
UCLA
UCLA Previously Published Works

Title
BetaAlign: a deep learning approach for multiple sequence alignment.

Permalink
https://escholarship.org/uc/item/7kr347mn

Authors
Dotan, Edo
Wygoda, Elya
Ecker, Noa
et al.

Publication Date
2025-01-08

DOI
10.1093/bioinformatics/btaf009

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7kr347mn
https://escholarship.org/uc/item/7kr347mn#author
https://escholarship.org
http://www.cdlib.org/

Phylogenetics

BetaAlign: a deep learning approach for multiple
sequence alignment
Edo Dotan 1,2, Elya Wygoda1, Noa Ecker1, Michael Alburquerque1, Oren Avram 3,
Yonatan Belinkov2,�, Tal Pupko 1,�

1The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv
69978, Israel
2The Henry and Marilyn Taub Faculty of Computer Science, Technion—Israel Institute of Technology, Haifa 3200003, Israel
3The Department of Computer Science, University of California Los Angeles, Los Angeles, CA 90095, United States
�Corresponding authors. Yonatan Belinkov, The Henry and Marilyn Taub Faculty of Computer Science, Technion—Israel Institute of Technol-ogy, Haifa
3200003, Israel. E-mail: belinkov@technion.ac.il; Tal Pupko, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life
Sciences, Tel Aviv University, Tel Aviv 69978, Israel. E-mail: talp@tauex.tau.ac.il.
Associate Editor: Russell Schwartz

Abstract
Motivation: Multiple sequence alignments (MSAs) are extensively used in biology, from phylogenetic reconstruction to structure and function
prediction. Here, we suggest an out-of-the-box approach for the inference of MSAs, which relies on algorithms developed for processing natural
languages. We show that our artificial intelligence (AI)-based methodology can be trained to align sequences by processing alignments that are gener-
ated via simulations, and thus different aligners can be easily generated for datasets with specific evolutionary dynamics attributes. We expect that
natural language processing (NLP) solutions will replace or augment classic solutions for computing alignments, and more generally, challenging infer-
ence tasks in phylogenomics.
Results: The MSA problem is a fundamental pillar in bioinformatics, comparative genomics, and phylogenetics. Here, we characterize and
improve BetaAlign, the first deep learning aligner, which substantially deviates from conventional algorithms of alignment computation.
BetaAlign draws on NLP techniques and trains transformers to map a set of unaligned biological sequences to an MSA. We show that our
approach is highly accurate, comparable and sometimes better than state-of-the-art alignment tools. We characterize the performance of
BetaAlign and the effect of various aspects on accuracy; for example, the size of the training data, the effect of different transformer architec-
tures, and the effect of learning on a subspace of indel-model parameters (subspace learning). We also introduce a new technique that leads to
improved performance compared to our previous approach. Our findings further uncover the potential of NLP-based methods for sequence
alignment, highlighting that AI-based algorithms can substantially challenge classic approaches in phylogenomics and bioinformatics.
Availability and implementation: Datasets used in this work are available on HuggingFace (Wolf et al. Transformers: state-of-the-art natural
language processing. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations.
p.38–45. 2020) at: https://huggingface.co/dotan1111. Source code is available at: https://github.com/idotan286/SimulateAlignments.

1 Introduction
The Needleman–Wunsch algorithm was the first to use dy-
namic programming to efficiently find the best global scoring
alignment between two sequences (Needleman and Wunsch
1970). The inference of a multiple sequence alignment (MSA)
was later shown to be an NP-complete problem (Wang and
Jiang 1994), making the inference task impractical for a large
set of sequences. To overcome this hurdle, popular MSA
algorithms, such as MAFFT (Katoh and Standley 2013) and
PRANK (L€oytynoja 2014), use heuristics to reduce the search
space and consequently, the running time.

There is extensive knowledge regarding the variability of
the evolutionary process among different datasets and line-
ages. For example, amino acid replacement matrices vary be-
tween proteins encoded in the nuclear genome, the
mitochondria, and plastids (Pesole et al. 1999). Indel dynam-
ics also highly vary between datasets and among different
phylogenetic groups (Wolf et al. 2007, Ajawatanawong and

Baldauf 2013, Loewenthal et al. 2021). Furthermore, site-
specific evolutionary rates vary along the analyzed sequence.
For example, amino acid sites that are exposed to the solvent
tend to have higher evolutionary rates compared to buried
sites (Wang et al. 2008). Alignment algorithms using default
configurations implicitly assume that the evolutionary dy-
namics do not substantially vary among different datasets
and within a single dataset. The general inability of MSA in-
ference algorithms to automatically tune their scoring scheme
to the specific dataset being analyzed is a shortcoming of pre-
sent alignment programs. The “one matrix fits all biological
datasets” and “one matrix fits all regions within a dataset”
assumptions implicitly employed by most current methodolo-
gies raise fundamental questions about the correctness of
alignments produced by such methods. Although it is possible
to modify gap-penalty parameters in some alignment pro-
grams, these programs do not provide means to automati-
cally tune the parameters to specific datasets or regions

Received: 20 June 2024; Revised: 21 December 2024; Editorial Decision: 28 December 2024; Accepted: 7 January 2025
© The Author(s) 2025. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 2025, 41(1), btaf009
https://doi.org/10.1093/bioinformatics/btaf009
Advance Access Publication Date: 8 January 2025
Original Paper

https://orcid.org/0009-0007-5403-6016
https://orcid.org/0000-0003-1984-2139
https://orcid.org/0000-0001-9463-2575
https://huggingface.co/dotan1111
https://github.com/idotan286/SimulateAlignments

within a dataset, and hence, by and large, all users employ
the default settings.

Alignment algorithms are typically assessed by empirical
alignment regions, but these regions are not comprehensive
enough to cover the entire range of alignment challenges.
These regions are often calculated manually, so their reliabil-
ity as a “gold standard” is uncertain (Iantorno et al. 2014).
Differences exist between empirical and simulated datasets, e.
g., the latter may not account for evolutionary scenarios such
as micro-rearrangements (Walker et al. 2021). Thus, when
alignment programs are tested with simulated alignments, the
results may differ from empirical benchmark outcomes
(Chang et al. 2014).

One of the key concepts in learning algorithms, in general,
and in deep learning algorithms in particular, is the ability to
learn from previously annotated data, i.e., to generalize from
previous observations to unseen cases. For the task of align-
ment inference, a deep learning algorithm should learn from
“true” alignments (e.g., simulated sequences for which the
correct alignment is known) and apply the obtained knowl-
edge to align novel sequences. In this work, we aimed to har-
ness natural language processing (NLP) learning algorithms
to the task of aligning sequences; thus, to better capture the
evolutionary dynamics of biological sequences.

Here, we present an improvement for our previously devel-
oped BetaAlign approach (Dotan et al. 2023), in which instead
of computing a single alignment, we infer multiple alternative
alignments and return the one that maximizes the certainty. To
further characterize BetaAlign, we conducted the following
analyses: (i) evaluating the effect of training time and size;
(ii) evaluating the effect of transfer learning; (iii) measuring the
performance as a function of the evolutionary dynamics that
generated the sequences; and (iv) comparing different trans-
former architectures. We also introduce the term subspace
learning to describe training on a subspace of the indel parame-
ters and investigate its utility for BetaAlign. Lastly, we show
that the benefit of our approach is also transferable, that is, the
embedding obtained by the model could serve as meaningful
features for accurate inference in other learning tasks such as in-
ferring sequence length prediction of ancestral sequences.
Table 1 describes the main differences between the previous and

current work. For completeness, we start by describing
the algorithm.

