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ABSTRACT OF THE DISSERTATION

Finite Regularity of V I™-module
by
Khoa Ta

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, June 2023
Dr. Wee Liang Gan, Chairperson

Let R be a commutative Noetherian ring. The category VI™ is the product category
VIx---x VI and a VI"module is a functor from the category VI" to the category of R-
N— —

n copies

modules. In this thesis, we will prove any finitely generated V I"-module has finite regularity

along with many interesting results, among them is the analogue of the Shift Theorem.
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Chapter 1

Introduction

1.1 Basic Notion

Let R be a commutative Noetherian ring and fix a finite field F = [F,. We assume that ¢ is
invertible in R and we call this the "non-describing characteristic” case.
Let VI be the category of finite dimensional vector spaces over F with morphisms being
the linear injections. Then VI™ is the product category, VI x --- x VI whose objects are
n-tuples of finite dimensional vector spaces over F and morphi:ms are n-tuples of linear
injections.
For W = (Wy, -+, W,) € Ob(VI"), define the norm |W| by

(W| = dim(Wy) + - - - dim(W,,).
For W,Y € Ob(VI"), we say that

W<y if dim(W;) <dim(Y;) for all 7.

Let R-Mod denoted the category of R-modules with morphisms R-module maps.



Definition 1.1.1. A VI®-module M is a functor M : VI — R-Mod. In particular,

o For W= (Wy,---,W,) € Ob(VI"), M(W) is an R-module.

e For each n-tuple of linear injections f = (fi,--+ , fn) : — Y, the transition map

fo=M(f): M(W) — M(Y) is an R-module map.

Notation 1.1.2. Since vector spaces of the same dimension are isomorphic,

W% (]Fdl"" 7Fdn)

where d; = dim(W;). For ease of notation, sometimes we write M(dy,--- ,dy) for
M(Fd ... Fdn), If there is no risk of confusion, we also write f for the transition map
o

As with any algebraic object, we can also talk about its subobject.

Definition 1.1.3. Given a VI™-module M, a submodule N of M is a functor from the

category VI™ to category R-Mod such that

o N(W) is an R-submodule of M(W) for all W € Ob(VI™).

o N is closed under the action of VI™ morphisms i.e for any transition map f : W — Y,

F.N(W)) S N(Y).

A map of VI"-modules is a natural transformation of functors. More formally:

Definition 1.1.4. If M, N are VI"-modules, then a VI*-module map F : M — N is

a natural transformation of functors from M to N. In particular, for any transition map



f:W =Y, the diagram below is commutative

M) 2 vy

N (W) N(Y)

N(f)
We also have the concepts of kernel, image and cokernel for a VI™-module map.
Definition 1.1.5. Given a VI™-module map F : M — N, define

e ker(F)(W) := ker Fyp7 for any W € Ob(VI™).

e ker(F)(f) = M(f)|xer Fy for any transition map f:W =Y.
Then, ker(F) is a VI™-submodule of M.

The image and the cokernel of a VI"™-module map are defined similarly and both are VI"-

modules.

Definition 1.1.6. For a VI™-module M, we define the degree of M to be

deg(M) = sup{ |W|: M(W) # 0}.

By convention, if M is the zero module, we define deg(M) = —oc.
Recall that for an R-module A and a subset S C A, the R-submodule generated by S
is defined to be the smallest R-submodule of A containing S. In a way, the presence of

transition maps of a VI -module allows us to ”generate” elements of higher degree.

Definition 1.1.7. A VI™-module M has generation degree < d if there exists a set

S C UM(W) with |W| < d such that the smallest V I™-submodule of M containing S is M

U
w
itself. We say that M is finitely generated if the set S is finite.



Remark 1.1.8. This implies that for each v € M(Y) where |Y| > d, we can find a finite

set {v1,..,v,} € U M(W) with |W| < d and morphisms f, ..., f,, such that v is in the
w

R-submodule of M(Y) generated by {f;(v1), ..., f1(vn)}. When M is finitely generated, the

set {v1,...,un} can be chosen independently of v.

It is a useful fact in module theory that for any R-module V', there exists a surjection
@ierF; — V where F; is a free/projective R-module. We have a similar result but first, we

need to talk about free VI™- modules.

1.2 Free VI"™-mod

For each d = (dy,--- ,d,) € N”, we define a VI™module I(d) as follows:
For any W,
I(d)(W) := free R-module with basis Homy » ((F%,--- ,Fin) W)
and for any f: W — Y, define
7. = 1@ : [@W) - I@(T) by F.(3) = T o7

then it’s not hard to see that I(d) is a VI"-module. We call I(d) a free VI -module.

Remark 1.2.9. Note that forv € V(d) where V is a VI™ -module, there exists a VI™ -module
map from I(d) to V where for each W, it is given by defining

()W) = VW), f=(fi, . fa) = Fu(v).

It’s not hard to see from the remark that I(d) is a projective VI"-module. Furthermore,

this also gives us the following familiar fact from module theory.



Proposition 1.2.10. Let M be a VI™-module, then there exists a VI™-surjection P — M
where P is projective. Furthermore, if M is generated in degree < d, then P can be chosen

to be generated in degree < d as well.

Proof. From the remark, if S is a generating set of M, then for each s € S, we can find a
corresponding map I(d,) — V where s € M(d). Combining all these maps give a surjection
®sesl(ds) — M. Let P = ©,cs51(dy), then P is projective. This proves the first part.
For the second part, if M is generated in degree < d, then |dy| < d for all s € S. Since each
I(dy) is generated at position ds, it’s clear that generation degree of P is < d. m
From the previous proposition, for any V I™-module M generated in degree < d, there exists
a short exact sequence (SES) of VI"-modules

0—+K—+P—-M-—=0

where P is a projective V I™-module generated in degree < d.

Definition 1.2.11. For a VI™-module M with a SES as above, we say that M has relation
degree < r if K is generated in degree < r and we denoted the relation degree of M by

rel deg(M).

1.3 Induced/Semi-Induced VI*-modules

The free VI™ -module above is a special case of what we called an induced VI™-module.
To introduce Induced V I™ -module, one needs to know the concept of a V B™-module.

Similar to the category of VI™, the category V B" is the product category VB X --- x VB,

n
whose objects are n-tuples of finite dimensional vector space over F and morphisms are

n-tuples of isomorphisms. Then, a V B™module is a functor from the category of V B"



to the category of R-modules. Note that any V B"module V can be viewed as a VI™-
module simply by letting non-isomorphism of VI™ acts by zero map on V i.e f, = 0 for

non-isomorphism f.

Definition 1.3.12. Given a V B"-module V, an induced VI"-mod I(V') is of the form

(V)= @ I(d) QR[GLa, X XxGLay] V(d).
deNn

We also say the module I(V') is induced from the V B™-module V.

Remark 1.3.13. To see that a free VI™-module module I(d) is an induced module, let

V(~) = RHomypn(d,_), then V is a VB"-module and it’s not hard to see that I(d) =

(V).

