uplink transmission model used in this chapter schedules users in a round robin fashion with

their serving APs using time-division multiple access (TDMA). Thus, each AP serves only one user in a time

slot. In the small-cell setup, each of the M cells corresponds to each of the M APs, and pursuant with the

uplink model, the user in each cell communicating with its associated AP causes interference to all other

APs. Now, letting km denote a user in the cell associated with AP m, the received signal ym at this AP is

ym =

M∑
m′=1

√
ρrgmkm′ skm′ + wm, (2.3)

1The NC is where the proposed placement algorithms to be described in detail in the remainder of this chapter will be loaded
and executed.
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where ρr is the uplink transmit power, skm is the data symbol with E{|skm |2} = 1 (unit power), and

wm ∼ CN (0, 1) is the additive noise. A matched filter (MF) employed at the AP m estimates the data

symbol skm of user km as

ŝkm =
g∗mkm

|gmkm
|
ym,

=
√
ρr|gmkm

|skm︸ ︷︷ ︸
Tdes: desired term

+

M∑
m′=1
m′ ̸=m

√
ρr

g∗mkm

|gmkm
|
gmkm′ skm′

︸ ︷︷ ︸
Tint: interference term

+vm, (2.4)

where vm ∼ CN (0, 1). Considering Tint in (3.4) as noise, the signal-to-interference-plus-noise ratio (SINR)

achieved by user km at AP m is derived to be

ϕkm
=

ρrβmkm
|hmkm

|2

1 + ρr
M∑

m′=1
m′ ̸=m

βmkm′ |hmkm′ |2
. (2.5)

2.3 VQ and the Lloyd Algorithm for AP Placement

Since VQ has been introduced in Chapter 1, we show in this section how the Lloyd algorithm

us currently used in its basic form, to solve for AP placement. Note that Section 2.4 will investigate the

suitability of the Lloyd algorithm to obtain AP locations.

If the VQ approach were to be used to solve for small-cell AP placement, then the random vector to

be quantized is the 2-D position p of a single user. The Voronoi regions are the cells Cm and the codepoints

are the AP locations qm, where m = 1, 2, . . . ,M . The optimization problem in (1.5) can be written by using

similar notations and taking the average over the user positions, as follows

arg min
q1,q2,...,qM

Ep

{
d(p,qE(p))

}
. (2.6)

It is worth reiterating that E(p) indexes the nearest AP that the user at p associates to. The objective

function in (2.6) can be written as

JVQ = Ep

{
d(p,qE(p))

}
,

=

∫
p∈R2

d(p,qE(p))fP(p)dp,

=

M∑
m=1

 ∫
p∈Cm

d(p,qm)fP(p|p ∈ Cm)dp

Pr(p ∈ Cm),

=

M∑
m=1

Sm Pr(p ∈ Cm),

(2.7)

where the penultimate step arises by splitting the integral in the previous step into the cells (Voronoi regions)
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with their respective codepoints and the quantity Sm is defined as

Sm =

∫
p∈Cm

d(p,qm)fP(p|p ∈ Cm)dp. (2.8)

To solve for the optimal AP locations, the most often used distortion function is the squared

Euclidean distance

dSE(p,qE(p)) =
∣∣∣∣p− qE(p)

∣∣∣∣2 , (2.9)

and the objective function in (2.7) then becomes the mean squared error (MSE). In this chapter, we retain

the name ‘Lloyd algorithm’ for the algorithm that solves (2.7) using dSE, the steps of which are provided

in Algorithm 12. For algorithms that use all other distortion functions, we will use the name ‘Lloyd-type

algorithm’. Note that when the Lloyd algorithm is implemented, we use theK realization of users at positions

Algorithm 1 Lloyd Algorithm With Squared Error Distortion

1: Initialize random AP locations q
(0)
1 ,q

(0)
2 , . . . ,q

(0)
M .

2: Use the NNC to determine the cells C(i+1)
1 , C(i+1)

2 , . . . , C(i+1)
M such that

C(i+1)
m =

{
pk :dSE

(
pk,q

(i)
m

)
≤dSE

(
pk,q

(i)
l

)
,∀l ̸= m

}
.

3: Use the CC to determine the AP locations q
(i+1)
1 ,q

(i+1)
2 , . . . ,q

(i+1)
M such that

q(i+1)
m =

1∣∣∣C(i+1)
m

∣∣∣
∑

pk∈C(i+1)
m

pk.

4: Repeat from step 2 until convergence (MSE falls below a threshold).

pk, k = 1, 2, . . . ,K, as described in Section 2.2. We will use this notation for all the Lloyd-type algorithms

that follow. Also, observe that in the CC step in 12, the centroid is replaced by the expectation which is

evaluated by using the sample average over the user positions pk present in cell Cm. The calculation of the

centroid of the region is applicable only due to the squared error distortion dSE used [41]. Additionally, as

opposed to the ℓ2-norm in (4.17), the ℓ1-norm can be considered, and the corresponding algorithm is called

the k-medians algorithm. Note that the ℓ1 norm-based distortion function is given as

d (p,qm) = ||p− qm||21 . (2.10)

While the NNC step utilizes the above distortion function, the CC step now involves the calculation of the

median of the user positions in the cell, defined as

qm = Med [p|p ∈ Cm] , (2.11)

where Med[·] denotes the median operation. This is called the geometric median, which is the point that

minimizes the sum of Euclidean distances to the user positions. Formally, this point is chosen according to

the following optimization problem

qm = arg min
y

∑
p∈Cm

||p− y||2 . (2.12)
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The solution of this optimization is performed through a form of iterative least-squares solution called

Weiszfeld’s algorithm [64].

An interesting observation here is that the VQ framework presented above considers only the

positions of the users and APs, and hence is independent of both the small-scale fading and shadow fading

components of the wireless system since these quantities are not dependent on the user and AP positions.

These random quantities thus do not play a role in AP placement using VQ. It is also very important to

note here that VQ considers only a single user to be quantized and the average over the distribution of

that user is taken. However, this does not conform to our small-cell system model, where M users are each

communicating with its serving AP at the same time. Hence, the VQ approach does not strictly solve the

small-cell AP placement problem.

2.4 Throughput Formulations and Solutions Without Inter-Cell

Interference

In this section, we will describe throughput optimization via various formulations, such as average

rate and SNR, and provide solutions to obtain optimal AP locations. We start by considering the single

user scenario inherent to VQ and expand to a more realistic one in which multiple users are present. We

also illustrate, by formulation only, the case where ICI is present. In summary, we argue how the Lloyd

algorithm, despite its simplicity, is suitable for small-cell AP placement.

2.4.1 Single User Case

Rate

The single user case is the simplest case wherein a user at location p alone is considered. Recall

that p is a random vector with pdf fP(p). We start our analysis with per-user rate, which is the common

measure of interest, achieved by a user at p with its nearest AP at qE(p), as per the VQ principles discussed

above. We also approximate the large-scale fading coefficients, given in (3.2), by

βE(p) ≈
c1zE(p)∣∣∣∣p− qE(p)

∣∣∣∣γ , (2.13)

since r0 is much smaller than the dimensions of the area under consideration. Note that the second subscript

has been dropped for the ensuing analyses, since we consider a single user. Let us define the average rate,

utilizing the per-user SNR ψkE(p)
(obtained from (3.5) by neglecting ICI and replacing m with E(p)) as

follows

r(q) = EA,p

{
log
(
1 + ψkE(p)

)}
, (2.14)

where we average over the user position p, the random quantities hE(p) and zE(p), A = {hE(p), zE(p)} for

brevity, and we use the notation q = {q1,q2, . . . ,qM} to show that the average rate is a function of the

M AP locations alone. Similar to VQ in the previous section, we average out the small-scale and shadow
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fading components defined in A since they are position independent and do not contribute to the optimal

placement of APs. Assuming high SNR (ψkE(p)
≫ 1), we can write (2.14) as

r(q) = EA,p

log

 ρrc1|hE(p)|2zE(p)(∣∣∣∣p− qE(p)
∣∣∣∣2) γ

2


 , (2.15)

and we wish to perform the optimization

arg max
q1,q2,...,qM

r(q). (2.16)

After averaging and removing the terms that are not involved in the optimization in (2.15), we obtain

arg min
q1,q2,...,qM

Ep

{
log
(∣∣∣∣p− qE(p)

∣∣∣∣2 + ϵ
)}

, (2.17)

where we have added a constant ϵ > 0 (typically very small) to prevent the logarithm from approaching

negative infinity if the user position p were to overlap with the position of the nearest AP qE(p). Note that

ϵ could correspond to the pathloss at a reference distance or even height of the AP. The objective function

to be optimized above is concave as a result of which the Majorization-Minimization (MM) technique [65]

can be used to acquire a solution to the centroid computation (CC) step. Although the distortion function

in (2.17) is the logarithm of the squared Euclidean distance, the NNC step here remains the same as in the

Lloyd algorithm since both log(·) and ϵ can be ignored when comparing two distortion functions. The MM

technique upperbounds the objective function by a surrogate function and minimizes the surrogate through

an iterative method. Solving the objective function in (2.17) using the MM method results in an iterative

solution with the following two update equations

q(j+1)
m =

∑
pk∈Cm

w
(j)
k pk∑

pk∈Cm

w
(j)
k

,

w
(j+1)
k =

1

||q(j+1)
m − pk||2 + ϵ

, ∀pk ∈ Cm,

(2.18)

where j denotes the MM iteration index.

In summary, to solve for the AP locations, we can now formulate a Lloyd-type algorithm with the

NNC step remaining the same as that in the Lloyd algorithm, i.e., with dSE, and the CC step replaced by

the above iterative solution of (5.20). We call this Lloyd-type algorithm as the MM-Lloyd algorithm. The

proof of (5.20) is left to Appendix 5.A and the algorithm is provided in Algorithm 2.

SNR

If throughput is measured solely by the SNR averaged over the user location p, then we can show

that the simple case of SNR maximization is equivalent to the VQ optimization problem given in (2.7). Let

us write the average achievable SNR as

ψ(q) = EA,p

{
ρrc1|hE(p)|2zE(p)∣∣∣∣p− qE(p)

∣∣∣∣γ
}
, (2.19)
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Algorithm 2 MM-Lloyd Algorithm

1: Initialize random AP locations q
(0)
1 ,q

(0)
2 , . . . ,q

(0)
M .

2: Use the NNC to determine the cells C(i+1)
1 , C(i+1)

2 , . . . , C(i+1)
M such that

C(i+1)
m =

{
pk :dSE

(
pk,q

(i)
m

)
≤dSE

(
pk,q

(i)
l

)
,∀l ̸= m

}
.

3: Use MM iterations to determine the AP locations q
(i+1)
1 ,q

(i+1)
2 , . . . ,q

(i+1)
M with the update equations

q(j+1)
m =

∑
pk∈C(i+1)

m

w
(j)
k pk∑

pk∈C(i+1)
m

w
(j)
k

,

w
(j+1)
k =

1

||q(j+1)
m − pk||2 + ϵ

, ∀pk ∈ C(i+1)
m ,

where q
(i+1)
m = q

(j+1)
m after convergence.

4: Repeat from step 2 until convergence.

which is lower bounded by applying Jensen’s inequality as

ψ(q) ≥ EA

 ρrc1|hE(p)|2zE(p)(
Ep

{∣∣∣∣p− qE(p)
∣∣∣∣2}) γ

2

 , (2.20)

with A defined as before. Maximizing ψ(q) to obtain the AP locations is the same as minimizing the term

in the denominator, leading to the same objective function (2.7) in VQ. The optimization problem is

arg min
q1,q2,...,qM

Ep

{∣∣∣∣p− qE(p)
∣∣∣∣2} . (2.21)

As before, this is solved using the Lloyd algorithm with dSE (Algorithm 12). For consistency in future discus-

sions, we introduce the notation d(p,q) as a general form of distortion measure with q = {q1,q2, . . . ,qM}.
Hence, the squared error distortion function in (4.17) is written in the general form as

dSE
(
p,q

)
=
∣∣∣∣p− qE(p)

∣∣∣∣2 . (2.22)

Higher Exponent for User-AP Distance

The objective function in the Lloyd algorithm is proportional to the square of the user-AP distance

while that in the MM-Lloyd algorithm is proportional to the logarithm of the squared distance. This

means that the MM-Lloyd algorithm disproportionately considers the contribution of users, as the logarithm

suppresses the larger distances inherent to users at the cell borders, in comparison to the Lloyd algorithm. To

overcome this effect, we can design another optimization function that exponentially scales up large distances

relative to the Lloyd algorithm by raising the distance to a higher power. The topic of optimal quantizer

design for higher powers of distance has been studied in [48]. This higher exponent χ > 2 also characterizes
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higher frequency (e.g., mmWave) communications. The optimization problem can then be represented as

arg min
q1,q2,...,qM

Ep

{∣∣∣∣p− qE(p)
∣∣∣∣χ} , (2.23)

where χ is the power. This optimization problem can be solved by using a Lloyd-type algorithm that uses

the distortion function

dχ
(
p,q

)
=
∣∣∣∣p− qE(p)

∣∣∣∣χ . (2.24)

While the NNC step uses dχ, the CC step utilizes the steepest descent method, with the update equation

q(j+1)
m = q(j)

m − δ
∂

∂q
(j)
m


∫

p∈Cm

dχ

(
p,q(j)

m

)
fP(p)dp

 , (2.25)

for all m, where j is the iteration index, δ is the step size, and the gradient expression is given by

∂

∂qm


∫

p∈Cm

dχ (p,qm) fP(p)dp

 =
χ

|Cm|
∑

pk∈Cm

(qm − pk) ||pk − qm||χ−2
. (2.26)

This Lloyd-type algorithm is called the Lloyd-χ algorithm and the proof of the above result for gradient can

be found in Appendix 2.B. The algorithm is given in Algorithm 3.

Algorithm 3 Lloyd-χ Algorithm

1: Initialize random AP locations q
(0)
1 ,q

(0)
2 , . . . ,q

(0)
M .

2: Use the NNC to determine the cells C(i+1)
1 , C(i+1)

2 , . . . , C(i+1)
M such that

C(i+1)
m =

{
pk :dχ

(
pk,q

(i)
m

)
≤dχ

(
pk,q

(i)
l

)
,∀l ̸= m

}
.

3: Use the steepest descent method to determine the AP locations q
(i+1)
1 ,q

(i+1)
2 , . . . ,q

(i+1)
M with the update

equation

q(j+1)
m =q(j)

m −
δχ∣∣∣C(i+1)
m

∣∣∣
∑

pk∈C(i+1)
m

(q(j)
m − pk)

∣∣∣∣∣∣pk − q(j)
m

∣∣∣∣∣∣χ−2

,

where q
(i+1)
m = q

(j+1)
m after convergence.

4: Repeat from step 2 until convergence.

The above formulations were developed by assuming a single user located at p. However, in practice

and according to the system model, M APs serve M users at the same time. Hence, we now consider the

case where M users are picked from the distribution.

2.4.2 Multiple User Case

Random User Selection

If M users are selected independently from the overall distribution fP(p), then the distribution of

these users are i.i.d. Let p ≜ {p1,p2, . . . ,pM} be the set of locations of the M users. If we assume that the
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users do not interact with each other2, then the objective function can be the sum of distortions incurred by

each user with its closest AP, i.e., the optimization is of the form

arg min
q1,q2,...,qM

Ep

{
M∑

m=1

d(pm,qE(pm))

}
= arg min

q1,q2,...,qM

M · Ep

{
d(p,qE(p))

}
, (2.27)

where qE(p) defined as before and the simplification arises from the fact that each user is i.i.d. The final

objective function thus is essentially the same as the single user case.

The above model is applicable in the following scenario. First, since the selection does not limit

one user per small cell, the cells must be capable of dealing with more than one user with no multiple

access interference. Secondly, since there is no ICI considered, each small cell must be assigned orthogonal

resources. This leads to an interesting resource allocation problem which we do not pursue here.

Random Selection of One User Per Cell without ICI

The formulation described above considers M users at a time, but fails to follow the system model

as each user is not necessarily picked from the Voronoi region or cell in which its serving AP is present. Under

this model, assuming again that the users at p = {p1,p2, . . . ,pM} do not interact with one another, the

objective function to minimize would be the sum of the average distortion in each cell, i.e., the optimization

is

arg min
q1,q2,...,qM

Ep

{
M∑

m=1

d(pm,qm)

}
, (2.28)

with the joint distribution of the user positions as

fP(p) =

M∏
m=1

fPm
(pm|pm ∈ Cm). (2.29)

The above objective function can be simplified as

M∑
m=1

Ep {d(pm,qm)} =
M∑

m=1

∫
p∈Cm

d(p,qm)fP(p|p ∈ Cm)dp,

=

M∑
m=1

Sm,

(2.30)

where Sm is from (2.8). It is worth noting here the difference between this objective function and that of the

Lloyd algorithm in (2.7) where each term Sm is weighted by the probability that the user is present in the cell

Pr(p ∈ Cm). The solution to the above objective function is then a Lloyd-type algorithm with the CC step

unchanged, but with the NNC step using weighted distortion functions, with the weights being the inverse

of the proportion of users present in the cell. More specifically, the squared error distortion dSE(p,qm) is

pre-multiplied with a weight wm = 1/Pr(p ∈ Cm) = K/Nm, where Nm is the number of users in Cm. The

NNC step is

Cm = {p : wmdSE (p,qm) ≤ wldSE (p,ql) ,∀l ̸= m} . (2.31)

2This implies that a user does not influence the AP selection of any other user. In other words, the distortion function
between a user at pm and its closest AP qE(pm) is independent of the positions of all other users pm′ , where m′ ̸= m. It is

worth noting that multiple users can select the same AP as its closest one.
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We call this algorithm as the weighted MSE (WMSE) Lloyd algorithm. Note that weighted distortion

functions have been studied in [47], although the authors have considered weights that remain constant. The

weights in the WMSE Lloyd algorithm, on the other hand, are learnt in every iteration. The proof of the

above solution is provided in Appendix 2.C and the algorithm is outlined in Algorithm 4.

Algorithm 4 WMSE Lloyd Algorithm

1: Initialize random AP locations q
(0)
1 ,q

(0)
2 , . . . ,q

(0)
M .

2: Use the NNC to determine the cells C(i+1)
1 , C(i+1)

2 , . . . , C(i+1)
M such that

C(i+1)
m =

{
pk:wmdSE

(
pk,q

(i)
m

)
≤wjdSE

(
pk,q

(i)
l

)
,∀l ̸=m

}
.

3: Use the CC to determine the AP locations q
(i+1)
1 ,q

(i+1)
2 , . . . ,q

(i+1)
M such that

q(i+1)
m =

1∣∣∣C(i+1)
m

∣∣∣
∑

pk∈C(i+1)
m

pk.

4: Repeat from step 2 until convergence.

Random Selection of One User Per Cell with ICI

In all the above formulations, we have considered only SNR and the fact that users do not interact

with one another. However, under the effects of ICI, users do interact with one another in the form of

providing interfering signals at the APs which are serving the other users. Thus, the distortion function

between a user and its serving AP would be a function of all other users as well and under a similar fashion

as in (2.28), we can write the objective function as

M∑
m=1

Ep

{
d(pm,qm,p

′
m
)
}
=

M∑
m=1

∫
p1∈C1

· · ·
∫

pM∈CM

d(pm,qm,p
′
m
)fP(p)dp, (2.32)

where the (general) distortion function uses the term p′
m

which denotes the set of user positions other

than the user at pm and fP(p) is as in (2.29). It is clear from the objective function in (2.32), due to

the dependency of the distortion function on the interfering users, the joint distribution fP(p) cannot be

simplified to consider each cell Cm independently as in (2.30). This makes the said objective function difficult

and intractable, and hence cannot be readily solved.

To deal with ICI in a tractable manner, we adopt a slightly different approach based on the fol-

lowing considerations. Based on results obtained so far, VQ provides a good framework to solve throughput

optimization problems by Lloyd-type algorithms, although without ICI. We have also seen that the optimiza-

tion in (2.32), which considers ICI, is difficult to solve and to derive an AP placement algorithm. Further,

numerical simulations (shown in Experiment 1 of Section 2.7.3) show that the average achievable rate is very

similar, whether the Lloyd or Lloyd-type algorithms described in this section are used. Motivated by these

three facts, in the next section, we show how the Lloyd algorithm can be modified to account for ICI in AP

placement. It is worth noting here that we could implement power control along with AP placement, i.e.,
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optimizing uplink power with per-user power constraints jointly with the AP locations, in order to increment

rate. Our focus in this work, however, is to solely investigate the appropriateness of the VQ approach to

small-cell AP placement and the necessary modifications to add ICI to the VQ optimization framework such

that a Lloyd-type algorithm can be used to solve the problem, both of which have not been performed in

past literature. Thus, we will continue to assume the same uplink power for all users and address power

control in future work.

2.5 Throughput Formulations Accounting for Inter-Cell Interfer-

ence

To account for ICI in the VQ framework, we develop two distortion functions, namely the interfer-

ence and inter-AP distortion functions.

2.5.1 Interference Distortion Measure

From (2.21), it is clear that the Lloyd algorithm maximizes only the desired signal component. In

addition, we are now required to minimize the interference term. To construct a distortion function that

considers both the desired and interference signals, we consider the achievable per-user rate, as considered

in Section 2.4.1, but using the SINR expression from (3.5). Formally, the rate maximization problem is

arg max
q1,q2,...,qM

EA,B,p

{
log
(
1 + ϕkE(p)

)}
, (2.33)

where set A = {hE(p), zE(p)} defined as before and set B = {hm′ , zm′ : m′ ̸= E(p)} consists of the small-scale

and shadow fading quantities for all interfering cells Cm′ , m′ ̸= E(p). For notational simplicity, the SINR

ϕkE(p)
above can be rewritten using TSNR for the desired signal power in the numerator and TICI for the

interference signal power in the denominator as follows

ϕkE(p)
=

TSNR

1 + TICI
, (2.34)

where TSNR = ρrβE(p)|hE(p)|2 and TICI = ρr
∑

m′ ̸=m βm′ |hm′ |2. To recapitulate the notation, we use a single

subscript for simplicity and while hE(p) and βE(p) are the small-scale and large-scale fading coefficients,

respectively, for the user at p to the serving cell, hm′ and βm′ correspond to the same quantities for the same

user, but to the non-serving AP m′. Approximating the rate with high SINR (ϕkE(p)
≫ 1) and TICI ≫ 1,

and simplifying, we get

log ϕkE(p)
≈ log TSNR + log

1

TICI
. (2.35)

It is worth nothing here that the log-sum inequality could be applied to separate the second term above as

the sum of inverses of the individual ICI terms. Further, considering the above sum of logarithm terms, it

is clear that the MM technique can be applied. However, finding a surrogate function in this case is not as

straightforward as in the solution to the MM-Lloyd algorithm discussed in Section 2.4.1. We believe that
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the insight obtained from (2.35) is sufficient to generate a solution for AP placement. To simplify further,

we negate the quantity in (2.35) and approximate using the relation log x < x which yields

− log ϕkE(p)
<

1

TSNR
+ TICI. (2.36)

We have now expressed the negative rate as the sum of the powers of the inverse of the desired and interference

terms. Therefore, to maximize rate or equivalently, minimize the negative of the rate, we need to maximize

SNR and minimize ICI, corresponding to the first and second terms in (2.36), respectively. The equation

presented also reveals the structure of the distortion function that we will use.

Accordingly, in line with the objective function for a Lloyd-type algorithm in (2.7), we average

(2.36) over the user positions and the random quantities defined in (2.33) above, to obtain

EA,B,p

{
1

TSNR
+ TICI

}
= Ep

{
EA,B,p′

{
1

TSNR
+ TICI

}}
, (2.37)

where we denote p′ as the set of positions of the interfering users with respect to the user at p. We have

assumed in (2.37) that the served user position p is independent from the interfering user positions p′. We

will also assume that as in (2.29) that the distribution of users in each interfering cell is independent and we

can then write the joint distribution of users as

fP(p) = fP,P′(p,p′) = fP(p)fP′(p′),

= fP(p)
∏

m′ ̸=E(p)

fPm′ (pm′ |pm′ ∈ Cm′),
(2.38)

where fP′(p′) is the joint distribution of the locations of all the interfering users and fPm′ (pm′ |pm′ ∈ Cm′)

is the distribution of the user in cell Cm′ . Consequently, by carrying out the expectations in (2.37) over A,
B, and p′, we can write the distortion function as

dIF
(
p,q

)
= κ1

∣∣∣∣p− qE(p)
∣∣∣∣γ + κ2

∑
m′ ̸=E(p)

∫
· · ·
∫

1∣∣∣∣pm′ − qE(p)
∣∣∣∣γ fP′(p′)dp′, (2.39)

where κ1 = EA{1/ρrc1zE(p)|hE(p)|2}, κ2 = EB{ρrc1zm′ |hm′ |2}, and the integration limits have been omitted

for notation simplicity. This is the interference distortion function denoted by dIF and the corresponding

Lloyd-type algorithm is called the Interference Lloyd algorithm. Further simplification using (2.38) leads to

a simpler distortion measure

dIF
(
p,q

)
=
∣∣∣∣p− qE(p)

∣∣∣∣γ + κ
∑

m′ ̸=E(p)

∫
pm′∈Cm′

1∣∣∣∣pm′ − qE(p)
∣∣∣∣γfPm′(pm′ |pm′ ∈Cm′)dpm′ , (2.40)

where κ ≜ κ2/κ1. We call κ ≥ 0 as the trade-off factor and it determines the trade-off between desired

signal and ICI power. κ can be varied to determine the importance of ICI power over desired signal power.

To solve for the AP locations, the Interference Lloyd algorithm retains the NNC step and the

steepest descent method is to be used for the CC step (update equation given in (2.25) above), both steps

utilizing dIF. For the sake of implementation, the integral in dIF from (2.40) is numerically approximated

using the sample average over a large number of realizations of the user locations, and is written as

dIF (p,qm) = ||p− qm||γ + κ
∑

m′ ̸=m

1

|Cm′ |
∑

pk
m′∈Cm′

1∣∣∣∣pkm′ − qm

∣∣∣∣γ , (2.41)
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where pkm′ represents the kth realization of the user position in cell Cm′ . The gradient function in this

update equation is

∂

∂qm


∫

p∈Cm

dIF (p,qm) fP(p)dp

 =
γ

|Cm|
∑

pk∈Cm

(qm − pk) ||pk − qm||γ−2

+ κ
∑

m′ ̸=m

γ

|Cm′ |
∑

pk
m′∈Cm′

(
pkm′ − qm

)∣∣∣∣pkm′ − qm

∣∣∣∣γ+2 .

(2.42)

The proof of this result is given in Appendix 2.E and the steps for this Lloyd-type algorithm are provided

in Algorithm 5.

Algorithm 5 Interference Lloyd Algorithm

1: Initialize random AP locations q
(0)
1 ,q

(0)
2 , . . . ,q

(0)
M .

2: Use the NNC to determine the cells C(i+1)
1 , C(i+1)

2 , . . . , C(i+1)
M such that

C(i+1)
m =

{
pk :dIF

(
pk,q

(i)
m

)
≤dIF

(
pk,q

(i)
l

)
,∀l ̸= m

}
.

3: Use the steepest descent method to determine the AP locations q
(i+1)
1 ,q

(i+1)
2 , . . . ,q

(i+1)
M with the update

equation

q(j+1)
m = q(j)

m − δ

 γ∣∣∣C(i+1)
m

∣∣∣
∑

pk∈C(i+1)
m

(
q(j)
m − pk

) ∣∣∣∣∣∣pk − q(j)
m

∣∣∣∣∣∣γ−2

+κ
∑

m′ ̸=m

γ∣∣∣C(i+1)
m′

∣∣∣
∑

pk
m′∈C(i+1)

m′

(
pkm′ − q

(j)
m

)
∣∣∣∣∣∣pkm′ − q

(j)
m

∣∣∣∣∣∣γ+2

 ,

which, after convergence, q
(i+1)
m = q

(j+1)
m .

4: Repeat from step 2 until convergence.

2.5.2 Inter-AP Distortion Measure

Here, we develop an alternate distortion function that also accounts for ICI. Consider the interfer-

ence distortion function dIF in (2.40). Each of the ICI terms in the summation in dIF can be approximated

as follows

Epm′

{
1∣∣∣∣pm′ − qE(p)

∣∣∣∣γ
}
≈ 1∣∣∣∣qm′ − qE(p)

∣∣∣∣γ , (2.43)

the justification of which is provided in Appendix 2.D. Substituting (2.43), we can simplify (2.40) as

dIA
(
p,q

)
=
∣∣∣∣p− qE(p)

∣∣∣∣γ + κ
∑

m′ ̸=E(p)

1∣∣∣∣qm′ − qE(p)
∣∣∣∣γ . (2.44)

We call dIA the inter-AP distortion measure as the ICI term now involves the distances between the inter-

fering APs and AP indexed by E(p). The corresponding Lloyd-type algorithm is called the Inter-AP Lloyd

algorithm.
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The solution of the optimization problem using dIA is similar to that of the Interference Lloyd

algorithm. For the steepest descent method, the gradient corresponding to dIA is given as

∂

∂qm


∫

p∈Cm

dIA (p,qm) fP(p)dp

 =
γ

|Cm|
∑

pk∈Cm

(qm − pk) ||pk − qm||γ−2

+ κγ
∑

m′ ̸=m

qm′ − qm

||qm′ − qm||γ+2 .

(2.45)

The proof of this result is omitted as it is similar in calculation to the gradient of the interference distortion

function in (2.42) and the Inter-AP Lloyd algorithm is given in Algorithm 6. We also summarize the various

formulations and solutions discussed in this section and the prior section in Table 2.1.

Algorithm 6 Inter-AP Lloyd Algorithm

1: Initialize random AP locations q
(0)
1 ,q

(0)
2 , . . . ,q

(0)
M .

2: Use the NNC to determine the cells C(i+1)
1 , C(i+1)

2 , . . . , C(i+1)
M such that

C(i+1)
m =

{
pk :dIA

(
pk,q

(i)
m

)
≤dIA

(
pk,q

(i)
l

)
,∀l ̸= m

}
.

3: Use the steepest descent method to determine the AP locations q
(i+1)
1 ,q

(i+1)
2 , . . . ,q

(i+1)
M with the update

equation

q(j+1)
m = q(j)

m − δ

 γ∣∣∣C(i+1)
m

∣∣∣
∑

pk∈C(i+1)
m

(
q(j)
m − pk

) ∣∣∣∣∣∣pk − q(j)
m

∣∣∣∣∣∣γ−2

+ κ
∑

m′ ̸=m

q
(j)
m′ − q

(j)
m∣∣∣∣∣∣q(j)

m′ − q
(j)
m

∣∣∣∣∣∣γ+2

 ,

which, after convergence, q
(i+1)
m = q

(j+1)
m .

4: Repeat from step 2 until convergence.

Among the distortion functions discussed above, it is evident that the MSE distortion dSE has the

lowest complexity. On observing the expressions for the interference dIF and inter-AP dIA distortions, we

find that in the former, the summation for each interfering cell is over all of the users in that cell while in

the latter, the net summation is only over interfering cells. Hence, dIA has lower implementation complexity

than dIF. We will also see in a later section that user association with dIA is relatively much simpler.

