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Abstract

Random quasi-phase-matching (RQPM) is a nonlinear optical phenomenon known to occur
naturally in polycrystalline materials. When driven by a pulsed source in the infrared, RQPM
in ZnSe/S can generate second-harmonic light. This second-harmonic generation (SHG) can
reach optical powers comparable to those of conventional ultrafast sources, on the order of
hundreds of milliwatts. These pulses are not well characterized, nor has a complete analysis
on them been done to determine factors such as compressibility. Previous measurements of
the light generated by RQPM have focused on the power spectra and have said nothing about
the spectral phase, which is required for making predictions about the temporal profile and
coherence of the light. Here, we use frequency-resolved optical gating (FROG) to reconstruct
a temporal description of a laser pulse produced by SHG via RQPM in ZnS. The experiment
is based on a collinear SHG beam geometry that can be easily reconfigured for additional
measurements, including linear and interferometric autocorrelations. After measuring the
pulse, we perform an additional measurement in order to resolve an ambiguity inherent to
SHG FROG. Finally, we will report on an experiment that suggests pulses produced by
RQPM in ZnS might be compressible to durations of 35 fs or shorter.

Thesis Supervisor: William Putnam
Title: Assistant Professor
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Chapter 1

Introduction

This thesis reports on the measurement of ultrafast laser pulses using the technique of

frequency-resolved optical gating (FROG) [1]. The pulses under consideration are ultra-

fast in the sense that their instantaneous variations are on the order of femtoseconds (fs,

i.e. 10−15 seconds) [2]. These variations are fantastically fast: there are a million billion

femtoseconds in just a single second. Pulses whose durations are on the order of a few fs are

among the shortest events created and recorded by human beings, although the boundary

has been pushed even further in recent years toward shorter and shorter events. To measure

an event so short in time seems daunting, but among our primary goals is that this thesis

will help to elucidate some of the mystery.

The pulses studied in this paper are formed by a process not well characterized exper-

imentally. Our objective will be to reconstruct a nearly-complete description of the these

pulses. The pulses we study here have center wavelengths in the near-infrared (NIR), a

region of the electromagnetic spectrum just outside the visible wavelengths corresponding to

∼ 700− 3000 nm.

The procedure for constructing the temporal description of an ultrafast pulse is called

pulse recovery or retrieval. It might already be clear why retrieval is a nontrivial task,

considering the rapid nature of the variations considered. All measurements in experimental

science are limited in some way by the speed at which scientific instruments can physically

operate. We say more about this in the introduction to Chapter 2, but the short version of

the problem is that most of the measurement tools available to researchers are far too slow to
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observe fs variations, such as those which characterize an ultrafast pulse. Clearly, methods

other than direct measurement are required for retrieval. This thesis is devoted towards a

description of those other methods.

To set the stage for describing our retrieval experiments, we will first outline a basic theory

for pulse measurement. We will also unravel the signal processing required to characterize

the pulse from a physical experiment. Our theoretical framework will detail the tools needed

to perform such a measurement, whereas our study of signal processing will describe the

steps necessary to carry out a retrieval. Our method is based on FROG, which is the first

method invented to completely characterize a pulse. With the stage set, we will draw back

the curtains by proceeding to report on a host of measurements, using several metrics to

cross-reference our results. We will conclude by reporting on an exciting, preliminary result

that speaks to the usefulness of these pulses for continued research.

1.1 Our Ultrafast Laser Source

In order to measure a pulse, we must first produce one, and here we examine a source

capable of the task. Our system produces pulses in a Cr:ZnSe/S Kerr-lens modelocked

(KLM) solid-state laser. We are measuring the output of a CLPF series laser manufactured

by IPG Photonics Inc. Fig. 1-1 illustrates a diagram of our system. The Cr-doped ZnSe/S

polycrystalline gain element is pumped using erbium-doped fiber lasers (EDFLs) operating

at 1530-1570 nm. The gain element in our system is anti-reflection-coated (AR-coated) and

the pump is normally incident to maximize pump and laser intensity in the gain element.

This also has the effect of increasing the likelihood of producing a second-harmonic signal

from the nonlinear optical effects in the crystal. The infrared signal exits the laser through

an output coupler (OC).

The center wavelength of the Cr:ZnSe/S laser can vary, but a typical wavelength is around

2.4 𝜇m. Our system supports pulse durations of approximately 30 fs, at a repetition rate of

80.97 MHz. The pulse energy is 40 nJ, and the time-bandwidth product (TBP) is less than

0.35. The optical power produced by the infrared output is 3.2 W.

The Cr:ZnSe/S laser system also produces a second-harmonic output via RQPM in the
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Figure 1-1: Cr:ZnSe/S laser source: HR is a highly reflective mirror, and other acronyms
are defined in the main text.

gain element. Preliminary measurements have suggested that RQPM SHG might create

pulses with a duration around 100-200 fs [3] [4]. Although additional predictions have been

made about the spatial and temporal structure of RQPM pulses using simulations [5], to the

best of our knowledge, an SHG laser pulse produced via RQPM has not been completely

characterized to the degree provided by a FROG system. This thesis is devoted to a complete

characterization of the SHG output of a pulse produced by RQPM in a Cr:ZnSe/S laser

system such as the one illustrated in Fig. 1-1.

Putting it in plain terms: we will attempt to make a novel measurement of laser pulses

that are produced in an unusual way. The pulses oscillate near 1.2 𝜇m and their temporal

structure is as-yet unknown.

1.2 Thesis Outline

This thesis is structured to provide a detailed theory for pulse measurement and retrieval,

as well as a report of an RQPM SHG pulse measurement made using FROG. Chapter 2 will

begin from first principles to outline the physical theory of interference and interferometry,

with the ultimate goal of providing a formal description of the FROG measurement, called

a spectrogram or FROG trace. In Chapter 3 we will study both the structure of the

FROG trace as well as the algorithm that accompanies it, the latter of which produces a

complete description of the pulse from the trace. Measurements will then be reported via

experiments that we will detail in Chapter 4. Our closing remarks are made in Chapter 5.
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Chapter 2

Interference and Interferometry

This chapter provides a background for the physics and signal processing that will be re-

quired to make an ultrafast pulse measurement. We will derive analytical expressions for the

temporal and spectral signals produced by the experiments in Chapter 4. Beginning with a

mathematical description of interference, we will proceed with an electromagnetic approach

that requires little more than knowledge of plane wave solutions to Maxwell’s equations.

Before proceeding it is crucial that we understand the effect our measurements will have

on the electromagnetic signals. The measurements we make in this thesis will be taken by

either a photodiode or a spectrometer. Without delving too deeply into the operation of

these devices, we simply state their effects, and the signals that result from a measurement.

To begin, from electromagnetics we know that a real electric field ℰ(r, 𝑡) has an intensity

that is proportional to the magnitude-squared of its complex amplitude E(r, 𝑡), defined

by ℰ(r, 𝑡) = Re{E(r, 𝑡)}. First, we will almost always prefer to work with the complex

description of the field. Second, from the outset we will ignore the vector nature of the

electric field, and describe it as a scalar quantity 𝐸(r, 𝑡). Third, we will additionally drop

the spatial dependence in the course of our derivation by assuming that all measurements

occur at the same point in space; our derivation will begin with the spatial dependence still

explicit, but we drop it for this note. What remains is a description of an electric field that

is a function only of time, denoted 𝐸(𝑡). This is the quantity we are measuring: the pulse.

Finally, in this thesis we will ignore physical constants such as permittivity, and we will

define the intensity of a laser pulse with the normalized expression:
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𝐼(𝑡) ≡ |𝐸(𝑡)|2 . (2.1)

Photodiode

A photodiode (PD) converts an optical signal into an electric current by the generation of

electron-hole pairs in the depletion region of a semiconductor 𝑝𝑛 junction. The electron-hole

pairs are produced by an optical signal incident upon the device, which contains a certain

number of photons per unit area per unit time, or photon flux. In short, the incident photons

are destroyed by the interaction, and their energy is transferred to electrons in the valence

band of the semiconductor, which are subsequently excited into the conduction band. In the

conduction band they are free to move about and form a current. Therefore, the number of

electron-hole pairs generated depends on the number of incident photons, which is a quantum

mechanical description of the intensity contained in a classical electromagnetic wave. The

upshot of these remarks is that a photodiode measures the intensity of an optical signal.

As alluded to in the introduction, any detector is characterized to some degree by its

bandwidth, which in the case of a photodiode is a physical limitation on the speed at which

charge carriers are free to move about. The signals in an ultrafast pulse have instantaneous

variations at frequencies far outside the bandwidth of an ordinary photodiode (incidentally,

this describes the problem of measuring an ultrafast pulse in the first place). Therefore, in

the context of ultrafast photonics, a photodiode acts as a lowpass filter, in that it measures

the time-integrated intensity. The notation we will adopt for this thesis uses an angled

bracket notation to denote a time integral, so that the measurement at a photodiode of an

ultrafast pulse 𝐸(𝑡) is given by:

⟨|𝐸(𝑡)|2⟩ ≡
∫︁
|𝐸(𝑡)|2 d𝑡 , (2.2)

where an integral without bounds will be implied to be taken over all values.
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Spectrometer

A pulse can be described as a superposition of plane waves with distinct frequencies, or

equivalently, by its Fourier transform. When a pulse is incident upon a spectrometer, a

system of optics within the device serves to disperse the constituent plane waves throughout

space. Since the individual wave components are dispersed spatially, individual intensities

can be measured at an array of individual detectors. As an ensemble of measurements,

the spectrometer provides a description of the pulse’s power spectrum. We will denote the

measurement of a pulse 𝐸(𝑡) at a spectrometer formally by the quantity:

|𝐸̃(𝜔)|2 ≡ |ℱ{𝐸(𝑡)}|2 =
⃒⃒⃒⃒∫︁

𝐸(𝑡) 𝑒−𝑖𝜔𝑡 d𝑡

⃒⃒⃒⃒2
, (2.3)

where the notation ℱ{·} will be used to denote a Fourier transform.

