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Abstract: When macroblocks are lost in an MPEG decoder, the decoder can try
to conceal the error by estimating or interpolating the missing area. Many di�erent
methods for this type of concealment have been proposed, operating in the spatial,
frequency, or temporal domains, or some hybrid combination of them. In this paper,
we show how the use of a decision tree that can adaptively choose among several
di�erent error concealment methods can outperform each single method. We also
propose two promising new methods for temporal error concealment.

1 Introduction

When video signals are compressed and transmitted over unreliable channels, some
strategy for error control or concealment must be employed. Possible strategies in-
clude forward error correction added at the encoder, early re-synchronization and
post-processing methods employed by the decoder, and interactive requests for re-
peated data, involving both encoder and decoder. In this paper, we are concerned
with the set of post-processing methods that can be employed by the decoder. We
consider the single-layer case where coding modes, motion vectors, quantized DCT
coe�cients, and other information about macroblocks are all sent with the same pri-
ority. When errors strike the bitstream, we assume the decoder loses all information
about that slice up to the next resynchronization point. In the absence of block
interleaving, a horizontal swath of macroblocks is missing, and the decoder's postpro-
cessing methods seek to conceal this from the viewer. A variety of alternatives exists:
spatial domain interpolation, estimation in the frequency domain, temporal conceal-
ment involving locating appropriate blocks in a reference frame. Which method is
best depends on the characteristics of the missing block, its neighbors, and the overall
frame. In this work, we design a decision tree which can examine these characteris-
tics and choose among several error concealment (EC) methods. The decision tree
provides lower distortion in the concealed blocks than does the use of any single �xed
concealment method among those tested. We also present two new methods for tem-
poral EC, one which attempts to estimate the parameters of a global camera pan,
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and one which splits the missing macroblock (MB) in half for separate use of motion
vectors. The paper is organized as follows. In the remainder of the introduction, we
review existing EC methods. In section 2 we discuss the CARTTM algorithm for clas-
si�cation tree design. We present in section 3 our new EC methods, as well as other
ones available to our decision tree. Error simulations and results are in section 4.

Prior work on error concealment: A good recent review of EC methods for
video compression is provided in [5]. The post-processing error concealment methods
with which we are concerned can be divided into three main groups.

Frequency concealment (FC): In frequency concealment, some low-order DCT co-
e�cients of the missing blocks are estimated using either the corresponding DCT
coe�cient of neighboring blocks, or using the neighbor's DC values. These methods
cannot be used to estimate high-frequency coe�cients.

Spatial concealment (SC): One can interpolate directly in the spatial domain. If
one had neighboring blocks on all 4 sides, then each pixel in the missing MB could
be reconstructed, for example, by using bilinear interpolation from the four nearest
pixels. If MBs are available only above and below the missing MB, then one can do
one-dimensional linear interpolation from the two nearest neighboring pixels. Other
strategies exist, for example, directional interpolation that seeks to preserve edges [4].
In general, spatial concealment methods are the most complex, since a computation
must be done for each pixel.

Temporal concealment (TC): One can attempt to reconstruct the motion vector
of the lost MB, and use the referenced block for concealment. If the estimation
of the motion vector (MV) is inaccurate, the block obtained will have distracting
artifacts at the boundaries with its neighbors. The MV can be estimated using, for
example, the average or median of the MVs from MBs above, below, and diagonal.
Alternatively, each neighboring macroblock's MV can suggest a candidate reference
block; the candidates are all checked to see which one produces the best match for
the boundary pixels.
A variety of hybrid algorithms have been proposed. For example, in TC the ref-

erenced block can be further improved by spatial smoothing at its edges, to make it
conform to the neighbors, at the expense of additional complexity. In [6], a MB is
estimated by satisfying a weighted combination of spatial smoothness and temporal
smoothness constraints.