Similar to how the concept of semi-simple module is related to simple module, a related

concept to Induced VI"™-Modules is the Semi-Induced V I™-modules.

Definition 1.3.14. A VI™-modules M is semi-induced if there exists a finite filtration
of M by VI™-modules such that corresponding quotients are induced i.e we can find a finite
sequence of VI™-submodules of M, 0 C My C My C --- C M, = M such that M;/M;_1 is

an induced VI™ -module.

1.4 The Functor Hy, and H;

As stated in the previous section, any V B"™-module can be upgraded to be a VI™-module
simply by letting non-isomorphisms acts by zero maps. It’s not hard to see that this give
us a functor from the category of V B™-modules denoted V B™-Mod to the category of VI™-

modules denoted VI"-Mod, say 1 : V B™-Mod — VI™-Mod.



The functor ¢ has a left adjoint functor and we call this functor Hgy : VI™-Mod — V B"-
Mod. More explicitly, given a VI -module M, define
M 37 = the smallest V I"-submodule of M that contains M (V) with Y < W.

Then,

M(W)
<ﬁ(M(?)) for any f € Homy = (Y, W), Y < W>

Ho(M)(W) =

Note that for f: W — Z, the induced map f, : Ho(M)(W) — Ho(M)(Z) is the zero map
because of how Hy(M) is defined. Hence, we can think of Hy(M) as a V B™module or a
V I™-modules with zero transition maps.

This functor Hy can be defined not just for V I"™-modules but also for a C-modules in general
(here, a C-modules is a functor from the category C to the category of R-modules) and it
plays an important role in the theory of VI-, OI- and F'I-modules or more generally, any
combinatorial categories. For example, it can ”detect” the generation degree of a VI"-

module as shown below.
Proposition 1.4.15. M is a VI"-module generated in degree < d iff deg(Ho(M)) < d.

Proof. Let © € Ho(M)(Y) with |Y| > d and v € M(Y) such that v ~ ¥ via the quotient
map M(Y) — Ho(M)(Y).

As explained in Remark 1.1.8, for v € M(Y) with [Y| > d, we can find a finite set
{v1,v9,...,0,} € %J\I(W) with || < d such that v is in the R-submodule of M(Y) gen-

erated by {fy(v1), -+, fa(vn)}. But this implies {f;(v1), -+, fo(vn)} C M _y and by



definition, v — @ = 0 € Ho(M)(Y) so deg(Ho(M)) < d.
Conversely, suppose deg(Hy(M) < d. Let
M, = smallest V I"-submodule of M that contains M (W) for [W| < a.
We claim M<; = M<g44; for i« € N and prove this by induction. The base case is clear so
assume M<qy = M<gqy; for i < j. Then,
HoM(d+ j) = (M/Mas;)(d + j) = 0
implies
M(d+j) = Mcatj(d+j) = M<ay(-1)(d+j) = M<a(d + j).
Combining this fact with the induction hypothesis, we have M<4,; = M<g4.
Therefore, M<y = M<q4,; for i € N. It’s not hard to see that this result yields M<4; = M.
Hence, M<4 = M which implies that M is generated in degree < d as claimed. m
It can be checked directy that Hy is right exact (or using the fact that Hy is a left adjoint)
so we can talk about its ith left derived functors L;Hy : VI™-Mod — VI™-Mod which we
denote by H;. For a VI™-module M, H;(M) is also a VI"-module so we can talk about the
degree of H;(M) which is defined by
ti(M) = deg(H;(M))
and is referred to as homological degrees of M.
Due to Prop 1.4.15 above, we call to(M) the generating degree of M.
The homological degrees t;(M) allow us to define an important homological invariant called

the Castelnuovo-Mumford reqularity or regularity for short.

Definition 1.4.16. The Castelnuovo-Mumford regularity or regularity of a VI"-

module M denoted by reg(M) is defined by reg(M) := sup{deg(H;(M)) —i | i > 0}



Chapter 2

Main Results

As noted in previous chapter, the regularity of a V' I™-module is a significant homological
invariant and a common question in the literature is to investigate whether the regularity
is finite or not; better yet, if it is finite, is there an explicit formula for the bound?

When n = 11i.e for a VI-module, in [4], Nagpal was able to conclude that a finitely generated
V I-module has finite regularity and even gave the formula for the bounds in term of local
cohomology degrees.

In the same paper, Nagpal proved many interesting properties of V I-module, among them is
the Shift Theorem which states, ”a finitely generated V I-module, when shifted sufficiently
many times, is semi-induced”. In [1], using the Shift Theorem in a nontrivial way, Gan
and Li proved a better bound of regularity for finitely generated VI-module in terms of
generation and relation degrees. They also give the upper bound for the number of times
that one must shift a finitely generated V I-module in order for it to be semi-induced as

well.



A natural question arises from Nagpal’s result, for n € N, do finitely generated V I"™-module
also have finite regularity? Furthermore, can we find an explicit formula in term of n for
the bound of regularity?

In this paper, we will give an affirmative answer to the first question, that is we will prove

the following theorem:

Theorem 2.0.17. (Finiteness of Regularity) Let M be a finitely generated VI"™-module.

Then M has finite reqularity.

As for the second question, we suspect there might be a recursive formula with respect to
n for the bound but we are unsure whether a explicit, closed-form formula for the bound
exists.

Besides proving the finiteness of regularity, we will also establish many interesting and useful
properties of VI™-modules, similar to those of V I-modules in Nagpal’s paper [4]; among
these is the analogue of the Shift Theorem for V I"-module. More precisely, we will prove

the following theorem:

Theorem 2.0.18. (Shift Theorem for VI™-modules) Let M be a finitely generated VI™-
module with generation degree d = to(M) and relation degree r. Then, for x > d +r,

Y%y o M and XFX5 - X2 M are semi-induced.

We will give the proofs of these two theorems and discuss in details about the shift functors
and its variant, ¥; and ¥; in later chapters; more specifically, we will prove finiteness of

regularity in chapter 3 and the Shift Theorem in chapter 4.

10



Chapter 3

Proof of Finiteness of Regularity

3.1 Shift Functor 1

The main ingredient to prove Finiteness of Regularity is the Shift Theorem for V I-module
of Nagpal. In order to state the Shift Theorem, we need to talk about the Shift Functor.
First, we discuss the Shift Functor and its variant for V' I-modules and then later, we’ll see
how this functor can be applied to a V I™-module.
Let X € Ob(VI), we have a functor ™8 : VI — VI such that v™8(V) := V @ X and
for any linear injection f : V. — W, ©X(f) : v¥(V) — X (W) is defined as f @ Idx.
Since a VI-module is a functor M : VI — R-Mod, this gives us a functor of VI-modules
»X : VI-Mod — VI-Mod defined as

SXMV) = MTX (V) =MV & X)
with transition map SXM(f) :== M (tX(f)) : ZXM (V) — X M(W).
For a VI-module map F : M — N, SXF : SXM — YXN is defined as

SXFy = Frax

11



This is a VI -module map because I is. Hence XX is indeed a functor and we call it the
Shift Functor. Tt is so-called the Shift Functor because applying % to a VI-module M at

the vector space V' essentially ”shift” V' by the vector space X.

