
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Robust Deep Learning Algorithms for Selective Laser Melting Monitoring

Permalink
https://escholarship.org/uc/item/7kt8r1pk

Author
Yuan, BODI

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7kt8r1pk
https://escholarship.org
http://www.cdlib.org/

Robust Deep Learning Algorithms for Selective Laser Melting Monitoring

by

Bodi Yuan

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Mechanical Engineering

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Sara McMains, Chair
Professor Alexei Efros

Assistant Professor Hayden Taylor

Summer 2019

Robust Deep Learning Algorithms for Selective Laser Melting Monitoring

Copyright 2019
by

Bodi Yuan

1

Abstract

Robust Deep Learning Algorithms for Selective Laser Melting Monitoring

by

Bodi Yuan

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Sara McMains, Chair

The objective of this research is to enable real-time in-situ monitoring for the Selective
Laser Melting (SLM) process, by providing diagnostic feedback from monitoring that can
be used to automate and adjust SLM system parameter settings. The ultimate goal is to
improve SLM product quality and manufacturing productivity. We propose a deep learning
approach to monitoring that takes in-situ videos as input data fed to convolutional neural
networks (CNNs). We describe the entire monitoring framework, including running SLM
experiments, collecting SLM video data, image processing for ex-situ generated height maps,
generating labels for in-situ data from ex-situ measurement, and training CNNs with labeled
in-situ video data. Experimental results show that our approach successfully recognizes the
desired SLM process metrics (e.g. size, continuity) from in-situ video data.

In order to train e↵ective CNNs, besides collecting extensive SLM video data, we also need
to label it. We have automated the process of generating labels from ex-situ measurements
of the corresponding finished SLM experimental output. The ex-situ measurements provide
high-precision height maps for the product surface, to which we apply our proposed image
processing algorithm to calculate process quality metrics as labels.

However, our proposed automated labeling approach requires high-precision height maps,
which are generated from an expensive Structured Light Microscope. It might not be readily
available to other researchers and institutions, or not enough machine time may be available
to label all experiments for which there is video. Thus there might not be enough labeled
data to train e↵ective CNNs. This research also combines semi-supervised learning with our
original approach to address this problem. Semi-supervised learning method enables other
researchers to address the problem without requiring a huge amount of labeled data.

In addition, in practice, another issue is label noise. Even though the data labels were
generated using high-precision height maps, the labels are not perfect and might still contain
incorrect labels, known as “noisy” labels. We propose novel approaches to improve neural
networks’ performance when they are trained under label noise. The proposed approaches
can be easily combined with other existing approaches that address the label noise problem
to further improve the prediction accuracy, with very few additional hyperparameters that

2

need to be tuned. Experimental results demonstrate that our approaches can significantly
improve CNN models’ prediction accuracy when training neural networks with noisy labels.

i

To my family and friends.

ii

Contents

Contents ii

List of Figures v

List of Tables viii

1 Introduction 1
1.1 Selective Laser Melting (SLM) . 1
1.2 SLM Monitoring . 1
1.3 SLM Monitoring from Semi-supervised Learning 3
1.4 Label Noise . 3
1.5 Summary of Contributions . 4

2 Background and Related Work 6
2.1 Additive Manufacturing . 6
2.2 Powder Bed Fusion (PBF) . 7
2.3 Selective Laser Melting (SLM) . 8
2.4 SLM Monitoring . 9
2.5 Convolutional Neural Networks (CNNs) . 10
2.6 Semi-supervised Learning . 12
2.7 Label Noise . 13

3 SLM Monitoring Framework 16
3.1 SLM Monitoring Framework . 16
3.2 Hardware System Design . 18
3.3 Experimental Data Collection . 19

4 Height Map Processing 21
4.1 Height Maps . 21
4.2 Image Processing Algorithm . 23

4.2.1 Height Map Orientation Automation 23
4.2.2 Dividing Height Map into Patches . 24
4.2.3 Background Removal and Noise Filtering 25

iii

4.2.4 Image Processing Results . 29
4.3 Calculated Metrics . 29
4.4 Automated Labeling . 32
4.5 Conclusion . 32

5 In-situ Video Monitoring 34
5.1 Video Preprocessing . 34
5.2 Data Analysis . 37
5.3 Methods . 39
5.4 Results and Discussion . 40
5.5 Conclusions . 43

6 Semi-supervised Learning 44
6.1 Related Work . 45
6.2 Semi-supervised Approach . 45
6.3 Results and Discussion . 47
6.4 Conclusion . 50

7 Iterative Cross Learning from Noisy Labels 52
7.1 Related Work . 53
7.2 Label Noise . 54
7.3 Iterative Cross Learning (ICL) . 55
7.4 Experiments and Results . 59

7.4.1 MNIST with clean data for monitoring 59
7.4.2 MNIST without clean data for monitoring 62
7.4.3 CIFAR-10 with clean data for monitoring 62
7.4.4 CIFAR-10 without clean data for monitoring 65

7.5 Discussion . 65
7.6 Limitations . 67
7.7 Conclusions . 69

8 Consensus Refinement Learning from Noisy Labels 70
8.1 Related Work . 71
8.2 Noisy Labels . 72
8.3 Consensus Refinement . 72
8.4 Neural Network Diversity . 73

8.4.1 Traditional Pairwise Diversity . 74
8.4.2 Pairwise Consensus Failure Measurement 74
8.4.3 General Consensus Failure Measurement 75
8.4.4 CF Analysis for Consensus Refinement 76

8.5 Experiments . 77
8.5.1 Experiments on MNIST . 78

iv

8.5.2 Experiments on CIFAR . 79
8.5.3 Experiments on Clothing1M . 80

8.6 Discussion . 83

9 Summary and Future Work 85

Bibliography 87

v

List of Figures

1.1 SLM system . 2
1.2 Examples of training data sets corrupted with noisy labels 3

2.1 Di↵erent types of AM technologies . 7
2.2 An example of CNN architecture. [Figure credit: NN-SVG] 11
2.3 Semi-supervised learning and supervised learning 13

3.1 The flowchart of the entire SLM monitoring framework 16
3.2 High powered and illumination lasers are co-aligned with a high speed camera

whose shared focal point is scanned across the metal powder bed via adjustable
mirrors and lenses. Camera video data is saved to a nearby computer for each
track site. [Figure credit: Brian Giera] . 17

3.3 SLM machine and data collection system at LLNL. [Figure credit: Gabriel Guss] 18
3.4 Examples of experimental tracks on one of the build plates. [from LLNL experi-

ments] . 19
3.5 Electro-optical image of experimental tracks. [from LLNL experiments] 20
3.6 An example from our collected video data . 20

4.1 (a) An example of an original electro-optical image and height map measured from
structured light; (b) the actual height corresponding to the horizontal dash line in
(a); (c) the actual height corresponding to the vertical dash line in (a). [Figure
credit: Brian Giera] . 22

4.2 Calculation of the gradient . 24
4.3 Left image: absolute value of x-gradient; right image: absolute value y-gradient . 24
4.4 Calculation of the “shift-vector” in each patch 25
4.5 Divide height map into patches . 26
4.6 Left image: binary map after background removal; right image: filtered binary map 26
4.7 Background removal and filtering. (a) Binarized height map after running the

first round of background removal; (b)(c) binarized height map after running the
second round of background removal; (d) binarized height map after running post-
filtering . 27

4.8 Height map (left) and final results (right) of the proposed image processing algorithm. 29

vi

4.9 The patch after deleting non-track rows and columns 30
4.10 The trinary map, the corresponding height map and the “ridgeline” of the track. 30
4.11 Example tracks: (a) regular electro-optical images, (b) height maps measured by

structured light, (c) segmentation results by proposed image processing algorithm,
(d) labels from calculated track metrics . 33

5.1 Schematic of video capture system. Adjustable mirrors trace the path of a focal
point shared between the co-aligned high-speed camera, illumination laser, and
high-power laser. The camera records in-situ video taken during each welding
event. [Figure credit: our collaborators at LLNL] 35

5.2 An example of removing video frames which contain no laser spot from raw video
data . 36

5.3 Example of in-situ video data (a) ten continuous 64 ⇥ 64 frames of in-situ videos
(b) single data point from concatenation of ten continuous frames 36

5.4 Width measurements in terms of di↵erent laser speeds and laser powers. 37
5.5 Examples of di↵erent video data points. (Laser conditions: (a). Power 147.5 W

Speed 310 mm/s; (b). Power 147.5 W Speed 160 mm/s; (c). Power 342.5 W
Speed 310 mm/s; (d). Power 342.5 W Speed 160 mm/s) 38

5.6 Our proposed CNN architecture . 40
5.7 Width prediction results from in-situ videos . 41
5.8 Width SD prediction results from in-situ videos 42

6.1 Semi-supervised CNN architecture . 45
6.2 Mean R2 score for average width regression . 48
6.3 Mean accuracy for continuity classification . 50

7.1 Examples of training data sets corrupted with noisy labels 53
7.2 ICL flow diagram . 56
7.3 ICL on MNIST with clean data for monitoring (“X” marks the stage returned by

the algorithm). 60
7.4 Confusion matrices (base CNN with ICL training on 70% noise in MNIST dataset

with clean data monitoring) . 61
7.5 ICL on MNIST without clean data for monitoring (“X” marks the stage returned

by the algorithm; it is set to be 1 if we don’t have clean data for monitoring). . . 63
7.6 ICL on CIFAR-10 with clean data for monitoring (“X” marks the stage returned

by the algorithm). 64
7.7 ICL on CIFAR-10 without clean data for monitoring (“X” marks the stage re-

turned by the algorithm). 66
7.8 ICL on uncorrupted MNIST data. (Stage 0’s error rate is that of the underlying

model.) . 68
7.9 ICL on uncorrupted CIFAR10 data. (Stage 0’s error rate is that of the underlying

model.) . 68

vii

8.1 Visualization of dataset partition for calculating (a) traditional pairwise diversity
measurements (b) pairwise Consensus Failure (c) triplet Consensus Failure. . 74

8.2 Visualization of confusion matrices for experiments on CIFAR-10 dataset with
psy = 0.7 noise: (a) original noisy dataset (X ,Y), independently (b)(c)(d)
trained models’ predictions (X , D1(X)), (X , D2(X)), (X , D3(X)), and (e) con-
sensus dataset (X̃ , Ỹ). (Note that because the noise is randomly assigned, there
is slight asymmetry even in the original confusion matrix.) 82

viii

List of Tables

6.1 Mean R2 score for average width regression; standard deviations in parentheses . 48
6.2 Mean accuracy for continuity classification; standard deviations in parentheses . 49

7.1 Error rates % for MNIST with clean data for monitoring; “noise level” is the
percent of labels randomly reassigned. 61

7.2 Error rates % for MNIST without clean data; “noise level” is the percent of labels
randomly reassigned. 62

7.3 Error rates % for CIFAR-10 with clean data for monitoring; “noise level” is the
percent of labels randomly reassigned. 65

7.4 Error rates % for CIFAR-10 without clean data; “noise level” is the percent of
labels randomly reassigned. 65

7.5 ICL relative improvement Ir . 67

8.1 MNIST LeNet experimental results (%) 1 . 78
8.2 CIFAR-10 ResNet experimental results (%) 1 . 80
8.3 CIFAR-10 VGG experimental results (%) 1 . 80
8.4 CIFAR-100 ResNet experimental results (%) 1 81
8.5 Clothing1M ResNet experimental results (%) 83

ix

Acknowledgments

The past four years, my unforgettable journey, comes to an end. At this moment of
accomplishment, I would like to take this opportunity to extend my thanks to everyone who
supported, helped, and advised me through my Ph.D. life.

Foremost, I was lucky enough to meet my Ph.D. advisor, Professor Sara McMains, at
the very beginning of this journey and worked under her supervision since then. Sara has
been a truly dedicated mentor who cared so much about my work. We discussed research
questions hours after hours in group meetings. We worked together revising our paper drafts
days after days before paper submission deadlines. We explored new research directions
weeks after weeks for our new research proposal. She is not only my advisor, but also my
important friend. We celebrated together when I passed the qualifying exam, and she has
been a constant source of support and encouragement through all the up and downs of the
past four years. I owe her my eternal gratitude.

I am also extremely indebted to my dissertation committee members, Professor Alexei
A. Efros and Professor Hayden Taylor, for their invaluable advice and patient guidance at
all stages of this work. Profound gratitude also goes to my other qualifying exam committee
members, Professor Tarek Zohdi and Professor Trevor Darrel, for their insightful comments
and extensive discussions around my work.

A Berkeley Fellowship funded me for the beginning stages of the Ph.D. program. I will
forever be grateful to Lawrence Livermore National Lab (LLNL) for their generous funding
in the past two years. My Ph.D. work wouldn’t be possible without help from various
colleagues at LLNL, especially Brian Giera, Gabe Guss, Manyalibo Matthews, Aaron Wilson,
Stefan Hau-Riege, and Phillip DePond. Brian Giera is my mentor at LLNL and has been
so dedicated to his role. He continuously supports my work, provides me meaningful and
helpful feedback, and connects me with other colleagues. It is a great pleasure and honor to
work with him and also other researchers at LLNL!

I also thank my lab mates, Youngwook Paul Kwon, Hannah Budinoof, Xiang Li, Sara
Shonkwiler, and Jeronimo Mora, for their helpful discussions and feedback. In addition, lots
of friends, especially Weidong Zhang, Jianyu Chen, Zining Wang, and Yang Gao, have been
so supportive and caring over the years. Wishing you all the best in the future!

Last, but by no means least, I would like to express my deepest love to my parents and
my girlfriend, Chaoran Guo. They have been extremely supportive and have strong faith in
me at all times. I love you all.

1

Chapter 1

Introduction

1.1 Selective Laser Melting (SLM)

Selective Laser Melting (SLM) is one of the most widely used Additive Manufacturing (AM)
techniques. SLM uses a high-powered laser to melt metal powders layer-by-layer (Figure 1.1),
in order to produce an object with the desired shape. Compared to traditional subtractive
manufacturing, SLM can process a variety of materials and has a relatively low production
cost. However, one big challenge of SLM is that the quality of SLM products is sensitive
to many factors, such as laser characteristics (power, speed, spot size, etc.), metal powder
characteristics (size, purity, thickness, etc.), and build environment (ambient temperature,
oxygen level, etc.) [124]. With so many related factors that can a↵ect an SLM product’s
quality, it is di�cult to find an initial good set of operating parameters or optimize the
existing system parameters. In addition to that, even when using fixed system settings, SLM
product quality may still vary and is hard to control. The lack of SLM process repeatability
is a barrier for industrial AM manufacturing progression.

In order to improve SLM automation and product quality, diagnostic feedback from
monitoring during the SLM building process can be used to automate parameter settings.
Currently, using a variety of sensors, a great amount of SLM process data can be easily
generated. This data could enable researchers to train machine learning models to monitor
the SLM process; however, to implement machine learning in practice requires labels for the
collected training data, and traditional manually labeling will be too time-consuming and
labor-intensive. This is common for SLM related problems and even in other AM areas,
since oftentimes data is easily generated but di�cult to label.

1.2 SLM Monitoring

We envision that a real-time SLM monitoring system could provide helpful feedback for iden-
tifying defects, adjusting laser parameters, and compensating for variability in the powder
and build environment.

CHAPTER 1. INTRODUCTION 2

Figure 1.1: SLM system

In our work, in-situ videos recorded during the SLM build process are used as input data
points from which we train convolutional neural networks (CNNs) to recognize, in real time,
desired process metrics. We demonstrate a two-step approach of applying machine learning
to SLM. First, our collaborators at LLNL ran experiments to collect over one thousand
in-situ SLM videos that we labeled, making use of post-build measurements via our ex-situ
height map analysis algorithm. Our labeling algorithm provides detailed labels, including
both average width and width standard deviation of each printed track. Next, we train a
Convolutional Neural Network on a portion of the labeled video data. With the remaining
in-situ SLM data, we test our neural network and find that it predicts track widths and
standard deviation using only 10 ms videos, without the need for ex-situ measurements. We
evaluate our prediction results based on the coe�cient of determination of the predicted
labels and the ground-truth labels. The Convolutional Neural Network architecture we
designed is general and also accurately predicts the continuity of tracks without changing
the model architecture. For the continuity classification, we evaluate our trained model on
overall prediction accuracy. The experimental results show that our proposed method can
predict accurate outputs using only the in-situ videos.

CHAPTER 1. INTRODUCTION 3

1.3 SLM Monitoring from Semi-supervised Learning

To train a well-performing CNN for monitoring SLM (and other additive manufacturing
systems), it is challenging to collect labeled video data, though relatively easy to collect
unlabeled data. Therefore, we also explore using a semi-supervised learning technique to
reduce the e↵ect of having relatively little labeled data. We train a semi-supervised CNN
model based on the temporal ensemble method [75] with a small amount of labeled data and
a large amount of unlabeled data. The same as our supervised learning approach, we evaluate
our semi-supervised model on a labeled test dataset, using the coe�cient of determination
for evaluating regression and accuracy for evaluating classification; in all cases the addition
of unlabeled data improved performance, sometimes significantly.

1.4 Label Noise

Besides insu�cient training labels, another common issue in practice is label noise. Di↵erent
from traditional datasets such as those that researchers use to train neural networks, datasets
collected “in the field” are rarely perfectly labeled.

Figure 1.2: Examples of training data sets corrupted with noisy labels

To address the problem of incorrect labels in training data for deep learning, we propose
two novel and simple training strategies, Iterative Cross Learning (ICL) and Consensus
Refinement Learning (CRL), that significantly improve the classification accuracy of neural
networks when the training data has noisy labels. Testing our methods on public datasets
such as MNIST [76] and CIFAR [66] with partially shu✏ed labels (Figure 1.2), our methods

CHAPTER 1. INTRODUCTION 4

significantly improve the classification accuracy of existing methods when the data labels
have noise, especially in heavy noise situations.

1.5 Summary of Contributions

This dissertation will discuss an entire SLM monitoring framework, an in-situ video labeling
algorithm from ex-situ measurements, semi-supervised monitoring, and addressing the label
noise problem.

We describe our proposed SLM in-situ monitoring framework and also our proposed
height map image processing algorithm for labeling experimental SLM tracks. The proposed
method can be used for not only SLM monitoring, but also other AM technology monitoring.
The major contributions related to AM monitoring are:

• Our approach predicts the average width, width standard deviation, and continuity of
SLM tracks from in-situ videos with high accuracy.

• Our proposed SLM monitoring approach enables providing feedback in real time for
SLM product quality control and automating system parameter setting, in order to
improve SLM product quality and manufacturing productivity.

• Our proposed image processing algorithm provides accurate pixel-level classification
results for ex-situ height maps, which enables us to train machine learning models
with in-situ data for a variety of track metrics, such as track width, continuity, etc.

Our SLM monitoring approach is a data driven approach. Our collaborators collected
a great amount of data comprised of SLM in-situ videos and height maps. The dataset
has been organized and labeled at a height-map pixel-level scale, enabling dataset re-use for
further research.

Having lots of data but lacking labels is very common in AM. Semi-supervised learning
alleviates this problem and has a potential to be more broadly used in this area. We also
implemented and analyzed a semi-supervised approach to SLM monitoring. Our major
contributions related to semi-supervised learning in AM are:

• We successfully designed and implemented a semi-supervised learning framework for
SLM monitoring, which includes data collection, partial data labeling, CNN model
training, and results verification. The experimental results show that the semi-supervised
learning approach outperforms the supervised learning approach with the same amount
of labeled training data. To our knowledge, we are the first to apply a semi-supervised
learning approach to any AM monitoring task.

Besides the insu�cient labels problem, label noise is another important problem in prac-
tice. We focus on classification problems with training label noise and propose e↵ective
approaches. Our major contributions related to the label noise problem are:

CHAPTER 1. INTRODUCTION 5

• We propose two simple but e↵ective training algorithms, Iterative Crossing Learning
(ICL) and Consensus Refinement Learning (CRL), to address label noise. Our pro-
posed approaches consistently improve neural networks’ prediction performance in the
presence of incorrect labels, for all underlying models tested.

– ICL: When using ICL, we randomly partition the original dataset into two subsets
on which independent networks are trained, then retrain after introducing random
labels for training data on which they disagree. This helps to alleviate the problem
of models overfiting training label noise.

– CRL: Our experiments show that if the original training data is noisy, even though
the consensus dataset will be smaller, the same network architecture trained on
this more accurately labeled data still achieve better performance when we use
our proposed CRL approach.

– CRL: We define a new metric, “consensus failure rate,” that we use to analyze our
proposed Consensus Refinement Learning’s e↵ectiveness. The theoretical analysis
shows the principles of how Consensus Refinement works.

• Both of ICL and CRL have no restriction on the underlying network architecture and
only a few extra hyper-parameters, enabling others easily to combine existing methods
that address the label noise problem by modifying the network architecture with our
approaches to get even better performance.

Prior to details of these results, we provide an overview of the literature in the next
chapter.

6

Chapter 2

Background and Related Work

2.1 Additive Manufacturing

Additive Manufacturing (AM), commonly referred as “3D-printing” technology, builds up
3D components by adding materials, in contrast to traditional subtractive manufacturing.
AM technologies are made possible by Computer Aided Design (CAD), which provides 3D
object models as input for an AM product. AM technologies have been widely used in many
industries, including automotive, medical, and aerospace.

AM-related technologies have been researched since the 1970s, and have been developed
into numerous di↵erent types of AM processes (as shown in Figure 2.1), such as Direct
Energy Deposition (DED), Powder Bed Fusion (PBF), Fused Deposition Modeling (FDM),
Material Jetting, Vat Photopolymerisation, and so on. These di↵erent processes are used
depending on the di↵erent material and precision requirements.

Compared to traditional manufacturing, AM has unique advantages. AM enables one
to build much more complex parts with fewer manufacturing steps. For simple-shape and
complex-shape parts of the same size, with AM there may be little to no di↵erence in build
time or cost. As for designers, AM also provides much more flexibility. Designers can design
any complex models with CAD and make changes easily. Moreover, AM is able to work on
a variety of di↵erent materials.

However, AM still has its own challenges. First of all, high-precision additive manufac-
turing machines are expensive. Even with expensive machines, the finished product’s surface
accuracy is often not high enough to satisfy industry requirements. It usually requires post-
processing to improve the product surface quality. In addition, the AM product mechanical
properties can be poor. The finished product might have defects such as unintended pores
(voids).

CHAPTER 2. BACKGROUND AND RELATED WORK 7

Figure 2.1: Di↵erent types of AM technologies

2.2 Powder Bed Fusion (PBF)

Powder Bed Fusion (PBF) [13, 61, 62] is an additive manufacturing technology that produces
metal or polymer parts, layer by layer, by melting powdered metals, alloys, or polymers, with
a heat source such as a high-power laser [139], a beam of electrons, or a thermal printhead.
Considering the beneficially large set of metallic and polymer powders available to PBF for
fabricating objects of virtually any shape, the technique is versatile and ideally suited for
applications such as rapid prototyping and light-weighting [37], since PBF also has a fast
building speed and relatively low cost among other AM technologies. Depending on the
requirement, PBF can work on a variety of materials, such as metal, polymers and so on.