As a final word on notation, we will generally use the symbol 𝑆(𝜔) to denote the

magnitude-squared of the pulse spectrum 𝐸̃(𝜔), that is, 𝑆(𝜔) = |𝐸̃(𝜔)|2. We will refer

to 𝑆 as the power spectrum. We have taken particular care to make this distinction, as

other conventions in the FROG literature refer to 𝑆(𝜔) as “the spectrum” [1] [6] [7]. In our

convention, a spectrometer measures the power spectrum.

2.1 Interference

Interference arises in optics when considering the intensity of a sum of field quantities. The

mathematical origins of interference can be understood by taking the magnitude-squared of

a sum of complex numbers.

|𝑧1 + 𝑧2 + · · ·+ 𝑧𝑁 |2 =

⃒⃒⃒⃒
⃒

𝑁∑︁
𝑛=1

𝑧𝑛

⃒⃒⃒⃒
⃒
2

=

(︃
𝑁∑︁

𝑛=1

𝑧𝑛

)︃(︃
𝑁∑︁

𝑛=1

𝑧𝑛

)︃*

. (2.4)

The conjugation distributes to each term in the latter sum, and both sums can be combined:

|𝑧1 + 𝑧2 + · · ·+ 𝑧𝑁 |2 =
𝑁∑︁

𝑛=1

𝑁∑︁
𝑚=1

𝑧𝑚𝑧
*
𝑛 . (2.5)

Eq. (2.5) is a generalized form of an equation usually called the interference equation [8].
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We can write it in a more intuitive way by noting that there are two cases. When 𝑚 = 𝑛, we

get terms of the form 𝑍𝑛 ≡ |𝑧𝑛|2; when 𝑚 ̸= 𝑛 we get a pair of terms for each combination

of 𝑛𝑚, for example 𝑧1𝑧
*
2 + 𝑧2𝑧

*
1 . If we collect the individual magnitudes into a single term

𝑍𝐵 =
∑︀𝑁

𝑛 𝑍𝑛, the remaining pairs can be combined in one of two convenient ways depending

on the problem at hand. Stating the results here for reference, we have:

|𝑧1 + 𝑧2 + · · ·+ 𝑧𝑁 |2 = 𝑍𝐵 + 2
∑︁
𝑛𝑚

√︀
𝑍𝑛𝑍𝑚 cos𝜙𝑚𝑛 , (2.6)

where 𝜙𝑚𝑛 = ∠𝑧𝑚 − ∠𝑧𝑛 is the phase difference between each interfering term, and

|𝑧1 + 𝑧2 + · · ·+ 𝑧𝑁 |2 = 𝑍𝐵 + 2 Re

{︃∑︁
𝑛𝑚

𝑧𝑚𝑧
*
𝑛

}︃
. (2.7)

The notation
∑︀

𝑛𝑚 denotes a sum over every distinct of combination 𝑛𝑚. Written this

way, we can interpret the interference equation to consist of a background term and

an interference term, the latter of which records the interference between each summed

quantity. We will refer to these two forms as the trigonometric interference equation

and the complex interference equation, respectively.

Both equations can be understood well using phasor diagrams like those in Fig. 2-1. Fig.

2-1a defines the geometry for a sum of two phasors using the tip-to-tail method, and Fig.

2-1b illustrates how the resulting magnitude of the sum changes (given by the length of the

black arrow) as the phase difference is varied. We can generalize this idea to the sum of an

arbitrary number of phasors (Fig. 2-1c).

(a) (b) (c)

Figure 2-1: Phasor geometry underlying the interference equation: In 2-1a the sum
of two phasors is given by a black arrow labelled 𝑧 = 𝑧1+ 𝑧2. 2-1b shows how the magnitude
of 𝑧 depends on the phase difference 𝜙21. Note that the individual magnitudes |𝑧1| and |𝑧2|
(the background) are unchanged. 2-1a illustrates that the idea of interference extends to any
sum of phasors.
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Eqs. (2.6) and (2.7) are not particularly nice expressions, but they are quite general.

For small 𝑁 , we can write out the terms explicitly. For example, in the case of linear

interferometry, we will need to sum two field quantities and measure their resulting intensity.

Choosing the trigonometric interference equation provides an intensity given by:

|𝑧1 + 𝑧2|2 = 𝑍1 + 𝑍2 + 2
√︀

𝑍1𝑍2 cos𝜙21 . (2.8)

We will soon find that in the course of FROG, which is a spectral form of nonlinear inter-

ferometry, we will need to sum three fields and measure the intensity. The result will take

the form:

|𝑧1 + 𝑧2 + 𝑧3|2 = 𝑍1 + 𝑍2 + 𝑍3 + 2 Re{𝑧1𝑧*2 + 𝑧1𝑧
*
3 + 𝑧2𝑧

*
3} . (2.9)

We will prefer the complex form for its linear quality, which will simplify some of the analysis.

2.2 Interferometry

The interferometer is an optical system that exploits interference [2] [9]. The system works

by producing two copies of an input wave at a beamsplitter, and then subjecting each wave

to (possibly) different propagation lengths. The two waves are denoted as the reference and

signal, and they each traverse a distinct arm of the interferometer. For our development, a

beamsplitter is defined simply as an optical component that takes in an electromagnetic wave

and splits half of its intensity into two output directions. The effect of propagation introduces

a relative phase between the waves, which then form a superposition at a second beamsplitter.

From the interference equation, this relative phase has an effect on the magnitude of the

output. Note from Fig. 2-2 that the second beamsplitter produces two identical outputs,

but most of our measurements will be based on observations at only one of the outputs. An

aside: at the risk of using sloppy language, from here on we will freely exchange between the

term beam and wave to describe an electric field or an electromagnetic wave.

One of the simplest optical layouts for recording interference is called a Michelson inter-

8



(a) (b) (c)

Figure 2-2: Three configurations for an interferometer: The Michelson interferometer
(2-2a) is the simplest to construct. The Mach-Zehnder interferometer (2-2b, 2-2c) includes
additional features for more complicated experiments, most notably the ability to reposition
mirrors without altering the beam path. The quantities in this figure will be defined and
utilized in the next section.

ferometer, wherein a single beamsplitter separates and recombines the constituent waves, as

illustrated in Fig. 2-2a. By recombine we mean that at the second pass, the beamsplitter

sees two inputs whose corresponding outputs are made to form a superposition. An alter-

native is the Mach-Zehnder interferometer which uses two beamsplitters, illustrated by two

layouts in Figs. 2-2b and 2-2c. The latter scheme may be suitable for a number of reasons,

including the ability for a beam to propagate through an optical component only once, a

feature not easily permitted by the Michelson case. We prefer a Mach-Zehnder configuration

for our experiments since the secondary output (illustrated with a dotted arrow) propagates

in a direction separate from the input or primary output. This feature will allow us to use

the secondary output for calibration, as we will examine in a later section. In particular,

we use the configuration in Fig. 2-2c, since translating the mirrors in and out during an

experiment will be necessary to produce a time delay 𝜏 . The configuration in 2-2b is not

suitable, as shifting a mirror would alter the beam path, indicated by the dashed lines.

The remainder of this chapter is focused on examining signals produced by an interferom-

eter subject to time-harmonic and ultrafast inputs. For the latter, we will observe the output

with and without a nonlinear optical element, using both a photodiode and a spectrometer.

We will compare the time domain and frequency domain content between all results.
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2.2.1 Continuous Wave

In optics, a real, time-harmonic electric field is usually called a continuous wave (cw). If the

interferometer input is cw, then we can express the electric field as a separable function:

𝐸(r, 𝑡) = 𝐸̃(r) 𝑒𝑖𝜔0𝑡 , (2.10)

where the complex amplitude 𝐸̃(r) = 𝐸̃in 𝑒
−𝑖k·r is time-invariant. Passage through a 50:50

beamsplitter produces two fields, which we call the reference and signal fields, with corre-

sponding complex amplitudes 𝐸̃𝑟(r) = (𝐸̃in/
√
2) 𝑒−𝑖k𝑟·r and 𝐸̃𝑠(r) = (𝐸̃in/

√
2) 𝑒−𝑖k𝑠·r. The

factor 1/
√
2 owes to the fact that the beamsplitters were defined to be lossless in the sense

that |𝐸̃|2 = |𝐸̃𝑟|2+ |𝐸̃𝑠|2. Citing the geometry of the Michelson interferometer defined in Fig.

2-2a, note that propagation through the respective arms of the interferometer produces phase

shifts 2𝑘ℓ𝑟 and 2𝑘ℓ𝑠, where 𝑘 = |k𝑟| = |k𝑠|, so that 𝐸̃out(r) = 𝐸̃𝑟(r) 𝑒
−𝑖(2𝑘ℓ𝑟) + 𝐸̃𝑠(r) 𝑒

−𝑖(2𝑘ℓ𝑠).

