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Advances in GPCR modeling evaluated by the GPCR Dock 2013
assessment: meeting new challenges

Irina Kufareva1, Vsevolod Katritch2, participants of GPCR Dock 2013 (Box 1), Raymond C.
Stevens2,*, and Ruben Abagyan1,*

1UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, 92039, USA

2Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA

Abstract

Despite tremendous successes of GPCR crystallography, the receptors with available structures

represent only a small fraction of human GPCRs. An important role of the modeling community is

to maximize structural insights for the remaining receptors and complexes. The community-wide

GPCR Dock assessment was established to stimulate and monitor the progress in molecular

modeling and ligand docking for GPCRs. The four targets in the present third assessment round

presented new and diverse challenges for modelers, including prediction of allosteric ligand

interaction and activation states in 5-hydroxytryptamine receptors 1B and 2B, and modeling by

extremely distant homology for smoothened receptor. Forty-four modeling groups participated in

the assessment. State-of-the-art modeling approaches achieved close-to-experimental accuracy for

small rigid orthosteric ligands and models built by close homology, and correctly predicted protein

fold for distant homology targets. Predictions of long loops and GPCR activation states remain

unsolved problems.

Keywords
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Introduction

Recent years have been marked by a rapid increase in the number of experimentally solved

structures of G protein-coupled receptors (GPCRs) (Katritch et al., 2013; Venkatakrishnan et

al., 2013), mostly due to technological breakthroughs in membrane protein crystallization
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(Bill et al., 2011; Cherezov, 2011; Chun et al., 2012). The 24 receptors with publicly

available structures to-date remain, however, only a small fraction of more than 350 non-

olfactory/taste GPCRs in the human genome (Fredriksson et al., 2003; Lagerstrom and

Schioth, 2008; Ono et al., 2005). It is an important role of the computational modeling

community to help elucidate the structural details of ligand interactions, specificity and

function for as many of the remaining receptors as possible.

The community-wide GPCR Dock assessment was established to evaluate the progress of

the molecular modeling and ligand docking field in the context of GPCR targets. While of

similar philosophy and organization to CASP and CAPRI assessments (Kryshtafovych et al.,

2014; Lensink and Wodak, 2010; Moult et al., 2014), GPCR Dock focuses on specifics of

GPCR-ligand complexes as opposed to the wider structural proteome dominated by soluble

and globular proteins. It thus addresses a different set of challenges including distinct

intramolecular packing principles influenced by the native lipid environment of GPCRs, a

dynamic conformational equilibrium, evolutionally and conformationally variable loops, all

of which ultimately affect ligand binding and function.

During the first and second assessments conducted in 2008 and 2010, respectively, research

groups from all over the world were challenged to predict the details of ligand interactions in

the A2A adenosine receptor (A2AAR), dopamine D3 receptor, and chemokine receptor

CXCR4, each time using all available experimental information to date (Kufareva et al.,

2011; Michino et al., 2009). These assessments identified 35–40% sequence identity

between target and template as an empirical cutoff for reliable homology-based prediction of

ligand-receptor interactions and highlighted the modeling techniques leading to best

prediction accuracy.

In the year of 2013, the third round of the assessment was organized after the crystal

structures of two human serotonin receptors (5HT1B and 5HT2B) (Wacker et al., 2013;

Wang et al., 2013a) and a human smoothened homolog receptor (SMO) (Wang et al., 2014;

Wang et al., 2013b) were solved in complex with small molecule modulators. Modelers

were invited to submit their predictions of complex structures prior to release of the

experimental coordinates. The assessment targets spanned a wide range of prediction

difficulties, flanked by the 5HT1B receptor on one side (with transmembrane (TM) domain

sequence identity of as high as 48% to the existing structures) and by the SMO receptor on

the other side (with TM sequence identity as low as 14% and with previously unseen

conformations of large extracellular loops (ECLs)). Consequently, the modelers faced a new

set of challenges (compared to previous assessment rounds) including building a reliable

alignment between the target sequence and the available structural templates, prediction of

long loop structures, and prediction of diverse binding pocket locations. The analysis of the

submitted models highlighted the new successful computational methodologies and areas

still in need of development.
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Results

GPCR Dock 2013: description and submission statistics

The GPCR modeling and docking assessment 2013 was performed for four ligand-receptor

complexes: human 5-hydroxytryptamine (5HT or serotonin) receptors 1B and 2B, both in

complex with an agonist ergotamine (Wacker et al., 2013; Wang et al., 2013a) and the TM

domain of the human SMO receptor in complex with two distinct small molecule

antagonists, LY-2940680 (Wang et al., 2013b) and SANT-1 (Wang et al., 2014). For these

four targets, 181, 171, 88 and 88 unique models were submitted by 40, 39, 20, and 20

groups, respectively. The list of participating groups, names, and affiliations is given in Box

1.