PBF comprises various types of techniques, such as Selective Laser Melting (SLM), Selec-
tive Laser Sintering (SLS), Electron Beam Melting (EBM), Selective Heat Sintering (SHS),
and Direct Metal Laser Sintering (DMLS). Though these di↵erent PBF techniques have dif-
ferent usages, can work on di↵erent materials, and use di↵erent physical mechanisms, all of
them have very similar building process. Thus, though we focus on the research related to
SLM process, our work can be easily applied to other PBF techniques as well.

CHAPTER 2. BACKGROUND AND RELATED WORK 8

2.3 Selective Laser Melting (SLM)

One of the most popular PBF technology is Selective Laser Melting (SLM), which shows
promise to revolutionize the fabrication of metal parts. However, the physical process of
SLM is complex, making it hard to control product properties by adjusting the system
settings [36, 61]. Regan et al. [99] focus on correlations between build environment and
product quality, but the results only describe the rough trend of the correlations rather than
a clear mathematical relation.

In fact, SLM product quality is a↵ected by a variety of system build parameters. The
final material properties of parts made via SLM are extremely sensitive to the powder prop-
erties [123] (e.g., powder shape, flow characteristics, porosity, laser absorptivity [111, 15],
etc.) and laser parameters (e.g., beam size, power, scan rate, etc.) [55, 56]. As such, it is
a significant challenge to identify the optimal operating parameters to rapidly and reliably
produce parts with the desired properties without defects [9]. Furthermore, many types of
SLM defects arise due to inherent variability in the powder properties [22], bed thickness
non-uniformity [115], and laser parameters and scan paths that result in improper powder
melting [26]. Many researchers identify the key input variables and metrics to analyze the
quality of finished products. Spears et al. [124] state that there are over 50 di↵erent SLM
process input variables (grouped into four categories: laser and scanning parameters, powder
material properties, powder bed properties and recoat parameters, and build environment
parameters) that a↵ect the quality of the finished product. Given so many input variables,
it is not only hard to analyze the impact of each variable, it is also hard to run experiments
to test each variable independently. Berumen et al. [12] argue that there are five determin-
ing areas of the building process: powder quality, temperature management, process gas
atmosphere, melt pool behavior, and documentation process. This variety also suggests the
complexity of SLM product quality control. Although physics-based models o↵er some in-
sights into optimized parameter selection and underlying mechanisms of SLM, the required
computational expense limits their application for real-time uses. This suggests the critical
necessity for in-situ SLM monitoring.

Moreover, especially with improper system build parameters, SLM finished products
might have lots of di↵erent kinds of defects [2, 20, 41, 58, 87] or unsatisfied mechanical
properties [81]. These issues can cause serious problems when the product is being used.
For instance, an over-powered slow-moving laser can vaporize the metal, leading to “key-
hole” voids, while an underpowered fast-moving laser might not melt powder at all [15].
Kusuma [72] studies only the e↵ect of laser power, scan speed, and laser energy density,
showing that even if only these three variables change, the relation between the finished
product metrics and the studied variables is complex and not easy to predict. Slotwinski et
al. [123] focus on the e↵ect of powder properties and study two di↵erent powder materials:
stainless steel and cobalt-chrome. Their experimental results show that a variety of char-
acteristics of powder properties, such as powder size, shape, density, crystallographic form,
etc., have e↵ects on the finished product quality.

CHAPTER 2. BACKGROUND AND RELATED WORK 9

Even after optimizing the build parameters and having a good initial set of parame-
ters [128], SLM monitoring system enables feedback and automated process control during
a build [124, 32], in order to improve the final product quality and production e�ciency.

2.4 SLM Monitoring

Currently, most PBF process monitoring approaches, including for SLM, rely on a variety of
non-contact sensors [60], such as optical, thermal [102] and acoustic [134, 118] sensors. These
di↵erent types of sensors enable researchers to address the monitoring problem from di↵erent
signals. Overall speaking, optical sensors can provide image data, which has more richness
than single-point input data from thermal and acoustic sensors. Moreover, visual imaging
equipment is appealing for SLM monitoring systems because it is relatively inexpensive
and provides non-contact sensing [124]. Thus, most researchers, including us, focus on using
optical image data. Aminzadeh et al. demonstrated layer-by-layer detection of fusion defects
from images using a Bayesian classifier [5]. That work proposed to detect real-time events
such as material ejected by applying manually-set thresholds to high speed near-infrared
images of the melt pool. Fox et al. [35] increased the image resolution relative to the standard
deviation of measured track width, which results in improved predictions of the final track
width and topography. Kruth et al. [69] proposed to reduce laser power proportionally to
an integrated signal from a photodiode calibrated against a CMOS camera, and got results
with smoother overhang structures. Abdelrahman et al. [1] used images of the print bed
taken after laser melting, a level sets method that can detect intentionally created defects.
Machine vision algorithms can identify pore defects [3], and multi-fractal image analysis can
characterize layers with balling, cracks and pores, and no defects [138].

SLM monitoring methods typically fall into two categories: in-situ that occur in real-time,
or ex-situ [86, 4, 38, 1, 138] that provide precise, automatic, robust quality detection and
measurement from o↵-line data in certain circumstances. However, an unavoidable problem
of ex-situ methods is that they require an entire part to be fully built before it is assessed
for quality. Even if there is an obvious defect that arises during the build process, an ex-situ
method inherently cannot detect it in time to correct it. Therefore, compared to in-situ
methods, ex-situ methods are not only slow, but also incur additional time and material
losses due to failed builds. For these reasons, we focus only on in-situ methods.

There are several di↵erent strategies to monitor the SLM process in real time. Grasso et
al. [44] gives four major categories for in-situ monitoring depending on the feature of interest:
(i) the powder bed, (ii) the layer slice, (iii) the track along the scan path, and (iv) the melt
pool.

For the powder bed monitoring, Li et al. [83] proposed a stereo vision based method for
powder bed monitoring, which can calculate the powder bed 3D surface topology from two
aligned cameras. Compared to a single camera monitoring system, Li’s method will be more
computationally expensive and there might be 3D reconstruction errors when calibrating
the two cameras. Erler et al. [31] proposed monitoring the thickness of the powder bed

CHAPTER 2. BACKGROUND AND RELATED WORK 10

to recognize structural defects. This approach requires an expensive surface height sensor
that can measure surface height in-situ, and the height map generation is slow. Scime, et.
al. [114] leverages CNN architectures, as we do here, to identify the location of possible
powder spreading anomalies for a variety of material systems.

For layer slice monitoring, Foster et al. [34] proposed a layer-wise powder bed monitoring
method using a single camera and regular color (“electro-optical”) images. It takes and
analyzes images for each powder layer before the laser scans and fuses the powder for that
layer. Kleszczynski et al. [65] proposed using high resolution gray-scale images during the
build process to recognize unsatisfied material properties of the entire product. However,
both methods can only provide high-level monitoring for product overall qualities rather
than detailed information during the SLM process.

Track scanning methods [57, 10, 28] take temperature data as input signals. However,
common problems of this approach are that a temperature sensor’s sensitivity is low and the
data is noisy, resulting in imprecise monitoring results.

The predominant approach is in-situ melt pool monitoring, which is the method we use
in our research. Lott et al. [85] designed an optical system for in-situ melt pool monitoring
with an overhead camera monitoring the melt pool, but without experimental verification.
Craeghs [24] proposed analyzing the measured melt pool image data to find the position of
the frame with maximum average intensity, which may correspond to overheating. Clijsters
et al. [23] proposed using high-speed optical sensors to record the intensity of the melt
pool, and recognize the overheating of the melt pool and detect positions of possible pores.
Repossini et al. [108] focuses on a specific feature of the melt pool, spatter analysis, and
develops spatter-related descriptors to classify di↵erent energy density conditions. Grasso et
al. [45] sets up a monitoring system similar to ours, which also includes in-situ monitoring
(for under-melting and boiling via infrared imaging) and ex-situ labeling methods (via x-ray
image data), and then uses conventional image processing methods and a statistical learning
technique, Principle Component Analysis (PCA). Grasso et al. [46] integrates the acquisition
of infrared images with conventional image processing methods for in-situ monitoring. All
of these approaches have many experimental parameters whose values are likely tied to their
specific system and dataset and may not be transferable to other tasks and systems.

2.5 Convolutional Neural Networks (CNNs)

In recent years, deep convolutional neural networks [77] have shown exceptional performance
on many image and video recognition, segmentation, and classification problems. The first
time that CNNs were successfully applied to a research problem was to recognize images
at hand-written digit (0–9) in the MNIST dataset [78]. With relatively limited training
data and computational resources in the 20th century, the proposed CNN, containing only
two convolutional layers, still showed excellent performance on the classification dataset,
MNIST [76]. However, this original CNN only worked well on simple tasks and datasets with
small numbers of classes. In 2012, a deep convolutional neural network, AlexNet [68], was

CHAPTER 2. BACKGROUND AND RELATED WORK 11

introduced and showed much better classification performance than conventional computer
vision methods on the very large dataset, Imagenet [27], with over 1 million images in 1000
categories. Benefiting from much more training data and computational resources including
better computers and powerful GPUs for parallel computing, it became possible to train
much deep neural networks, which resulted in better performance. Even though a variety of
new CNN architectures were proposed after AlexNet, most of them have a special architecture
design [127, 53] or only address a specific problem, sush as 3D object detection [88, 103],
or face recognition [113]. Currently, VGGNet [122] and ResNet [48] are the most widely
used CNNs because of their standard architecture design and even better performance than
AlexNet’s. In our work, we have choosed to use VGGNet, ResNet, or simplified versions of
these as our underlying models.

Figure 2.2: An example of CNN architecture. [Figure credit: NN-SVG]

In addition to improved performance compared to conventional computer vision meth-
ods, CNNs are also convenient because relevant image features are automatically extracted
by the model itself [142]. This allows us to address several di↵erent problems from the
same dataset even with the same CNN architecture just by training with di↵erent labels,
whereas conventional computer vision methods typically require significant manual oversight
to extract di↵erent features and tune algorithm parameters.

Commonly, CNN architectures consist mainly of convolutional layers (conv-layers) and
dense layers (also referred as fully connected layers) [77], as shown in Figure 2.2. Conv-
layers process convolution operations and encode the input data into lower dimensional
feature spaces. Dense layers predict the output from the encoded features; neurons in dense
layers are fully connected with each other. Some CNN architecture design techniques are
currently widely used in all kinds of CNNs; we also used them in our work. We briefly
describe some important ones here: activation, pooling, and dropout. Some fundamental
activation functions such as ReLU [93], sigmoid, and tanh [120], are used to increase the
non-linearity of the neural networks. Activation layers usually follow the conv-layers and
dense layers. Pooling layers [68], such as max-pooling and mean-pooling, can reduce the
dimension of the data. Pooling layers usually follow the activation layers. Dropout is a

CHAPTER 2. BACKGROUND AND RELATED WORK 12

regularization technique and can reduce overfitting. Dropout layers are before the activation
layers and commonly used after only dense layers without conv-layers before them.

Besides the architecture design, a variety of training related techniques have also been
developed. Backpropagation [78, 49], shorthand for “the backward propagation of errors,”
is almost always used in training neural networks. It is a method to calculate gradients for
updating neural networks’ weights in each layer. The most commonly used classification
loss function is the cross-entropy loss [119, 25], which measures the likelihood of input data
belonging to each category. In our work, we use the Adam optimizer [64], which is an
extension of stochastic gradient descent (SGD) [16]. Adam has an adaptive learning rate,
thus it is more tolerant of learning rate range than SGD.

2.6 Semi-supervised Learning

Current convolutional neural networks rely critically on large labeled training datasets. Sev-
eral popular examples benefit from vast publicly-accessible labeled datasets. Collecting data
is generally relatively cheap and easy; however, labeling data requires time-consuming hu-
man labor [105]. The same is true for our problem: collecting in-situ videos is automated
and the laborious part has traditionally been labeling video data. Semi-supervised learning
trains with a large amount of unlabeled data and a small amount of labeled data [107].
Therefore, semi-supervised learning [143, 21] is a promising approach since it reduces the
need for large labeled datasets while not su↵ering from the level of performance loss expected
from unsupervised learning, as shown in Figure 2.3. In semi-supervised learning, the dataset
can still be huge but only a very small portion of the dataset might be labeled. This will
significantly reduce the expense of the labeling task and increase the generalizability of deep
learning for practical use.

Co-training [14, 97, 133, 82, 70] is a conventional semi-supervised learning method. It
trains multiple classifiers based on di↵erent descriptive features of a dataset and takes agree-
ment of those classifiers to iteratively augment the labeled dataset by adding labels to unla-
beled data, which is similar to our idea. But the most important constraint of co-training is
that it requires that original data has di↵erent independent features for di↵erent classifiers
to learn, which is not always available in practice. Similarly, Yarowsky [140] proposed a
algorithm to start training classifiers with a small set of labeled training examples, then
incrementally augment labeled data with unlabeled data and repeat this process. Lee [80]
proposed a simple method to generate pseudo-labels for semi-supervised learning. It picks the
class that has the maximal predicted probability as the label for each unlabeled data point
and then trains networks in a supervised fashion. Major problems of this approach are lack
of robustness and easily overfitting the labeled training data. Kingma et al. [63] proposed
a deep generative model to improve semi-supervised learning performance by generative ap-
proaches, which can generate new samples that follow the same probabilistic distribution of
a given training dataset. Rasmus et al. [106] proposed a ladder network, which is a powerful
semi-supervised neural network for image classification tasks. The ladder network makes

CHAPTER 2. BACKGROUND AND RELATED WORK 13

Figure 2.3: Semi-supervised learning and supervised learning

use of both supervised learning with labeled data and unsupervised learning with unlabeled
data simultaneously. Inspired by ladder networks, Laine et al. [75] proposed the tempo-
ral ensemble approach, which has even better performance than ladder networks. We also
used temporal ensembles for SLM monitoring in our work. More details are described in
Chapter 6.

2.7 Label Noise

In large datasets, besides insu�cient labeled data, another labeling related issue is label noise.
The current state-of-art in visual object recognition still relies on supervised-learning [50, 67,
107, 116, 142]. These supervised learning systems require the correctness or the cleanliness
of the labeled data in order to achieve the expected performance.

In most research work, it is assumed and also optimized under the assumption that the
labeled datasets have all correct labels without noise. However, in practice, data often has
noisy labels [18, 94, 144], from being manually mislabeled, or mislabeled by inaccurate but
fast and cheap automated algorithms. Moreover, in semi-supervised learning as described
in the above section, if a portion of the input is well-labeled and the remainder is originally
unlabeled, noisy labels may come from assigning random labels to the unlabeled data. In
many situations, it is hard to get a completely clean dataset, and it requires much e↵ort
to manually clean the data. Figure 7.1 shows an example of noisy labels. Without data
cleaning, the existing label noise will significantly lower the trained models’ performance.

To understand label noise’s e↵ect on neural networks, Nettleton et al. [96] compared the

CHAPTER 2. BACKGROUND AND RELATED WORK 14

di↵erent degrees of noise and how they a↵ect four supervised learners. Rolnick et al. [110] pre-
sented extensive experimental results and gave theoretical analysis on cross-entropy loss [42];
both theory and practice indicated that neural networks have some robustness to label noise.
Moreover, Veit et al. [131] show that residual networks [48] especially tend to be even more
robust to noisy labels. The ubiquity of noisy labels has led to studies on the preprocessing
stage to clean the data in order to train the supervised learning systems [8, 17].

There are several popular strategies to address the label noise problem. One strategy is to
improve the neural networks’ architecture. Sukhbaatar et al. [126] augmented the underlying
network with an extra linear layer that learns the label noise distribution. Some other work
is similar to or based on this approach [54, 101, 11].

Another strategy is to modify the loss function. Patrini et al. [101] introduce a loss
correction approach, which achieves a high experimental classification accuracy, but their
results also suggest that the approach doesn’t provide much improvement to the original
cross entropy loss function. Azadi et al. [6] optimized the stochastic Alternating Direction
Method of Multipliers algorithm to make CNNs more robust to label noise. Natarajan et
al. [95] studied the e↵ect of mislabeled data for the classification problem and presented two
approaches specifically targeting the binary classification problem with noisy labels by esti-
mating the original loss function and using surrogate loss functions. The first one constructs
an unbiased estimator for the original loss function without knowing the noise distribution;
the other one estimate the original loss function using noise distribution information. Liu et
al. [84] propose re-weighting data points’ importance, which can also be thought of as modi-
fying the loss function. Miao et al. [89] propose a label-noise-robust boosting algorithm with
non-convex loss functions. In contrast, Rooyen et al. [130] propose using a convex loss, which
specifically targets uniformly random distributed label noise on classification problems.

Other researchers tackle the label noise problem by using semi-supervised learning, train-
ing on a small portion of cleanly labeled data as well as a much larger amount of noisy
labeled data. Fergus et al. [33] proposed a graph-based semi-supervised learning label prop-
agation method, and other semi-supervised training frameworks addressing label noise have
been recently proposed [121, 30]. Mnih and Hinton [92] formulate loss functions and use a
semi-supervised learning approach to pretrain the networks. Then they train deep neural
networks for di↵erent kinds of label noise and successfully improve models’ performance.
Lee [80] proposed a network that is trained in a supervised manner but reduces the e↵ect
of noisy data with a “De-noising Auto-Encoder,” which is a neural network encoding input
data points in lower dimension space and recovering the input data points from the low
dimension representation. Xiao et al. [135] proposed a training framework using the noise
distribution information; the training loss calculated depends on the probability of training
labels being incorrect. Veit et al. [132] proposed an approach that first pre-trains a network
using the large noisy dataset, and then fine-tunes the network using both the clean data and
the reduced-noise data.

More similar to our proposed methods in this dissertation (as described in Chapter 7 and
Chapter 8), other researchers use new training frameworks designed to address label noise.
Vahdat [129] proposes a new training framework and a conditional random fields [74] model

CHAPTER 2. BACKGROUND AND RELATED WORK 15

that represents the correlations between noisy and clean labels. Conditional random field
is a framework for building probabilistic models, originally proposed by La↵erty et al. for
modeling sequential and structured data. Vahdat’s method shows impressive performance
on the CIFAR-10 dataset with noisy labels. But this approach requires extra “auxiliary
information” about the noise distribution that is not always available in practice. Reed
et al. [107] address label noise by using a bootstrapping method. During the training, by
changing weights for data points, models will pay more attention to data points that have
labels consistent with model predictions.

16

Chapter 3

SLM Monitoring Framework

Our goal is to provide in-situ monitoring for the SLM process via in-situ videos. To ac-
complish thus, we need to set up experiments, collect data, train models, and test models.
Thus, using hardware designed and also data collected by our collaborators at LLNL, we
developed algorithms for our experiments. In this chapter, we will overview our proposed
SLM monitoring framework.

3.1 SLM Monitoring Framework

The entire framework (Figure 3.1) includes: running SLM experiments, collecting SLM in-
situ video data, generating height maps from ex-situ measurement, image processing for
height maps, generating labels for in-situ data from ex-situ measurement, training CNNs
with labeled videos, and testing the trained CNNs.

Figure 3.1: The flowchart of the entire SLM monitoring framework

CHAPTER 3. SLM MONITORING FRAMEWORK 17

We propose to train CNNs to recognize desired metrics (e.g. track size, continuity)
from in-situ videos. First of all, we need to run SLM experiments to collect SLM videos
as training data. In our work, we use single-layer straight SLM tracks for experiments and
analysis. Our collaborators built over one thousand weld tracks in total and set up a high
speed camera to collect in-situ video data while the tracks were built. The SLM scanning
process was ran with di↵erent laser parameters, including speed and power. All the tracks
were built with the same spacing and uniformly distributed on the plate, which will be
convenient for future analysis. Once the data has been collected, to train neural networks,
the next step is to label the training data. However, just from these in-situ videos, it is
hard to recognize the desired metrics via visually checking. Thus, we propose to use an
ex-situ approach to automated label these videos. Our collaborators use a structured light
microscope to measure the product surface height and generate height maps. Running our
image processing algorithm (Chapter 4) with these high precision height maps enables us to
calculate the desired metrics of each track. The calculated metrics will be used as labels for
our in-situ video data. Once the video data is labeled, we can train our designed CNNs on
the training data for the di↵erent metrics. Finally, we test our approach on the test dataset.

Figure 3.2: High powered and illumination lasers are co-aligned with a high speed camera
whose shared focal point is scanned across the metal powder bed via adjustable mirrors and
lenses. Camera video data is saved to a nearby computer for each track site. [Figure credit:
Brian Giera]

CHAPTER 3. SLM MONITORING FRAMEWORK 18

3.2 Hardware System Design

An Aconity LAB system from Aconity3D is used for welding single tracks of 316L stainless
steel. The system uses a carbon fiber brush to spread metal powder evenly across a stainless
steel plate in an argon-purged environment. Galvanometer mirrors scan the high-power
laser across evenly spaced track sites on the powder bed. In-situ video data is recorded at
a frame rate of 1 kHz using a 10-bit Mikrotron EOsens MC1362 camera incorporated into
the optical system diagrammed in Figure 3.2. The illumination laser and Mikrotron video
camera are co-aligned with the high-power laser. These components share a common moving
focal point, fixed at the melt pool while the laser scans each track site. The camera pixel
size is 14 µm/pixel. The experimental machine is shown in Figure 3.3.

Figure 3.3: SLM machine and data collection system at LLNL. [Figure credit: Gabriel Guss]

CHAPTER 3. SLM MONITORING FRAMEWORK 19

3.3 Experimental Data Collection

In what follows, SLM experiments are performed while simultaneously recording video; iso-
lated 5 mm long track welds are created under a variety of laser speed and power settings.
Note that the experiment parameter combinations are randomly chosen from 11 possible
scan speeds and 11 possible laser powers in evenly-spaced increments between 100 – 400
mm/s and 50 – 375 W , respectively, with each set of laser conditions repeated up to seven
times. The laser spot size is a fixed 106 µm diameter.

Figure 3.4: Examples of experimental tracks on one of the build plates. [from LLNL experi-
ments]

For our SLM experiments, we use 316L stainless steel powder. The powder is spread to
⇠50 µm thickness on top of a 180 mm diameter stainless-steel plate (only a single layer is
printed). The finished experimental tracks are shown in Figure 3.4 and a grayscale electro-
optical image (images captured by a high-resolution camera equipped with a telephoto zoom
lens) is shown in Figure 3.5.

The in-situ video for each individual track has 12 – 50 frames depending on the scan
speed, each frame of size 256 ⇥ 256; an example is shown in Figure 3.6. These videos

CHAPTER 3. SLM MONITORING FRAMEWORK 20

Figure 3.5: Electro-optical image of experimental tracks. [from LLNL experiments]

need to be pre-processed and then will be used as our training dataset and test dataset.
There might be some frames without a clear laser spot such as the first and the last two
frames in Figure 3.6. This is because the camera recording is not perfectly coordinated with
laser scanning. This issue will be addressed when pre-processing the videos, as described in
Section 5.1.

Figure 3.6: An example from our collected video data

It is di�cult to directly determine a clear relationship between these video frames and
our desired track metrics. Thus, after laser scanning and unwelded powder is removed,
height maps of bare laser tracks are generated and analyzed with the height map analysis
algorithm (described in Chapter 4) to determine the per-pixel average track width, standard
deviation of the track width, and give each track a Boolean continuity label that identifies
whether or not a track is continuous. Then each in-situ video is assigned three labels and
used in training or test sets for our machine learning algorithm. A single supervised machine
learning architecture is used to predict these three ex-situ measurements from in-situ video
data, as described in Chapter 5.