2 Materials and methods
2.1 New approach
2.1.1 Outline

Typically, sequence-to-sequence NLP tasks involve a single
sentence (or text) as both input and output, e.g., translating
from one language to another or changing a sentence from
active to passive (Sutskever et al. 2014, Bahdanau et al. 2016,
Shalumov and Haskey 2023). The learning phase of the algo-
rithm is to map a single input sentence to a single output sen-
tence. When we aim to apply sequence-to-sequence models to
the problem of alignment, we are faced with a challenge: the
input to the alignment task is several “sentences”, each corre-
sponding to an unaligned sequence. Similarly, the output is a
set of related sentences, each corresponding to a row in the
resulting alignment. The first task in the BetaAlign algorithm
is to transform the set of unaligned sequences to a single
“sentence”. Such input- transformation can be done, e.g., by
concatenating all the unaligned sequences, adding a special
character (we use the pipe character, “j”) to indicate the
boundaries between the sequences (Fig. 1). For training the
algorithm, we also need to provide target sentences. Thus, we
also need an output-transformation step, in which we convert
resulting alignments to a single target sentence. In BetaAlign,
we use the “spaces” representation (Fig. 1). The above repre-
sentations allow providing a sequence-to-sequence model
with a large set of examples of valid source and target senten-
ces, which are used for model training. The models that we
use rely on the transformer architecture (Vaswani et al.
2017). Once trained, the optimized transformer can process
new unseen examples, in our case, it can transform (unseen)
unaligned sequences to an alignment.

There are several aspects that need to be addressed to fully
describe the BetaAlign algorithm and how its performance
was evaluated. These include, for example, the generation of
training and test data, the transformer architecture and how
it was trained, the handling of long sequences and how the
generation of invalid alignments was prevented. We aim to

Table 1. The different topics discussed in this research compared to the previous version of BetaAlign.

Topic What is new in this work

Algorithm: increasing the accuracy by generating alternative alignments
for the same set of unaligned sequences and selecting the best one

We changed our alignment methodology. In the new algorithm,
we calculate multiple alternative alignments and return the alignment
that maximizes the certainty. Thus, all the results in the current
manuscript are new, as they are computed with the novel
alignment algorithm

Analysis: the effect of training time and size We investigated the effect of the training phase on BetaAlign’s loss and
performance

Analysis: the effect of indel model parameters on BetaAlign
performance

We investigated the effect of indel parameters on BetaAlign’s
performance

Analysis: subspace learning We introduce the term subspace learning to describe training on a
subspace of the indel parameters. We investigate how subspace
learning affects BetaAlign’s performance

Algorithm: embedding extraction for downstream tasks We introduced a new approach to gather meaningful representations of
unaligned and aligned sequences and evaluate its performance

Analysis: transfer learning We investigated the effect of transfer learning on BetaAlign’s
performance

Analysis: architecture comparisons We investigated the effect of different transformer architectures
Algorithm: handling invalid alignments and long sequences These issues were explained in our previous paper and are hence only

shortly described here

2 Dotan et al.

provide a more general description as part of the Section 2,
while technical details are provided in Section 4.

2.1.2 Generation of training and test data
For both training and testing the performance of BetaAlign,
many sets (data points) of unaligned sequences and their corre-
sponding “true alignment” were needed. These data points were
generated using simulations. Specifically, we use SpartaABC
(Loewenthal et al. 2021), which allows different length distribu-
tions for insertions and deletions. For example, the initial testing
and training for the pairwise alignment problem were achieved
by generating millions of pairs of two unaligned sequences and

their corresponding alignments for the training and testing data.
The indel rates, their type (insertion or deletion), and their length
distribution were sampled from specific ranges. We note that we
do not assume equal rates of insertions and deletions, nor equal
length distributions for the two types of events (this is mainly im-
portant when simulating along a tree rather than when simulat-
ing pairwise alignments).

2.1.3 Transformer architecture
Transformers are currently the working horse of NLP and other
AI domains. A transformer is a deep learning model designed to
handle discrete sequential data. The transformer used in our

Figure 1. Example of aligning three sequences with BetaAlign, (a): (I) Consider the unaligned sequences “AAG”, “ACGG” and “ACG”; (II) The
unaligned sequences are concatenated to a single sentence with a special character “j” between each original sequence; (III) The trained model
processes the single input sentence and generates the single output sentence; (IV) The processed output is structured such that the first three
nucleotides represent the first column, the next three nucleotides represent the second column, and so on; (V) The output is converted into an MSA. (b)
An illustration of the different input (I) and output (II) transformation schemes. (c) Example of handling invalid alignments. When aligning the same
sequences, BetaAlign first transformer may mistakenly mutated the character “A” to “G” (I); A different transformer resulted in a different output, may
generate a shorter sequence in which the last two characters are missing (II); The third transformer provided a valid alignment as output and can be used
as the output of BetalAlign (III).

BetaAlign: a deep learning approach for multiple sequence alignment 3

work is composed of an encoder and a decoder. The encoder
embeds each input sequence (and in our case, the source
sequence representing multiple unaligned sequences) into a
sequence of high-dimensional vector representation. In this vec-
tor space, two related sequences should be closer to each other
than two less related sequences. This projection from the se-
quence space to the high-dimensional space, i.e., the embedding
process, is not fixed, but rather is learned as part of the training
process. Next, the decoder receives those representations and
the last generated token and predicts the next token (a token in
natural languages is the building block of a sentence, in our
case, each token is either a base pair or an amino acid). The en-
coder and decoder are neural networks with multiple sequential
layers, each containing numerous neurons. These neurons act as
linear functions with tunable parameters that are adjusted dur-
ing training. To handle complex data, each layer of the trans-
former also incorporates non-linear functions (without non-
linear functions, the model acts as a function composition of lin-
ear only functions which results in a linear function). Although
each layer could theoretically attend to all previously computed
embeddings (i.e., the input to the layer), previous research has
shown that focusing on a specific subset of tokens yields better
results. This approach, known as attention, is a foundational as-
pect of the transformer model (Vaswani et al. 2017). To create
the initialized set of the embeddings, the discrete data (in our
case, the DNA and the amino acid sequences) are converted via
the tokenizer into a set of ids (Dotan et al. 2024), which are
then converted to a numerical representation via the embed-
dings matrix. Transformers may vary in architecture, number of
layers, and size. These features are the tunable architectural
hyperparameters. When training a transformer, one can also
vary the learning hyperparameters, e.g., the parameter “max
tokens” determines how much input to process before the
model parameters are updated. We have tested several trans-
former architectures and parameters, implemented using the
Fairseq library (Ott et al. 2019). Technical details regarding
transformer optimizations are provided in Section 4.

2.1.4 Transfer learning and subspace learning
The input and output patterns of the analyzed sequences vary
as a function of their number, e.g., the number of pipe char-
acters in the “concat” representation. We thus optimized a
different transformer for each number of sequences. To this
end, when optimizing the transformer for, say, five sequen-
ces, we start the parameter optimization step from the set of
optimal parameters obtained for the previous transformer
that was trained on four sequences, a technique called trans-
fer learning (Tan et al. 2018, Avram et al. 2024).