2.6 Cell Association Strategies

In the previous sections, we have addressed the problem of how to place APs based on the user

locations. For completeness, we now aim at answering the following two questions on cell association: When

a new user enters the system, to which cell should it associate to? What metric should be used? In this

section, we elaborate on these two issues in the context of Lloyd and Lloyd-type algorithms. Accordingly,

consider a user at location pnew that has entered the area after AP placement has already occurred and will

associate to the AP at qmnew
.
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Table 2.1: Summary of Throughput Formulations and Solutions

Number of Users Formulation Solution Algorithm

Single user

Rate MM-Lloyd

SNR Lloyd

Higher exponent for user-AP distance Lloyd-χ

Multiple users

Random user selection Lloyd

Random selection of one user per cell without ICI WMSE Lloyd

Random selection of one user per cell with ICI Interference and Inter-AP Lloyd

For the Lloyd and Lloyd-type algorithms developed in this paper, the user would associate to the

AP that yields the lowest distortion value. This is a straightforward implementation of the NNC for each

algorithm. Formally, if d represents any of the distortion functions, qmnew
is determined as

qmnew
= {qm : d (pnew,qm) ≤ d (pnew,ql) ,∀l ̸= m} . (2.46)

It is worth pointing out that since the distortion function in the Interference Lloyd algorithm involves

summing over all users in other (interfering) cells, the complexity of such a calculation cannot be overlooked.

Instead, a cell association procedure (2.46) based on the simpler distortion measures of the Lloyd or the Inter-

AP Lloyd algorithm can be undertaken as a low-complexity alternative. Note that the distortion function in

the latter involves only the knowledge of the interfering APs positions. This is of greater practical value as

opposed to knowing the positions of all interfering users in the Interference Lloyd algorithm. In summary, the

Inter-AP Lloyd algorithm not only offers lower implementation complexity and thus a simpler cell association

strategy, but is also of more practical value compared to the Interference Lloyd algorithm.

2.7 Simulation Methodology and Results

2.7.1 Simulation Parameters

A geographical area of dimensions 2 km×2 km is considered, consisting ofM = 8 APs andK = 2000

users, and one randomly selected user in each cell communicates with its associated AP. The pathloss model

in (3.2) is used with γ = 2, shadow fading zmk ignored as it is averaged out in Sections 2.4 and 2.5, c0 = 75.86

and c1 = 7.59× 10−7 as in [61, eq. (4.36), eq. (4.37)] according to the COST 231 Hata propagation model,

and r0 = 0.001 km. Also, the value of the trade-off factor is chosen to be κ = 5× 108 and the step-size for

the gradient descent is δ = 5 × 10−5 for the Lloyd-χ algorithm and δ = 0.5 for the ICI-aware Lloyd-type

algorithms. Moreover, the uplink transmit power is ρr = 200 mW and the user distribution is a Gaussian

mixture model (GMM) of the form

fP(p) =

L∑
l=1

plN
(
p|µl, σ

2
l I
)
, (2.47)
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where I is the identity matrix and L is the number of mixture components, called groups henceforth. For

group l, pl is the mixture component weight, µl is the mean, and σl is the standard deviation. We set a user

configuration with the parameters L = 3, µ1 = [0.5,−0.5]T , µ2 = [0, 0.5]T , µ3 = [−0.5, 0]T , σ1 = σ2 = σ3 =

100, p1 = 0.6, and p2 = p3 = 0.2.

2.7.2 Performance Measures

We use the per-user achievable rate of user km, which is calculated using SINR ϕkm
from (3.5). As

given in [61, Ch. 4], we can also write the achievable rate as

Rkm = E {log2 (1 + ϕkm)} = 1

ln 2
eµkEi (µk) , (2.48)

where µk = (1 + ρr
∑

m′ ̸=m βmkm′ )/ρrβmkm and Ei(x) =
∫∞
x

(e−t/t)dt is the exponential integral.

For each of the proposed algorithms and the benchmark Lloyd algorithm, the maximum iteration

number is set at 50. Each of the above performance measures is calculated through Monte Carlo simulations

with 10, 000 iterations, choosing a set of users randomly for transmission each time. Cumulative distribution

function (CDF) plots are generated for each measure, though normalized by the largest value so as to focus

on the relative performance of the considered algorithms. For comparison, we utilize the 95%-likely metric

that represents the best rate of the worst 5% of the users (users closer to cell borders). We denote this

by R5%
km

. To quantify the improvement in relative performance of the proposed algorithms over the Lloyd

algorithm, we use the following measure expressed as percentage

Improvement Ratio =
R5%,Proposed

km
−R5%,Lloyd

km

R5%,Lloyd
km

× 100. (2.49)

All algorithms are initialized with the same initial AP locations for unbiased comparison.

2.7.3 Numerical Results

Experiment 1. We compare the throughput performances of the proposed Lloyd-type algorithms

in Section 2.4 with the baseline Lloyd algorithm. For the Lloyd-χ algorithm, we use χ = 4 and we note

that the rate calculations still use the exponent γ = 2. The AP locations resultant from the algorithms are

shown in Fig. 2.1. Relative to the AP positions of the Lloyd algorithm which are shown as blue circles, the

APs in both the MM-Lloyd and WMSE Lloyd algorithms are placed closer to the GMM centers. For the

MM-Lloyd algorithm, this can be explained by the logarithm in its objective function which suppresses the

effect of users which are at large distances (e.g., cell periphery users away from the GMM center) from the

AP position during the placement process. This, in turn, causes the APs to position themselves closer to the

GMM centers where the majority of the users at smaller distances are present. The WMSE Lloyd algorithm

works in a different manner as the objective function in (2.30) is not weighted by the cell probabilities

Pr(p ∈ Cm) as in (2.7) of the Lloyd algorithm. This allows cells in the WMSE Lloyd algorithm to have a

larger number of users than the Lloyd algorithm. On the other hand, the objective function of the Lloyd-χ

algorithm amplifies the contribution of the users at large distances and results in the APs moving away from
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Figure 2.1: AP locations after convergence of the Lloyd, MM-Lloyd, Lloyd-χ (χ = 4), and WMSE Lloyd algorithms

with M = 8.
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Figure 2.2: CDF plots of per-user achievable rate for the Lloyd, MM-Lloyd, Lloyd-χ (χ = 4), and WMSE Lloyd

algorithms with M = 8.

the GMM center. The effects of these placements are observed in their achievable rate plots in Fig. 2.2.

For both the MM-Lloyd and WMSE Lloyd algorithms, we observe that due to their AP positions, the lower

rate suffers a reduction in comparison to the Lloyd algorithm. Nevertheless, note that there are more users

achieving higher rates (right side of the CDF plot), particularly for the MM-Lloyd algorithm. The average

rate values, however, are higher than that of the Lloyd algorithm, up to about 4%, as shown in Table 2.2.

On the other hand, the opposite of these effects are observed for the Lloyd-χ algorithm, with higher low rate

values and lower average rate (only 0.65% lower) than the Lloyd algorithm. These effects were also found,

through further experiments, to increase as the power χ increases.

Experiment 2. Here, our simulations show throughput performances for the proposed ICI-aware

Lloyd-type algorithms and the Lloyd algorithm, as well as their respective AP placements for comparison.
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Table 2.2: Percentage Improvements in Average Achievable Rates for the Lloyd-Type Algorithms of Section 2.4

Algorithm Average Achievable Rate

MM-Lloyd 4.26%

Lloyd-χ (χ = 4) −0.64%

WMSE Lloyd 1.14%

The AP locations obtained after the algorithms converge are shown in Fig. 2.3. AP locations for the Lloyd

algorithm are shown as circles around the GMM center, which in turn are shown by stars. Compared to

these positions, we can observe that the AP locations for both the Lloyd-type algorithms are situated further

away from the GMM centers. For the Interference Lloyd algorithm, the AP positions denoted by the squares

are the farthest. This is due to the interference term in its distortion function that forces neighboring cells

apart. This effect is different (smaller) for the Inter-AP Lloyd algorithm due to the inter-AP distances term

in its distortion function in contrast to the interference term in the Interference Lloyd algorithm.

In Fig. 2.4, we show the CDFs of the achievable rate obtained per user for each of the considered

algorithms. The horizontal line at the 5th percentile shows the 95%-likely rate and we compare the values

where it intersects the throughput curves. It is clear that accounting for ICI during the AP placement

procedure yields a superior performance to both Lloyd-type algorithms in comparison to the Lloyd algorithm

in terms of the 95%-likely rate. It is to be noted that the average rate performances of both the proposed

algorithms are lower than that of the Lloyd algorithm, however, the magnitude of increase in the 95%-

likely rates overshadows the decrease in average rates. This occurrence is due to the fact that the original

average rate maximization problem in (2.33) has been transformed into maximization of its lower bound in

(2.36). In practice, Fig. 2.4 shows us that the worst 5% of the users, usually the ones located closer to

the cell borders and thus more susceptible to the deleterious effects of ICI, will have an uplink performance

boost when APs are placed according to the proposed algorithms. The percentage of improvements are

quantified in Table 2.3 from where we can confirm a very significant rate enhancement of up to 36.34%

in the 95%-likely achievable rate, in comparison to the Lloyd algorithm. Also, from the same table, we

can quantify that the Inter-AP Lloyd algorithm, despite its significantly lower computational complexity,

performs slightly to moderately better than the Interference Lloyd algorithm, giving an approximately 3%

improvement in the 95%-likely achievable rate. It is worth pointing out that in our experiments, lower

κ values resulted in less improvements as the Lloyd-type algorithms approached the results of the Lloyd

algorithm. Higher κ values resulted in convergence issues during the AP placement process. Many iterations

of the algorithms were performed with other GMM configurations and κ values. Similar performance trends

were observed for various standard deviations of the GMMs. Thus, the choice of κ is an important part of

the AP placement process and depends primarily on the area under consideration and the pathloss model.

Finally, it is important to notice that although we have focused on the worst 5% of the users, the Inter-AP

Lloyd algorithm actually boosts the performances of the worst (nearly) 25% of the users. The performance

loss of the best users, as seen in the CDF plot, is justifiable due to the fact that users closer to the cell center
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Figure 2.3: AP locations after convergence of the Lloyd and ICI-aware Lloyd-type algorithms with κ = 5× 108 and

M = 8.
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Figure 2.4: CDF plots of per-user achievable rate for the Lloyd and ICI-aware Lloyd-type algorithms with κ = 5×108

and M = 8.

Table 2.3: Percentage Improvements in Average and 95%-Likely Achievable Rates for the ICI-Aware Lloyd-Type

Algorithms

Algorithm Average Rate 95%-Likely Rate

Interference Lloyd −10.94% 33.37%

Inter-AP Lloyd −4.35% 36.34%

tend to benefit from large SINR values that already suffice to provide them with more than their throughput

requirements.
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2.8 Conclusion

In this chapter, we have addressed the access point (AP) placement problem in the small-cell uplink

paradigm under the criteria of throughput, while considering inter-cell interference (ICI). After reviewing

vector quantization (VQ), we explored related throughput formulations in the single user case and subse-

quently, the multiple user case corresponding to the considered small-cell model. Without ICI, we showed

that the simple Lloyd algorithm performed similarly to the aforementioned formulations (only up to a 4%

difference) and could be a baseline algorithm to solve more complex problems. Accordingly, we accounted

for ICI in the optimization function of the Lloyd algorithm and mathematically arrived at two distinct dis-

tortion functions. Correspondingly, we proposed two Lloyd-type algorithms, namely the Interference Lloyd

algorithm and the Inter-AP Lloyd algorithm. Both algorithms yield significant improvement to achievable

rates, giving up to a marked 36.34% increase in the 95%-likely rate over the benchmark Lloyd algorithm.

The Inter-AP Lloyd algorithm achieves throughput gains coupled with lower complexity and simpler user

association over the Interference Lloyd algorithm. Finally, cell association strategies were outlined for all

algorithms for completeness.

Chapter 2, in part, is a reprint with permission of the material as it appears in the papers: Govind

Ravikumar Gopal, Elina Nayebi, Gabriel Porto Villardi, and Bhaskar D. Rao, “Modified vector quantization

for small-cell access point placement with inter-cell interference,” in IEEE Transactions on Wireless Commu-

nications, vol. 21, no. 8, pp. 6387–6401, Aug. 2022, and Govind Ravikumar Gopal, Gabriel Porto Villardi,

and Bhaskar D. Rao, “Is vector quantization good enough for access point placement?” in 2021 55th Asilomar

Conference on Signals, Systems, and Computers, November 2021. The dissertation author was the primary

investigator and author of these papers. These works were supported in part by National Science Foundation

(NSF) under Grant CCF-2124929, in part by Qualcomm Inc. through the Faculty-Mentor-Advisor program,

and in part by the Center for Wireless Communications (CWC), University of California San Diego.
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Appendices

2.A Proof of Solution for MM-Lloyd Algorithm

The expectation in the objective function in (2.17) can be replaced by the sample average using

the user realizations at pk and written as

J =
∑

pk∈Cm

log
(
||qm − pk||2 + ϵ

)
, (2.50)

where qE(p) is replaced by qm and the average is taken over all the users in cell Cm as the update steps

correspond to the CC step of the Lloyd-type algorithm. Following the MM literature, a concave function

can be upper bounded by its first-order Taylor expansion [66]

h(z) ≤ h′(zl)(z − zl) + h(zl), (2.51)

where h(·) is concave on R+, z is the variable, zl is the point around which the expansion is carried out, and

h′(·) is the first derivative. In (2.50), we can take h(zk) = log(zk) and zk = ||qm − pk||2 + ϵ, where we note

that zk is scalar. Thus, using the upper bound (5.33) in (2.50), the objective function is

J1 =
∑

pk∈Cm

h(zk) ≤
∑

pk∈Cm

[h′(zk,l)(zk − zk,l) + h(zk,l)]. (2.52)

Removing the terms that are not involved in the optimization, we have

arg min
qm

∑
pk∈Cm

wkzk = arg min
qm

∑
pk∈Cm

wk

(
||qm − pk||2 + ϵ

)
, (2.53)

where the weight wk is defined as

wk = h′(zk,l) =
∂h(zk,l)

∂zk,l

∣∣∣∣
zk,l=||qm−pk||2+ϵ

,

=
1

zk,l

∣∣∣∣
zk,l=||qm−pk||2+ϵ

=
1

||qm − pk||2 + ϵ
,

(2.54)

which gives the weight update equation. Now, given the weights, the objective function in (2.53) is

J2 =
∑

pk∈Cm

wk

(
||qm − pk||2 + ϵ

)
. (2.55)
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Taking the derivative and equating it to 0, i.e., ∂J2/∂qm = 0, gives the update equation for the AP position

qm =

∑
pk∈Cm

wkpk∑
pk∈Cm

wk
. (2.56)

2.B Proof of Gradient for Lloyd-χ Algorithm

The gradient of the distortion function dχ (p,qm) is calculated as

∂

∂qm


∫

p∈Cm

dχ (p,qm) fP(p)dp



(a)
=

∂

∂qm

 1

|Cm|
∑

pk∈Cm

dχ (pk,qm)

 ,

=
∂

∂qm

 1

|Cm|
∑

pk∈Cm

||pk − qm||χ
 ,

(b)
=

χ

|Cm|
∑

pk∈Cm

(qm − pk) ||pk − qm||χ−2
.

(2.57)

where (a) is obtained by replacing the expectation with the sample mean and the factor of 2 is assumed to

be absorbed by the step-size δ in (b).

2.C Proof of Solution for WMSE Lloyd Algorithm

Consider the simplified objective function in (2.30), which can be written as

M∑
m=1

Sm
(a)
=

M∑
m=1

1

Nm

∑
pk∈Cm

dSE(pk,qm),

(b)
=

1

K

M∑
m=1

1

Pr(p ∈ Cm)

∑
pk∈Cm

dSE(pk,qm),

(2.58)

where in (a), we have replaced the integral of Sm (defined in (2.8)) with the sample average over the

users present in the cell and Nm represents the number of users in cell Cm, and in (b), we have used

Pr(p ∈ Cm) = Nm/K, with K as the total number of users. Comparing (2.58) with the objective function

of the Lloyd algorithm JVQ in (2.7), we have

M∑
m=1

Sm Pr(p ∈ Cm) =

M∑
m=1

1

Nm

∑
pk∈Cm

dSE(pk,qm)× Nm

K
,

=
1

K

M∑
m=1

∑
pk∈Cm

dSE(pk,qm),

(2.59)

where we can observe that the objective function in (2.58) is a weighted MSE (WMSE) measure, with the

weight related to AP m given by wm = 1/Pr(p ∈ Cm). Thus, the NNC step is updated to use a weighted

squared error distortion function, i.e., wmdSE(pk,qm). The CC step however remains independent of the
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weights. This can be proven by taking the derivative of the objective function in (2.58) with respect to the

AP location qm, which gives the AP location as

qm =
1

|Cm|
∑

pk∈Cm

pk. (2.60)

2.D Justification of (2.43)

Consider the term in the denominator of (2.43)

||pm′ − qE(p)||2 = ||pm′ − qm′︸ ︷︷ ︸
y

+qm′ − qE(p)︸ ︷︷ ︸
x

||2. (2.61)

Let us assume that the distance between the interfering user and its serving AP, denoted by y, is always

smaller than the distance of that same AP from the nearest AP, denoted by x, which means

||pm′ − qm′ || ≤
∣∣∣∣qm′ − qE(p)

∣∣∣∣⇒ ||y|| ≤ ||x||. (2.62)

The above inequality always holds true when the interfering user is on the near side of the interfering AP

with respect to the serving AP and does not always hold true when the interfering user is on the far side of

the interfering AP with respect to the serving AP. We note that the importance of the second scenario is

reduced when the interfering cells are farther away. Further, even among the interfering cells that are near

(the neighboring cells), the proportion of users within such cells that does not satisfy the inequality above

is small. Thus, we make the assumption that (2.62) is satisfied for all users. Given that m′ indexes the

interfering cells, we can classify these cells into cells that are the immediate neighbors of cell CE(p), denoted
by IN (E(p)) and those that are not, and are thus farther away. Hence, the two cases are

||x|| ≥ ||y|| , ∀m′ ∈ IN (E(p)), m′ ̸= E(p),

||x|| ≫ ||y|| , ∀m′ /∈ IN (E(p)), m′ ̸= E(p).
(2.63)

However, to simplify, we make the optimistic assumption that ||x|| ≫ ||y|| holds true for all m′ ̸= E(p). This
gives

||x+ y||2 = ||x||2 + ||y||2 + 2||x||||y|| cos θ,

= ||x||2
(
1 +
||y||2

||x||2
+
||y|| cos θ
||x||

)
,

≈ ||x||2.

(2.64)

Note that this relation holds true even when γ assumes values other than γ = 2. Thus, from (3.43), we have

Epm′

{
1∣∣∣∣pm′ − qE(p)

∣∣∣∣γ
}
≈ 1∣∣∣∣qm′ − qE(p)

∣∣∣∣γ . (2.65)
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2.E Proof of Gradient for Interference Lloyd Algorithm

The gradient is calculated using the distortion function as

∂

∂qm


∫

p∈Cm

dIF (p,qm) fP(p)dp


=

∂

∂qm

 1

|Cm|
∑

pk∈Cm

dIF (pk,qm)

 ,

=
∂

∂qm

 1

|Cm|
∑

pk∈Cm

||pk − qm||γ + κ
∑

m′ ̸=m

1

|Cm′ |
∑

pk
m′∈Cm′

1∣∣∣∣pkm′ − qm

∣∣∣∣γ
 ,

=
γ

|Cm|
∑

pk∈Cm

(qm − pk) ||pk − qm||γ−2
+ κ

∑
m′ ̸=m

γ

|Cm′ |
∑

pk
m′∈Cm′

(
pkm′ − qm

)∣∣∣∣pkm′ − qm

∣∣∣∣γ+2 ,

(2.66)

where the factor of 2 is assumed to be absorbed by the step-size δ as in Appendix 2.B.
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Chapter 3

Small-Cell AP Placement with AP

Hybridity and with Load Balancing

In this chapter, we consider two additional problem frameworks to throughput oriented small-cell

AP placement.

First, we address the problem of access point (AP) placement in small-cell networks with partial

infrastructure flexibility, i.e., a novel class of problem in Beyond 5G, resultant from the utilization of un-

manned aerial vehicles (UAVs) with AP functionalities (UAV-APs), to aid fixed wireless networks in coping

with momentary peak-capacity requirements. We use the signal-to-generated-interference-plus-noise ratio

(SGINR) metric as an alternative to the traditional signal-to-interference-plus-noise ratio (SINR) to quan-

tify the effects of inter-cell interference (ICI) on the per-user capacity. From average SGINR, we derive the

ICI-aware distortion measure leading to the Inter-AP Lloyd algorithm to obtain throughput-optimal AP

placement for a fully flexible infrastructure. We then impose a hybridity constraint to the AP placement

problem which turns a fraction of the network into a fixed infrastructure composed of terrestrial APs (T-

APs) while the remainder is constituted by UAV-APs with flexibility in position. This newly formulated AP

placement problem is solved by the proposed Lloyd-type algorithm called Hybrid AP Placement Algorithm

(HAPPA). Furthermore, we present an initialization method for the Lloyd and Lloyd-type algorithms for

Gaussian mixture models (GMMs) that offers an AP allocation leading to a higher rate compared to the k-

means++ initialization. Finally, computer simulations show that the Inter-AP Lloyd algorithm can improve

the performance of the worst users by up to 42.75% in achievable rate, assuming a fully flexible network.

By using HAPPA on hybrid networks, we achieve improvements of up to 71.92% in sum rate over the fixed

network and close the performance gap with fully flexible networks down to 2.02%, when an equal number of

UAV-APs and T-APs is used. Further, our proposed initialization scheme always results in a balanced AP

allocation, which means a more even distribution of users per AP, whereas the k-means++ scheme results

in unbalanced allocations at least 30% of the time, resulting in a worse minimum rate.

Second, we address the uplink small-cell access point (AP) placement problem for optimal through-
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put, while considering load balancing (LB) among the APs. To consider LB and consequently incorporate

fairness in user spectral access, i.e., the frequency of user-to-AP communications, we modify the Lloyd al-

gorithm from vector quantization so that delays incurred by the existence of a large number of users in

a cell are accounted for in the AP placement process. Accordingly, we present two methods, the first of

which involves the incorporation of weights proportional to the cell occupancy, hence called the Occupancy

Weighted Lloyd Algorithm (OWLA). The second method adds a new step to the Lloyd algorithm, which

involves re-assigning users from higher to lower occupancy cells, and the adoption of a distance threshold to

cap the throughput lost in the assignment process. This formulated Lloyd-type algorithm is called the Cell

Equalized Lloyd Algorithm-α (CELA-α) where α is a factor that allows for throughput and spectrum access

delay trade-off. Extensive simulations show that both CELA-α and OWLA algorithms provide significant

gains, in comparison to the standard Lloyd algorithm, in 95%-likely user spectral access. For the α values

considered in this paper, CELA-α achieves gains up to 20.83%, while OWLA yields a gain of 12.5%. Both

algorithms incur minimal throughput losses of different degrees, and the choice of using one algorithm over

the other for AP placement depends on system LB as well as throughput requirements.

3.1 Introduction

Hybridity

Recently, unmanned aerial vehicles (UAVs) have been conceived as a means of providing wireless

connectivity for the Beyond 5G paradigm. Most of the prior works focus on UAV-terrestrial propagation

channel models, routing and energy efficiency, and applications of UAVs to ad hoc networks, civil applications,

and Internet-of-Things. Cellular-connected UAVs have seen an increased interest [67–69]. Additionally,

the mobility inherent to UAVs has made the topic of small-cell AP placement gain even more traction

recently. For instance, [59] provides an in-depth tutorial on UAVs, from both the perspective of end-

users and APs (UAV-APs). References [38, 52–56, 70–79] (and references therein) provide some examples

of UAV placement techniques. The authors in [52] propose the deployment of UAVs at demand hotspots

along with an incumbent macro-cell network, by intelligently off-loading sets of users obtained using the K-

means algorithm. In [53], mixed integer non-linear optimization with a quadratic constraint is employed to

determine the 3-D positions of a single UAV. Placement, however does not aim at throughput maximization

and instead attempts to increase coverage to users not previously covered by a terrestrial AP (T-AP). The

work in [70] considers the placement of UAV-APs to maximize ground user coverage and alters their altitude

to minimize interference to users, however, without considering an existing ground network. Authors in [71]

expand the integer non-linear optimization to include a minimum transmit power constraint and separate

horizontal and vertical placements. Heuristic successive placement of UAVs with a fixed ground coverage

radius in a spiral fashion is performed in [54] to ensure coverage for all users. A cloud radio access network

is considered in [72] consisting of terrestrial remote radio heads (RRHs) and UAVs. The positions and

contents of the cache-enabled UAVs are optimized, but interference between RRH-user and UAV-user links

is not modeled. The work in [73] considers a hybrid architecture consisting of a single ground base station
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and UAVs flying cyclically around the cell edge to offload users and improve minimum user throughput. By

considering a one-hop or two-hop downlink communication scheme between T-APs, UAV-APs, and users, [55]

investigates UAV placement coupled with bandwidth and power allocation in the backhaul and access links,

however, leaving out ICI considerations. A spectrum sharing scenario is considered in [74] in which UAVs

communicate to secondary receivers while minimizing interference to the primary terrestrial transmitter-

receiver pair. Two scenarios are considered to maximize the rate of the secondary receiver - one, where

the 3-D placements of static UAVs are optimized, and the other, where the trajectories of mobile UAVs

are optimized, both with power control. Authors in [75] also address the ground coverage problem (as in

[53]). Unlike the previous works, [56] utilizes a user density-driven 3-D UAV placement to attempt maximum

coverage of users with minimum data rate requirements. Also, maximizing throughput (utilizing the SNR

alone) for mobile users along with random network coding packet scheduling is jointly considered for UAV-

AP placement in [76]. In [77], authors take into account the time varying nature of the users’ positions to find

the optimal placement and coverage radius of the UAV-APs by using cooperative stochastic approximation

for Wi-Fi (IEEE 802.11) networks. [78] explores the 3-D deployment of multiple UAVs having directional

antennas to minimize the average transmit power of the users. The work in [79] develops user access-based

trajectory design for UAV-APs using a value decomposition reinforcement learning algorithm, trained using

meta training. Finally, [38] considers UAV-APs to offload traffic from terrestrial networks. Using a weighted

expectation maximization algorithm, the user distribution and traffic demand are estimated so that the

UAV-APs can be placed by maximizing the utility of the overloaded AP. However, interference between the

terrestrial and aerial communication networks is neglected.

None of the works described above, especially the ones that study multiple UAVs, consider ICI

during the placement process. Hence, with the Lloyd algorithm as the basis, [60] optimizes rate using

the signal-to-interference-plus-noise ratio (SINR) and proposes an alteration to the mean squared error

(MSE) distortion function which accounts for ICI and succeeds in improving the minimum rate of the small-

cell system over the traditional Lloyd algorithm. Following this direction, in [80], we derive a Lloyd-type

algorithm (called the Inter-AP Lloyd algorithm) with a simpler, yet effective distortion measure to deal with

ICI when compared to the distortion function of the algorithm presented in [60]. Note that these discussions

were completed in the previous chapter. It is important to note also that all the above papers consider

networks with fully flexible infrastructure, in which all APs are position-flexible and can have their locations

updated according to the user distribution at a certain time.

In this chapter, we investigate the AP placement problem, with the objective of maximizing through-

put in a small-cell system, with prevalent ICI and varying user distributions. More specifically, we investigate

the placement of APs susceptible to ICI in networks with partial infrastructure flexibility, interchangeably

referred to as hybrid networks, which is composed of fixed-position T-APs and flexible-position UAV-APs.

The degree of infrastructure flexibility varies between the two extremes determined by fully flexible networks

and fixed networks, consisting of either only UAV-APs or only T-APs, respectively. In practice, hybrid

networks can be deployed in a fast and dynamical manner to tackle the random nature of capacity due to

user mobility, to compensate an expected increase in throughput requirements of users attending an event,
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or even, a sudden reduction in network capacity due to wireless infrastructure being knocked over as a result

of natural disasters. From a wireless operator point-of-view, building a fixed infrastructure with high T-AP

density, for instance, in a football stadium, will render the network underutilized most of the time. On

the other hand, offloading T-APs by deploying UAV-APs on-demand is more economically appealing. Also,

wildfires, earthquakes, and the ensuing tsunamis have, in the recent past, disrupted communication services,

leaving populations isolated [81, 82]. Complementing the part of a network that has withstood a natural

disaster with UAV-APs is speedy and desirable; however, it requires careful placement considerations since

ICI has been shown to significantly hinder the coverage area of emergency network services [40].

Load Balancing

Besides throughput, delay in spectrum access is also a relevant system design parameter, especially

for the delay sensitive applications expected in the deployment of Beyond 5G networks. In systems where

throughput alone is optimized, either by using the Lloyd algorithm for SNR optimization only or the Lloyd-

type algorithm by incorporating ICI in the problem formulation, the cells have unequal occupancies, that

is to say, unequal number of users, after the algorithm converges, thus yielding placement with sub-optimal

fairness in spectral usage. In other words, this results in an unbalanced distribution of users across the

cells, which in turn leads to users of cells with lower occupancy having more opportunities to access the

spectrum over users of other cells. Naturally, the question that arises is: How to efficiently perform user-

cell association so that users are ensured opportunity to access spectrum without undue delay? Defining

spectrum access delay as the time that a user waits for its opportunity to communicate with its assigned

AP, we create a metric called spectral access fraction in order to allow us to quantify the access delay

of the proposed algorithms. One approach is to equalize the occupancy of each cell by re-assigning users

from cells with higher-than-average occupancy (among all cells), to cells with lower-than-average occupancy.

The objective of this procedure is balancing the cell loads, following the motivation behind cell breathing

[83–86]. Nevertheless, the main drawback of this strategy is that users can be moved to far away cells

and therefore suffer a significant reduction in overall throughput. To this end, our work aims to create a

desirable and flexible trade-off between throughput reduction and increase in the spectral access fraction. We

therefore devise algorithms for non-cooperative small-cell systems that modify the Lloyd algorithm yielding

AP placements that maximize throughput while minimizing spectrum access delay, thereby considering load

balancing (LB) among the small-cells.

Contributions

Solutions to the AP placement problem for throughput maximization for hybrid UAV-terrestrial

small-cell networks while incorporating ICI into the placement process have not been discussed in past

literature. Additionally, solutions to the small-cell AP placement problem based on the Lloyd algorithm and

that jointly address throughput and spectrum access delay (incorporating LB), have also not been provided

in literature. Hence, in this chapter, our contributions are as follows.

• To include ICI in the AP placement process and with the Lloyd algorithm as the basis, we employ

an alternate metric to SINR, namely, the signal-to-generated-interference-plus-noise ratio (SGINR).
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Optimizing the average SGINR, we derive the distortion measure that accounts for ICI through inter-

AP distances, establishing the fact that the optimization of SGINR, like SINR, can lead to the Inter-AP

Lloyd algorithm, which is known to perform better than the Lloyd algorithm in terms of the rates of

the users most affected by ICI.