21

Chapter 4

Height Map Processing

In the previous chapter, we introduced our SLMmonitoring framework and discussed how the
in-situ video data was collected. Using the collected in-situ videos described in the previous
chapter, we hope to train neural networks on these kind of videos and learn the relations
between short videos and desired track metrics. The training process requires meaningful
labels; however, it is di�cult to obtain labels directly from a sequence of video frames. We
proposed to generate labels from ex-situ measurement of the corresponding finished tracks.

Our collaborators use a structured light microscope to measure the surface height of the
plate. This measurement provides us high precision height maps for all the tracks. Then we
treat height maps as images and run our proposed image processing algorithm to separate the
background pixels and track pixels. With pixel-level segmentation on each track, it becomes
easy to characterize each track. Based on our segmentation results, we can calculate a variety
of track metrics such as the track’s width, standard deviation of width, length, continuity,
and so on.

4.1 Height Maps

Our collaborators performed ex-situ measurements of corresponding laser printed tracks on
the top of the steel plate. After all tracks were completed, unwelded powder is removed from
the plate and then a Keyence VR3000 3D microscope is used to generate a height map of
all laser tracks. The entire plate is scanned in less than 4 hours. An example of a height
map is shown in Figure 4.1. Height maps are generated with 40x magnification via the
microscope. Each pixel in the height map corresponds to 29.5 µm of real physical size in
both the horizontal and vertical directions.

The measured height maps provide detailed information for each track. The height maps
are much more precise and provide more information than the original electro-optical images
(Figure 4.1). Even the polishing marks on the background plate are visually clear in the
height maps. With such high-resolution height information, we can characterize the tracks’
properties with our proposed image processing algorithms described in the next section.

CHAPTER 4. HEIGHT MAP PROCESSING 22

(a)

(b)

H
e
ig
h
t
[µ
m
]

(c)
�10
0µm

200

Figure 4.1: (a) An example of an original electro-optical image and height map measured
from structured light; (b) the actual height corresponding to the horizontal dash line in (a);
(c) the actual height corresponding to the vertical dash line in (a). [Figure credit: Brian
Giera]

CHAPTER 4. HEIGHT MAP PROCESSING 23

In the height map, since tracks are formed by fusing the metal powder together and then
unfused powder is removed, track pixels usually have height higher than the background
plate. However, if the laser power is too strong, it might actually etch the background plate,
causing the surface height to be even lower than the background height. To di↵erentiate, we
propose an image processing algorithm to distinguish tracks from the background.

4.2 Image Processing Algorithm

Given a height map as input, we hope to automatically classify each pixel as a “track pixel”
or “non-track pixel.” To be even more accurate, the “non-track pixel” has two categories,
“background pixel” and “etching pixel.” By correctly identifying all the “track pixels,” then
we can calculate metrics for each track. The key idea here is to remove the background and
then analyze each track.

Our proposed image processing algorithm first determines the height maps’ orientations
and rotates each height map to the same orientation. Since the background plate surface
is not perfectly level, to avoid the e↵ect of global variations in the background height, we
divide the entire height map into patches, with each patch containing a single track. Finally,
running our two-round background removal algorithm with a minor additional filtering step
addressing a few remaining noisy pixels, we will remove the background and get a clean
segmentation result. Knowing the pixel level segmentation information, we can then easily
calculate a variety of track metrics.

4.2.1 Height Map Orientation Automation

The height maps might have horizontal tracks or vertical tracks depending on how the plate
was oriented during scanning. If we can rotate input tracks to the same orientation, either
horizontal or vertical, these tracks will be much easier to analyze and for future processing.
Therefore knowing the original orientation of the tracks is important and helpful; we can
calculate pixel gradients to determine whether the tracks are vertical or horizontal.

The first step in determining track orientation is to binarize the input image with a
simple global threshold, which will tend to generate a noisy binary image; the goal is to
identify the portions that are tracks, although there will also be lots of noise. We choose the
threshold by calculating the mean of the whole height map and adding a small constant (we
use 0.01 mm) to make it less noisy.

From that binary image, the next step is to calculate the gradient (Figure 4.2) of all the
valid pixels in both the x-direction and y-direction, respectively, using the kernels [�1, 0, 1]
and [�1, 0, 1]T to do the convolution for the x-gradient and y-gradient, respectively. The
x-gradient and y-gradient can tell us whether the track is horizontal or vertical, since there
should be one direction with higher value, corresponding to the track orientation. Thus,
we can easily compare the sum of the absolute values of the x-gradients to the sum of the
absolute values of the y-gradients for all pixels in the image.

CHAPTER 4. HEIGHT MAP PROCESSING 24

Figure 4.2: Calculation of the gradient

In the Figure 4.2 and 4.3 example, the sum of absolute values from the x-gradient is 2
and the sum of absolutes value from the y-gradient is 6. From that information, we can infer
that the tracks are likely horizontal in the figure.

Figure 4.3: Left image: absolute value of x-gradient; right image: absolute value y-gradient

4.2.2 Dividing Height Map into Patches

In each height map, all the tracks are uniformly distributed and the spacing constants be-
tween tracks (o↵sets in x and y) are known. For each track, we can divide the entire height
map into patches and each patch contains only a single track. Thus, we just need to focus
on the pixels in that patch to analyze that single track. We would like put each track near
the middle of each patch to avoid having di↵erent parts of the same track appear in di↵erent
patches. Therefore, the first step is to find a start-point, where we put the first patch as a
reference point. Then the other patches’ positions could be easily calculated according to
the spacing constants.

At first, we can start from a default start-point, such as (0,0), the upper left corner of
the image. We temporarily treat this as the top left corner of the first patch and generate

CHAPTER 4. HEIGHT MAP PROCESSING 25

uniform patches in the whole image based on the known spacing constants. These patches
are temporary patches, which are used for calculating the correct start-point. All of these
temporary patches will later be shifted the same distance in the same direction to move the
tracks to the middle of the patches.

In each patch, then we compute a local “shift vector,” which is the vector from the default
start-point of the patch to the correct start-point, and then average all of these vectors as
a global “shift vector.” Then we can find the correct start point coordinates by adding this
global “shift vector” to the original start point. To calculate the “shift vector,” we take the
vector from the patch center to the center point of the track as the “shift vector.” In each
patch, we average the positions of all the valid pixels, which are defined as value 1 pixels
in the binary patch. The averaged position should be roughly at the center of the track,
since most valid pixels are track pixels, despite some noise. However, some patches might
have only a few track pixels or even have no track at all. In such situations, the calculated
local “shift vector” will be very unstable. Thus, we calculate the global “shift vector” as
the weighted average of local “shift vectors,” where weights are the total number of valid
pixels in each patch. The weight serves to make patches with a track inside more important
than other patches containing only noise. In Figure 4.4, the shift vector is [2,�0.5] and the
weight is 4.

Figure 4.4: Calculation of the “shift-vector” in each patch

4.2.3 Background Removal and Noise Filtering

We need to remove the background and filter remaining noise in patches to analyze each
track. We proposed a height segmentation algorithm that takes each patch as an input and
provides pixel level classification results as outputs (Track/Non-track). Since the background
is noisy in terms of height, and there are global variations in the height of the underlying
plate (it is not completely flat), we propose a two-round filtering method that is robust

CHAPTER 4. HEIGHT MAP PROCESSING 26

Figure 4.5: Divide height map into patches

Figure 4.6: Left image: binary map after background removal; right image: filtered binary
map

to background noise and able to provide a clean segmentation result. Pseudo code of the
algorithm is given in Algorithm 1.

(a) Calculate the average height h̄1 of the height map in patch H. This will generally be
just a bit higher than the height of the background plate since track pixels are at most
10% in our experiments.

(b) Re-calculate the average height h̄2 of pixels with height in the range (h̄1 � ⌧1, h̄1 + ⌧1).
These are likely to be background pixels rather than track pixels.

(c) Binarize the height map H as B with the threshold h̄2 + ⌧2, in preparation for final
denoising.

CHAPTER 4. HEIGHT MAP PROCESSING 27

Figure 4.7: Background removal and filtering. (a) Binarized height map after running the
first round of background removal; (b)(c) binarized height map after running the second round
of background removal; (d) binarized height map after running post-filtering

(d) Calculate the summation Sj of each column j in the binary map B.

(e) Set all the pixels in column j to the “non-track” (zero) value if Sj is less than a noise
threshold T expressed as a percentage of the desired track length.

(f) Return the output binary map B, which has the same size as the original height map
patch H, with the “Track/Non-track pixel” classification result on each pixel.

CHAPTER 4. HEIGHT MAP PROCESSING 28

Algorithm 1 Height map segmentation

1: H input height map patch
2: H,W vertical and horizontal sizes of the height map patch H

3: ⌧1, ⌧2, T constants for threshold
4: // Round 1:

5: h1

HP
i

WP
j
Hij

6: h̄1 h1/(
HP
i

WP
j
1)

7: // Round 2:

8: h2

HP
i

WP
j
Hi,j · (h̄1 � ⌧1 < Hij < h̄1 + ⌧1)

9: h̄2 h2/(
HP
i

WP
j
1 · (h̄1 � ⌧1 < Hij < h̄1 + ⌧1))

10: // Post-filtering
11: B binarize H with threshold h̄2 + ⌧2
12: for j 1 to W do

13: Sj

HP
i=1

Bij

14: if Sj < T then
15: for i 1 to H do
16: Bij 0
17: end for
18: end if
19: end for
20: return B

The appropriate values of the constants ⌧1, ⌧2, and T will depend upon the height of
the track pixels relative to the background pixels, and on the variability. We use ⌧1 = 0.01
and ⌧2 = 0.01 (all heights are in units of pixels) for our setup, in which the typical standard
deviation of the background height within a patch is around 0.002, and the di↵erence between
track pixel height and background pixel height is over 0.2 (100 times the standard deviation
of the background). In other words, these constants are set at about 5% of the height of
the tracks above the background, which is also equal to about 5 standard deviations of the
background height. We set T = 5% of the track length, which is 10 pixels out of 200 in
our experimental setup. Example output of our filtering algorithm is shown in Figure 4.6.
Any automated labeling process must rely upon a relatively precise machining and polishing
process for the background steel plate compared to the track height; with the two-orders-of
magnitude height:standard-deviation ratio in our setup, there is less sensitivity to the choice
of these constants.

CHAPTER 4. HEIGHT MAP PROCESSING 29

Overall, the background removal and filter results are given in Figure 4.7. This results
in fairly clean pixel labels.

Note that sometimes there are pixels with heights lower than the background plate height.
This is caused by the laser melting not only the powder but also the powder bed, which results
in etching. For the current work, these are classified as non-track pixels; identification of
etching is left to future research.

4.2.4 Image Processing Results

With running all the previous mentioned image processing algorithm together on the original
height maps, we will get the the final results as shown in Figure 4.8.

Figure 4.8: Height map (left) and final results (right) of the proposed image processing algo-
rithm.

4.3 Calculated Metrics

In the results shown above, the background has been removed and the track has been ex-
tracted. Then we need to calculate the information we need. In the following example, we
use white pixels to define background, green pixels to define tracks and red pixels to define
non-track pixels with lower height than background plate. Since we only care about the
track pixels, we can delete rows and columns which are outside of the track as shown in
Figure 4.9.

Having identified the track pixels within the binary map B, it is straightforward to
calculate the relevant track metrics (Figure 4.10), such as the length l, the average width

CHAPTER 4. HEIGHT MAP PROCESSING 30

Figure 4.9: The patch after deleting non-track rows and columns

�, both in pixel units, and the continuity C of the track. Although we focus on the track
width and continuity, we can also provide other laser track metrics from the height map, e.g.
roughness, average height, etc. We calculate the following:

Figure 4.10: The trinary map, the corresponding height map and the “ridgeline” of the track.

(1) Length l of the track. We define it by the number of rows of the patch after deleting
background rows and columns:

l = I 0 � I?,

CHAPTER 4. HEIGHT MAP PROCESSING 31

where I? is the index of the first row that has track pixels, and I 0 is the index of the
last row that has track pixels. In the example shown in Figure 4.10, the length is 7.

(2) Average width �̄. For the CNNs, we will treat predicting the average width �̄ as a
regression problem, so the metric is given as positive real numbers. In this example
(Figure 4.10), the width �̄ is 1.14.

�̄ =
1

l

I0X

i=I?

WX

j=1

Bij.

(3) The standard deviation of width, ��. In this example (Figure 4.10), �� is 0.69.

�� =

vuut1

l

I0X

i=I?

(
WX

j=1

Bij � �̄)2

(4) Continuity: C, we define it as a Boolean and treat it as a binary classification problem.
If there exists any row between I? and I 0 such that the row has no track pixel, then
this track has a break. In this example (Figure 4.10), the Continuity is FALSE.

C =
I0X

i=I?

((
WX

j=1

Bij) == 0)

(5) The average height h̄ of the “ridgeline” of the track. Taking the pixel with the maximum
height from each row to represent the height of that row, average them as the height of
that track. In Figure 4.10, the height h̄ is 3.29.

h̄ =
1

l

I0X

i=I?

max
j

(Hij)

(6) The standard deviation of the “ridgeline” height, �h. h̄ is calculated from (5). In this
example (Figure 4.10), �h is 1.70.

�h =

vuut1

l

I0X

i=I?

(max
j

(Hij)� h̄)2

(7) The area of the track pixels, ↵. In this example (Figure 4.10), the area ↵ is 8.

↵ =
I0X

i=I?

WX

j=1

Bij.

CHAPTER 4. HEIGHT MAP PROCESSING 32

It can also be calculated by:

↵ = �̄l

(8) The average height of background pixels H̄ in the original whole patch without consid-
ering track pixels or etching pixels.

H̄ =
1

HW

HX

i=0

WX

j=0

Hij

4.4 Automated Labeling

Even though all of these calculated metrics can be used as training labels, in the current
work, we only focus on the most important two metrics, size and continuity of the track.
To be more specific, we train convolutional neural networks to predict the average width
and width standard deviation of each track and whether there is a break in each track. The
average width can reflect the basic information of the product; the break in the track is
common and also a basic type of defect. In figure 4.11, we show examples of our labeling
results for tracks.

4.5 Conclusion

The entire image processing and labeling algorithm enables us to label these in-situ videos
using automated analysis of ex-situ measurements. In most situations, it is easy to collect in-
situ data but di�cult to obtain labels for the data. Thus, it is usually di�cult to directly use
machine learning algorithms for SLM in-situ monitoring. With our proposed methods, we
successfully correlate in-situ and ex-situ measurements, then make predictions with machine
learning algorithms.

According to what we have described in this chapter, we are able to label tracks from
height maps. Since our goal is to train CNNs to recognize the desired metrics from in-situ
video rather than ex-situ measured height maps, the last step of labeling is to correlate all
these labels to the corresponding videos instead of height maps.

Overall, we generate hundreds of average width and continuity labels via the proposed
algorithm. Moreover, we also show that our algorithm can generate not only these two types
of labels, but also other metrics as necessary. These labels are then used for training con-
volutional neural networks, as described in later chapters. With even broader impact, since
this approach to generate labeled training sets for in-situ machine learning-based detection
algorithms does not rely on specific experimental characteristics, is should be extensible to
other additive manufacturing technologies.

CHAPTER 4. HEIGHT MAP PROCESSING 33

Figure 4.11: Example tracks: (a) regular electro-optical images, (b) height maps measured
by structured light, (c) segmentation results by proposed image processing algorithm, (d)
labels from calculated track metrics

34

Chapter 5

In-situ Video Monitoring

In this chapter, using the data labels from the previous chapter, an original convolutional
network is trained that processes in-situ high speed video data to predict properties of
tracks. We demonstrate a proposed machine learning approach to monitoring the SLM
manufacturing process that enables on-the-fly assessments of laser track welds. First, in-
situ video melt pool data acquired during SLM is labeled according to the (1) average
individual track width, �̄, (2) standard deviation of individual track width, ��, and also (3)
whether or not the track is continuous, C, measured post-build through the ex-situ height
map analysis algorithm. This procedure generates three ground truth labeled dataset for
supervised machine learning. Using a portion of the labeled 10-millisecond video clips, a
single Convolutional Neural Network architecture is trained to recognize these three distinct
laser track metrics. Thus, we also demonstrate using CNNs with the same architecture to
perform both regression and classification. This approach should benefit any other SLM
system or any additive manufacturing technology, where height-map-derived properties can
serve as useful labels for in-situ sensor data.

5.1 Video Preprocessing

Our collaborators at LLNL performed bead-on-plate SLM experiments in which isolated
5 mm track welds are created under a variety of laser speed and power settings using the
Aconity 3D SLM system, as diagrammed in Figure 5.1. The raw video data collected are
video segments, with each segment corresponding to a single SLM track. The video frames
are 256⇥256 pixels with 1k Hz frame rate; each video segment might contain several hundred
frames. Only 12 to around 50 frames, depending on the laser scanning speed, record the
laser spot and the scanning process, whereas all the other frames just record the background
before or after the laser scanning. Since there are so many unrelated frames without laser
spot, the collected raw video data can not be directly used for training CNNs. Thus, we
proposed a simple and e↵ective video processing method to remove those extraneous video
frames and create a practical video dataset as following:

CHAPTER 5. IN-SITU VIDEO MONITORING 35

Figure 5.1: Schematic of video capture system. Adjustable mirrors trace the path of a focal
point shared between the co-aligned high-speed camera, illumination laser, and high-power
laser. The camera records in-situ video taken during each welding event. [Figure credit: our
collaborators at LLNL]

• Since the laser spot is always roughly in the center of each frame, we set the region of
interest (ROI) to be a centered 80⇥ 80 box.

• Calculate the average intensity IFi of all the pixels in each frame Fi.

• Calculate the average intensity IROIi of all the pixels in each ROIi.

• If IROIi is larger than IFi , keep the frame; otherwise, remove the frame.

• Take the longest sequence of consecutive frames as the video data point for training
CNNs.

The video dataset contains 870 individual videos, labeled according to the ex-situ height
map analysis algorithm that provides each video a label of �̄ and �� for regression, and
track continuity C for classification. To do this, 700 randomly selected videos are used to

CHAPTER 5. IN-SITU VIDEO MONITORING 36

Figure 5.2: An example of removing video frames which contain no laser spot from raw video
data

train candidate machine learning models and the remaining videos are used to test the fully-
trained models. The model architecture was developed using only the �̄measured labels, but
was trained separately on all three labels, and the learning rate hyperparameter re-tuned.
The standard squared di↵erence loss function is used for the regression predictions, while
cross entropy loss is used for classification.

Figure 5.3: Example of in-situ video data (a) ten continuous 64 ⇥ 64 frames of in-situ videos
(b) single data point from concatenation of ten continuous frames

A convolutional neural network architecture requires videos to be a fixed frame length
and resolution. For the fastest scan speed, there are only 12 frames of video and the first and
last frames are omitted to ensure end-of-track artifacts did not a↵ect the results. Thus, only
the 10 middle frames are chosen from each video, i.e.the middle 10 ms of video. Furthermore,
the frames for each track are center-cropped into 64 ⇥ 64 pixel size images, eliminating an
even larger portion of the background from the videos so that the neural network trains on
the most relevant region of the video that encompasses the laser spot. An example of in-situ
video data is shown in Figure 5.3.

CHAPTER 5. IN-SITU VIDEO MONITORING 37

5.2 Data Analysis

Figure 5.4: Width measurements in terms of di↵erent laser speeds and laser powers.

After creating and scanning all tracks, the ex-situ height map analysis algorithm (Chap-
ter 4) is used to measure the tracks. Approximately 80% of all tracks are continuous.
Figure 5.4 shows measured track widths for all laser speed and power combinations studied,
plotted as the average value of �̄measured with error bars corresponding to the standard devi-
ation of repeat width measurements. Tracks are widest at high laser powers and slow scan
speeds. The trends in Figure 5.4 agree with previous findings from experiments [73, 72, 137,
136] and simulation [59, 59] that show the melt pool width increases with increasing laser

CHAPTER 5. IN-SITU VIDEO MONITORING 38

power-to-speed ratio, i.e. increasing volumetric energy density. Figure only shows a rough
trend of measured track widths, �̄measured, throughout the dataset collected. However, error
bar values suggest no clear function that can accurately calculate track widths with given
laser parameters. Thus, an in-situ detection technique based solely on empirical fits of these
laser parameters may not reliably capture natural variances within the process.

Figure 5.5: Examples of di↵erent video data points. (Laser conditions: (a). Power 147.5
W Speed 310 mm/s; (b). Power 147.5 W Speed 160 mm/s; (c). Power 342.5 W Speed 310
mm/s; (d). Power 342.5 W Speed 160 mm/s)

Track measurements are used as ground truth labels for each video taken during the
welding process. Figure 5.5 shows the exact 10 middle center-cropped frames from the in-
situ videos and corresponding labels that are used to train the machine learning model for
four di↵erent example laser conditions in our dataset. The bright area in the center of
all video frames corresponds to incandescent light emitted from the melt pool. The video
capture system alignment (Figure 1) ensures that the center of the melt pool appears in
the same location of every frame. Figure 5.5 displays video segments in order of increasing
�̄measured, in pairs of laser powers, i.e. 147.5 W (a,b) and 342.5 W (c,d), and scan speeds, i.e.
310 mm/s (a,c) and 160 mm/s (b,d). Melt pool size and shape di↵erences between videos
at each distinct laser power setting are evident. At larger powers, the melt pool increases
in size and aspect ratio, as expected. Intuitively, the relative size of the melt pool appears
to correlate with larger values of �̄measured. Frame-by-frame variations in the quantity of
bright pixels also appear to correlate with increasing ��measured

. For instance, there are more
saturated pixels in the melt pools at high power in Figure 5.5 (c,d) than at low power
Figure 5.5 (a,b). The track width may also correlate with the degree of spatter, which
is more pronounced for smaller �̄measured. It is hard to distinguish from visual inspection
alone whether the melt pool is a better indicator of ��measured

than the spatter. In addition
to these features, temporal characteristics gathered from chronological series of frames may
yield accurate predictors of resulting track properties. Moreover, there may be additional
salient features besides characteristics of the melt pool spatter that correlate strongly with

CHAPTER 5. IN-SITU VIDEO MONITORING 39

�̄measured and ��measured
. It is unclear from inspection how one would identify track continuity

from these video frames.

5.3 Methods

From the post-processed height maps, �̄measured and ��measured
are computed for every track

and these are used to assign ground truth labels for the corresponding in-situ videos, thereby
assembling a training set for the two regression models. Each track is also assessed for
continuity, i.e. a track is discontinuous if at least one gap of non-track pixels exists along
its length, otherwise a track is continuous. The continuity labels serve as a training set for
a binary classification model. The entire plate (containing around one hundred tracks) is
scanned in less than 4 hours after which the ex-situ height map analysis runs in less than
10 seconds. Since a large training set of in-situ video data is amassed relatively quickly, it is
feasible to develop machine learning algorithms capable of assessing the in-situ data.