The models were assessed by several independent criteria evaluating: (i) the accuracy of

alignment of the target sequence to the available structural templates, (ii) the TM bundle

structure, (iii) the structure of the extracellular domains and loops, (iv–v) definition and

geometry of the binding pocket, (vi) ligand position, and (vii) the atomic contacts between

the ligand and the receptor. The last two criteria constituted the primary focus of the

assessment; they were converted into a single score representing the likelihood of observing

similar deviations among experimentally solved co-crystal structures (the so-called model

“correctness”), and used for final model ranking. All assessment criteria for all models are

reported in Tables S1 and S2. In the assessment report below, we report the best model by

each assessment criterion as well as models within 0.1 Z-score unit (by that criterion) from

it.

Target challenges

TM homology to crystallographic templates—Targets in the GPCR Dock 2013

assessment represented two extremes on the modeling difficulty scale. The level of sequence

identity of the TM domain of 5HT1B to its highest homology templates, turkey β1

adrenoreceptor (β1AR) and human dopamine receptor D3, exceeds 45%, and the

corresponding TM domain backbone RMSD values approach 1 Å (Figure 1), qualifying it as

one of the easier homology modeling cases, approximately the same difficulty as D3 in

GPCR Dock 2010. The 5HT2B receptor appears slightly more challenging with the closest

structural template being ~41% identical in the TM domain, and the lowest backbone

RMSD to the templates being 1.7 Å. The third assessment target, however, represents a

challenge previously unseen in the GPCR Dock assessments with TM domain sequence

identity of less than 15% and significant structural deviations exceeding, even in the TM

domain, 2.7–3 Å from any of the structures solved to date.

Extracellular loop challenge—In contrast to the conserved seven-helical fold of the TM

domains, the structural repertoire of the ECLs and termini in GPCRs is highly diverse and

thus more challenging from the modeling perspective. Except for highly homologous

receptors, GPCR extracellular domains often have different folds (Figure 2). In the serotonin

receptor structures, the observed conformations of ECL2, the longest and the most important

of the ECLs due to its involvement in ligand binding, differ significantly from any GPCRs

solved to date; moreover, there are notable differences between the two receptor subtypes.
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While the dimensions of ECL2 in the SMO receptor structure coincide exactly with those of

5HT1B, the 3D conformation of this loop shares much more similarity with that of bovine

rhodopsin. The SMO receptor also features an intricately folded 36-residue long fragment,

the so-called extracellular domain (ECD) linker, which connects TM1 to the extracellular

cysteine-rich domain (CRD, absent from the crystallization construct). Finally, SMO

demonstrates a novel topology of ECL1 and ECL3 whose lengths (23 and 39 amino acids,

respectively) far exceed those of any other known GPCR structures and whose

conformations are unique in the current GPCR structural universe.

Binding pocket location—Despite the conserved receptor topology, the compounds and

peptides co-crystallized with GPCRs thus far exhibit remarkable diversity in their

interactions. Because determination of the binding pocket (i.e. a subset of residues

interacting with the ligand) is a prerequisite for most docking procedures, this variability

poses an additional challenge for the modelers.

For comparing ligand fingerprints in Figure 3A, residue contacts were projected through the

alignment onto Ballesteros-Weinstein indices (Ballesteros and Weinstein, 1995) that were

originally introduced for class A GPCRs and recently extended to Class F receptors (Wang

et al., 2013b). Ergotamine interactions with the 5HT1B and 5HT2B receptors involves two

distinct sites (Figure 3A,B): (i) “orthosteric” site deep in the TM domain, where ergoline

core interactions closely resemble those observed in other biogenic amine receptors, and (ii)

an “allosteric” site closer to the ECL region. The latter interactions of the cyclic tripeptide

moiety, and especially of the benzyl substituent, have no analogs among the existing

structures and also differ substantially between 5HT1B and 5HT2B complexes. Even more

pronounced is the difference in the pocket location between the two SMO receptor

complexes and the previously solved structures of other GPCRs. SANT-1 is mostly

occupying the pocket in the TM domain making extensive contacts with residues in TMs 2,

3, 6, and 7 (Figure 3A,C) and in the ECL2 that is submerged deeply in the binding pocket

similarly to rhodopsin. In contrast, LY-2940680 makes the majority of its residue contacts in

ECL2 and ECL3 with little to no contacts in TM 3 or 6. The unique contact fingerprints of

SANT-1, and especially LY-2940680, make it impossible to infer the pocket locations by

homology.

Activation state—A part of the serotonin receptor challenge was prediction of the

receptor activation states. Ergotamine is a classical full agonist of 5HT1B but a biased

agonist of 5HT2B, eliciting full β-arrestin-mediated response but only partial G-protein

activation. Corroborating its functional selectivity profile, the crystallographic conformation

of 5HT1B with ergotamine has signatures of a classical active state and closely resembles the

active conformation of β2AR (Rasmussen et al., 2011; Wacker et al., 2013), while the

conformation of 5HT2B is more consistent with an inactive state in the TM5-TM6 region,

but an active state in TM7.

Model alignment accuracy

Establishing a residue correspondence between the target sequence and the homologous

structures is a prerequisite for any homology modeling procedure. Although the
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complementary ab initio modeling approaches do not require the alignment as such, they

still rely on identification of structural elements such as TM helices or loops, within the

sequence. Alignment inaccuracies as small as a one-residue shift in a single helix inevitably

lead to spatial misplacement of residues in the model and disruption of correct intra- and

intermolecular contacts.