The expression for the complete complex output field 𝐸out(r, 𝑡) = 𝐸̃out(r) 𝑒
𝑖𝜔0𝑡 can be writ-

ten1:

𝐸̃out(r, 𝑡, 𝑡𝑟, 𝑡𝑠) =
1√
2

[︁
𝐸̃𝑟(r) 𝑒

𝑖𝜔0(𝑡−𝑡𝑟) + 𝐸̃𝑠(r) 𝑒
𝑖𝜔0(𝑡−𝑡𝑠)

]︁
, (2.11)

where 𝑡𝑗 = 2𝑘ℓ𝑗/𝜔0 for 𝑗 ∈ {𝑟, 𝑠}, and the additional factor of 1/
√
2 owes to a second pass

through another 50:50 beamsplitter (where the fields are recombined). Eq. (2.11) emphasizes

that the phase accumulated by propagation through space can be interpreted as a shift in

time for the fields in each arm of the interferometer. Making a change of frame to the

origin of the reference field 𝑡′ = 𝑡− 𝑡𝑟 and defining the relative delay between the signal and

reference as 𝜏 = 𝑡𝑠 − 𝑡𝑟, Eq. (2.11) can be written more succinctly as:

𝐸out(r, 𝑡
′, 𝜏) =

1√
2

[︁
𝐸̃𝑟(r) 𝑒

𝑖𝜔0𝑡′ + 𝐸̃𝑠(r) 𝑒
𝑖𝜔0(𝑡′−𝜏)

]︁
=

1√
2
[𝐸𝑟(r, 𝑡

′) + 𝐸𝑠(r, 𝑡
′ − 𝜏)] . (2.12)

1Other effects can be accounted for by considering the phase accumulated by propagation through a
beamsplitter, polarization effects from reflection, and others. In this analysis we neglect all of these other
effects, in the approximation that they remain constant for the duration of an experiment. Our interest will
simply be in the signal that is produced by changing the propagation length in one arm of the interferometer.
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For convenience, we now assume that all of the observations in the remainder of this paper

will take place at some position r = 0. This frees us to drop the spatial dependence, and

we also drop the prime on the shifted time variable. The result is a simplified expression for

the output of the interferometer 𝐸out(𝑡, 𝜏) = (1/
√
2) [𝐸𝑟(𝑡) +𝐸𝑠(𝑡− 𝜏)] or or in terms of the

interferometer input:

𝐸out(𝑡, 𝜏) =
1√
2

[︂
1√
2
𝐸(𝑡) +

1√
2
𝐸(𝑡− 𝜏)

]︂
=

1

2

[︁
𝐸(𝑡) + 𝐸(𝑡− 𝜏)

]︁
. (2.13)

At zero relative delay, the reference and signal fields recombine perfectly so that 𝐸out(𝑡) =

𝐸(𝑡).

Since Eq. (2.13) is expressed as the sum of two complex quantities we can invoke the

interference equation directly to determine the intensity. Choosing the trigonometric form

yields:

𝐼out(𝑡, 𝜏) = |𝐸out(𝑡, 𝜏)|2 =
1

4

[︁
𝐼(𝑡) + 𝐼(𝑡− 𝜏) + 2

√︀
𝐼(𝑡)𝐼(𝑡− 𝜏) cos𝜔0𝜏

]︁
. (2.14)

Noting that for time-harmonic inputs the time-dependence of 𝐸(𝑡) = 𝐸̃in 𝑒
𝑖𝜔0𝑡 appears only

in a complex phase factor, we can say that 𝐼(𝑡) = 𝐼(𝑡− 𝜏) = |𝐸̃in|2 = 𝐼in, a constant. Each

term in Eq. (2.14) is thus constant for a given value of 𝜏 , and a time integral leaves the

expression unchanged. Therefore, distributing a time integral to each term, we get:

𝑈out(𝜏) = ⟨𝐼out(𝑡, 𝜏)⟩ =
𝑈in

2
(1 + cos𝜔0𝜏) , (2.15)

where we will use the variable 𝑈 to denote the time integrated intensity, which we will

sometimes refer to as the signal energy. In Eq. (2.15) we have defined 𝑈in ≡ ⟨𝐼in⟩, which in

this case is just 𝐼in. The factor of 1/2 can be understood by noting that an interferometer

has two output ports, and 𝑈out corresponds to the signal energy observed at just one of the

ports.

We should remark that in the case of cw signals, the trigonometric form of the inter-

ference equation is preferred since the term ⟨
√︀

𝐼(𝑡)𝐼(𝑡− 𝜏)⟩ = ⟨|𝐸(𝑡)||𝐸(𝑡− 𝜏)|⟩ reduces to
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a constant, which allowed us to combine it with the input term. This will not be the case

with pulsed signals, for which a time-dependence exists separate from the complex oscillation

factor. In any case, we will generally normalize our results (noting only proportionality),

and we will take interest in the value of the background, in this case denoted 𝑈𝐵 = ⟨𝐼(𝑡)⟩.

Accordingly we will prefer the complex interference equation, which produces an alternative

form of Eq. (2.15) given by:

𝑈out(𝜏) ∝ 𝑈𝐵 +Re {𝐺1(𝜏)} . (2.16)

The term 𝐺1(𝜏) = ⟨𝐸(𝑡)𝐸*(𝑡 − 𝜏)⟩ is called the field autocorrelation function [2] [10], and

we will examine it further in the case of a pulsed input signal. For now, we simply note that

this form neglects the factor of 1/2, and emphasizes the distinction between the background

term and the interference term (everything inside Re{·}).

Eq. (2.15) is informative. The time-integrated intensity observed on a photodiode is

an oscillating function of delay, which is produced in our case by manually changing the

propagation distance in the signal arm. This underlies the rich theory of interferometry, and

in basic terms, states that any change in the signal arm can be detected at a photodiode.

We have plotted a trace of Eq. (2.16) in Fig. 2-3 for future reference. Note that at zero

delay, the interference term 𝐺1(0) = 𝑈𝐵, which provides the trace a peak to background

ratio of 2:1.

Figure 2-3: Interferometer output energy for a CW input: Notice the oscillatory
nature of the trace, which arises from the interference between the fields in each arm of the
interferometer. When the output power increases at one port, it decreases at the other, and
vice versa.

In order to complete the forthcoming analogies for ultrafast optics, we also plot the

spectrum of the interferometer output signal using a Fourier transform. This leads us to a

crucial logistical detail: a function of delay 𝜏 has a spectrum that is a function of its Fourier
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conjugate variable, which we call delay frequency, Ω. The Fourier transform of a function

of delay will be denoted ℱ𝜏{·} ≡
∫︀
· 𝑒−𝑖Ω𝜏 d𝜏 . Upon quick examination of Eq. (2.15), we

expect the spectrum to contain three delta functions, one at the origin for the background

term, and two at ±𝜔0 for the interference term:

ℱ𝜏{𝑈out(𝜏)} = 𝜋𝑈in

[︂
𝛿(Ω) +

1

2
𝛿(Ω + 𝜔0) +

1

2
𝛿(Ω− 𝜔0)

]︂
. (2.17)

This spectrum of 𝑈out is plotted in Fig. 2-4.

Figure 2-4: The spectrum of the interferometer output energy for a cw input:
The presence of the delta functions is understood best from a signal processing perspective:
from Fig. 2-3 the trace has infinite duration in time (since it is produced from everlasting
sinusoids), and so each of its constituents has infinitessimal bandwidth [?].

2.2.2 Ultrafast

The equation that governs the system response of the interferometer is given by Eq. (2.15),

and it was derived by assuming a time-harmonic input signal. An important feature to note

is that it is a linear equation; therefore, the interferometer constitutes a linear system. Stated

differently, Eq. (2.15) is valid even in the case that 𝐸(𝑡) is not time-harmonic. This follows

from Fourier analysis, from which we know that 𝐸(𝑡) can be expressed as a superposition of

time-harmonic functions. Since Eq. (2.15) holds for each term in the superposition, it holds

for 𝐸(𝑡).

In this section, we indeed assume that 𝐸(𝑡) is not time-harmonic, and instead assume

that it takes the conventional form of an ultrafast pulse [2], written:

𝐸(𝑡) = 𝐴(𝑡) 𝑒𝑖𝜔0𝑡 , (2.18)

In this form, we see that the ultrafast pulse is conventionally described by the product

of some slowly-varying envelope function 𝐴(𝑡) with a carrier 𝑒𝑖𝜔0𝑡. Although this is
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fairly straightforward, we should address the conventions in order to be explicit about which

quantities we are dealing with. First, recall that the electric field is a real quantity, and

we prefer to work with its complex representation. Their relationship is repeated: ℰ(𝑡) =

Re{𝐸(𝑡)} = [𝐸(𝑡) + 𝐸*(𝑡)]/2. It is not always easy to visualize complex quantities, but we

will use Fig. 2-5 as a reference.

(a) (b) (c)

Figure 2-5: Structure of an ultrafast pulse: Plotted in 2-5a is the real field ℰ(𝑡). The
real field is conventionally written in terms of an envelope, whose magnitude is plotted in
2-5b, and a carrier, whose real part is plotted in 2-5c.

Fig. 2-5a shows the real field ℰ(𝑡) corresponding to a pulse that we will use as a model for

the remainder of this chapter. This pulse has more structure than commonly encountered

pulses, in that it has more than one peak. We are modeling a complex pulse, because we

will find that the pulse we examine in Chapter 4 has similar qualities.