We use a convolutional neural network (CNN) to address this regression problem. The
proposed CNN (figure 5.6) has 3 convolutional (conv-) layers with 32 feature maps of 3⇥ 3
kernels, 64 feature maps of 3⇥ 3 kernels, and 64 feature maps of 3⇥ 3 kernels respectively.
The first two conv-layers, CONV-1 and CONV-2, are both followed by ReLU [93] activation
and a 2 ⇥ 2 mean-pooling layer [79]. The third conv-layer, CONV-3, is followed by ReLU
activation. Next a dense layer of 1000 hidden units, FC-1, is fully connected with CONV-3,
followed by a dropout layer with 0.5 dropout rate. Then two more fully connected layers,
FC-2 and FC-3, with 200 and 20 hidden units respectively are connected with FC-1, and
each is followed by sigmoid activation. FC-3 is fully connected with the final output layer
of a single unit, which corresponds to the track width value. During the training, we choose
the Adam optimizer with a learning rate of 10�4, batch size of 20, and max training epoch
number of 300. We apply L2 regularization to all the weights for suppressing over fitting.
The regularization coe�cient is set as 10�4. Our CNN model is configured and trained with
the TensorFlow library using a TITAN X NVIDIA GPU.

To set the number of layers (the depth of the model), an initial architecture was config-
ured with six convolutional layers, which contains su�cient capacity to learn �̄measured from
the video data. Then the number of layers was reduced sequentially until the model did not
exhibit overfitting. (Overfitted models provide excellent predictions for a training set, but
do not generalize well to new dataset.) Based on several candidate model training sessions,
three convolutional layers could generalize su�ciently to the test data, as discussed below.
Although it is more common to use max-pooling to reduce dimensionality between convolu-
tional layers, mean-pooling was found to outperform max-pooling for learning to predict the
track width. For this application, mean-pooling may help the CNN learn about the di↵er-
ences in melt pool size to generate predictions for the track width average, �̄. If this is the
case, the overall summation of the video pixel values would seem to be more relevant than
the summation of max pixel values. Though the model architecture was not optimized based
on track continuity or standard deviation of width measurements, reasonable results were

CHAPTER 5. IN-SITU VIDEO MONITORING 40

Figure 5.6: Our proposed CNN architecture

obtained when retraining the same CNN model (developed with �̄) using �� and C labels as
discussed below.

5.4 Results and Discussion

Since the relevant, visualized distinguishing features in the in-situ video are not readily obvi-
ous, it is not straightforward to decipher the mapping between the video and track properties
using only traditional video processing techniques. Rather than manually identifying rele-
vant indicators within the entire in-situ data set, machine learning is used to train our neural
network model to learn a suitable mapping between video segments and measured average
track width and standard deviation and continuity.

Once trained, the video regression CNN model generates predictions of the average track

CHAPTER 5. IN-SITU VIDEO MONITORING 41

width, �̄predicted, standard deviation, ��predicted , and track continuity, Cpredicted. The accuracy
of track continuity classification is 93.1%. Regression model performance is assessed by
comparing measured versus predicted values for both training and test sets in Figure 5.7
and Figure 5.8. A narrow distribution of points around the line of equality (black line)
indicates favorably robust model performance, while �̄predicted = �̄measured or ��predicted =
��measured

for all predictions signifies problematic overfitting. The CNN exhibits variance, i.e.
training set predictions outperform the test set, as indicated by the tighter distributions of
predicted values along the equality line. Furthermore, the CNN model predictions of �̄predicted
outperform those of ��predicted according to the respective coe�cients of determination by
R2

�̄
= 0.93 and R2

��
= 0.70.

Figure 5.7: Width prediction results from in-situ videos

The discrepancy in model performance of predicting average track width versus standard
deviation may be due only in part to the fact that the model architecture is developed
using width data alone. Given the numerous available choices of model architectures and
combinations of hyperparameters, di↵erent model configurations than chosen here may result
in more accurate �̄predicted. However, it seems likely that the standard deviation of width is
inherently more di�cult to predict than the width given the size and/or quality of our

CHAPTER 5. IN-SITU VIDEO MONITORING 42

Figure 5.8: Width SD prediction results from in-situ videos

dataset. Outliers in Figure 5.8 correspond to the slowest laser scan speeds, 130 and 100
mm/s. Thus, the 10 middle frames (of the 38–50 total frames per video collected at these
conditions) the model uses do not contain information of the properties along the entire
length of the track. This is a consequence of the CNN architecture, which requires a fixed
frame number irrespective of laser operating parameters. Recurrent neural networks that
generate predictions from input videos of variable length may help to alleviate this issue.
Regardless, for any machine learning model that exhibits high variance, a larger dataset
ensures higher quality predictions [47, 7]. Indeed, worse results (not shown) were obtained
than in Figure 5 when the model was trained on a small subset of our data. Thus, by following
the experimental procedure described here, additional videos can be collected, labeled via
the rapid ex-situ algorithm, and used to retrain the CNN to obtain more accurate �̄predicted,
��predicted , and Cpredicted. Nevertheless, using only 10 ms videos, the CNN predicts track SLM
widths and continuity and (to a lesser degree) width standard deviation without the need
for time-consuming height map derived ex-situ measurements.

Going beyond this work, the training set can be expanded and the machine learning
model can be modified to enable improved �̄predicted and ��predicted or possibly other height

CHAPTER 5. IN-SITU VIDEO MONITORING 43

map derivable quality metrics, such as surface finish. Moreover, it is worth pursuing whether
other ex-situ measurements (e.g., mechanical properties, microstructure, residual stress, part
density, etc.) of SLM printed objects are detectable from in-situ data. An important require-
ment for in-situ detection should involve predicting track properties in cases of multi-scan
prints, e.g. parallel adjacent tracks, non-parallel tracks involved in complex strategies, etc.
Semi-supervised machine learning algorithms, which will be described in the next chapter,
are even more useful and productive since sometimes it is not desirable or possible to label
all (or any) in-situ data. Transfer learning techniques may help when ex-situ measurements
are di�cult to obtain, e.g. x-ray computed tomography, and where complementary physics-
based simulations are available for only a subspace of the overall operating regime. While a
deeper investigation into the model may reveal something about the features it uses to make
predictions, it is unlikely to uncover important characteristics of the underlying physics of
the SLM process given the black box nature of CNNs at present. While our current model
requires 10 ms video clips, faster detection rates may be possible without compromising
prediction accuracy. Machine learning-based models generated with this approach can en-
able in-situ quality detection and real-time process monitoring essential to rapid closed-loop
control.

5.5 Conclusions

A CNN model is developed, trained, and evaluated and shown to be capable of predicting
SLM track widths, width standard deviations, and track continuity from in-situ video data
alone. Our CNN is trained from as little as 10 video frames with a correlation coe�cient of
R2 = 0.93 for track width, R2 = 0.70 for standard deviation of track width, and prediction
accuracy of 93.1% for track continuity. The algorithm successfully generalizes across multi-
ple tracks created with several combinations of the laser power and speed. Moreover, this
approach should benefit any other SLM system or any additive manufacturing technology,
where height-map-derived properties can serve as useful labels for in-situ sensor data.

Here, video of SLM tracks is collected using a variety of laser power and scan speed
settings; however, it is straightforward to incorporate additional forms of in-situ data, e.g,
pyrometer readings, acoustic sensing, etc., which may boost prediction quality. Irrespective
of the exact SLM system configuration and chosen operating parameters, in-situ data can be
labeled using our ex-situ height map analysis algorithm. After labeling the in-situ dataset
with ex-situ measurements, the model is then trained via supervised machine learning that
can predict the final properties of SLM track welds on-the-fly. With this approach, it should
be possible to label in-situ data via ex-situ measurements for additive manufacturing tech-
nologies, e.g. extrusion-based and stereolithographic approaches, other than SLM.

Moreover, even if sometimes our automated labeling approach can not be applied, we
can still manually label a small portion of collected data and use semi-supervised learning
algorithms to alleviate the problem of insu�cient labels. We will introduce a semi-supervised
learning approach in the next chapter.

44

Chapter 6

Semi-supervised Learning

In previous chapters, we described an SLM experimental setup with which video was collected
while creating single linear SLM track welds. We labeled these SLM tracks with metrics of
interest and used supervised learning to train regression and classification CNN models to
predict several metrics from real-time videos. To obtain labels for those in-situ videos, as
described previously, height map measurements for each laser printed track were taken using
a Keyence VR3000 structured light microscope. However, the structured light machine is
expensive and not always available to other individuals or institution, which makes labeling
all these in-situ videos become not applicable. Thus, we propose to use semi-supervised
learning approach to address this issue, since it only requires a few labeled data points
rather than an entire labeled dataset.

In this chapter, we use 2000 SLM in-situ videos, and 700 of them are labeled (randomly
selected from the labeled videos described in the previous chapter). Of these 700 labeled
videos, the 200 labeled videos are used as the test set and the other 500 labeled videos
are used as the semi-supervised training dataset. To recognize these track metrics for SLM
in-situ monitoring, we design a semi-supervised in-situ video monitoring framework with
convolutional neural networks, which does not require a significant amount of labeled data
to train. Note that the data we collect and interpret can also be used for monitoring other
metrics, such as track etching, roughness, etc. Our overall framework is easily transfer-
able for monitoring such other metrics as long as a portion of the data is labeled for the
metric. Furthermore, our approach is not limited to track width regression or continuity
classification.

To our knowledge, we are the first to successfully apply semi-supervised learning to
SLM monitoring. Our experimental results demonstrate that a semi-supervised approach is
promising and easy-to-implement for SLM monitoring.

CHAPTER 6. SEMI-SUPERVISED LEARNING 45

6.1 Related Work

The most closely related semi-supervised works to our approach are ladder networks [106]
and the temporal ensemble method [75]. The ladder network [106] is a powerful semi-
supervised neural network for image classification tasks. The ladder network makes use of
both supervised learning with the labeled portion of data and unsupervised learning with
unlabeled data simultaneously. The architecture of ladder networks is an autoencoder [51]
applied to every layer, not just the inputs. For the labeled data, the ladder network trains in
a standard supervised fashion. For the unlabeled data, it trains with an autoencoder in an
unsupervised fashion to preserve all the details needed for reconstructing the image. Laine
et al., inspired by ladder networks, proposed the temporal ensemble method [75], which is
the approach we adapt for our application. The temporal ensemble method can be seen
as a simplified version of ladder networks, without the autoencoder. Instead, it makes two
passes over the same input with di↵erent data augmentation and di↵erent dropout [125].
The supervised loss is still the standard cross entropy loss, and the unsupervised loss is the
mean square di↵erence between the two passes’ output layers. The unsupervised portion
helps the model to extract more important features and reduces the e↵ect of overfitting to
the small portion of training data that is labeled. It works like an autoencoder but is much
more e�cient and robust. In our work, we successfully applied temporal ensemble method
to our SLM monitoring problem.

6.2 Semi-supervised Approach

Building on previous research on semi-supervised learning algorithms, we make use of the
⇧ model from the Temporal Ensemble method [75] for our CNN model. The ⇧ model has
both a supervised training flow and an unsupervised training flow. It is designed for a
semi-supervised classification problem. But in our work, rather than only a semi-supervised
classification task, we also extend it to a regression problem (predicting track width).

Figure 6.1: Semi-supervised CNN architecture

For our problem, the training data X has N inputs, only M of which have a regression
target value (labels Y). L is the set of labeled data indices; for each i 2 L, xi has a positive
real number label yi, where |L| = |Y| = M . ✓ is the set of weights for our convolutional

CHAPTER 6. SEMI-SUPERVISED LEARNING 46

neural networks and the regression value of each data point xi is z̃i = ✓(xi). During training,
data augmentation A(x) and dropout D(x) are used, where z̃i = D(✓(A(xi))).

Similar to the ⇧ model, we feed each training data point (video) xi, whether labeled
or unlabeled, into the neural network twice, evaluating it with di↵erent data augmentation
A1(x),A2(x), and di↵erent dropout D1(x),D2(x), which will produce di↵erent regression
outputs z̃i1 and z̃i2, where

z̃i1 = D1(✓(A1(xi))), z̃i2 = D2(✓(A2(xi))).

The ⇧ model has two passes but only calculates loss from one pass. To make the training
more e�cient, we instead make the slight change of using both passes’ output to calculate
the supervised loss Ls symmetrically (see Figure 6.1). This will take hardly any additional
time, since we have to run two passes whether we use the symmetric loss or the original loss,
but will work like doubling the training batch size, making our training more e�cient overall
(it was almost twice as fast in our tests). When we address a regression problem instead of
a classification problem, we also make the change of using mean squared di↵erence for the
loss instead of cross entropy loss. Specifically, for regression our supervised loss Ls for each
“mini-batch” subset B of data indices is calculated by:

Ls =
1

|B|

X

i2(B\L)

(kyi � z̃i1k
2 + kyi � z̃i2k

2).

The unsupervised loss Lu is still calculated by mean squared di↵erence:

Lu =
1

|B|

X

i2B

kz̃i1 � z̃i2k
2.

Finally, the total loss L is the weighted summation of the supervised loss and the unsu-
pervised loss:

L = Ls + wLu,

where w is the weight for the unsupervised loss.
We use the same CNN architecture for classification as for regression, but although we use

the same symmetric supervised loss, for the classification supervised loss we use cross-entropy
loss rather than squared di↵erence:

Ls = �
1

|B|

X

i2(B\L)

yi log(
z̃i1z̃i2
z̃?i1z̃

?
i2

) + log(z̃?i1z̃
?
i2),

where z̃?i1 = 1� z̃i1 and z̃?i2 = 1� z̃i2.
We use the same unsupervised loss as for the regression problems, as described above.

CHAPTER 6. SEMI-SUPERVISED LEARNING 47

6.3 Results and Discussion

We test the semi-supervised learning approach on our collected dataset, consisting of 1000
training data points with 500 labeled and 500 unlabeled, and 200 test data points. Labeled
data has two separate labels, average track width (positive real number) and track continuity
(Boolean value). We train our model with 500, 100, 50, and 10 labeled data points in both
semi-supervised and fully supervised fashion; for all instances of unsupervised learning we
also use the entire set of 500 unlabeled videos as additional training data. The 10/50/100
labeled data points are chosen randomly from the full labeled dataset, with the same subset
used to train the fully supervised and semi-supervised models we compare. We ran all
experiments five times, and report the average performance and the standard deviation.
The model architectures are the same (when training the fully supervised model, we just use
the supervised loss).

We use the same CNN architecture as described in the previous chapter to address both
regression and classification tasks. The CNN has 3 conv-layers and 3 dense layers. The
conv-layers have 32 feature maps of 3⇥ 3 kernels, 64 feature maps of 3⇥ 3 kernels, and 64
feature maps of 3⇥ 3 kernels respectively. The first two conv-layers, CONV-1 and CONV-2,
are each followed by ReLU activation and a 2⇥ 2 mean-pooling layer. The CONV-3 layer is
followed by ReLU activation and connected to the first dense layer, FC-1, with 1000 hidden
units, followed by a dropout layer with 0.5 dropout rate. FC-2 and FC-3 (each followed
by sigmoid activation), with 200 and 20 hidden units respectively, follow the dropout layer.
FC-3 is fully connected with the final output layer of a single unit, which corresponds to the
relevant track metric as output. We set batch size to 20, and max training epoch number
to 300. The regularization coe�cient is set as 10�4. We choose the Adam optimizer with a
learning rate of 10�4 for the regression task, and 10�5 for the classification task.

Similar to the original ⇧ model’s implementation, we ramped up the unsupervised loss
component weight w during the first 50 epochs with a Gaussian ramp-up curve

w = Wmaxe
�5(1�T),

where T varies linearly from 0 to 1 during the ramp-up period and Wmax is set to 100 for all
the experiments.

Each input data video is 10 grayscale frames of 80⇥80 pixels whose values are in the range
[0, 1]. With semi-supervised learning approach, we applied standard data augmentation
(applying translation, mirroring, brightness and contrast) to all the training data. We crop
the frames to 64 ⇥ 64, with pixels shifted vertically and horizontally, by an amount chosen
from a uniform random distribution from [�8,+8]. We randomly apply horizontal and/or
vertical flips. For robustness to changes in lighting conditions (which may even vary from
run to run depending on experimental settings), as well as to improve generalizability to
other SLM machines, we also performed random brightness and contrast data augmentation
for each input video. For brightness, we add a constant chosen randomly from a uniform
distribution in the range [�0.5, 0.5] to all pixel values; for contrast, we similarly choose

CHAPTER 6. SEMI-SUPERVISED LEARNING 48

Number of labeled videos supervised-only semi-supervised

500 0.90 (0.02) 0.92 (0.01)
100 0.74 (0.04) 0.81 (0.02)
50 0.56 (0.05) 0.68 (0.03)
10 0.15 (0.07) 0.13 (0.06)

Table 6.1: Mean R2 score for average width regression; standard deviations in parentheses

a uniform random factor c in the range [0.2, 1.8], using it to adjust the contrast Iaug =
c⇤ (I�I)+I, where I is the original image, I is its mean pixel value, and Iaug is the image
after augmentation. After these adjustments, we clamp pixel values lower than 0 or larger
than 1 to the range limits.

Table 6.1 and Figure 6.2 show our average track width regression experimental results.
We report mean and standard deviation of R2, the coe�cient of determination, for randomly
selected subsets of 10, 50, 100, and 500 labeled training videos measured onN test data points
(in our case, N = 200).

Comparing the semi-supervised and fully supervised results, we see that the semi-supervised
approach often performs much better than the fully supervised approach when only a small
portion of the data is labeled, which demonstrates the viability and data-e�ciency of a
semi-supervised SLM monitoring system via in-situ videos.

Figure 6.2: Mean R2 score for average width regression

CHAPTER 6. SEMI-SUPERVISED LEARNING 49

Number of labeled videos supervised-only semi-supervised

500 92.2% (0.2) 93.8% (0.2)
100 86.3% (1.1) 92.5% (0.9)
50 85.2% (2.2) 89.8% (1.7)
10 69.1% (4.0) 68.8% (4.5)

Table 6.2: Mean accuracy for continuity classification; standard deviations in parentheses

Especially when the number of labeled videos is 50 or 100, the semi-supervised approach
significantly improves the performance over supervised, mitigating the disadvantage of having
fewer labeled training videos. With only 100 labeled videos, our model can still achieve an
R2 score of 0.81, a 0.07 R2 score improvement from fully supervised training. Compared
to supervised training with five times as many labeled videos, the performance is not much
worse. Even with only 50 labeled training videos, we still push the R2 score from 0.56 to
0.68, which is fairly high for this regression problem. These results imply that people may
be able to get away with manually labeling just a small portion of data and training a CNN
model in a semi-supervised fashion to address the problem of lack of labels. Moreover, this
also demonstrates that semi-supervised learning with temporal ensembles can not only work
well for classification, but also work well for regression problems.

For the experiments training with 500 labeled videos, the semi-supervised training result
is still better than the fully supervised result, but only slightly. For this dataset, 500 labeled
videos is already 50% of the entire training set and it is already enough for supervised
training to learn useful features. Thus, the semi-supervised approach does not provide too
much improvement. Our semi-supervised approach targets problem when we only have a
relatively small amount of labeled data.

However, when we have just 10 labeled training videos, the performance of both semi-
supervised and fully supervised models is unsurprisingly poor. With such little labeled data,
the training set will be overfit and the model is likely only going to learn very basic and
inaccurate features. The R2 score is close to 0, implying that the model prediction is almost
a constant prediction.

Table 6.2 and Figure 6.3 similarly give the mean and standard deviation of prediction
accuracy of our binary classification for continuity, also evaluated on the same 200 test data
points. About one fifth of the data is “FALSE” for continuity, both for labeled and unlabeled.

The semi-supervised algorithm still performed well for this binary classification problem.
It is a remarkable fact that the semi-supervised performance when we have only 100 labeled
videos even outperforms the fully supervised performance with 500 labeled videos. Simi-
larly, the semi-supervised performance when we have only 50 labeled videos outperforms the
fully supervised one with 100 labeled videos. The semi-supervised approach is particularly
advantageous when the amount of labeled data is small.

Overall, our semi-supervised approach performs better than the fully supervised approach
no matter if we are solving a regression or classification problem.

CHAPTER 6. SEMI-SUPERVISED LEARNING 50

Figure 6.3: Mean accuracy for continuity classification

The speed of our trained CNN is more than adequate for real-time monitoring. Measuring
its inference time on 100 videos, the average inference time was 1.4ms, and the maximum
was 2.9ms.

6.4 Conclusion

In this chapter, for around two thousands in-situ videos, we labeled a portion of that data,
trained semi-supervised CNN models, and verified our results on a test dataset. We demon-
strate that this entire framework enables SLM in-situ monitoring to detect desired metrics in
real time. Our framework and the entire approach should be transferable to other SLM sys-
tems. To make our approach work well on di↵erent systems, it is only required to re-collect
video data, measure a small portion of track data and run the track pixel segmentation and
classification algorithm, and re-train the model.

We focus on monitoring two characteristics of our experimental tracks, average width
and continuity. The experimental results show that our approach recognizes these metrics
very well, and also demonstrate that the semi-supervised method requires less labeled data
for training.

Besides the metrics discussed in this chapter, this approach can also be easily extended to
predict a wider range of defects and metrics, such as etching detection, roughness regression,
and even to AM technologies beyond SLM. In this dissertation, we only did monitoring for
separated SLM tracks with a single layer. Left to future research is addressing monitoring

CHAPTER 6. SEMI-SUPERVISED LEARNING 51

for SLM with contiguous tracks and multi-layer printing.

52

Chapter 7

Iterative Cross Learning from Noisy
Labels

In the previous chapters, we saw that our deep learning approach shows excellent performance
on SLMmonitoring. Even though sometimes there are not enough training labels, we can still
use a semi-supervised approach to overcome that issue. Besides insu�cient training labels,
however, another issue is that in many situations (and not only SLM monitoring) it is di�cult
to get a completely clean data set without extensive e↵ort to manually clean up the data.
So in practice, data often has noisy labels, from being manually mislabeled, or mislabeled
by inaccurate but fast and cheap automated algorithms, or even because some portion of
the data originally without labels is intentionally given random labels because labels are
needed for supervised learning. Figure 7.1 shows an example of data sets corrupted with
noisy labels.

In this chapter, to address the problem of incorrect labels in training data for deep
learning, we study the e↵ect of label noise and propose a novel and simple training strategy,
Iterative Cross Learning (ICL), that significantly improves the classification accuracy of neu-
ral networks with training data that has noisy labels. ICL is a general strategy, applicable
beyond just SLM monitoring. We randomly partition the noisy training data into multiple
separate subsets, each of which is used to train an independent network. After these indepen-
dent networks predict labels for the original data, if the labels agree, we update the label with
the predicted result for that data point, but otherwise we update the label with a random
label, a key to the success of our proposed method. The process is repeated, possibly with
several stages, to gradually improve the performance. Testing our method on MNIST and
CIFAR-10 with partially shu✏ed labels, as shown in Figure 7.1, ICL significantly improves
the classification accuracy of existing methods when the data labels have noise, especially in
heavy noise situations. Moreover, the proposed method doesn’t require any change to the
underlying neural networks’ structure or loss function, so it can also easily be combined with
other existing methods that address noisy labels, improving their performance.