We constructed a structure-based alignment of the TM domains in the assessment targets to

all available structural templates. The obtained residue correspondence is straightforward for

the 5HT1B and 5HT2B receptors, but somewhat ambiguous for the SMO receptor whose

TM7 can be aligned with the corresponding parts in class A receptor structures in two

possible ways differing by one helical turn. Next, a structure-based alignment of each model

to all available structural templates was built and compared to the “correct” alignment in the

TM region. The obtained alignments coincided precisely for the majority of the 5HT1B and

5HT2B models, but had one or more mismatches for the majority of the SMO models

(Figure 4A–C). At least one of the TM helices 1, 2, 4, 5, 6, and 7 was shifted by one to four

residues in most cases (TM3 homology appeared to be stronger so most groups aligned it

correctly); in some models the shift was as large as 30 residues (Table S1). The fewest

alignments errors were observed in SMO receptor models by groups GaTech (1-residue shift

in part of TM5), UWash (1 residue shift in TM7), INRIA (1 residue shifts in each of TMs 5,

6, and 7), UMich-Zhang (3 residue shift in TM6 and 1 residue shift in TM7), COH-Vaidehi

(1 residue shifts in parts of TMs 5 and 6), and SNU (3-, 2-, 1, and 1 residue shifts in TMs 1,

2, 5, and 7, respectively).

As described in Supplemental Methods, the successful alignments were obtained with the

use of profile-profile comparisons, 3D model input via threading, or their combination, as

opposed to purely sequence-based alignment methods such as BLAST or Clustal W. Groups

used such packages as HHSEARCH (Soding, 2005), FUGUE (Shi et al., 2001), RaptorX

(Peng and Xu, 2011), SPARKS-X (Zhou and Zhou, 2004), I-TASSER (Roy et al., 2010), or

the meta-threading package LOMETS (Wu and Zhang, 2007). The only accurate alignment

(that by COH-Vaidehi) obtained by Clustal W (Larkin et al., 2007) was built in conjunction

with secondary structure prediction via PSIPRED (McGuffin et al., 2000) and manual

adjustments in order to achieve agreement with experimental residue mutagenesis (Dijkgraaf

et al., 2011). In contrast, the procedure employed by UMich-Zhang was fully automatic, but

still resulted in one of the most accurate target-template alignments in the SMO assessment.

Threading and profile comparisons have therefore proved their usefulness in recognition of

distant homology for GPCRs.

TM bundle structure prediction

The accuracy of prediction of TM bundle geometry was assessed by measuring the RMSD

of the backbone atoms in the models following their optimal superposition with the

corresponding atoms in the answers as described in Supplemental Analysis Methods. The

conserved heptahelical topology in GPCRs facilitates the prediction of this domain;

however, ambiguities may arise due to residue insertions or deletions leading to helical

kinks and bulges, as well as due to large variations in the length of the loops connecting the

helices, leading to displacement of the helix ends.
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Among 5HT1B predictions in GPCR Dock 2013, the median TM bundle RMSD to the

answer was 1.89 Å, with the lowest values achieved by groups COH-Vaidehi (model #5,

1.52 Å), UWash (model #1), and EPFL (model #3) (Figure 4D–F, Table S1). Many

predictions had were found in the classical active state (Supplemental Results; Figure S1D).

5HT2B predictions had the median TM domain RMSD of 2.14 Å, with the best accuracy

achieved by group NCATS (model #3, also 1.52 Å). The biased active state of this receptor

was not predicted in any of the models (Supplemental Results; Figure S1E). The median TM

bundle RMSD for the SMO receptor was 6.33 Å, with the lowest values achieved by group

GaTech (SMO/SANT-1 models #1–5, from 2.78 Å to 3 Å, SMO/LY-2940680 models #1–5,

from 2.97 Å to 3.04 Å) and UWash (SMO/LY-2940680 model #4, 3.29 Å). The decrease in

prediction accuracy was consistent with the target difficulty. As expected, errors in the

sequence alignment led to significant geometry prediction inaccuracies.

Most successful TM predictions for the serotonin receptors (those by COH-Vaidehi, EPFL,

and NCATS) were obtained by homology with the existing aminergic receptor structures

using Modeller (Eswar et al., 2006). Models were selected by either one of the Modeller

energy functions (EPFL, NCATS) or manually (COH-Vaidehi, NCATS). UWash generated

their models for all three receptors by homology with multiple templates and by fragment

assembly with de novo sampling of unaligned regions in RosettaCM. Group GaTech did not

provide the description of their modeling methods.

We compared the achieved prediction accuracy with the so called “naïve” approach based

on threading the target sequence through the coordinates of a homologous experimental

structure. From this perspective, the level of accuracy of the best 5HT2B prediction (1.52 Å)

is remarkable given that the TM domain of the closest experimentally solved structure, that

of dopamine receptor D3 (PDB 3pbl), has a higher backbone RMSD of 1.7 Å. In the cases

of 5HT1B and SMO models, the predictions were no closer to the answers than the best

homology modeling templates (β2AR, PDB 3ny9, with the TM backbone RMSD of 1.19 Å

to 5HT1B and CXCR4, PDB 3oe8, with the TM backbone RMSD of 2.74 Å to SMO).