• Based on the Inter-AP Lloyd algorithm, we formulate and develop an algorithm for hybrid networks

that places UAV-APs in an area occupied by T-APs currently providing sub-optimal throughput perfor-

mances due to a change in user configuration. This is the Hybrid AP Placement Algorithm (HAPPA)

that outperforms the T-APs (fixed network) alone. It also provides a performance close to the ideal

one of fully flexible networks, despite the fact that only a fraction of the APs can have their positions

adjusted to maximize throughput (minimize ICI).

• For unbiased comparison of the presented algorithms, we develop an initialization scheme for the

Gaussian mixture model (GMM) user distribution, based on the bit allocation procedure in vector

quantization (VQ). The proposed scheme always offers a balanced allocation of APs that results in

each AP serving a relatively similar number of users compared to the k-means++ scheme, which can

result in unbalanced allocations. The unbalanced allocations are shown to yield a worse minimum rate

over the balanced one.

• To account for LB, the Lloyd algorithm is modified to incorporate weights chosen to prevent users from

associating with APs having a large occupancy. This weighted Lloyd algorithm is hereafter referred to

as the Occupancy Weighted Lloyd Algorithm (OWLA), and considers LB and throughput altogether.

• An alternate LB procedure also based on the Lloyd algorithm that re-assigns users between cells is

proposed. By prioritizing and re-assigning users from higher to lower occupancy cells, the joint effect of

throughput and delay is addressed. Moreover, in order to control the trade-off between throughput and

spectrum access delay, the distance threshold used incorporates a factor α. The Lloyd-type algorithm

created is called the Cell Equalized Lloyd Algorithm-α (CELA-α).

3.2 System Model

The small-cell system model utilized here is similar to the one used in the previous chapter, however,

repeated here for completeness. We consider a geographical area with K single-antenna users distributed

according to a probability density function (pdf) fP(p), where p ∈ R2 is the random vector denoting the

position of a user. These users are served by M single-antenna APs, designated by the set M such that

|M| = M . The location of an AP is denoted by q ∈ R2. Following the theme of a hybrid network, we

divide the set of APs M into T-APs and UAV-APs, denoted by the sets Mf and Mu, respectively, such

that |Mf | = Mf , |Mu| = Mu, Mf ∪Mu =M, and Mf +Mu = M . For simplicity, the position-flexible

UAV-APs are assumed to have the same transmission parameters as the fixed T-APs. Although 3-D channel

models with height as a parameter exist for modeling the channel between users and UAV-APs (e.g., [87]),

references [88] and [89] use a fixed-height log-distance pathloss model between UAVs and users. We follow
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this approach and use the same pathloss model between the users and the UAV-APs as well as between the

users and T-APs. Note that when we consider the load balancing problem, we do not differentiate between

these T-APs and UAV-APs; they are collectively referred to as APs. Moreover, a narrowband flat-fading

channel is considered and the channel coefficient between AP m and user k is given by

gmk =
√
βmkhmk, (3.1)

where m = 1, 2, . . . ,M and k = 1, 2, . . . ,K. Here, βmk and hmk are the large-scale and small-scale fading

coefficients, respectively. hmk ∼ CN (0, 1) is assumed to remain constant in a coherent interval and change

independently in the next. Further, hmk is independent of other small-scale coefficients as well as of βmk.

The large-scale coefficients are modeled as

βmk =

{
c0, ||pk − qm|| ≤ r0,

c1zmk

||pk−qm||γ , ||pk − qm|| > r0,
(3.2)

where pk and qm represent the locations of user k and AP m, respectively. Here, γ is the pathloss exponent,

zmk is the log-normal shadow fading coefficient, and c0, c1, and r0 are constants. Note that these coefficients

can also be estimated by either ray-tracing [62] or data-driven [63] approaches.

We assume an uplink model where each AP serves a subset of the users (cell Cm for AP m). Users

are scheduled in a round robin fashion according to time-division multiple access (TDMA), and each AP

serves only one user in a time slot (thus, there are only M users transmitting at a given time). All APs are

in turn connected to a network controller (NC) via high capacity backhaul links and the NC is assumed to

have knowledge of the positions of all APs and their respective users. Thus, it is in the NC where the AP

placement algorithms will be loaded and executed. In the small-cell set-up, each of the M cells corresponds

to each of the M APs, and pursuant with the uplink model, users in their cells communicating with their

serving APs cause interference to all other APs. Now, letting km denote a user in the cell associated with

AP m, the received signal ym at this AP is

ym =

M∑
m′=1

√
ρrgmkm′ skm′ + wm, (3.3)

where ρr is the uplink transmit power, skm is the data symbol with E{|skm |2} = 1 (unit power), and

wm ∼ CN (0, 1) is the additive noise. A matched filter (MF) employed at the AP m estimates the data

symbol skm of user km as

ŝkm
=

g∗mkm

|gmkm
|
ym,

=
√
ρr|gmkm

|skm
+

M∑
m′=1
m′ ̸=m

√
ρr

g∗mkm

|gmkm |
gmkm′ skm′ + vm,

(3.4)

where vm ∼ CN (0, 1). From this expression, the SINR achieved by user km at AP m can be determined as

ϕkm
=

ρrβmkm |hmkm |2

1 + ρr
M∑

m′=1
m′ ̸=m

βmkm′ |hmkm′ |2
. (3.5)
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3.3 Vector Quantization Framework and AP Placement

Although the VQ framework and its connection to small-cell AP placement have been covered in

the previous chapter, we provide a brief overview here to make this chapter self-sufficient.

The VQ framework, described in [41], can be applied to the AP placement problem by assuming

that the position p of a single user is the input random vector to be quantized, the Voronoi regions are

the cells Cm, and the AP locations qm are the output codepoints, for m = 1, 2, . . . ,M . Accordingly, the

optimization problem to be solved is

arg min
q1,q2,...,qM

Ep

{
d(p,qE(p))

}
, (3.6)

where d is the distortion function that measures the quantization error and E refers to the encoder of the

quantizer. It is to be noted that although d is defined for a user at p, the objective function averages over

the entire user distribution. Also, qE(p) is the position of the nearest AP, in terms of d, to the user at p and

this is formally expressed as

qE(p) = arg min
qm

d(p,qm). (3.7)

Solution of (3.6) requires design of both encoder and decoder. It involves finding the best encoder given a

fixed decoder using the Nearest Neighbor Condition (NNC)

Cm = {p : d(p,qm) ≤ d(p,ql),∀l ̸= m}, (3.8)

and finding the best decoder given a fixed encoder using the Centroid Condition (CC)

qm = Cent{p|p ∈ Cm}, (3.9)

where Cent calculates the centroid of the user positions in cell Cm. To solve, the Lloyd algorithm alternates

between the NNC and CC steps until convergence to find the optimal AP locations. The most common

distortion measure used is the squared Euclidean distance, denoted by

dSE(p,qE(p)) =
∣∣∣∣p− qE(p)

∣∣∣∣2 , (3.10)

and the objective function in (3.6) then becomes the mean squared error (MSE). We utilize this distortion

measure in the Lloyd algorithm and it is provided in Algorithm 12. For algorithm implementation, we use the

K realization of users at positions pk, k = 1, 2, . . . ,K, as described in Section 5.2. We will use this notation

for all the algorithms in this chapter. Also, in the CC step, as a result of dSE, the centroid calculation

to obtain qm is replaced by the expectation which is evaluated by using the sample average over the user

positions pk present in cell Cm. The overall complexity of the Lloyd algorithm is O(KMIL), where O is the

‘Big O’ notation and IL is the number of iterations taken for the algorithm to converge. Finally, the term

‘Lloyd algorithm’ will henceforth be used to denote the basic Lloyd algorithm above using the squared error

distance as the distortion measure to solve for the AP locations. For algorithms that use other distortion

measures, i.e., the Inter-AP Lloyd algorithm and the Hybrid AP Placement Algorithm (HAPPA) below, we

will use the term ‘Lloyd-type algorithm’.
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Algorithm 7 Lloyd Algorithm With Squared Error Distortion

1: Initialize:

q
(0)
m , ∀m ∈M
i← 0

2: while total distortion less than threshold do

3: update C(i+1)
m , ∀m ∈M using ▷ NNC

C(i+1)
m ←

{
pk :dSE

(
pk,q

(i)
m

)
≤dSE

(
pk,q

(i)
l

)
,∀l ̸= m

}
4: update q

(i+1)
m , ∀m ∈M using ▷ CC

q(i+1)
m ← 1∣∣∣C(i+1)

m

∣∣∣
∑

pk∈C(i+1)
m

pk

5: i← i+ 1

6: return qm, ∀m ∈M

Besides the parallels between VQ and the AP placement process discussed at the beginning of this

section, we proved mathematically in the previous chapter that the maximization of the average SNR can

result in the same optimization problem of the Lloyd algorithm in (3.6) above, that uses dSE. Further, we

found that the Lloyd algorithm could be used as a baseline algorithm and hence, we use it to solve for more

complex problems, e.g., accounting for ICI, by modifying its distortion measure.

In addition, it is also important to note here that the VQ framework presented above quantifies the

distortion d for a single user at position p and the average over the distribution of user positions is taken.

Finally, VQ does not involve the small-scale and shadow fading components. These quantities, according to

the system model, are not dependent on either the user or AP positions and thus do not contribute to the

placement process. Consequently, for the subsequent SINR-based and SGINR maximization problems that

we will discuss, we will average over the abovementioned quantities.

3.4 SGINR-Based AP Placement for Fully Flexible Networks

We have seen in the previous chapter that maximizing the average per-user rate that utilizes the

SINR in (3.5) to determine the throughput-optimal AP locations is solved by using a Lloyd-type algorithm.

For this purpose, the large-scale fading coefficients given in (3.2) for every user-AP pair (shown below for a

user at p and its nearest AP indexed by E(p)), is approximated as

βE(p) ≈
c1zE(p)∣∣∣∣p− qE(p)

∣∣∣∣γ , (3.11)

since r0 is much smaller than the area dimensions considered. We also note here that for notational simplicity

from Section 5.2, the second subscript has been dropped and we will continue this for the ensuing analyses.
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Consequently, the SINR-based rate optimization problem for AP placement is

arg max
q1,q2,...,qM

EA,p

{
log
(
1 + ϕkE(p)

)}
, (3.12)

where the notation p denotes the set containing the served user at p which is in cell CE(p) and the M − 1

interfering users from cells Cm′ , denoted by pm′ , where m′ ̸= E(p), and A = {hE(p), zE(p), hm′ , zm′}. For

the user at p, hE(p) and zE(p) are the small-scale fading coefficient and shadow fading, respectively, and hm′

and zm′ correspond to the same quantities, but for the interfering user at pm′ . A solution to (3.12) was the

Inter-AP Lloyd algorithm. It is worth noting that implementing power control along with AP placement,

i.e., jointly optimizing uplink power with per-user power constraints and AP locations, would increment the

rate performance. However, in this work, we want to solely investigate the effect of AP placement, with

ICI that is prevalent in small-cell systems and that have been ignored by a majority of previous works. For

this reason, we will continue to consider that all users transmit at the same power to the APs and leave the

power optimization problem to future work.

Accounting for ICI is necessary in a small-cell scenario, and as an alternative to the SINR maxi-

mization in (3.12), we maximize the SGINR. In prior literature, the terms signal-to-leakage-plus-noise ratio

(SLNR) and SGINR have been introduced. SLNR is considered in the downlink case [90] and quantifies

the ICI by the leaked power by an AP to non-served users. SGINR is considered in the uplink [91] and

quantifies the interference generated by the served user to all other APs. The concepts of both SLNR and

SGINR are the same and are fundamentally different to that of SINR. As we model the uplink scenario in

our work, we will use the term SGINR. It is worth noting that for SGINR, the knowledge of the selected

users from the interfering cells is not necessary, unlike SINR. Additionally, it has been shown that SGINR

has computational advantages over SINR in both downlink [92] and uplink [93] beamforming.

Here, we consider the instantaneous SGINR of user km at AP m as

ψkm
=

ρrβmkm
|hmkm

|2

1 + ρr
M∑

m′=1
m′ ̸=m

βm′km
|hm′km

|2
. (3.14)

Note that while the numerator of the above expression represents the desired signal power, the denominator,

unlike SINR, denotes the user-generated interference at other APs. Maximizing the SGINR provides a bal-

ance between maximizing user power versus generated ICI. Consequently, we have the following optimization

problem

arg max
qm∈M

EB,p

{
ψkE(p)

}
, (3.15)

where B = {hE(p), zE(p), hm′ , zm′} and p is the position of served user. Again, we use only a single subscript

for simplicity, noting that while hE(p) and zE(p) are the small-scale fading coefficient and shadow fading,

respectively, for the user at p to the serving cell, hm′ and zm′ correspond to the same quantities for the same

user, but to the non-serving AP m′. Substituting the expression for SGINR in the objective function above

and using Jensen’s inequality, we have

EB,p

{
ψkE(p)

}
≥ EB

{
ρrc1|hE(p)|2zE(p)

D

}
, (3.16)
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where the denominator D (which we now have to minimize) of the above expression is

D = Ep


∣∣∣∣p− qE(p)

∣∣∣∣γ
1 + ρr

M∑
m′=1

m′ ̸=E(p)

c1|hm′ |2zm′

||p− qm′ ||γ


 . (3.17)

The first term
∣∣∣∣p− qE(p)

∣∣∣∣γ is the distance term of the pathloss and corresponds to the SNR while the other

term is the ICI term. D can further be simplified using the independence between the two terms above to

D = Ep

{∣∣∣∣p− qE(p)
∣∣∣∣γ}×

1 + ρr

M∑
m′=1

m′ ̸=E(p)

c1|hm′ |2zm′Ep

{
1

||p− qm′ ||γ
} . (3.18)

We now simplify the inner term using the following approximation

Ep

{
1

||p− qm′ ||γ
}
≈ 1∣∣∣∣qm′ − qE(p)

∣∣∣∣γ , (3.19)

whose justification is provided in Appendix 3.A, and results in

D ≈ Ep

{∣∣∣∣p− qE(p)
∣∣∣∣γ}

1 + ρr

M∑
m′=1

m′ ̸=E(p)

c1|hm′ |2zm′∣∣∣∣qm′ − qE(p)
∣∣∣∣γ
 . (3.20)

We consider two terms in the above expression of D. To minimize D, the first term Ep{||p − qE(p)||γ}
corresponding to the SNR, which mirrors the objective function of the Lloyd algorithm, is to be minimized.

Further, the second ICI term contains 1/||qm′ − qE(p)||γ , which are the inverses of the inter-AP distances

∀m′ ̸= E(p) and need also to be minimized. Since all the abovementioned quantities are positive and have all

to be minimized, the distortion function, keeping in line with the VQ optimization in (3.6), can be written

as

dIA
(
p,q

)
=
∣∣∣∣p− qE(p)

∣∣∣∣γ +
∑

m′ ̸=E(p)

κm′∣∣∣∣qm′ − qE(p)
∣∣∣∣γ , (3.21)

where κm′ ≥ 0, m′ ̸= E(p) are the trade-off factors. For simplicity, we assume a common κ ≥ 0, and we have

dIA
(
p,q

)
=
∣∣∣∣p− qE(p)

∣∣∣∣γ + κ
∑

m′ ̸=E(p)

1∣∣∣∣qm′ − qE(p)
∣∣∣∣γ , (3.22)

The trade-off factor κ is a network design parameter that can be selected to decide the relative importance

of the ICI term to the SNR (desired signal) term. This is called the inter-AP distortion measure, denoted by

dIA, and coincides with the distortion measure derived from SINR in the previous chapter. This reinforces

the fact that the inter-AP distortion function (and correspondingly, the Inter-AP Lloyd algorithm) is helpful

in tackling ICI in AP placement. The steps of the Inter-AP Lloyd algorithm were described in the previous

chapter for networks with fully flexible infrastructure and hence is omitted here.
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3.5 AP Placement in Hybrid UAV-Terrestrial Networks: Problem

Formulation and Solution

We now formulate the AP placement problem for hybrid networks. Consider the scenario whereMf

T-APs (the fixed network) are optimally placed for the user configuration fP1
(p1). Conceivably, after some

time, the user configuration changes, say, to fP2(p2), and this results in the Mf T-APs being at sub-optimal

positions. Thus, the added Mu UAV-APs to the system requires placement such that the performance gap

between the scenario where all M =Mf +Mu APs are optimally placed (the fully flexible network) and the

scenario where only Mu out of M are movable (the hybrid network) is to be minimized. In other words,

the hybrid network consisting of both T-APs and UAV-APs is compared to the ideal case of a fully flexible

network that consists of UAV-APs alone. We aim for the performance of the hybrid network to be as close

to that of the fully flexible network, which is the benchmark solution. We quantify the performances using

the average SGINRs of both networks.

Let ψflex
kE(p)

be the SGINR achieved by optimal placement of allM APs in a fully flexible network for

the new user distribution fP(p) (subscript ‘2’ removed for simplicity) and ψhbd
kE(p)

be the SGINR achieved by

using the hybrid UAV-terrestrial system where only Mu out of M APs can be optimally placed. Clearly, the

average SGINR of the hybrid network is lower than the average SGINR of the fully flexible network. Hence,

the average SGINR of the hybrid network is subtracted from that of the fully flexible network in order to

define the performance gap. Formally, the objective function to be minimized (the performance gap) can be

written as follows

J = EB,p

{
ψflex
kE(p)

− ψhbd
kE(p)

}
, (3.23)

where the set B is as defined above for (3.15). Alternative to minimizing J , we maximize its negative J ′ = −J
such that

J ′ = EB,p

{
ψhbd
kE(p)

}
− EB,p

{
ψflex
kE(p)

}
. (3.24)

It is assumed that the optimal AP locations for the fully flexible case is known. Note that the second term

in (3.24) is thus independent of the optimal UAV-AP locations of the hybrid network and hence can be

neglected. Consequently, maximizing the above lower bound of J ′ leads to the optimization problem

arg max
qm∈Mu

EB,p

{
ψhbd
kE(p)

}
, (3.25)

which is performed only over the Mu UAV-APs.

To perform the optimization in (3.25), we derive a Lloyd-type algorithm which maximizes the

average per-user SGINR over the UAV-APs, which we call the Hybrid AP Placement Algorithm (HAPPA).

Following the steps of the iterative Lloyd-type algorithm, we apply the nearest neighbor condition (NNC)

to all M APs as

Cm = {p : dIA (p,qm) ≤ dIA (p,ql) ,∀l ̸= m} , (3.26)

where dIA(·) is the inter-AP distortion function from (3.22). The centroid condition (CC) step now updates
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the Mu UAV-AP locations using the steepest descent method whose update equation is given as

q(j+1)
m = q(j)

m − δ
∂

∂q
(j)
m

∫
Cm

dIA

(
p,q(j)

m

)
fP(p)dp, (3.27)

for all m ∈Mu, where j is the iteration index, δ is the step size, and the gradient expression is given by

∂

∂qm

∫
Cm

dIA (p,qm) fP(p)dp =
γ

|Cm|
∑

pn∈Cm

(qm − pn) ||p− qm||γ−2
+ κ

∑
m′ ̸=m

qm′ − qm

||qm′ − qm||γ+2 , (3.28)

The T-APs, however, remain at their original locations as they are fixed in position. The NNC and CC steps

are iterated until the overall distortion is less than a threshold or cell assignments no longer change. HAPPA

is summarized in Algorithm 8. HAPPA incurs the same overall complexity as the Inter-AP Lloyd algorithm,

i.e., O(KMISIL), where IS and IL are the number of iterations taken for the steepest descent method and

the Lloyd-type algorithm to converge, respectively. We do point out that inspite of the same complexity

order, the number of operations involved in the CC step of HAPPA is less than that of the Inter-AP Lloyd

algorithm and depends on the degree of hybridity, i.e., the proportion of UAV-APs to the total number of

APs.

Algorithm 8 Hybrid AP Placement Algorithm (HAPPA)

1: Initialize:

q
(0)
m , ∀m ∈M
i← 0

2: while total distortion less than threshold do

3: update C(i+1)
m , ∀m ∈M using ▷ NNC

C(i+1)
m ←

{
pk :dIA

(
pk,q

(i)
m

)
≤dIA

(
pk,q

(i)
l

)
,∀l ̸= m

}
4: if m ∈Mf then ▷ CC for T-APs

5: q
(i+1)
m ← q

(i)
m

6: else if m ∈Mu then ▷ CC for UAV-APs

7: update q
(i+1)
m using

q(j+1)
m ← q(j)

m − δ

 γ∣∣∣C(i+1)
m

∣∣∣
∑

pk∈C(i+1)
m

(
q(j)
m − pk

) ∣∣∣∣∣∣pk − q(j)
m

∣∣∣∣∣∣γ−2

+ κ
∑

m′ ̸=m

q
(j)
m′ − q

(j)
m∣∣∣∣∣∣q(j)

m′ − q
(j)
m

∣∣∣∣∣∣γ+2


until convergence

8: q
(i+1)
m ← q

(j+1)
m

9: i← i+ 1

10: return qm, ∀m ∈M
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3.6 AP Placement Accounting for Load Balancing

As mentioned in Section 4.1, the Lloyd and Lloyd-type algorithms described previously for through-

put optimality result in unequal cell occupancies, where users of cells with a lower occupancy would unfairly

get more opportunities to access the spectrum than users of cells with a higher occupancy. Hence, when

user delay is measured by the frequency of user-to-AP access (the spectral access fraction), these algorithms

result in significantly varied spectral access profiles. For delay sensitive applications, LB capabilities are

required in order to achieve a certain application-dependent degree of similarity in spectral access profile

for all users. This means that we should strive to equalize the occupancy of each cell, the degree of which

is determined by the specific application. Below, we outline and motivate the OWLA and CELA-α AP

placement algorithms, both generating Lloyd-type algorithms that improve system fairness, with CELA-α

having a flexible throughput-delay trade-off adaptable to application requirements.

Algorithm 9 OWLA

1: Initialize random AP locations q
(0)
m , ∀m.

2: Use the NNC to determine the cells C(i+1)
m , ∀m

C(i+1)
m =

{
pk:w

(i)
mdSE

(
pk,q

(i)
m

)
≤w(i)

l dSE

(
pk,q

(i)
l

)
,∀l ̸=m

}
.

3: Use the CC to determine the AP locations q
(i+1)
m , ∀m

q(i+1)
m =

1∣∣∣C(i+1)
m

∣∣∣
∑

pk∈C(i+1)
m

pk.

4: Repeat from step 2 until convergence.

3.6.1 Occupancy Weighted Lloyd Algorithm (OWLA)

The access rate using per-user SNR ψkE(p)
, which can be obtained by neglecting ICI from SINR

ϕkE(p)
in (3.5), is

Racc
kE(p)

=
1

NE(p)
E
{
log2

(
1 + ψkE(p)

)}
, (3.29)

where E(p) indexes the AP closest to user k and NE(p) is the number of users in cell CE(p). Note that the

achievable rate RkE(p)
= E

{
log2

(
1 + ϕkE(p)

)}
does not account for the delay incurred by a user as it waits

to transmit to its AP with TDMA scheduling. Therefore, the rate is normalized using the resource sharing

factor 1/NE(p). The logarithm in (3.29) can be well fitted with a third degree polynomial log2(1 + x) ≈
a1 + a2x+ a3x

2 + a4x
3, and therefore (3.29) can be rewritten as

Racc
kE(p)

=
1

NE(p)
E
{
a1 + a2ψkE(p)

+ a3ψ
2
kE(p)

+ a4ψ
3
kE(p)

}
. (3.30)
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Focusing first on the linear term a2x, we can write

EA,p

{
a2

NE(p)
ψkE(p)

}
≥EA


a2ρrc1|hE(p)|2zE(p)(

Ep

{
N

2
γ

E(p)
∣∣∣∣p− qE(p)

∣∣∣∣2}) γ
2

, (3.31)

using Jensen’s inequality, where zE(p) is the shadow fading coefficient, c1 is the pathloss constant, γ is the

pathloss exponent, βE(p) in ψkE(p)
approximated as in [80], and A = {hE(p), zE(p)}. Note that we wish to

maximize (3.30) and correspondingly minimize the denominator in (3.31). Following the VQ framework, the

distortion function for the linear term is d
(
p,qE(p)

)
= N

2/γ
E(p)

∣∣∣∣p− qE(p)
∣∣∣∣2. Applying the same technique

to all terms in (3.30), the new distortion function is defined by summing the distortion from each term

d
(
p,qE(p)

)
=

(
N

2
γ

E(p) +N
2
2γ

E(p) +N
2
3γ

E(p)

) ∣∣∣∣p− qE(p)
∣∣∣∣2 , (3.32)

where the squared Euclidean distance measure of the standard Lloyd algorithm has been multiplied with a

weight wm = N
2/γ
E(p) +N

2/2γ
E(p) +N

2/3γ
E(p) . Also, note that curve fitting in (3.29) with a higher order polynomial

is unnecessary since the growth of the weight wm diminishes as the polynomial order grows. The Lloyd-type

algorithm corresponding to this weighted distortion measure is termed OWLA and is outlined in Algorithm

9.

3.6.2 Cell Equalized Lloyd Algorithm-α (CELA-α)

Here, we start by explaining a simple way to achieve load balancing. The Lloyd algorithm used for

throughput oriented AP placement can be modified to equalize the number of users in each cell, which is

performed at every iteration of the algorithm. First, a hard criterion can be set which comprises of simply

“moving” (re-assigning) the users from cells with excess users to cells that have a user deficiency. Upon

completion (convergence), all cells would have the same number of users. This algorithm is outlined below.

Modification to the Lloyd Algorithm

The same iterative procedure as the Lloyd algorithm is to be followed, with the addition of an extra

step (the moving step) in the iterative process. We call this step User Re-distribution for Equalization (URE)

and is added between Step 1 (NNC) and Step 2 (CC) of the Lloyd algorithm. Letting Nm be the number

of users in each cell Cm and given that K is the total number of users in the area under consideration, the

target number of users in each cell (for equal number of users) is Nm = K/M = N , ∀m = 1, 2, . . . ,M . The

URE procedure is outlined in Algorithm 10. It is clear from the algorithm that all cells will have N users

after convergence.

Cell Equalized Lloyd Algorithm (CELA)

We observe that the Lloyd algorithm and its modified version above constitute two extreme cases.

Specifically, in the Lloyd algorithm, the MSE alone is optimized while user access is not considered. On the
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Algorithm 10 URE Procedure

1: Find all the cells that have number of users > N and arrange them in descending order. Let the ordered

set of cells generated be CG.
2: Iterate through the cells in CG and perform the following process for each cell Cg ∈ CG:

a: Arrange all users associated with Cg in ascending order of their second lowest distortion value: Ug,

and iterate through these users.

b: For each such user, if the cell corresponding to the second lowest distortion value has number of

users < N , then assign user to that cell and move on to the next user. If not, simply move on to

the next user.

c: Continue this process until all excess users in Cg are moved to other cells. If not, use the next (third,

fourth, ...) lowest distortion value and repeat from Step 2a.

other hand, in the modified version, users are moved between cells in order for all users to have equal access

to the AP by way of all cells having an equal number of users. The main drawback in the latter is that

during the process of moving users to cells with fewer users, many cells would have users assigned to them

which are very far away, reducing throughput. In other words, equal access comes at the cost of significant

user throughput.

CELA is a compromise between the Lloyd algorithm and its modification. In fact, the only difference

from the modified Lloyd algorithm is Step 2b of the URE procedure (Algorithm 10), which now involves a

soft criterion for moving users, and is given below. It is important to note that in this case, all cells need

not have exactly the same number of users N after convergence.

2b: For each user u ∈ Ug, if the cell corresponding to the second lowest distortion value has number of

users < N , look at the distance dgu between the center of that cell and the current user position. Let

Cnearestm denote the nearest cell to Cm, ∀m.

• If dgu is greater than the distance between Cg and Cnearestg , then do not move the user, but assume

that the user has been moved for counting purposes.

• Otherwise, assign the user to that cell.

Proceed to the next user. If the number of users ≥ N , simply move on to the next user.

We note that the property of convergence and the complexity of CELA is the same as that of the Lloyd

algorithm.

CELA-α

In CELA above, a hard criterion of equal user access was set, resulting in all cells ending up with

the same occupancy, however, causing significant throughput loss due to users being re-assigned to far away

cells. Further, a distance threshold to prevent such undesirable user re-assignments was introduced, however,
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Figure 3.1: The effect of emphasis factor α on distance thresholds in CELA-α. In this case, R is the communications

radius for cell C′
g.

having two main drawbacks in its re-assignment procedure. Firstly, only the distortion values are considered

to re-assign users. That is, although the cell occupancies are checked prior to user re-assignment, they are

not used in the decision of the order in which users are re-assigned to other cells. Thus, there is a need to

jointly consider both distortion and cell occupancies in this decision process. Secondly, depending on system

requirements, a trade-off between delay and throughput might be necessary. Therefore, we next address

the above needs, leading to a more comprehensive algorithm called CELA-α, where α is the trade-off factor

allowing flexibility between throughput and delay.

Allowing throughput and delay trade-off. By pre-multiplying the abovementioned cell-specific dis-

tance thresholds, i.e., Rth
m , with the trade-off factor α, then the new threshold becomes αRth

m . We know

that if the distance threshold is set to 0, i.e., Rth
m = 0, then the algorithm then becomes the standard Lloyd

algorithm. On the other hand, high distance thresholds would enable completely equal user access due to

the equal occupancy in each cell, but it would result in reduced throughput owing to the large distances

between select users and their APs. Here, α enables us to adjust the threshold between these two extremes.

In Fig. 3.1, we illustrate the discussions about CELA-α. Two cells Cg and Cg′ are shown along with three

users u1, u2, and u3 in cell Cg. Assume that the three users in Cg with excess of users are to be moved to Cg′

with low occupancy. For simplicity, Rth
g′ = R, the communication radius of the AP in Cg′ and the distance

between the three users and Cg′ are du1

g′ , d
u2

g′ , and d
u3

g′ , respectively; α1 and α2 represent two trade-off factors.

Under α1, since d
u1

g′ < α1R < du2

g′ < du3

g′ , user u1 will be moved to Cg′ while users u2 and u3 will remain in

Cg. On the other hand, under α2, we have du1

g′ < du2

g′ < α2R < du3

g′ , which implies that users u1 and u2 will

be moved to Cg′ while user u3 will remain in Cg. Hence, it is evident that if the value of the trade-off factor

α is increased, more users are re-assigned to Cg′ and hence lesser spectrum access delay is obtained in Cg at

the expense of some overall throughput loss.

Addition of cell occupancy to re-assignment. As mentioned above, considering the joint influence

of distance and cell occupancy in order to determine the priority with which to re-assign users to other cells

would involve updating the algorithm as follows. For each cell with excess users, the distance between the

users in the cell and all other APs is multiplied with the occupancy of the corresponding cell and the user

with the lowest such value is considered first.
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Algorithm 11 CELA-α

1: Initialize random AP locations q
(0)
m , ∀m.

2: Use the NNC to determine the cells C(i+1)
m , ∀m

C(i+1)
m =

{
pk :dSE

(
pk,q

(i)
m

)
≤dSE

(
pk,q

(i)
l

)
,∀l ̸=m

}
.

3: Perform the re-assignment procedure:

3.1: Find all the cells that have number of users > N and arrange them in descending order. Let the

ordered set of cells generated be CG.