CHAPTER 7. ITERATIVE CROSS LEARNING FROM NOISY LABELS 53

Figure 7.1: Examples of training data sets corrupted with noisy labels

7.1 Related Work

Our proposed ICL approach has some common ideas with co-training [14, 97, 133, 82, 70, 90],
since both ICL and co-training train multiple classifiers and both are iterative approaches.
Co-training for semi-supervised learning requires di↵erent views of a dataset, in other words,
di↵erent features describing the data. It would be ideal for co-training to have two condition-
ally independent feature sets describing the same data. However, we don’t always have that
ideal situation, since the two feature sets might not be conditionally independent from each
other and multiple feature sets may not be available. Similar to co-training, ICL also makes
use of di↵erent features, but doesn’t require di↵erent feature sets. Our proposed method
uses a convolutional neural network that learns features [142] by itself rather than manually
extracting features like in co-training. We feed our networks di↵erent datasets, instead of
di↵erent features of the same dataset, to make it possible for the di↵erent networks to auto-
matically learn some di↵erent features. Moreover, co-training’s classifier will only gradually
generate new labels for data points; it never doubts the labels it has generated, potentially
introducing a large bias into the dataset when it outputs incorrect results. Furthermore it
cannot correct the labels it has misclassified and cannot address incorrect labels. ICL uses
multiple neural networks that learn independently and cross predict labels. It doesn’t as-
sume any label is a correct label a priori and it repeatedly updates all the labels in the whole
dataset. Thus the features will also be updated after each stage, so ICL tends to have less
bias than co-training because the networks are able to correct each other’s classifications.

Another hot topic in the deep learning area, generative adversarial nets (GANs) [43,
91, 104, 112], also inspired ICL. The key idea of GANs is to use two separate competitive

CHAPTER 7. ITERATIVE CROSS LEARNING FROM NOISY LABELS 54

models, the generator and the discriminator. The competitors compete with each other,
gradually learning a better model. In ICL, we also use two separate models, learner 1 and
learner 2, but instead of competing, they learn from di↵erent content. Then they help each
other verify their learning results and identify learning di↵erences to enable more accurate
re-learning. Learner 1 and learner 2 in ICL are parallel relations, whereas the generator and
the discriminator in GAN are serial relations.

In this chapter, we also compare our approach with some previous work. Sukhbaatar et
al. [126] proposed a modification to a convolutional neural network that adds a noise layer to
match the noise distribution and achieve the desired performance. Jindal et al. [54] proposed
augmenting a standard network with a linear noise model layer at the end that learns the
noise distribution; it can be removed after it has helped train the standard network to make
accurate predictions in the presence of noise. Meanwhile, since ICL is a general training
strategy and doesn’t require changing the network structure or the loss function, we can
combine ICL with Jindal’s appraoch [54] and achieve even better performance when training
on noisy labels.

7.2 Label Noise

For a k-classification problem, we will denote a training data point (xl, yl), where yl is the
correct label for xl, (yl 2 1, 2, ..., k), where k is the total number of classes. However, in
practice, some of the training data points might accidentally be (xl, y⇤l), where the label y⇤l
also belongs to 1, 2, ..., k but y⇤l 6= yl. For example, in the CIFAR-10 dataset, a dog image
might be mistakenly labeled as “cat” or “frog,” as shown in Figure 7.1. We call y⇤l a “noisy
label.”

In practice, noise may also be in the form of non-labeled data points. For the convenience
of supervised learning, we can give a random label 1, 2, ..., k to each such non-labeled data
point.

In this chapter, we compare the performance of existing CNN models trained with and
without using ICL on noisy labels. We use uniform noise for our experiments, because the
repeatability of non-uniform noise experiments is low. To denote the amount of noise, we use
“noise level” ⌘ for the fraction of labels “flipped.” For a given data point (xl, yl), there are
two ways to flip its label. We can pick a random label from 1, 2, ..., k for y⇤l while ensuring
that yl 6= y⇤l , or we can just randomly pick a label from 1, 2, ..., k for y⇤l , which means there
is a 1/k chance that yl = y⇤l . We choose the latter for reporting our results to be consistent
with [54]. Using confusion matrix M to represent the noise distribution, each element pij
in M represents the probability of a member of class i being labeled as class j. So for a
clean dataset, M will be an identity matrix. For the uniform noise model with noise level ⌘,
pii = 1� ⌘ + ⌘/k and pij = ⌘/k (i 6= j).

Since ICL is based on the assumption that the neural network can learn useful information
even with noisy labels, let us consider their e↵ect. For a k-classification problem with uniform
noise level ⌘, each class i will have expected fraction (1�⌘+⌘/k) correct labels, and expected

CHAPTER 7. ITERATIVE CROSS LEARNING FROM NOISY LABELS 55

fraction (⌘� ⌘/k) = (⌘/k) ⇤ (k� 1) labels incorrectly set, distributed equally between labels
1, 2, ..., i � 1, i + 1, ..., k. Let us consider the relationship between the noise in two classes i
and j (i 6= j). There will be fraction 1 � ⌘ + ⌘/k of class i correctly labeled, with fraction
⌘/k incorrectly labeled as j. Symmetrically, class j has fraction 1 � ⌘ + ⌘/k correct labels
and ⌘/k incorrectly labeled as i. Between these two classes, the proportion P of correct to
incorrect labels is

P =
1� ⌘ + ⌘/k

⌘/k
=

1� ⌘

⌘/k
+ 1 .

7.3 Iterative Cross Learning (ICL)

Sometimes even if the labels are noisy, existing CNN models can achieve an error rate lower
than the noise level (this is confirmed in our experimental results). Thus, we can use the
trained model to re-predict labels to make the labels less noisy. Based on those new labels
we predict, if we are still able to train a model with an error rate lower than the current
labels’ noise level, then we can repeat this process to make the data less and less noisy.

As summarized in Figure 7.2, the key idea of Iterative Cross Learning is to train indepen-
dent convolutional neural networks from di↵erent data, enabling these independent networks
to clean up each other’s data for the next learning stage. In this thesis, for simplicity we
will describe the algorithm for just two independent networks. For a given dataset S with
noisy labels, we shu✏e and partition the noisy data into two separate training datasets S1

and S2 with the same number of data points. Though these two datasets will tend to have
similar noise levels and similar noise distributions, the data points in the two datasets will
be di↵erent.

Two convolutional networks C1 and C2 (which need not have the same structure, though
for the currently reported results we use the same structure for convenience) will be trained
on datasets S1 and S2 independently (the inner training loops in Figure 7.2). Even with the
same initial data and the same weight initialization, trained networks will not end up with
the same weights if the input order is shu✏ed. Since the two networks will have di↵erent
randomly initialized weights and are trained on di↵erent data, the parameters they learn will
definitely be di↵erent from each other. The classifier C1 might be a little better at classifying
class i and the classifier C2 might be a little better at classifying class j. ICL exploits this
di↵erence (the outer training loop in Figure 7.2).

When we do the training with a noisy dataset, the performance might decrease after
some inner training loop epoch because the network overfits noisy labels. So it is better
to monitor the performance during the training and to decide which epoch’s model to be
used based on the monitoring performance. In some situations, besides the noisy training
dataset S, we may have a clean set Sm without noisy labels that can be used to monitor
training. For example, in practice, we may expend some human e↵ort to manually clean
up a small portion of the data. Since the training labels cannot be trusted, the “training
accuracy” and “training loss” calculated from these noisy labels won’t be particularly useful.

CHAPTER 7. ITERATIVE CROSS LEARNING FROM NOISY LABELS 56

Figure 7.2: ICL flow diagram

Therefore, during training, we use instead the monitoring set, which is more trustworthy
than the training set, to monitor the performance of the two networks C1 and C2. For each
network, the model with the best performance on monitoring set Sm during the training
process will be used as the training result to predict labels.

However, clean data is not always available or easy to obtain. If we don’t have any clean
data, we can still use our strategy without monitoring on a monitoring set. Training will
just be terminated at a given training epoch number. Then we will use the trained model to
predict labels for the dataset. Compared to monitoring on clean data, this will give slightly
worse results, since we are not able to determine if a model from an earlier epoch might have
been the model with the best performance on the clean dataset. (Algorithm 2 and Algorithm
3 provide the pseudo code for ICL with and without a monitoring set, respectively.)

After training, we use the two networks independently to predict labels for the original
training dataset S. If the labels predicted by the two networks are the same, we set the
data’s label to match the prediction. Otherwise, we update the label with a random label.
This technique will make the noise from incorrect predictions more uniformly random and
less structured, which can give the trained networks less bias. The two networks learn from
their di↵erent input at first, but then they also learn from each other, verifying each other’s
learning results and pointing out learning disagreements to re-learn; hence the name “cross
learning.”

CHAPTER 7. ITERATIVE CROSS LEARNING FROM NOISY LABELS 57

Algorithm 2 Iterative Cross Learning with monitoring set

1: S training set with noisy labels
2: Sm monitoring set with clean labels
3: S1, S2 randomly partition S into two separated datasets
4: initialize weights of CNNs C1 and C2

5: initialize Accuracies Accc1, Accc2, Acc and Acc0 to 0
6: repeat
7: initialize weights of CNNs C 0

1 and C 0
2

8: C 0
1 C 0

1 trained on S1 with monitoring on Sm

9: C 0
2 C 0

2 trained on S2 with monitoring on Sm

10: Accc1 C 0
1’s accuracy on Sm

11: Accc2 C 0
2’s accuracy on Sm

12: Acc0 max(Accc1, Accc2)
13: if Acc0 <= Acc then
14: return the more accurate of C1 and C2

15: end if
16: C1 C 0

1

17: C2 C 0
2

18: Acc Acc0

19: LC1 labels predicted for S by C1

20: LC2 labels predicted for S by C2

21: for data point x in S do
22: if x’s label l is the same in LC1 and LC2 then
23: set x’s label to l
24: else
25: set x’s label to a random label l 2 {1, 2, ..., k}
26: end if
27: end for
28: until the max stage number // e.g. 10
29: return the more accurate of C1 and C2

With a clean monitoring set, we could repeat the whole process until the change in moni-
toring accuracy between successive stages falls below some user-defined threshold. However,
based on our experimental results, we found that most improvements are made in the first
several stages, even when it took many more stages for ultimate convergence. So in practice,
we terminate the training process if the monitoring accuracy does not increase after a new
stage. (Such a decrease in accuracy suggests that the noise level from the two classifiers’
prediction is already close to the noise level of the training data.) Without a clean moni-
toring set, we just repeat the process with a given maximum number of stages. Based on
our experiments, depending on how challenging the input is, without a monitoring set the
actual error rate may actually get worse again subsequent to the first round of retraining.

CHAPTER 7. ITERATIVE CROSS LEARNING FROM NOISY LABELS 58

Therefore we just set the max stage number to 1 (one round of retraining after updating
the noisy labels based on the round zero results). Every time we update a data point with
a random label, it brings random noise into the system such that some labels that were
previously incorrectly predicted may get a chance to flip and help the networks recover from
errors caused by misleading labels. In other words, this random flipping process enables
networks to rectify some previous incorrect predictions.

Algorithm 3 Iterative Cross Learning without monitoring set

1: S training set with noisy labels
2: S1, S2 randomly partition S into two separated datasets
3: repeat
4: initialize weights of CNNs C1 and C2

5: C1 C1 trained on S1 with max epoch
6: C2 C2 trained on S2 with max epoch
7: LC1 labels predicted for S by C1

8: LC2 labels predicted for S by C2

9: for data point x in S do
10: if x’s label l is the same in LC1 and LC2 then
11: set x’s label to l
12: else
13: set x’s label to a random label l 2 {1, 2, ..., k}
14: end if
15: end for
16: until the max stage number // zero-indexed;

// we use 1 as max
17: return C1 or C2

When we finish the entire training process, we need to choose one model from C1 and
C2. If we have a clean monitoring set Sm, we choose the one that has better performance on
Sm. Otherwise, we just randomly pick one as the final model.

We found that it tends to be slightly better if we only partition the data once for all
the stages rather than randomly re-partition in every stage. We speculate the reason could
be that some data points may be easier for learning from and some may be harder. Thus
the one-time random partition may make the two datasets S1 and S2 have slightly di↵erent
di�culty for classification, which means one dataset could make it easier to train a better
classifier from that dataset. Compared to this, repeating random partitioning will eventually
on average have two classifiers learn from an average di�culty dataset. So the training result
might tend to be a little bit worse than using one-time random partitioning.

Note that the best we can achieve is that we perfectly predict the labels for all the data
points in the original training dataset and the performance should be the same as training

CHAPTER 7. ITERATIVE CROSS LEARNING FROM NOISY LABELS 59

with clean data. However, in practice, we may not perfectly predict labels, so performance
training with noisy data should always be worse than training with clean data.

7.4 Experiments and Results

We test our method on two popular datasets (MNIST and CIFAR-10) using TensorFlow,
with uniform noise added. To be consistent with how noise level is measured in the previous
work to which we compare our results, we use the same methodology and terminology as
Jindal et al. [54]. Since both of the two datasets have 10 di↵erent labels 0, 1, 2..., 9, for a
given “noise level” ⌘, we randomly choose ⌘ portion of the data and set a random label from
0 to 9 for each. For each dataset, we do experiments with adding 30%, 50% and 70% “noise”
to training labels, respectively. (Note that because there are 10 possible labels, 10% of the
time the “noise” will just be the original, correct label.)

Using ICL, the original training labels will be updated in each stage. The training
data will become cleaner and cleaner, which should decrease the error rate. So during the
ICL process, the gap between the prediction error and noise level will become smaller and
smaller. The improvement after the first several stages will also be small. Finally, after
several stages, the error rate tends to be close to the noise level and the monitoring accuracy
stops increasing. After the best performance stage, the accuracy starts to fluctuate. ICL’s
improvement after the first stage is always the greatest.

For each dataset, we compare the performance of the base CNN model, the true noise
linear model in [126], and the dropout regularization noise model using [54] to ICL, both
ICL combined with the base CNN model and ICL combined with the dropout regularization
noise model.

7.4.1 MNIST with clean data for monitoring

The MNIST dataset is a set of handwritten digit images [76]. We use its 50,000 image
training set, and randomly divide the other 10,000 images into 5,000 images for monitoring
and 5,000 images for testing. Each image has a dimension of 28 ⇥ 28. We use a base CNN
that has 2 conv-layers with 32 feature maps of 5 ⇥ 5 kernels and 64 feature maps of 5 ⇥ 5
kernels respectively, and each conv-layer is followed by ReLU activation and a 2 ⇥ 2 max-
pooling layer. Next a dense layer of 1024 hidden units is fully connected with the second
convolutional layer, followed by ReLU and dropout rate of 0.5, and fully connected with the
final output layer of 10 units. We choose the Adam optimizer [64] and a learning rate of
1.0⇥ 10�4.

Figure 7.3 and Table 7.1 show our experimental results. Using ICL with the base CNN,
the error rate decreases in the first several stages. Stage 0 is the baseline performance without
using ICL. For 30% and 50% noise, the model achieves the best performance at stage 2. For
70% noise, the model achieves the best performance at stage 6. But in practice, we would
terminate ICL when we find the performance gets worse at stage 4, returning the model from

CHAPTER 7. ITERATIVE CROSS LEARNING FROM NOISY LABELS 60

stage 3; its performance is already quite close to the best performance of stage 6. Combining
ICL with the dropout regularization noise model [54], the best performance is achieved at
stage 2 for 30% and 50% noise, and at stage 5 for 70% noise.

(a) ICL + base CNN

(b) ICL + dropout

Figure 7.3: ICL on MNIST with clean data for monitoring (“X” marks the stage returned
by the algorithm).

On the MNIST dataset, we find that the accuracy stops increasing significantly after no
more than five stages (Figure 7.3). (For comparison, we plot the results for a full six stages.)

CHAPTER 7. ITERATIVE CROSS LEARNING FROM NOISY LABELS 61

Figure 7.4: Confusion matrices (base CNN with ICL training on 70% noise in MNIST dataset
with clean data monitoring)

In practice, we stop as long as the accuracy stops increasing after a new stage, and return
the prior model, which had the best performance.

We also visualize confusion matrices M after each training stage. We give one example
in Figure 7.4 of 70% noise to show how the noise distribution changes over training. Note:
for clearer visualization, we omit all the diagonal matrix elements (marked NA); otherwise
normalizing the confusion matrices will make the intensity of diagonal elements so strong
that the other elements will all appear to be equally dark.

From these visualization results we can see that the number of misclassified labels is
less and less over training, which is also consistent with the decreasing error rate in the first
several ICL training stages. In addition, we can see that the elements of the confusion matrix
after stage 0 have the most contrast with each other, which means that labels predicted at
that time also have the most structured noise. As seen in the visualizations of later stages in
Figure 7.4, our method continues to make improvements at these stages even with structured
noise.

“Noise level” 30% 50% 70%

Base CNN 2.17 3.2 5.75
True noise1 1.3 2.06 3.31
Dropout2 1.25 (1.2) 1.8 (1.92) 3.01 (3.12)

Base CNN + ICL3 1.66 2.12 2.54
Dropout + ICL3 1.07 1.32 1.78

Table 7.1: Error rates % for MNIST with clean data for monitoring; “noise level” is the
percent of labels randomly reassigned.

1Results using True Noise model as reported in Sukhbaatar et al. 2014 [126]. Since Jindal’s model [54]
already beats the true noise model, we don’t re-implement the true noise model to combine with ICL.

2Model proposed by Jindal et al. 2016 [54]. Values out of parentheses are the results we measured using
the methods in [54], and the values in parentheses are the results they reported in their paper.

3The numbers in bold are results from our algorithm.

CHAPTER 7. ITERATIVE CROSS LEARNING FROM NOISY LABELS 62

No matter which method it is combined with, ICL improves performance (see Table 7.1).
Combined with the dropout regularization noise model, ICL achieves the best performance.
The higher the noise level, the higher relative performance improvement we see with ICL.

7.4.2 MNIST without clean data for monitoring

Sometimes clean data may not be available for monitoring, so we also test our algorithm
without clean data. We used the same 50,000 images for training and 5,000 images for testing.
The max epoch number was set to 20. Results are shown in Figure 7.5 and Table 7.2.

Unlike ICL with clean data, we don’t have a monitoring set for monitoring each stage,
so we just perform one stage of ICL (i.e. max stages set to 1). The performance is a little
bit worse than ICL with clean data for monitoring, which is to be expected.

“Noise level” 30% 50% 70%

Base CNN 2.29 3.76 6.60
True noise1 1.3 2.06 3.31
Dropout2 1.29 (1.2) 2.12 (1.92) 3.96 (3.12)

Base CNN + ICL3 2.00 2.54 3.58
Dropout + ICL3 1.17 1.50 2.34

Table 7.2: Error rates % for MNIST without clean data; “noise level” is the percent of labels
randomly reassigned.

7.4.3 CIFAR-10 with clean data for monitoring

The CIFAR-10 dataset is a set of tiny color images of dimension 32⇥ 32⇥ 3 [66]. We use its
50,000 training images, and randomly divided the other 10,000 images into 5,000 images for
monitoring and 5,000 images for testing. Classical data augmentation techniques (random
crop, random flip, random brightness and random contrast) are used for the training. We
use a similar base CNN model as described above, except that the size of the max-pooling
layer is 3⇥ 3 and the number of hidden units is 200.

Figure 7.6 and Table 7.3 show experimental results. Using ICL alone on the base CNN,
for a 30% noise level, ICL achieves the best performance at stage 1. For a 50% noise level,
it achieves the best performance at stage 3, while for a 70% noise level, it achieves the best
performance at stage 4. Using ICL with the dropout regularization noise model [54], for 30%
and 50% noise level, it achieves the best performance at stage 1. For a 70% noise level, it
achieves the best performance at stage 2.

Again, using ICL improved the performance of both the base CNN and dropout regu-
larization (see Table 7.3). However, unlike the results on MNIST, on CIFAR-10 the im-
provement at 30% noise is fairly small (the base CNN achieves a 25.1% error rate and ICL
improves it to 24.9%; the dropout model achieves a 24.1% error rate and ICL improves it

CHAPTER 7. ITERATIVE CROSS LEARNING FROM NOISY LABELS 63

(a) ICL + base CNN

(b) ICL + dropout

Figure 7.5: ICL on MNIST without clean data for monitoring (“X” marks the stage returned
by the algorithm; it is set to be 1 if we don’t have clean data for monitoring).

to 23.9%). The original base CNN, when trained on the uncorrupted 0% noise CIFAR-10
dataset, already has a 18.5% error rate, which is much higher than the corresponding 0.8%
error rate on the uncorrupted MNIST dataset. When we train the model with 30% noise, it
has around a 25% error rate, which is already very close to the 30% noise level. In this case,
there is not much additional useful information that ICL can use for improvement with 30%
noise.

CHAPTER 7. ITERATIVE CROSS LEARNING FROM NOISY LABELS 64

(a) ICL + base CNN

(b) ICL + dropout

Figure 7.6: ICL on CIFAR-10 with clean data for monitoring (“X” marks the stage returned
by the algorithm).

Moreover, after the first stage of ICL, in such circumstances performance may only dete-
riorate in subsequent stages. Though we terminate the ICL process in practice if we find the
performance does not improve after a new stage, for our experiments we ran ICL for four or
more stages. We found that the performance with 30% noise actually would get worse and
worse after the first stage on the CIFAR-10 dataset. If the error rate is close to the noise
level, when we update the labels, we actually will bring more and more noise into the labels.

CHAPTER 7. ITERATIVE CROSS LEARNING FROM NOISY LABELS 65

“Noise level” 30% 50% 70%

Base CNN 25.1 29.9 37.1
True noise1 24.8 29.6 36.2
Dropout2 24.1 (24.4) 27.7 (32.6) 34.4 (33.0)

Base CNN + ICL3 24.9 27.6 32.0
Dropout + ICL3 23.9 26.0 30.0

Table 7.3: Error rates % for CIFAR-10 with clean data for monitoring; “noise level” is the
percent of labels randomly reassigned.

7.4.4 CIFAR-10 without clean data for monitoring

We also tested our algorithm without clean data on the CIFAR-10 dataset, using the same
50,000 images for training and 5,000 images for testing (Figure 7.7 and Table 7.4). The max
epoch number was set to 100 and max stages to 1.

“Noise level” 30% 50% 70%

Base CNN 25.7 30.6 40.4
True noise1 24.8 29.6 36.2
Dropout2 24.6 (24.4) 28.6 (32.6) 35.3 (33.0)

Base CNN + ICL3 25.5 28.1 33.8
Dropout + ICL3 24.5 26.8 30.6

Table 7.4: Error rates % for CIFAR-10 without clean data; “noise level” is the percent of
labels randomly reassigned.

7.5 Discussion

Training on the uncorrupted MNIST training set, the base model can achieve a 0.8% error
rate. With 30% noise, ICL reduces the dropout regularization noise model error from 1.25%
to 1.07%, substantially reducing the distance from the ideal performance achievable when
trained without noise (0.8%). To compare ICL’s performance with di↵erent noise levels, the
absolute improvement is not as intuitive a measure as the improvement relative to the ideal
of training without noise. Therefore we also measure the relative performance improvement.
Define Ia, the absolute performance improvement, and I⇤a , the ideal absolute performance
improvement, as

Ia = e� eICL, I
⇤
a = e� e⇤

where e is the model’s error rate trained under noisy data, eICL is the model’s error rate
with using ICL, and e⇤ is the model’s error rate trained under the original uncorrupted data.