Extracellular domain prediction

The prediction of ECL conformations in the two serotonin receptors was facilitated by the

presence of homologous similar length loops in the existing experimental GPCR structures.

ECL1 that has the length of 10 and 11 residues in the two receptors, respectively, was

predicted in 31 5HT1B models by 18 groups with backbone RMSD of 1.06 to 2 Å, and in 11

5HT2B models by 6 groups with backbone RMSD of 1.34 to 2 Å (Table S1). More than 50%

of ECL1 atomic contacts with the environment were predicted correctly in 21 5HT1B models

by 10 groups and in 60 5HT2B models by 20 groups (data not shown).

ECL2 which is partially disordered in both 5HT1B and 5HT2B structures was predicted with

much lower accuracy: the best ECL2 backbone RMSD for the experimentally resolved part

of the loop exceeded 3.7 Å for all 5HT1B and 3.9 Å for all 5HT2B models (Figure 4D–F,

Table S1). This was despite the fact that in the majority (120 5HT1B and 97 5HT2B) of

models, the ECL2-TM3 disulfide bridge was captured correctly.
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ECL3 was partially disordered in the 5HT1B structure making it impossible to compare the

predictions to it; the corresponding 13 residue loop in 5HT2B was predicted with backbone

RMSD between 2.27 and 3 Å in 11 models by 6 groups (Table S1). In some cases, the loop

displacement was associated with inaccurately predicted positions of the extracellular ends

of the TM helices while the backbone conformation of the loop was correct. Consistent with

this observation, more than 50% of the loop contacts with its atomic environment were

captured correctly in 64 models by 17 groups (data not shown). The ECL3 conformation and

the orientation of the two cysteine residues in it (C340 and C344 in 5HT1B, C350 and C353

in 5HT2B) were favorable for the disulfide bridge formation in 67 5HT1B and 59 5HT2B

models.

Unfortunately, modeling of long loops or termini with no homology to the existing

structures remains an unsolved problem. None of the SMO models predicted the geometry

of ECD linker (36 residues), ECL1 (23 residues), or ECL3 (39 residues) with acceptable

accuracy: the lowest backbone RMSD after the optimal superposition of the TM domain

exceeded 12 Å, 8 Å, and 7 Å for the ECD linker, ECL1 and ECL3, respectively (Table S1).

None of the models captured the intra-ECD-linker disulfide bond (C193–C213) or the

disulfide connecting the linker to ECL1 (C217–C295). However, it was an encouraging

finding that the helical fold and the disulfide bond in the ECL3 (C490–C507) were correctly

predicted in 12 models submitted by groups UWash (SMO/LY-2940680 models #1,4,5,

SMO/SANT-1 models #4,5), Warsaw (SMO/LY-2940680 models #1,3,5 and SMO/SANT-1

models #1,3,5), and Vanderbilt (SMO/SANT-1 model #4).

ECL2 modeling in SMO was facilitated by its structural similarity to the corresponding

fragment of bovine rhodopsin: when the TM domains are optimally superimposed, the

backbone RMSD of the 19 ECL2 residues equals 3.21 Å. Group UWash modeled SMO

ECL2 with RMSD of around 3 Å (2.92 Å for model #1 and 3.53 Å for model #4). 3.68 Å

and 3.76 Å were achieved by group UMich-Zhang. For both of these groups, the initial

target-template sequence alignment appears to have only minor errors, all localized to TM6

and TM7. Also, group Helsinki-Xhaard achieved the ECL2 RMSD of 3 Å in their model #5

of the SMO/SANT-1 complex despite generally inaccurate target-template sequence

alignment; this was due to the fact that their TM3, TM4, and TM5 alignment was correct

and the large alignment shifts were localized elsewhere. On the contrary, some models with

few alignments errors failed to predict the loop geometry. Therefore, an accurate alignment

in the TM3/TM4/TM5 region appeared necessary, but not sufficient for ECL2 geometry

prediction. The conserved ECL2-TM3 disulfide bond (C314–C390) was correctly predicted

in 70 of the 176 models of SMO complexes.

TM domain prediction accuracy did not correlate with ECL prediction accuracy, except for

the fact that most accurate predictions in both categories were produced based on an

alignment with the least errors. Thus, we also assessed the model population by the

combined accuracy of TM domain and ECL2 prediction (ECL2 was chosen over other

extracellular regions because of its importance in ligand binding). Independent Z-scores

were calculated for TM and ECL2 backbone predictions after eliminating negative outliers

(models deviating from the mean by more than 2 standard deviations) and averaged. The

highest accuracy models differed from the respective population means by 1.12
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(Copenhagen-Gloriam 5HT1B models #1 and 2), 1.38 (UMich-Zhang 5HT2B model #3),

1.33 (UWash SMO/LY-2940680 model #1), and 1.44 (UMich-Zhang SMO/SANT-1 model

#2) standard deviations.