The fluctuations shown in Fig. 2-5a are actual variations in the magnitude of the electric

field as a function of time at some position in space. On the other hand, 𝐴(𝑡) illustrates

the complex envelope of the complex field 𝐸(𝑡). In Fig. 2-5b we have plotted only the

magnitude of 𝐴(𝑡), which of course is the same as the magnitude of 𝐸(𝑡)—the carrier 𝑒𝑖𝜔0𝑡

has unity magnitude. The magnitude |𝐴(𝑡)| gives us a sense of the overall shape of the

pulse, ignoring the rapid fluctuations of the carrier term. Additionally, in Fig. 2-5c we have

plotted the real part of the carrier, which is simply a cosine. The carrier gives us a sense of

how quickly the real field ℰ(𝑡) fluctuates in magnitude. The complex representation 𝐸(𝑡),

although not plotted, is simply a convenient way to store information about the pulse while

making computations.

It is important to note that 𝐴(𝑡) also has a phase, that is 𝐴(𝑡) = |𝐴(𝑡)| 𝑒𝑖∠𝐴(𝑡). This

phase can be combined with the carrier, which produces a modulated cosine:
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ℰ(𝑡) = Re{𝐴(𝑡) 𝑒𝑖𝜔0𝑡} = Re{|𝐴(𝑡)| 𝑒𝑖∠𝐴(𝑡) 𝑒𝑖𝜔0𝑡} = |𝐴(𝑡)| cos(𝜔0𝑡+ ∠𝐴(𝑡)) . (2.19)

The phase ∠𝐴(𝑡) contains information about the instantaneous frequency of the pulse, which

is usually described by by a parameter called chirp [2]. There are conventions for dealing

with chirp in both the temporal phase and the spectral phase of the pulse. In this paper, we

are mostly concerned with experimental procedures, and we do not do any analysis of pulse

chirp. To understand the distinction between the phase ∠𝐸(𝑡) and the phase ∠𝐴(𝑡), refer

to Fig. 2-6.

(a) (b)

Figure 2-6: Phase variations in an ultrafast pulse: Figure 2-6a plots the same infor-
mation as that in Fig. 2-5c. That is, we have plotted the fluctuations that arise from the
carrier term alone. In 2-6b we see variations in the phase, caused by the phase of the enve-
lope 𝐴(𝑡). These variations modulate the regular fluctuations of the carrier. Thus, 2-6b is
a representation of the total phase of 𝐸(𝑡), whereas 2-6a is a representation of the phase of
the carrier alone.

Just as important as the time-domain representation of the pulse is its spectral represen-

tation. There are other conventions in the ultrafast community for representing the spectra

ℰ̃(𝜔), 𝐸̃(𝜔), and 𝐴(𝜔). In this thesis, we will deviate slightly from the convention, and we

will be plotting the full spectrum of the real pulse, which is related to the spectrum of the

complex representation according to ℰ̃(𝜔) = [𝐸̃(𝜔)+𝐸̃*(−𝜔)]/2. In turn, the spectrum 𝐸̃(𝜔)

is related to the spectrum of the envelope by a shift property of the Fourier transform [10]:

𝐸̃(𝜔) = ℱ{𝐸(𝑡)} = ℱ{𝐴(𝑡) 𝑒𝑖𝜔0𝑡} = 𝐴(𝜔 − 𝜔0) . (2.20)

It is conventional to work with the spectrum 𝐴(𝜔), because it is convenient to view plots

that are centered about the origin. Fig. 2-7 is the reference for frequency-domain quantities.
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(a) (b) (c)

Figure 2-7: Spectrum of an ultrafast pulse: Plotted are the magnitude spectra of the
complex field, the complex envelope, and the carrier. The spectrum in 2-7a is shifted from
the origin, because it includes the carrier (see remarks leading to eq. (2.20)). Conversely,
2-7b is centered at the origin, being the spectrum of the envelope function alone. 2-7c is the
spectrum of the carrier, which of course is a shifted delta function. Note: since in the time
domain the complex field 𝐸(𝑡) is the product of the envelope and the carrier, in the frequency
domain the corresponding spectrum is the convolution of the spectra of the envelope and
carrier.

Our deviation from convention means that we will prefer to plot ℰ̃(𝜔), but that unless

noted otherwise, the field we are working with is 𝐸(𝑡), whose spectrum is only half of the

spectrum we are plotting. Our reasons for doing things this way are twofold. First, we

believe it will provide a better progression from the autocorrelation to the spectrogram,

which are quantities with which we will soon become intimately familiar. Second, in the lab

we measure physically real quantities, and so the spectra we compute will be given by ℰ̃(𝜔).

The notable exception to this is any measurement taken from a spectrometer, which provides

spectral information directly, that is, information over positive frequency. For reference, the

spectrum of the real field is plotted in Fig. 2-8.

Figure 2-8: Complete spectrum of an ultrafast pulse: Plotted is the spectrum of ℰ(𝑡),
which includes negative frequencies. The negative frequency region is a mirror image of the
positive frequency region, with the phase inverted (not shown).

This spectrum has a negative frequency portion that is the complex conjugate of the positive

frequency portion (hence the relationship we noted above). In summary, the reader should

bear in mind that we will do our time-domain derivations in terms of 𝐸(𝑡), but our frequency-
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domain plots will be of ℰ̃(𝜔).

We now examine the signals from three experiments that use an interferometer to mea-

sure an ultrafast pulse. These go by the names Fourier-transform infrared spectroscopy

(FTIR2), interferometric autocorrelation (IAC), and frequency-resolved optical gat-

ing (FROG). We will soon understand these experiments to comprise a linear time-domain

signal, a nonlinear time-domain signal, and a nonlinear frequency-domain signal, respectively.

Each electric field signal will be written in terms of the interferometer output (Eq. (2.13)).

Additionally, they will each be denoted by the subscript “sig”, and—with the exception of

FROG—a superscript labelling the experiment. The convention in FROG is to denote the

signal field 𝐸sig, leaving the superscript open to denote a particular beam geometry [1]. We

will address these points more as needed.

Linear Signal

FTIR comprises a linear signal, wherein the signal field is linear in the output field. In our

experiment, the signal field is identically the output of the interferometer,

𝐸FTIR
sig (𝑡, 𝜏) = 𝐸out(𝑡, 𝜏) =

1

2

[︁
𝐸(𝑡) + 𝐸(𝑡− 𝜏)

]︁
, (2.21)

whose intensity can be written:

𝐼FTIR(𝑡, 𝜏) = |𝐸FTIR
sig (𝑡, 𝜏)|2 = 1

4

⃒⃒⃒
𝐸(𝑡) + 𝐸(𝑡− 𝜏)

⃒⃒⃒2
. (2.22)

Choosing the complex form of the interference equation, we get:

𝐼FTIR(𝑡, 𝜏) =
1

4
[𝐼(𝑡) + 𝐼(𝑡− 𝜏) + 2 Re{𝐸(𝑡)𝐸*(𝑡− 𝜏)}] , (2.23)

so that at a photodiode we record:

⟨𝐼FTIR(𝑡, 𝜏)⟩ = 1

4
[⟨𝐼(𝑡)⟩+ ⟨𝐼(𝑡− 𝜏)⟩+ 2 Re{⟨𝐸(𝑡)𝐸*(𝑡− 𝜏)⟩}] , (2.24)

2FTIR usually refers to a spectroscopic technique used in other scientific fields, one which is more or less
identical to that which we describe here.
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which can be written as:

𝑈FTIR(𝜏) ∝ 𝑈𝐵 +Re {𝐺1(𝜏)} . (2.25)

The background term 𝑈𝐵 = ⟨𝐼(𝑡)⟩ is again the input signal energy3, and 𝐺1(𝜏) = ⟨𝐸(𝑡)𝐸*(𝑡−

𝜏)⟩ is again the field autocorrelation. Eq. (2.25) is the ultrafast analog to Eq. (2.16) in the

regime of linear optics; the two equations are identical, but we reiterate that Eq. (2.25)

does not reduce to Eq. (2.15) in this case (see the discussion leading up to Eq. (2.16)).

Furthermore, the autocorrelation is taken between functions that have finite duration, in

contrast to the everlasting sinusoids we used previously. Accordingly, the autocorrelation

trace is only nonzero for a finite region where the two copies of the pulse overlap, as shown

in the figure below. Fig. 2-9 is the ultrafast linear analog to Fig. 2-3.

Figure 2-9: FTIR trace: When the delay is large (𝜏 → ∞), the pulses do not interfere
and half the pulse intensity is observed at each port, given by the delay-independent back-
ground term in eq. (2.25); when the delay is small (𝜏 → 0) the two copies of the pulse
interfere strongly, and the power oscillates between the output ports of the interferometer.
Note that we have modelled a moderately complex sample pulse, and the structure of the
autocorrelation echoes the multiple-peaked structure of the pulse.

Our present interest is in the spectral content of the FTIR. The first term is constant,

and thus produces a delta function at the origin. In order to understand the spectrum of

the second term, we simply invoke the autocorrelation theorem4 [10] which tells us generally

that ℱ{⟨𝑥(𝑡)𝑥*(𝑡− 𝜏)⟩} = |𝑋̃(𝜔)|2, or in the present case:
3Note that even though 𝐼(𝑡) is not a constant in the case of a pulsed input, it still follows that ⟨𝐼(𝑡)⟩ =

⟨𝐼(𝑡− 𝜏)⟩ so both terms can combine. This is easy to understand on physical grounds, since delaying the
pulse does not change its optical energy; on mathematical grounds a change of variables 𝑡′ = 𝑡 − 𝜏 on the
second integral yields the same result as the first, since the bounds of integration are infinite.