3.2: Iterate through the cells in CG and perform the following process for each cell Cg ∈ CG:

a: For each user ug associated with Cg, generate a vector vug containing distances to all other

APs. Multiply each element of vug
with the occupancy of the corresponding cell. Arrange

these composite values (product of user-AP distance and cell occupancy) in ascending order

within the vector to generate vug
.

b: Take the first element of all vectors vug
, ∀ug ∈ Cg and sort them in a new vector yg in ascending

order.

c: Iterate through the elements of yg and for both corresponding user ug and cell Cg′ , the two

following conditions have to be met to allow user ug to be assigned to cell Cg′ :

• Occupancy of cell Cg′ , Ng′ < N

• User-AP distance for cell Cg′ , d(pug ,qg′)<αRth
g′

If either condition is not satisfied, ug is not re-assigned to Cg′ and remains in Cg.

d: Once all elements of yg are considered, use the next (second, third, . . .) element of every vector

vug
of users who have not been re-assigned and repeat from step 3.2-b.

3.3: Repeat from step 3.2-a for the next cell in CG until all cells have been considered.

4: Use the CC to determine the AP locations q
(i+1)
m , ∀m

q(i+1)
m =

1∣∣∣C(i+1)
m

∣∣∣
∑

pk∈C(i+1)
m

pk.

5: Repeat from step 2 until convergence.

The complete CELA-α detailing the above two modifications is provided in Algorithm 11. Note

that the vector vug represents the ordered set of cells which should be followed when re-assigning the user

ug. On the other hand, vector yg provides the order in which each user in cell Cg has to be re-assigned to

its respective cell Cg′ .
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3.7 Simulation Methodology and Results

3.7.1 Parameters

We start by defining the parameters for the simulations used for the hybrid UAV-terrestrial small-

cell network. The simulation parameters used are listed in Table 3.1. We consider a geographical area of 2

km × 2 km in which K = 2000 users and Mf = 8 T-APs are used, unless otherwise stated. For our analysis,

by adding Mu = 2, 4, 6, and 8 UAV-APs, we vary the total number of APs up to M = 16. For the user

distribution, we consider the GMM of the form

fP(p) =

L∑
l=1

plN
(
p|µl, σ

2
l I
)
, (3.33)

where I is the identity matrix and L is the number of mixture components, called groups henceforth. For

group l, pl is the mixture component weight, µl is the mean, and σl is the variance. In line with our

problem formulation, we consider two user configurations, namely, GMM-1 fP1
(p1) and GMM-2 fP2

(p2).

For simplicity, we assume that the new user configuration GMM-2 has the same parameters as GMM-1,

except that µ1 = [0.52,−0.52]T and σ1 = 200, i.e., GMM-2 causes users of group 1 to be more dispersed

than in GMM-1. We also model a compact version of GMM-2, called GMM-3. GMM-3 has the same

parameters as GMM-2, but with means µ1 = [0.27,−0.27]T , µ2 = [0, 0.25]T , and µ3 = [−0.25, 0]T . Note

that the distinct parameters of GMM-2 and GMM-3 aim at modeling sparse and dense AP deployments,

respectively. The pathloss model defined in (3.2) is used with the Cost 231 Hata propagation model described

in [61, eq. (4.36), eq. (4.37)] and shadow fading is ignored as it is averaged out in (3.25) during the placement

process.

For the simulations concerning load balancing, the setup consists of M = 8 APs and K = 2000

users over a 2× 2 km2 area. The user GMM has parameters L = 3, µl = [−0.17, 0.17]T , µ2 = [0.17, 0.17]T ,

µ3 = [0.17,−0.17]T , σ1 = σ2 = σ3 = 100, p1 = 0.6, and p2 = p3 = 0.2. The remaining parameters remain

the same as above. It is to be noted that although various real-life scenarios dictate different types of user

distributions, the AP placement algorithms described in this paper can be applied to determine the AP

locations for all distribution types.

3.7.2 Performance Measures

For the hybrid networks, we use the following quantitative measures to evaluate performances.

1. Per-user achievable rate: We use the SINR quantity ϕkm
in (3.5) to calculate the achievable per-user

rate of user km as

Rkm
= E {log2 (1 + ϕkm

)} . (3.34)

Further, [61, Ch. 4] provides an alternative calculation

Rkm
=

1

ln 2
eµkEi (µk) , (3.35)
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Table 3.1: List of Simulation Parameters

Parameter Value

Number of T-APs Mf 8

Number of UAV-APs Mu {2, 4, 6, 8}

Number of users K 2000

GMM-1 {L,µ1,µ2,µ3 {3, [0.5,−0.5]T , [0, 0.5]T , [−0.5, 0]T }

p1, p2, p3, σ1, σ2, σ3} {0.6, 0.6, 0.2, 100, 100, 100}

GMM-2 {L,µ1,µ2,µ3 {3, [0.52,−0.52]T , [0, 0.5]T , [−0.5, 0]T }

p1, p2, p3, σ1, σ2, σ3} {0.6, 0.6, 0.2, 200, 100, 100}

GMM-3 {L,µ1,µ2,µ3 {3, [0.27,−0.27]T , [0, 0.25]T , [−0.25, 0]T }

p1, p2, p3, σ1, σ2, σ3} {0.6, 0.6, 0.2, 200, 100, 100}

Pathloss {γ, c0, c1, r0} {2, 75.86, 7.59× 10−7, 0.001 km}

Power ρr 200 mW

Bandwidth 20 MHz

where

µk =

1 + ρr
M∑

m′=1
m′ ̸=m

βmkm′

ρrβmkm

, (3.36)

and Ei (x) =
∞∫
x

e−t

t dt is the exponential integral.

2. Sum rate: The sum of all M per-user achievable rates, where each user is selected from a cell, is given

by

S =

M∑
m=1

Rkm . (3.37)

The maximum number of iterations for the Lloyd and the proposed algorithms is set to 50. We use Monte

Carlo simulations to generate achievable and sum rates, considering 10, 000 iterations, where we choose a set

of users for transmission each time. For visualization, we use cumulative distribution function (CDF) plots,

normalizing the rate values by its maximum quantity for relative comparison of the algorithms. Further,

in order to quantify the performance, we utilize the 95%-likely metric that represents the best rate of the

worst 5% of the users (users closer to cell borders). We denote this by P5%, where P is Rkm
or S. The

improvement ratio (IR) then quantifies the relative performance, expressed as percentage

IR =
P5%,Placement B − P5%,Placement A

P5%,Placement A
× 100. (3.38)

For load balancing, the following per-user measures are used.

1. Access rate: Racc
km

, defined in (3.29), using ϕkm
from (3.5).

50



2. Spectral access fraction: This is a measure of the frequency with which user km communicates with its

serving AP m. Formally, this is

Ukm =
1

Nm
. (3.39)

For relative comparison, the IR defined above is used here. We also note that the performance of CELA is

not outlined here since it is an inferior algorithm to CELA-α.

3.7.3 Initialization of the Algorithms

It is well known that random initializations result in convergence of the Lloyd or the proposed

Lloyd-type algorithms presented in this paper to different local minima. Many researchers try to circumvent

this problem by running multiple instances of the entire algorithm and then averaging the results. To have a

common starting point and for unbiased comparison of all algorithms, we develop, specifically for the GMM

user distribution, a novel initialization scheme based on the bit allocation problem in VQ. The number of

APs allocated to each group l of the GMM user distribution is

ul = u+ log2
hl
H

+ log2
gl
G
, (3.40)

where

u =
M

L
, hl = 4

√
|Σl|, gl = Kl, H =

(
L∏

l=1

hl

) 1
L

, G =

(
L∏

l=1

gl

) 1
L

. (3.41)

Here, L is the total number of groups, Kl is the number of users in group l, and Σl is the (sample) covariance

of the users in group l. After allocating the M APs to the L groups, they are initialized randomly within

each group. The proof of (3.40) in presented in Appendix 3.B.

It is to be noted that although the above initialization scheme is designed keeping the GMM in

mind, it can be applied to any general distribution as the GMM presents a convenient way to express other

distributions. As such, non-GMM distributions can be fit to GMMs either by employing the expectation-

maximization (EM) algorithm [94] or through numerical methods which uses goodness-of-fit metrics such as

the negative log-likelihood, Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC).

3.7.4 Numerical Results

Experiment 1. To simulate the Inter-AP Lloyd algorithm, we first generate the initial AP locations

with the novel initialization procedure discussed above. ForM = 16, the APs are allocated among the L = 3

groups as u1 = 6 and u2 = u3 = 5. It can be ascertained from (3.40) that the mixture component weights are

primarily responsible for this allocation since the group variances Σl are all equal. To showcase the Inter-AP

Lloyd algorithm, we use two distinct trade-off factors κ1 = 0.2 × 108 and κ2 = 1 × 108. Fig. 3.2 shows a

user realization as well as the final AP locations obtained using the Lloyd and Inter-AP Lloyd algorithms.

Note that we only show the final placement for κ2 = 1 × 108 for simplicity. The arrangement of the AP

locations of the Inter-AP Lloyd algorithm are spread apart more than of the Lloyd algorithm and increases

with higher κ. This is primarily due to the influence of the inter-AP distances term in the distortion function
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Figure 3.2: AP locations after convergence of the Lloyd and Inter-AP Lloyd algorithms for κ2 = 1×108 with M = 16

under GMM-1.

of the former, resulting in the APs being pushed away so that ICI is reduced, especially for those users that

are near the cell boundaries. Now, in Fig. 3.3 we plot the CDF curves of the per-user achievable rate for

the two values of trade-off factor κ1 = 0.2 × 108 and κ2 = 1 × 108. For comparison, we focus on the rate

value of the worst 5% of the users, the 95%-likely rate, which mainly corresponds to those users near the

cell boundaries, affected mostly by ICI. It is clear from the figure that the rates of these users are improved

using the proposed Inter-AP Lloyd algorithm. On the other hand, users that are closer to the GMM centers,

experience a reduction in desirable signal strength as the APs are pushed away, thus suffering a slight loss

in capacity. This effect could be intuitively understood from examining desirable-signal/interference-signal

trade-off induced by κ from (3.22), with the degree of trade-off depending on κ. Using the rate quantities

measured by the value at which the 95%-likely rate line intersects the CDF curves, we find that κ1 results in a

16.07% and κ2 in a 42.75% improvement, establishing that an increase in the value of κ results in an increase

in the 95%-likely rate. In Fig. 3.4, we examine the minimum rates guaranteed by the network when using

both algorithms. Minimum rate is defined as the smallest among all the rates achieved by the served users

during a transmission time interval. It is clearly shown that the minimum rate of the network that employs

the Inter-AP Lloyd algorithm is always superior to that when the Lloyd algorithm is used. Similar to the

previous figure, the performance gap increases as κ is assigned higher values. Through multiple experiments,

we have observed that a low κ value < 0.1 × 108 results in a performance similar to the Lloyd algorithm,

while a value > 2 × 108 results in convergence issues. Hence, the choice of κ is an important criterion in

using the Inter-AP Lloyd algorithm. We can think of κ as a network design parameter, which allows for

controlling the emphasis placed on the signal and the interference powers.

Experiment 2. Now, for the proposed HAPPA, we evaluate the effects of AP placement on the

throughput performance of the hybrid network as we add additional UAV-APs under the GMM-2 configu-

ration. For all cases, we set step-size δ = 0.5 and trade-off factor κ = 1 × 108. As a benchmark result, we

calculate the performance of the system which hasMf = 8 T-APs and no UAV-APs, the fixed network, which
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Figure 3.3: CDF plots of normalized per-user achievable rate for the Lloyd and Inter-AP Lloyd algorithms for

κ1 = 0.2× 108 and κ2 = 1× 108 with M = 16 under GMM-1.
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Figure 3.4: CDF plots of normalized minimum rate for the Lloyd and Inter-AP Lloyd algorithms for κ1 = 0.2× 108

and κ2 = 1× 108 with M = 16 under GMM-1.

is labelled as ⟨Mf =8,Mu=0⟩. Then, we add 2, 4, 6, and 8 UAV-APs to the fixed network, resulting in up

to M = 16 APs, the hybrid networks, labelled as ⟨Mf =8,Mu=2⟩, ⟨Mf =8,Mu=4⟩, ⟨Mf =8,Mu=6⟩, and
⟨Mf =8,Mu=8⟩, respectively. Finally, we also evaluate the performances of the system in the above networks

when all M APs are UAV-APs, the fully flexible networks, labelled as ⟨Mf =0,Mu=10⟩, ⟨Mf =0,Mu=12⟩,
⟨Mf =0,Mu=14⟩, and ⟨Mf =0,Mu=16⟩, respectively. Note that the added UAV-APs are initialized using

the proposed initialization algorithm. We start by showing in Fig. 3.5 the AP locations of fixed network

⟨Mf =8,Mu=0⟩, the final UAV-AP locations obtained from HAPPA in the hybrid network ⟨Mf =8,Mu=8⟩,
and the final AP locations in the corresponding fully flexible network ⟨Mf =0,Mu=16⟩ (where the Inter-AP
Lloyd algorithm is run). Knowing that the T-APs were optimally placed for GMM-1, the UAV-APs position

themselves according to the current GMM-2 configuration, in order to retrieve the capacity lost due to the
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Figure 3.5: AP locations obtained after HAPPA with Mf = 8 T-APs and Mu = 8 UAV-APs (hybrid network) and

Inter-AP Lloyd algorithm with M = 16 APs (fully flexible network) under GMM-2.

new user density. Clearly, in the fully flexible network ⟨Mf =0,Mu=16⟩, all APs are positioned optimally for

GMM-2. For performance comparison, we calculate the sum rate in each network and the results are plotted

in Fig. 3.6. The sum rate curve for the fixed network ⟨Mf =8,Mu=0⟩ clearly performs the worst. As we add

UAV-APs to the system, the rate curves move to the right showing an increase in system sum rate. Thus,

we demonstrate that, in this system, the HAPPA operating on a hybrid network efficiently takes care of the

ICI even when the degree of hybridity Mu/M ≤ 50%. This implies that even when there are more T-APs

than UAV-APs, i.e., less flexibility to place APs, significant improvements in system capacity are obtained.

The curve for the fully flexible network ⟨Mf =0,Mu =16⟩ is also shown and only slightly outperforms the

hybrid network ⟨Mf =8,Mu=8⟩. In terms of the 95%-likely rate, we measure the percentage improvement

of each hybrid network relative to the fixed network and the values are tabulated in column 3 of Table 3.2.

Furthermore, we compare the performance of each hybrid network to its corresponding fully flexible network

for the various degrees of hybridity (e.g., comparison of ⟨Mf = 8,Mu = 2⟩ with ⟨Mf = 0,Mu = 10⟩), as

tabulated in column 4 of Table 3.2. The performance gap between the hybrid and fully flexible networks is

only 6.65% when the degree of hybridity is 20% and culminates in a minimal 2.02% gap when the hybridity

is 50%. Note that in order to determine the minimum and sufficient number of UAV-APs required for the

system to achieve a threshold sum rate ηth, we perform

Umin=arg min
Mu

S5%(Mf ,Mu) s.t. S
5%(Mf ,Mu)≥ηth, (3.42)

where S5%(Mf ,Mu) is the 95%-likely sum rate when Mu UAV-APs are added to Mf T-APs. The minimum

number of UAV-APs can be obtained by sequential or bisectional search.

Experiment 3. In this experiment, we conduct a similar sum rate performance analysis of HAPPA

as in experiment 2, however, under the compact GMM-3 user configuration. Fig. 3.7 shows the AP locations

of the fixed network ⟨Mf = 8,Mu = 0⟩ and the resulting UAV-AP locations for the hybrid network ⟨Mf =

8,Mu=8⟩ and the fully flexible network ⟨Mf =0,Mu=16⟩. For the hybrid network, the UAV-APs position
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Figure 3.6: CDF plots of normalized sum rate for fixed ⟨Mf =8,Mu =0⟩, hybrid ⟨Mf =8,Mu =2, 4, 6, 8⟩, and fully

flexible ⟨Mf =0,Mu=16⟩ networks under GMM-2.

Table 3.2: Hybrid Network Configuration, Degree of Hybridity, and 95%-Likely Sum Rate Improvement Ratios under

GMM-2

Hybrid Network
Mu

M
[%]

Hybrid

Fixed
[%]

Flexible

Hybrid
[%]

⟨Mf =8,Mu=2⟩ 20 18.10 6.65

⟨Mf =8,Mu=4⟩ 33.33 35.61 4.84

⟨Mf =8,Mu=6⟩ 42.86 53.67 4.13

⟨Mf =8,Mu=8⟩ 50 71.92 2.02

themselves around the existing T-APs, which are suboptimally placed, to increase system capacity and the

fully flexible network has the UAV-APs positioned optimally for GMM-3. In this scenario, we compare the

sum rates achieved by the fixed network, the fully flexible network, and the hybrid networks with varying

degrees of hybridity ⟨Mf = 8,Mu = 2⟩, ⟨Mf = 8,Mu = 4⟩, ⟨Mf = 8,Mu = 6⟩, and ⟨Mf = 8,Mu = 8⟩. For

the sake of visual clarity, in Fig. 3.8, we focus on the comparison between the sum rate curves of the

50% hybrid network ⟨Mf = 8,Mu = 8⟩ and of the fully flexible network ⟨Mf = 0,Mu = 16⟩, since in the

same figure, we also plot the corresponding sum rate curves for the 50% hybrid and fully flexible networks

we obtained for the GMM-2, in experiment 2. The comparison of the 95%-likely rate values for all the

considered degrees of hybridity are tabulated in Table 3.3. As expected, the fixed network performs the

worst and performance substantially improves as the degree of hybridity increases. Notice that the fully

flexible network only performs slightly better than the hybrid network even for a small degree of hybridity of

20%, which results in a small gap of nearly 8%. The gap shrinks to 5.65% for a 50% hybrid network. In Fig.

3.8, it is worth mentioning that in comparison to the rates yielded by GMM-2, the ones of GMM-3 are lower

due to the increased ICI arising from the cells being relatively closer to one another. Quantitatively, relative

to the corresponding curves yielded by the GMM-2, there is a 11.57% and 9.14% reduction in the 95%-likely
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Figure 3.7: AP locations obtained after HAPPA with Mf = 8 T-APs and Mu = 8 UAV-APs (hybrid network) and

Inter-AP Lloyd algorithm with M = 16 APs (fully flexible network) under GMM-3.
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Figure 3.8: CDF plots of normalized sum rate for hybrid ⟨Mf = 8,Mu = 8⟩ and fully flexible ⟨Mf = 0,Mu = 16⟩
networks under GMM-3 and GMM-2.

values for the 50% hybrid and for the fully flexible networks, respectively, due to the GMM-3. Note that the

effects of increased ICI are not only observed when comparing distinct GMMs but also within one GMM.

This is observed in column 4 of Table 3.3, where the percentage improvements of a fully flexible network is

determined over its hybrid counterpart for GMM-3. In summary, the proposed HAPPA is demonstrated to

significantly improve sum rates in both cases when the GMM groups are far apart (lower overall ICI) and

very close together (higher overall ICI). Thus, we can reasonably conclude that for user configurations in

between the two extremes shown above, HAPPA will still be able to place APs optimally in order to recover

the capacity lost as a result of changes in the user configuration, in the presence of ICI.

Experiment 4. In this experiment, we investigate the effects that the number of users in GMM-3

has on the performance of HAPPA. In this regard, we plot in Fig. 3.9, the sum rate curves achieved by
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Table 3.3: Hybrid Network Configuration, Degree of Hybridity, and 95%-Likely Sum Rate Improvement Ratios under

GMM-3

Hybrid Network
Mu

M
[%]

Hybrid

Fixed
[%]

Flexible

Hybrid
[%]

⟨Mf =8,Mu=2⟩ 20 23.42 7.99

⟨Mf =8,Mu=4⟩ 33.33 44.28 6.57

⟨Mf =8,Mu=6⟩ 42.86 70.44 6.20

⟨Mf =8,Mu=8⟩ 50 93.63 5.65
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Figure 3.9: CDF plots of normalized sum rate for hybrid ⟨Mf = 8,Mu = 8⟩ and fully flexible ⟨Mf = 0,Mu = 16⟩
networks for K = 2000, 500, and 250 under GMM-3.

a ⟨Mf = 8,Mu = 8⟩ hybrid network and the corresponding ⟨Mf = 0,Mu = 16⟩ fully flexible network when

K = 2000, K = 500, and K = 250. Two observations can be made from this figure. First, the sum rate

performances of both the hybrid and fully flexible networks increase as the number of users is reduced.

Second, the performance gap between hybrid and the fully flexible networks increases as the number of users

is decreased. This follows from the fact that as the total number of users K reduces, the proportion of

users that are far from the serving AP in each cell also reduces, thereby shifting the overall rate curve to

the right. This also increases the importance of flexibility, therefore favoring the deployment that has more

UAV-APs. Quantitatively, we calculate the performance gaps in terms of the 95%-likely rate. Among the

hybrid networks, we observe a 1.20% and 3.74% gap for the curves when K = 500 and K = 250, respectively,

over the curve when K = 2000. The values for the fully flexible networks are 4.82% and 10.58%, respectively.

Further, the performance increase of the fully flexible networks over their hybrid counterparts starts at 5.65%

when K = 2000, increases to 8.65% when K = 500, and to a higher 11.81% when K = 250.

Experiment 5. In this experiment, we compare the proposed HAPPA with the conventional ex-

haustive search. In particular, we perform the comparison of HAPPA with an exhaustive search algorithm

to find the UAV-AP positions for the 50% hybrid network ⟨Mf =8,Mu=8⟩ with GMM-2. The exhaustive
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search process is described as follows. We first split the geographical area under consideration into N grid

points. Given the 8 T-APs, we have to determine the positions of the 8 UAV-APs at the grid points that

generates the best 95%-likely sum rate performance. Since it is not beneficial for two APs to be colocated

at the same grid point, the total number of combinations to distinctly place the 8 UAV-APs among N grid

points is the binomial coefficient NC8. Note that N is chosen such that both HAPPA and the exhaustive

search have similar implementation complexities for a fair performance comparison. The overall complexity

order of HAPPA is O(KMISIL) where IS = 5 and IL = 15 are average values obtained from conducting a

large number of trials. As such, the complexity order for K = 2000 users and total M = 16 APs is 2.4×106.

On the other hand, the exhaustive search algorithm has an overall complexity order of KM×NC8, since for

each combination, it is necessary to associate each of the K users to the M APs. Thus, N = 16 APs yields

a complexity order of 4.12× 106 for the exhaustive search, which is similar to that of HAPPA. With similar

complexities ensuring a fair performance comparison, we then conduct the exhaustive search and generate

the sum rate curve for the best combination, which is shown in Fig. 3.10 below. Clearly, it is observed that

the performance of the exhaustive search with N = 16 grid points is inferior (the 95%-likely value is 4.22%

lower) to HAPPA. To further investigate, we increased the number of grid points to N = 25, resulting in a

complexity order of KM×25C8 = 3.46× 1010, which is clearly several orders of magnitude higher than that

of HAPPA. The sum rate performance corresponding to N = 25 shown in Fig. 3.10 is also significantly lower

(the 95%-likely value is 3.88% lower) than that of HAPPA and is only slightly better than that of N = 16.

This shows that in spite of similar or even with significantly lower complexity, our proposed Lloyd-type

algorithm, i.e., HAPPA, results in a placement of UAV-APs that yields a better sum rate performance in

comparison to the exhaustive search method.

Experiment 6. In this experiment, we compare the proposed initialization scheme with the popular

k-means++ initialization [95]. For this comparison, we consider a user distribution GMM-4, which has

parameters L = 2, µ1 = [−0.5, 0]T , µ2 = [0.5, 0]T , σ1 = σ2 = 100, and p1 = p2 = 0.5, and is shown in Fig.
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3.11. In order to show how our proposed initialization method described in Section 3.7.3 is advantageous

over the k-means++ initialization scheme, we present the following three points of comparison.

Firstly, we examine the distribution of the AP locations between the GMM groups such that

the number of users being served by each AP is considered. Since GMM-4 has equal mixture component

probability (and hence, an equal number of users) and variances for both groups, the proposed scheme

allocates an equal number of APs to both groups, i.e., if M = 4, then each group is allocated 2 APs.

This balanced allocation, which is henceforth represented as (2, 2), is true for any realization of the user

distribution. In contrast, the k-means++ scheme does not always result in a balanced (2, 2) allocation.

Through multiple realizations, it is observed to result in unbalanced (3, 1) and (1, 3) allocations as well.

Examples of the allocations are illustrated in Fig. 3.11, where we show the final AP locations obtained

using the Inter-AP Lloyd algorithm, resulting in a balanced (2, 2) allocation for the proposed scheme and

an unbalanced (3, 1) allocation for the k-means++ scheme. In a balanced allocation, the division of the

K = 2000 users is nearly even among the M = 4 APs, resulting in each AP serving about 500 users.

This is in contrast to an unbalanced (1, 3) or (3, 1) allocation where one AP alone would serve nearly 1000

users while the other 3 APs would serve about 333 users each. In Table 3.4, we present the results of 1000

realizations of initializations and the percentage of balanced and unbalanced allocations are noted forM = 4,

6, and 8. Note that for M = 6, the possible unbalanced allocations would be (4, 2), (2, 4), (1, 5), and (5, 1),

while for M = 8, they would be (5, 3), (3, 5), (6, 2), (2, 6), (7, 1), and (1, 7). Table 3.4 shows us that while

the proposed scheme always results in a balanced allocation, the k-means++ scheme results in unbalanced

allocations 30.1% of the time when M = 4 and increases with M up to 44.5% when M = 8.

Secondly, to observe the effects of balanced and unbalanced AP allocations on the rate performance,

we plot one curve for the proposed scheme and one curve each for the balanced and unbalanced allocations

arising from the k-means++ scheme. We use the same user distribution as before with M = 4 APs and

K = 250 users, and in Fig. 3.12, we show the CDF of the minimum rates achieved in each case. It is clear

that regardless of the scheme, the balanced allocation results in the same performance. The unbalanced

allocation yielded by the k-means++ scheme, however, performs considerably worse. This performance loss

is due to the fact that one AP in a GMM group has to serve all the users within the group. As such, this

AP has a higher average user-AP distance than the APs in the balanced allocation case, and contributes

primarily to the lower achievable rates. Henceforth, we can conclude that the proposed initialization scheme

is preferable to the k-means++ scheme since the latter has an incidence of unbalanced AP allocations, which

in turn results in reduced achievable rates.

Finally, we demonstrate that the benefits of the proposed scheme is not only limited to rate im-

provements, but also reduced net distance travelled by the APs over time as the user realization changes and

the APs need to update their positions. We again use GMM-4 with K = 250 and M = 4 and consider two

user realizations, at time instances T1 and T2. Both initialization schemes are used at T1 and the Inter-AP

Lloyd algorithm is applied to place the APs. Then, using the final AP positions at T1 as initial positions for

T2, the placement algorithm is again applied. Accordingly, we conduct 1000 trials to compare the distances

traversed by the APs from T1 to T2 in both schemes. It is found that the average distance travelled by the
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Figure 3.11: Representative example showing the final AP locations for the proposed and k-means++ initialization

schemes for M = 4 under GMM-3. The proposed scheme always results in a balanced allocation while the k-means++

scheme may result in a balanced (not shown) or an unbalanced allocation, whose likelihood is given in Table 3.4.

Table 3.4: Percentage of Unbalanced Allocations Under the Proposed and k-means++ Initialization Schemes

M Proposed [%] k-means++ [%]

4 0 30.1

6 0 39.6

8 0 44.5

APs following the proposed scheme is 168.16 m, which is smaller compared to the averaged travelled distance

of 175.08 m, yielded by the k-means++ scheme. The sole contributors to the higher traversed distances in

the k-means++ scheme are the unbalanced allocations. Note that with smaller traversed distances, practical

implementation issues such as the potential for collisions, UAV battery drainage, cell handovers, as well as

signalling between NC and UAV-APs are reduced. Moreover, the benefits of the proposed scheme are also

observed with the traditional Lloyd algorithm and HAPPA.

Experiment 7. In this last experiment, we obtain the AP placements, access rates, and the spectral

access fractions of the LB-aware OWLA and CELA-α, and compare them to those of the Lloyd algorithm.

In CELA-α, three trade-off values α = 0.9, 1, and 1.75 are used. We choose the threshold as the distance of

the AP to its nearest AP (cell-specific distance threshold). The AP locations obtained after the algorithms

converge are shown in Fig. 3.13. OWLA results in APs that are placed away from those of the Lloyd

algorithm, due to the LB-promoting weighted distortion measure. From CELA-α, we know that a higher

value of α results in more user re-assignments. This is also evidenced by the fact that the AP locations are

more different from those of the Lloyd algorithm as α increases. In order to quantitatively show the degree

to which CELA-α perform user re-assignments, the occupancy of every cell for each of the considered α is

provided in Table 3.5. We observe that while the occupancy level for equal occupancy would be 2000/8 = 250,

the occupancy levels vary significantly for the Lloyd algorithm. For smaller values of α, i.e., α = 0.9, it is

60



10-2 10-1 100

Minimum Rate

0

0.2

0.4

0.6

0.8

1

C
D

F

Proposed

k-means++, Balanced

k-means++, Unbalanced

Figure 3.12: CDF plots of normalized minimum rate for the proposed and k-means++ balanced and unbalanced

allocations with M = 4 and K = 250 under GMM-4.

observed that those cells with occupancy higher than the target in the Lloyd algorithm have their occupancy

lowered. The opposite effect occurs for larger α values. As more users are re-assigned with the increase in α,

more cells are able to attain the target value of 250 users. Particularly, for α = 1, two cells and for α = 1.75,

an additional three cells attain this target occupancy. The occupancy observed in OWLA is also shown in

the Table 3.5 and similarly to CELA-α, OWLA mitigates the issue of unbalanced loads in the cells.

Next, we show in Fig. 3.14 the cumulative distribution functions (CDFs) of the access rate. The

rate curve corresponding to OWLA is observed to have a slightly inferior performance than that of the Lloyd

algorithm. Also, as expected, when α increases to prioritize spectral access fairness among users within the

cells, some degree of throughput loss is observed. Notice that the worst rate loss happens when α = 1.75.

Finally, Fig. 3.15 shows the CDFs of the spectral access fractions for OWLA and for the three values of α

in CELA-α under consideration. It can be seen that this metric increases significantly with α and OWLA

provides a performance slightly higher to that of α = 1. Table 3.6 shows the percentage improvements

for the access rate and spectral access fraction. Although rate reduction is observed to a degree, there is

a significant improvement in spectrum access fraction. That is, the magnitude of access increase is much

higher than that of the rate decrease. For instance, while the access rate suffers a reduction of 6.96%, the

increase in spectral access fraction is nearly three-fold of that amount, at 20.83%, for α = 1.75. Additionally,

a key observation is that OWLA is able to achieve a higher spectral access fraction improvement at the cost

of a lower access rate decrease, compared to CELA-α when α = 1. As such, one should favor OWLA over

CELA-α if a spectral access fraction of up to 12.5% above the one provided by Lloyd algorithm is required,

for the considered user configuration. Above this mark, CELA-α is to be preferred. Finally, CELA-α has

an inherent flexibility that enables the performance of the system to be governed by the trade-off factor α

which can be based on specific system requirements, which OWLA cannot provide.
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Figure 3.13: AP locations after convergence of the Lloyd algorithm, CELA-α with α = 0.9, 1, 1.75, and OWLA for

M = 8 and GMM-2.
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Figure 3.14: Per-user access rate CDF plots of the Lloyd algorithm, CELA-α with α = 0.9, 1, 1.75, and OWLA for

M = 8, and GMM-2.