Group Copenhagen-Gloriam built their serotonin receptor models with Modeller using

hybrid templates and selected the best solutions by Modeller DOPE score and visual

inspection. For all three of the assessment target receptors, UMich-Zhang used a composite

approach including profile-profile comparisons, threading, and iterative fragment

reassembly with consequent model refinement at atomic level using fragment-guided

molecular dynamics simulation (FG-MD (Zhang et al., 2011)). UWash generated their

models by homology with multiple templates and by fragment assembly with de novo

sampling of unaligned regions in RosettaCM. Table S1 shows models ranked by their

combined protein prediction Z-scores.

Binding pocket definition and geometry

The correctness of the binding site residue selection and the local accuracy of the binding

site atom geometry are parameters only weakly correlating with the overall structural

accuracy of the model but much more important for ligand docking and screening

applications. We therefore evaluated these parameters separately from the overall model

accuracy. The correctness of the binding site residue identification was assessed by

calculating the ligand contact strength “fingerprint” on the model residues and comparing it

with the corresponding “fingerprint” in the target structure. The RMSD of the binding site

residues was used to assess the geometrical accuracy of the pocket and calculated using the

optimal superposition of the TM domains as described in Supplemental Analysis Methods.

The RMSD of the binding site residues was as low as 1.31 Å for the 5HT1B predictions

(achieved in model #3 by group Stockholm-Carlsson) (Figure 5). This model also featured

as high as 81.1% accuracy in the ligand fingerprint determination. Models #2 and 4 by the

same group also had very low binding site RMSD, but were less accurate in the ligand

fingerprint determination. A similar situation was observed in models #1, 2 and 4 by group

Copenhagen-Gloriam. The median binding site RMSD among the 5HT1B models was equal

to 2.35 Å and the median fingerprint accuracy to 57%.

Group Stockholm-Carlsson also produced the most accurate predictions of the binding site

location (79.4% in model #2, with pocket residue RMSD of 1.94 Å) and geometry (1.88 Å

in model #4) in the 5HT2B assessment. The median values were 58.7% and 3.42 Å.

Both groups (Stockholm-Carlsson and Copenhagen-Gloriam) built their predictions using

Modeller (Eswar et al., 2006) using hybrid templates (β1AR, β2AR, D3, H1 receptors). A

critical step in the Stockholm-Carlsson modeling procedure was assessment of the models

by VLS (virtual ligand screening) enrichment, in an iterative manner. Alternatively,

Copenhagen-Gloriam prioritized their predicted compound poses by agreement with other

aminergic GPCRs, ligand SAR, mutation and other species data. Both groups manually

inspected their models at the final selection step.
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Far less accurate predictions were made for the SMO receptor complexes. The best pocket

RMSD among the SMO/LY-2940680 predictions was equal to 9.06 Å (model #5 by group

GaTech), median 13.28 Å. The highest pocket fingerprint accuracy was only 25% (model #1

by group SNU), median 10.7%. However, the binding site predictions were considerably

more accurate for the SMO/SANT-1 complexes with the lowest pocket RMSD of 4.63 Å

(model #2 by group UMich-Zhang), and the best binding site location accuracy of 58.9%

(model #5 by group GaTech) (Table 1). The binding mode of the SANT-1 molecule

involves fewer ECL contacts and more closely resembles the previously observed binding

models of agonists and antagonists in other GPCRs, possibly contributing to better

predictions of both pocket location and geometry in the SMO/SANT-1 assessment in

selected models. The median values were 10.66 Å and 15.8%.

Understandably, top ranking predictions for SMO were obtained in the models with fewest

alignment errors. Group SNU docked the ligands with GalaxyDock (Shin et al., 2013) and

performed manual mutagenesis-guided ligand pose selection. Group UMich-Zhang

identified the binding sites by a combination of binding-specific substructure comparisons

and sequence profile alignments (the so-called COACH (Yang et al., 2013b)). To generate

ligand-GPCR complexes, they used a low-resolution coarse grain docking method, BSP-

SLIM (Lee and Zhang, 2012), that recognizes local shape and feature complementarities

between the ligand and the binding pocket.

Ligand RMSD and ligand-pocket contacts

The main focus of the assessment for the serotonin receptor targets was prediction of the

binding pose of the ligand and its contacts with the surrounding residues. For the 5HT1B/

ergotamine complex, the median ligand RMSD was 5.44 Å, with the best result as low as

1.51 Å (Figure 6A, Table S2). The median contact prediction accuracy was equal to 15.1%,

the best being 51.1%. The best RMSD and the best contact prediction were achieved in

models #2 and #3, respectively, by group Stockholm-Carlsson. The corresponding statistics

for the 5HT2B receptor were (Figure 6B, Table S2): the median ligand RMSD of 5.54 Å,

best 1.05 Å (achieved in model #3 by group Warsaw); the median contact accuracy of

17.8%, best 53.1% (achieved in model #4 by group Stockholm-Carlsson). The most accurate

models were generally accurate by both criteria, RMSD and contacts.