We also use transfer learning in order to train a trans-
former on subregions of the parameter space, i.e., subspace
learning (see Section 4). For example, we can train a general
pairwise alignment transformer as described above and then
train a different transformer only for alignments with a high
ratio of indels to substitutions. In essence, this allows training
several transformers, specialized for subregions of the param-
eter space.

2.1.5 Handling invalid alignments
Transformers have no inherent mechanism that restricts them
to generate valid alignments. Thus, in some cases, a trained
transformer may produce invalid outputs. For example,
when aligning sequences, each output sequence, including
gap characters, should be of the same length (Fig. 1c). To this

end, we trained several different transformers, which differ
from each other with respect to their tunable hyperpara-
meters, on the same training dataset (see Section 4). If a trans-
former provided an invalid alignment, we provided the
output of an alternative transformer.

2.1.6 Handling long sequences
The transformers that we have utilized were designed to pro-
cess text of natural languages and not biological sequences.
As such, they are limited to processing sentences with up to
1024 tokens. When aligning biological sequences, the input
and output sentences often exceed this length threshold. Due
to memory and run-time constraints, increasing the threshold
is infeasible. To overcome this challenge, we introduced a
“segmentation” methodology, in which we align segments of
the alignments, which are later concatenated to form the en-
tire MSA. This procedure is achieved by training dedicated
transformers for this task (Dotan et al. 2023).

2.1.7 Considering alternative input and output
transformation schemes
The transformer architectures we harnessed for the task of
aligning sequences are sequence-to-sequence models. One of the
key components of our proposed alignment approach is to
transpose the multiple input sequences into a single sentence
that can be processed by the transformer. Input transformation
converts the unaligned sequences into the “input sentence” of
the transformer, while output transformation converts the
“output sentence” of the transformer into an MSA.

There are various transformation schemes available for
converting unaligned sequences into a single sentence. In
Fig. 1a, we present the “concat” representation: the un-
aligned sequences are concatenated with a special character
“j”. The vocabulary, which encompasses the entire set of pos-
sible tokens, of this scheme is f“A”, “C”, “G”, “T” and “j”g
for the nucleotide sequences. We used the “spaces” represen-
tation for output transformation, in which each of the amino
acids or nucleotides is considered a separate token. The vo-
cabulary of this scheme for DNA sequences is f“A”, “C”,
“G”, “T” and “–”g.

However, alternative transformation schemes for the
source sequences can be considered. We previously consid-
ered the “crisscross” scheme, the tokens of the unaligned
sequences are interleaved (Dotan et al. 2023). That is, the
first token represents the first character from the first un-
aligned sequence, the second token represents the first token
of the second unaligned sequence, and so on. The vocabulary
of this scheme is f“A”, “C”, “G”, “T” and “–”g for the nu-
cleotide sequences. Of note, the gap character is used to fill
the gaps if the sequences are of different lengths (Fig. 1b).
Similarly, alternative transformation schemes for generating
the output sentence are possible.

In the “pairs” scheme, each token represents the entire col-
umn. The vocabulary of this scheme depends on the number
of unaligned sequences, for instance, when aligning three
DNA sequences, the vocabulary size is 124 tokens: f“AAA”,
“AAC”, “AAG”, “AAT”, “AA–”, … , “TTG”, and “TTT”g.
Of note, the token “– – –” (three gap characters) is invalid as
such column cannot exist.

It is important to remember that the transformation
schemes are external to the transformer itself. Each transfor-
mation methodology creates a different mapping from un-
aligned sequences to an MSA, which requires training the

4 Dotan et al.

transformer on these representations. Different considera-
tions come into play when selecting the appropriate scheme
(Dotan et al. 2023). In the “pairs” scheme, the output se-
quence length is the number of columns, while in the
“spaces” the length is the number of nucleotides. Because
length is a limiting factor when using current transformer
architectures, using the “pairs” scheme may be advanta-
geous. However, the “pairs” scheme restricts the use of trans-
fer learning (see below). When transitioning from pairwise
alignment to aligning three sequences, the vocabulary would
change (from 24 tokens to 124 tokens) and in general, the
number of possible tokens exponentially increases as a func-
tion of the number of unaligned sequences. In our previous
work, we observed that the “concat” and “spaces” represen-
tations (shown in Fig. 1a) performed best (Dotan et al. 2023).
Thus, all the experiments in this work are done with these
representations for the input sequences and output MSA,
respectively.

2.1.8 Increasing the accuracy by generating
alternative alignments for the same set of
unaligned sequences and selecting the best one
We present a method for generating multiple alternative
MSAs from the same input data. This is done by randomizing
the order in which the input unaligned sequences are
concatenated (see Section 4). We also show how we select a
single MSA from this set using a “majority voting” approach.
We show that, on average, this data augmentation followed
by majority voting approach provides a more accurate MSA
than relying on a randomly sampled MSA from the set of al-
ternative MSAs. The majority voting approach relies on com-
puting for each MSA, the degree of its agreement with all
other alternative MSAs and selecting the one that agrees the
most (see Section 4).

2.2 Generation of training and test data
We first describe in detail the simulation of nucleotide dataset
SND1, in which each data point includes 10 unaligned
sequences and their corresponding “true” MSA. We gener-
ated 395 000 and 3000 data points for training and testing
data, respectively. For each data point, we sampled a random
tree using the program ETE 3 (Huerta-Cepas et al. 2016),
with tree lengths uniformly distributed in the range
ð0:05; 0:1Þ. The sequences along each tree were simulated
using SpartaABC (Loewenthal et al. 2021). Specifically, indel
parameters were sampled from the following ranges:
RI; RD 2 ð0:0; 0:05Þ, AI; AD 2 1:01; 2:0ð Þ, and root length
2 ½32; 44�. Of note, the insertion (RI and AI) and deletion
(RD and AD) model parameters were sampled independently
allowing a rich-indel model, in which insertions and deletions
can have different evolutionary dynamics. The above param-
eter ranges were found to accurately describe the indel evolu-
tion rates along the tree of life (Loewenthal et al. 2021). The
WAGþG and the GTRþG substitution models were used for
the protein and nucleotide datasets, respectively. The
GTRþG frequencies were ð0:37; 0:166; 0:307; 0:158Þ for
the “T”, “C”, “A”, and “G”, respectively. Substitution rates
were ð0:444; 0:0843; 0:116; 0:107; 0:00027Þ for the “a”,
“b”, “c”, “d”, and “e” rate parameters as defined in Yang
(1994). These frequencies and rate parameters reflect those
that characterize the Yeast Intron Database (Lopez and
S�eraphin 2000). Specific information for the simulation of
each dataset is provided in Supplementary Table S2. The

datasets are available on HuggingFace (Wolf et al. 2020) at:
https://huggingface.co/dotan1111.