Adaptive concealment methods: Often, error concealment involves using a
single �xed method for reconstructing any MB which is lost, however, a few adaptive
EC methods have been proposed. In [6], the coding mode and block loss patterns
are clustered into four groups, and the weighting between the spatial and temporal
smoothness constraints depends on the group. A further level of adaptivity appears
in [3] and [2] where small �xed decision trees are used. In [3], temporal concealment
is used for most blocks. However, a scene detector (which looks at the mean and
variance of the MVs in a frame, as well as at the number of intra-coded blocks)
attempts to detect scene changes and irregular motion, in which case TC is likely to
do poorly. In that case, a decision is made next on complexity. If there are too many
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lost blocks, then spatial concealment cannot be used in real time for this frame. If
the complexity constraint is satis�ed, then a last choice is made between FC and SC
based on a 5-category classi�cation of the overall activity and color requirements of
the video. Similar criteria are used in [2]. A single-split decision tree (two terminal
nodes) is proposed for P and B frames. If the variance of the MVs in the frame does
not exceed a threshold, and also the number of intra-coded MBs does not exceed its
threshold, then SC is used, otherwise TC is used. For I-frames, a tree with two splits
(3 terminal nodes) is used to choose between SC and FC.
The work discussed here is in a similar spirit, in that the EC method is chosen

by a decision tree which looks at the context of the missing MB. We consider larger
trees where the splits are chosen based on a training sequence of data, and thus where
the trees can be tailored for particular sequences, or for an individual GOP (group
of pictures). The decision trees would in this latter case need to be included as side
information with each GOP. There are other approaches in which enhanced capability
for error concealment comes at the expense of having to use side information. The
MPEG-2 standard allows the use of concealment motion vectors (CMVs) to be trans-
mitted for all intra-coded MBs; this leads to enhanced EC, but the bits employed for
the CMVs detract from the source coding rate. Similarly, the use of more slices per
horizontal strip costs more bits but allows faster re-synchronization. The transmis-
sion of EC decision trees provides yet an additional trade-o� between the bit-rate for
side information and the EC advantage under noisy conditions.

2 Classi�cation tree design

The CARTTM algorithm for designing classi�cation and regression trees has its origins
in a 1984 monograph by Breiman, Friedman, Olshen, and Stone [1]. The general
paradigm is as follows. Let x be a vector of measurements, and let C be a set of
classes: C = 1; 2; :::J. In our case, the vector x is a set of measurements associated
with a missing MB. For example, x will include information on the MVs for the MBs
above and below, and on the number of non-zero AC coe�cients for the MBs above
and below. C is a set of possible EC methods. A classi�er is a function d(x) which
assigns to every vector x a class from C; the classi�er can be thought of as a partition
of the measurement space into J disjoint subsets.
A learning sample or training sequence L consists of data (x1; j1), (x2; j2), : : :,

(xN ; jN) on N cases where the class is known, that is, N macroblocks for which the
best EC method is known. To form the training sequence, we can take each MB in
the sequence, assume it is lost, reconstruct it using each of the EC methods, and
see which one yields the smallest MSE. The measurement vector can include both
ordinal and categorical variables. For example, the coding mode of the top MB is a
categorical variable; its MV (if it has one) is an ordinal variable. The root node of
the tree contains all the N training cases; a mix of best EC methods is present for the
data in this root node. The goal of CART is to successively subdivide the training set
using binary splits in such a way that the data associated with the terminal nodes of
the tree do not have a mix of best EC methods; rather each node should be as \pure"
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as possible. To accomplish this we must be able to measure the purity or impurity of
a set of data; we used the Gini index of diversity [1].
During the design of the classi�cation tree, we consider, for each terminal node of

the tree, a standard set of possible splits of the data in that node. In the standard set,
each split depends on the value of only a single variable. For each ordered variable
xm, we include all splitting questions of the form \Is xm � c?" If xm is categorical,
taking values in B = fb1; b2; : : : ; bLg, then we include all questions of the form: \Is
xm 2 S?" as S ranges over all subsets of B.
There is a �nite number of distinct splits, since the learning sample contains only N

distinct points. For each single variable, we �nd the split which provides the greatest
decrease in node impurity. We compare all of these, and �nd the best overall split of
the data. A class assignment rule assigns a class j 2 f1; 2; : : : ; Jg to every terminal
node t. The class assigned to node t is denoted j(t). A simple rule is to assign the
most popular class for each terminal node; this is called the plurality rule.
Given a classi�er d, we denote by R�(d) the \true misclassi�cation rate" of d.