Table 3.5: Cell Occupancy of LA, CELA-α, and OWLA

Algorithm C1 C2 C3 C4 C5 C6 C7 C8

LA 282 278 327 337 236 180 157 203

α = 0.9 266 269 321 331 235 198 174 206

α = 1 250 277 302 314 250 213 179 215

α = 1.75 250 250 264 262 250 250 224 250

OWLA 281 288 302 286 221 219 189 214

3.8 Conclusion

In this chapter, we have addressed the AP placement problem in the small-cell uplink paradigm for

hybrid network composed of terrestrial APs (T-APs) and AP-enabled UAVs (UAV-APs) in the presence of

inter-cell interference (ICI). We accounted for ICI through signal-to-generated-interference-plus-noise ratio
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Figure 3.15: Spectral access fraction CDF plots of the Lloyd algorithm, CELA-α with α = 0.9, 1, 1.75, and OWLA

for M = 8, and GMM-2

Table 3.6: Percentage Improvements in 95%-Likely Achievable and Access Rates and Spectral Access Fraction for

CELA-α and OWLA

Algorithm Access Rate Spectral Access Fraction

α = 0.9 -1.46% 4.17%

α = 1 -2.96% 8.33%

α = 1.75 -6.96% 20.83%

OWLA -2.28% 12.5%

(SGINR) instead of signal-to-interference-plus-noise ratio (SINR) and arrived at the Inter-AP Lloyd algo-

rithm for fully flexible networks. It generated up to a 42.75% increase in 95%-likely achievable rate over the

Lloyd algorithm. To account for the loss in capacity due to change in the user density, we devised a UAV-AP

placement algorithm called the Hybrid AP Placement Algorithm (HAPPA). We showed that HAPPA, even

with a small proportion of UAV-APs to T-APs, exhibited significant sum rate increase (up to 93.63%) over

fixed networks and close to the ideal performance (as little as 2.02% difference) of fully flexible networks.

Finally, we derived an initialization method for the Lloyd or any Lloyd-type algorithm, applicable to the

Gaussian mixture model of user distribution. When compared to the popular k-means++ method, the pro-

posed method always offered a relatively balanced (similar number of users served by each AP) allocation,

in contrast to the unbalanced allocation that was possible in the k-means++ method at least 30% of the

time, which resulted in a lower minimum rate over the balanced allocation.

We have also addressed the aspect of load balancing (LB) in throughput optimal small-cell access

point placement. To account for LB in the placement process, we modified the Lloyd algorithm from vector

quantization and presented two methods, namely the Occupancy Weighted Lloyd algorithm (OWLA) and

Cell Equalized Lloyd algorithm-α (CELA-α), both of which yield increases in user access with minimal

throughput loss. While OWLA utilizes a weighted distortion function, CELA-α adds an additional step in

the Lloyd framework to achieve a degree of LB. Results show that both proposed algorithms achieve higher
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spectral access (up to around 21%) while suffering a relatively minor reduction in throughput (up to around

7%), and CELA-α, through its trade-off factor α, allows for flexibility in deciding the degree of LB.

Chapter 3, in part, is a reprint with permission of the material as it appears in the papers: Govind

Ravikumar Gopal, Bhaskar D. Rao, and Gabriel Porto Villardi, “Access point placement for hybrid UAV-
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July 2021, and Govind Ravikumar Gopal, Bhaskar D. Rao, and Gabriel Porto Villardi, “Load balancing in

small-cell access point placement,” in 2023 IEEE 97th Vehicular Technology Conference (VTC-Spring),

June 2023. The dissertation author was the primary investigator and author of these papers. These works
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2124929, in part by Qualcomm Inc. through the Faculty-Mentor-Advisor program, and in part by the Center

for Wireless Communications (CWC), University of California San Diego.
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Appendices

3.A Proof of (3.19)

Consider the term

||p− qm′ ||2 = ||p− qE(p)︸ ︷︷ ︸
y

+qE(p) − qm′︸ ︷︷ ︸
x

||2. (3.43)

From the conventional cell planning rules, it is clear that the distance between a user and its serving AP,

denoted by y, is smaller than the distance between the serving AP and any other interfering AP, denoted

by x. Hence, we can write ∣∣∣∣p− qE(p)
∣∣∣∣ ≤ ∣∣∣∣qE(p) − qm′

∣∣∣∣⇒ ||y|| ≤ ||x||. (3.44)

Each interfering AP m′ can be classified into whether it is an immediate neighbor IN of AP E(p) or not,

and correspondingly obtain the following relations

||x|| ≥ ||y|| , ∀m′ ∈ IN (E(p)), m′ ̸= E(p),

||x|| ≫ ||y|| , ∀m′ /∈ IN (E(p)), m′ ̸= E(p).
(3.45)

At this stage, we make the assumption that ||x|| ≫ ||y|| holds true ∀m′ ̸= E(p) and we simplify the term in

(3.43) as

||x+ y||2 = ||x||2 + ||y||2 + 2||x||||y|| cos θ,

= ||x||2
(
1 +
||y||2

||x||2
+
||y|| cos θ
||x||

)
,

≈ ||x||2.

(3.46)

This relation also holds true for ||p − qm′ ||γ with values of γ other than γ = 2. Hence, rearranging and

taking the expectation gives us

Ep

{
1

||p− qm′ ||γ
}
≈ 1∣∣∣∣qm′ − qE(p)

∣∣∣∣γ . (3.47)

3.B Proof of (3.40)

The bit allocation problem and the associated solution can be found in [41, Ch. 8] for the scalar

(random variable) case. We extend this procedure to random vectors of dimension k and then derive the

specific case for k = 2.
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If we have N random vectors X1,X2, . . . ,XN that are to be quantized, then the overall distortion

can be defined as

D =

N∑
i=1

giWi(bi), (3.48)

where Wi(bi) is the distortion incurred when Xi is quantized using bi bits and gi’s are some non-negative

weights. From [41], Wi(bi) for k-dimensional vectors when the high-resolution approximation is applied is

written as

Wi(bi) =
k

k + 2

(
2π

k
2

kΓ
(
k
2

))− 2
k

×


∞∫

−∞

[fXi
(x)]

k
k+2 dx


k+2
k

2−
2bi
k . (3.49)

where Γ(·) is the gamma function. We now use this expression to derive the bit allocation result for vectors

of dimension k.

Lemma 1. Consider N k-dimensional random vectors X1,X2, . . . ,XN of zero mean and covariance Σi,

and whose distributions fXi(x) are known for i = 1, 2, . . . , N . Let bi = log2 qi be the number of bits required

in order to design a quantizer for Xi with qi quantization levels. With B being the total number of bits

available for the N quantizers (the bit budget), and the distortion defined as in (3.49), the number of bits to

be allocated to achieve optimal quantization, called the optimal bit allocation, is given by

bi = b+
k

2
log2

hi
H

+
k

2
log2

gi
G
, (3.50)

where:

b =
B

N
, ϵ(k) =

k

k + 2

(
2π

k
2

kΓ
(
k
2

))− 2
k

, hi = ϵ(k)


∞∫

−∞

[fXi
(x)]

k
k+2 dx


k+2
k

= ϵ(k) ||fXi
(x)|| k

k+2
,

H =

(
N∏
i=1

hi

) 1
N

, G =

(
N∏
i=1

gi

) 1
N

.

(3.51)

Proof. Using the above notation in (3.49), we have

Wi(bi) = hi2
− 2bi

k . (3.52)

To minimize the overall distortion in (3.48) constrained by the bit budget, the objective function is

J =

N∑
i=1

gihi2
− 2bi

k + λ

(
N∑
i=1

bi −B

)
, (3.53)

which, on differentiating, we get
∂J

∂bi
= 0⇒ λ =

2gihi(ln 2)

k
2−

2bi
k

∂J

∂λ
= 0⇒

N∑
i=1

bi = B.

(3.54)

Solving this set of equations for bi yields the required result.
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Noting that hi is the norm of the pdf, we determine the closed-form expression when Xi is a

multivariate Gaussian, as is the case in the GMM distribution.

Lemma 2. For the multivariate k-dimensional Gaussian

fX(x) =
1√

(2π)k |Σ|
exp

(
1

2
(x− µ)

T
Σ−1 (x− µ)

)
, (3.55)

the η-norm defined by

||fX(x)||η =


∞∫

−∞

[fX(x)]
η
dx


1
η

, (3.56)

is given as

||fX(x)||η =

(√
(2π)k |Σ|

)( 1
η−1)( 1

η
k
2

) 1
η

. (3.57)

Proof.

||fX(x)||η =
1√

(2π)k |Σ|


∞∫

−∞

exp

(
1

2
(x− µ)

T
ηΣ−1 (x− µ)

)
dx


1
η

=
1√

(2π)k |Σ|

{√
(2π)k

∣∣∣∣1ηΣ
∣∣∣∣
} 1

η

=

(√
(2π)k |Σ|

)( 1
η−1)( 1

η
k
2

) 1
η

.

(3.58)

Theorem 1. With M APs (the AP budget), the number of APs allocated to the L groups of a GMM with

parameters pl, µl, and Σl, and Kl being the number of users in group l, l = 1, 2, . . . , L, is

ul = u+ log2
hl
H

+ log2
gl
G
, (3.59)

where

u =
M

L
, hl = 4

√
|Σl|, gl = Kl, H =

(
L∏

l=1

hl

) 1
L

, G =

(
L∏

l=1

gl

) 1
L

. (3.60)

Proof. Since the users are distributed in the R2 plane, we have k = 2. The AP budget is M , number of

groups is L, and the distortion weights gl correspond to the mixture component weights pl, which in turn

correspond to the number of users Kl. Since each GMM group l has fXl
(x) ∼ N (µl,Σl), from Lemma 2

we obtain

hl =
1

2π
||fXl

(x)|| 1
2
= 4
√
|Σl|. (3.61)

Making these parallels and simplifications in (3.50) of Lemma 1, we obtain the desired expression.
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Chapter 4

Cell-Free AP Placement

We now examine the problem of uplink cell-free access point (AP) placement in the context of

optimal throughput. In this regard, we formulate two main placement problems, namely the sum rate and

minimum rate maximization problems, and discuss the challenges associated with solving the underlying

optimization problems with the help of some simple scenarios. As a practical solution to the AP placement

problem, we suggest a vector quantization (VQ) approach. The suitability of the VQ approach to cell-free

AP placement is investigated by examining three VQ-based solutions. First, the standard VQ approach,

that is the Lloyd algorithm (using the squared error distortion function) is described. Second, the tree-

structured VQ (TSVQ), which performs successive partitioning of the distribution space is applied. Third, a

probability density function optimized VQ (PDFVQ) procedure is outlined, enabling efficient, low complexity,

and scalable placement, and is aimed at a massive distributed multiple-input-multiple-output scenario. While

the VQ-based solutions do not explicitly solve the cell-free AP placement problems, numerical experiments

show that their sum and minimum rate performances are good enough, and offer a good starting point for

gradient-based optimization methods. Among the VQ solutions, PDFVQ, with its distinct advantages, offers

a good trade-off between sum and minimum rates.

4.1 Introduction

The problem of AP placement in cell-free systems is fairly novel and much prior research has not

been conducted. As an example, [96] investigates the deployment of UAVs in a cell-free network to maximize

minimum SINR using a gradient approach while considering pilot contamination and that not every AP

communicates with all users. The authors of [97] consider the placement of APs in a distributed massive

MIMO system as a combinatorial problem to minimize transmit powers while considering antenna radiation

patterns and different channel models. While a cell-free system is not explicitly defined, the system model

considered mimics such a system. A graph-based approach is found to yield significant power savings while

ensuring placement with good coverage. In [98], 3-D placement of UAV-APs is considered to maximize

the downlink sum rate and uses an alternating optimization method. A prior work by our group [60]
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examines both sum rate and minimum rate maximization problems. This work solves the two problems

using compressed sensing techniques by dividing the geographical area into regular grids. However, the

approximations used do not solve the two placement problems optimally.

With the expected densification in future networks, it is necessary to design AP placement schemes

that are not only practical, but can scale easily with the number of APs which is characteristic in a massive

MIMO scenario. Moreover, as alluded to above in the examples of AP placement scenarios, such methods

should be able to easily adapt to changing user environments. While the VQ approach (the Lloyd algorithm)

have been utilized in prior works (e.g., [13]), none of the previous works have investigated the application

of the Lloyd algorithm and other VQ approaches to solve the cell-free AP placement problem. In the VQ

framework as applied to AP placement, the user positions are clustered and the cluster centers are the AP

locations. The VQ technique considers a single user that communicates to its nearest AP with the objective

function that utilizes a distortion function averaged over the random position of this user. It does not match

the cell-free model where all users communicate to all APs. In spite of these limitations, VQ-based solutions

have some features that make them worthy of consideration. By design, VQ offers not only a distributed

solution (where APs are placed at different locations as opposed to a colocated solution) but can encourage

cooperation (as is expected in the cell-free model) by placing APs closer to one another in areas of higher user

density. Additionally, VQ solutions provide good initial points for gradient and learning-based methods to

solve specific throughput problems. Hence, in this chapter, we explore and compare multiple VQ techniques,

each with its own benefits, that can solve for AP locations in a cell-free network, with throughput as the

performance measure.

Contributions

To the best of our knowledge, analysis of the cell-free AP placement problem in the context of

throughput optimality along with the suitability of the VQ framework and the application of VQ-based

methods to solve the same have not been addressed in literature. Hence, in this work, our contributions are

as follows.

• We formulate the two main throughput optimal cell-free AP placement problems, namely the sum

rate and minimum rate maximization problems. While these problems have been previously studied

in small-cell works, a detailed discussion in the context of cell-free networks has not been presented.

Starting from the simpler sum SNR problem, analysis of the sum rate problem is conducted and simple

examples are shown to describe the possible solutions and to highlight the challenges associated with

the general AP placement problem. The minimum rate problem is then discussed, also with some

examples.

• Three VQ-based techniques to place APs are proposed and explored, namely standard VQ, which

is the Lloyd algorithm, tree-structured VQ (TSVQ), and probability density function optimized VQ

(PDFVQ). While the Lloyd algorithm provides a well-established method to place APs, there are the

disadvantages of complexity and scalability. TSVQ, through successive partitioning of the user area,
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places APs in such a way so as to foster cooperation. PDFVQ on the other hand, allows an efficient,

less computationally intensive, and easily adaptable AP placement solution by using bit allocation,

transform coding, and scalar quantization, and is especially suitable for a scaled network with a large

number of APs.

• To complete the discussion on cell-free AP placement, we also investigate a limited AP cooperation

scenario which utilizes the linear minimum mean square error (LMMSE) combiner. The performance

of the placement solutions for this scenario is also provided.

4.2 System Model

In the cell-free system model, K single-antenna users are distributed over a geographical area with

a probability density function fP(p), with p ∈ R2 as the random vector denoting the user position. M single-

antenna APs serve these users, where q ∈ R2 is the AP location. With m = 1, 2, . . . ,M and k = 1, 2, . . . ,K,

a narrowband fading channel is considered with

gmk =
√
βmkhmk, (4.1)

where βmk and hmk ∼ CN (0, 1) are the large- and small-scale fading coefficients, respectively, independent

of each other and over coherent intervals. A general expression for βmk is

βmk =
czmk

||p− qm||γ
, (4.2)

where c is a constant, zmk is the shadow fading coefficient, and γ is the pathloss exponent. All APs

cooperate with each other and are connected via error-free backhaul links to the network controller (NC).

We consider the traditional cell-free uplink regime where all APs serve a smaller number of users in the same

time-frequency resource. The uplink received signal at AP m is

ym =

K∑
k=1

√
ρrgmksk + wm, (4.3)

where for user k, ρr is the transmit power, sk is the data symbol with E{|sk|2} = 1, and wm ∼ CN (0, 1) is

the additive noise. The received signal vector at the NC from all M APs using (5.3) can be written as

y =

K∑
k=1

√
ρrgksk +w, (4.4)

where y = [y1, y2, . . . , yM ]T , gk = [g1k, g2k, . . . , gMk]
T , and w = [w1, w2, . . . , wM ]T . When a combiner vk is

used to estimate data symbols of user k as ŝk = vH
k y, the per-user achievable rate is Rk = E{log(1 + ϕvk

k )},
where the expectation is over all the small-scale and shadow fading coefficients, and the SINR [19] is

ϕvk

k =
ρrv

H
k gkg

H
k vk

vH
k vk +

K∑
k′=1
k′ ̸=k

ρrvH
k gk′gH

k′vk

. (4.5)
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One such combiner is the zero forcing (ZF) detector, and results in the processed signal at the NC as

r =
(
GHG

)−1
GHy, where G = [gmk] is a M ×K matrix consisting of the channel coefficients [60]. The

achievable per-user SNR in this case is

ψZF
k =

ρr
[(GHG)−1]kk

. (4.6)

Using an asymptotic approximation for the SNR as outlined in [15,60], the per-user SNR can also be written

as
1

M
ψZF
k

a.s.−−−−→
M→∞

ρrβk, (4.7)

where

βk ≜ lim
M→∞

1

M

∑
m

βmk. (4.8)

4.3 Throughput Formulations for the Cell-Free AP Placement

Problem

There are two main formulations for cell-free AP placement in terms of throughput optimality:

• Sum rate maximization, which involves the sum of the rates of all users, as follows

arg max
q1,q2,...,qM

K∑
k=1

log(1 + ϕvk

k ). (4.9)

Note that this problem is identical to the average rate maximization problem by assuming a sample

mean and taking the average over the user distribution fP(p).

• Minimum rate maximization, where the minimum of the rates among all of the users is maximized

arg max
q1,q2,...,qM

min
k

log(1 + ϕvk

k ). (4.10)

The notion of fairness, which is important in a cell-free system since all users are served by all APs,

is enforced by the minimum rate problem in (4.10) as opposed to the sum rate problem in (4.9). In

practice, the 95%-likely rate, which represents the best rate among the worst 5% of the users, is used

as a measure to evaluate the network minimum rate performance. Hence, the max-min rate is adjusted

to the 95%-likely rate, which is more robust. This is subsequently addressed in Section 4.4.4.

It should be noted that finding solutions that address both of the above metrics, although challenging, is

ideal. It is desirable to achieve an optimal trade-off between sum rate and minimum rate. In the ensuing

sections, we discuss the above formulations. Our analysis of the sum rate maximization problem is preceded

by the simpler sum SNR maximization problem.
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4.3.1 Sum SNR Maximization

When throughput is measured by utilizing SNR alone, we can obtain a simpler sum throughput

problem to (4.9) by using the ZF SNR ψZF
k from (5.5) and by replacing the summation with an expectation

(the factor of 1/K has been neglected). The average is taken over the user position and the setA = {zmk,∀m}
consisting of all shadow fading coefficients between each user and AP. The optimization problem is written

as

arg max
q1,q2,...,qM

EA,p

{
ψZF
k

}
. (4.11)

We can simplify the above objective function using the approximation in (5.6) and βmk from (5.2) in the

following manner

EA,p

{
ψZF
k

}
= EA,p

{
ρr

M∑
m=1

βmk

}
,

= Ep

{
ρr

M∑
m=1

EA {βmk}

}
,

(a)
= Ep

{
M∑

m=1

c′

||qm − p||γ

}
,

(b)
= c′

M∑
m=1

Ep

{
1

||qm − p||γ
}
,

(4.12)

where c′ = cρrEA{zmk}, p is the position of user k in (a), and (b) uses the fact that the expectation is a

linear operator. Note that c′ can be ignored as it does not effect the optimization problem.

The following observations can be made regarding the solution of the above objective function in

(4.12).

• A colocated solution is evident since there is no dependence between the terms in the summation

associated with each AP m and hence, the optimization for each AP can be performed separately. The

suggested colocated solution may not be a unique solution and multiple global and/or local maxima may

exist for the optimization problem. The complete characterization of the solution, however, depends

on two factors, namely the pathloss exponent γ used as well as the shape of the user distribution fP(p)

over which the expectation is taken, e.g., uni-modal versus multi-modal density functions.

• In (4.12), although the norm ||qm − p||, i.e., the Euclidean distance is strictly convex [99] in qm, its

inverse is neither concave nor convex and is also undefined at qm = p (this can, however, be avoided

by adding a small positive quantity to the denominator, which could also account for the height of the

AP). The sum of the expectation of the inverse over the APs thus also is neither convex or concave.

Additionally, when a uni-modal distribution is assumed, we can expect a colocated solution alone

with a unique maximum. However, when a multi-modal distribution is considered, it is expected that

multiple global maxima exist and distributed solutions may be obtained. This is explored in Section

4.3.3.

It is worth noting that the sum SNR problem has been previously addressed in part in [60]. In

this work, while dividing the user area into regular grid points, the sum rate maximization problem is
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upperbounded to a sum SNR problem and using a compressed sensing framework, approximated to a linear

program (called the max-sum algorithm). However, as is expected from a sum SNR problem (as discussed

above), most APs are concentrated around high user density regions (a near-colocated solution). Although a

high sum rate can be achieved with this solution, users far away from the APs are severely affected in terms

of throughput, resulting in poor minimum rate performance. Thus, this solution is not suitable for cell-free

AP placement when fairness is considered.

4.3.2 Sum Rate Maximization

Returning to the sum rate maximization problem, we rewrite (4.9) by using the simplifications

assumed before, as follows

arg max
q1,q2,...,qM

EA,p

{
log
(
1 + ψZF

k

)}
, (4.13)

and the objective function, utilizing the approximation in (5.6), can be rewritten as

EA,p

{
log
(
1 + ψZF

k

)}
= EA,p

{
log

(
1 + ρr

M∑
m=1

βmk

)}
. (4.14)

Similar to the SNR problem outlined before, this objective function is neither concave nor convex. However,

unlike the former, the term associated with each AP m in (4.14) cannot be decoupled from the terms

associated with the rest of the APs. Hence, for both uni-modal and multi-modal distributions, we can

expect only distributed solutions that maximize the sum rate.

In summary, for both the sum SNR and sum rate problems there may be multiple local optima

suggesting that the optimization problem is complex and challenging.

4.3.3 Examples for Sum SNR and Sum Rate Maximizations

Given the abovementioned complexity in solving the sum SNR and sum rate problems, we now

attempt to understand the problems and their solutions better. For this purpose, we explore simple examples

where the aforementioned two problems are solved, and where the multiple local optima are studied to develop

intuition and insight.

User distribution considered

For tractability, we consider a simple 1-D scenario where users are distributed along a line, and

the placement of four APs for both the sum SNR and sum rate maximization problems. For this purpose,

we assume a bi-modal distribution since it is the simplest among multi-modal distributions that can exhibit

the multiple maxima as discussed in Section 4.3.1. With the user position denoted by p, the PDF of the

bi-modal Gaussian considered here is

fP (p) = π1N (p|µ1, σ
2
1) + π2N (p|µ2, σ

2
2), (4.15)
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where for each Gaussian i, i = 1, 2, πi is the probability such that π1 + π2 = 1, µi is the mean, and σi is the

standard deviation. To generate different solution structures for the two optimization problems, we consider

two distinct configurations of the user distribution:

Conf. 1: π1 = π2 = 0.5, µ1 = −3, µ2 = 3, and σ1 = σ2 = 1.

Conf. 2: π1 = 0.35, π2 = 0.65, µ1 = −3, µ2 = 4, and σ1 = σ2 = 1.

Configuration 1 is symmetric about the origin while configuration 2 is asymmetric.

Definitions of SNR and rate

The four APs have locations q1, q2, q3, and q4, and the ZF SNR1 for user k can be calculated as

ψZF
k = β1k + β2k + β3k + β4k,

=
1

(pk − q1)2
+

1

(pk − q2)2
+

1

(pk − q3)2
+

1

(pk − q4)2
,

(4.16)

where, for simplicity, the transmit power is set to unity and the definition of the large-scale fading coefficient

βmk (from (5.2)) assumes that shadow fading is absent, the pathloss exponent is two, and the constant is

set to one. These assumptions do not change the conclusions that are obtained in this section. The sum

SNR and sum rate quantities are then defined as
∑K

k=1 ψ
ZF
k and

∑K
k=1 log(1+ψZF

k ), respectively. Note that

for implementation purposes, a small quantity ϵ is added to the denominator of βik, i = 1, 2, 3, 4, to prevent

ψZF
k from approaching infinity.

AP location solutions considered

To evaluate and understand the sum SNR and sum rate performances of the system, we study

various AP placement scenarios. First, a colocated solution is considered where all four APs are situated

at the same location. This location is found by sweeping the AP position denoted by q across the span

of the user locations. Second, multiple semi-distributed solutions are selected. Instead of all APs at one

location, they can be allocated to each of the Gaussians and placed at their respective means. In this

scenario, we consider three situations, namely when two APs each are placed at µ1 and µ2, three APs are

at µ1 and one AP is at µ2, and one AP is at µ1 and three APs are at µ2. These three situations are termed

‘Distributed (2+2)’, ‘Distributed (3+1)’, and ‘Distributed (1+3)’, respectively. Third, a fully distributed

scenario involves starting from a distributed (2+2) solution and moving the two APs within each Gaussian

away from each other until the maximum is achieved. Note that this fully distributed solution represents

only a local maximum. Finally, we have the solution obtained by applying the standard Lloyd algorithm to

the user distribution. In this iterative solution, the users are clustered using the squared Euclidean distance

and the cluster centers (centroids) are determined to be the AP locations. More explicit details are provided

in Section 4.4.1.

1While the asymptotic approximation for the SNR expression used does strictly not hold here, it is good enough to illustrate
the complexities of the maximization problems considered.
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Figure 4.1: Sum SNR for different AP location scenarios under user configuration 1.
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Figure 4.2: Sum SNR for different AP location scenarios under user configuration 2.

Results for sum SNR

The results of sum SNR under user configurations 1 and 2 are shown in Fig. 4.1 and Fig. 4.2,

respectively. Note that for the colocated solution, the sum SNR obtained as a function of location q is

plotted. For the other solutions, a line is drawn corresponding to the sum SNRs obtained.

For configuration 1, it is observed that the peak for the colocated system occurs at the two means

µ1 and µ2. The three distributed scenarios as well as the fully distributed scenario offer the same peak sum

SNR value as the colocated case. It is noted that the AP locations in the fully distributed case are the same

as in distributed (2+2). Further, the Lloyd solution (which is also a fully distributed scenario) offers a lower

sum SNR value. The sum SNR maximization for configuration 1 thus has multiple local maxima, including

both colocated and semi-distributed solutions.

For configuration 2, the Gaussian with mean µ2 has a higher probability, with the result that a

colocated solution with all four APs at mean µ2 yields the highest sum SNR. Among the distributed solutions,

it is observed that a higher allocation of APs at µ2 favors a higher sum SNR, however, with the colocated

75



-10 -5 0 5 10

q

0

0.5

1

1.5

2

2.5

3

3.5

S
u

m
 R

a
te

1 2

Colocated

Distributed (2+2)

Distributed (1+3)

Distributed (3+1)

Lloyd

Fully Distributed

Figure 4.3: Sum rate for different AP location scenarios under user configuration 1.
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Figure 4.4: Sum rate for different AP location scenarios under user configuration 2.

solution offering the highest. Again, both the fully distributed and distributed (2+2) solutions have the same

AP locations and sum SNR values, with the Lloyd solution performing the worst. In summary, the above

results for sum SNR show that the AP locations that maximize the same may be colocated or distributed

depending on the user distribution, as discussed in Section 4.3.1.

Results for sum rate

The results of the sum rate metric for user configurations 1 and 2 are shown in Fig. 4.3 and

Fig. 4.4, respectively, and differ from the sum SNR plots above. In configuration 1, it is clear that a

colocated solution performs poorly and that distributed and fully distributed solutions offer a higher sum

rate. Since the distribution is symmetric, both distributed (1+3) and distributed (3+1) solutions have the

same sum rate, which is lower than that of distributed (2+2). The Lloyd solution performs better than the

distributed solutions as no APs are colocated, and the fully distributed solution performs the best. Note

that the fully distributed solution does not represent the optimum solution due to the method with which
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Figure 4.5: 95%-likely rate for different AP location scenarios under user configuration 1.
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Figure 4.6: 95%-likely rate for different AP location scenarios under user configuration 2.

the locations are generated. In configuration 2, the colocated solution still performs the worst. However,

since the Gaussian at mean µ2 carries a higher proportion of users, the distributed (1+3) solution performs

better than both distributed (2+2) and distributed (3+1). Finally, as in configuration 1, both the Lloyd and

the fully distributed solution perform better than the distributed solutions.

Results for minimum rate

We now plot the 95%-likely rates corresponding to the different AP locations for configurations 1

and 2, in Fig. 4.5 and Fig. 4.6, respectively. Note that the fully distributed solution in these plots maximizes

the 95%-likely rates as opposed to the sum SNR or sum rate. Even though all distributed solutions generate

the same peak sum SNR for configuration 1 as shown in Fig. 4.1, the users will not achieve the same

minimum rate performance in all cases. For this user configuration, distributed (1+3) and distributed (3+1)

have lower 95%-likely rates than distributed (2+2). Additionally, the Lloyd solution has a higher minimum

rate and the fully distributed solution generates the highest 95%-likely rate. Clearly, the colocated solution

77



-3 -2 -1 0 1 2 3

q

0

2

4

6

8

10

12

14

S
u

m
 S

N
R

Colocated Lloyd

Figure 4.7: Sum SNR for colocated and Lloyd solutions under uni-modal distribution.
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Figure 4.8: Sum rate for colocated and Lloyd solutions under uni-modal distribution.

exhibits the worst performance. The same observations are noted for configuration 2, with the difference

being that distributed (1+3) generates a higher 95%-likely rate than distributed (3+1) due to the higher

user proportion around mean µ2.

Results for a uni-modal user distribution

As a final note and to complete the discussion on the influence of the distribution shape on the

solutions, we also plot the sum SNR and sum rate performances for a uni-modal Gaussian distribution (with

zero mean and unit variance), in Fig. 4.7 and Fig. 4.8, respectively. Like the bi-modal examples shown prior,

the colocated solution is preferred in the sum SNR case over the distributed Lloyd solution. The opposite

is true for the sum rate case. It is also to be noted that unlike the bi-modal scenario, there is only one

colocated solution that provides the peak sum SNR.

In conclusion, all observations made in the context of the simple examples support the complex

nature of the AP placement for sum SNR and sum rate maximization problems (Section 4.3.1 and Section
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4.3.2).