2.3 Transformer architecture
We applied the “vaswani_wmt_en_de_big” architecture
(Vaswani et al. 2017) with 16 attention heads, embeddings
size of 1024 and 6 layers. We also conducted an experiment
to evaluate the effect of alternative architectures on perfor-
mance (see Supplementary Information). We considered a va-
riety of training hyperparameters configurations for the
transformer, including different max tokens values, learning
rates, and warmup updates and evaluated them on datasets
of pairwise alignments (Supplementary Table S1). We contin-
ued to train two configurations that yielded the best results,
which we denote as “original” and “alternative”. The max
token parameter values were 4096 and 2048 for the original
and alternative transformers, respectively. For both configu-
rations, we used the same learning rate (5E-5) and warmup
updates (3000). Model training and evaluations were exe-
cuted on a Tesla V100-SXM2-32GB GPU machine.

2.4 Using alternative alignments to increase the
accuracy of BetaAlign
A “column certainty” metric was employed to compute
“alignment certainty”. Given an alignment, x, and a set of al-
ternative alignments, Y, the column certainty of each column
in x is the number of times the column appears in each alter-
native alignment y 2 Y divided by the total number of
alignments in Y. As a result, column certainty values range
between 0 and 1, where a score of 1 indicates high certainty.
The alignment certainty is defined as the average of the col-
umn certainty values (Fig. 6a).

It is possible to generate alternative MSAs for the same set
of sequences. For example, alternative MSAs are generated
by GUIDANCE to quantify the reliability of different regions
within an MSA (Sela et al. 2015). These alternative MSAs are
computed by considering alternative guide trees, considering
co-optimal solutions of pairwise alignments, and changing
the alignment scoring scheme. Alternative MSAs are also
computed within the alignment program Muscle (Edgar
2022). The alignment that agrees best with the set of alterna-
tive MSAs is then chosen as the inferred MSA. We developed
a similar approach for generating alternative MSAs, which is
based on the deep learning methodology proposed here.
Specifically, we alternate the order of the unaligned sequences
given as input to the “concat” representation. This results in
the inference of different MSAs for the same input. For exam-
ple, an MSA of three sequences results in six different permu-
tations, thus providing six alternative MSAs and similarly k!

alternative alignments for k sequences. In addition, as we
trained several transformers with different training parame-
ters for each dataset, we can add alternative alignments from
two or more transformers by processing the same input using
these different transformers (Dotan et al. 2023).

Formally, let x and h be a list of unaligned sequences and an
aligner program, respectively. When computing an alignment,
the aligner is dependent on a set of parameters, i.e., a configura-
tion, denoted by α. Altering α would output a different align-
ment for the same x and h. Thus, for a list of n different
configurations: α1; . . . ; αi; . . . ;αn, one would receive n differ-
ent alignments: Y ¼ fhα1 xð Þ; . . . ; hαi xð Þ; . . . ; hαn xð Þg. Of
note, the alignments of different configurations could be the
same. Creating the different configurations could be done by

BetaAlign: a deep learning approach for multiple sequence alignment 5

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf009#supplementary-data
https://huggingface.co/dotan1111
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf009#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf009#supplementary-data

changing the scoring scheme for the aligners or by changing the
permutation of the unaligned sequences in the case of BetaAlign
(see above). For each alignment hαi xð Þ; we calculate the align-
ment certainty described above, by comparing it to all the other
alignments Y fhαi xð Þg and computing the average number of
shared columns. We return the alignment that maximizes the
alignment certainty. Specifically, we have two transformer con-
figurations (“original” and “alternative”) and for each, we

generated 10 alternative MSAs. We return the valid alignment
with the highest certainty.

2.5 Calculating the loss
The training loss is calculated using the cross-entropy loss
function (Szegedy et al. 2016). Consider a specific position
within a pairwise alignment. In the “spaces” representation,
there are five possible tokens in the nucleotide output (the

Figure 2. Effect of increasing the training time (number of epochs) and size (number of different MSAs) on the fraction of invalid alignments
(blue dots), CS-error (orange dots), validation loss (red dots), and training loss (green dots). All alignments were of three protein sequences,
dataset SPD2. Note that the figure contains the four metrics together for comparing the correlation between the metrics. Each metric has a different
range, and thus, there are multiple y-axes. Also note that the errors and coverage in this graph are based on a single alternative alignment, while in
practice both the accuracy and coverage are substantially improved by considering a set of alternative MSAs (see text for details). The training loss and
the validation loss clearly decrease with the number of epochs and the number of alignments used for training. In contrast, the CS-error and the fraction
of invalid alignments show mediocre correlations with the training loss, and do not significantly decrease with the number of alignments used
for training.

6 Dotan et al.

five characters, “A”, “C”, “G”, “T”, “–”. In fact, the pipe
character can also appear, as we use the same dictionary as
the input). Our aligner predicts (accounting for the proceed-
ing predictions in the alignment) a probability for each token.
Let Pi be the probability for the token in which the next char-
acter in the output alignment is i. Assume, for example that
the correct class (the next character in the correct alignment)
is “C”. In this case, the loss for this position is simply
� logPC. The loss over the entire alignment string is the aver-
age loss over all positions in the alignment. If all positions are
predicted correctly (i.e., with a Pi ~¼1), the loss is close to
zero. The higher the loss, the less accurate the prediction is.

When the loss function is computed on the training data, we
call it “training loss”, while when it is computed on the vali-
dation data, we call it “validation loss”.

2.6 Evaluating accuracy and coverage
We evaluated the performance of BetaAlign using two met-
rics: (i) column score (CS), which identifies how many col-
umns are shared between the inferred and the true alignment.
Of note, a shared column requires the same characters with
the same positions of each character (Sela et al. 2015). The
CS is the number of shared columns divided by the number
of columns and thus the score is in the range [0,1]. The CS-

Figure 3. Effect of subspace learning on the CS-error (a) and the fraction of invalid alignments (b). The three transformers: “general”, “specific”,
and “ultra specific” were trained on the “general”, “specific”, and “ultra specific”, datasets, respectively. The “ultra specific” dataset (ND12)
parameters (e.g., the indel rates) are a subset of the “specific” dataset (ND11) parameters, which are a subset of the “general” dataset (ND10)
parameters. The difference between the accuracy of “general” and “ultra specific” transformers on the “ultra specific” dataset is significant (paired t-
test; p<0:05).

BetaAlign: a deep learning approach for multiple sequence alignment 7

error is the complementary of the CS to 1. (ii) We use the
term coverage to denote the percentage of valid alignments
out of the total number of MSAs generated by the trans-
former. Examples of invalid alignments are illustrated
in Fig. 1c.

2.7 Evaluating the effect of training time and size
We generated datasets containing 50 000, 100 000, and
200 000 alignments. Next, we trained transformers on each
of the datasets for 60 epochs with the original transformer train-
ing parameters. We evaluated the performance of the transform-
ers at the end of each epoch, with respect to the following
metrics: (i) training loss, (ii) validation loss, (iii) fraction of inva-
lid alignments (i.e., 1—coverage), and (iv) CS-error. The valida-
tion data contained 2000 alignments, which were used to
measure the validation loss. The test data contained 3000 align-
ments, which were used to measure the fraction of invalid align-
ments and CS-error. Of note, in each of the three experiments
we initialized the model with random weights, and thus, trans-
fer learning did not affect these results.