There are three standard ways of estimating R�(d): cross-validation, test sample, and
the resubstitution estimate (in which the classi�er is designed using L, and then the
samples in L are run through the classi�er to see how many of them get misclassi�ed).
One challenging question with the CART algorithm is how to grow the right-sized
tree. On a learning sample, growing a larger and larger tree will continue to reduce
the resubstitution estimate of misclassi�cation error, until such time as each terminal
node is completely pure and the resubstitution estimate is zero. However, such a tree
is unlikely to perform well on other data. It is common to use either a test sample or
cross-validation to handle this.

3 Error concealment methods

We considered the eight di�erent EC methods listed in Table 1. The �rst column
lists the name by which we reference the methods; the second column lists the types
of frames for which it is used, and the last column summarizes how it works.
The spatial interpolation method works by linearly interpolating within a vertical

column from the two nearest pixels in the adjacent top and bottom MBs. In frequency
interpolation, the lowest 9 DCT coe�cients (for each of the 6 blocks composing the
missing MB as in MPEG-2 main pro�le) are estimated by a weighted average of
the corresponding lowest 9 DCT coe�cients of the blocks above and below. Both
spatial and frequency interpolation can be used for any type of frame. However, this
frequency interpolation requires the presence of the neighbor's DCT coe�cients, thus
both top and bottom MBs must be intra coded, which normally happens less than 5%
of the time for P frames and 0.5% for B frames. So FC is not used as a concealment
method for P and B frames.
There are �ve di�erent methods which depend on the presence of other motion

vectors in the frame, and so are not immediately applicable to I frames. Two of these
are new, and are denoted \panning" and \top/botMV."
Panning: When a camera is panning, many MBs in a scene should have similar MVs
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Method Name Ftype How it works
spatial I,P,B interpolate linearly from boundary pixels in top/bot MBs
frequeny I weighted average of �rst 9 DCT coe�cients of top/bot MBs
panning I,P,B use the camera panning motion vector
top/botMV P,B use top MV for top 8�16 sub-MB, use bottom MV for bottom 1/2
averageMV P,B use the average motion vectors of top and bottom MBs
useonlyMV P,B top or bot MB is I-coded ) use the only MV available
spat+onlyMV P,B use only available MV for nearest half, spatial interp. for rest
copyPmb I copy co-sited MB from previous P frame if it's I-coded or has MV=0

Table 1: Our set of available methods for error concealment

that correspond to the true panning motion. Individual MBs might have di�erent
MVs for a variety of reasons such as noise and object motion. Also, MBs in a back-
ground area of low variation might �nd any number of excellent matching blocks in
the reference frame; the MV corresponding to the actual pan might not be chosen as
the best if the area is homogeneous. If the global panning MV can be estimated, it
might constitute a better estimate for EC purposes than the MVs of the neighboring
blocks. We estimate the panning MV by putting all non-zero MVs for the current
frame into a histogram with 47�47 bins. The histogram bin with the largest count is
assumed to represent the global pan. This was found to give better results compared
to just averaging together all non-zero MVs for the frame, since averaging includes
objects which may be moving contrary to the global panning direction. This method
can be applied to I frames by using the panning parameters estimated from the pre-
vious P frame.
Top/botMV: In a P or B frame, if both the top and bottom MBs have MVs asso-
ciated with them, we can estimate the MV for the missing MB by taking the average
of the ones above and below (averageMV method). If the MVs above and below are
very di�erent in magnitude or direction from each other, it might not make sense to
average them. Instead, we might wish to use the MV for the block above for the top
half of the missing MB (8� 16 sub-macroblock for luminance and 4� 8 sub-block for
chrominance), and use the MV for the block below for the bottom half (top/botMV
method). This method performs very well, but it has the disadvantage that since we
are not providing one single MV for the missing MB, we cannot consider the error
concealer as a front-end to a standard MPEG-2 decoder. If exactly one of the top or
bottom MBs is intra-coded, then we have only one motion vector to go by. We might
want to use this one as the MV for the entire missing MB (useonlyMV) or we might
want to use it only for the half MB to which it is closer, using spatial interpolation
for the other half (spat+onlyMV).
The last method in Table 1 was employed only for I frames. If the co-sited MB in