CHAPTER 7. ITERATIVE CROSS LEARNING FROM NOISY LABELS 66

(a) ICL + base CNN

(b) ICL + dropout

Figure 7.7: ICL on CIFAR-10 without clean data for monitoring (“X” marks the stage
returned by the algorithm).

Then we define Ir, the relative performance improvement, as

Ir = Ia/I
⇤
a .

With this notation, the ideal performance is eICL = e⇤, such that Ir = 100%.
The relative improvement numbers (see Table 7.5) illustrate how ICL is particularly

advantageous under higher noise levels. Furthermore, looking at ICL’s relative improvement

CHAPTER 7. ITERATIVE CROSS LEARNING FROM NOISY LABELS 67

“Noise level” 30% 50% 70%

MNIST with clean data, ICL improvement to:
Base CNN 37.2% 45.0% 64.8%
Dropout 40.0% 48.0% 55.7%

MNIST without clean data, ICL improvement to:
Base CNN 19.5% 41.2% 52.1%
Dropout 24.5% 47.0% 51.3%

CIFAR-10 with clean data, ICL improvement to:
Base CNN 3.0% 20.2% 27.4%
Dropout 3.6% 18.5% 27.7%

CIFAR-10 without clean data, ICL improvement to:
Base CNN 2.8% 20.1% 30.1%
Dropout 1.6% 17.8% 28.0%

Table 7.5: ICL relative improvement Ir

under the same noise level and the same dataset, the relative improvements are very similar
from combining ICL with these two di↵erent models, base CNN and dropout regularization.
This also suggests that no matter which method it is combined with, ICL will hopefully
improve performance.

The underlying model still plays an important role. The final performance with ICL
highly depends on the underlying model’s performance. The better performance the under-
lying model can achieve, the better final result ICL can achieve.

7.6 Limitations

ICL has a limitation that to be e↵ective, the underlying model, trained on uncorrupted data
without ICL, must have a classification error rate lower than the noise level. If its error rate
is higher than the noise level, the data will almost certainly be noisier after ICL’s random
flipping of labels for inputs on which the separate networks disagreed. For example, applying
ICL to uncorrupted data, the error rate increases, as shown in Figure 7.8 and 7.9. ICL does
not however keep going worse after each new stage (Figure 7.8 and 7.9), but seems to finally
converge to a certain performance level. Note that even without a monitoring set, ICL would
actually stop after stage 1 on these examples, and with a monitoring set, it should stop after
stage 0, with no increase in error rate over the underlying model.

Another limitation of ICL is that it will take longer for training than training just the
underlying networks it is combined with, since it needs to repeat the training for at least
one stage. However, when we modify the networks’ structure or tune the training hyper-
parameters, we don’t need to use ICL. We will only use ICL once the structure and hyper-

CHAPTER 7. ITERATIVE CROSS LEARNING FROM NOISY LABELS 68

Figure 7.8: ICL on uncorrupted MNIST data. (Stage 0’s error rate is that of the underlying
model.)

Figure 7.9: ICL on uncorrupted CIFAR10 data. (Stage 0’s error rate is that of the underlying
model.)

CHAPTER 7. ITERATIVE CROSS LEARNING FROM NOISY LABELS 69

parameters have already been chosen and tuned using standard training. So even if ICL
takes multiple stages to train, it is only at the last step of training.

7.7 Conclusions

The experimental results show that our training strategy is able to greatly improve training
performance when data labels are noisy. Moreover, a great advantage of ICL is that it has
virtually no parameters to choose, nor does it need to re-tune the hyper-parameters of the
underlying model it is combined with. As long as the underlying model works well, ICL
can be used to further improve its performance under noisy data. Furthermore, ICL could
be combined with other existing or yet-to-be-invented models that address noisy labels,
improving those models’ performance without any cost except the training time. ICL is
simple and easy to implement.

Numerous variations of the basic ICL method are envisioned. ICL doesn’t rely on the
structure of neural networks, so it can be used to train di↵erently structured networks
simultaneously, on di↵erent training subsets, rather than the same network structures. This
could lead to di↵erent networks learning distinct features of the data, which might benefit
the cross labeling process. In this chapter, we performed the experiments with convolutional
neural networks as the underlying model because CNNs’ performance is usually better than
other approaches on image classification tasks. However, ICL isn’t restricted to CNNs; it
could also be combined with other types of neural networks and even other machine learning
algorithms. Moreover, our training strategy isn’t limited to partitioning datasets into just
two separate piece with two classifiers, though fewer classifiers means that each classifier can
access more training data and the label updating rules can be simpler. Di↵erent numbers
of partitions and di↵erent partitioning methods are another rich area of exploration for the
ICL approach.

A new algorithm inspired by ICL, Consensus Refinement Learning (CRL), will be intro-
duced in the next Chapter.

70

Chapter 8

Consensus Refinement Learning from
Noisy Labels

In the previous chapter, our proposed ICL algorithm demonstrates the ability to improve
neural networks’ performance when training on noisy datasets. However, there are still
two major limitations of the ICL algorithm. One is that ICL can require lots of stages for
training. The other one is that the underlying model of ICL must have a classification error
rate lower than the training data’s noise level.

In this chapter, to overcome ICL’s limitations, we propose another easy-to-implement
framework, Consensus Refinement Learning (CRL), which can also significantly improve an
underlying neural network’s classification performance when training on datasets with label
noise and requiring only one extra hyper-parameter. The key idea of our hard-label Consen-
sus Refinement Learning (CRL) algorithm is to retrain only on a refined, (re)labeled subset of
the original data on whose classifications the diverse networks agree. Digging deeper into the
problem, we realize that it is not always better to have more training data, especially when
data is noisy. CRL doesn’t require changing the underlying network’s architecture or loss
function but can significantly improve its performance, both for datasets with uniform sym-
metric noise as well as asymmetric noise. CRL doesn’t rely on knowing the noise distribution
in the training data, but can be combined with an underlying model that does so if these
statistics are available. We also present a new diversity measurement to analyze the Consen-
sus Refinement Learning algorithm and theoretically explain its e↵ectiveness. VGGNet [122]
and ResNet [48] are two of the most widely used neural network architectures. In our work,
to make fair comparison with previous work, we also re-implement these two architectures
in our experiments. In addition to MNIST [76] and CIFAR-10 [66], we also report exper-
imental results on the image classification datasets CIFAR-100 [66] and Clothing1M [135]
with di↵erent noise levels and di↵erent model architectures, demonstrating improvements to
underlying prediction performance.

CHAPTER 8. CONSENSUS REFINEMENT LEARNING FROM NOISY LABELS 71

8.1 Related Work

As we stated in the previous chapter, even with significant noise in a dataset’s labels, directly
training a standard neural network on a dataset can still yield useful knowledge [110, 131].
Exploiting this fact, our approach independently trains multiple neural networks with iden-
tical architecture directly on the noisy labeled dataset and distills their learned consensus
knowledge into a refined dataset. Our intuition is that the consensus labels are more likely
to be correct. Thus, using that knowledge to train the neural network might achieve better
performance than the one trained on the original noisy dataset. Unlike Hinton et al.’s [52]
distillation method, which distills a cumbersome model’s knowledge to a small model, in
contrast we refine the original noisy labeled dataset to a smaller consensus dataset and use
that dataset to retrain a single model with the same architecture as the original one. With
our diversity analysis, we show that Consensus Refinement generates a dataset that tends
to be significantly cleaner than the original, which is helpful for training the final model.

One reason our approach has not been tried before may be that typically in machine
learning there is an assumption that more training data is better. While this is true for
a clean dataset, for a noisy dataset we show that the trade-o↵ between reducing dataset
size and improving dataset label quality is handled remarkably well using consensus as the
dataset refinement rule. Even though CRL will likely remove a few hard examples that would
have helped to improve performance, its relabeling of a large number of mislabeled inputs
plus the removal of other mislabeled inputs can have a much larger beneficial impact on
performance. Furthermore, the larger the dataset, the more expensive it would be to clean
it manually, but the smaller the performance hit from the reduced size of the consensus
dataset.

Ensembles and Diversity

Ensemble methods [98, 109] are machine learning algorithms that combine multiple classifiers
together to obtain better prediction performance than a single classifier. Compared to the
ensemble method, our approach has two obvious advantages. First, our trained final model
shows better performance than the ensemble method. Second, since we distill multiple
models’ knowledge to a single model, the application of our final model is less computationally
expensive.

Classifier diversity [117, 71, 19, 29] is a concept used in ensemble algorithms. Diversity
can work as a metric to evaluate the correlations between ensemble classifiers. We developed
Consensus Failure (CF) to evaluate the Consensus Refinement Learning’s e↵ectiveness. Sim-
ilar to the Double-Fault measurement [40] and Coincident Failure Diversity [100], we also
study the data points coincidently misclassified by all the classifiers, but we go deeper and
focus on those points that have been misclassified into the same class.

CHAPTER 8. CONSENSUS REFINEMENT LEARNING FROM NOISY LABELS 72

8.2 Noisy Labels

Our goal is to address the problem of label noise and improve neural networks’ prediction
performance when trained with noisy labels. For a classification dataset (X ,Y), where X

is the data and Y is the set of corresponding mutually exclusive labels, we denote each
data point x, and its noisy label y = {y1, y2, . . . , yC} 2 YC , where C is the total number
of classes and yi 2 {0, 1}. If yi = 1, it indicates that data point x is labeled with the ith

label, and otherwise yj = 0 where j 6= i. Each data point x also has a ground-truth label
y? = {y1, y2, . . . , yC} 2 YC , which is unobservable for the (noisy) training data.

For each dataset (X ,Y), we use a confusion matrix Q 2 R
C⇥C (some researchers also refer

to it as the “noise transition matrix”) to represent the noisy label distribution artificially
added. Each element Qij 2 [0, 1] represents the percentage of members of class i being
mistakenly labeled as class j.

Label noise will of course decrease neural networks’ performance. However, neural net-
works have some robustness to label noise and can still learn useful information from noisy
labels [110, 131]. An intuitive explanation is that even with label noise, the correct label
still usually dominates compared to labels of any other class. Based on this insight, we train
multiple neural networks directly on the noisy data and apply our proposed “Consensus
Refinement” method.

8.3 Consensus Refinement

Consensus Refinement is the training algorithm we propose to address label noise. First, we
train multiple instances of an underlying neural networks on the noisy data. Since all these
networks are trained independently with random initialization, random order of input data,
and random data augmentation, they will have diverse prediction results. Our intuition
is that the correct predictions are more robust than the incorrect predictions; thus those
nonrobust incorrect predictions will be removed by Consensus Refinement. Our diversity
measurement, discussed in the next section, will give more insight into why our method
works well.

The Consensus Refinement method requires independently training L neural networks
D1, D2, . . . , DL (these L neural networks have identical architectures) on the original training
data (X ,Y). Then we use the L classifiers’ consensus to select the data on which to train
the final model D̃. The “consensus dataset” is the subset of the original dataset, with data
points (xi, yi) such that 8 j1, j2 2 {1, 2, . . . , L} satisfy Dj1(xi) = Dj2(xi), where Dj1(xi)
denotes Dj1 ’s prediction of xi. We take all the consensus data points and relabel them
(X̃ , Ỹ) (ignoring the original label) as a new dataset, where Ỹ = D1(X̃), and remove other
points. Finally we train the final model D̃ on the consensus dataset (X̃ , Ỹ) and output D̃.
Algorithm 1 summarizes the Consensus Refinement algorithm.

CHAPTER 8. CONSENSUS REFINEMENT LEARNING FROM NOISY LABELS 73

Algorithm 4 Consensus Refinement Learning

1: (X ,Y) training set with noisy labels
2: randomly initialize weights of L classifiers D1, D2, . . ., DL

3: for j 1 to L do
// randomize order, random data augmentation

4: Dj Dj trained independently on (X ,Y)
5: for i 1 to |X | do

// predict labels for X with Dj

6: ŷj,i Dj(xi)
7: end for
8: end for
9: (X̃ , Ỹ) new empty training set
10: for i 1 to |X | do

// check if all predictions match
11: consensus true
12: for j 2 to L do
13: if ŷ1,i 6= ŷj,i then

// check if all predictions match the first
14: consensus false
15: break
16: end if
17: end for
18: if consensus then
19: add (xi, ŷ1,i) into (X̃ , Ỹ)
20: end if
21: end for
22: randomly initialize weights of classifier D̃
23: D̃ D̃ trained on (X̃ , Ỹ)
24: return D̃

8.4 Neural Network Diversity

Traditionally, “diversity” is a concept used to analyze ensemble methods. Diversity measure-
ments can help analyze the entire ensemble training system. Researchers have come up with
several di↵erent ways to define and use diversity measurements. The basic diversity metrics
are pairwise diversity; some of them can be extended to non-pairwise measurements [71].

We propose a new diversity measurement, the Consensus Failure (CF) fraction, which
represents the fraction of incorrect labels in the consensus dataset. It helps to analyze the
Consensus Refinement method. CF theoretically explains the improvement by Consensus
Refinement over underlying models since the consensus dataset is proved to be a better
dataset on which to train the final model.

CHAPTER 8. CONSENSUS REFINEMENT LEARNING FROM NOISY LABELS 74

Figure 8.1: Visualization of dataset partition for calculating (a) traditional pairwise diversity
measurements (b) pairwise Consensus Failure (c) triplet Consensus Failure.

8.4.1 Traditional Pairwise Diversity

Various pairwise diversity metrics have been developed to characterize the relationship be-
tween a pair of classifiers for ensemble learning. Given two classifiers, D1 and D2, each data
point xi will have two predicted labels, ŷ1,i = D1(xi) and ŷ2,i = D2(xi). Comparing these
with the ground-truth label y?

i , data point xi has four possible situations, {d1,i, d2,i}, where
dj,i = 1 if ŷj,i = y?

i , otherwise dj,i = 0. Accordingly, the dataset X can be divided into four
subsets, X 1,1,X 1,0,X 0,1 and X

0,0 (Figure 8.1 a). For example, X 1,1 represents the subset
with data points that both D1 and D2 correctly recognize, X 1,0 represents the subset with
data points that D1 correctly recognizes and D2 misclassifies, and so on.

Typical diversity metrics are calculated based on the relationships between the size of
these subsets, |X 1,1

|, |X 1,0
|, |X 0,1

| and |X
0,0
|. For example, the double-fault (DF) measure-

ment [40] is defined as the proportion of the data points that have been misclassified by both
classifiers:

DF =
|X

0,0
|

|X 1,1|+ |X 1,0|+ |X 0,1|+ |X 0,0|
=

|X
0,0
|

|X |
.

Because the DF diversity measurement is designed for use with general ensemble methods,
the metric takes all the data X into account. Furthermore it doesn’t distinguish whether a
double-fault data point x0,0

i 2 X
0,0 is misclassified into the same class by both classifiers, i.e.

whether D1(x
0,0
i) = D2(x

0,0
i) or D1(x

0,0
i) 6= D2(x

0,0
i).

8.4.2 Pairwise Consensus Failure Measurement

Unlike in ensemble learning, we are only interested in the data with consensus in the predic-
tions from di↵erent classifiers, since we will ultimately train the final model D̃ only on the

CHAPTER 8. CONSENSUS REFINEMENT LEARNING FROM NOISY LABELS 75

consensus dataset (X̃ , Ỹ) rather than the entire dataset (X ,Y).
Thus we define a new metric, the Consensus Failure (CF) fraction. The pairwise version,

denoted pair, is defined as:

pair =
|X̃

0,0
|

|X̃ 1,1|+ |X̃ 0,0|
=

|X̃
0,0
|

|X̃ |

where X̃ 0,0 is the data that both original classifiers misclassified identically: 8 x̃0,0
i 2 X̃

0,0

such that D1(x̃
0,0
i) = D2(x̃

0,0
i) 6= y?

i ; and X̃
1,1 is the same as X 1,1 (data points both classifiers

correctly recognized), since the correct answer is always the same Dj(x̃
1,1
i) = Dj(x

1,1
i) = y?

i ,
j 2 {1, 2} (Figure 8.1 b).

Note that, for the simplest classification problem of binary classification, D1(x
0,0
i1) ⌘

D2(x
0,0
i1) and there is no case where D1(x

0,0
i2) 6= D2(x

0,0
i2). In that case, pair = DF .

8.4.3 General Consensus Failure Measurement

CF can be extended from a pairwise to a general version. If we train three neural networks
D1, D2, and D3, we can similarly define the triplet Consensus Failure fraction triplet:

triplet =
|X̃

0,0,0
|

|X̃ 1,1,1|+ |X̃ 0,0,0|
=

|X̃
0,0,0

|

|X̃ |

where X̃ 0,0,0 is the consensus failure data such that 8 x̃0,0,0
i 2 X̃

0,0,0,D1(x̃
0,0,0
i) =D2(x̃

0,0,0
i)

= D3(x̃
0,0,0
i) 6= y?

i , and X̃
1,1,1 is the same as X 1,1,1 (Figure 8.1 c).

More generally, with L classifiers, the Consensus Failure fraction is:

 =
|X̃

0, 0, . . . , 0
| {z }

L |

|X̃

1, 1, . . . , 1
| {z }

L |+ |X̃

0, 0, . . . , 0
| {z }

L |

=
|X̃

0, 0, . . . , 0
| {z }

L |

|X̃ |

Theoretically, can be any value in the range [0, 1]. However, based on experiments with
corrupted versions of MNIST, CIFAR-10, and CIFAR-100, we’ve never observed it outside
of the range [0, 0.5], which means that the consensus dataset has more correct than incorrect
labels. Thus, we will next analyze what happens under this assumption.

|X̃

0, 0, . . . , 0
| {z }

L | |X̃

1, 1, . . . , 1
| {z }

L |. (8.1)

This assumption will of course be true when the underlying model’s performance is good.
It also seems intuitive as long as the underlying neural network performance is not that
bad. But we found that even for the CIFAR-100 dataset with high levels of label noise such
that the underlying model has over 50% incorrect predictions, this assumption was never
violated (as well as for all our other experiments). Under this assumption, we can perform
the following analysis for the Consensus Refinement algorithm.

CHAPTER 8. CONSENSUS REFINEMENT LEARNING FROM NOISY LABELS 76

8.4.4 CF Analysis for Consensus Refinement

If we were to use a single underlying model’s prediction as the new dataset to train a final
model, the final model might overfit the new training set and therefore the best performance it
could achieve would be the previous underlying model’s performance. The reason Consensus
Refinement works well is that the labels of the dataset (X̃ , Ỹ) generated by consensus are
expected to be cleaner than the underlying neural network’s predicted labels would be. This
makes it possible for the final neural network trained on (X̃ , Ỹ) to achieve better performance,
even though the consensus dataset’s size will be smaller. We give the simplified proof of this
for the case with a pair of classifiers; the general proof follows along similar lines.

Given two classifiers D1 and D2 independently trained on (X ,Y), we denote their repre-
dicted labels’ error rates for X as eD1 and eD2 , respectively (the percentage of incorrect labels
in the re-predicted labels), and denote the percentage of incorrect labels in the consensus
dataset (X̃ , Ỹ) by pair. Since D1 and D2 have identical architecture, the expected error rate
of the two classifiers should be the same, E(eD1) = E(eD2), from which it also follows that

E(eD1) = E(
|X

0,0
|+ |X

0,1
|

|X 1,1|+ |X 1,0|+ |X 0,1|+ |X 0,0|
)

E(eD2) = E(
|X

0,0
|+ |X

1,0
|

|X 1,1|+ |X 1,0|+ |X 0,1|+ |X 0,0|
).

() E(|X 1,0
|) = E(|X 0,1

|).

=) E(eD1) =
E(|X 0,0

|) + E(|X 0,1
|)

E(|X 1,1|) + 2E(|X 0,1|) + E(|X 0,0|)
. (8.2)

And we also have

E(pair) = E(
|X̃

0,0
|

|X̃ 1,1|+ |X̃ 0,0|
) =

E(|X̃ 0,0
|)

E(|X 1,1|) + E(|X̃ 0,0|)
. (8.3)

With equations (8.3) and (8.2), then we will prove

E(pair) E(eD1).

Proof:

E(pair) E(eD1)

()
E(|X̃ 0,0

|)

E(|X 1,1|) + E(|X̃ 0,0|)

E(|X 0,0
|) + E(|X 0,1

|)

E(|X 1,1|) + 2E(|X 0,1|) + E(|X 0,0|)

Rearranging terms, we get

CHAPTER 8. CONSENSUS REFINEMENT LEARNING FROM NOISY LABELS 77

E(|X̃ 0,0
|)

E(|X 1,1|)

E(|X 0,0
|) + E(|X 0,1

|)

E(|X 1,1|) + E(|X 0,1|)
.

We consider two cases.
a) If E(|X 0,0

|) � E(|X 1,1
|), then we have

E(|X 0,0
|) + E(|X 0,1

|)

E(|X 1,1|) + E(|X 0,1|)
� 1,

and with our assumption (8.1) that |X̃ 0,0
| < |X̃

1,1
|, and since |X

1,1
| = |X̃

1,1
|:

E(|X̃ 0,0
|)

E(|X 1,1|)
=

E(|X̃ 0,0
|)

E(|X̃ 1,1|)
 1;

thus, we have

E(|X̃ 0,0
|)

E(|X 1,1|)

E(|X 0,0
|) + E(|X 0,1

|)

E(|X 1,1|) + E(|X 0,1|)
.

b) Otherwise, if E(|X 0,0
|) < E(|X 1,1

|), then

E(|X 0,0
|)

E(|X 1,1|)
<

E(|X 0,0
|) + E(|X 0,1

|)

E(|X 1,1|) + E(|X 0,1|)
,

and since X̃
0,0
✓ X

0,0,

E(|X̃ 0,0
|)

E(|X 1,1|)

E(|X 0,0
|)

E(|X 1,1|)
;

thus, we also have

E(|X̃ 0,0
|)

E(|X 1,1|)
<

E(|X 0,0
|) + E(|X 0,1

|)

E(|X 1,1|) + E(|X 0,1|)
.

Therefore, we prove that the consensus dataset (X̃ , Ỹ) should be cleaner than (X , D1(X)).
This explains why the Consensus Refinement method performs well.

8.5 Experiments

Our algorithm performs well on a variety of image classification datasets: MNIST [76],
CIFAR-10 [66], CIFAR-100 [66], and Clothing1M [135]. We also tested our algorithm on
a variety of di↵erent model architectures. Note that all the models in our experiments
are trained from scratch. For the MNIST and both CIFAR training sets, we test on both
symmetric noise and asymmetric noise by artificially adding label noise. Given a desired
symmetric noise level psy, we randomly flip psy portion of the training labels to random labels

CHAPTER 8. CONSENSUS REFINEMENT LEARNING FROM NOISY LABELS 78

Table 8.1: MNIST LeNet experimental results (%) 1

MNIST (LeNet; clean data performance: 99.3)
Noise level psy = 0.2 psy = 0.3 psy = 0.6 psy = 0.7 pasy = 0.2 pasy = 0.4

Underlying 98.3 98.0 96.9 95.6 98.3 93.4
true noise [126] 98.7 96.7
dropout [54] 98.8 96.9
ICL [141] 98.3 97.5
Ensemble-3 98.7 98.5 97.6 96.8 99.1 95.7
Ensemble-4 98.7 98.5 97.6 97.1 99.2 96.4
CRL-2 99.1 (0.6) 98.9 (0.7) 98.4 (0.8) 97.7 (1.1) 99.2 (0.7) 97.6 (2.4)
CRL-3 99.0 (0.4) 98.7 (0.5) 98.3 (0.5) 97.8 (0.7) 99.0 (0.6) 97.8 (1.5)
CRL-4 99.0 (0.3) 98.7 (0.3) 98.1 (0.4) 97.7 (0.4) 99.1 (0.5) 97.8 (1.3)

for all three datasets. We follow previous research to add asymmetric noise on MNIST and
CIFAR-10. On MNIST, we randomly pick pasy portion of the labels and flip them following
the mapping: 2 ! 7, 3 ! 8, 5 ! 6, and 7 ! 1. On CIFAR-10, we also randomly pick
pasy portion of the labels and flip them following the mapping: TRUCK! AUTOMOBILE,
BIRD ! AIRPLANE, DEER ! HORSE, and CAT ! DOG. On CIFAR-100, we add
asymmetric noise by randomly picking pasy portion of the labels and flip them to a label
randomly chosen from one of the first ten classes.