2.8 Evaluating the effect of indel parameters on
alignment inference accuracy
To quantify the effect of the evolutionary parameters on
alignment inference accuracy, we generated training and test
data using the same random topology and branch lengths as
were used in PD14 (see Supplementary Table S2). The range
of indel evolutionary parameters was binned: For AI and AD
that dictate indel-length distribution for insertions and dele-
tions, respectively, the following ten bins were considered for
each parameter: (1.0, 1.1), (1.1, 1.2) … (1.9, 2.0). For RI
and RD that dictate indel rates relative to substitutions for
insertions and deletions, respectively, the following ten bins
were considered for each parameter: (0.000, 0.005), (0.005,

0.01) … (0.045, 0.05). We thus considered 100 bins for the
pair (AI; ADÞ and similarly for the pair (RI, RD). When ana-
lyzing the effect of AI and AD, for each of the 100 (AI; ADÞ

bins, 100 alignments were generated, in which the RI and RD

values were sampled randomly from the range (0.00, 0.05).
Thus, in total 10 000 MSAs were considered when studying
the effect of the AI and AD parameters. Similarly, 10 000
MSAs were considered when studying the effect of the RI and
RD parameters, and in this case, in each MSA the AI and AD

parameters were sampled from the range ð1:0; 2:0Þ. The
score for each bin is the average over the scores of the 100
alignments in each bin.

2.9 Subspace learning evaluation
The MSA in the training data for BetaAlign is generated by
evolving sequences along a specific phylogenetic tree and dif-
ferent MSAs are generated with different trees and with dif-
ferent evolutionary models. The substitution and indel
dynamics are dictated in this simulation by an evolutionary
model (a continuous-time Markov process). Let g be the set
of evolutionary models and trees used to generate the data.
Clearly, a trained aligner, h, depends on g. In other words,
our aligner learns to align sequences generated by the set of
evolutionary models g that generated the training data. Thus,
we can easily create aligners that will best suit a specific sub-
space of model parameters and trees, e.g., aligners for a spe-
cific phylogenetic tree, and similarly aligners for species or
proteins with a specific indel or substitution dynamics. In
subspace learning, the transformer is optimized on a subspace
of the alignment parameters space. To test how subspace
learning affects performance, we generated three nucleotide
datasets, each one with a narrower range of model parame-
ters, i.e., AI, AD, RD, and RI, branch lengths and root lengths
(ND10, ND11, and ND12). We trained BetaAlign starting
with the dataset of the widest parameter range (ND10),
which we named “general”. Then, the optimized transform-
ers were used as the starting point for additional training on
the next dataset, ND11, whose model parameters are a subset
of those of ND10. We named this dataset “specific”. The op-
timized transformers from ND11 were then further trained
on the next dataset (ND12) “ultra specific”. Each of the three
transformers was evaluated on each of the three test datasets.

2.10 Embedding of MSAs in a high-dimensional
space
The deep learning approach presented here enables embed-
ding the information within the sequences in a high-
dimensional space, i.e., it allows automatic feature extrac-
tion, which could be utilized for downstream analyses. The
high-dimensional vector is created within the encoding pro-
cess from a set of unaligned sequences. To obtain the embed-
ded vector, the unaligned sequences were given as an input to
the trained transformer. The vector is internally created by
the encoder part of the transformer, and we have modified
the code of the transformer to extract it (to reduce running
time, we skipped the decoder step). This high-dimensional
vector contains �1024 ×n× l entries, where n is the number
of input sequences and l is the average length of unaligned
sequences. A representation of this vector, for three sequen-
ces, is given in Supplementary Fig. S2a.

For various downstream tasks, it is often desirable to com-
press this vector to a fixed size, i.e., a size that does not de-
pend on the sequence length (the compressed vector size does

Figure 4. Results of the linear regressor trained to predict the root
length from the embedding of the unaligned sequences, with an R2

of 0:91 and MSE of 2.003 base pairs. The solid (orange) line is the
regression line and the dashed (red) line reflects the Y ¼ x function. The
embeddings are of the ND10 dataset sequences.

8 Dotan et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf009#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf009#supplementary-data

depend on the number of sequences). For the compression ex-
ample shown in Supplementary Fig. S2, the uncompressed
vector is of size 1024×15 and the size of the compressed vec-
tor is 1024×5. Each of the unaligned sequences is represented
by 1024 entries in the compressed vector by row-wise averag-
ing of the corresponding tokens in the input sequences. In ad-
dition, we use the representations of the pipe character in the
compressed vector. Thus, the compressed vector corresponds
to a vector of a fixed size of 1024 × ð2n – 1Þ.

2.11 Evaluating and implementing transfer learning
In our work, transfer learning was repeatedly used for training
the transformers. The first protein transformer was trained on
a simple dataset of pairwise amino acid sequences (we denote
this dataset PD1, for protein dataset 1). Its weights were ran-
domly sampled with default values of the Fairseq library (Ott
et al. 2019). The resulting trained transformer is termed as
“PT1”, for protein transformer 1. PT1 was next trained on
PD2, resulting in PT2, etc. The term transfer learning is used
to denote the fact that in order to obtain PT2, the transformer

trained on PD2 was initialized with weights transferred from
PT1, rather than random initialization. A similar process was
used to train the nucleotide-based transformers (NT1, NT2,
etc.) on nucleotide datasets (ND1, ND2, etc.). Of note, trans-
fer learning was applied across this study only between models
that processed data with the same representation, i.e., they
share the same dictionaries.

We aimed to evaluate the contribution of transfer learning.
To this end, we compared three different scenarios (illus-
trated in Fig. 5). In Scenario 1, we evaluate a transformer
that first encounters protein data PD5 (three protein sequen-
ces). This transformer was trained before on simpler datasets.
In Scenario 2, the trained transformer from Scenario 1 was
retrained on PD5, without experiencing more complex data-
sets. In Scenario 3, the trained transformer from Scenario 1
was trained on additional more complex datasets (PD6, PD7,
PD8, PD9, PD10, PD11, PD12, PD13, PD14, and PD15) and
was then retrained on PD5.

A similar evaluation was done on nucleotide transformers.
Here instead of PD5, the base-dataset was ND4, comprised

Figure 5. Quantifying the contribution of transfer learning to performance. (a) The transfer learning path. Scenario 1 includes training on “D1”,
“D2”, and “D3”. Scenario 2 is the same as Scenario 1, but the transformer was trained twice on “D3”. Scenario 3 includes training on “D1”, “D2”,
“D3”, “D4”, “D5” and then again on “D3”. “D1” and “D2” represent simpler datasets. “D3” is the target dataset, composed of MSAs of three DNA or
amino acid sequences, on which the performance was evaluated. “D4” and “D5” represent more complex datasets. Arrows between datasets
represent the transfer learning path, i.e., the transformer optimized on a dataset was used as a base transformer for the next dataset. (b) The effect of
transfer learning on the performance.

BetaAlign: a deep learning approach for multiple sequence alignment 9

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf009#supplementary-data

of alignments of three sequences. In Scenario 3, the additional
more complex datasets are: ND5, ND6, ND7, ND8, ND9,
ND10, ND11, ND12, ND13, and ND14.

2.12 Comparing against other alignment programs
The performance of BetaAlign was compared to the following
programs used with default parameters: MUSCLE v3.8.1551
(Edgar 2004), MAFFT v7.475 (Katoh and Standley 2013),
PRANK v.150803 (L€oytynoja and Goldman 2008), ClustalW
2.1 (Larkin et al. 2007), and DIALIGN dialign2-2
(Morgenstern 2004). Specific commands used for evaluation
are provided in the Supplementary Information.