the previous P frame was intra-coded, or had zero motion vector, then that MB might
be useful directly as a replacement for the missing MB. If, however, the co-sited MB
had a non-zero motion vector, then likely it is not an accurate reconstruction of the
current missing I frame MB. This method is referred to as copyPmb.
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4 Experiments and results

The CART algorithm was provided initially with a large set of input variables that
attempted to describe the spatial and temporal context of a missing MB. For missing
I, P, and B frame MBs, there were 29, 62, and 101 input parameters, respectively.
Only a small subset of these were actually used by the CART algorithm to divide
the data sets; most of the input parameters were found to be similar to (but not as
good as) other parameters in the set in their ability to purify the tree nodes. Some of
these input parameters are listed in Table 2. The table includes the name by which
we reference the parameter, the types of frame for which it is used, and whether it is
an ordinal (O) or categorical (C) variable. For categorical variables, the number of
categories is listed. The last column describes what the parameter represents.

Parameters related to macroblock position
MBROW I,P,B O vertical position of lost MB
MBCOL I,P,B O horizontal position of lost MB
GOPINDEX I,P,B O GOP number of the lost MB
PICINDEX P,B O frame number (among the same type) of the lost MB
Parameters related to object motion:
MBTYPETB P C(9) describes top/bot MBs intra/zeroMV/nonzeroMV mode
MBTYPETB B C(16) describes top/bot MBs intra/forw/back/interp mode
MBSKIPTB P,B C(4) describes whether top/bot MB skipped or not
MVTOPH P,B O horizontal forward MV of top MB
MVTOPAMP P,B O amplitude of forward MV of top MB
MVDIFAMP P,B O amplitude of di�erence vector:

(top MB forward MV - bottom MB forward MV)
MVANGPDT P,B O angle di�erence between panning MV and top MV
MVPDTSUM P,B O sum of horiz. and vert. di�. between pan and top MV
Parameters related to panning motion:
PNPZERO I,P O percentage of MBs with MV equal 0 in (prev) P frame
PNPFOR I,P O percentage of forward MV coded MBs in (prev) P frame
PNPMVV I,P O vertical Panning MV in (previous) P frame
PNPMVANG I,P O angle of Panning MV in (previous) P frame
Parameters related to texture:
TXNNZTOP I,P,B O # of non-zero DCT coe�cients in top 6 blocks
TXPNZTOP I,P,B O position of last non-zero DCT coef (sum over top 6 blks)
TXSUM4TP I,P,B O sum of selected DCT coe�cients in top 6 blocks
TXDEVTOP I,P,B O range of grey values in top 4 luminance blocks

Table 2: Examples of parameters provided as inputs to the CART algorithm. The
columns list the variable name, type of frame for which it is applicable, whether it is
an ordinal or categorical variable, and a description of what the variable represents.