Remark 3.1.19. When dim(X) = r, we use the notation X" for ¥X interchangeably and

when dim(X) = 1, we write X" as ¥ for short.
The Shift Functor has some useful properties, among them is Prop 4.3 of [4].

Proposition 3.1.20. (Prop 4.3 of [4]) Shift of an induced V I-module generated in degree
< d is an induced VI-module generated in degree < d and shift of a projective VI-module

s also projective.

Along with the shift functor, we also have a natural transformation of Idy g — 2X
induced by the inclusion ¢y : V < V @& X for each vector space V. This gives us a canonical
V I-module map M — XXM defined by M(wy) : M(V) — SXM(V).

We denote the kernel of the map M — SXM to be kX M and its cokernel to be AX M.
It’s not hard to see that ©X is an exact functor and hence, does not increase the generation

degree and relation degree.

Proposition 3.1.21. Let M be a VI-module with generation degree < d and relation degree

<r, then XXM also has generation degree < d and relation degree < r.

Proof. Since M be a VI-module with generation degree < d and relation degree < r, we
have a SES of V' I-modules
0O-R—-F—-M-=—=0

where F' is free with generation degree < d and R with generation degree < r.

12



Since ©X is exact, we have another SES
03¥RYXF 5 2¥M —0.
By Prop 3.1.20, 3% F is also free in generation degree < d and ©X R is generated in degree

< r. But this implies that ¥X M is generated in degree < d and related in degree < r. m

As mentioned before, there are two versions of the Shift Theorem, one in Nagpal’s paper
[4] and the other in Gan-Li’s paper [1]. In the former paper, Nagpal did not specify the
number of times one must shift a V I-module to make it semi-induced but only state this
holds for a sufficiently large number of shifts and in the latter, Gan-Li gives the precise
number of shifts in terms of the generation and relation degree which is much more useful

in practice. Therefore, we state the Shift Theorem from Gan-Li’s [1].

Theorem 3.1.22. (Shift Theorem, Corollary 4.4 of [1]) Let M be a finitely generated VI-

module. If X € Ob(VI) such that dim(X) > to(M) + t1(M), then XM is semi-induced.

One reason the Shift Theorem is so useful because shifting a V' I-module sufficiently many

times can make the module simpler to work with.

Proposition 3.1.23. (Proposition 3.10 of [4]) Let M be a VI-module generated in finite
degrees. Then M is homology acyclic i.e H;(M) = 0 for i > 1 if and only if M is semi-

induced.

3.2 Shift Functor 11

In this section, we seck another variant of the Shift Functor ¥ that has better formal

properties in addition to those of 3.

13



Let & be a flag of the vector space X so 0 = Xog C X; C --- C X,, = X. The parabolic
subgroup corresponding to F denoted by P(JF) is the subgroup consisting of stabilizers of F
in GL(X), the general linear group of X.
We then have a canonical map P(F) — @ ; GL(X;/X;_1) and the kernel of this map is
called the unipotent radical of P(&F), denoted by U(F).
We define EX, a variant of % as follows:
Fix a maximal flag of X so 0 = Xy € X; C --- C X,, = X and n = dim(X). Now for a
vector space V, let Vo =0 and V;11 =V & X, for i > 0, then
O=WwWCcWhc---CVyu=VaX
is a flag of V@ X and we denote the unipotent radical corresponding to this flag by Ux (V).
Let M be a VI-module, we define S M by
SEM(V) = (SXMV))uy vy = MV O Xy )

and for f:V — W, the transition map EXM(f) : EXZW(V) — EXM(W) is defined by

ae M(V®X)u,w) — MIX(f))(a) € MW & X))y w)-
This map can be readily checked to be well-defined so we have another Shift Functor
¥ . VI-Mod — VI-Mod. When dim(X) = 1, we write 3 for % for short.
Similar to X, we also have a canonical map M — T M from the composition of

M(V) = SXM(V) — EX]W(V). Kernel of this map is denoted &X M and cokernel A M.

Remark 3.2.24. In the non-describing characteristic case, the order of Ux (V) for V €

Ob(V'I) is invertible in R so taking coinvariant is exact; therefore, X" is also an exact

functor like XX
Because of the remark above, it turns out that XM is actually kernel of the canonical

14



map, M — XXM.

Proposition 3.2.25. Let M be a VI-module, the kernel of the canonical map M — ORIV

is k<M.

Proof. For any V € Ob(V ), we have an exact sequence

0= rkXMV)—= MV)—=SXM(V).
Since the map M (V) — LX M (V) is Ux(V)-equivariant and Ux (V') acts trivially on M (V),
we have the sequence

0= (K*MV)uxw) = MV)uyw) = EXMV))ugw)

which is

0= kX M(V) = M(V) = S M(V).
The exactness of this sequence follows from remark 3.2.24 which gives the result. m
While &° shares many similar properties with ¥, the following proposition from Nagpal’s

e . =X
[4] is significant and is the reason why we need to construct ¥ .

Proposition 3.2.26. (Prop 4.12 of [4]) Let X be a vector space of dimension 1 and I(W)
be an induced V I-module. Then,

SIW)=IW)QI(EW) and AI(W)=IZW).

Since T is an exact functor and by previous proposition 3.2.26, the Shift Functor T¥ takes
an induced module generated in degree < d to direct sum of induced module also generated

. =X . . .
in degree < d, we see that ¥~ does not increase generation and relation degree.

Corollary 3.2.27. Let M be a VI-module generated in degree < to(M) and related in

degree < r i.e 4 a SES

15



0-K—>P—-M-—=0
where P is an induced V I-module generated in degree < to(M) and K is generated in degree
<r. Then,

to(EXM) < to(M) and rel deg(S M) < r.

One might wonder whether there is an analogue of the Shift Theorem (Theorem 3.1.22) for
the Shift Functor EX, the answer is affirmative and the proof is a minor modification of the

proof of the Shift Theorem for ¥¥ in [1].

Theorem 3.2.28. (Shift Theorem for EX) Let M be a finitely generated V I-module. If

X € Ob(VI) such that dim(X) > to(M) + t1(M), then T M s semi-induced.

Proof. Suppose dim(X) > to(M) + t;(M). First, recall that we have a complex of VI-
modules I* associated with M as constructed in Theorem 4.34 of [4]. By construction, I*® is
a finite complex, starting with I° = M, such that each I*, (i > 1) is a semi-induced module.