3 Results
3.1 Effect of training time and size
We tested how the number of epochs (a single pass on the
whole training set) and training size affect the accuracy and
coverage of BetaAlign. We compared the model’s

performance when trained on three training data sizes:
50 000, 100 000, and 200 000 protein alignments. Our
results clearly indicate that for all datasets, the training loss
(see Section 4) decreases as the number of epochs increases,
reaching almost a plateau when the data size is 200 000
alignments (Fig. 2). For each training data size, the validation
loss follows the decrease in the training loss, suggesting that
there is no overfitting for the transformer. The coverage (frac-
tion of resulting alignments that are valid) also continuously
increases, e.g., after 20 epochs the coverage was �40%, while
after 60 epochs, the coverage was already �80%.

Inference accuracy is measured using the column score
(CS), which quantifies the number of columns that are shared
between the inferred and the “true” MSA (see Section 4). The
CS-error (one minus the CS) seems to substantially fluctuate
even after 30 epochs (we note that the CS-error quantifies the
error on valid alignments only, while the loss function quanti-
fies the error on all alignments). The correlation between the
loss on the validation data and the CS-error on the dataset of

Figure 6. Quantifying the correlation of alignment certainty and alignment accuracy. (a) An illustration demonstrating the calculation of alignment
certainty. Consider x to be a pairwise alignment where “AAGT” is aligned to “ACGT” and Y to be the collection of two alternative alignments: (i) where
“AAG-T” is aligned to “A-CGT” and (ii) where “AAGT” is aligned to “ACGT”. To determine the certainty for each column in x, we count the number of its
appearances in the set of alternative alignments Y and divide it by the size of the set Y . For example, the first column, “AA”, appears both in alignments
(i) and (ii) and thus its certainty is 2/2. The second column in x, “AC” appears only in alignment (ii) and thus its certainty is 1/2. (b) The frequency of the
optimal alternative alignment for each certainty rank. For each data point, a total of 20 alternative alignments were considered, each with 10 sequences
(SND1 and SPD1 for the nucleotide and protein datasets, respectively). The 20 MSAs were ranked according to their certainty. Next, the most accurate
MSA was detected (based on the CS accuracy score) and its rank recorded. Of note, some of the alternative MSAs may be identical. In case the most
accurate MSA was ranked multiple times (e.g., the first and second ranks), we consider its rank to be the higher rank (e.g., the first). Shown is the
distribution of ranks among 3000 independent data points. In almost all cases, the MSA that had the highest confidence is ranked highest.

10 Dotan et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf009#supplementary-data

100 000 alignments, between epochs 20 and 60, was R2 ¼

0.467 (p¼0.0023). This correlation suggests that reducing
the loss also reduces the CS-error, despite the clear differences
between these two functions.

Comparing the training and validation loss between the
different training size datasets indicated that increasing the

training size decreases the loss as expected (training loss at
epoch 60: 0.989, 0.985, 0.977, for datasets of 50 000,
100 000, 200 000, respectively). This gain in accuracy as
reflected in the loss function was not evident when the perfor-
mance is measured by the CS-error, reflecting lack of strong
correlation between these two scores.

Figure 7. Comparing the results of BetaAlign with different aligners on SND1 (a) and SPD1 (b). The y-axis represents the performance of sequence
alignment programs. The lower the CS-error, the better the performance.

BetaAlign: a deep learning approach for multiple sequence alignment 11

3.2 Effect of indel model parameters on BetaAlign
performance
We next studied the effect of the different indel parameters
(of the assumed indel model that generated the simulated
data) on the performance. To this end, we divided the align-
ments into bins by their evolutionary parameters: the inser-
tion and deletion rate parameters (RI and RD, respectively)
and the parameters that determine the distribution of indel
lengths (AI and AD for the insertion and deletion distribu-
tions, respectively). As expected, increasing the indel rate
parameters RI and RD substantially decreases accuracy
(Supplementary Fig. S1a). The size distribution of the indels
had little effect on accuracy (Supplementary Fig. S1b).

3.3 Subspace learning
As stated above, we can train a transformer on a set of MSAs
that share specific features, e.g., training them on MSAs with
a high deletion rate and a low insertion rate. Deep learning
models have a large number of free parameters, allowing
learning complex patterns. In subspace learning, we optimize
these free parameters again on a subset of the dataset. The
starting weights of the parameters are the weights obtained
for the entire range. Nevertheless, we note that as the archi-
tecture is fixed, the number of free parameters is fixed as
well. To determine if such a subspace-learning approach
increases accuracy, we simulated three nucleotide datasets of
five sequences per sample (see Section 4). The first dataset,
“general” (ND10), was simulated with a wide range of indel
model parameters. The second dataset, “specific” (ND11),
was simulated on a subspace of the indel model parameter
space, i.e., the generated MSAs resemble each other in terms
of indel dynamics. Finally, the third dataset, “ultra specific”
(ND12), is even more restrictive in terms of the allowed indel
dynamics (see Supplementary Table S2). Our results suggest
that subspace learning can improve both coverage and accu-
racy (Fig. 3), with a more substantial effect on coverage. This
highlights the importance of fitting the correct configuration
of the alignment program (and in our case the training of the
transformer) to the specific data. These results demonstrate
that subspace learning has the potential to improve the accu-
racy of BetaAlign.

3.4 Embedding extraction for downstream tasks
Transformers are composed of two parts, the encoder and
the decoder. The encoder creates high-dimensional vector
representations of the source sentence, i.e., the unaligned
sequences, which are passed to the decoder to create the
translated sentence, i.e., the aligned sequences. This high-
dimensional vector embeds the information in sequences as a
numeric representation. We compressed this vector to a vec-
tor of a size that does not depend on the number of positions.
In the case of n sequences, the dimension of the vector is
1024× 2n−1ð Þ (see Section 4). To exemplify the utility of
such a representation, we used this vector representation as
input for a different machine-learning task, which is to esti-
mate for each MSA the length of the root sequence, from
which the resulting sequences diverged. To this end, we
trained a linear regression model that takes the coordinates
of the compressed high-dimensional vector as input. The
training set includes 90 000 nucleotide MSAs, each with five
sequences (ND10). The accuracy of the linear-regression
model using these features was evaluated on test data com-
prising 10 000 MSAs (Fig. 4). The significant correlation

between the true and inferred root lengths [R2 ¼ 0:91 and
2.003 base pairs mean squared error (MSE)] suggests that
our approach can be used to compactly code sequences, as a
preliminary step for downstream machine-learning tasks.

3.5 Transfer learning
Our approach heavily depends on transfer learning. Except
for the first transformers, for which the weights were ran-
domly initialized, all other transformers used initial weights
that were optimized on a previous dataset. The transformers
of the nucleotide datasets have a different path of training
from the transformers of the amino acid datasets. In addition,
each transformer is optimized based on the previous trans-
former with the same configuration (as we trained two differ-
ent transformers for each dataset). To evaluate the
contribution of transfer learning to performance, we tested
three alternative scenarios (Fig. 5a, see Section 4). Briefly, the
transformer in Scenario 1 (Transformer 1) is trained once on
a target dataset. Transformer 2 started from the end point of
Transformer 1 and was retrained on the same target dataset.
Transformer 3 (Scenario 3) started from the end point of
Transformer 1 and was trained on various other datasets,
and then retrained on the same target dataset. Our results
demonstrated the benefit of transfer learning (Fig. 5b).
Transformer 3 outperformed Transformer 1, both for protein
and DNA sequences, with error reduction of 37.3% and
33.3%, respectively (paired t-test; p<0.005). It may be that
the increased accuracy resulted from the fact that
Transformer 3 was trained twice on the target dataset and
not due to the additional training. To test this hypothesis, we
compared it to Transformer 2. Our analysis suggests that
some of the improved accuracy is indeed due to the extra
training (comparing Transformers 1 and 2). Nevertheless, it
also shows that transfer learning substantially contributes to
performance (comparing Transformers 2 and 3), resulting in
16% and 25% error reductions for protein and DNA, respec-
tively (paired t-test; p< 0.005).