4The autocorrelation theorem is often called the Wiener-Khinchin theorem (when considering stochastic
signals), and can be derived as a particular case of the convolution theorem.
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ℱ𝜏{Re{𝐺1(𝜏)}} =
1

2
ℱ𝜏{𝐺1(𝜏) +𝐺*

1(𝜏)} =
1

2
|𝐸̃(Ω)|2 + 1

2
|𝐸̃*(−Ω)|2 = |ℰ̃(Ω)|2 . (2.26)

Thus, Fourier transforming Eq. (2.25) tells us that the FTIR provides an alternative means

of measuring the power spectrum. The right hand side of Eq. (2.26) is the same function we

observed in Fig. 2-8. Including a delta function for the background term, we produce Fig.

2-10, which is the spectrum of an FTIR measurement.

Figure 2-10: FTIR spectrum: The impulses in Fig. 2-4 have been smeared out, a feature
again explained well by a signal processing perspective: from Fig. 2-9 the trace has finite
duration in time, and so by the uncertainty relation of the Fourier transform, the corre-
sponding spectral terms have finite bandwidth (the constant background still produces a
delta function at the origin). The dashed line indicates a filter around the signal of interest,
which is the pulse power spectrum.

The method of recovering the pulse power spectrum from an FTIR measurement proved

to be crucial in our experimental studies, as we will discuss in Chapter 4. Briefly, we state that

in practical situations, the spectrum can be recovered from a fast Fourier transform (FFT)

of the recorded FTIR trace and by searching the spectrum over the region of interest. If the

background term is not omitted, the spectrum will be dwarfed by the impulse, requiring the

need to change the window size of the plot. Alteratively, a simpler approach is to normalize

the trace to the background before taking an FFT; the resulting plots are much easier to

interpret.

Nonlinear Signal

IAC comprises a nonlinear signal, wherein the signal field is the square of the interferometer

output:
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𝐸IAC
sig (𝑡, 𝜏) = 𝐸2

out(𝑡, 𝜏) =
1

4

[︁
𝐸(𝑡) + 𝐸(𝑡− 𝜏)

]︁2
, (2.27)

whose intensity is given by:

𝐼 IAC(𝑡, 𝜏) = |𝐸IAC
sig (𝑡, 𝜏)|2 = 1

16

⃒⃒⃒
𝐸2(𝑡) + 𝐸2(𝑡− 𝜏) + 2 𝐸(𝑡)𝐸(𝑡− 𝜏)

⃒⃒⃒2
. (2.28)

We can once again invoke the interference equation, in this case for a sum of three complex

quantities (Eq. (2.9)), with the result

𝐼 IAC(𝑡, 𝜏) =
1

16

[︁
𝐼2(𝑡) + 𝐼2(𝑡− 𝜏) + 4 𝐼(𝑡)𝐼(𝑡− 𝜏)

+ 2 Re
{︁
𝐸2(𝑡)𝐸* 2(𝑡− 𝜏) + 2 𝐸2(𝑡)𝐸*(𝑡)𝐸*(𝑡− 𝜏) + 2 𝐸2(𝑡− 𝜏)𝐸*(𝑡)𝐸*(𝑡− 𝜏)

}︁]︁
.

(2.29)

Taking the time integral, we find:

⟨𝐼 IAC(𝑡, 𝜏)⟩ = 1

16

[︁
⟨𝐼2(𝑡)⟩+ ⟨𝐼2(𝑡− 𝜏)⟩+ 4 ⟨𝐼(𝑡)𝐼(𝑡− 𝜏)⟩

+ 2 Re
{︁
⟨𝐸2(𝑡)𝐸* 2(𝑡− 𝜏)⟩+ 2 ⟨𝐸2(𝑡)𝐸*(𝑡)𝐸*(𝑡− 𝜏)⟩+ 2 ⟨𝐸2(𝑡− 𝜏)𝐸*(𝑡)𝐸*(𝑡− 𝜏)⟩

}︁]︁
.

(2.30)

Cancelling a factor of 2, the result can be reduced to:

𝑈 IAC(𝜏) ∝ 𝑈𝐵 +Re
{︁
2
[︀
𝐺mod

1 (𝜏) +𝐺mod *
1 (−𝜏)

]︀
+𝐺

(2)
1 (𝜏)

}︁
+ 2𝐺2(𝜏) . (2.31)

Examination of Eq. (2.31) reveals the usual background term and interference term (compare

with Eqs. (2.16) and (2.25)), but the nonlinearity has produced additional complexity.

First, we note the nonlinear background term is not simply in the input signal energy, i.e.

𝑈𝐵 = ⟨𝐼2(𝑡)⟩ ≠ ⟨𝐼(𝑡)⟩. Additionally, the interference term for the nonlinear case contains

interactions between the constituent fields at two frequencies: 𝐺mod
1 (𝜏) = ⟨𝐼(𝑡)·𝐸(𝑡)𝐸*(𝑡−𝜏)⟩
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represents a modified field autocorrelation, and 𝐺
(2)
1 (𝜏) = ⟨𝐸2(𝑡)𝐸* 2(𝑡 − 𝜏)⟩ represents a

field autocorrelation of the second harmonic. Finally, the nonlinearity records an additional

interaction in the term 𝐺2(𝜏) = ⟨𝐼(𝑡)𝐼(𝑡 − 𝜏)⟩, a quantity usually called the intensity

autocorrelation.

A key takeaway is that for large delay the autocorrelations disappear5, and 𝑈 IAC(𝜏) →

𝑈𝐵, whereas for small delays the constituent interference terms (and 𝐺2) all approach 𝑈𝐵

so that 𝑈 IAC(𝜏) → 8 𝑈𝐵. In other words, the peak to background ratio of the IAC trace is

8:1. An example IAC trace was generated in Fig. 2-11 using the same pulse as that which

produced the FTIR trace in Fig. 2-9.

Figure 2-11: IAC spectrum: The nonlinearity used to produce this signal involves several
interactions, and the corresponding signal energy includes interference terms beyond just the
field autocorrelation. An important check on measurements is the peak to background ratio
of the IAC trace, which should take the value 8:1 for a correctly measured trace.

In the nonlinear case the intensity autocorrelation produces spectral content at base-

band (𝐼(𝑡) does not contain a carrier term). On the other hand, the interference term

produces spectral content in the neighborhood of ±𝜔0 and in the neighborhood of ±2𝜔0,

from 𝐺mod
1 and 𝐺

(2)
1 respectively. The latter result follows from our previous remarks about

the autocorrelation theorem (i.e. ⟨𝐸2(𝑡)𝐸* 2(𝑡 − 𝜏)⟩ = |ℱ{𝐸2(𝑡)}|2) and from the fact that

𝐸2(𝑡) = 𝐴2(𝑡) 𝑒𝑖2𝜔0𝑡 contains a carrier oscillating at 2𝜔0. These remarks mostly explain the

spectral features observed by Fourier transforming the IAC trace, as we have illustrated by

the plot Fig. 2-12.

Nonlinear Spectral Signal

Abiding by the notation that is common to the FROG literature, we denote the signal field

𝐸sig(𝑡, 𝜏), and we define the FROG field as its frequency domain equivalent 𝐸̃FROG(𝜔, 𝜏) =

5Since the signals in question have finite extent, sending 𝜏 to infinity basically amounts to saying that
the zero regions of each term in ⟨𝑥(𝑡)𝑥*(𝑡− 𝜏)⟩ cover the other term, so their product goes to zero.
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Figure 2-12: IAC spectrum: The intensity autocorrelation is contained in the baseband
signal, and can be selectively measured by lowpass filtering (dashed lines). We will examine
this term in a different context in the next section. The spectral features at ±𝜔0 appear
similar to the pulse spectrum recovered by an FTIR trace, but the terms are not exactly a
field autocorrelation, and we have not ascribed to them any analytical description. On the
other hand, the features at ±2𝜔0 appear from the term ℱ{⟨𝐸2(𝑡)𝐸* 2(𝑡−𝜏)⟩} = |ℱ{𝐸2(𝑡)}|2,
which is the second harmonic power spectrum.

ℱ{𝐸sig(𝑡, 𝜏)}. In our experiment, FROG comprises the same nonlinear system that is formed

by an IAC, so the signal field is again the square of the output of the interferometer,

𝐸sig(𝑡, 𝜏) = 𝐸IAC
sig (𝑡, 𝜏) = 𝐸2

out(𝑡, 𝜏) =
1

4

[︁
𝐸(𝑡) + 𝐸(𝑡− 𝜏)

]︁2
. (2.32)

In the case of FROG, the signal field is directed into a spectrometer, which amounts to

taking the magnitude-squared of the Fourier transform of Eq. (2.32), which by linearity can

be written:

𝑆FROG(𝜔, 𝜏) ≡ |𝐸̃FROG(𝜔, 𝜏)|2 =
1

16

⃒⃒⃒
ℱ{𝐸2(𝑡)}+ ℱ{𝐸2(𝑡− 𝜏)}+ 2 ℱ{𝐸(𝑡)𝐸(𝑡− 𝜏)}

⃒⃒⃒2
.

(2.33)

Eq. (2.34) is the magnitude squared of the sum of three complex quantities—yet another

application of the interference equation. Expanding the terms according to Eq. (2.7), we

find:

𝑆FROG(𝜔, 𝜏) =
1

16

[︁
|ℱ{𝐸2(𝑡)}|2 + |ℱ{𝐸2(𝑡− 𝜏)}|2 + 4 |ℱ{𝐸(𝑡)𝐸(𝑡− 𝜏)}|2

+ 2 Re
{︁
ℱ{𝐸2(𝑡)}ℱ*{𝐸2(𝑡− 𝜏)}+ 2 ℱ{𝐸2(𝑡)}ℱ*{𝐸(𝑡)𝐸(𝑡− 𝜏)}

+ 2 ℱ{𝐸2(𝑡− 𝜏)}ℱ*{𝐸(𝑡)𝐸(𝑡− 𝜏)}
}︁]︁

.