Moreover, we also test on a dataset with “natural” noise, Clothing1M [135], which consists
of one million training images labeled by an inaccurate automated process, and also a small
clean training set of 50K images, and a separate clean test set of 10K images. All these input
images are resized into 224 ⇥ 224 in our experiments. This dataset has 14 categories, such
as coat, sweater, shirt, and so on. The noise level in the training set is around 39% and the
noise is highly asymmetric [135].

Besides comparison with previous work (omitting comparison with methods that require
extra information, such as the distribution of the noise), we also compare to the performance
of the underlying model, since the ability to improve on the performance of the underlying
model is the key contribution of the algorithm. We also compare to the results of the majority
vote ensemble algorithm using the same number of underlying models. In our experiments,
all the models trained on the consensus dataset use the same settings as the underlying
models.

8.5.1 Experiments on MNIST

1Results are reported as percentages. The first row gives the underlying model’s architecture and perfor-
mance trained on the original clean dataset. The numbers following the word “Ensemble” or “CRL” indicate
the number of underlying models. CF fraction values, expressed as percentages, are in parentheses after

CHAPTER 8. CONSENSUS REFINEMENT LEARNING FROM NOISY LABELS 79

For the MNIST dataset, we use LeNet [76] with kernel size 5 as the underlying model. A
dropout layer with dropout rate of 0.5 is added to the fully connected layer. We compare
with Sukhbaatar et al. [126], Jindal et al. [54], and Yuan et al. [141], since they also used
similar convolutional neural networks as their underlying models. We don’t list results of
some other work using fully connected neural networks in Table 8.1, since their performance
is surpassed by these CNN-based methods.

Because MNIST is not a very challenging dataset, all the algorithms perform well and
the di↵erences are small. Nevertheless, we can still see that CRL almost always slightly
outperforms all the other algorithms.

8.5.2 Experiments on CIFAR

For both CIFAR-10 and CIFAR-100, we perform data augmentation by horizontal random
flips and 32 ⇥ 32 random crops with 4 pixels padding. Both training batch sizes are set to
200.

For CIFAR-10, we test 14-layer ResNet [48] as our underlying model. We train the model
with learning rate 1.0⇥ 10�1 for 100 epochs and 1.0⇥ 10�2 for another 50 epochs, using the
SGD optimizer with 0.9 momentum. In these experiments, we see (Table 8.2) that CRL-
3 and CRL-4 show better performance than CRL-2. Comparing the amount of training
data in our consensus dataset, for example, when psy = 0.2 there are 88%, 82%, and 79%
training images retained for CRL-2, CRL-3, and CRL-4 respectively; when psy = 0.6 there
are 72%, 62%, and 57% training images retained for CRL-2, CRL-3, and CRL-4 respectively.
Even with significantly less data, the improved quality of the consensus labels provide higher
performance.

To experiment with the e↵ect of di↵erent model architectures with the same dataset, we
also test a small model architecture that is a simplified VGG network [122], removing the last
two convolutional layers and the first two fully connected layers of VGG-11. We train the
model for 150 epochs, using the Adam optimizer [64] and a learning rate of 1.0⇥10�4. When
trained on the clean CIFAR-10 dataset, ResNet-14 performs only slightly better, whereas
on the noisy dataset, the advantages of ResNet-14 are more apparent. This suggests that
ResNet is more robust to the noise.

For CIFAR-100, we use 44-layer ResNet, trained with the same learning rate and opti-
mizer as our settings for CIFAR-10 with ResNet-14. CRL-3 instead of CRL-4 shows the best
performance in all three noise levels on the CIFAR-100 dataset, especially when psy = 0.6.
This is mainly due to the size of the training set. For example, when psy = 0.6 there are only
46%, 35%, and 29% training images remaining for CRL-2, CRL-3, and CRL-4, respectively.
There are only 50,000 images spread over 100 categories in the original training dataset. In
this case, the dramatically decreased size of the dataset is still only causing a small degra-
dation in performance, but could become a potential issue if we were to add more initial

performance numbers for our method. Bold indicates the best performance.

CHAPTER 8. CONSENSUS REFINEMENT LEARNING FROM NOISY LABELS 80

Table 8.2: CIFAR-10 ResNet experimental results (%) 1

CIFAR-10 (ResNet-14; clean data performance: 89.2)
Noise level psy = 0.2 psy = 0.6 pasy = 0.2

unhinged [130] 84.1 83.8
sigmoid [39] 66.6 71.8
bootstrap soft [107] 84.3 84.6
bootstrap hard [107] 83.6 84.7

Underlying 83.9 75.4 85.3
backward [101] 80.4 83.8
forward [101] 83.4 87.0
two-stage [30] 84.5 85.6
Ensemble-3 86.5 77.8 87.7
Ensemble-4 87.2 78.7 87.9
CRL-2 87.4 (3.2) 78.6 (11.3) 88.4 (2.4)
CRL-3 87.5 (1.7) 79.1 (6.9) 88.6 (1.4)
CRL-4 87.7 (1.1) 79.9 (4.5) 88.5 (1.1)

Table 8.3: CIFAR-10 VGG experimental results (%) 1

CIFAR-10 (VGG-11; clean data performance: 88.8)
Noise level psy = 0.2 psy = 0.3 psy = 0.6 psy = 0.7 pasy = 0.2 pasy = 0.4

Underlying 82.2 81.5 73.4 69.6 84.3 76.9
Ensemble-3 85.1 83.3 76.0 72.4 86.7 79.8
Ensemble-4 85.8 83.9 76.4 72.6 86.9 80.2
CRL-2 86.0 (8.2) 85.2 (9.7) 78.4 (15.0) 76.3 (18.0) 86.5 (8.1) 80.4 (14.2)
CRL-3 86.2 (6.0) 85.7 (6.8) 79.1 (11.9) 76.5 (13.7) 87.1 (5.9) 81.6 (11.3)
CRL-4 86.2 (4.7) 84.8 (5.9) 79.5 (9.9) 76.6 (11.7) 87.5 (4.9) 81.2 (9.4)

underlying models. However, in practice, label noise problems are more of an issue with
very large datasets. If we do have a noisy dataset with only a few data points, then it is
likely better to use a smaller number of classifiers for CRL. In all cases, CRL showed a
great improvement to the underlying model, as well as outperforming traditional ensemble
methods.

8.5.3 Experiments on Clothing1M

We use 50-layer ResNet as the underlying model for the Clothing1M dataset. We trained
the model with the SGD optimizer with 0.9 momentum, and batch size 100 using the 1M
images with noisy labels. The learning rate is set to 1.0⇥ 10�1, 1.0⇥ 10�2, and 1.0⇥ 10�3

CHAPTER 8. CONSENSUS REFINEMENT LEARNING FROM NOISY LABELS 81

Table 8.4: CIFAR-100 ResNet experimental results (%) 1

CIFAR-100 (ResNet-44; clean data performance: 68.5)
Noise level psy = 0.2 psy = 0.6 pasy = 0.2

unhinged [130] 47.5 48.0
sigmoid [39] 47.6 55.6
bootstrap soft [107] 57.8 63.8
bootstrap hard [107] 57.3 63.9

Underlying 57.9 44.0 63.5
backward [101] 55.7 63.8
forward [101] 58.6 64.2
Ensemble-3 66.9 48.7 65.0
Ensemble-4 67.1 51.3 66.3
CRL-2 67.2 (5.5) 52.0 (18.1) 66.2 (6.3)
CRL-3 67.9 (2.9) 52.9 (9.2) 67.0 (3.2)
CRL-4 67.8 (1.9) 52.4 (5.8) 66.8 (2.0)

for 4, 4, and 2 epochs, respectively. As with previous work [101], we then fine-tune the
model with the 50K clean training data. The learning rate for fine-tuning is set to 1.0⇥10�3

and 1.0 ⇥ 10�4 for another 10 epochs each. We perform data augmentation similar to for
the CIFAR dataset, by horizontal random flips and 224 ⇥ 224 random crops with 10 pixels
padding.

Results for the Clothing1M dataset are given in Table 8.5. (Since we don’t have ground-
truth labels for the training data, we are not able calculate values.) We can see that
CRL-4 performs better than CRL-3, and CRL-3 performs better than CRL-2. (There are
81%, 73%, and 69% training images remaining for CRL-2, CRL-3, and CRL-4, respectively.)
Since there is enough original training data and only 14 categories, it might not make much
di↵erence to use 1M or 500K training images. The reduction of the dataset’s size is not the
major factor in the model’s performance. Thus, CRL with a higher number of classifiers
builds a better consensus dataset and achieves better performance.

Some other approaches (backward [101], EM [135]) show even better performance than
CRL using ResNet-50. In fact, those approaches use the noise distribution on the Clothing1M
training set (the confusion matrix was provided in [135])). This extra information will of
course improve the model’s performance. However, the correct noise distribution of a dataset
might be di�cult or impossible to get in practice on the one hand. On the other hand, if we
do know the actual noise distribution, CRL can also use these models as underlying models
to achieve even better performance. (Unfortunately, code for these models is not publicly
available, so we were unable to show the combined performance.)

CHAPTER 8. CONSENSUS REFINEMENT LEARNING FROM NOISY LABELS 82

Figure 8.2: Visualization of confusion matrices for experiments on CIFAR-10 dataset with
psy = 0.7 noise: (a) original noisy dataset (X ,Y), independently (b)(c)(d) trained models’
predictions (X , D1(X)), (X , D2(X)), (X , D3(X)), and (e) consensus dataset (X̃ , Ỹ). (Note
that because the noise is randomly assigned, there is slight asymmetry even in the original
confusion matrix.)

CHAPTER 8. CONSENSUS REFINEMENT LEARNING FROM NOISY LABELS 83

Table 8.5: Clothing1M ResNet experimental results (%)

Clothing1M (ResNet-50)

Pseudo-Label [80] 73.0
true noise [126] 76.2
EM [135] 78.2
Underlying 74.5
backward [101] 80.4
Ensemble-3 76.7
Ensemble-4 77.5
CRL-2 76.9
CRL-3 77.7
CRL-4 78.2

8.6 Discussion

The experimental results suggest that our proposed Consensus Refinement Learning consis-
tently improves the underlying model’s performance. Figure 8.2 gives visualization examples
of confusion matrices for experiments on the CIFAR-10 dataset. It corresponds to the results
when psy = 0.7 trained with VGG-11 in Table 8.3 CRL-3. Figure 8.2 (a) is the confusion
matrix of the original training data; (b), (c) and (d) are confusion matrices of each indepen-
dently trained model’s prediction; and (e) shows the consensus dataset’s confusion matrix,
which is obviously cleaner than (b), (c) or (d). Even though the size of the consensus dataset
is only 60% of the original training dataset’s size, the final model’s prediction accuracy is
improved from the underlying model’s 69.6% accuracy to 76.5%.

In fact, since many of the original data points are not in the consensus dataset, our CRL
results can be further improved with semi-supervised learning treating these data points as
unlabeled data. We tested this idea on the CIFAR-100 dataset with 60% symmetric noise.
The consensus dataset was obtained as before with CRL-2, and then we trained our model
in a semi-supervised learning fashion using the consensus dataset as the label data and the
remainder of the original CIFAR-100 dataset as unlabeled data. The size of the unlabeled
dataset was only around twice the size of the labeled dataset, even for this case with a
relatively small consensus data set, so the improvement from semi-supervised learning would
not be expected to be large. We obtain an extra 1% prediction accuracy over just CRL-2
from 52% to 53%. Even though the improvement from semi-supervised learning was not
very large, semi-supervised learning does improve performance, and when the relative size
of the consensus dataset is even smaller, the combination could be even more advantageous.

Comparing to other approaches, our method matches or exceeds the best performance
in all cases tested except for the Clothing1M dataset. Moreover, the CF value is always
lower than 0.5 in all cases we tested, supporting our assumption. Comparing to the ensemble
approach, CRL shows better performance with training the same number of underlying mod-

CHAPTER 8. CONSENSUS REFINEMENT LEARNING FROM NOISY LABELS 84

els; when the noise level is high, the di↵erence between performance of CRL and ensembles
is even larger. Moreover, even taking similar training e↵ort, CRL only uses a single model
during inference, for a much lower prediction cost than for ensembles.

Due to the relatively long training time of both, we haven’t combined CRL with other
existing methods that use noise distribution as input. In practice, even though we can’t
have perfect information about the distribution of noise, we can sample some training data to
estimate the approximate noise distribution. If we also use the noise distribution information
with our approach, we believe we can achieve even better performance.

We have proposed a training algorithm to improve the performance of neural networks
trained on datasets with noisy labels. Our CRL has no restriction on the underlying neural
network architecture, and can significantly improve its performance. Analysis based on the
proposed Consensus Failure diversity measure provides a theoretical explanation for the
e↵ectiveness of CRL. The proposed algorithm is a general method that can be applied to
tasks beyond image classification, in any machine learning application with label noise.

85

Chapter 9

Summary and Future Work

In summary, we introduced our entire SLM in-situ monitoring framework and applied it to
over two thousand in-situ videos. We use ex-situ measurement to get height maps for the
laser scanned tracks. With our image processing algorithm, we can get accurate pixel-level
classification results of height maps, and then generate labels for each corresponding in-situ
video from those height maps. Then we train CNNs on these labeled videos to recognize
desired metrics, such as width and continuity of tracks. Our trained models achieve excellent
performance on prediction via in-situ videos with correlation coe�cient of R2 = 0.93 for track
width, R2 = 0.70 for standard deviation of track width, and prediction accuracy of 93.1%
for track continuity. Our experimental results demonstrate deep learning’s powerful ability
and also flexibility solving AM problems. Since our proposed framework is not limited to
SLM monitoring, it can also be applied to other AM monitoring systems.

In practice, there are two major issues with deep learning, insu�cient labeled data and
label noise. We use semi-supervised machine learning to address the problem of insu�cient
labeled data. This approach improves the training label e�ciency and alleviates the problem
of requiring a huge amount of labeled data. Our experimental results also demonstrate the
semi-supervised approach’s excellent performance on SLM in-situ monitoring with limited
training labels.

As for the label noise problem, we proposed two original training approaches, ICL and
CRL, to improve neural networks’ performance on noisy data. Our proposed approaches have
only a few extra hyper-parameters and no restriction on the underlying network architecture,
making them easy to combine with other existing models. Since it is di�cult to verify our
approaches on the SLM video data because of the ambiguity of the “ground truth,” we test
our approaches on public datasets. Both ICL and CRL show excellent performance and
improve the underlying models’ performance when training on noisy datasets. Since lots
of other manufacturing areas face the same problems of insu�cient labeled data and label
noise, we believe semi-supervised learning and also our proposed ICL and CRL algorithms
are promising when addressing such issues in machine learning for monitoring in other areas
of manufacturing as well.

CHAPTER 9. SUMMARY AND FUTURE WORK 86

The following topics are considered as future research:

• On the one hand, all the current experiments were done using instruments at LLNL.
Our proposed in-situ monitoring approach can be tested on data collected by other
institutions or researchers in the future, in order to further prove that our approach
can be applied broadly; on the other hand, we labeled and organized a great amount
of SLM data. The existing dataset that provides other researchers great opportunities
for future research.

• Width regression and continuity classification are just the first step toward in-situ error
detection. Besides these metrics, our ex-situ algorithm can also provide other track
quality metrics, such as the tracks’ smoothness, average height of the track, and so
on. Proceeding these other qualities can be addressed using similar or even the same
CNN architecture, making our in-situ monitoring method more informative and useful
in practice.

• Currently, we only predict visible SLM track metrics, using only in-situ videos. How-
ever, some other sensor data, such as in-situ pyrometer data or acoustic data, or ex-situ
measurements such as X-ray, could be also taken into account. With sensor fusion, we
might get more information and more accurate predictions. With other data, other
metrics could be predicted; for example, with X-ray measurements, we can determine
whether pores (voids) exist in the final product.

• Using other sensor data for labeling, we might hope to train deep learning models for
in-situ monitoring of the scanning process, ultimately using them to provide feedback
to adjust the SLM system parameters in real time, and prevent defects such as pore
and break generation in the final product.

In fact, both semi-supervised learning and training on noisy labels are trying to regular-
ize the neural networks to not overfit the training data. Semi-supervised learning reduces
overfitting to limited training labels; training on noisy labels is trying to reduce overfitting to
inaccurate labels. We do see some previous work using semi-supervised learning methods to
address label noise problems, as described in Chapter 2. However, to our knowledge, there
is no existing approach that trains semi-supervised learning models first and then treats
models’ predictions as noisy labels for further training. In addition, it is even more di�-
cult to simultaneously overcome the issues of limited and inaccurately labeled training data.
Determining how both the label noise problem and insu�cient labeled data problem can be
addressed well at the same time is a rich area for future research.

87

Bibliography

[1] Mostafa Abdelrahman et al. “Flaw detection in powder bed fusion using optical imag-
ing”. In: Additive Manufacturing 15 (2017), pp. 1–11.

[2] Nesma T Aboulkhair et al. “Reducing porosity in AlSi10Mg parts processed by se-
lective laser melting”. In: Additive Manufacturing 1 (2014), pp. 77–86.

[3] Masoumeh Aminzadeh. “A machine vision system for in-situ quality inspection in
metal powder-bed additive manufacturing”. PhD thesis. Georgia Institute of Tech-
nology, 2016.

[4] Masoumeh Aminzadeh and Thomas Kurfess. “Vision-based inspection system for di-
mensional accuracy in powder-bed additive manufacturing”. In: ASME 2016 11th
International Manufacturing Science and Engineering Conference. American Society
of Mechanical Engineers. 2016, V002T04A042–V002T04A042.

[5] Masoumeh Aminzadeh and Thomas R Kurfess. “Online quality inspection using
Bayesian classification in powder-bed additive manufacturing from high-resolution
visual camera images”. In: Journal of Intelligent Manufacturing (2018), pp. 1–19.

[6] Samaneh Azadi et al. “Auxiliary image regularization for deep cnns with noisy labels”.
In: arXiv preprint arXiv:1511.07069 (2015).

[7] Michele Banko and Eric Brill. “Scaling to very very large corpora for natural lan-
guage disambiguation”. In: Proceedings of the 39th annual meeting on association for
computational linguistics. Association for Computational Linguistics. 2001, pp. 26–33.

[8] Ricardo Barandela and Eduardo Gasca. “Decontamination of Training Samples for
Supervised Pattern Recognition Methods”. In: Advances in Pattern Recognition: Joint
IAPR International Workshops SSPR 2000 and SPR 2000 Alicante, Spain, August 30
– September 1, 2000 Proceedings. Ed. by Francesc J. Ferri et al. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2000, pp. 621–630. isbn: 978-3-540-44522-7. doi: 10.
1007/3-540-44522-6_64. url: http://dx.doi.org/10.1007/3-540-44522-6_64.

[9] A Bauereiß, T Scharowsky, and C Körner. “Defect generation and propagation mech-
anism during additive manufacturing by selective beam melting”. In: Journal of Ma-
terials Processing Technology 214.11 (2014), pp. 2522–2528.

BIBLIOGRAPHY 88

[10] Fabien Bayle and Maria Doubenskaia. “Selective Laser Melting process monitoring
with high speed infra-red camera and pyrometer - art. no. 698505”. In: 6985 (Jan.
2008).

[11] Alan Joseph Bekker and Jacob Goldberger. “Training deep neural-networks based on
unreliable labels”. In: 2016 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE. 2016, pp. 2682–2686.

[12] Sebastian Berumen et al. “Quality control of laser-and powder bed-based Additive
Manufacturing (AM) technologies”. In: Physics procedia 5 (2010), pp. 617–622.

[13] Valmik Bhavar et al. “A review on powder bed fusion technology of metal additive
manufacturing”. In:

[14] Avrim Blum and Tom Mitchell. “Combining labeled and unlabeled data with co-
training”. In: Proceedings of the eleventh annual conference on computational learning
theory. ACM. 1998, pp. 92–100.

[15] CD Boley et al. “Metal powder absorptivity: modeling and experiment”. In: Applied
optics 55.23 (2016), pp. 6496–6500.

[16] Léon Bottou. “Large-scale machine learning with stochastic gradient descent”. In:
Proceedings of COMPSTAT’2010. Springer, 2010, pp. 177–186.

[17] Carla E. Brodley and Mark A. Friedl. “Identifying Mislabeled Training Data”. In: J.
Artif. Int. Res. 11.1 (July 1999), pp. 131–167. issn: 1076-9757. url: http://dl.acm.
org/citation.cfm?id=3013545.3013548.

[18] Carla E Brodley and Mark A Friedl. “Identifying mislabeled training data”. In: Jour-
nal of artificial intelligence research 11 (1999), pp. 131–167.

[19] Gavin Brown, Jeremy L Wyatt, and Peter Tiňo. “Managing diversity in regression
ensembles”. In: Journal of machine learning research 6.Sep (2005), pp. 1621–1650.

[20] Nicholas P Calta et al. “An instrument for in situ time-resolved X-ray imaging and
di↵raction of laser powder bed fusion additive manufacturing processes”. In: Review
of Scientific Instruments 89.5 (2018), p. 055101.

[21] Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. “Semi-supervised learn-
ing (chapelle, o. et al., eds.; 2006)[book reviews]”. In: IEEE Transactions on Neural
Networks 20.3 (2009), pp. 542–542.

[22] Joon-Phil Choi et al. “Evaluation of powder layer density for the selective laser melting
(SLM) process”. In: Materials transactions 58.2 (2017), pp. 294–297.

[23] Stijn Clijsters et al. “In situ quality control of the selective laser melting process using
a high-speed, real-time melt pool monitoring system”. In: The International Journal
of Advanced Manufacturing Technology 75.5-8 (2014), pp. 1089–1101.

[24] Tom Craeghs et al. “Detection of process failures in layerwise laser melting with
optical process monitoring”. In: Physics Procedia 39 (2012), pp. 753–759.

BIBLIOGRAPHY 89

[25] Pieter-Tjerk De Boer et al. “A tutorial on the cross-entropy method”. In: Annals of
operations research 134.1 (2005), pp. 19–67.

[26] Tarasankar DebRoy et al. “Additive manufacturing of metallic components–process,
structure and properties”. In: Progress in Materials Science 92 (2018), pp. 112–224.