3.6 Correlation of certainty and the
alignment accuracy
We found a strong dependence between the alignment certainty
and the CS-score (Fig. 6). As the certainty of alignments can be
calculated by creating multiple alternative alignments for the
same set of unaligned sequences (see Section 4), we could utilize
this dependence to infer the most accurate alignment, similar to
a previous approach (Edgar 2022).

Having observed that the alignment with the highest (align-
ment) certainty is ranked higher than expected (among the
set of alternative alignments from a specific dataset), we next
directly compared performance between choosing the align-
ment alternative with the highest certainty and selecting the
first alternative alignment. We tested this approach on 10-
sequences data points (SND1 and SPD1) and observed a sig-
nificant CS-error reduction of 9.8% and 20.9% for DNA
and protein alignments, respectively (paired t-test; p
¼ 0.002).

3.7 Comparing performance
We compared the performance of BetaAlign after selecting the
MSA with the highest certainty against other commonly used
alignment programs, both for DNA and protein sequences
(Fig. 7). For DNA sequences, regardless of the number of
sequences analyzed, BetaAlign was the most accurate (paired t-

12 Dotan et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf009#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf009#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf009#supplementary-data

test; p<10� 7), with a minimal error reduction of 12.7%. The
second most accurate alignment program was MUSCLE for 4–
7 sequences and PRANK for 8–10 sequences. For 10 sequences,
for example, BetaAlign had an 13.7% error reduction com-
pared to PRANK (paired t-test; p<10� 12) and similar results
were obtained for other number of sequences. MAFFT,
DIALIGN, and ClustalW had a significantly lower perfor-
mance, with MAFFT outperforming the two other alignment
programs. Notably, for protein sequences, BetaAlign was typi-
cally the second most accurate. For 10 sequences, the error re-
duction of PRANK was 5.1% relative to BetaAlign. We
speculate that the higher accuracy of protein MSAs compared
to DNA-based MSAs, which is observed across all methods,
stems from the higher alphabet size of protein sequences, which
makes it easier to find anchors to guide MSA inference.

4 Discussion
The weights that are learned by the encoder can be used as a
starting point for other machine-learning tasks, i.e., the sequen-
ces are embedded as meaningful vectors that hold contextual in-
formation. In this work, we demonstrated using such
embedding for predicting the length of ancestral sequences,
without computing the MSA. A similar approach can be used
for other machine-learning tasks, e.g., secondary structure pre-
diction, predicting the stability of proteins, and ancestral se-
quence reconstruction. In NLP, transferring representations
from one task to another is highly common, and encoder–de-
coder models are commonly used for this purpose (McCann
et al. 2017).

There are limitations when using NLP approaches for se-
quence alignment, one of which arises from the maximum se-
quence length that can be inserted into an attention-based
model. This limitation stems from computing attention matri-
ces, in which the memory requirement increases quadratically
with the total length of the input and output sequences. The
data size that can be processed depends on multiple factors
that dictate the size of the obtained alignment. These factors
include the number of sequences, the root length, the se-
quence divergence, which is dictated by the edges of the phy-
logenetic tree, and the indel rates and indel-length
distributions. In general, the memory limitation is computer-
specific, and on the current GPUs that we have used, we
could analyze 1024 tokens (e.g., �10 sequences of 100
aligned columns, see Section 4). To overcome this issue, we
have developed a novel approach that involves splitting and
merging the alignment while training the transformer on a
slightly different task (Dotan et al. 2023). It is possible to ap-
ply different techniques to increase the limit on the sizes of
the sequences. For example, a different tokenization tech-
nique allows multiple amino acids or nucleotides to be con-
sidered as a single token, and thus reduces the number of
tokens for the entire sequence (Dotan et al. 2024). Another
option would be to employ state-space models instead of
transformers (Gu et al. 2022).

Our proposed method introduces a paradigm shift: it redi-
rects the focus from the traditionally labor-intensive task of
developing new sequence aligners to the more manageable
process of creating simulations that replicate the evolutionary
dynamics observed in empirical data. This approach is partic-
ularly beneficial for incorporating additional types of evolu-
tionary events. For example, developing an aligner capable of
detecting inversions in unaligned sequences would be

complex and likely increase the algorithm’s complexity. In
contrast, BetaAlign can be easily trained on simulated data
that include inversions, enabling it to effectively align sequen-
ces which experience inversions.

Generating multiple alternative alignments can be impor-
tant for various applications, including the inference of align-
ment reliability (Sela et al. 2015). MergeAlign (Collingridge
and Kelly 2012) combines alternative alignments into a single
consensus, offering a promising method for enhancing the ac-
curacy and reliability of MSAs. Multiple alternative MSAs
are also accounted for in Bayesian alignment strategies, such
as Bali-Phy (Redelings 2021). However, Bayesian methods
rely on a predefined prior and stochastic evolutionary model
to guide alignment calculations, while in BetaAlign, the sto-
chastic method is used for generating the training data, and
not for the alignment inference.

We have coupled the NLP domain and the MSA problem
by using transformers that were originally designed for natu-
ral languages. Future improvements in the NLP field are
likely to directly impact future alignment methodologies. We
expect that transformers that are dedicated to the task of se-
quence alignment, together with other breakthroughs in ma-
chine learning, will lead to alignment algorithms that account
for the specific grammar rules of each set of analyzed sequen-
ces and will substantially outperform existing aligners.

Author contributions
Edo Dotan (Conceptualization, Formal analysis, Investigation,
Methodology, Software, Validation, Visualization [lead], Data
curation, Writing—original draft, Writing—review & editing
[equal]), Elya Wygoda (Conceptualization, Formal analysis,
Investigation, Methodology, Software, Writing—review & edit-
ing [supporting], Data curation [lead]), Noa Ecker
(Conceptualization, Investigation, Methodology, Software [sup-
porting], Writing—review & editing [equal]), Michael
Alburquerque (Data curation, Formal analysis, Investigation,
Methodology, Software, Validation, Writing—review & editing
[supporting]), Oren Avram (Conceptualization, Data curation,
Formal analysis, Investigation, Methodology, Resources,
Software [supporting], Writing—review & editing [equal]),
Yonatan Belinkov (Conceptualization, Formal analysis,
Investigation, Methodology, Writing—original draft [lead],
Data curation, Funding acquisition, Resources, Software,
Validation, Visualization, Writing—review & editing [support-
ing], Project administration, Supervision [equal]), and Tal
Pupko (Conceptualization, Data curation, Formal analysis,
Funding acquisition, Investigation, Methodology, Project ad-
ministration, Resources, Supervision, Validation, Visualization,
Writing—original draft, Writing—review & editing [lead],
Software [supporting])

Supplementary data
Supplementary data are available at Bioinformatics online.

