UC Irvine

UC Irvine Previously Published Works

Title

Algorithmic Performance Consistency Across Patient Demographics and Scanner Manufacturers

Permalink

https://escholarship.org/uc/item/7kt250kg

Authors

Salehi, Shirin Schlossman, Jacob Chowdhry, Saba et al.

Publication Date

2023-11-23

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

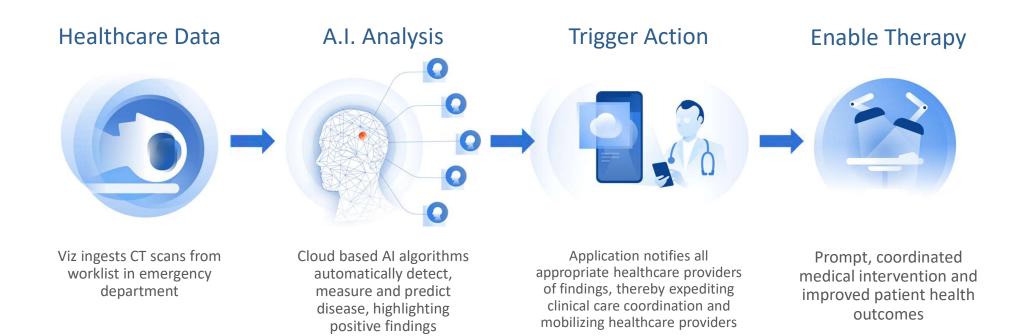
Peer reviewed

Algorithmic Performance Consistency Across Patient Demographics and Scanner Manufacturers

Shirin Salehi, MS3; Jacob Schlossman; Saba Chowdhry; Marlene Scudeler; Sarah Quenet, BS; Angela Ayobi, MENG, MSc; Yasmina Chaibi, PhD; Peter Chang, MD

Disclosures

- Shirin Salehi: none
- Marlene Scudeler, Sarah Quenet, Angela Ayobi and Yasmina Chaibi are employees at Avicenna.Al
- Saba Chowdhry is an employee at Viz.Al
- Peter Chang is a co-founder and CMO of Avicenna.Al



Clinical significance

- Aortic dissection is associated with high rates of morbidity and mortality
 early diagnosis and prompt intervention greatly improve patient outcomes
 - Mortality rate of 1-2% per hour during first 48 hours
- Provide real-world validation of FDA 510(k)-approved software application in expediting detection, triage, and ultimately treatment of patients with suspected aortic dissection
 - Viz Aortic Dissection algorithm, in collaboration with Avicenna.AI (La Ciotat, France)
- Growing concern that algorithmic biases may perpetuate existing health inequities
- Objective: to assess the real-world performance of deep learning algorithm for detection of aortic dissection on computed tomography angiography (CTA) with a focus on evaluating differences in performance across age, sex, geography, and manufacturer



Workflow incorporating Al-based detection algorithm

Al-based detection algorithm can expedite patient care

Sample images of in-app Al-based findings

AI-Powered AAA

Al-Powered
Type B Dissection

Al-Powered
Type A Dissection

TAA

Rupture

Study methods

- 1,303 chest and thoracoabdominal CTA exams from 200+ U.S. hospitals
- Ground-truth classification for presence or absence of aortic dissection determined through consensus evaluation by three board-certified radiologists
- Exams analyzed using FDA 510(k)-approved Viz Aortic Dissection algorithm
 - Deep learning model trained on a representative, diverse cohort across age, sex, disease prevalence, race, and clinical settings
- Algorithmic performance stratified by
 - Age (18-40, 40-60, 60+)
 - Sex (male, female)
 - Geographic region (Continental, Northeast, Pacific, Southeast)
 - Manufacturer (GE Medical Systems, Philips, Siemens, Toshiba)
- Measured algorithmic fairness across subgroups using equalized odds (EO) differences across true positive rates (TPR) and false positive rates (FPR)
 - Also report overall accuracy, sensitivity, specificity, PPV, and NPV