4.3.4 Minimum Rate Maximization

For the sum SNR maximization case, we showed both colocated and semi-distributed cases were

favored. It was also postulated that the minimum rate performance of these solutions would be inferior to

that provided by a fully distributed solution (like the Lloyd solution). Even in the sum rate maximization

case, we have not addressed the minimum rates of the users explicitly and we can expect that there are users

that lie far away from the AP locations, resulting in significantly low throughput to these users, which is

not ideal from a fairness point of view. The minimum rate maximization problem is thus of interest and has

been defined above in (4.10). In this chapter, we do not discuss this problem as it has been addressed and

solved using a grid-based approach in [60,61] and is called the max-min algorithm. Such a solution is useful

since the problem can be converted into a convex problem, which can be solved easily. It is to be noted that

the grid structure assumed leads to approximate solutions and a finer grid is necessary to obtain the optimal

locations. In Section 5.7, we compare the performance of the max-min algorithm with the Lloyd algorithm.

4.4 Vector Quantization Approaches

In this section, as practical solutions to cell-free AP placement, we investigate how VQ techniques

can be applied to sum rate and minimum rate maximizations. While acknowledging that all users are served

by all APs in the cell-free system under consideration, we assume that for the purposes of AP placement, VQ

is implemented by assuming that each user is associated with its geographically nearest AP by adopting the

squared Euclidean distance (error) as the distortion measure of interest. For completeness, we first start by

presenting the standard VQ approach and then motivate why the VQ framework is useful for the placement

problem, followed by the other VQ techniques.

4.4.1 Standard VQ

The standard and simplest VQ technique is the Lloyd algorithm [41] that utilizes the squared

Euclidean distance between APs and users as the distortion measure. This squared error (SE) distortion

between a user at p and an AP at qm is denoted as follows

dSE(p,qm) = ||p− qm||2 . (4.17)

Details of how the Lloyd algorithm can be applied to AP placement have been elucidated in Chapter 2. We

provide the algorithm (Algorithm 12) below, where the K user positions denoted by pk are generated as

realizations from the user distribution fP(p).

Why Use the VQ Approach? Although we focus on the standard VQ technique as the illustration

here, the advantages listed below follow for the subsequent VQ techniques described.

• Distributedness: The VQ approaches, through their formulations, are designed to provide a distributed

solution. The standard Lloyd algorithm using squared error distortion minimizes the distance of a user
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Algorithm 12 Lloyd Algorithm

1: Initialize random AP locations q
(0)
1 ,q

(0)
2 , . . . ,q

(0)
M .

2: Use the nearest neighbor condition (NNC) to determine the cells C(i+1)
1 , C(i+1)

2 , . . . , C(i+1)
M such that

C(i+1)
m =

{
pk :dSE

(
pk,q

(i)
m

)
≤dSE

(
pk,q

(i)
l

)
,∀l ̸= m

}
.

3: Use the centroid condition (CC) to determine the AP locations q
(i+1)
1 ,q

(i+1)
2 , . . . ,q

(i+1)
M such that

q(i+1)
m =

1∣∣∣C(i+1)
m

∣∣∣
∑

pk∈C(i+1)
m

pk.

4: Repeat from step 2 until convergence (MSE falls below a threshold).

to its closest AP, averaged over the entire distribution, obtains a distributed solution by ensuring

that at least one AP is close to each user. It is important to note that as a consequence, the Lloyd

algorithm solution also addresses the minimum rate of the system in an effective manner, while the

minimum rate metric itself is not explicitly contained in its objective function. Additionally, the Lloyd

algorithm alone exhibits a space-filling advantage [?] which refers to the generation of the Voronoi cells

(C1, C2, . . . , CM ) and therefore the AP locations that span the space of the user distribution efficiently.

• Cooperation: While allowing distributedness, the VQ formulations which do not explicitly account for

cooperation, also place APs close to one another. This clustering occurs especially in areas of high user

density, thus encouraging cooperation that is expected in a cell-free system and addresses the system

sum rate. In the specific the case of the Lloyd algorithm, the objective function indirectly fosters

cooperation since the AP density is proportional to a power of the user density under a high resolution

approximation [41], as follows

gP(p) =
f

1
2

P (p)∫
f

1
2

P (p′)dp′
. (4.18)

• Initialization: Although it is possible to determine solutions for both problems through gradient meth-

ods, such methods usually generate local optima resulting in lower-than-expected performances. The

VQ approaches, due to the distributed nature of their solutions, are able to provide suitable starting

points for such gradient-based methods.

4.4.2 Tree-Structured VQ

Tree-structured VQ (TSVQ) [41] is an alternate VQ approach where the codebook search time is

reduced compared to standard VQ. In this technique, the input training set is partitioned into a hierarchy of

Voronoi regions, which allows a tree to be generated for encoding. Thus, TSVQ differs from the standard VQ

discussed above in that the final required codebook is generated by the successive splitting of intermediate

codebooks, starting with a single centroid. The Lloyd algorithm (Algorithm 12) is applied to each stage of

the hierarchy and its application is confined to the partitioned training set of the previous stage.
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Why use TSVQ? Designed primarily for relatively fast codebook search properties, TSVQ has the

following benefits.

• Initialization: An advantage of TSVQ is that initialization of the AP locations is not required, since

it starts with a single centroid. Compared to the standard VQ, this avoids the random initializa-

tions (considered sub-par) and the calculations needed for advanced initialization methods such as

k-means++ [95].

• Cooperation: Due to the successive splitting of the intermediate codepoints, we can expect pairs of APs

to be closer to each other compared to standard VQ. This enables cooperation among APs, increasing

the system sum rate.

• Flexibility: When the number of APs is changed for the same user distribution, codepoints can either

be merged (when the number of APs is reduced) or split (when increased). The choice of codepoints

for merging or splitting will be on the basis of the rate performance associated with the codepoints.

It should be noted that in general, TSVQ does not find the closest AP to each user and there is a small

decrease expected in the performance of TSVQ (in terms of mean squared error) when compared to standard

VQ.

TSVQ Algorithm. In our implementation of TSVQ for cell-free AP placement, we limit ourselves to balanced

binary trees, i.e., at each stage, every intermediate codepoint is split into two codepoints, to favor the lowest

complexity. The TSVQ algorithm is outlined in Algorithm 13. The stages are indexed by j (root node is

stage 0) and the set of codepoints is represented by Pj for stage j. The codepoints are indexed by i, and

the number of codepoints increases at each stage. The codepoints generated after the algorithm converges

are the required AP positions. R indicates the set of all users while Ri denotes the set of users associated

with codepoint i. The splitting of codepoints is performed by generating two perturbations of the original

codepoint.

Algorithm 13 Tree-Structured Vector Quantization Algorithm

1: Initialize P0 with the codepoint of all users in R.
2: Split the codepoint(s) in Pj into two.

3: Apply Lloyd algorithm (Algorithm 12) to each split pair for the set of users Ri at stage j.

4: Partition Ri at stage j into two sets corresponding to new codepoints.

5: Update Pj with new codepoints.

6: Repeat from step 2 for next stage j + 1 until M codepoints are generated.

4.4.3 PDF Optimized VQ

So far, we have considered a full-scale version of VQ (the Lloyd algorithm) and TSVQ, which

involves hierarchical codebook generation. Both flavors of VQ, however, come with disadvantages such as

complexity, scalability, and learnability which will be elaborated shortly. In this section, we outline the
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probability density function optimized VQ (PDFVQ) procedure, first developed in [100], for use in cell-free

AP placement that can address these shortcomings. In PDFVQ, an efficient quantizer is generated by first

estimating the distribution PDF (of the users) using the expectation-maximization (EM) algorithm [94] and

assuming a Gaussian mixture model (GMM). The GMM considered is of the form

fP(p) =

L∑
l=1

plN (p|µl,Σl) , (4.19)

where L is the number of mixture components (clusters), and pl, µl, and Σl are the probability, mean, and

covariance matrix, respectively, of mixture component l. Then, given the total bit budget (which corresponds

to the total number of APs), by leveraging both bit allocation and transform coding, closed-form expressions

are defined to allocate bits to each cluster and along every dimension (x- and y-coordinates of the 2-D user

density) so that scalar quantizers can be used to generate the required codebook (the AP locations).

Why use PDFVQ? Although designed for high-dimensional source inputs, this procedure addresses

the shortcomings of the two prior VQ approaches in the following manner.

• Complexity: In the two prior VQ approaches, the computational complexity and memory required are

high. In TSVQ, the Lloyd algorithm is applied a number of times depending on the codebook splits

performed to obtain the required number of APs. The overall complexity of the Lloyd algorithm is

O(2KMI), where the factor ‘2’ is due to the 2-D user density and I denotes the number of iterations

required for convergence. It is also observed that the number of executed iterations I increases with

the number of APs M . In addition to the simple expressions for AP allocations for each cluster and

dimension of the 2-D user density, through the use of scalar quantizers for each dimension, PDFVQ

enjoys lower complexity as the quantizers work on both a lower number of users and APs, consequently

performing a lower number of iterations. Further, the scalar quantizers can also be implemented by

means of look-up tables [101] that determine the codebook. Thus, there exists a simple closed-form

mapping from user density to the codepoints (AP locations). The memory requirements in PDFVQ

are also small as a result of transform coding.

• Learnability: It is expected that the user density varies over time, in which case the AP positions

must be adapted to account for this change. Both prior VQ schemes are not amenable to a learning

environment as they cannot adapt quickly to changes in the user distribution as well as number of APs,

and their computationally complex procedures must be repeated to optimize to the new environment.

In PDFVQ, when the source distribution changes, both the density estimation and codebook generation

steps must be implemented, however, only the parameters of the density have to be learned (the EM

algorithm is easily updated using existing values). If the number of APs only is changed, then the

closed-form expressions and scalar quantizers alone are needed, resulting in computational savings and

faster adaptability.

• Scalability: The above discussions on complexity and learnability also point to the scalability aspects

of the Lloyd, TSVQ, and PDFVQ algorithms. For the Lloyd algorithm alone, as the number of APs

increases, the whole procedure must be repeated with increased complexity. In the case of TSVQ,
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additional successive splitting steps must be performed, with the number of times that the Lloyd

algorithm is implemented doubling at every step. In PDFVQ, the closed-form expressions that perform

allocations do not change with the increase in APs. These allocations and scalar quantizers can be easily

and quickly implemented, enabling an ‘on-the-fly’ placement. Thus, PDFVQ facilitates scalability, both

with respect to dimensions (of the user distribution) as well as the number of APs.

Due to the abovementioned advantages, PDFVQ is thus suitable for AP placement both in an environment

where the user distribution changes over time as well as the large-scale massive MIMO scenario with a

very high number of APs. It is also worth noting that the PDFVQ procedure is independent of the chosen

distortion measure for the scalar quantizers, but for simplicity, we will consider that the Lloyd algorithm is

used.

PDFVQ Algorithm. The PDFVQ procedure from [100] introduced in the beginning of this section applied to

AP placement (involving only two dimensions) is outlined in Algorithm 14 below. Note that in this paper,

we model the user distributions as GMMs (Section 5.7), which avoids the need for parameter estimation.

The total number of bits available btot is log2M . It is important to note that in both step 1 and step 2,

the resulting bit allocations bl and bl,j , respectively, are not expected to be integers. The number of levels

computed in step 2 corresponding to the bit allocation bl,j , that is, Vl,j = 2bl,j , is ultimately rounded off to

the nearest integer, and represents the number of APs. As ‘bit’ generally refers to an integer quantity, to

avoid subsequent confusion, we omit the word ’bit’ when discussing allocations. The codebooks generated

in step 3 for each cluster are the required AP locations.

Algorithm 14 PDF Optimized Vector Quantization Algorithm

1: Determine the allocation bl to cluster l given the total budget btot using

2bl = 2btot
√
plcl

L∑
j=1

√
pjcj

, (4.20)

where cl =
√
λl,1λl,2, λl = diag(λl,1, λl,2), and Σl = QlλlQ

T
l is the eigen value decomposition.

2: With each cluster l, compute the allocation along each dimension bl,j , j = 1, 2, using

bl,j =
bl
2
+

1

2
log

[
λl,j
cl

]
. (4.21)

Compute and round off the corresponding level Vl,j = 2bl,j .

3: Generate the codebook Rl for each cluster using

Rl = {q|q = Qly + µl,y ∈ Tl} , (4.22)

where Tl is the set of vectors given by the Cartesian product Tl = Sl,1 × Sl,2, with Sl,j , j = 1, 2 being

the optimal Vl,j-level scalar quantizer of a univariate Gaussian with variance λl,j .
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4.4.4 Gradient Approaches

As alluded to above, the VQ approaches do not explicitly solve the sum rate and minimum rate

maximization problems, but provide a practical solution. However, if gradient ascent were to be applied

to solve the problems so that either the sum rate or minimum rate can be improved further, the proper

initialization of the AP locations is critical to avoid sub-par local optima. Hence, the VQ-based methods

could provide reasonably good starting points to apply gradient ascent for both problems. Accordingly,

we present both of the gradient calculations below, and are called the max-sum and max-min gradient,

respectively.

Max-sum gradient

To maximize sum rate, the gradient update expression with j as the iteration index is

q(j+1)
m = q(j)

m + δ
∂

∂q
(j)
m

{
K∑

k=1

log

(
1 + ρr

M∑
m=1

βmk

)}
, ∀m, (4.23)

where in the objective function from (4.14), we have neglected the shadow fading zmk and replaced the

expectation with the sum over the users. The gradient in (5.18) is calculated as

∂

∂q
(j)
m

{
K∑

k=1

log

(
1 + ρr

M∑
m=1

βmk

)}
=
γρr
2

K∑
k=1

1

1 + ψZF
k

(pk − q
(j)
m )

||pk − q
(j)
m ||γ+2

. (4.24)

Max-min gradient

For minimum rate, taking the gradient of the rate of the worst user is fragile since the absolute

value of the minimum rate can vary significantly across the iterations of gradient ascent causing convergence

issues. Additionally, we are also interested in evaluating the performance of the cell-free system in terms of

the 95%-likely rate, which quantifies the best rate of the worst 5% of the users. Accordingly, we consider

the sum of rates corresponding to the worst 5% of the users, represented by K5%, as

q(j+1)
m = q(j)

m + δ
∂

∂q
(j)
m

 ∑
k∈K5%

log

(
1 + ρr

M∑
m=1

βmk

) , ∀m, (4.25)

which uses the same simplifications as in (5.18), and the gradient is

∂

∂q
(j)
m

{
log

(
1 + ρr

M∑
m=1

βmk

)}
=
γρr
2

∑
k∈K5%

1

1 + ψZF
k

(pk − q
(j)
m )

||pk − q
(j)
m ||γ+2

. (4.26)

4.5 Implementation and Evaluation of Limited Cooperation

Recall that in the system model, we had a combiner vk chosen to estimate the data symbol of user

k as

ŝk = vH
k y =

√
ρrv

H
k gksk +

K∑
k′=1
k′ ̸=k

vH
k gk′sk′ + vH

k w, (4.27)
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and the signal-to-noise-plus-interference ratio (SINR) of user k derived from (4.27) to be

ϕvk

k =
ρrv

H
k gkg

H
k vk

vH
k vk +

K∑
k′=1
k′ ̸=k

ρrvH
k gk′gH

k′vk

. (4.28)

We now consider a limited AP cooperation scenario where the APs are grouped into N AP clusters (referred

to simply “clusters” henceforth), where no AP is a member of two clusters. Each cluster has Mn APs where

n = 1, 2, . . . , N , such that
N∑

n=1
Mn = M . In each cluster, Kn users communicate to the Mn APs such that

N∑
n=1

Kn = K. A user is associated to the cluster to which its geographically closest AP belongs. Note that we

will use kn to index the user in cluster n such that kn = 1, 2, . . . ,Kn. Further, each cluster has a local NC

to which all APs within the cluster are connected to. This NC receives the received signals of its constituent

APs in order to design appropriate combiners for data symbol estimation. In cluster n, the received signal

at the Mn APs (expressed as a Mn × 1 vector) is

yn =
√
ρrgknskn +

Kn∑
k′
n=1

k′
n ̸=kn

√
ρrgk′

n
sk′

n

︸ ︷︷ ︸
Intra-cluster interference

+

N∑
n′=1
n′ ̸=n

Kn′∑
kn′=1

√
ρrgkn′ skn′

︸ ︷︷ ︸
Inter-cluster interference

+wn, (4.29)

where gkn
is a Mn × 1 vector containing the channel coefficients from the user kn to the Mn APs and skn

represents the data symbol of user kn. wn is a Mn × 1 additive noise vector. For simplicity, we can write

the above equation as

yn =
√
ρrgkn

skn
+ zkn

, (4.30)

where zkn
denotes the sum of intra-cluster interference, inter-cluster interference, and the noise, with respect

to user kn.

The linear minimum mean square error (LMMSE) combiner is assumed here, with the combiner

vkn
corresponding to user kn defined as

vLMMSE
kn

= C−1
yn

CH
sknyn

,

= ρrC
−1
yn

gkn
,

(4.31)

where Cyn
denotes the auto-covariance matrix of received signal yn and Csknyn

is the cross-covariance

matrix of the data symbol skn with the received signal yn. The per-user instantaneous SINR ϕkn of user

kn can be calculated as follows. When the LMMSE combiner is applied to the received signal in (4.30), we

obtain the following equation

(vLMMSE
kn

)Hyn =
√
ρr(v

LMMSE
kn

)Hgkn
skn

+ (vLMMSE
kn

)Hzkn
. (4.32)

From this equation, the signal power is

ρs = Eskn

{∣∣√ρr(vLMMSE
kn

)Hgkn
skn

∣∣2} ,
= ρrEskn

{(
(vLMMSE

kn
)Hgknskn

)H
(vLMMSE

kn
)Hgknskn

}
,

= ρrg
H
kn
vLMMSE
kn

(vLMMSE
kn

)Hgkn ,

(4.33)

85



and the interference-plus-noise power can be calculated as

ρi+n = gH
kn
Czkn

gkn . (4.34)

Thus, the SINR is

ϕkn
=

ρs
ρi+n

,

=
ρ3r
(
gH
kn
C−1

yn
gkn

)2
gH
kn
Czkn

gkn

,

(4.35)

where the second expression arises from applying (4.31) to (4.33).

It is simple to extend the above LMMSE combiner to the canonical cell-free network, i.e., with a

single cluster. By writing (??) in terms of user k, we have

y =
√
ρrgksk + zk, (4.36)

where zk =
K∑

k′=1
k′ ̸=k

gk′sk′ + w is the sum of the interfering signals from the other users and the noise. The

LMMSE combiner in this case is

vLMMSE
k = C−1

y CH
sky

,

= ρrC
−1
y gk,

(4.37)

and the per-user SINR is

ϕk =
ρ3r
(
gH
k C−1

y gk

)2
gH
k Czk

gk
. (4.38)

In this regard, we make the following two remarks:

• The LMMSE combiner assumed here is gene-aided since the vector of channel coefficients corresponding

to user k is required to be known.

• In the canonical cell-free network, the LMMSE combiner requires that the NC collects the received

signals y by all APs along with the vector of the channel coefficients gk corresponding to user k. On

the contrary, in the case of limited cooperation, only the APs in a cluster send their received signals

and channel coefficients of user k to the local NC to determine the combiner, resulting in backhaul

savings.

4.6 Simulation Methodology and Results

4.6.1 Simulation Parameters

In a geographical area of dimensions 2 km×2 km, we consider M = 32 APs and K = 4 users, since

M ≫ K for a cell-free system. For the purposes of placement, however, we use 2000 users that are distributed

according to a GMM of the form in (5.27), with covariance Σl = σ2
l I, where σl is the standard deviation of

mixture component l and I is the identity matrix. The GMM used in our simulations has parameters L = 3,

µ1 = [0.5,−0.5]T , µ2 = [0, 0.5]T , µ3 = [−0.5, 0]T , σ1 = σ2 = σ3 = 100, p1 = 0.6, and p2 = p3 = 0.2. The
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Figure 4.9: Sum rates versus transmit power ρr for the max-min and Lloyd algorithms with M = 32

pathloss model from [61, (4.34)] is used with shadow fading ignored for simplicity and the transmit power

ρr of the users is increased from 5 to 30 dB. The max-sum and max-min gradient methods utilize step sizes

of δ = 103 and δ = 3× 104, respectively.

4.6.2 Performance Measures

The per-user achievable rate is used, and is defined for user k as

Rk = E
{
log2

(
1 + ψZF

k

)}
, (4.39)

with ψZF
k from (5.5) and the rate values are generated using Monte Carlo iterations. Further, algorithms

are run multiple times and the solution that yields the best result is chosen. The maximum number of

iterations for the Lloyd algorithm is set to 50. For comparison among the algorithms, both the sum rate and

the 95%-likely rate measures are used. The relative performance between algorithms (say, algorithm 2 over

algorithm 1) can be calculated by using the following measure expressed as percentage

Improvement Ratio =
PAlgorithm 2 − PAlgorithm 1

PAlgorithm 1
× 100, (4.40)

where P is either the sum rate or 95%-likely rate.

4.6.3 Numerical Results

Experiment 1. Here, we quantify the relative rate performances of the max-min [60] (with 2500

grid points) and Lloyd algorithms, and in Fig. 4.9, we plot the sum rates. It is observed here that both

the max-min and Lloyd algorithms provide comparable performances. Fig. 4.10, on the other hand, plots

the 95%-likely rate, which is the 5th percentile of the CDF of the rate values, as a function of the transmit

power, where the Lloyd algorithm shows only a slight improvement over the max-min algorithm.

We study briefly this minimum rate performance of the two algorithms. Although Fig. 4.10 shows

that the Lloyd algorithm fares better in terms of the 95%-likely rate than the max-min algorithm, this
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Figure 4.10: 95%-likely rates versus transmit power ρr for the max-min and Lloyd algorithms with M = 32
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Figure 4.11: Final AP locations of the Lloyd algorithm, TSVQ, and PDFVQ at ρr = 30 dB.

Table 4.1: Rate Improvement of TSVQ and PDFVQ Relative to the Lloyd Algorithm at ρr = 30 dB

Algorithm Sum Rate 95%-Likely Rate

TSVQ 3.82% −7.98%

PDFVQ 2.78% −0.82%

occurrence is due to the selection of the GMM configuration as well as the grid resolution (number of grid

points). Accordingly, the max-min algorithm has superior performance to the Lloyd algorithm, when the

grid resolution is high and the GMM is heavy-tailed, i.e., where there are some users further away from

where the majority are (figure omitted due to space constraints). This occurs because the Lloyd algorithm

places APs while minimizing both the Euclidean distances as well as the probability of cells. In contrast,

the max-min algorithm always places APs such that the minimum rate of each user is satisfied. However,

the Lloyd algorithm still provides a reasonable solution keeping in mind the implementation complexities

related to the increased grid resolution in the max-min algorithm.
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Figure 4.12: Sum rate as a function of ρr for the Lloyd algorithm, TSVQ, PDFVQ, and random AP locations
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Figure 4.13: 95%-likely rate as a function of ρr for the Lloyd algorithm, TSVQ, PDFVQ, and random AP locations

.

Experiment 2. We compare the performances of TSVQ and PDFVQ to the standard Lloyd algo-

rithm. Their final AP locations and the distribution of the 2000 users (as gray circles) are shown in Fig.

4.11, where the Lloyd algorithm results in APs that are more distributed than TSVQ. This is expected since

the TSVQ algorithm successively splits Voronoi regions and after completion does not necessarily associate

each user to its closest AP. For PDFVQ, the allocation procedure within each cluster results in 3.85, 2.93,

and 2.93 APs along each dimension, respectively, since the GMM clusters are symmetric along both x- and

y-coordinates. Although rounding off these values would result in 4, 3, and 3 APs along each coordinate,

the total number of APs would then be 34. Thus, to limit to M = 32 APs, we select 4, 2, and 2 APs along

the x-coordinate and 4, 4, and 4 APs along the y-coordinate. This combination is selected as it provides the

best result through repeated trials. The AP locations are observed to be more regular and grid-like due to

the scalar quantizers used in the transform coding design, when compared to the standard Lloyd algorithm

or TSVQ. The sum and 95%-likely rates of the three VQ-based algorithms are plotted in Fig. 4.12 and
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Fig. 4.13, respectively. Additionally, for comparison, the performances when the APs are randomly placed

are plotted (the AP locations themselves are omitted in Fig. 4.11 to avoid cluttering the figure), showing

an expected low performance. The improvements in sum and 95%-likely rates, expressed as percentages,

of TSVQ and PDFVQ over the Lloyd algorithm at transmit power ρr = 30 dB are noted in Table 4.1. It

is seen that while the sum rate of TSVQ is greater than that of the Lloyd algorithm (by nearly 4%), the

95%-likely rate is worse (by nearly 8%). For PDFVQ, the sum rate offered is close to that of TSVQ while

the 95%-likely rate approaches but does not equal that of the Lloyd algorithm (with the difference being less

than 1%), due to the fact that the AP positions are far away from a small group of users in two mixture

components. While for the user distribution considered PDFVQ offers a solution providing higher sum rate

and similar 95%-likely rate to the Lloyd algorithm, it can be expected that this performance will reduce as

the variance of the mixture components is increased.

Experiment 3. In Experiment 1, we compared the VQ approaches for a GMM consisting of Gaussian

mixture components with spherical (proportionate to the identity matrix) covariance matrices. In order to

show an example of PDFVQ applied to a full (non-diagonal) covariance matrix, we now consider a user

distribution where the second component of the GMM considered is modified to have a covariance matrix of

Σ2 =
[

σ2 2σ2/3

2σ2/3 2σ2

]
with σ = 100 and the mean of the third component µ3 = [−0.5,−0.5]T . When PDFVQ

is applied to this distribution, 4, 2, 3 APs along the x-coordinate and 4, 5, and 3 APs along the y-coordinate

are allocated, totaling 35 APs. The best allocation for the desired 32 APs is found to be 4, 2, and 4, and

4, 4, and 2 APs along the x- and y-coordinates, respectively. The positions of such APs along with those of

the Lloyd algorithm and TSVQ are shown in Fig. 4.14. The sum rate and 95%-likely rates corresponding

to these locations are provided in Fig. 4.15 and Fig. 4.16, respectively, and the rate improvements are

tabulated in Table 4.2. Again, the performances of the random AP locations are significantly worse than

the VQ-based methods. Similar to the GMM with spherical Gaussians in Experiment 1, we observe that

PDFVQ is able to match the sum rate performance of TSVQ. However, unlike above, the 95%-likely rate,

like TSVQ, is lower than the Lloyd algorithm by nearly 13% since the space-filling advantage of the Lloyd

algorithm is lost. Based on the above two experiments, it could be concluded that PDFVQ is a reasonable

alternative to TSVQ that provides a similar or superior performance.

Although it is not the case here, we also note that the clusters of the GMM may be placed quite

close to one another or may even overlap marginally. When PDFVQ is applied, the APs associated with the

overlapping clusters may be closely placed and is inefficient. In such a scenario, starting from the cluster

pair with most overlap (the degree of which can be computed by a measure such as overlap rate [102]), the

AP allocation of the cluster with the higher 95%-likely rate could be decreased and re-allocated to another

cluster with a poor performance. This process can be repeated for all overlapping clusters to improve the

95%-likely rate of the network.

Experiment 4. In this experiment, we use the gradient approaches outlined in Section 4.4.4 to

improve the sum rate and 95%-likely rate performances shown in Experiment 2 for the GMM with a full

covariance matrix. First, we show that using the max-sum gradient ascent, we can increase the sum rates of

each of the Lloyd, TSVQ, and PDFVQ performances, as shown in Fig. 4.17. Note that in order to view all
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Figure 4.14: Final AP locations of the Lloyd algorithm, TSVQ, and PDFVQ with a full covariance matrix at ρr = 30

dB.
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Figure 4.15: Sum rate as a function of ρr for the Lloyd algorithm, TSVQ, PDFVQ, and random AP locations with

a full covariance matrix.

Table 4.2: Rate Improvement of TSVQ and PDFVQ Relative to the Lloyd Algorithm With a Full Covariance Matrix

at ρr = 30 dB

Algorithm Sum Rate 95%-Likely Rate

TSVQ 5.59% −13.67%

PDFVQ 4.98% −12.85%

the curves better, we have included an additional figure that focuses on the power levels ρr = 20, 25, and

30 dB. For comparison with an existing method, we also plot the performance when the max-sum gradient

ascent algorithm is applied to randomly initialized AP positions. This initialization considers that the

APs are allocated to each GMM cluster according to PDFVQ and then positioned using the i.i.d. Gaussian

distribution of the cluster. Table 4.3 lists the percentage rate improvements of the max-sum gradient applied
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Figure 4.16: 95%-likely rate as a function of ρr for the Lloyd algorithm, TSVQ, PDFVQ, and random AP locations

with a full covariance matrix.

to each VQ approach, over the Lloyd algorithm alone. The gradient ascent applied to both the TSVQ and

PDFVQ AP locations yields the highest sum rate (nearly 10% over the Lloyd algorithm) while the rate

obtained when the ascent operation is applied with the Lloyd algorithm as the starting point is nearly the

same as the sum rates of PDFVQ and TSVQ. This occurrence is due to the fact that the gradient ascent

iterations with the Lloyd AP solutions as the initial points converge to a local optimum which is different

from that obtained when the ascent is applied to PDFVQ or TSVQ. The 95%-likely rate performances shown

in Fig. 4.18, when the max-sum gradient is applied to PDFVQ and TSVQ, do not change significantly (an

increase is observed at ρr = 30 dB) and decrease when the gradient is applied to the Lloyd AP positions.

Thus, in terms of sum rate, PDFVQ provides the best solution out of all VQ approaches and a further

increase in sum rate (about 4% over PDFVQ) without negatively affecting the minimum rate performance

(about 5% increase) is achieved by using the max-sum gradient ascent. For the randomly initialized case, it

is observed that for a similar sum rate performance as the other techniques, the 95%-likely rate is remarkably

inferior, thus showing the superiority of the VQ-initialized gradient approaches. Next, the max-min gradient

ascent is applied and the 95%-likely rate is observed to increase as shown in Fig. 4.19. The best rate is

obtained when the ascent algorithm is applied to the Lloyd solution as opposed to when it is applied to either

TSVQ or PDFVQ where it is able to match the performance of the Lloyd algorithm. Table 4.4 informs us

that while a 14% improvement in the 95%-likely rate is achieved by applying the gradient to the Lloyd

solution, the difference of the gradient applied to TSVQ or PDFVQ from the Lloyd algorithm is only up to

4%. The sum rates corresponding to the 95%-likely rates are plotted in Fig. 4.20 (which also includes an

additional zoomed in figure), where as a result of the 95%-likely rate improvement, the sum rate when the

ascent is applied to the Lloyd algorithm is the least value. In contrast, despite the increase in 95%-likely

rate, the sum rate performances when ascent is applied to TSVQ and PDFVQ are nearly the same as TSVQ

and PDFVQ itself. Hence, with its simpler design, PDFVQ along with max-min gradient offers a good

tradeoff between a 95%-likely rate similar to and a sum rate higher (by over 5%) than the Lloyd algorithm.

It should, however, be mentioned that if 95%-likely rate (or minimum rate) is the sole performance measure
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Figure 4.17: Sum rate as a function of ρr for the Lloyd algorithm, TSVQ, PDFVQ, and random locations with a full

covariance matrix along with max-sum gradient. The figure on the bottom zooms in on the sum rates for ρr = 20,

25, and 30 dB.