Because the goal of molecular modeling is to ultimately complement the experimental

structure determination efforts, it was interesting to compare the achieved levels of accuracy

to the variation observed in the crystallographic experiments and resulting from the natural

protein flexibility and/or limited experimental resolution. Using a large set of pairs of PDB

complexes of identical protein/ligand composition, we derived statistics for answering this

question (Supplemental Methods; Figure S2). According to our calculations, the accuracy of

the best models corresponded to only 3.35% of the experimental distribution for 5HT1B and

to 5.11% for 5HT2B (Table S2). We further refer to these percentiles as the measure of

“correctness” of the models.

The above results show that the 2013 serotonin receptor ligand prediction accuracy was

slightly below than that achieved in 2010 for the D3/eticlopride complex (0.96 Å RMSD

with 58% of contacts, correctness of 8.09%). However, it would be incorrect to conclude
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that the computational modeling field has not progressed, because the complexity of the

ligand docking problem in the present assessment was much higher. As described above,

ergotamine simultaneously occupies orthosteric and allosteric pockets in the target receptors.

Extensive and diverse contacts in the ECL regions create an additional modeling challenge

that was not a part of 2010 D3 assessment. To quantitatively estimate the progress, we

evaluated the quality of predictions the orthosteric part of the ergotamine molecule, i.e. its

ergoline core (Table S2). For 5HT1B, the median ergoline core RMSD was 3.94 Å, and the

best results was as low as 0.72 Å (achieved in model #1 by group Schrödinger). The median

contact prediction accuracy was 22.9%, and the best as high as 65.3% (model #3 by group

Copenhagen-Norn). For 5HT2B, the median ergoline core RMSD was equal to 3.69 Å, the

best being 0.64 Å (model #2 by group NCATS). The median contact accuracy equaled

23.9%, with the best achieving 72.6% (model #2 by MerzPharma). This level of accuracy

places the ergoline core predictions in the shaded area of the ligand RMSD/contact plot in

Figure 6, which represents the experimental variation of the corresponding parameters. The

correctness of the best ergoline core predictions corresponds to 13.01% and 19.55% of the

experimental distribution in the 5HT1B and 5HT2B assessments, respectively.

The most accurate 5HT1B ligand predictions also featured low RMSD of the binding pocket

residues (Figure 6E). However, the correlation was not as straightforward for 5HT2B

complexes, as some accurate ligand predictions were achieved in relatively inaccurate

pockets. A closer inspection of the models showed that the pocket inaccuracies in these

models were of local nature and observed either in the ECL2 residues or in a single

incorrectly aligned TM helix (for the models by MerzPharma).

Far less accurate predictions were made for the SMO receptor complexes (Figure 6C,D,

Table S2). The lowest ligand RMSD for SMO/LY-2940680 complex models was as high as

4.42 Å (model #3 by group Vanderbilt), and the highest achieved contact ratio was only

8.8% (model #1 by the same group). Due to the more “traditional” location of the binding

site in the SMO/SANT-1 complex, the accuracy was marginally better for this target: the

lowest RMSD of 4.31 Å (model #5 by group GaTech) and the best contact ratio of 12.3%

(model #5 by group SNU). The median ligand RMSD exceeded 10 Å and median fraction of

contacts was less than 1% for both SMO receptor complexes. In the context of experimental

variation, these values correspond to approximately 0.1% percentile of the distribution

(Table S2). Unlike in the serotonin receptor models, no correlation was observed between

RMSD and contacts in the SMO predictions.

By the rules of the assessment, the participants submitted at most five models for each target

and ranked these models according to the degree of their confidence in the correctness of the

prediction. As in the 2010 assessment, no correlation was observed between the rank and the

accuracy of the models (Figure 7).

Analysis of best models

Two 5HT1B and seven 5HT2B models stood out as their ligand prediction accuracy brushed

the experimentally observed variation within an arbitrarily chosen cutoff of 2% (the

“correctness” column in Table 1, Figure 6). Among 5HT1B models, both first and second top

ranking predictions were submitted by group Stockholm-Carlsson as their models #2 (Figure
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8A) and 3, respectively. The models contained no alignment errors. For model #2, the TM

backbone RMSD and ECL2 RMSD were 1.82 Å and 4.34 Å from the answer, whereas

model #2 was marginally closer to the answer in the TM domain (TM backbone RMSD of

1.66 Å). The receptor prediction accuracy was at 0.93 standard deviations above the mean of

the model population. The geometry and the composition of the binding pocket are among

the best in the assessment (RMSD of 1.41 Å and 1.31 Å over the heavy atoms of the 19

pocket residues, 1.2 Å and 1.07 Å for the 14 residues in the TM domain and less than 1.5 Å

for the 3 ECL2 residues, 77% and 81% accuracy in the pocket fingerprint prediction). The

docked ligand featured non-hydrogen atom RMSD of 1.51 Å and 2.09 Å for the two models,

and reproduced 47% and 51% of the experimental ligand-pocket atomic contacts. To derive

their complex models, the authors used the approach that has proved successful in the

previous assessment and in multiple GPCR modeling applications (Carlsson et al., 2011;

Katritch and Abagyan, 2011; Katritch et al., 2011; Katritch et al., 2012; Mysinger et al.,

2012; Weiss et al., 2013); namely, they carried the refinement of their models in an iterative

manner evaluating, at each iteration, the enrichment of known ligands in virtual screening.