(2.34)
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As before, the first two terms are equivalent6: they are each the power spectrum of the second

harmonic (as would be observed directly at a spectrometer), which we denote 𝑆𝐵(𝜔) ≡

ℱ{𝐸2(𝑡)}. We will sometimes find use to denote the second harmonic spectrum as Γ̃1(𝜔) =

ℱ{𝐸2(𝑡)} = 𝐸̃(𝜔)*𝐸̃(𝜔), which emphasizes that it is the autoconvolution of the fundamental

spectrum. The remaining terms have analogous features to the terms in Eq. (2.30). An

equation analogous to Eq. (2.31) can be written in similar terms:

𝑆FROG(𝜔, 𝜏) ∝ 𝑆𝐵(𝜔)+Re
{︁
2 Γ̃1(𝜔)

[︀
1 + 𝑒−𝑖𝜔𝜏

]︀
𝐸̃SHG *

FROG(𝜔, 𝜏) + |Γ̃1(𝜔)|2 𝑒𝑖𝜔𝜏
}︁
+2𝑆SHG

FROG(𝜔, 𝜏) .

(2.35)

Eq. (2.35) is not attractive, but with some care we can unpack it to discover some

interesting features. First, a statement that is absolutely pivotal to the development of this

thesis, is that we have discovered the quantities 𝐸̃SHG
FROG(𝜔, 𝜏) = ℱ{𝐸(𝑡)𝐸(𝑡 − 𝜏)}, which

is called the SHG FROG field, and 𝑆SHG
FROG(𝜔, 𝜏) = |𝐸̃SHG

FROG(𝜔, 𝜏)|2 which is the SHG

FROG spectrogram. The SHG FROG spectrogram is the entire foundation upon which

the pulse recovery process is built, as outlined in Chapter 3. Eq. (2.35) says that this

important signal is contained within an interferometric autocorrelation measurement, since

it was derived from 𝐸sig(𝑡, 𝜏) = 𝐸IAC
sig (𝑡, 𝜏). We will say more about these signals in Section

2.2.3 and throughout Chapter 3. First, it is important to understand how to isolate this

term from our measurement.

Since we are not performing a time integral, note that the interference equation applied

to a spectral signal produces a 2-dimensional time-frequency distribution 𝑆FROG(𝜔, 𝜏) called

a spectrogram. The term spectrogram extends beyond FROG, but within the context of

FROG it is usually modified in such a way that denotes which type of FROG geometry

it describes (as is the case for the SHG FROG spectrogram). In this case, we have used

the notation 𝑆FROG (without an identifier) to denote measurement of an interferometric

autocorrelation signal. We will say a bit more about these topics in later sections.
6Again this can be understood on physical grounds, since delaying a pulse does not change its power

spectrum. On mathematical grounds, the shift theorem tells us that a time delay amounts to a spectral phase
shift, which leaves the spectral intensity unaffected. That is, ℱ{𝐸2(𝑡− 𝜏)} = ℱ{𝐸2(𝑡)}𝑒−𝑖𝜔𝜏 = Γ̃1(𝜔)𝑒

−𝑖𝜔𝜏 ,
so |ℱ{𝐸2(𝑡)}|2 = |ℱ{𝐸2(𝑡− 𝜏)}|2.
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We conventionally view the spectrogram with a two-dimensional color map. The added

dimension arises from the fact that at each delay point we are now recording a power spec-

trum, which corresponds to a vertical slice over the spectrogram. Since each of the interfering

terms in Eq. (2.35) are recorded in the same signal, we observe a fringe pattern over the

spectrogram identical to the one that was observed in the interferometeric autocorrelation

trace. We will study the relationship between the spectrogram and the autocorrelation in

Section 3.1. For now we simply illustrate the analogy: Fig. 2-13 is the analog to Figs. 2-3,

2-9, and 2-11 for nonlinear spectral signals.

Figure 2-13: Interferometric FROG spectrogram: This image is a two-dimensional dis-
tribution that is formed by recording a spectrum for every delay point. This trace completely
contains the autocorrelation trace recorded in Fig. 2-11, and then some. This is not surpris-
ing since the interferometric autocorrelation is produced by measuring the same signal at a
photodiode. We will examine the various features of the spectrogram in Chapter 3.

In order to strengthen the analogy, we must examine the spectrum of Eq. (2.35). First,

a note of caution. We will be looking at the spectrum of a 2-dimensional function over the

delay variable, which involves a corresponding (1-dimensional) Fourier transform ℱ𝜏{·} ≡∫︀
· 𝑒−𝑖Ω𝜏 d𝜏 . However, our development will also require us to take the Fourier transform

over the regular coordinates (𝑡, 𝜔), which we denote ℱ{·} =
∫︀
· 𝑒−𝑖𝜔𝑡 d𝑡. To ease matters,

the transforms ℱ𝜏{·} and ℱ{·} will be interpreted to be commuting linear operators in the

sense that ℱ{ℱ𝜏{·}} ≡ ℱ𝜏{ℱ{·}}: the operators commute, and terms not affected by the

operator can “push through”.

In particular, we note that the resulting 2-dimensional spectrum will be unaltered along

𝜔, that is, terms dependent upon only 𝜔 will push through the ℱ𝜏{·} operator. Breaking up

the task into smaller pieces, we first check the spectrum of the SHG FROG field:
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ℱ𝜏{𝐸̃SHG
FROG(𝜔, 𝜏)} = ℱ𝜏{ℱ{𝐸(𝑡)𝐸(𝑡− 𝜏)}} = ℱ{𝐸(𝑡) ℱ𝜏{𝐸(𝑡− 𝜏)}} , (2.36)

where we have swapped ℱ{·} with ℱ𝜏{·}. Applying the scaling and shift theorems to the

integral over 𝜏 allows us to write:

ℱ𝜏{𝐸̃SHG
FROG(𝜔, 𝜏)} = ℱ{𝐸(𝑡) ℱ𝜏{𝐸(−(𝜏 + 𝑡))}} = ℱ{𝐸(𝑡)𝐸̃(−Ω) 𝑒−𝑖Ω𝑡} . (2.37)

Now, the term in Ω is invariant over the regular coordinates, and the complex exponential

in 𝑡 results in a spectral shift along 𝜔 in the remaining term, that is,

ℱ𝜏{𝐸̃SHG
FROG(𝜔, 𝜏)} = 𝐸̃(−Ω) ℱ{𝐸(𝑡) 𝑒−𝑖Ω𝑡} = 𝐸̃(−Ω)𝐸̃(𝜔 + Ω) . (2.38)

Of course, we also need to account for both complex conjugation,

ℱ𝜏{𝐸̃SHG *
FROG(𝜔, 𝜏)} = 𝐸̃*(Ω)𝐸̃*(𝜔 − Ω) , (2.39)

as well as a complex exponential factor,

ℱ𝜏{𝑒−𝑖𝜔𝜏 𝐸̃SHG *
FROG(𝜔, 𝜏)} = 𝐸̃*(Ω + 𝜔)𝐸̃*(𝜔 − (Ω + 𝜔)) = 𝐸̃*(−Ω)𝐸̃*(Ω + 𝜔) . (2.40)

Eqs. (2.39) and (2.40) tell us that the spectrum of the first interference term in Eq. (2.35)

Γ̃1 [1 + 𝑒−𝑖𝜔𝜏 ] 𝐸̃SHG *
FROG looks like the fundamental pulse spectrum multiplied by a copy of itself

shifted left-and-right in delay frequency by an amount 𝜔. Noting that a shift in 𝜔 also

corresponds to a shift up-and-down in the 2-dimensional spectrum, we can expect to find

spectral features in the neighborhood of the fundamental spectrum (±𝜔0) in both directions.

If that is a brain twister, we can view things differently: Eqs. (2.39) and (2.40) are written

in a way that seems similar to an autocorrelation, which must decay for large enough 𝜔.

Since there is no integral, features are spread out in two dimensions, but they are all in the
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region of the carrier frequency 𝜔0.

The second interference term is easier to handle. A transform gives

ℱ𝜏{|Γ̃1(𝜔)|2 𝑒𝑖𝜔𝜏} = |Γ̃1(𝜔)|2 ℱ𝜏{𝑒𝑖𝜔𝜏} = |Γ̃1(𝜔)|2 𝛿(Ω− 𝜔) . (2.41)

In words, the second interference term produces a delta function that shifts linearly along

𝜔 as Ω is increased. In other words, for a given value of 𝜔 (a horizontal line across the

2-D spectrum), we expect a spectral feature with magnitude |Γ̃1(𝜔)|2 at precisely the delay

frequency Ω = 𝜔 (a vertical line); over all 𝜔 this produces a sharp slanted line. Since this

term contains the second harmonic spectrum Γ̃1(𝜔) = ℱ{𝐸2(𝑡)}, these features are found in

the region of 2𝜔0.

Figure 2-14: 2-dimensional spectrum: This image was formed by taking a 1-dimensional
Fourier transform of the FROG trace that was recorded by an IAC in Fig. 2-13. The features
of this spectrum are analogous to the features contained in the 1-dimensional spectrum
plotted in Fig. 2-12. Looking ahead, we will find that we can filter the baseband signal of
the FROG spectrogram using a lowpass filter, indicated by the dashed line in this figure.

The most important takeaway from this chapter is stated here: the distinct terms in Eqs.