[27] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In: 2009 IEEE
conference on computer vision and pattern recognition. Ieee. 2009, pp. 248–255.

[28] Philip J. DePond et al. “In situ measurements of layer roughness during laser powder
bed fusion additive manufacturing using low coherence scanning interferometry”. In:
Materials & Design 154 (2018), pp. 347–359. issn: 0264-1275. doi: https://doi.
org/10.1016/j.matdes.2018.05.050. url: http://www.sciencedirect.com/
science/article/pii/S0264127518304350.

[29] Luca Didaci, Giorgio Fumera, and Fabio Roli. “Diversity in classifier ensembles: Fertile
concept or dead end?” In: International Workshop on Multiple Classifier Systems.
Springer. 2013, pp. 37–48.

[30] Yifan Ding et al. “A Semi-Supervised Two-Stage Approach to Learning from Noisy
Labels”. In: arXiv preprint arXiv:1802.02679 (2018).

[31] M Erler et al. “Novel machine and measurement concept for micro machining by
selective laser sintering”. In:

[32] Sarah K Everton et al. “Review of in-situ process monitoring and in-situ metrology
for metal additive manufacturing”. In: Materials & Design 95 (2016), pp. 431–445.

[33] Rob Fergus, Yair Weiss, and Antonio Torralba. “Semi-supervised learning in gigan-
tic image collections”. In: Advances in neural information processing systems. 2009,
pp. 522–530.

[34] BK Foster et al. “Optical, layerwise monitoring of powder bed fusion”. In: Solid Free.
Fabr. Symp. Proc. 2015, pp. 295–307.

[35] Jason C Fox, Brandon M Lane, and Ho Yeung. “Measurement of process dynamics
through coaxially aligned high speed near-infrared imaging in laser powder bed fusion
additive manufacturing”. In: Thermosense: Thermal Infrared Applications XXXIX.
Vol. 10214. International Society for Optics and Photonics. 2017, p. 1021407.

[36] Marianne M Francois et al. “Modeling of additive manufacturing processes for metals:
Challenges and opportunities”. In: Current Opinion in Solid State and Materials
Science 21.LA-UR-16-24513 (2017).

[37] William E Frazier. “Metal additive manufacturing: a review”. In: Journal of Materials
Engineering and Performance 23.6 (2014), pp. 1917–1928.

[38] Andreas Gebhardt et al. “Additive manufacturing by selective laser melting the real-
izer desktop machine and its application for the dental industry”. In: Physics Procedia
5 (2010), pp. 543–549.

BIBLIOGRAPHY 90

[39] Aritra Ghosh, Naresh Manwani, and PS Sastry. “Making risk minimization tolerant
to label noise”. In: Neurocomputing 160 (2015), pp. 93–107.

[40] Giorgio Giacinto and Fabio Roli. “Design of e↵ective neural network ensembles for im-
age classification purposes”. In: Image and Vision Computing 19.9-10 (2001), pp. 699–
707.

[41] Haijun Gong et al. “Influence of defects on mechanical properties of Ti–6Al–4 V com-
ponents produced by selective laser melting and electron beam melting”. In:Materials
& Design 86 (2015), pp. 545–554.

[42] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[43] Ian Goodfellow et al. “Generative adversarial nets”. In: Advances in neural informa-
tion processing systems. 2014, pp. 2672–2680.

[44] Marco Grasso and Bianca Maria Colosimo. “Process defects and in situ monitor-
ing methods in metal powder bed fusion: a review”. In: Measurement Science and
Technology 28.4 (2017), p. 044005.

[45] Marco Grasso et al. “In-process monitoring of selective laser melting: Spatial detec-
tion of defects via image data analysis”. In: Journal of Manufacturing Science and
Engineering 139.5 (2017), p. 051001.

[46] M Grasso et al. “In situ monitoring of selective laser melting of zinc powder via
infrared imaging of the process plume”. In: Robotics and Computer-Integrated Man-
ufacturing 49 (2018), pp. 229–239.

[47] Alon Halevy, Peter Norvig, and Fernando Pereira. “The unreasonable e↵ectiveness of
data”. In: (2009).

[48] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2016, pp. 770–778.

[49] Robert Hecht-Nielsen. “Theory of the backpropagation neural network”. In: Neural
networks for perception. Elsevier, 1992, pp. 65–93.

[50] B. Heisele. “Visual object recognition with supervised learning”. In: IEEE Intelligent
Systems 18.3 (May 2003), pp. 38–42. issn: 1541-1672. doi: 10.1109/MIS.2003.
1200726.

[51] Geo↵rey E Hinton and Ruslan R Salakhutdinov. “Reducing the dimensionality of
data with neural networks”. In: Science 313.5786 (2006), pp. 504–507.

[52] Geo↵rey Hinton, Oriol Vinyals, and Je↵ Dean. “Distilling the knowledge in a neural
network”. In: arXiv preprint arXiv:1503.02531 (2015).

[53] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. “Spatial transformer net-
works”. In: Advances in neural information processing systems. 2015, pp. 2017–2025.

[54] Ishan Jindal, Matthew Nokleby, and Xuewen Chen. “Learning Deep Networks from
Noisy Labels with Dropout Regularization”. In: 2016 IEEE 16th International Con-
ference on Data Mining (ICDM). IEEE. 2016, pp. 967–972.

BIBLIOGRAPHY 91

[55] Chandrika Kamath. “Data mining and statistical inference in selective laser melting”.
In: The International Journal of Advanced Manufacturing Technology 86.5-8 (2016),
pp. 1659–1677.

[56] Chandrika Kamath et al. “Density of additively-manufactured, 316L SS parts using
laser powder-bed fusion at powers up to 400 W”. In: The International Journal of
Advanced Manufacturing Technology 74.1-4 (2014), pp. 65–78.

[57] Jordan A Kanko, Allison P Sibley, and James M Fraser. “In situ morphology-based
defect detection of selective laser melting through inline coherent imaging”. In: Jour-
nal of Materials Processing Technology 231 (2016), pp. 488–500.

[58] Saad A. Khairallah et al. “Laser powder-bed fusion additive manufacturing: Physics
of complex melt flow and formation mechanisms of pores, spatter, and denudation
zones”. In: Acta Materialia 108 (2016), pp. 36–45. issn: 1359-6454. doi: https:
//doi.org/10.1016/j.actamat.2016.02.014. url: http://www.sciencedirect.
com/science/article/pii/S135964541630088X.

[59] Saad A Khairallah et al. “Laser powder-bed fusion additive manufacturing: Physics
of complex melt flow and formation mechanisms of pores, spatter, and denudation
zones”. In: Acta Materialia 108 (2016), pp. 36–45.

[60] Hoejin Kim, Yirong Lin, and Tzu-Liang Bill Tseng. “A review on quality control in
additive manufacturing”. In: Rapid Prototyping Journal 24.3 (2018), pp. 645–669.

[61] Wayne E King et al. “Laser powder bed fusion additive manufacturing of metals;
physics, computational, and materials challenges”. In: Applied Physics Reviews 2.4
(2015), p. 041304.

[62] Wayne King et al. “Overview of modelling and simulation of metal powder bed fu-
sion process at Lawrence Livermore National Laboratory”. In: Materials Science and
Technology 31.8 (2015), pp. 957–968.

[63] Diederik P Kingma et al. “Semi-supervised learning with deep generative models”.
In: Advances in Neural Information Processing Systems. 2014, pp. 3581–3589.

[64] Diederik Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In:
arXiv preprint arXiv:1412.6980 (2014).

[65] Stefan Kleszczynski et al. “Error detection in laser beam melting systems by high
resolution imaging”. In: Proceedings of the Twenty Third Annual International Solid
Freeform Fabrication Symposium. Vol. 2012. 2012.

[66] Alex Krizhevsky. “Learning multiple layers of features from tiny images”. In: (2009).

[67] Alex Krizhevsky, Ilya Sutskever, and Geo↵rey E Hinton. “ImageNet Classification
with Deep Convolutional Neural Networks”. In: Advances in Neural Information Pro-
cessing Systems 25. Ed. by F. Pereira et al. Curran Associates, Inc., 2012, pp. 1097–
1105. url: http://papers.nips.cc/paper/4824-imagenet-classification-
with-deep-convolutional-neural-networks.pdf.

BIBLIOGRAPHY 92

[68] Alex Krizhevsky, Ilya Sutskever, and Geo↵rey E Hinton. “Imagenet classification with
deep convolutional neural networks”. In: Advances in neural information processing
systems. 2012, pp. 1097–1105.

[69] Jean-Pierre Kruth et al. “On-line monitoring and process control in selective laser
melting and laser cutting”. In:

[70] Abhishek Kumar and Hal Daumé. “A co-training approach for multi-view spectral
clustering”. In: Proceedings of the 28th International Conference on Machine Learning
(ICML-11). 2011, pp. 393–400.

[71] Ludmila I Kuncheva and Christopher J Whitaker. “Measures of diversity in classifier
ensembles and their relationship with the ensemble accuracy”. In: Machine learning
51.2 (2003), pp. 181–207.

[72] Chandrakanth Kusuma. “The e↵ect of laser power and scan speed on melt pool char-
acteristics of pure titanium and Ti-6Al-4V alloy for selective laser melting”. In: (2016).

[73] Chandrakanth Kusuma et al. “E↵ect of Laser Power and Scan Speed on Melt Pool
Characteristics of Commercially Pure Titanium (CP-Ti)”. In: Journal of Materials
Engineering and Performance 26.7 (2017), pp. 3560–3568.

[74] John La↵erty, Andrew McCallum, and Fernando CN Pereira. “Conditional random
fields: Probabilistic models for segmenting and labeling sequence data”. In: (2001).

[75] Samuli Laine and Timo Aila. “Temporal ensembling for semi-supervised learning”.
In: arXiv preprint arXiv:1610.02242 (2016).

[76] Yann LeCun. “The MNIST database of handwritten digits”. In: http://yann.lecun.com/exdb/mnist/
(1998).

[77] Yann LeCun, Yoshua Bengio, and Geo↵rey Hinton. “Deep learning”. In: Nature
521.7553 (2015), pp. 436–444.

[78] Yann LeCun et al. “Backpropagation applied to handwritten zip code recognition”.
In: Neural computation 1.4 (1989), pp. 541–551.

[79] Chen-Yu Lee, Patrick W Gallagher, and Zhuowen Tu. “Generalizing pooling functions
in convolutional neural networks: Mixed, gated, and tree”. In: Artificial Intelligence
and Statistics. 2016, pp. 464–472.

[80] Dong-Hyun Lee. “Pseudo-label: The simple and e�cient semi-supervised learning
method for deep neural networks”. In: Workshop on Challenges in Representation
Learning, ICML. Vol. 3. 2013, p. 2.

[81] S Leuders et al. “On the mechanical behaviour of titanium alloy TiAl6V4 manufac-
tured by selective laser melting: Fatigue resistance and crack growth performance”.
In: International Journal of Fatigue 48 (2013), pp. 300–307.

[82] Anat Levin, Paul A Viola, and Yoav Freund. “Unsupervised Improvement of Visual
Detectors using Co-Training.” In: ICCV. 2003, pp. 626–633.

BIBLIOGRAPHY 93

[83] Zhongwei Li et al. “In Situ 3D Monitoring of Geometric Signatures in the Powder-
Bed-Fusion Additive Manufacturing Process via Vision Sensing Methods”. In: Sensors
18.4 (2018). issn: 1424-8220. doi: 10.3390/s18041180. url: http://www.mdpi.
com/1424-8220/18/4/1180.

[84] Tongliang Liu and Dacheng Tao. “Classification with noisy labels by importance
reweighting”. In: IEEE Transactions on pattern analysis and machine intelligence
38.3 (2016), pp. 447–461.

[85] Philipp Lott et al. “Design of an optical system for the in situ process monitoring of
selective laser melting (SLM)”. In: Physics Procedia 12 (2011), pp. 683–690.

[86] AO Martins Luiz, LC Pádua Flávio, and EM Almeida Paulo. “Automatic detection of
surface defects on rolled steel using computer vision and artificial neural networks”.
In: IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society.
IEEE. 2010, pp. 1081–1086.

[87] Sonny Ly et al. “Metal vapor micro-jet controls material redistribution in laser powder
bed fusion additive manufacturing”. In: Scientific reports 7.1 (2017), p. 4085.

[88] Daniel Maturana and Sebastian Scherer. “Voxnet: A 3d convolutional neural network
for real-time object recognition”. In: 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE. 2015, pp. 922–928.

[89] Qiguang Miao et al. “RBoost: label noise-robust boosting algorithm based on a non-
convex loss function and the numerically stable base learners”. In: IEEE transactions
on neural networks and learning systems 27.11 (2016), pp. 2216–2228.

[90] Rada Mihalcea. “Co-training and self-training for word sense disambiguation”. In:
Proceedings of the Eighth Conference on Computational Natural Language Learning
(CoNLL-2004) at HLT-NAACL 2004. 2004.

[91] Mehdi Mirza and Simon Osindero. “Conditional generative adversarial nets”. In:
arXiv preprint arXiv:1411.1784 (2014).

[92] Volodymyr Mnih and Geo↵rey Hinton. “Learning to Label Aerial Images from Noisy
Data”. In: Proceedings of the 29th Annual International Conference on Machine
Learning (ICML 2012). Edinburgh, Scotland, June 2012.

[93] Vinod Nair and Geo↵rey E Hinton. “Rectified linear units improve restricted boltz-
mann machines”. In: Proceedings of the 27th international conference on machine
learning (ICML-10). 2010, pp. 807–814.

[94] Maryam M Najafabadi et al. “Deep learning applications and challenges in big data
analytics”. In: Journal of Big Data 2.1 (2015), p. 1.

[95] Nagarajan Natarajan et al. “Learning with Noisy Labels”. In: Neural Information
Processing Systems (NIPS). Dec. 2013.

BIBLIOGRAPHY 94

[96] David F. Nettleton, Albert Orriols-Puig, and Albert Fornells. “A study of the e↵ect
of di↵erent types of noise on the precision of supervised learning techniques”. In:
Artificial Intelligence Review 33.4 (2010), pp. 275–306. issn: 1573-7462. doi: 10.
1007/s10462-010-9156-z. url: http://dx.doi.org/10.1007/s10462-010-9156-
z.

[97] Kamal Nigam and Rayid Ghani. “Analyzing the e↵ectiveness and applicability of co-
training”. In: Proceedings of the ninth international conference on information and
knowledge management. ACM. 2000, pp. 86–93.

[98] David Opitz and Richard Maclin. “Popular ensemble methods: An empirical study”.
In: Journal of artificial intelligence research 11 (1999), pp. 169–198.

[99] Paul O’Regan et al. “Metal based additive layer manufacturing: variations, correla-
tions and process control”. In: Procedia Computer Science 96 (2016), pp. 216–224.

[100] Derek Partridge and Wojtek Krzanowski. “Software diversity: practical statistics for
its measurement and exploitation”. In: Information and software technology 39.10
(1997), pp. 707–717.

[101] Giorgio Patrini et al. “Making deep neural networks robust to label noise: a loss
correction approach”. In: stat 1050 (2017), p. 22.

[102] Tuomas Purtonen, Anne Kalliosaari, and Antti Salminen. “Monitoring and adaptive
control of laser processes”. In: Physics Procedia 56 (2014), pp. 1218–1231.

[103] Charles R Qi et al. “Pointnet: Deep learning on point sets for 3d classification and
segmentation”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2017, pp. 652–660.

[104] Alec Radford, Luke Metz, and Soumith Chintala. “Unsupervised representation learn-
ing with deep convolutional generative adversarial networks”. In: arXiv preprint arXiv:1511.06434
(2015).

[105] Pranav Rajpurkar et al. “Squad: 100,000+ questions for machine comprehension of
text”. In: arXiv preprint arXiv:1606.05250 (2016).

[106] Antti Rasmus et al. “Semi-supervised learning with ladder networks”. In: Advances
in Neural Information Processing Systems. 2015, pp. 3546–3554.

[107] Scott Reed et al. “Training Deep Neural Networks on Noisy Labels with Bootstrap-
ping.” In: (2014). url: http://search.ebscohost.com/login.aspx?direct=true&
db=edsarx&AN=1412.6596&site=eds-live.

[108] Giulia Repossini et al. “On the use of spatter signature for in-situ monitoring of Laser
Powder Bed Fusion”. In: Additive Manufacturing 16 (2017), pp. 35–48.

[109] Lior Rokach. “Ensemble-based classifiers”. In: Artificial Intelligence Review 33.1-2
(2010), pp. 1–39.

[110] David Rolnick et al. “Deep learning is robust to massive label noise”. In: arXiv
preprint arXiv:1705.10694 (2017).

BIBLIOGRAPHY 95

[111] A Rubenchik et al. “Direct measurements of temperature-dependent laser absorptivity
of metal powders”. In: Applied optics 54.24 (2015), pp. 7230–7233.

[112] Tim Salimans et al. “Improved techniques for training GANs”. In: Advances in Neural
Information Processing Systems. 2016, pp. 2234–2242.

[113] Florian Schro↵, Dmitry Kalenichenko, and James Philbin. “Facenet: A unified em-
bedding for face recognition and clustering”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2015, pp. 815–823.

[114] Luke Scime and Jack. Beuth. “A Multi-scale Convolutional Neural Network for Au-
tonomous Anomaly Detection and Classification in a Laser Powder Bed Fusion Ad-
ditive Manufacturing Process”. In: Additive Manufacturing 24.5786 (2018), pp. 504–
507.

[115] Luke Scime and Jack Beuth. “Anomaly detection and classification in a laser powder
bed additive manufacturing process using a trained computer vision algorithm”. In:
Additive Manufacturing 19 (2018), pp. 114–126.

[116] Pierre Sermanet et al. “Overfeat: Integrated recognition, localization and detection
using convolutional networks”. In: http://arxiv.org/abs/1312.6229 ().

[117] Amanda JC Sharkey and Noel E Sharkey. “Combining diverse neural nets”. In: The
Knowledge Engineering Review 12.3 (1997), pp. 231–247.

[118] Sergey A Shevchik et al. “Acoustic emission for in situ quality monitoring in additive
manufacturing using spectral convolutional neural networks”. In: Additive Manufac-
turing 21 (2018), pp. 598–604.

[119] John Shore and Rodney Johnson. “Axiomatic derivation of the principle of maxi-
mum entropy and the principle of minimum cross-entropy”. In: IEEE Transactions
on information theory 26.1 (1980), pp. 26–37.

[120] P Sibi, S Allwyn Jones, and P Siddarth. “Analysis of di↵erent activation functions
using back propagation neural networks”. In: Journal of Theoretical and Applied In-
formation Technology 47.3 (2013), pp. 1264–1268.

[121] Sara Silva et al. “A semi-supervised Genetic Programming method for dealing with
noisy labels and hidden overfitting”. In: Swarm and Evolutionary Computation (2017).

[122] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks for large-
scale image recognition”. In: arXiv preprint arXiv:1409.1556 (2014).

[123] John A Slotwinski et al. “Characterization of metal powders used for additive man-
ufacturing”. In: Journal of research of the National Institute of Standards and Tech-
nology 119 (2014), p. 460.

[124] Thomas G Spears and Scott A Gold. “In-process sensing in selective laser melting
(SLM) additive manufacturing”. In: Integrating Materials and Manufacturing Inno-
vation 5.1 (2016), p. 2.

BIBLIOGRAPHY 96

[125] Nitish Srivastava et al. “Dropout: A simple way to prevent neural networks from
overfitting”. In: The Journal of Machine Learning Research 15.1 (2014), pp. 1929–
1958.

[126] Sainbayar Sukhbaatar et al. “Training convolutional networks with noisy labels”. In:
arXiv preprint arXiv:1406.2080 (2014).

[127] Christian Szegedy et al. “Going deeper with convolutions”. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2015, pp. 1–9.

[128] Gustavo Tapia et al. “Gaussian process-based surrogate modeling framework for pro-
cess planning in laser powder-bed fusion additive manufacturing of 316L stainless
steel”. In: The International Journal of Advanced Manufacturing Technology 94.9-12
(2018), pp. 3591–3603.

[129] Arash Vahdat. “Toward robustness against label noise in training deep discrimina-
tive neural networks”. In: Advances in Neural Information Processing Systems. 2017,
pp. 5601–5610.

[130] Brendan Van Rooyen, Aditya Menon, and Robert C Williamson. “Learning with
symmetric label noise: The importance of being unhinged”. In: Advances in Neural
Information Processing Systems. 2015, pp. 10–18.

[131] Andreas Veit, Michael J Wilber, and Serge Belongie. “Residual networks behave like
ensembles of relatively shallow networks”. In: Advances in Neural Information Pro-
cessing Systems. 2016, pp. 550–558.

[132] Andreas Veit et al. “Learning From Noisy Large-Scale Datasets With Minimal Su-
pervision”. In: CoRR abs/1701.01619 (2017).

[133] Xiaojun Wan. “Co-training for cross-lingual sentiment classification”. In: Proceedings
of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th Inter-
national Joint Conference on Natural Language Processing of the AFNLP: Volume
1-volume 1. Association for Computational Linguistics. 2009, pp. 235–243.

[134] K Wasmer et al. “In situ and real-time monitoring of powder-bed AM by combining
acoustic emission and artificial intelligence”. In: International Conference on Additive
Manufacturing in Products and Applications. Springer. 2017, pp. 200–209.

[135] Tong Xiao et al. “Learning from massive noisy labeled data for image classification”.
In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2015), pp. 2691–2699.

[136] I Yadroitsev, Ph Bertrand, and I Smurov. “Parametric analysis of the selective laser
melting process”. In: Applied surface science 253.19 (2007), pp. 8064–8069.

[137] I Yadroitsev et al. “Single track formation in selective laser melting of metal powders”.
In: Journal of Materials Processing Technology 210.12 (2010), pp. 1624–1631.

BIBLIOGRAPHY 97

[138] Bing Yao et al. “Multifractal analysis of image profiles for the characterization and
detection of defects in additive manufacturing”. In: Journal of Manufacturing Science
and Engineering 140.3 (2018), p. 031014.

[139] Chor Yen Yap et al. “Review of selective laser melting: Materials and applications”.
In: Applied physics reviews 2.4 (2015), p. 041101.

[140] David Yarowsky. “Unsupervised Word Sense Disambiguation Rivaling Supervised
Methods”. In: Proceedings of the 33rd Annual Meeting on Association for Compu-
tational Linguistics. ACL ’95. Cambridge, Massachusetts: Association for Computa-
tional Linguistics, 1995, pp. 189–196. doi: 10.3115/981658.981684. url: https:
//doi.org/10.3115/981658.981684.

[141] Bodi Yuan et al. “Iterative Cross Learning on Noisy Labels”. In: 2018 IEEE Winter
Conference on Applications of Computer Vision (WACV) (2018), pp. 757–765.

[142] Matthew D Zeiler and Rob Fergus. “Visualizing and understanding convolutional
networks”. In: European conference on computer vision. Springer. 2014, pp. 818–833.

[143] Xiaojin Zhu. Semi-Supervised Learning Literature Survey. Tech. rep. 1530. Computer
Sciences, University of Wisconsin-Madison, 2005.

[144] Xingquan Zhu and Xindong Wu. “Class noise vs. attribute noise: A quantitative
study”. In: Artificial intelligence review 22.3 (2004), pp. 177–210.