Table 4.3: Rate Improvement of the VQ Approaches with the Max-Sum Gradient Relative to the Lloyd Algorithm

at ρr = 30 dB

Algorithm Sum Rate 95%-Likely Rate

Lloyd + Max-Sum Gradient 3.88% −5.60%

TSVQ + Max-Sum Gradient 9.80% −7.52%

PDFVQ + Max-Sum Gradient 9.34% −8.66%

of interest, the Lloyd algorithm alone is a straightforward choice. The gradient approach requires the choice

of an appropriate step size for convergence while the Lloyd algorithm is known to converge [103]. Finally, as

we observed for the max-sum case, while a similar sum rate is observed when the max-min gradient is applied

to randomly initialized AP locations, the 95%-likely rate is significantly inferior to the other situations.

Experiment 5. In this experiment, we quantify the effect of a time-varying user density on the

network performance and show the need for an easily adaptable AP placement algorithm. We consider a

simple situation where the users are initially distributed as a single-cluster GMM (L = 1 in (5.27)) with
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Figure 4.18: 95%-likely rate as a function of ρr for the Lloyd algorithm, TSVQ, PDFVQ, and random locations with

a full covariance matrix along with max-sum gradient.
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Figure 4.19: 95%-likely rate as a function of ρr for the Lloyd algorithm, TSVQ, PDFVQ, and random locations with

a full covariance matrix along with max-min gradient.

Table 4.4: Rate Improvement of the VQ Approaches with the Max-Min Gradient Relative to the Lloyd Algorithm at

ρr = 30 dB

Algorithm 95%-Likely Rate Sum Rate

Lloyd + Max-Min Gradient 13.93% −3.73%

TSVQ + Max-Min Gradient −3.60% 5.73%

PDFVQ + Max-Min Gradient −2.48% 5.30%

mean µ = [0, 0]T and covariance Σ =
[

σ2 σ2/3

σ2/3 σ2/2

]
where σ = 200, and call it density A. Assuming a total of

M = 18 APs, we calculate the PDFVQ AP locations for this user density. Over time, we consider that the

user distribution changes to density B, where the users are more spread out along another direction to that of

density A, with covariance matrix Σ =
[
σ2/2 σ2/2

σ2/2 σ2

]
and σ = 300. These two user densities and the PDFVQ
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Figure 4.20: Sum rate as a function of ρr for the Lloyd algorithm, TSVQ, PDFVQ, and random locations with a full

covariance matrix along with max-min gradient. The figure on the bottom zooms in on the sum rates for ρr = 20,

25, and 30 dB.

AP locations determined for density A are shown in Fig. 4.21. We evaluate the sum rate and 95%-likely rate

performances when the AP locations are matched to density A and consider both user densities A and B,

so that the loss due to mismatch of the AP locations to the user density B is also shown. For completeness,

we also compute the rate values when PDFVQ AP locations are determined and matched to density B. As

expected, in both the sum rate plotted in Fig. 4.22 and the 95%-likely rate plotted in Fig. 4.23, there is

a significant loss in performance for the PDFVQ AP locations which are matched to density A, when the

users re-position to density B. The relative losses in the sum rate and 95%-likely rate at ρr = 30 dB are

32.67% and 89.54%, respectively. To prevent this performance decrease, there is a need to re-calculate the

AP locations for the new user density. Clearly, when the AP locations are matched via PDFVQ to the user

density B, the rate performances in Fig. 4.22 and Fig. 4.23 are improved over the diminished performance of

the mismatched case. With easy adaptability and the other aforementioned advantages, PDFVQ offers the

best method for cell-free AP placement among the VQ techniques discussed in this paper. In future work,

we will address how the changing user densities can be learned for use in PDFVQ.

Experiment 6. Here, the relative performance between PDFVQ and the Lloyd algorithm when the

number of APs is increased as in a massive MIMO system is shown. Three values of number of APs M
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Figure 4.21: The two user densities A and B considered for Experiment 4 along the PDFVQ AP locations matched

to density A.
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Figure 4.22: Sum rate as a function of ρr for Experiment 4.
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Figure 4.23: 95%-likely rate as a function of ρr for Experiment 4.

used are 64, 256, and 1024, corresponding to which number of users K are 8, 32, and 128, respectively,

since M ≫ K for a cell-free system. We assume a total of 5000 users, distributed as a GMM of the form

in (5.27) with parameters L = 4, µ1 = [0.5,−0.5]T , µ2 = [0.5, 0.5]T , µ3 = [−0.5, 0.5]T , µ4 = [−0.5,−0.5]T ,
p1 = p2 = 0.35, and p3 = p4 = 0.15. The covariance matrices of the clusters are defined as Σ1 =

[
σ2 0
0 σ2

]
,
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Figure 4.24: User distribution and AP locations of the Lloyd and PDFVQ algorithms when M = 64 and ρr = 30 dB.

Table 4.5: Allocations along the x- and y-coordinates, and per cluster generated by the PDFVQ algorithm and the

number of APs per cluster generated by the Lloyd algorithm when M = 64, 256, and 1024

Cluster
Index

M = 64 M = 256 M = 1024

PDFVQ Lloyd PDFVQ Lloyd PDFVQ Lloyd

x y Total Total x y Total Total x y Total Total

1 5 4 20 22 10 10 100 87 20 19 380 359

2 3 6 18 17 5 12 60 63 10 25 250 271

3 2 5 10 11 4 10 40 51 8 21 168 166

4 4 4 16 14 7 8 56 55 15 15 225 228

Σ2 =
[
σ2 σ2

σ2 4σ2

]
, Σ3 =

[
4σ2 σ2

σ2 σ2

]
, and Σ4 = Σ1, with σ = 200. Note that while measuring the performance,

the sum rate is normalized by the number of users so that fair comparison may be made across the different

number of users corresponding to the three AP levels considered. Additionally, we compare the two VQ

approaches against a uniform placement where the APs are located at regular grid points and distributed

throughout the geographical area. The user distribution, the uniformly placed APs, and the placements

achieved by the Lloyd and PDFVQ algorithms for M = 64 APs and at ρr = 30 dB are shown in Fig. 4.24

(the AP locations for other AP levels are omitted for lack of space). The allocations along each coordinate

are given in Table 4.5, which also notes the per cluster number of APs for both VQ based algorithms.

The sum rate performances of the VQ based algorithms and when the APs are uniformly placed as

a function of the user transmit power ρr forM = 64, 256, and 1024, are shown in Fig. 4.25, where for eachM

value, the Lloyd algorithm shows superior performance to PDFVQ. Clearly, the uniformly distributed APs

perform the worst since their placement is not congruent with the density of the users. Also, as expected,

when M is increased, the sum rate performance for all three AP locations is improved. The PDFVQ APs

(as observed in Fig. 4.24), are more spread out across the clusters than the Lloyd algorithm. While both VQ
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Figure 4.25: Sum rate as a function of ρr for the Lloyd and PDFVQ algorithms when M = 64, 256, and 1024.
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Figure 4.26: 95%-likely rate as a function of ρr for the Lloyd and PDFVQ algorithms when M = 64, 256, and 1024.

approaches do place more APs in areas of higher user density (which is at and around the cluster centers), the

Lloyd algorithm is able to take advantage of both dimensions simultaneously, while the PDFVQ algorithm

considers them separately. As a result, the Lloyd algorithm places more APs nearer the cluster centers and

achieves a higher sum rate. The spread of the PDFVQ solutions give it an advantage as it is able to serve the

users at the edge of the clusters, more so than the Lloyd algorithm. This translates to a higher 95%-likely

rate performance for the PDFVQ algorithm. As the number of APs M is raised, 95%-likely rate as well

as the difference in 95%-likely rate between the PDFVQ and Lloyd algorithm increases. The percentage

changes of the sum rate and 95%-likely rate performances of the PDFVQ algorithm relative to the Lloyd

algorithm at ρr = 30 dB are shown in Table 4.6. For the GMM considered, we observe that a nearly 5%

improvement in the 95%-likely rate is achieved at the cost of a 6% decrease in the sum rate, for M = 256.

Thus, in summary, while PDFVQ performs inferior to the Lloyd algorithm (in terms of sum or average rate)

and is not optimal for both sum and 95%-likely rate, the low complexity and easy scalability justify the

sub-optimality.
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Table 4.6: Sum rate and 95%-likely rate improvements of the PDFVQ algorithm over the Lloyd algorithm at ρr = 30

dB when M = 64, 256, and 1024 expressed as percentage

Rate Measure M = 64 M = 256 M = 1024

Sum Rate −6.68% −5.98% −5.32%

95%-Likely Rate 3.07% 4.91% 4.06%

Table 4.7: Rate Improvement of the Three-Cluster Scenario Relative to the Single Cluster Scenario for the Lloyd and

PDFVQ AP Locations at ρr = 30 dB and under GMM-1

Algorithm Sum Rate 95%-Likely Rate

Lloyd −6.48% −13.15%

PDFVQ −7.12% −17.61%

Experiment 7. In this experiment, we show the results of the limited cooperation set-up. While

the number of APs, number of users, and the GMM user distribution follow the prior experiments (except

Experiment 6), we consider an additional GMM user density. To distinguish between them, we refer to the

former as GMM-1 and the latter as GMM-2. GMM-2 has the same parameters as GMM-1, but with the

means µ1 = [0.325,−0.325]T , µ2 = [0, 0.325]T , and µ3 = [−0.325,−0.325]T . Note that the parameters of

GMM-1 and GMM-2 are chosen to model sparse and dense AP deployments, respectively.

For both the Lloyd and PDFVQ AP locations designed for GMM-1, we evaluate and compare the

cases where the clustering is considered and when a single cluster (representing the canonical cell-free system)

is implemented. Fig. 4.27 shows the instance where the PDFVQ AP locations are clustered according to the

three mixture components. The sum rate and 95%-likely rate curves for the abovementioned cases are shown

in Fig. 4.28 and Fig. 4.29, respectively. The performance for random AP locations without clustering is also

included in the figures, clearly inferior to that of the others. In terms of sum rate, the Lloyd and PDFVQ

solutions with clustering show similar performances (PDFVQ shows only a 2.38% lower performance than

the Lloyd AP locations at ρr = 30 dB). The 95%-likely rate performances show that the Lloyd algorithm

performs better than the PDFVQ solution (which shows a 13.61% lower performance than the Lloyd solution

at ρr = 30 dB). More importantly, in both the sum rate and 95%-likely rate plots, the single cluster scenario

is found to possess significantly higher rates for the Lloyd and PDFVQ solutions when compared to the

three-cluster scenario. In other words, limited cooperation brings about a performance loss with respect

to the canonical cell-free scenario. The differences in performance, expressed as percentage changes of the

limited cooperation scenario over the canonical cell-free scenario, are tabulated in Table 4.7.

We now consider the denser GMM-2 for the user distribution, as shown in Fig. 4.30, also displaying

the PDFVQ AP locations and clusters. As in the case of GMM-1, the rate performances of the Lloyd and

PDFVQ solutions with three clusters and a single cluster consideration are plotted in Fig. 4.31 and Fig. 4.32.

The relative performances of the curves remain the same as observed in GMM-1, however, the performance

loss when the three-cluster scenario is used over the single cluster scenario is larger here. This is evident in
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Figure 4.27: User configuration and the AP locations of the PDFVQ algorithm showing AP clustering under GMM-1.

5 10 15 20 25 30

r
 (dB)

0

4

8

12

16

20

24

28

32

36

40

S
u

m
 R

a
te

 (
b

it
s
/s

e
c
/h

e
rt

z
)

Lloyd

Lloyd (Single Cluster)

PDFVQ

PDFVQ (Single Cluster)

Random (Single Cluster)

Figure 4.28: Sum rate as a function of ρr for the Lloyd algorithm and PDFVQ with clustering and when a single

cluster is considered under GMM-1.

Table 4.8: Rate Improvement of the Three-Cluster Scenario Relative to the Single Cluster Scenario for the Lloyd and

PDFVQ AP Locations at ρr = 30 dB and under GMM-2

Algorithm Sum Rate 95%-Likely Rate

Lloyd −8.75% −17.88%

PDFVQ −9.99% −28.62%

Table 4.8 which shows these losses as a percentage. The increase in losses can be attributed to the fact that

the inter-cluster interferences are larger in the case of GMM-2 than GMM-1 (since the clusters are closer

together).
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Figure 4.29: 95%-likely rate as a function of ρr for the Lloyd algorithm and PDFVQ with clustering and when a

single cluster is considered under GMM-1.
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Figure 4.30: User configuration and the AP locations of the PDFVQ algorithm showing AP clustering under GMM-2.

4.7 Conclusion

In this paper, we have addressed access point (AP) placement in cell-free massive multiple-input-

multiple-output (MIMO) systems under a throughput criteria. We investigated the two main optimization

problems in this regard, namely the sum rate and minimum rate maximization problems. To understand

their solution frameworks, simple examples were constructed and analyzed exposing the difficulty in solving

the problems. Therefore, as a practical approach, the use of vector quantization (VQ)-based methods, namely

the popular Lloyd algorithm, tree-structured VQ (TSVQ), and probability density function optimized VQ

(PDFVQ), to cell-free AP placement, was investigated. Among the three algorithms presented, although the

tree-structured VQ (TSVQ) provides better sum rate (as it fosters cooperation among APs by placing them

closer) compared to the Lloyd algorithm, it suffers from high complexity, poor scalability, and the inability

to easily adapt to new environments. PDFVQ, which overcomes the aforementioned shortcomings, allowed a

more efficient generation of the codebook and generated a sum rate similar to and 95%-likely rate higher than
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Figure 4.31: Sum rate as a function of ρr for the Lloyd algorithm and PDFVQ with clustering and when a single

cluster is considered under GMM-2.
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Figure 4.32: 95%-likely rate as a function of ρr for the Lloyd algorithm and PDFVQ with clustering and when a

single cluster is considered under GMM-2.

TSVQ and close to the Lloyd algorithm. Additionally, for gradient-based maximization methods, PDFVQ is

found to provide good initial points. It was observed numerically that, over the Lloyd algorithm, an increase

of 9% in sum rate and a difference of just 2.5% in the 95%-likely rate was achieved by applying max-sum and

max-min gradient ascent algorithms, respectively, with the PDFVQ AP locations as starting points. Thus,

PDFVQ offers a convenient, less computationally intensive, and easily scalable AP placement technique for

cell-free networks.

Chapter 4, in part, is a reprint with permission of the material as it appears in the paper: Govind

Ravikumar Gopal and Bhaskar D. Rao, “Vector quantization methods for access point placement in cell-free

massive MIMO systems,” which is under review in IEEE Transactions on Wireless Communications. The

dissertation author was the primary investigator and author of these papers. These works were supported

in part by National Science Foundation (NSF) under Grant CCF-2124929 and Grant CCF-2225617, in part
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Chapter 5

Practical Cell-Free AP Deployment

In this chapter, we address uplink cell-free distributed massive multiple-input-multiple-output

(MIMO) access point (AP) deployment from the perspective of maximizing throughput. Different from

the previous chapter, we develop a multi-step AP deployment procedure that incorporates several impor-

tant and practical features, namely user position determination, limited AP cooperation, and fine-tuning of

the AP positions. Starting from an initial deployment, an AP clustering step is proposed as the first step

so that the user positions can be determined. To reduce the backhaul requirements in cell-free systems,

we suggest agglomeration clustering to support limited cooperation among the APs followed by multilat-

eration to calculate the user locations. Then, an AP placement algorithm is employed that utilizes the

computed user positions. Finally, in order to fine-tune individual AP locations for both sum rate and mini-

mum rate improvement (the two optimization problems of interest), we present the local max-sum and local

majorization-minimization methods for sum rate improvement, and the local max-min method for minimum

rate improvement. The entire multi-step procedure addresses major challenges associated with cell-free AP

deployment. Over the reasonably good sum and minimum rate performances of the main AP placement

step, the fine-tuning procedure is numerically shown to improve the appropriate rate values.

5.1 Introduction

Massive multiple-input-multiple-output (MIMO) systems have become increasingly prominent in

the recent decade as they empower the current 5G and the upcoming Beyond 5G networks to meet their

network requirements, both in terms of throughput and user experience. A large number of antennas allow

MIMO systems to exhibit higher spectral and energy efficiencies, along with reduced interference through

beamforming [7, 8]. Distributed antenna systems (DAS), particularly distributed MIMO, are advantageous

over colocated systems as they enable higher average rates [10,16–18]. Such distributed systems can be gen-

erally classified as non-cooperative and cooperative systems, with traditional small-cell systems constituting

the former and the more lately popular cell-free systems comprising the latter.

Cell-free systems are networks where a number of users are all served by a large number of antennas
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or access points (APs) [12, 104]. The “cell-free” paradigm originates from the concept of network MIMO

[105], and by not splitting users into cells, higher spectral efficiency and interference mitigation are achieved

in such systems compared to their small-cell counterparts. Cell-free systems have not yet been deployed,

largely due to the scalability issues related to the backhaul necessary for information exchange between APs

and the network controller (NC) or the central processing unit [22, 106]. Therefore, small-cell systems are

continued to be used in current network deployments. However, cell-free systems show a promising outlook

for near future network deployments [107]. Consequently, numerous problems and challenges in cell-free

networks have been investigated. Previous works have included studies on power optimization and energy

efficiency [20,26–28], rate maximization [29,30], clustering (user- and cell-centric) [31–35], limited fronthaul

[36], pilot assignment [37], reconfigurable intelligent surfaces [38], and federated learning [39].

In this chapter, our focus is on AP deployment in cell-free systems, of which AP placement forms

an important part. Optimization of the AP locations in terms of throughput is the key consideration. AP

placement is useful in situations such as conference venues and stadiums where the user demands change

over time. It also finds use in emergency scenarios, especially in natural (or man-made) disaster situations

where terrestrial infrastructure has been knocked down and AP-enabled unmanned aerial vehicles (UAVs)

must establish a temporary network [108]. In practice, the distribution of users (user density) can provide

a good measure of user demand and is thus used in designing placement problems. It should be noted that

different realizations of the user positions can generate the same user density. Past research focusing on

AP placement has primarily been in the small-cell paradigm (e.g., [80] and references therein). In the cell-

free regime, AP placement is relatively new and there has been limited prior work conducted (for instance,

[60, 96–98]). For descriptions of previous placement works in small-cell and cell-free systems, refer to [80]

and [109], respectively, or the previous chapters. In addition to AP placement, two major existing challenges

are the determination of the user positions or of their density and the viability of limited cooperation among

the APs. For example, the vector quantization (VQ) based methods described in [109] (and in the previous

chapter) and the gradient-based method in [96] both require the knowledge of the user positions to implement

the algorithms. Further, the other VQ methods described for small-cell placement in [80] (an in chapters 2

and 3) also require the locations of the users. Hence, it is essential to calculate the positions of the users.

Additionally, the reduction of backhaul forms an important component of scalable cell-free AP deployment.

Thus, limited cooperation among the APs serves as a method to reduce the information exchange among

the APs.

The position or density determination of users has been covered in past works under the class

of problems concerning tracking users [110, 111] and crowd density estimation, which uses wireless signals

[112–115] or images [116, 117] alone, or even jointly [118, 119]. For example, the work of [119] looks at

vision-aided transmitter identification, where wireless data (receive power) is assisted by images from a

camera, using deep learning. The most popular avenue for position determination has been multilateration

in the field of robotics, e.g. [120, 121] and references therein, where a set of three (trilateration) or more

measured distances to known landmarks or reference points are used to localize the robot. This technique

as been also implemented in the wireless domain which uses measured RSS to locate mobile users [122–124].
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While [122] utilizes RSS measurements and a method based on extreme value theory, Taylor approximation,

and Bayesian filtering to determine indoor node positions, [123] proposes a simple geometric approach to

trilateration while also concurrently estimating the pathloss exponent. Their subsequent work [124] extends

the geometric interpretation to the 3D case. Further, to improve the localization results, neural networks

(NNs) are used to provide estimates of the pathloss exponent and standard deviations of distances between

the reference points and the mobile device. Similarly, limited cooperation has been previously studied in

various formats, including user-centric and cell-centric networks [31–34], dynamic clustering [35, 125, 126],

and in the context of resource allocation for interference mitigation between APs [127]. For instance, [33]

deals with data transmission and power control for scalable cell-free systems by considering cell-centricity for

cooperation between APs and user-centricity for serving users. In [125], the authors also address scalability,

however, through dynamic cooperative clustering for initial access, pilot assignment, downlink precoding,

and uplink combining. Virtual cells utilizing hierarchical clustering are formed in the work of [127] with a

view to create two types of limited cooperation models aiming to increase system sum rate.

The cell-free AP deployment problem has been gaining popularity only in the recent years. Among

the existing placement techniques (discussed in [60, 96–98]), the user positions are required to be known,

however, their determination is not covered by the aforementioned works. Moreover, we point out that all

APs must cooperate fully for AP placement, i.e., the NC receives the positions of all users and determines

AP locations. While total cooperation is necessary for placement, partial or limited cooperation, also not

investigated in the context of AP placement, can allow for user position determination and reduce the

information exchange between APs. For example, we propose that by first assuming that the users (whose

positions are initially unknown) are associated with their closest APs, the APs can be grouped into non-

overlapping clusters allowing for limited cooperation. Following this step, the within-cluster APs share

information only among each other to determine the user positions associated with the cluster. This can be

performed at designated cluster heads, thereby reducing backhaul requirements. Once the user positions are

determined, the APs can then send the information to the NC for AP placement. Further, with this user

position knowledge, we can allow the APs to individually update or fine-tune their positions according to

network rate requirements. Thus, in this work, our focus is not on the placement of APs alone, but also

on the abovementioned challenges associated with it. Consequently, we propose a multi-step cell-free AP

deployment scheme that starts with unknown user positions (the AP positions are always assumed to be

available), forms cooperative AP clusters to determine the user positions, performs AP placement, and finally

fine-tunes the AP positions to achieve a higher rate performance. At each stage of this scheme, a varying

degree of cooperation (or in other words, distributedness) is assumed. It should be noted that distributed

algorithms, apart from requiring less information exchange between APs, helps in system scalability. We

note that in this chapter, we will use the word ‘deployment’ to refer to the multi-step scheme while the word

‘placement’ shall refer to the AP location determination step within the multi-step deployment scheme.
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Contributions

To the best of our knowledge, a solution for the cell-free AP deployment problem in the context of

throughput optimality while addressing user position determination, limited cooperation, and fine-tuning of

the AP positions, has not been provided in literature. While making the assumption that there exists an

initial or existing deployment, in this work, our contributions are as follows.

• As the first step to the deployment scheme, an AP clustering method based on agglomeration clustering

is presented that groups APs into non-overlapping clusters. The APs within each cluster share the

the large-scale fading coefficients of the users with each other (a limited cooperation scenario) in the

second step of the scheme so that through multilateration, the positions of the users associated with

the cluster are determined.

• To place APs in the third step, two main throughput optimizations, namely the sum rate and minimum

rate maximization problems, are considered. Here, out of the many placement solutions, we consider

the Lloyd algorithm or the standard VQ method.

• In the fourth and final step, a fine-tuning procedure is proposed. An iterative process in which a

subset of APs is first selected and whose positions are then updated is designed. AP position update

procedures to improve the system sum rate, which are the local max-sum and local majorization-

minimization (MM) methods, are conducted by the APs individually. To improve the minimum rate

of the system, the local max-min method is also presented.

The remainder of this chapter is organized as follows. Section 5.2 outlines the cell-free model

used throughout the paper. A brief description of the end-to-end procedure for deployment is provided in

Section 5.3. Section 5.4 then describes the AP clustering, followed by user position determination utilizing

multilateration in Section 5.5. In Section 5.6, the fine-tuning of the AP positions to increment system

throughput for two placement problems are elucidated. Numerical simulation results are shown and described

in Section 5.7. Finally, we provide concluding remarks in Section 5.8. Throughout this chapter, we use bold

symbols to denote vectors, E{·} is the expectation operator, || · || represents the ℓ2-norm of a vector, and all

logarithms are to the base 2.

5.2 System Model

The system model considered in this chapter is based on the previous chapter. We describe it here

briefly for completeness. In an area, K single-antenna users are distributed with the probability density

function fP(p), where random vector p ∈ R2 denotes the user position. The users are served by M single-

antenna APs, where q ∈ R2 indicates the AP location. The narrowband fading channel coefficient between

the mth AP and kth user with m = 1, 2, . . . ,M and k = 1, 2, . . . ,K is

gmk =
√
βmkhmk, (5.1)
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where βmk and hmk ∼ CN (0, 1) are the large- and small-scale fading coefficients, respectively, independent

of each other and over coherent intervals. A general expression for the large-scale fading coefficient (LSFC)

βmk is

βmk =
czmk

||p− qm||γ
, (5.2)

where c is a constant, zmk is the shadow fading coefficient, and γ is the pathloss exponent. We consider the

canonical cell-free system in the uplink regime where all APs serve a smaller number of users in the same

time-frequency resource. Pursuant to this model, the received signal at AP m is

ym =

K∑
k=1

√
ρrgmksk + wm, (5.3)

where for user k, ρr is the transmit power, sk is the data symbol with E{|sk|2} = 1, and wm ∼ CN (0, 1)

is the additive noise. To estimate the data symbols, the NC that connects all APs together via error-free

backhaul accumulates the received signals written as follows

y =

K∑
k=1

√
ρrgksk +w, (5.4)

where y = [y1, y2, . . . , yM ]T , gk = [g1k, g2k, . . . , gMk]
T , and w = [w1, w2, . . . , wM ]T .

When a zero forcing (ZF) combiner is used, the resulting signal at the NC is r =
(
GHG

)−1
GHy,

where G = [gmk] is a M ×K matrix consisting of the channel coefficients. The achievable per-user SNR for

user k in this case is

ψZF
k =

ρr
[(GHG)−1]kk

. (5.5)

An asymptotic approximation for the per-user SNR [15,60] is

1

M
ψZF
k

a.s.−−−−→
M→∞

ρrβk, (5.6)

where

βk ≜ lim
M→∞

1

M

∑
m

βmk. (5.7)

The achievable rate then is Rk = E{log(1 + ψZF
k )}, where the expectation is over all the small-scale and

shadow fading coefficients.

5.3 End-to-End AP Deployment

In this section, we discuss the entire proposed AP deployment procedure and the associated chal-

lenges. Table 5.1 provides a brief summary of the procedure. To develop the process, cooperation forms an

important part. Hence, also noted in the table are the levels of cooperation among the APs expected in

each step as well as the relevant algorithms. We provide here a brief summary and implementation of steps

involved, and their details are provided in the ensuing sections.
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Table 5.1: Steps in the procedure for end-to-end cell-free AP deployment. LSFC stands for the large-scale fading

coefficient.

No. Step Details Cooperation Algorithm(s)
0 Start Users positions (unknown)

APs positions (known)

- -

1 AP Cluster-

ing
• Performed through agglomeration clustering.

• Minimum cluster size must be three APs (required

for user position determination in step 2).

• User-AP association is based on the lowest Eu-

clidean distance. Each user associates with one AP

for the purposes of the placement process alone.

Full coopera-

tion

Algorithm 15

2 User position

determination
• Each AP in a cluster receives LSFC from each user

in the cluster.

• Within-cluster APs share LSFC coefficients with

each other.

• Knowing/estimating the pathloss exponent and

pathloss constant corresponding to a LSFC model,

user positions are computed through multilatera-

tion.

Limited coop-

eration

(5.15) and

(5.16)

3 AP placement
• Based on knowledge of user positions (step 2), an

AP placement solution can directly be employed.

• APs ultimately know the positions of their associ-

ated users.

Full coopera-

tion

-

4 Fine-tuning

AP positions
• Per-user SNR can be calculated by serving AP by

knowing user positions, other AP positions, and

pathloss model, and hence calculating the LSFCs

of users with other non-serving APs.

• Preliminary step is AP subset selection through the

k-means++ procedure where APs sufficiently far

away are selected so that updates in their position

do not affect any other APs.

• Subsequent step is the AP position update involving

the selected APs and their associated users, and

includes the following techniques:

– Local max-sum gradient ascent (for sum rate

maximization)

– Local majorization-minimization (MM) (for sum

rate maximization)

– Local max-min gradient ascent (for minimum

rate maximization)

Full coopera-

tion

Algorithm

16 and Algo-

rithm 17
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• We start with an existing deployment (e.g., uniform or some prevailing positions) of APs whose posi-

tions are assumed to be known by the NC. This information is also shared to all APs. The NC however

is not aware of the current user positions (or their distribution).

• AP clustering: The AP positions are clustered by the NC using agglomeration clustering (AC) keeping

in mind that there must at least be three APs in each cluster so that the user positions can be found

in the next step. The NC sends the cluster indices back to the APs while also assigning one AP within

each cluster as the cluster head (CH). Note that for placement purposes, a user associates to the AP

closest to it. This could also correspond to the AP with which it experiences the lowest pathloss. The

APs share this information with the NC. When the clusters are formed, all associated users to each

within-cluster APs also form part of the cluster.

• User position determination: The scenario of limited cooperation now comes into play where the LSFCs

between each user and AP in each cluster are shared to the CH. This allows for multilateration so that

the CH can determine the positions of the users in the cluster.

• AP placement: The CHs share the calculated within-cluster user positions to the NC so that the

AP placement process can be performed. While many placement techniques exist, we choose the

Lloyd algorithm among the VQ-based techniques motivated and described in [109]. At the end of this

placement step, the NC informs each AP of their new positions as well as the associated users and

their positions. Note that these user locations may be calculated again at a later stage through limited

cooperation (as in the first and second steps).

• Fine-tuning of the AP positions: This fine-tuning procedure is also conducted at the NC where first, a

subset of APs that are sufficiently far apart are chosen so that the update in the placement of one does

not significantly affect the others. The SNR of each user is calculated by its associated AP since its

position, the pathloss model, and the locations of the other APs are known. The AP update equations

corresponding to the sum rate and minimum rate maximizations are then performed locally at each

AP. Note that the NC could perform these updates for the APs in the selected subset, however, it is

not necessary. The NC then chooses another subset and the AP position update is performed. The

NC further repeats the entire process until the required performance is achieved or a chosen number

of iterations are conducted. Further, in each iteration, the user-AP association is repeated and the NC

communicates this association to the APs.

We now make some remarks about the above deployment procedure.

• New deployment from the old deployment. Once the deployment process is concluded and the new

AP positions are determined, the NC compares the new and old AP positions in the form of pairwise

distances between the AP positions in both cases. The NC then determines where each AP should

move to its new location such that the cumulative distance moved by the APs is at a minimum.

• Limited cooperation cell-free. After deployment, we can further consider that the APs cooperate only

partially as opposed to complete cooperation in the canonical cell-free setup. This limited cooperation
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scenario can be achieved by the NC performing the AP clustering step (step 1) following the fine-tuning

(step 4). To evaluate the performance of this setup, the CH by knowing the received signals and the

channel coefficients from a user to all within-cluster APs, can design a suitable combiner for data

symbol estimation and SINR calculation for the user.

• Updating AP positions without the placement step. After the NC knows the positions of the users

(step 2), the fine-tuning procedure may directly be performed without the placement process. This is

useful in situations where the user distribution is deemed by the NC not to have changed significantly.

This determination is made by the NC by measuring a change (normally a loss) in the average system

performance caused by the changed user configuration.