(2.31) and (2.35) can be described by non-overlapping spectral features. This fact will enable

us to recover the intensity autocorrelation from an IAC trace via a simple lowpass filter, as

indicated by the dashed line in Fig. 2-12. Similarly (and more importantly), we can recover

the SHG FROG trace from the same experimental setup as an IAC. All that is required is a

lowpass filter applied to the 2-dimensional spectrum produced by a Fourier transform over

delay of the spectrogram [11] [12]. The required filter is indicated by a dashed line in Fig.

2-14. The results of the filtering are plotted below in Fig. 2-15.

In short, this development explains our method for recovering an SHG FROG trace using

precisely the same experimental layout as is used in an IAC, up to the detector. In the next
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section we examine these signals in the context of different beam geometries, to provide

geometrical intuition for the underlying physics.

(a) Intensity autocorrelation

(b) SHG FROG trace

Figure 2-15: Intensity autocorrelation and SHG FROG trace produced via lowpass
filtering: 2-15a is the intensity autocorrelation 𝐺2(𝜏) produced from the IAC trace in Fig.
4-15 via lowpass filtering (dashed line in Fig. 2-12). 4-20 is the SHG FROG trace 𝑆SHG

FROG(𝜔, 𝜏)
produced from the collinear FROG trace in Fig. 2-13 via identical filtering (dashed line in
Fig. 2-14). In both images we have left a ghost of the fringes for illustrative purposes, i.e.
in order to compare them against the unfiltered signal. The true signals exhibit no such
fringes.

2.2.3 SHG Beam Geometries

Our previous observations have led us to the discovery that an SHG FROG trace can be

easily produced in one of two ways. The first method is the conventional method and is

known as a non-collinear geometry [2]. The non-collinear geometry forms an intensity

autocorrelation at a photodiode and an SHG FROG trace at a spectrometer. An example

experimental layout illustrated in Fig. 2-16.

Producing an SHG FROG trace in the conventional way requires aligning the two outputs

of an interferometer in such a way that they propagate in a parallel direction with no overlap.

In the context of FROG, the reference and signal fields are called the probe and gate,

denoted 𝐸𝑝(𝑡) and 𝐸𝑔(𝑡− 𝜏) respectively [1] [6]. The two parallel beam paths should be near

to each other, so that they can both be focused by a single lens onto a nonlinear crystal with
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a strong second order response (a 𝜒(2) crystal). The nonlinear response produces output

signals, in addition to the propagated input signals, given by 𝐸2
𝑝(𝑡) and 𝐸2

𝑔 (𝑡−𝜏) which both

propagate collinearly with their corresponding fundamental signal. An additional signal

results from the nonlinear interaction of the two inputs; we will not address the formal

nonlinear optics of the interaction, except to explain in a heuristic way that by symmetry,

adding the k-vectors of the mixed inputs results in a new signal that propagates in a distinct

spatial direction. A brief explanation of this idea is provided in the caption to Fig. 2-

16. This distinct signal is the SHG FROG signal field 𝐸SHG
sig (𝑡, 𝜏) = 𝐸𝑝(𝑡)𝐸𝑔(𝑡 − 𝜏), whose

measurement at a spectrometer as a function of delay produces the SHG FROG spectrogram

𝑆SHG
FROG(𝜔, 𝜏) = |ℱ{𝐸SHG

sig (𝑡, 𝜏)}|2.

Figure 2-16: Non-collinear beam geometry for SHG FROG: The formation of a new
signal can be understood in an intuitive way by considering the k-vectors of the probe and
gate, denoted k𝑝 and k𝑔. Their geometric sum produces a new vector ksig whose direction
is distinct from the others. This can be interpreted as a statement about conservation of
momentum.

An alternative beam geometry overlaps the two interferometer outputs so that they

propagate collinearly (Fig. 2-17). This is aptly called a collinear geometry, which forms

an interferometric autocorrelation at a photodiode and a collinear SHG FROG trace at a

spectrometer, sometimes called interferometric FROG, IFROG [11], or collinear SHG FROG

[12]. This is the quantity we denoted by 𝑆FROG(𝜔, 𝜏) in the previous section. The collinear

geometry can be built with a Mach-Zehnder inteferometer in the configuration we illustrated

in Fig. 2-2c. Precisely the same signals are produced within the nonlinearity in the collinear

case as in the non-collinear case, but addition of k-vectors does not produce any new beam
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directions at the nonlinear element. Since the fundamental output is also an output of the

crystal, and since all outputs propagate collinearly, an optical bandpass filter must be used

to select the second harmonic signal 𝐸2
out(𝑡, 𝜏), which is the same as 𝐸IAC

sig (𝑡, 𝜏)

The collinear signal as-measured cannot be written as the product of a probe and a

variably-delayed gate, so the collinear SHG system does not constitute a conventional FROG

beam geometry, which we will define in Section 3.1.1. In order to isolate the SHG FROG

signal, a lowpass filter must be applied to the measurement after it has been recorded, using

the methods described in Section 2.2.2.

Figure 2-17: Collinear beam geometry for SHG FROG

We note that one of the merits of a collinear geometry is its support for pulses with

complex spatial and/or temporal structure, such as the one we measure in this paper. We

therefore utilize a collinear geometry in all of our experiments described in Chapter 4.
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Chapter 3

FROG and the Pulse Retrieval

Algorithm

Until the advent of FROG, methods of pulse characterization were limited to autocorrelation

techniques, like IAC. These methods, while useful in their own right, do not completely

characterize the temporal pulse profile, as they say cannot precisely determine the spectral

phase. The merits of FROG were novel at the time: a complete characterization of a laser

pulse up to a number of “trivial ambiguities” [6]. The ambiguities are minor, and they depend

on the exact experimental layout used for the measurement. These days, a variety of options

exist for pulse retrieval, which constitute a veritable zoo, with choices that include STRIPED-

FISH [13], PENGUIN [14], SPIDER [2], and TADPOLE [15]. Many of these methods are

based on FROG. Despite the arrival of newfound company, FROG has stood the test of time:

FROG continues to be one of the most popular ultrafast pulse characterization techniques

to this day, in large part due to its robustness and ease of implementation. In this chapter

we investigate the method, which will expose us to a number of computational techniques

and a brief study of linear algebra.

Let us first take a moment to outline the basics. FROG is an optical system accompanied

by a computer algorithm, whose purpose is to measure an ultrafast pulse. As the name

suggests, the technique involves the use of an interferometer to split an input pulse into

two copies of itself, and to use one copy to optically gate the other. Mathematically, the

gating amounts to an autocorrelation of the kind we examined in the previous chapter. The
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measurements are recorded in the frequency domain, and the accompanying algorithm takes

the result of the measurement as an input and spits out a description of the pulse. The

measured quantity is called the spectrogram, or FROG trace. The retrieval algorithm has

evolved and improved since FROG’s conception, but the basic procedure for inverting a

spectrogram into a pulse has remained mostly unchanged.

The following chapter is organized as follows. In Section 3.1 we will rebuild the spec-

trogram in the conventional way, but in a context different from that of Chapter 2. We

will closely examine its various features. Section 3.2 includes a detailed description of the

retrieval algorithm, the first steps of which are identical over its various incarnations; lastly,

Section 3.2.2 is devoted to a particular implementation of the final step.

3.1 The Spectrogram

Our approach in Chapter 2 involved contextualizing the spectrogram by comparison to other

interferometric signals. One reason for presenting topics in this way was to provide a com-

prehensive reference for the temporal and spectral signals produced by simple interferometric

techniques. In particular, an analysis of this detail has not been found for collinear SHG

FROG, even in the works cited. A more important reason is to provide the reader a simple

physical framework for interpreting each of the examined signals.

The purpose of this section is to provide a detailed study of the spectrogram squarely in

the context of FROG. We will first take note of the experimental factors required for pro-

ducing other kinds of FROG traces, and we will find that the interferometric autocorrelation

signal does not not qualify as a conventional FROG signal, but it can be filtered according

the methods of Section 2.2.2. We will then conclude by examining additional signals that

are contained in the trace, and we will state their corresponding uses.

3.1.1 Forming the Trace

SHG FROG is merely one type of geometry that can produce a spectrogram from an ultrafast

pulse. The FROG literature is well stocked with resources for producing and examining

other geometries. In this brief section, we simply state that in general, a FROG geometry
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is structured in such a way to produce an optical signal that contains a probe 𝐸𝑝(𝑡) and a

variably-delayed gate 𝐸𝑔(𝑡 − 𝜏). Their product forms a signal field defined as 𝐸sig(𝑡, 𝜏) =

𝐸𝑝(𝑡)𝐸𝑔(𝑡 − 𝜏). This expression reveals that all FROG geometries rely on some sort of

nonlinearity to produce a signal. SHG FROG has become the most popular geometry, for its

ease of implementation and the strength of the signal field (being a second-order technique).

In the SHG geometry, the probe and the gate are the same function 𝐸(𝑡). In other geometries,

this is not the case: one geometry, called polarization-gated (PG) FROG [1] [6], uses a gate

that is given by 𝐸𝑔(𝑡 − 𝜏) = |𝐸(𝑡 − 𝜏)|2. Now, as we noted in Section 2.2.2, a general

FROG spectrogram is formed by recording a power spectrum at each point in the sweep of

an interferometer’s delay stage. The resulting expression for a spectrogram formed by the

most common geometries is given as:

𝑆FROG(𝜔, 𝜏) = |ℱ{𝐸sig(𝑡, 𝜏)}|2 =
⃒⃒⃒⃒∫︁

𝐸𝑝(𝑡)𝐸𝑔(𝑡− 𝜏) 𝑒−𝑖𝜔𝑡 d𝑡

⃒⃒⃒⃒2
(3.1)

In the case of SHG FROG, the probe and the gate are identical. The resulting expressing is

given by:

𝑆SHG
FROG(𝜔, 𝜏) = |ℱ{𝐸SHG

sig (𝑡, 𝜏)}|2 =
⃒⃒⃒⃒∫︁

𝐸(𝑡)𝐸(𝑡− 𝜏) 𝑒−𝑖𝜔𝑡 d𝑡

⃒⃒⃒⃒2
(3.2)

To address a practical matter, the statement “each point in the sweep” is loose language.