The prediction of the ergoline core was only moderate in these two top 5HT1B models

(Table S2). The best ergoline core accuracy was achieved in the models #1 by Schrödinger

(0.72Å RMSD, 65% of correct contacts) and #3 by Copenhagen-Norn (0.86Å RMSD, 65%

of correct contacts). Both demonstrate highly accurate prediction for the pocket residues. In

the former model, the correct ergoline core pose was ranked high by taking into account

conservation of pocket residues between 5HT1B and other ergoline-binding aminergic

receptors (see Supplemental Methods).

The most accurate 5HT2B model, Warsaw #3 (Figure 8B), contained no detectable

alignment errors and had 2.12 Å backbone RMSD over the 192 TM domain residues and

2.69 Å RMSD over all non-hydrogen atoms of the 23 binding site residues. 76% of the

pocket fingerprint was identified correctly. The ligand deviated by RMSD of only 1.05 Å

from its crystallographic pose and correctly reproduced 50% of experimental ligand-pocket

contacts. The model was obtained using the procedure implemented in the GPCRM web-site

(Modeller, loop refinement by Rosetta, model selection by DOPE and Rosetta total score)

with subsequent two-step ligand docking, GlideScore scoring, and human expert analysis of

the complexes.

In contrast to the top scoring model, 5HT2B models ranking second, third, and fourth

(MerzPharma #3, 2, 1, respectively) featured one or more residue alignment shift errors in

the top parts of TM helices 4, and 7, resulting in the TM backbone RMSD of 2.68 Å, ECL2

RMSD exceeding 9 Å, and the protein prediction Z-score of below −1 (i.e. one or more

standard deviation below the mean of the model population). However, the alignment and

geometry of TMs 3, 5, and 6 containing most of the ergotamine molecule interactions were

predicted correctly. Consequently, in model #3, 68% of the pocket fingerprint was correct;

the ligand RMSD from the target structure was as low as 1.15 Å, and ligand-pocket contacts

were reproduced with the accuracy of 45%. Moreover, these models feature some of the

most accurate predictions for the ergoline core with RMSD of 0.66 Å and 73% of correct

contacts (Table S2). These predictions are closely followed by three models from the
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Scandinavian teams (Stockholm-Carlsson #2, Copenhagen-Norn #1, and Stockholm-

Carlsson #4) with ligand RMSD below 2 Å and contact prediction accuracy exceeding 50%.

Along with, and possibly enabling the ligand prediction, Stockholm-Carlsson models also

feature high precision in prediction of binding pocket residues not only in the TM domain

(RMSD of 1.53–1.68 Å), but also in ECL2 (RMSD of ~2.3 Å for the 4 ECL2 residues in

direct contact with the ligand).

The top scoring model of the SMO/LY-2940680 complex (Vanderbilt #3, Table 1, Figure

8C) only weakly resembles the experimental structure with the ligand deviating from the

answer by as much as 4.42 Å and no strong correct contacts (contact prediction accuracy of

2%). Marginally better contact prediction accuracy was achieved in the top-ranking models

of SMO/SANT-1 complex (SMO/SANT-1: GaTech #5, UMich-Zhang #3, SNU #5, Table 1,

Figure 8D), probably owing to a more traditional TM location of the SANT-1 binding

pocket (7%, 11%, and 12% of contacts captured, respectively). As with other assessment

criteria, the accuracy of target-template alignment appeared a prerequisite for ligand pose

prediction in the SMO receptor. Proper placement of some pocket residues allowed the

authors to follow their docking procedure with mutagenesis-guided manual ligand pose

selection. However, even when alignment in the pocket-defining helices is largely “correct”,

partial offsets and shifts of the helical backbone between modeling templates and the SMO

receptor structure impact positioning of the contact residues and ultimately lower contact

recall.

Discussion

The targets in the present assessment presented a new set of challenges for the GPCR

modelers. Despite the high homology to the previously determined structures, the complexes

of the 5HT1B and 5HT2B with ergotamine were hard to predict because the latter makes

extensive (and different) contacts with the flexible ECLs. Additionally, the modelers had to

predict the canonical active state of 5HT1B and the biased non-canonical state of 5HT2B.

The ECL interactions of the ligands could only be predicted with moderate precision: the

binding poses of ergotamine were predicted with RMSD of 1–1.5 Å and about 50% of

correct contacts. Only 3.3–5% of experimentally solved structures pairs with identical

molecular composition deviate from each other in their ligand RMSD and contacts as much

as the best 5HT1B and 5HT2B models deviate from the target receptor structures. This

moderate success correlates with the accuracy in the ECL predictions. In contrast, the

accuracy of best predictions for the small and rigid ergoline core that predominantly

interacts with the TM domain residues, is comparable to ~13–20 percentile of the

experimental variation, with RMSD as low as 0.64–0.67 Å and up to 73% of correct

contacts.

Most successful serotonin receptor predictions were derived using homology modeling,

often using the Modeller software and multiple templates in the form of the available

aminergic receptor structures. As in the previous assessment, the strategy of selecting the

models by their ability to recognize known ligands among similar inactive molecules played

out well. Some of the top-ranking complexes were refined by molecular dynamics
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simulations. Visual inspection and manual or semi-automatic model selection using

subfamily-specific residue contacts, ligand SAR, and mutagenesis data have also proved

productive.