Three sequences were encoded by MPEG-2 at a rate of 1.5 Mbits/sec. For each
slice that is not the �rst or last slice of a frame, we considered the loss of that slice,
and reconstructed each MB in the slice with each of the candidate methods which
could possibly be used for it. For each MB, the method with the lowest reconstructed
MSE (over both luminance and chrominance blocks) was considered the \winner"
and became the classi�cation associated with that MB. The data set consisting of the
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input parameters and the output class was provided to the CART algorithm, and a
large tree was grown. At each stage of growth, we are concerned with the size of the
tree and its MSE performance. The size of the tree, as measured by the total number
of nodes, is directly proportional to the number of bits that will be required as side
information to transmit the tree to the decoder. The MSE performance of the tree
is measured by choosing, for each MB in the sequence, the EC method dictated by
the tree, and reconstructing the missing MB. The average MSE for all MBs is then
computed. If the tree is allowed to grow large enough, eventually the classi�cation
will be perfect. The MSE will not then be equal to the MSE of the noiseless channel
case (no MB loss), but will be the MSE that results from each MB being concealed
by its best EC method among the set. We call this the \omniscient minimum" MSE,
and it could also be obtained by transmitting a couple of bits explicitly for each MB
to tell the decoder which EC method to use for that MB. What we consider the
\maximum" MSE is the MSE that results from using a single �xed and best method
among the �rst 5 in Table 2. The last 3 methods are excluded as candidates for the
best �xed method because they usually can be applied to less than 25% of the MBs.
Since certain P,B methods cannot be used next to intra-coded MBs, the use of a
single �xed method really means employing one method in all the cases to which it
is applicable, and using other pre-determined methods in those cases where it is not.
The same pre-determined method is also used when the method dictated by CART
is not applicable to the lost MB.
Our goal is to see whether much of this di�erence between the maximum MSE and

the omniscient minimum MSE can be e�ciently captured by the use of a decision
tree, with signi�cantly less overhead than is required by the explicit speci�cation of
EC methods for each MB. We are therefore interested in looking at plots of the MSE
reduction versus the number of nodes as the tree grows. Trees were developed for
several sequences, including mobile calendar, 
ower garden, and bicycle, as well as
for separate GOPs from these sequences.
Figure 1 shows a CART tree with 7 terminal nodes built for the I frames of the

complete 
ower garden sequence (150 frames). At each node of the tree, the oval lists
the splitting test which is applied to split the data of that node. Above the oval is
listed for each node the percentage of the node data that has the spatial, panning, and
frequency EC methods as their best EC method. For example, for the root node of the
tree, the spatial wins 22% of the time, panning wins 61%, and frequency wins 15%.
The remaining methods make up the remaining 2% of the time. The test applied to
this node is to check whether the vertical position of the missing MB is less than or
equal to 10 (MBROW � 10). The tree branches are labeled with the percentages of
the data set that go down each branch. For the terminal nodes, the EC method that
has the highest percentage of wins for that node data is selected by the plurality rule
as the class for all data in the node.
For long sequences, the overhead of transmitting a tree is amortized, and one can

consider larger trees. For the 
ower and mobile sequences, the plots of distortion
reduction versus number of terminal nodes are shown in Figure 3a and b for I and P
frames, respectively. In the plots, the maximum MSE is normalized to 1, correspond-
ing to the MSE of the best single EC method out of the methods available.
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Figure 1: 7-terminal-node tree grown for 
ower garden I pictures, achieves relative
MSE 0.85 compared to an omniscient minimum MSE of 0.68
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Figure 2: 8-terminal-node tree grown for mobile-calendar P pictures, achieves relative
MSE 0.85 compared to an omniscient minimum MSE of 0.72

The misclassi�cation error always decreases as the size of the tree increases; this does
not necessarily mean the MSE also decreases because a larger tree may make fewer
classi�cation errors but which are more costly in terms of MSE. However as shown
in the �gures, MSE usually decreases with increasing tree size as well. For the 
ower
garden I pictures, the best �xed method is panning (corresponding to max MSE of 1),
and the omniscient minimum has a relative value of 0.67. As shown in Figure 3(a),
a tree with 100 terminal nodes (199 total nodes) achieves 0.73. As it takes about
2 bytes to transmit a tree node, this represents an overhead of only 0.04% (for the
sequence of length 150 frames, encoded at 1.5 Mbits/sec and 30 frames/sec). The
average depth of the 100-node tree is less than 7, so the decoder needs to follow a
sequence of only 7 binary tests on the average in order to obtain the concealment
method. As shown in Figure 3(b), the available gains for the 
ower garden P pictures
are smaller, since the omniscient minimum is 0.77; here a tree with 110 nodes reaches
0.87. For the 
ower garden P pictures, the best �xed method was the top/botMV.
In the same �gures, the mobile sequence had a tree of 107 terminal nodes reaching
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Figure 3: MSE vs. number of tree terminal nodes for (a) I frames, and (b) P frames