UC University of California, Irvine

Study results

- 1,166 (89.5%) dissection-negative exams, 137 (10.5%) dissection-positive exams
- Overall accuracy: 97%
- Sensitivity: 94.2%
 - [95% CI: 88.8% 97.5%]
- Specificity: 97.3%
 - [95% CI: 96.2% 98.1%]
- PPV of 80.1%, NPV of 99.3%
 - 8 false negatives, largely complex cases
 - · 32 false positives, largely result of imaging quality
- Overall mean EO differences across subgroups was 0.031, with individual EO values noted to be small and consistent for:
 - age [18-40: 0.0584, 40-60: 0.0294, 60+: 0.0368]
 - sex [M: 0.0227, F: 0.0359]
 - geographic region [Continental: 0.0584, NE: 0.0487, Pacific: 0.0227, SE: 0.0314]
 - manufacturer [GE: 0.0111, Philips: 0.013, Siemens: 0.0047, Toshiba: 0.0274]
- In general, small decreases in TPR or FPR often balanced by small increases in the complimentary metric for most subgroups.

UCI University of California, Irvine

Group	Subgroup	Acc ¹	Sen ²	Spe ³	EO-max ⁴	EO-TPR ⁵	EO-FPR ⁶
Age	18 ≤ age < 40	0.98	1.00	0.98	0.0584	0.0584	0.0049
	40 ≤ age ≤ 60	0.98	0.97	0.98	0.0294	0.0294	0.0093
	age > 60	0.96	0.90	0.97	0.0368	-0.0368	-0.0075
Sex	Male	0.97	0.96	0.97	0.0227	0.0227	-0.0031
	Female	0.97	0.91	0.98	0.0359	-0.0359	0.0024
U.S. geographic region	Continental	0.98	1.00	0.97	0.0584	0.0584	0.0014
	Northeast	0.96	0.89	0.97	0.0487	-0.0487	-0.0019
	Pacific	0.97	0.96	0.97	0.0227	0.0227	0.0024
	Southeast	0.97	0.97	0.97	0.0314	0.0314	0.0018
Scanner manufacturer	GE Medical Systems	0.96	0.95	0.96	0.0111	0.0065	-0.0111
	Philips	0.97	0.93	0.97	0.013	-0.013	-0.0042
	Siemens	0.97	0.94	0.98	0.0047	-0.013	0.0042
	Toshiba	0.99	0.92	1.00	0.0274	-0.0185	0.0274

¹ Accuracy, ² Sensitivity, ³ Specificity, ⁴ Equalized Odds Difference (Max), ⁵ Equalized Odds Difference (FPR)

Clinical takeaways

- Real-world validation of a deep learning AI-based detection algorithm for suspected aortic dissection
 - Sensitivity: 94.2%
 - Specificity: 97.3%
- Allows for rapid patient triage → earlier diagnoses →
 accelerated care coordination → timely initiation of lifesaving interventions → better patient outcomes
- Generalizability across demographics and clinical parameters is critical in preventing algorithmic biases and promoting equitable health outcomes
- Deep learning tool for aortic dissection detection yields no significant biases across patient demographics and scanner manufacturers from 200+ U.S. hospitals

Citations

- Gawinecka J, Schönrath F, von Eckardstein A. Acute aortic dissection: pathogenesis, risk factors and diagnosis. Swiss Med Wkly. 2017 Aug 25;147:w14489. doi: 10.4414/smw.2017.14489. PMID: 28871571.
- Gudbjartsson T, Ahlsson A, Geirsson A, Gunn J, Hjortdal V, Jeppsson A, Mennander A, Zindovic I, Olsson C. Acute type A aortic dissection - a review. Scand Cardiovasc J. 2020 Feb;54(1):1-13. doi: 10.1080/14017431.2019.1660401. Epub 2019 Sep 23. PMID: 31542960.
- Harris KM, Nienaber CA, Peterson MD, et al. Early Mortality in Type A Acute Aortic Dissection: Insights From the International Registry of Acute Aortic Dissection. JAMA Cardiol. 2022;7(10):1009–1015. doi:10.1001/jamacardio.2022.2718