Conflict of interest: None declared.

Funding
Y.B. and T.P. have received funding from the Israel Science
Foundation (grants 448/20 and 2818/21, respectively). Y.B.
was partly supported by an Azrieli Foundation Early Career
Faculty Fellowship. E.D., E.W., N.E., and M.A. were

BetaAlign: a deep learning approach for multiple sequence alignment 13

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf009#supplementary-data

supported by the Edmond J. Safra Center for Bioinformatics
at Tel Aviv University Fellowship. T.P.’s research is sup-
ported in part by the Edouard Seroussi Chair for Protein
Nanobiotechnology, Tel Aviv University.

References
Ajawatanawong P, Baldauf SL. Evolution of protein indels in plants,

animals and fungi. BMC Evol Biol 2013;13:140.
Avram O, Durmus B, Rakocz N et al. SLIViT: a general AI framework

for accurate clinical-feature diagnosis from limited 3D medical-
imaging data. Invest Ophthalmol Vis Sci 2024;65:1614.

Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly
learning to align and translate. In: International Conference on
Learning Representations (ICLR), San Diego, CA, USA, 2015.

Chang J-M, Di Tommaso P, Notredame C. TCS: a new multiple se-
quence alignment reliability measure to estimate alignment accuracy
and improve phylogenetic tree reconstruction. Mol Biol Evol 2014;
31:1625–37.

Collingridge PW, Kelly S. MergeAlign: improving multiple sequence
alignment performance by dynamic reconstruction of consensus
multiple sequence alignments. BMC Bioinformatics 2012;13:117.

Dotan E, Belinkov Y, Avram O et al. Multiple sequence alignment as a
sequence-to-sequence learning problem. In: International
Conference on Learning Representations (ICLR), Kigali,
Rwanda, 2023.

Dotan E, Jaschek G, Pupko T et al. Effect of tokenization on transform-
ers for biological sequences. Bioinformatics 2024;40:4:btae196.

Edgar RC. MUSCLE: multiple sequence alignment with high accuracy
and high throughput. Nucleic Acids Res 2004;32:1792–7.

Edgar RC. Muscle5: high-accuracy alignment ensembles enable unbiased
assessments of sequence homology and phylogeny. Nat Commun 2022;
13:6968.

Gu A, Goel K, R�e C. Efficiently modeling long sequences with struc-
tured state. In: International Conference on Learning
Representations (ICLR), Virtual Event, 2022.

Huerta-Cepas J, Serra F, Bork P. ETE 3: reconstruction, analysis, and visu-
alization of phylogenomic data. Mol Biol Evol 2016;33:1635–8.

Iantorno S, Gori K, Goldman N et al. Who watches the watchmen? An ap-
praisal of benchmarks for multiple sequence alignment. Methods Mol
Biol. 2014;1079:59–73.

Katoh K, Standley DM. MAFFT multiple sequence alignment software
version 7: improvements in performance and usability. Mol Biol
Evol 2013;30:772–80.

Larkin MA, Blackshields G, Brown NP et al. Clustal W and clustal X
version 2.0. Bioinformatics 2007;23:2947–8.

Loewenthal G, Rapoport D, Avram O et al. A probabilistic model for
indel evolution: differentiating insertions from deletions. Mol Biol
Evol 2021;38:5769–81.

Lopez PJ, S�eraphin B. YIDB: the yeast intron DataBase. Nucleic Acids
Res 2000;28:85–6.

L€oytynoja A. Phylogeny-aware alignment with PRANK. Methods Mol
Biol 2014;1079:155–70.

L€oytynoja A, Goldman N. Phylogeny-aware gap placement prevents
errors in sequence alignment and evolutionary analysis. Science
2008;320:1632–5.

McCann B, Bradbury J, Xiong C et al. Learned in translation: contextual-
ized word vectors. Adv Neural Inf Process Syst 2017;30:6297–308.

Morgenstern B. DIALIGN: multiple DNA and protein sequence align-
ment at BiBiServ. Nucleic Acids Res 2004;32:W33–6.

Needleman SB, Wunsch CD. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. J Mol
Biol 1970;48:443–53.

Ott M, Edunov S, Baevski A et al. fairseq: a fast, extensible toolkit for
sequence modeling. In: Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational
Linguistics (Demonstrations), Minneapolis, Minnesota. p.48–53.
Association for Computational Linguistics, 2019. https://aclanthol
ogy.org/N19-1000/

Pesole G, Gissi C, De Chirico A et al. Nucleotide substitution rate of
mammalian mitochondrial genomes. J Mol Evol 1999;48:427–34.

Redelings BD. BAli-Phy version 3: model-based co-estimation of align-
ment and phylogeny. Bioinformatics 2021;37:3032–4.

Sela I, Ashkenazy H, Katoh K et al. GUIDANCE2: accurate detection
of unreliable alignment regions accounting for the uncertainty of
multiple parameters. Nucleic Acids Res 2015;43:W7–14.

Shalumov V, Haskey H. HeRo: RoBERTa and Longformer Hebrew
language models. arXiv, https://arxiv.org/abs/2304.11077, 2023,
preprint: not peer reviewed.

Sutskever I, Vinyals O, Le QV. Sequence to sequence learning with neu-
ral networks. Adv Neural Inf Process Syst 2014;27:3104–12.

Szegedy C, Vanhoucke V, Ioffe S et al. Rethinking the Inception
Architecture for Computer Vision. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp
2818–2826. 2016.

Tan C, Sun F, Kong T et al. A survey on deep transfer learning. In:
Artificial Neural Networks and Machine Learning—ICANN 2018,
Rhodes, Greece, 2018.

Vaswani A, Shazeer N, Parmar N et al. Attention is all you need. In:
31st Conference on Neural Information Processing Systems (NIPS),
Long Beach, CA, USA, 2017.

Walker CR, Scally A, Maio ND et al. Short-range template switching in
great ape genomes explored using pair hidden markov models.
PLoS Genet 2021;17:e1009221.

Wang H-C, Li K, Susko E et al. A class frequency mixture model that
adjusts for site-specific amino acid frequencies and improves infer-
ence of protein phylogeny. BMC Evol Biol 2008;8:331.

Wang L, Jiang T. On the complexity of multiple sequence alignment. J
Comput Biol 1994;1:337–48.

Wolf T, Debut L, Sanh V et al. Transformers: state-of-the-art natural
language processing. In: Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing: System
Demonstrations. p.38–45, Virtual Event, 2020.

Wolf Y, Madej T, Babenko V et al. Long-term trends in evolution of
indels in protein sequences. BMC Evol Biol 2007;7:19.

Yang Z. Estimating the pattern of nucleotide substitution. J Mol Evol
1994;39:105–11.

© The Author(s) 2025. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Bioinformatics, 2025, 41, 1–14
https://doi.org/10.1093/bioinformatics/btaf009
Original Paper

14 Dotan et al.

https://aclanthology.org/N19-1000/
https://aclanthology.org/N19-1000/

	Active Content List
	1 Introduction
	2 Materials and methods
	3 Results
	4 Discussion
	Author contributions
	Supplementary data
	Funding
	References