0.91 with the omniscient minimum being 0.88 for I frames; for P frames, a tree of
107 terminal nodes reaches 0.79 with an omniscient minimum of 0.73. The best �xed
methods for mobile I and P frames were panning and top/botMV also, whereas for
the bicycle sequence, the best �xed method for I frames was spatial, and for P frames
top/botMV and averageMV were almost tied.

I frames P frames

ower garden mobile calendar 
ower garden mobile calendar

Method Name
A-mse R-mse A-mse R-mse A-mse R-mse A-mse R-mse

spatial 1648 1.12 2043 2.85 1806 1.68 2218 2.60
frequency 1640 1.11 2520 3.51
panning 1475 1.00 718 1.00 1624 1.51 853 1.00
top/botMV 986 0.917 784 0.920
averageMV 1030 0.958 847 0.993

no MB loss 134 0.091 162 0.226 144 0.133 176 0.207

omnisc. min 992 0.673 630 0.877 829 0.771 620 0.727

CART-tree 1076 0.733 655 0.912 936 0.870 676 0.793

Table 3: MSE results (averaged over 4 luminance and 2 chrominance blocks) for
various concealment methods, and for no MB loss (noiseless channel). All CART-
trees have 100 to 110 terminal nodes. (A-mse: Absolute MSE; R-mse: Relative MSE)

Some numerical results appear in Table 3. The attained MSE is listed for the
reconstructed MPEG-2 sequence for a noise-free channel (no MB loss) for I and P
frames for the 
ower garden and mobile sequences. The MSE for each �xed method is
listed, as well as the omniscient minimum MSE, and the MSE from using the CART-
tree. These are all given in the column A-mse. Relative MSEs are provided in the
column R-mse, where the best of the single methods is normalized to 1. The MSEs for
all the concealment approaches are much worse than the MSE of the decompressed
MPEG sequence with no MB loss; this is because all concealment approaches are
calculated based on every macroblock being individually lost and concealed, which is
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useful for comparing the concealment approaches against each other.
When implemented at the level of individual GOPs, tree success rates varied. In our

experiment each GOP was composed of 15 frames, including 1 I frame, 4 P frames and
10 B frames. For P frames, in mobile-calendar, trees with about 40 terminal nodes
capture 40% to 80% of the available MSE reduction, capturing on average about
70% and providing MSEs typically in the range of 75% to 90% of the best �xed EC
method. In the 
ower garden sequence, often trees with only 20 terminal nodes can
capture 75% to 95% of the available MSE reduction, capturing on average about 85%
and providing MSEs in the range of 50% to 70% of the best �xed EC method. The
overhead rate for sending one tree of size 20 terminal nodes for each GOP is 0.08%.
In conclusion, we have presented two new temporal EC methods, based on esti-

mating global pan parameters, and separating a MB into top and bottom halves for
separate use of MVs from above and below. These new EC methods were often the
best choices among the �xed methods. The use of a decision tree to choose adap-
tively among the various methods consistently provided lower distortion than any of
the �xed methods alone. With a reduced set of input parameters, decision trees could
be designed in real time for individual GOPs, or for individual frames; or decision
trees could be designed for variable-length groups of data as the previous concealment
strategy becomes outdated. Requiring only a small and adjustable level of overhead
that depends on the tree size, the method can provide an attractive alternative to the
transmission of CMVs, which in any case are only applicable to intra-coded blocks.
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