By theorem 4.1 of [1], the complex X I*® is exact. Now, for any i > 0, the ith homology of

I is
i (oK e ~ <X 77i/ 10 e
HY(XT7) = STH(IY) = (SYH(I7))uy
b/c 5% is exact
~ ; X 1o
=, HE My = (Ouy=0.
b/c 32X is exact »XT® is exact

Hence, TX71* is also an exact complex.
For i > 1, I' is semi-induced by construction so by Proposition 4.12 of [4], T s also
semi-induced. Since ¥ I* is a finite complex because I*® is, Corollary 4.23 of [4] implies

EXI 0 — EXM' is also semi-induced. m

16



3.3 Application of Shift Functor to VI*"-Modules

Even though the Shift Functor and its variant are defined for a VI-module, we can still
apply them to a VI"-module as follows.

Given a VI™-module M, if we fixed n—1 component of M i.e M (dy,da, - ,di—1,—,dit1, - ,dy),
then JE = M(dy,da,- - ,di—1,—,dit1, -+ ,dy) is a VI-module. This simple observation

is the key for this and for our proof of finite regularity. Since JE is a VI-module, we can

apply the Shift Functor ¥X and its variant ¥ to ]T[/Z

Definition 3.3.29. Given a VI"-module M and for any 1 < ¢ < n, we define the Shift
Functor E;X :VIT-Mod — VI™-Mod to be

S M) =S Mi(d;).

(2
Similar definition can be made to extend the application of the Shift Functor ¥ to a VI"-
module.

As in the case of VI-module, we also have a canonical map M — EZXM along with its

kernel and cokernel, denoted %X M and Z;XM respectively.

Remark 3.3.30. Many properties of the Shift Functor for V I-module still holds for VI™-

modules so we list a few results below:

. =X .
1. For any 1 <i¢<mn, ¥; is an exact functor.

2. Z;X does not increase generation and relation degrees i.e to(f;XM) < to(M) and

rel deg(flxM) < rel deg(M).
3. E;XM coincides with kernel, H/;XM, of the canonical map M — EZ-XJ\J.
4. SIAW) =IW) e I(E;W)  and  AI(W) = I(Z;W).

17



3.4 The Functors HJ® and H}*

In this section, we introduce two functors, related to Hy of Sect 1.4, from the paper (in
preparation) of Gan-T [3] (see Appendix 5) that are fundamental in proving finite regularity
and the analogue of the Shift Theorem for V I"-modules.
Using notation of the paper [3], let A = VI and B = VI 1. As defined there, HJ" :
VI"-Mod — VI™Mod is a functor defined by

Hb M (a,d) = (HY!M(—,d))|, where d € N*~! and a € N
and similarly, Hj®" : VI"-Mod — VI"-Mod is a functor given by

]n—l

Hy M (a,d) = (HY™ " M(a, )z
Since Hy®" and H{®" are right exact, we can define their left derived functors L; Hy®", L; HE"
and denoted them as H}°" and HP°" respectively.
Theorem 2.4 of [3] implies, for any VI™-module M, we have two convergent ”horizontal-
vertical” spectral sequences

HYTHP'(M) = Hpyq(M) and  HP"HY™ (M) = Hpyo(M).
We also need this technical Lemma that plays a key role in our proof of finite regularity

and Shift Theorem.

Lemma 3.4.31. Let M be VI"-module, for a € N,d € N*~ and for p > 0 we have:

]n—l

1. B M(a,d) = HY" " M(a, )|
hor N ~ VI 3
2. H2"M(a,d) = HY'M(_,d)|,

Proof. We give the proof for part 1 since the proof of the second part follows similarly.

Suppose we have a free VI™ '-module resolution
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e = Fy = Fy— M — 0.
For any a € N, F;(a,_) is a free VI"~'-module because
I(d1,d) () = Dy Homy 1 (d1,a) 1()
which is a free VI" '-module. Thus we have a free V I"~!resolution of M(a,_)
o= Fi(a,—) = Fy(a,—) — M(a,—) — 0.

For any d € N1, we have a commutative diagram

HY* Fy(a, d) HY* Fy(a, d)

n— n— n—1
o ——= HY" Ry (a, )|y — HY" T Fy(a,—) [ —= HY T M(a,—) | —0

HY"M (a,d) ——0

The pth homology of the top row gives H,*" M (a,d) while the pth homology of the bottom
row gives H;,”nil I(a, )|z
Hence, HY"M(a,d) = HY" M(a, )5
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3.5 Proof of Finiteness of Regularity

To prove the result, we first induct on n i.e assume any finitely generated VI !-module
has finite regularity. This is true for V I-module by Theorem 1.7 of Nagpal’s [4] so the base

case is established. We now prove a preliminary lemma:

Lemma 3.5.32. If V is a finitely generated VI™-module, then k1V = ker(V — X,V has

finite regularity.

Proof. By theorem 8.3.1 of [5], the category VI is quasi-Grobner and by proposition 4.3.5 of
[5] which states ”The cartesian product of finitely many quasi-Grobner categories is quasi-
Grobner” so VI™ is also a quasi-Grobner category. Finally, theorem 1.1.3 of [5] implies any
finitely generated VI"-module over a commutative Noetherian ring R is also Noetherian.
Therefore, V is a finitely generated Noetherian V I™-module and since k1 V C V| k1 V is
also finitely generated and let aw = to(k1V).

Since ”horizontal” maps act by the zero map on 1V i.e K1V (f,Id,Id,--- ,Id) = 0, we have

the diagram

anl
° ° ° ° ° 0 0
° ° ° ° ° 0 0
° ) ) ° ) 0 0
° ° ° ° ° 0 0
o N

Figure 3.1: 1V
where each dot at position (a,a) € N x N*~! represents mV(aﬁ) and mV(aﬂ) =0 for a > a.

From Theorem 2.4 of [3] regarding VI™ as VI x VI" !, we have a first quadrant spectral
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sequence HPO"(HY (k1V)) with HE'(HY* (k1V)) = Hpyq(k1V).
For a € N, each "column” of 1V, k1V(a,—), is a VI" '-module that is also finitely
generated so induction hypothesis implies each ”column” has finite regularity. By Lemma
3.4.31, this means we can find a N; € N such that deg Hy*'(r1V)(a, —) < ¢+ N,.
Since 1V (a,—) = 0 for a > a, let

N’ =max{N/! | 0 < a < a},
then

Hy*(k1V)(a,d) = 0 for a > v or |d| > q + N’ (3.1)