Many of the submitted models successfully captured the activation state of 5HT1B, but not

the biased state of 5HT2B (see Supplemental Results). Availability of structures in various

functional states is a contributing factor for this partial success; however, the lack of

successful predictions for 5HT2B highlights the need for either experimental determination

of multiple functional states of GPCRs or for the development of reliable computational

methods for their prediction. The SMO structure presented a level of challenge previously

unseen in the GPCR Dock assessments, not only because of its extremely low homology to

the existing structures, but also because of its long ECLs whose fold is unique among GPCR

structures solved to-date. The present assessment highlighted uncertainties in the target-

template sequence alignment as the critical bottleneck in the task of modeling by distant

homology. It demonstrated the advantage of composite approaches that incorporate

threading, fragment assembly, and energy-based refinement (e.g. iterative threading

assembly refinement, I-TASSER (Roy et al., 2010; Wu et al., 2007)) in finding the proper

residue correspondence. The growing number of GPCR structures increase our

understanding of the principles of dynamic intra-molecular packing in these proteins; such

knowledge may promote better methods for residue contact prediction (e.g. MemBrain

(Yang et al., 2013a)) and help in recognizing distant homology.

SMO assessment also demonstrated that while the alignment ambiguities can be tackled by

modern algorithms, the structural accuracy of the distant homology models is still in need of

improvement, especially in loop regions. Wise selection of targets for experimental structure

determination can help advance the structural coverage of the GPCR superfamily and boost

elucidation of structure and function of the closer homologs by computational methods.

Materials and Methods

Data collection and models analysis methods, as well as methods, techniques, and

approaches used by the participants of GPCR Dock 2013 for complex model generation are

described in detail in Supplemental Materials.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• The four targets in the 2013 assessment presented diverse challenges for

modelers

• Highly accurate predictions for close homology models and rigid orthosteric

ligands

• Alignment inaccuracies are the major hurdle in modeling by distant homology

• Predictions of loops and receptor activation states remain unsolved problems
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Figure 1.
Difficulty of targets in the GPCR Dock 2008–10 (A) and 2013 (B) assessments, evaluated as

their sequence and structural similarity to GPCR structures available at the time of the

assessment. Each dot represents a pair of a GPCR Dock target and a PDB template. Higher

TM backbone RMSD (x-axis) and lower sequence identity (y-axis) indicate a more

challenging modeling case. For receptors with multiple crystal structures, the lowest RMSD

to the assessment target is plotted.
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Figure 2.
Topology and conformation of the extracellular loops in previously solved structures (A)

and the three assessment targets (B).
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Figure 3.
(A) Contact strength fingerprints of the ligands on the receptor residues in the GPCR Dock

2008, 2010 and 2013 targets; (B–C) 2013 assessment target contacts in 3D. 5HT1B and

5HT2B receptor interactions with ergotamine are color-coded magenta and cyan,

respectively; ribbon not displayed for TM helices 6 and 7. SMO receptor residue contacts

with LY-2940680 and SANT1 are color-coded blue and orange, respectively; ribbon not

displayed for TM7. Only residue contacts with cumulative strength above 1, according to

Supplementary Analysis Methods, are depicted. NC – no contact. For the SMO receptor, one

of two possible Ballesteros-Weinstein numberings in TM7 is arbitrarily chosen.
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Figure 4.
Protein structure prediction in GPCR Dock 2013. (A–C) Sequence alignment errors

observed in the submitted models of 5HT1B, 5HT2B and SMO receptors. Each model is

represented by a continuous line. TM helices 1 through 7 are shown on the horizontal axis;

the vertical shift of a line with respect to the axis indicated indicates the average error in the

alignment of the corresponding TM helix. (D–F) Scatter plot of TM domain backbone

RMSD (horizontal) vs ECL2 backbone RMSD (vertical) for the predictions of three targets

in GPCR Dock 2013. See also Supplemental Results, Table S1 and Figure S1.
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Figure 5.
Scatter plot of binding pocket heavy atom RMSD (horizontal) vs the accuracy of prediction

of ligand pocket fingerprint (vertical) in the models of the four target complexes in GPCR

Dock 2013. See also Table S2.
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Figure 6.
Ligand prediction for the targets in the GPCR Dock 2013 assessment. (A–D) Prediction of

ligand pose and atomic contacts with the pocket residues. The shaded background represents

the experimentally observed distribution of the parameters on the plot (see also Figure S2).

Solid black curves represent isolines of the model “correctness” used for model scoring and

ranking. (E–H) Scatter plot of ligand correctness plotted against the RMSD of binding

pocket residues. In (A), (B), (E) and (F), predictions for the ergoline core and the TM part of

the binding pocket are shown in light pink and light cyan for 5HT1B and 5HT2B,

respectively. See also Table S2.
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Figure 7.
Distribution of model correctness by confidence ranks assigned to the models by the

authors. See also Table S2.
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Figure 8.
Highest ranking models of the 4 targets in GPCR Dock 2013.
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