To demonstrate the end-to-end deployment, we discuss in the subsequent sections the implemen-

tation of clustering, user position determination, and the fine-tuning of the AP positions. Note that since

AP placement has been discussed previously in a multitude of works, we do not include it here to avoid

repetition. We also note that the two main placement optimization problems to be considered, namely the

sum rate and minium rate maximization problems have also been defined in [109] and the previous chapter.

5.4 AP Clustering

To perform clustering of the APs, we utilize a popular technique called as agglomeration clustering

(AC) [128]. AC is a type of hierarchical clustering method, particularly, a bottom-up approach where each

data point is placed initially into its own cluster and then gradually merged to form larger clusters. The

combination of clusters is based on their proximities to each other, which are evaluated using some cluster

distance measures. A graphical representation of this process is called a dendrogram in which each cluster

combination representing one step of AC is shown in order (until a single cluster is obtained for the data)

and at the cluster distance level at which the combination takes place (called the height in the dendrogram).

Benefits of AC. Compared to the well-known k-means or Lloyd algorithm [41] clustering methods

from VQ, AC benefits from the following advantages [129]:

• The Lloyd algorithm requires initialization and the final clustering result is then dependent on the

initial points chosen for the cluster centers. AC does not require any selection of initial points since

the data points start as individual clusters. Thus, there is a degree of consistency in the clustering

result when AC is applied.

• If a slight modification to the number of clusters is required in the Lloyd algorithm, then a complete

update of the clustering must be performed, i.e., the entire clustering algorithm must be run again.

However, in the case of AC, since the each clustering step involves the combination of two existing

clusters, the number of clusters may be changed by either undoing or performing more combinations

(the dendrogram is quite useful in this scenario). This allows for great flexibility in deciding the number

of clusters required.
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The combination of clusters within the AC process is decided using the measured “distance” between

the clusters. In particular, the distance between individual elements in the cluster is denoted by d, typically

the Euclidean distance, while we refer to the inter-cluster distance as linkage, denoted by D. Given A and

B as two clusters, with cluster elements defined as a ∈ A and b ∈ B, we have the following linkages [130]:

• Single: DS(A,B) = min
a∈A,b∈B

d(a, b)

• Complete: DC(A,B) = max
a∈A,b∈B

d(a, b)

• Average: DA(A,B) = 1
|A||B|

∑
a∈A,b∈B

d(a, b)

• Centroid: DM (A,B) = d(r̄A, r̄B)

where r̄A represents the centroid of all elements in cluster A. In general, a proximity matrix can be generated

which contains the linkages between every possible pair of clusters and is updated as AC progresses. The

AC algorithm as applied to AP clustering is defined in Algorithm 15. Note that in our implementation,

there should be at least three APs within a cluster indicating the number of reference points required for

the multilateration step to be performed.

Algorithm 15 Agglomeration Clustering (AC)

1: Initialize all APs as individual clusters.

2: Generate the proximity matrix for the set of clusters based on the selected linkage scheme.

3: Join the two closest clusters.

4: Repeat from step 2 until minimum cluster size is three.

User-AP Association. For the placement process, we consider that the each user associates to its

geographically closest AP, using the squared Euclidean distance. This is similar to the nearest neighbor

condition in the Lloyd algorithm [109]. Formally, for AP m, the set of users, denoted by Cm, that are

associated with it are

Cm = {pk : ||pk − qm||2 ≤ ||pk − ql||2,∀l ̸= m}. (5.8)

5.5 User Position Estimation

While user position determination has been conducted in the past, it is necessary in cell-free AP

deployment and is assisted by the clustering in the previous step. Though in the system model (Section

5.2) we consider the canonical cell-free model where all APs cooperate, we assume this to be true only to

estimate the data symbols and for the evaluation of the network performance. From the previous section,

we have obtained clusters of APs (with a minimum cluster size of three); the users that are associated with

those APs also form the cluster. Consequently, in this limited cooperation scenario, we consider that the

APs are grouped into N AP clusters (referred to simply “clusters” henceforth), where no AP is a member

of two clusters. Each cluster has Mn APs where n = 1, 2, . . . , N , such that
N∑

n=1
Mn = M . In each cluster,
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Kn users communicate to the Mn APs such that
N∑

n=1
Kn = K. Note that we will use mn and kn to index

the AP and user, respectively, in cluster n such that mn = 1, 2, . . . ,Mn and kn = 1, 2, . . . ,Kn.

Each cluster performs multilateration to determine the user positions within the cluster. In this

process, each AP in the cluster shares the LSFCs of all constituent users with all other within-cluster APs.

In other words, in cluster n, all Mn APs, through mutual information exchange, know the LSFCs of all Kn

users in the cluster, i.e., βmnkn , ∀mn, kn. In order to compute the position of user kn, we consider the LSFC

model in (5.2). By averaging out the shadow fading zmk and letting c′ = cE{zmnkn
}, we have

βmnkn
=

c′

||pkn
− qmn

||γ
, ∀mn. (5.9)

On rearranging, we obtain

||pkn − qmn ||
γ
=

c′

βmnkn

,

⇒ ||pkn − qmn ||
2
=

(
c′

βmnkn

) 2
γ

.

(5.10)

After expanding the ℓ2-norm in the above expression and similar to [123], we perform the pairwise subtraction

of each expression for mn = 2, 3, . . . ,Mn from that of the first (mn = 1) AP, resulting in

2(qmn − q1)
Tpkn =

(
c′

β1,kn

) 2
γ

−
(

c′

βmnkn

) 2
γ

+ qT
mn

qmn − qT
1 q1. (5.11)

In a matrix formulation, (5.11) can be written as

Anpkn
= bkn

, (5.12)

where

An = 2


(q2 − q1)

T

(q3 − q1)
T

...

(qMn − q1)
T

 , (5.13)

and

bkn
=



(
c′

β1,kn

) 2
γ −

(
c′

β2,kn

) 2
γ

+ qT
2 q2 − qT

1 q1(
c′

β1,kn

) 2
γ −

(
c′

β3,kn

) 2
γ

+ qT
3 q3 − qT

1 q1

...(
c′

β1,kn

) 2
γ −

(
c′

βMnkn

) 2
γ

+ qT
Mn

qMn
− qT

1 q1


. (5.14)

If a cluster consists of only three APs, then from (5.12) we can write the user position estimate as

p̂kn = A−1
n bkn [123]. However, when Mn > 3, (5.12) is an overdetermined system of equations and the user

position estimate is obtained using ordinary least squares as follows

p̂kn
= (AT

nAn)
−1AT

nbkn
. (5.15)

Additionally, we note that determination of the user positions utilizing (5.15) requires the knowledge of the

pathloss exponent γ and constant c. These parameters may be estimated using the technique similar to that
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described in [123]. Additionally, as a consequence of estimation of the abovementioned pathloss parameters,

the vector bkn
in (5.12) is thus an estimate, denoted by b̂kn

. Then, the estimate of the user position is

calculated by using the weighted least squares [124], as follows

p̂kn
= (AT

nW
−1
kn

An)
−1AT

nW
−1
kn

b̂kn
, (5.16)

where Wkn
is the covariance matrix of b̂kn

. Finally, the user positions determined in each cluster are shared

by the APs to the NC for the AP placement step that follows.

5.6 Fine-Tuning AP Positions

In this section, we present a procedure to fine-tune the AP positions once the user positions have

been determined at the APs and the placement of APs is performed. The fine-tuning of the AP locations is

specifically dependent on which of the two main placement metrics, namely the sum and minimum rates, is

to be improved.

Note that when the user positions were determined by clustering APs, only the APs within a cluster

are aware of the LSFCs between them and the constituent users. Following the prior placement process, the

SNRs of the users associated with each AP can be calculated at that AP since the user positions, the pathloss

parameters, and the positions of all other APs are known. The fine-tuning is designed as a two-step iterative

procedure where a subset of APs is first chosen sufficiently far apart from each other so that their positions

can be updated without interfering with each other. Then, the positions of the selected APs is updated

according to the methods described below. A different subset (with no repetition) is selected each time and

their positions are also updated. The whole procedure is repeated until the performance has improved to

the required level or a set number of iterations have been concluded.

5.6.1 AP Subset Selection

For the AP subset selection, the k-means++ method [95], used typically for initializing the Lloyd

or Lloyd-type algorithms, is applied and is described in Algorithm 16. Note that dSE(qx,qN (x)) represents

the squared Euclidean distance between AP x and its nearest AP, indexed by N (x), and Ms is the number

of APs to be selected in each subset.

Algorithm 16 k-means++

1: Choose one AP uniformly at random.

2: For each AP x not chosen yet, compute dSE(qx,qN (x)).

3: Choose one new AP at random as the new AP, using a weighted probability distribution where AP x is

chosen with probability proportional to dSE(qx,qN (x)).

4: Repeat steps 2 and 3 until Ms APs have been chosen.
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5.6.2 AP Position Update

Here, we describe the various AP position update methods according to whether the sum rate or

minimum rate performance of the system is to be improved. A brief description of the two problems can

been found in [109].

Sum Rate Maximization

To perform the position update of AP m for the maximization of sum rate, whose optimization

problem is defined as

arg max
qm

∑
pk∈Cm

log
(
1 + ψZF

k

)
, (5.17)

we present two approaches, namely the local max-sum gradient and the local majorization-minimization

(MM) method.

To maximize the sum rate for AP m, the gradient update expression with j as the iteration index

is

q(j+1)
m = q(j)

m + δ
∂

∂q
(j)
m

 ∑
pk∈Cm

log

(
1 + ρr

M∑
m=1

βmk

) , ∀m, (5.18)

where in the objective function in (5.17), shadow fading is ignored and δ is the step size. The gradient in

(5.18) is calculated as

∂

∂q
(j)
m

 ∑
pk∈Cm

log

(
1 + ρr

M∑
m=1

βmk

) =
γρr
2

∑
pk∈Cm

1

1 + ψZF
k

(pk − q
(j)
m )

||pk − q
(j)
m ||γ+2

. (5.19)

As the alternate approach, the MM iteration update equations to compute the subset AP locations

are

q(j+1)
m =

∑
pk∈Cm

w
(j)
k pk∑

pk∈Cm

w
(j)
k

,

w
(j+1)
k =

1 + ||pk − q
(j+1)
m ||2tmk

||pk − q
(j+1)
m ||2 + ϵ

, ∀pk ∈ Cm,

(5.20)

where

tmk =

M∑
s=1
s̸=m

1

||pk − qs||γ
. (5.21)

The above update equations are obtained by assuming a high SNR regime in the objective function in (5.17),

followed by the simplification

∑
pk∈Cm

log

(
M∑

m=1

βmk

)
=

∑
pk∈Cm

log

(
1

||pk − qm||γ
+ tmk

)
. (5.22)

From this expression, the MM optimization approach similar to that described in [80] can be employed to

achieve the above iteration equations. This proof is provided in Appendix 5.A.
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Minimum Rate Maximization

The optimization problem here corresponding to AP m is

arg max
qm

min
pk∈Cm

log
(
1 + ψZF

k

)
. (5.23)

Applying gradient ascent to just the worst user alone would make the gradient value vary significantly across

the iterations, resulting in convergence issues. Additionally, we are interested in evaluating the system

performance utilizing the 95%-likely rate (the best rate among the worst 5% of the users). Hence, to

evaluate the minimum rate performance, we use the following surrogate optimization problem

arg max
qm

∑
pk∈C5%

m

log
(
1 + ψZF

k

)
, (5.24)

where the set C5%m represents the set of the worst 5% of the users. The update equation then is

q(j+1)
m = q(j)

m + δ
∂

∂q
(j)
m

 ∑
pk∈C5%

m

log

(
1 + ρr

M∑
m=1

βmk

) , ∀m, (5.25)

and the gradient is

∂

∂q
(j)
m

 ∑
pk∈C5%

m

log

(
1 + ρr

M∑
m=1

βmk

) =
γρr
2

∑
pk∈Cm

1

1 + ψZF
k

(pk − q
(j)
m )

||pk − q
(j)
m ||γ+2

. (5.26)

The complete fine-tuning procedure written as an algorithm is outlined in Algorithm 17 below.

Algorithm 17 AP Fine-Tuning Procedure

1: Select Ms APs (not previously chosen) using k-means++ (Algorithm 16).

2: Update selected AP positions though local max-sum in (5.18), local MM in (5.20), or local max-min in

(5.25).

3: Repeat from step 1 until all M APs have been chosen.

4: Repeat from step 1 until required rate improvement has been met or maximum number of iterations

have been reached.

5.7 Simulation Methodology and Results

To conduct numerical simulations, we consider that the users are distributed over a geographical

area of dimensions 2 × 2 km2. M = 32 APs serve K = 4 users, since M ≫ K for a cell-free system. For

the purpose of AP placement, however, we assume a total of 2000 users, distributed as a Gaussian mixture

model (GMM) of the form

fP(p) =

L∑
l=1

plN (p|µl,Σl) , (5.27)

where L is the number of mixture components (clusters), and pl, µl, and Σl are the probability, mean,

and covariance matrix, respectively, of mixture component l. The parameters take values L = 3, µ1 =
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Table 5.2: Final number of clusters under different linkages

Linkage Final Number of Clusters

Single 3

Complete 4

Average 4

Centroid 4

[0.5,−0.5]T , µ2 = [0, 0.5]T , µ3 = [−0.5, 0]T , p1 = 0.6, and p2 = p3 = 0.2. The covariance matrices of the

clusters are Σ1 = σ2I, Σ2 =
[

σ2 2σ2/3

2σ2/3 2σ2

]
, and Σ3 = σ2I with σ = 100. The pathloss model from [61, (4.34)]

is used with shadow fading ignored for simplicity and the transmit power ρr of the users is varied from 5 to

30 dB. The local max-sum and local max-min gradient methods utilize step sizes of δ = 103 and δ = 3×104,

respectively.

5.7.1 Performance Measures

To measure performance, we utilize the per-user achievable rate defined for user k as

Rk = E
{
log2

(
1 + ψZF

k

)}
, (5.28)

with ψZF
k from (5.5). Rk is used to generate sum rate and 95%-likely rate values for comparison between

different AP placements. The rate values are generated through Monte Carlo simulations and the best

solution is selected after the algorithm is run multiple times. The relative performance between algorithms

(say, algorithm 2 over algorithm 1) can be calculated by using the following measure expressed as percentage

Improvement Ratio =
PAlgorithm 2 − PAlgorithm 1

PAlgorithm 1
× 100, (5.29)

where P is either the sum rate or 95%-likely rate.

5.7.2 Numerical Results

Experiment 1. We first implement the AP clustering using the different linkage methods discussed

in Section 5.4. For this purpose, we initially consider the AP locations determined by the Lloyd algorithm

for a GMM user configuration different to that described above. These AP locations represent the initial

AP positions available before the entire cell-free AP deployment process is started, i.e., in step 0 in Table

5.1. In Fig. 5.1, we show these AP positions (with the user distribution that resulted these locations) and

the result of the clustering procedure when single linkage is used. The figure shows that three clusters are

generated and the clusters themselves are aligned to the mixture components of the user GMM. The final

average number of clusters generated for all linkage methods are provided in Table 5.2. We will consider

that the single linkage clustering is utilized for the remaining simulation experiments.

Experiment 2. In our simulations, we assume knowledge of the pathloss model and hence, the user

positions obtained contain no error. However, it is possible that the when the user positions are determined,

117



-1000 -500 0 500 1000

x-coordinate (m)

-1000

-500

0

500

1000

y
-c

o
o

rd
in

a
te

 (
m

)

Cluster 1

Cluster 2

Cluster 3

GMM Center

Figure 5.1: AP locations showing the clustering when single linkage is used.

especially when estimates of the pathloss constant and exponent are used, the user positions contain some

error. Thus, in this experiment, we wish to observe the effect of such errors in the placement process.

For this purpose, we assume that a random error is added to the user positions generated. In particular,

we consider an i.i.d. Gaussian distributed error with zero mean and standard deviation σe added to each

dimension of the user positions. We investigate the sum rate and 95%-likely rate performance of the Lloyd

algorithm applied to the user positions with error by changing σe and compare them to the case where no

error is present. We choose five different standard deviation values and in Fig. 5.2, the sum rates achieved

are shown. It is observed that for the considered user configuration, the sum rates when σe = 1, 5, and

10, are all worse than when there is no error. Quantitatively, this value is about 5% as shown in Table 5.3.

However, for higher σe values, the inferiority of the Lloyd algorithm when user position errors are considered

is larger. In the case of the 95%-likely rate performances plotted in Fig. 5.3, the lowest σe = 1 shows the

least change in performance while σe = 5, 10, and 25 all show up to about 5% inferior performance while

when σe = 50, there is significant performance loss of about 26%. These losses are due to the fact that when

the error standard deviation increases, the variance of the GMM mixture components or the spreading out

of the user positions increases on average resulting in the Lloyd algorithm having to place APs farther away

from the GMM centers while using the same number of APs. This effect is less observed when σe is small

but becomes more pronounced for larger values.

Experiment 3. In this experiment, we conduct the numerical simulations that show the rate improve-

ments achieved by using the fine-tuning procedure discussed in Section 5.6. We show the results generated

for 10 iterations of the fine-tuning procedure for each of the cases where the local max-sum, local MM, and

local max-min methods are utilized. In all cases, the AP locations obtained through the Lloyd algorithm

are chosen as the initial positions for the fine-tuning algorithms. We start by showing both the initial AP

positions obtained through the Lloyd algorithm and the final AP locations obtained when the fine-tuning

procedure using all three algorithms, namely the local max-sum, local MM, and local max-min algorithms,

is applied. For the sake of clear observation, we have shown the case where the fine-tuning procedure is

intended to improve the sum rate in Fig. 5.4 and the case where the 95%-likely rate is to be improved in Fig.
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Figure 5.2: Sum rate as a function of ρr for the Lloyd algorithm with and without errors in user positions.
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Figure 5.3: 95%-likely rate as a function of ρr for the Lloyd algorithm with and without errors in user positions.

Table 5.3: Percentage Rate Improvement of the Lloyd Algorithm with Error in User Positions Relative to the Lloyd

Algorithm without Error at ρr = 30 dB

Error Standard Deviation σe Sum Rate 95%-Likely Rate

1 −5.02% −0.26%

5 −4.92% −4.27%

10 −5.38% −2.93%

25 −7.09% −5.28%

50 −12.51% −25.59%

5.5. From these two figures, we observe that as a result of the iterations of the fine-tuning procedure, the final

AP locations obtained are distinct from the initial Lloyd positions. In particular, both the local max-sum

and local MM algorithms situate the APs closer to the GMM centers compared to the Lloyd algorithm while
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Figure 5.4: Initial AP positions using the Lloyd algorithm and final AP positions using the fine-tuning procedure

with the local max-sum and local MM algorithms.
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Figure 5.5: Initial AP positions using the Lloyd algorithm and final AP positions using the fine-tuning procedure

with the local max-min algorithm.

the local max-min algorithm places the APs closer to the GMM edge users. Fig. 5.6 and Fig. 5.7 show the

sum and 95%-likely rates corresponding to the three algorithms used in the fine-tuning procedure. Both the

local max-sum and local MM algorithms increase the sum rate with the local MM method providing a 4.18%

higher sum rate (at ρr = 30 dB) than the Lloyd algorithm, as quantified in Table 5.4. This results in a

lower 95%-likely rate, where both algorithms achieve about 7.5% lower rate than the Lloyd algorithm. Note

that the local MM algorithm is observed to achieve significantly lower 95%-likely rates at other power levels

compared to the local max-sum method. In regards to the local max-min method, while a significantly lower

sum rate performance is observed, the 95%-likely rate performance is 7.87% higher than that of the Lloyd

algorithm. Hence, the fine-tuning procedures do accomplish their intended rate performance improvement.

Experiment 4. Here, we present an example where the fine-tuning procedure alone (i.e., without

performing the placement step) can be advantageous in a situation where the user distributed has changed.
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Figure 5.6: Sum rate as a function of ρr for the Lloyd algorithm and the fine-tuning procedure with local max-sum,

local MM, and local max-min algorithms.
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Figure 5.7: 95%-likely rate as a function of ρr for the Lloyd algorithm and the fine-tuning procedure with local

max-sum, local MM, and local max-min algorithms.

Table 5.4: Rate Improvement of the Fine-Tuning Procedure with the Local Max-Sum, Local MM, and Local Max-Min

Algorithms Relative to the Lloyd Algorithm at ρr = 30 dB

Algorithm Sum Rate 95%-Likely Rate

Local Max-Sum 2.48% −7.49%

Local MM 4.18% −7.44%

Local Max-Min −14.79% 7.87%

Such a situation was discussed in the remarks in Section 5.3. Consider the same distribution as been

considered in the previous Experiment 4. Then, we determine the Lloyd AP positions for this density

and then fine-tune the positions based on the local MM algorithm. We then consider a new distribution,

which for the purpose of this examples has the covariance of the second mixture component changed to
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Table 5.5: Rate Improvement of the Local MM Fine-Tuning Procedure Applied to the Lloyd Algorithm Positions and

Applied to the Fine-Tuned AP Positions of the Previous Distribution Relative to the Lloyd Algorithm at ρr = 30 dB

Algorithm Sum Rate 95%-Likely Rate

Local MM (with Lloyd) 3.75% −13.34%

Local MM (without Lloyd) 8.16% −6.53%

Σ2 =
[
1.14σ2 2σ2/3

2σ2/3 2.67σ2

]
, with σ = 100, which causes the users in the mixture component to spread out slightly

more than in the original distribution. Using this distribution, we implement the Lloyd algorithm and again,

the fine-tuning procedure utilizing the local MM algorithm. However, in addition, we also implement the

local MM algorithm with the AP positions corresponding to the old distribution as the starting point, i.e.,

without the Lloyd algorithm. We plot the sum rate and 95%-likely rate performances in Fig. 5.8 and Fig. 5.9,

respectively, where we refer to the result in which the local MM fine-tuning procedure is applied to the Lloyd

algorithm as ‘Local MM (with Lloyd)’, and the result in which the local MM fine-tuning procedure is applied

to the fine-tuned AP positions of the previous (original) distribution as ‘Local MM (without Lloyd)’. In the

case of sum rate, it is observed that while Local MM (with Lloyd) performs better than the Lloyd algorithm

as expected, the Local MM (without Lloyd) achieves the highest sum rate among the three curves. This

performance can be explained by the fact that as the original user density in the second mixture component

is expanded slight to the new density, the fine-tuned AP positions (using which the subsequent fine-tuning

is performed) are closer to the center of the mixture component than the Lloyd algorithm. Since the local

MM procedure now starts with these AP positions which are closer to the majority of the users, which by

themselves exhibit a higher sum rate, applying the local MM algorithm to these positionss result in an even

higher sum rate performance. From Table 5.5, Local MM (without Lloyd) is shown to have a 8.16% increase

in sum rate at ρr = 30 dB over the Lloyd algorithm, over double the 3.75% increase of the Local MM (with

Lloyd). The 95%-likely rate performances of both the local MM algorithms implemented are anticipatedly

lower than the Lloyd algorithm. The results show that in this situation when the user density is changed

to a small degree, the fine-tuning procedure can be directly applied to the existing AP positions as opposed

to repeating the AP placement process followed by the fine-tuning procedure. The advantage in this case

is that the local (and limited) information exchange alone is necessary instead of the complete information

exchange required by the AP placement algorithms. However, it is important to note that the difference in

the the user distribution is byond a certain degree, then the AP placement process must be executed once

again.

5.8 Conclusion

In this paper, we have addressed cell-free access point (AP) deployment in uplink multiple-input-

multiple-output (MIMO) systems for optimal throughput. To the AP placement problem, we added user

position determination, limited AP cooperation, and fine-tuning of the AP positions. Accordingly, a multi-

step deployment process was proposed where agglomeration clustering of the APs first allowed limited coop-
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Figure 5.8: Sum rate as a function of ρr for the Lloyd algorithm and the local MM fine-tuning procedure applied to

the Lloyd algorithm positions (with Lloyd) and applied to the fine-tuned AP positions of the previous distribution

(without Lloyd).
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Figure 5.9: 95%-likely rate as a function of ρr for the Lloyd algorithm and the local MM fine-tuning procedure applied

to the Lloyd algorithm positions (with Lloyd) and applied to the fine-tuned AP positions of the previous distribution

(without Lloyd).

eration to calculate the user positions through multilateration, necessary for the placement process. Then,

an AP placement solution is implemented. Finally, to further improve the system throughput, fine-tuning

procedures based on local max-sum and local majorization-minimization methods (for sum rate maximiza-

tion), and local max-min (for minimum rate maximization) were proposed. The entire procedure presents a

practical and a more complete approach to cell-free AP deployment compared to prior works. Accordingly,

in addition to the Lloyd algorithm providing a good sum and minimum rate performance for the AP place-

ment step, the fine-tuning procedures are able to generate up to around 4% increase in sum rate and 8%

improvement in the 95%-likely rate of the network.

Chapter 5, in part, is a reprint with permission of the material as it appears in the paper: Govind

Ravikumar Gopal and Bhaskar D. Rao, “Throughput oriented access point deployment in cell-free massive
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MIMO systems,” which is submitted to IEEE Transactions on Wireless Communications. The dissertation

author was the primary investigator and author of these papers. These works were supported in part

by National Science Foundation (NSF) under Grant CCF-2124929 and Grant CCF-2225617, in part by

Qualcomm Inc. through the Faculty-Mentor-Advisor program, and in part by the Center for Wireless

Communications (CWC), University of California San Diego.
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Appendices

5.A Proof of Solution for the Local MM Method

The objective function in (5.17) can be simplified as follows

∑
pk∈Cm

log
(
1 + ψZF

k

) (a)
≈

∑
pk∈Cm

log

(
M∑

m=1

βmk

)
,

=
∑

pk∈Cm

log

βmk +

M∑
s=1
s̸=m

βsk

 ,

(b)
=

∑
pk∈Cm

log

(
1

||pk − qm||γ
+ tmk

)
,

(5.30)

where in (a) we have assumed a high SNR regime and in (b), we have used the LSFC model from (5.2),

tmk =
M∑
s=1
s̸=m

1
||pk−qs||γ , and the pathloss constant c and shadow fading are neglected. In order to align the

optimization problem in (5.17) with the MM framework, it is converted to a minimization problem by

negating the objective function. Thus, letting J be the new objective function, we have

J = −
∑

pk∈Cm

log

(
1

||pk − qm||γ + ϵ
+ tmk

)
, (5.31)

which can be majorized. Thus, the new optimization problem is

arg min
qm

∑
pk∈Cm

log

(
||pk − qm||γ + ϵ

1 + ||pk − qm||γtmk

)
. (5.32)

Note that we have added a constant ϵ > 0 which is typically a very small quantity and is used to prevent

the logarithm from approaching negative infinity if the user position were to overlap with the AP position.

Conforming to the MM framework, a concave function can be upper bounded by its first-order Taylor

expansion [66]

h(z) ≤ h′(zl)(z − zl) + h(zl), (5.33)

where h(·) is concave on R+, z is the variable, zl is the point around which the expansion is carried out,

and h′(·) is the first derivative. In the objective function of (5.32), we can take h(zk) = log(zk) and
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zk = ||pk−qm||γ+ϵ
1+||pk−qm||γtmk

. Accordingly, applying (5.33) to (5.32), the objective function is

J1 =
∑

pk∈Cm

h(zk) ≤
∑

pk∈Cm

[h′(zk,l)(zk − zk,l) + h(zk,l)]. (5.34)

Removing the irrelevant terms in the optimization, we get

J2 =
∑

pk∈Cm

wkzk,

=
∑

pk∈Cm

wk

(
||pk − qm||γ + ϵ

1 + ||pk − qm||γtmk

)
,

<
∑

pk∈Cm

wk (||pk − qm||γ + ϵ) ,

(5.35)

where the strict inequality in the last step is due to the fact that the denominator in the fraction is greater

than 1 as a consequence of the Voronoi regions Cm. In the above expression, the weight wk is defined as

wk = h′(zk,l) =
∂h(zk,l)

∂zk,l

∣∣∣∣
zk,l=

||pk−qm||γ+ϵ

1+||pk−qm||γtmk

,

=
1

zk,l

∣∣∣∣
zk,l=

||pk−qm||γ+ϵ

1+||pk−qm||γtmk

=
1 + ||pk − qm||γtmk

||pk − qm||γ + ϵ
.

(5.36)

This is the weight update equation. It should be noted that we are interested in minimizing the surrogate

objective function J2 defined in (5.35). Given the weights wk, the derivative of the objective function J2 can

be taken and equated to zero in order to find the AP update equation. However, the pathloss exponent γ

prevents us from obtaining a closed-form expression in this case. Fortuitously, the theory of MM states that

it suffices to have the objective function reduce or remain constant from one iteration to the next. Thus, we

can assume that the pathloss exponent in J2 is two, and by taking the gradient, i.e., ∂J2/∂qm = 0, we have

the update equation for the AP position as

qm =

∑
pk∈Cm

wkpk∑
pk∈Cm

wk
. (5.37)
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Chapter 6

Conclusions

In this dissertation, we have broadly discussed access point (AP) placement in distributed massive

multiple-input-multiple-output (MIMO) systems in the context of optimal throughput. We considered two

distinct types of networks, namely the non-cooperative small-cell and the cooperative cell-free systems.

First, the small-cell AP placement problem that takes into account inter-cell interference (ICI)

was investigated and its connection to the vector quantization (VQ) framework carefully explored. It was

established that while VQ is not the same as AP placement, the solution framework, specifically, the Lloyd

algorithm can be used as a stepping stone for throughput optimization and other related problems. Conse-

quently, the inter-AP Lloyd algorithm was proposed to place APs while accounting for ICI and increasing

the minimum rate of the system.

Second, the placement solution was extended to hybrid terrestrial and unmanned aerial vehicle

(UAV) AP systems, where an alternate measure, that is the signal-to-generated-interference-plus-noise ratio

was maximized to place UAV-APs according to the changing user density. Further, load balancing (of cell

occupancies) was considered as another extension problem to address user-AP access delay and two Lloyd-

type algorithms were designed to balance cell occupancies while minimizing the associated throughput loss.

Third, the sum rate and minimum rate maximization AP placement problems in cell-free networks

were analyzed in terms of their solutions structures. The VQ framework was found to be a good candidate

for obtaining AP locations. Consequently, in addition to the Lloyd algorithm, two other matched techniques,

namely the tree-structured VQ (TSVQ) and the probability density function optimized VQ (PDFVQ) were

proposed. In addition to advantages of a distributed solution, promoting cooperation among closely-spaced

APs, and scalability, these techniques were shown to provide good starting points for gradient-based through-

put optimizations.

Finally, to address major challenges in cell-free AP placement, namely user position determination

and limited cooperation in order to reduce backhaul, a multi-step AP deployment procedure was proposed.

This procedure also included a fine-tuning step in which APs locally adjust their positions in order to further

improve the sum or minimum rates.

In terms of future directions, there are multiple problems that can be addressed. The current
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VQ framework is an unsupervised learning method and thus, data driven models can be designed for the

placement of APs. Reinforcement learning schemes, such as a multi-agent deep Q-learning framework can

also be set up for the throughput oriented AP placement problems discussed in this dissertation. Additionally,

the consideration of multiple antennas at both the AP and the user sides must be undertaken to reflect a

true MIMO system. Further, power control can be added as an additional optimization problem to further

improve system throughput.
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