Since H;°" is right exact, H;*(x1V) is also finitely generated with generation degree <

a so each "row” of Hi®(k1V), H;*(k1V)(—,d), is also a finitely generated V I-module
with deg(HY" (k1V)(—,d)) < . Lemma 5.10 of [4] then tells us degree of each "row” of
Hgor(ngr(mV)) is bounded by « + p, that is, by part 2 of Lemma 3.4.31
HY'(HY" (51V))(a.d) = 0 if a > o + p.
From Equation 3.1, we also have H;“’r(H;er(mV))(a,a) = 0 for |d| > ¢+ N’ and this gives
HE(HY™ (51V))(a,d) =0

for |(a,d)| =a+dy+---dp1>a+p+q+ N,

Since the spectral sequence H}}OT(H;ermV) = Hpq(k1V), letting i = p + ¢, we see that
H;i(k1V)(a,d) = 0 for |(a,d)| > a+ i+ N'.
Therefore,
degH;(k1V) < a+i+ N’ or reg(kV) < a + N/,

so k1V has finite regularity as claimed. m
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Now let M be a finitely generated V I™-module with generation degree < to(M) and relation
degree < r. We also induct on the generating degree of a VI™-module i.e we assume that
any finitely generated VI™-module with generating degree < to(M) also has finite regular-
ity. Since a VI™-module generated in degree < 0 is the zero module, it obviously has finite
regularity so the base case holds as well.
Step 1: We show if dim(X) > to(M) +r, then ii(M has finite regularity.
Fixing the last n — 1 components of M gives a VI-module i.e for d € N*—1, M(—, E) is
a VI-module. Note that M(_,d) is also a finitely generated V I-module with generation
degree < to(M) and t;(M(—,d)) <.
Hence, if we choose X € Ob(VI) such that dim(X) > to(M) + r, then the Shift Theorem
for &% of VI-module implies that each "row” of fi{M ie ii{M (_,d) is a semi-induced
V I-module.
From Theorem 2.4 of [3] regarding VI™ as VI x VI" ! we have a ”horizontal-vertical”
spectral sequence

HYer HE (S5 M) = Hyo(S7 M),
Since for each d € N*~1 S/ (—, 3) is a semi-induced V I-module, Prop 3.1.23 and Lemma

3.4.31 implies

- HEr (57 M) if g =0
Hyo'(Xy M) =
0 ifg>0

Therefore, the E2-level of our spectral sequence HYe* FTkor (fi(M ) has the form
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. =X
Figure 3.2: HY"HI" (%] M)
This implies for p > 0, we have

Hy(S7 M) = HY (HY (57 M)). (3.2)

Now, M is finitely generated with generating degree < to(M) as a V I"-module which implies
ii{M is also a finitely generated V I™-module with generating degree < to(M). This yields,
for d € N*—1,

HEr (55 M) (a,d) =0 if a > to(M). (3.3)

We can visualize this on the N- and N"~!-axes below, where each dot at position (a,d) €

N x N*~1 represents Hgor(fi{M)(a,c_l).

Nn 1
e o ° o ) 0 0
e o ° ° ° 0 0
e e o e o 0 o0
e e e o o 0 O
N
to(M)

Figure 3.3: Hgor(fi{M)

So the equation above says that H}°" (fi{M ) is zero to the right of the vertical line to(M).
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Since HE' is right exact, Hgor(ifM ) is also a finitely generated VI"™-module and so for
each a € N, Hgor(ifM )(a, ) is a finitely generated VI" !-module so by induction hy-
pothesis, Hgor(ii(M )(a,—) has finite regularity i.e there exists N, > 0 such that, by
Lemma 3.4.31, the ”vertical degree”

deg(H™* (Y (Sy M))(a,—)) < p+ No for p> 1.
Since Hé‘or(ii{M) is zero to the right of the vertical line to(M ), let

N = max{N,|0 < a < to(M)},

then for all a € N,

deg(Hy" (HE" (Z) M))(a,—)) S p+ N for p > 1.
Also, Equation 3.3 yields

HYer(HLr (57 M))(a,—) = 0 for a > to(M).
Hence, as a VI™-module,
deg(Hye* (HE () M))) < p+ N + to(M),
which Equation 3.2 implies
deg(Hy(Sy M)) < p+ N +to(M)

for p > 1 as well i.e ii( M has finite regularity.

Step 2: For each s € N, we show if EiHM has finite regularity, then iiM has
finite regularity.
Now, for each s € N, we have two SES’s of V I"™-modules

S

0— k1 (T]M) SIM SIM/ky (ST M) —0 (3.4)
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0—= M /K (SIM) —= 5 M — Ay (55 M) —=0 (3.5)

where #1(37M) = ker(S]M — fiHM) by part 3 of Remark 3.3.30 and A;(X]M) =
coker(Z7 M — ii“]\l).

Since M is finitely generated, ii M is also finitely generated by right exactness of ¥ so by
Lemma 3.5.32, m(fiM) has finite regularity for any s € N.

We also have to(A(S;M)) < to(M) because by part 2 of Remark 3.3.30, to(3; M) < to(M)

and we have an exact sequence

PI1(Vy) M 0
d
where V5 are V B"-module supported in degree d such that |d| = dy + -+ + dp, < to(M).
Applying the right-exact functor A; gives another exact sequence
?Zlf(vg) —= A (M) —0.
By part 4 of Remark 3.3.30,
A I(Vy) = I(E1V7),
so we have
PICVy) —= Ay (Z]M)——0
d
But ilvg is supported in degree di — 1,ds, - ,d,, so I(ilVg) = le(Vg) is generated in
degree dy — 14 dy + - -- 4+ dy, < to(M). Therefore, to(A1(Z]M)) < to(M).
By induction hypothesis on generating degree, A; (iiM ) has finite regularity.
Hence, if iiHM has finite regularity, then the SES 3.5 along with finiteness of regularity
of A1 (Z]M) implies ¥;M/k1(X] M) also has finite regularity.

But then, the SES (3.4) along with finiteness of regularity of x;(X] M) implies 33 M also

has finite regularity.
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Step 3: We show M has finite regularity.

Notice from step 1 above, we already showed that ii{M has finite regularity if s = dim(X) >
to(M) + r so ii_l.M also has finite regularity. This then implies fi_z.M also has finite
regularity and so on. FKEventually we can conclude that M also has finite regularity as

desired.
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Chapter 4

Shift Theorem and Miscellaneous

Results

Our goal is this chapter is to prove the Shift Theorem 2.0.18 for VI™-modules as stated in
Chapter 2 and we build up to the proof of that by establishing interesting results along the
way.
We will need to use the two functors H}°" and HJ®" defined in Chapter 3 in the proof of
various results below so we recall them here for convenience.
Using notation of v1 notes, let A = VI and B = VI" !, As defined in the notes, H(])ﬂor :
VI™-Mod — VI™-Mod is a functor defined by

Hb" M (a,d) = (HYTM(—,d))|, where d € N*~! and a € N
and similarly, Hy®" : VI™-Mod — VI™-Mod is a functor given by

Hy* M (a,d) = (H)"™"" M(a, )l

27



Proposition 4.0.33. Let M be a VI™-module, then 31 Ho(M) = HoA (M)

Proof. By proposition 4.15b of [4], we have for V I-module, H(Y N EH(Y I which implies
HEYAy =2 3 HY. Recall that we have Hy = HY®" H3°" and this yields

HoB, = By HOR, = HYoS, HY
We claim HJ®'Y; = Y1 HJ® which would give us our result because

Hy" S Hio" = 55 Hy Hor = 54 H.
We now prove the claim that ngrfl =~ ilH(‘)’er.
Let X be a vector space of dimension 1 so ¥ = 3. By definition,

S HETM(V,W) = [Hy" M(V & X, W)] y, vy 79)

where V € Ob(VI), W € Ob(VI"1).

By definition of H{®", this is equal to
B [ MV o X, W)
Image of (Idvex, f)«] wy(v). 1)
where f:Y — W with W > Y.

In non-describing characteristic, taking coinvariant by (Ux(V), Id) is exact so

M(V & X, W) ] L MV e X W)u w5
Image of (Idyax, f)« (Ux (V),Id) [Image of (Idyax, f)*](UX(V),ﬁ)

Now,
MV & X W) v Ta
Image of ¥y (Idy, f)«

But X, (Idy, f)« = M(Idygx, f) (U (v),Ta) and since taking coinvariant preserves surjectiv-

HY" S M(V,W) =

ity, we have

MV X Wy, MV X Wy, wm
Image of X1 (Idy, f)« [Image of UdV@X’T)*](UX(V)’ﬁ) |
Hence, S1HEM(V.W) = Hy"S, M(V, W)

which proves the claim. m
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Remark 4.0.34. In the proof of the previous proposition, we established the property
HE S, =25 HY™ and  HY* ¥y = 5y HY®
Similar reasoning with minor modifications also yield the following property:

Hbors, =25, Hlm and HP"Y; 2%, HiT with 1 < i < n.

The property mentioned in the Remark above turns out to be fundamental in proving the
Shift Theorem. Below, we state and prove some results that are interesting in its own right

but can be combined to yield a special long exact sequence of VI"-modules.
Proposition 4.0.35. If F' is an induced V I"-module, then L;A{(F) =0 for i > 0.

Proof. F' is induced so F' = I(V) for some V B"-module V.

Let

Py Py Py Vv 0
be a projective resolution of V B"-modules.

Since I(_) is exact and take projective V B"-module to projective,

I(P) I(P) —= I(Ry) I(V) 0
is also a projective resolution of I(V') = F.
Applying A, yields

—>Z1[(P2)—>Z1[(P1)—>Z1[(P0) ZlF 0.

By 4 of Remark 3.3.30, this is isomorphic to

But this is exact since P, — V is a projective resolution and I(_), ¥1(_) are exact functors
so LiA{(F)=0fori>0. m

Proposition 4.0.36. If M is a VI"-module, L,A1M =0 for p > 2.
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Proof. Let M be a VI™module, then we have an exact sequence
0O0—+K—=F—M-=0
where F' is a free VI"™-module. This yields a LES
oo = LyA K — LyAVF — L,AM — Ly 1A K — -

By Proposition 4.0.35 above, Aj(F) = 0 for all i > 0 and if we have L,_1A1(A) = 0 for
any VI™module A, then the LES above would imply Lpzl(M ) = 0, therefore we can use
induction to show L,A1(M) =0 for p > 2.
For the base case of showing LoAj(M) = 0, we only need to establish that L1 A;(K) = 0.
The tail of the LES, 0 — LiAy (M) — A1 K — A F, implies

LiA (M) = ker(A 1K — AL F).

We claim k1 M = ker(ZlK — ZlF). To see this, note that we have a commutative diagram

k1K k1l k1M
0 K r M 0
0 ilK ilF—>§1M—>O

Snakes Lemma says we have an exact sequence
0= K — kiF = kM — A K— AF—AM—D0. (4.1)
Since F' is free, k1 F' = 0 and this gives 0 — k1M — A1 K — A F which implies
KiM = ker(A1K — ALF).

Hence, L1 A1(M) = k1 M.

Since M is arbitrary, kK = L1A;(K) but from (x) above, k1K = 0 so L1 A;(K) = 0 as
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needed. It follows by induction that L,A;M =0 forp>2. m
Proposition 4.0.37. If M is an induced VI™-module, then H;(M) =0 for i > 0.

Proof. Since M is an induced VI"-module, we have M = I(V') for some V B™-module V.

Suppose

Py Py Py V 0
is a projective resolution of V' where P; is a projective V B™module.

Since I(F;) is a projective VI"-module and I(_) is an exact functor,

I(P,) I(P1) —I(P) (V) 0
is also a projective resolution of I(V) = M.
Applying Hy(_) and note that for any V B"-module W, Ho(I(W)) =2 W where W is con-
sidered as a VI"-module with f, = 0 for any non-invertible linear map f, we have a

commutative diagram

i —— HYPI(P)) —= HY ' I(P) — HY U I(Py) — H{/ " I(V) —=0

{4

P P Py |4 0

Since P, — V is a projective resolution, bottom row is exact so top row is also exact and

Corollary 4.0.38. If M is an induced VI"-module, then H;(A1 M) =0 fori> 1.

Proof. We have M = I(V') for some V B"-module V' and so each fixed row of M is also an

induced V I-module so by 4 of Remark 3.3.30,



By Prop 4.0.37 above, H;(A1M) = H;(I1(31V))=0fori>1. m
By combining previous results, we can come up with a special long exact sequence for any
VI"-module.
Proposition 4.0.39. If M is a VI™"-module, then we have a LES
o= S Hy(M) —— HyA\M —— H, o(kiM) —= N1 Hy 1 (M) — - -

where k1M = ker(M — X1 M) = L1 Ay (M).

Proof. Since both Hy, Ay are right exact and by Corollary 4.0.38, A; sends projective
module to Hyp-acyclic module, we have a first-quadrant Grothendieck spectral sequence
(L,Ho)(LyA1)(M) converging to Ly, (HoA1)(M).
Furthermore, this spectral sequence only has two rows because qul(l\l ) =0 for ¢ > 2 by
Proposition 4.0.36.
Since ¥ is exact, we also have
Ln(HoAp) (M) = Ln(Z1Ho)(M) = X1 Ly (Ho)(M) = X1 Hy (M).
by Prop 4.0.33 _
Thus, we have a two-row spectral sequence converging to X1 H,,(M). By ex 5.2.2 of Weibel’s
standard text [6], this two-row spectral sequence yields the desired LES
oo ——= S Hy(M) — HyA\M — H,_5(kiM) ——=S1Hp 1 (M) — - - -

and we already showed k1M = L1 A (M) the proof of Prop 4.0.36. m
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Theorem 4.0.40. (Shift Theorem for VI"-modules) Let M be a finitely generated VI™-
module with generation degree < to(M) and relation degree < r. Then, for x > to(M) +r,

YI%5 50 M and £I%% - - X2 M are semi-induced.

To prove the Shift Theorem, we need a couple results from [4] whose proofs for VI case can
be similarly adapted to the VI™ case. We state these results below for completeness.

For a VI"-module M, let M4 and M<4 be the smallest V' I"-submodules of M containing
M (W) for any W € Ob(VI") with |[W| < d and |W| < d respectively.

The lemma below follows from definition of Hy immediately.

Lemma 4.0.41. We have Ho(M<q) = Ho(M)<q where (—)<q : VI"-Mod — VI™-Mod is
a functor defined as, given a VI™"-module A, then Acq(W) =0 if |[W| > d and A.q(W) =
AW) if [W| < d with obvious transition maps. Similarly, Ho(M=zg) = Ho(M)<q.

Furthermore, if m < n, then the natural map Ho(M<,,) — Ho(Mxy,) is the canonical

inclusion Ho(M)<pm — Ho(M) <.

Lemma 4.0.42. Suppose H1(Q) = 0 and Hy(Q) is concentrated in degree d. Then Q) is

induced from d.

Proof. Ho(Q) is concentrated in degree d implies Ho(Q)(W) = Q(W) with [W| = d and
Ho(Q)(W) = 0 otherwise. This gives us a surjective map ¢ : I[(Ho(Q)) — Q with kernel K.
The LES induced by applying Hy to the SES 0 — K — I(Hp(Q)) - Q — 0 s

oo —— H1(Q) — Ho(K) — Ho(I(Ho(Q))) — Ho(Q) — -~
0

Notice that the map Ho(I(Ho(Q))) — Ho(Q) is an isomorphism so Hy(K) = 0 which
—_————

=Ho(Q)
implies K = 0. Therefore, @ = I(Hy(Q)) is induced from d. m
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Proposition 4.0.43. Let M be a VI™-module with finite generation degree. Then M is
homology acyclic iff M is semi-induced. More generally, if Hi(M) = 0, then M is semi-

induced.

Proof. The backward direction is clear. To prove the forward direction, we prove the second
statement. So suppose H;(M) = 0, we show M is semi-induced.
Let d be the generation degree of M, then we have a natural filtration
0C Mz C---C Mzqg=M.
We claim that graded quotients Q; = M<,;/M~; are induced. We prove this by induction
on the generating degree.
Note that Ho(Q;) is concentrated in degree i and we have a SES
0—=>Myg—>M—>Qq—0
which yields a LES

o —— Hy(Qq) — Hy(M~y) — Hy (M)

—

Hy(Qa) — Ho(M<aq) — Ho(M) — -
Since H1(M) = 0, we have Hy(Qq) = ker(Hy(M<y) — Ho(M)) from the LES. By Lemma
4.0.41, Hy(M<4) — Ho(M) is just the inclusion Ho(M)q — Ho(M).
Therefore, H1(Qg) = 0 and Lemma 4.0.42 yields Qg is induced from d. Furthermore, the
LES gives Qg is also homology acyclic so Ha(Qg) = 0.
As a result, H;(M~,) = 0 and the induction hypothesis applies to give @; with 1 < i < d

are all induced. Hence, M is semi-induced as needed. m
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We need this last technical Lemma for the Proof of Shift Theorem.

Lemma 4.0.44. If I is a free VI"-module, then for any a € N, (H!"I)(a,—) is a free

VI 1-module.

Proof. Tt suffices to assume I = I(dy,d) where a € N and d € N1,
Now for a > dy,
(HE I (a,—) = 0
and for a = d,
(Hbo' I (a, ) = R[GLy,] @ I(d) = @lGLd1| I(d).

But this is an induced V1™ !-module. m
Proof of Shift Theorem, 4.0.40: We prove the result for ii{i;{ = ~§fM , an almost-
identical proof shows the result for ¥ X - .- XX M.
Let to(M) and r be generation and relation degrees of M.
We prove the theorem by inducting on n so assume the result holds for VI~ !'-module i.e for
any finitely generated VI" !-module V, if X is a vector space with dim(X) > to(M) + r,
then iff;( . ~§f_1V is semi-induced. Since ¢1(M) < r, the base case is just the Shift
Theorem for VI-module (Theorem 3.2.28).
In the proof of finite regularity in chapter 3, we showed that for p > 0 and if each row of
if]bf , that is if]\/[ (_,d), is a semi-induced V I-module, then

Hy(S; M) 2= HY (H (57 M)). (4.2)
Let’s choose X such that dim(X) > ¢to(M) +r. Since for any vector space X, each f;-x pre-

serves generation and relation degree by part 2 of Remark 3.3.30, ifi? . -EfM also has

generation degree < to(M) and relation degree < r as well. Hence, f?f? = ~§f]ﬂ (_,d)

35



is a VI-module with generation degree < to(M) and relation degree < r.
Since dim(X) > to(M)+r, the Shift Theorem for V I-module (Theorem 3.2.28) implies that

each row, Ef (ifif . -Ef)]\l (—,d), is a semi-induced V I-module so we can apply 4.2 to

get for p > 0

XX = XXX =X

Hy(S) 3 5 55 M) = Hy (HE (57 5 5 -+, M)).

Since ;3 = X;3; and by the property in Remark 4.0.34, we have

=X=X=X =X=X
n “~1

ver or X ~ ver or (ZX 35X
Hyer (Hgo (31 35 By -+ %, M) =2 Iy (Hg™ (35 %5 -3, 5 M)

X=X =X =X
= HY (X5 %5 -5, HEr (3] M)).
R p(23 n Hy™ (X7 M))
HEors, o5, Hbor for i#1

Note that generation degree and relation degree of f‘lxM are < to(M) and < r respectively,
which implies to(Hgor(fi{M )) < to(M). For any a € N, we claim that that the relation
degree of Hg‘or(ifl\l Y(a,—) as a VI" ! -module is also less than or equal to 7.
To see this, since generation degree and relation degree of M is < to(M ) and < r respectively,
we can find a SES
0-K—=>F—-M=0

with F, a free VI"-modules generated in degree < d and to(K) < 7.
Applying the exact functor if yields another SES

05 K 55 F =3 M—0
with E‘IXF still being a free V' I"-module by part 4 of Remark 3.3.30 and ¢y (ii(K ) <.

Applying the right exact functor HJ°" to this SES, we can find another SES
! hor [&=5X hor [9X
0— K — Hy(X] F) —» Hy (X1 M) — 0 (4.3)

where K’ = Im(Hgor(fi(K) — Hé‘or(ffF)). Note that since K’ is the image of a VI"-
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module generated in degree < r, we have to(K') < r.
For any a € N, the SES (4.3) induces a SES of VI" !-modules
0 — K'(a,_) — HY' (5 F)(a,_) — H" (S M)(a,—) — 0

Since fi{F is a free V I"-module, Lemma 4.0.44 implies H}°" (ffF) (a,—)is a free VI" 1
module generated in degree < to(M). Since to(K') < r as a VI"-module, K'(a,_) is also
generated < 7 as a VI" '-modules.
Hence, each ”column” of Hgor(fi{M ) ie Hélor(fi(M )(a,—) also has generation degree
< to(M) and relation degree < r as a VI" lmodule.
Induction hypothesis now tells us that f?f? = -ffHé‘or(f‘IXM )(a,—) is a semi-induced
VI !'-module which means for p > 0, by Lemma 3.4.31

Hy™ (355 5 - Sy HY' (S M)) =0

= XXX

We can then conclude, for p > 0, H, (X7 X5 X5 ffM) = 0 and so f‘ff;{f? .. .EX

n

M

is homology acyclic. Proposition 4.0.43 above then concludes what we need to show.
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Chapter 5

Appendix

Results of this appendix are from the paper, in preparation, ” Bounding Regularity of FI™-

Modules” of Dr. Wee Liang Gan with the author.

5.1 Spectral Sequences

Let C is a skeletal small category. Define a relation < on Ob(€) by X <Y if C(X,Y) # (.
We write X <Y if X <Y but not Y < X. We say that C is directed if the relation < on
Ob(C) is a partial order.

Now, let € be the product category A x B, where A and B are directed skeletal small
categories; in particular, € is a directed skeletal small category.

Let V be a C-module. For any (X,Y) € Ob(C€), define k-submodules V(};?ry) and Vi¥'y) of
Vix,y) by

V(%?f)f) =D 72X (ZfGA(Z,X)(fv idy)s (Vizy))

ViXy) = X<y (ZfeB(Z,Y) (idx, f)« (Vix,2)) >
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Lemma 5.1.45. (i) The assignment (X,Y) — V(}j?ry) defines a C-submodule V" of V.
(i) The assignment (X,Y) — ViXly) defines a C-submodule VY of V.
(iii) One has: V = Vhor 4 yver,

Proof. (i) Let f € A(Z,X) and (g,h) € C((X,Y), (X", Y")). Then
(9, h)(f.idy) = (gf, h) = (9f,idy")(idz, h),
which implies
(90« ((f-3dy)« (Vizyy)) € (o, idy ) (Vizan) -
Moreover, Z < X implies Z < X'. Therefore (g, h). (V(g‘gry)> C V(l}?fyy,).
(ii) Similar to (i).
(iii) It is clear that Vhor 4 yver C V.
Now suppose (f,g) € C((Z,W),(X,Y)) where (Z,W) < (X,Y). If Z < X, then
(f,9)« Vizmw)) S (fidv) (Vizy)) © VY-
If W <Y, then
(f:9)« Vizwy) € (idx, 9)« (Vixw)) € ViKyy-
Hence V C Yhor f yver g
By the preceding lemma, we may define functors
HE" : @-Mod — €-Mod, V s V/Vhor.
Hy®" : €-Mod — €-Mod, Vi V/yver

moreover, there are canonical isomorphisms
Hy* (HE™ (V) = Hg (V) 2 Hg* (Hy™ (V). (5.1)

The functors HJ°" and HY®" are right exact and we can define their left derived functors.
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For each integer i > 1, let H'" : @-Mod — C-Mod be the i-th left derived functor of HE",
and let H®" : @-Mod — €-Mod be the i-th left derived functor of H{®. We call HM" (V)

the i-th horizontal homology of V', and HY*" (V') the i-th vertical homology of V.

5.1.1

Let @Pr be the subcategory of € such that:

e every object of € is in €T

e a morphism (f, g) in € is in €"°" if and only if g = idy for some Y € Ob(B).

We call €T the horizontal subcategory of €. Similarly, let V" be the subcategory of € such

that:
e every object of € is in GV
e a morphism (f,¢) in Cis in € if and only if f = idx for some X € Ob(A).

We call C¥°" the vertical subcategory of C. There are equivalences of categories:

T = |y copm) A € ~ | |xeonw) B-

Let THo" (respectively TV') be the restriction functor from the category €-Mod to the

category C°"-Mod (respectively €V°"-Mod).

Lemma 5.1.46. (i) The functor TP (respectively TV®") sends projective C-modules to

projective Ch"-modules (respectively projective C¥*" -modules).

(ii) Let V be a C-module. For each i > 0, one has:
TN (H} (V) = ™ (T (V)),
T (V) 2 HE (T (V).
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Proof. (i) It suffices to see that Thor (respectively TV®") sends principal projective C-modules
to projective C"'-modules (respectively projective C¥*-modules). For any (X,Y) € Ob(@),
one has:
T M(C, (X,Y)) 2 @weonm) Bgenym) M(C, (X, W),
T M(C, (X,Y)) = Dzeobwm) Preax,z) M(C, (Z,Y)).
(ii) The case i = 0 is trivial; the case i > 0 follows by (i) and exactness of the functors Thor

and TV, m

5.1.2

The spectral sequences in the following theorem are special cases of the Grothendieck spec-

tral sequence associated to the composition of two functors.

Theorem 5.1.47. Let V be a C-module. Then there are two convergent first-quadrant

spectral sequences:

Iqu = H;er(Hgor(V)) = H§+q(V),
or (fyver ¢
HE2 = Hr (Hy (V) = HE (V).

ver

Proof. We claim that Hg“’f (respectively Hy®") sends projective C-modules to Hi*-acyclic
(respectively Hgor—acyclic) C-modules. It suffices to verify the claim for principal projective
C-modules. Set
P =H"(M(C,(X,Y))), where (X,Y) € Ob(C).
One has:
TY(P) = @jeax,x) M(E™, (X,Y)).

Hence, by Lemma 5.1.46, for each i > 0, one has:
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T (H (P)) = HY ™ (TY(P)) 2 @pencxx) Hi - (M(E, (X, Y))) =0,

which implies HY®*(P) = 0. Hence, the claim holds for Hi, and similarly for HY®*. By (5.1),

we may now apply the Grothedieck spectral sequence to the two compositions ngngor

and H}°"H§®" to obtain the spectral sequences stated in the theorem. m

References

(1]

2

(6]

Wee Liang Gan and Liping Li, Bounds on homological invariants of VI-modules (2019), available at
1710.10223. https://arxiv.org/abs/1710.10223v2

Wee Liang Gan, Liping Li, and Changchang Xi, An application of nakayama functor in representation
stability theory, 2017. https://arxiv.org/abs/1710.05493

Wee Liang Gan and Khoa Ta, Bounding regularity of FI™-modules (2023). In preparation.

Rohit Nagpal, VI-modules in mnondescribing characteristic, part I, Algebra Number Theory 13
(2019Dec), no. 9, 2151-2189. https://arxiv.org/abs/1709.07591v3

Steven V Sam and Andrew Snowden, Grébner methods for representations of combinato-
rial categories, Journal of the American Mathematical Society 30 (2016Mar), no. 1, 159-203.
https://arxiv.org/abs/1409.1670v3

Charles A. Weibel, An introduction to homological algebra, Reprint. 1997, transf. to digital print, Cam-
bridge studies in advanced mathematics, Cambridge Univ. Press, 2003.

42