What is meant is that a delay stage is operated by some sort of electronic circuit that controls

the position of the mirrors in the signal arm of an interferometer. The controller is usually

driven electronically with a triangle wave whose amplitude corresponds to the total distance

traversed by a mirror in a back and forth motion. A linear driving signal, i.e. half the period

of a triangle wave (corresponding to the minimum/maximum displacement of the mirror),

constitutes a sweep. Mirror displacement is imprinted onto an optical signal as a delay, as

we saw in Chapter 2. In short, an electronic controller is usually responsible for the delay

experienced by the gate in FROG.

For the remainder of Section 3.1 we will examine two additional signals that are hidden

within a spectrogram. These signals are referred to as marginals, and they are formed by

simple integration of a FROG trace over either of its dimensions. The delay marginal is
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defined as:

𝑀(𝜏) ≡
∫︁

𝑆FROG(𝜔, 𝜏) d𝜔 , (3.3)

and the frequency marginal is defined as:

𝑀̃(𝜔) ≡
∫︁

𝑆FROG(𝜔, 𝜏) d𝜏 . (3.4)

3.1.2 The Delay Marginal as an Autocorrelation

The delay marginal is equivalent to an autocorrelation of the signal field that produces the

spectrogram [2]. With some thought this fact becomes obvious. At a particular delay the

signal at the detector carries a certain optical energy, depending on the mutual interference

of the probe and gate. The spectrometer detects the energy of each frequency component;

adding up the energy of each component (integrating) produces the total signal energy, which

is precisely what is measured by a photodiode in an autocorrelation experiment.

The mathematical proof is as simple as they come. Examining the collinear signal first,

by Parseval’s theorem1 we find:

∫︁
𝑆FROG(𝜔, 𝜏) d𝜔 ≡

∫︁
|𝐸̃FROG(𝜔, 𝜏)|2 d𝜔 =

∫︁
|𝐸IAC

sig (𝑡, 𝜏)|2 d𝑡 ≡
∫︁

𝐼 IAC(𝑡, 𝜏) d𝑡 . (3.6)

The leftmost expression is the definition of the delay marginal, and the rightmost expression

is that of the interferometric autocorrelation. They are equivalent:

𝑀 IAC(𝜏) = 𝑈 IAC(𝜏) (3.7)
1To be more precise, we should not that we have neglected a factor of 2𝜋, since by convention we use

angular frequency. Parseval’s theorem in terms of regular frequency 𝜈, reads∫︁
|𝑋̃(𝜈)|2 d𝜈 =

∫︁
|𝑥(𝑡)|2 d𝑡 . (3.5)

Replacing d𝜔 = 2𝜋 d𝜈 introduces the missing scaling factor. We simply neglect it, since we often normalize
our results anyway.
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In a non-collinear geometry, the proof is similarly simple:

∫︁
𝑆SHG
FROG(𝜔, 𝜏) d𝜔 ≡

∫︁
|ℱ{𝐸(𝑡)𝐸(𝑡− 𝜏)}|2 d𝜔 =

∫︁
|𝐸(𝑡)𝐸(𝑡− 𝜏)|2 d𝑡 . (3.8)

The delay marginal of the SHG FROG trace is the intensity autocorrelation:

𝑀SHG(𝜏) = 𝐺2(𝜏) . (3.9)

Lastly, for any FROG geometry that exploits a probe 𝐸𝑝(𝑡) windowed by a gate 𝐸𝑔(𝑡− 𝜏),

we have

∫︁
𝑆FROG(𝜔, 𝜏) d𝜔 ≡

∫︁
|ℱ{𝐸𝑝(𝑡)𝐸𝑔(𝑡− 𝜏)}|2 d𝜔 =

∫︁
|𝐸𝑔(𝑡)𝐸𝑔(𝑡− 𝜏)|2 d𝑡 , (3.10)

which can be written as an intensity cross-correlation:

𝑀(𝜏) = ⟨𝐼𝑝(𝑡)𝐼𝑔(𝑡− 𝜏)⟩ . (3.11)

The standard use for the delay marginal is as an error check in FROG. In our experiments,

we record both a IAC and a FROG, and we then compare the former to the delay marginal

of the latter, as an assurance that both were recorded correctly. We will shortly find that

the frequency marginal contains information that is even more useful than the quick sanity

check provided by 𝑀(𝜏).

3.1.3 The Frequency Marginal as an Autoconvolution

The frequency marginal is equivalent to an autoconvolution [1]. The approach we take here

to show this does not appeal to physical intuition in the same way as our note about the

delay marginal, nor is this fact quite as obvious. We can derive the result by first interpreting

the SHG FROG field as a convolution of the spectrum with a phase shifted copy of itself:
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𝐸̃SHG
FROG(𝜔, 𝜏) = ℱ{𝐸(𝑡)𝐸(𝑡− 𝜏)} = 1

2𝜋
ℱ{𝐸(𝑡)} *ℱ{𝐸(𝑡− 𝜏)} = 1

2𝜋

[︁
𝐸̃(𝜔)

]︁
*
[︁
𝐸̃(𝜔) 𝑒−𝑖𝜔𝜏

]︁
.

(3.12)

Writing out the convolution integral,

𝐸̃SHG
FROG(𝜔, 𝜏) =

1

2𝜋

∫︁
𝐸̃(𝜔′)𝐸̃(𝜔 − 𝜔′) 𝑒−𝑖(𝜔−𝜔′)𝜏 d𝜔′ (3.13)

we find that we can express the SHG FROG trace as a double integral:

𝑆SHG
FROG(𝜔, 𝜏) = |𝐸̃SHG

FROG(𝜔, 𝜏)|2

=

[︂
1

2𝜋

∫︁
𝐸̃(𝜔′)𝐸̃(𝜔 − 𝜔′) 𝑒−𝑖(𝜔−𝜔′)𝜏 d𝜔′

]︂ [︂
1

2𝜋

∫︁
𝐸̃(𝜔′′)𝐸̃(𝜔 − 𝜔′′) 𝑒−𝑖(𝜔−𝜔′′)𝜏 d𝜔′′

]︂*
=

1

(2𝜋)2

∫︁∫︁
𝐸̃(𝜔′)𝐸̃*(𝜔′′)𝐸̃(𝜔 − 𝜔′)𝐸̃*(𝜔 − 𝜔′′) 𝑒−𝑖(𝜔′′−𝜔′)𝜏 d𝜔′ d𝜔′′ ,

(3.14)

where we have combined complex exponentials. The trick comes in taking the integral of

Eq. (3.14) over 𝜏 :

∫︁
𝑆SHG
FROG(𝜔, 𝜏) d𝜏 =

1

(2𝜋)2

∫︁∫︁∫︁
𝐸̃(𝜔′)𝐸̃*(𝜔′′)𝐸̃(𝜔 − 𝜔′)𝐸̃*(𝜔 − 𝜔′′) 𝑒−𝑖(𝜔′′−𝜔′)𝜏 d𝜔′ d𝜔′′ d𝜏 .

(3.15)

Of course, the left hand side is the frequency marginal. The right hand side can be resolved

by changing the order of integration and identifying that the exponential factor is the only

𝜏 -dependent term,

𝑀̃SHG(𝜔) =
1

(2𝜋)2

∫︁∫︁
𝐸̃(𝜔′)𝐸̃*(𝜔′′)𝐸̃(𝜔 − 𝜔′)𝐸̃*(𝜔 − 𝜔′′)

∫︁
𝑒−𝑖(𝜔′′−𝜔′)𝜏 d𝜏 d𝜔′ d𝜔′′ , (3.16)

which delivers a delta function:
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𝑀̃SHG(𝜔) =
1

2𝜋

∫︁∫︁
𝐸̃(𝜔′)𝐸̃*(𝜔′′)𝐸̃(𝜔 − 𝜔′)𝐸̃*(𝜔 − 𝜔′′) 𝛿(𝜔′′ − 𝜔′) d𝜔′ d𝜔′′ , (3.17)

that in turn collapses the inner integral (over 𝜔′):

𝑀̃SHG(𝜔) =
1

2𝜋

∫︁
𝐸̃(𝜔′′)𝐸̃*(𝜔′′)𝐸̃(𝜔 − 𝜔′′)𝐸̃*(𝜔 − 𝜔′′) d𝜔′′ . (3.18)

The spectral terms now depend on the same variable of integration 𝜔′′ and can thus be

combined to give:

𝑀̃SHG(𝜔) =
1

2𝜋

∫︁
𝑆(𝜔′′)𝑆(𝜔 − 𝜔′′) d𝜔′′ , (3.19)

and what remains is identified as an autoconvolution of the power spectrum,

𝑀̃SHG(𝜔) =
1

2𝜋
𝑆(𝜔) * 𝑆(𝜔) . (3.20)

Again we note that for any FROG geometry which exploits a probe windowed by a gate, the

above development holds, with the result

𝑀̃(𝜔) =
1

2𝜋
𝑆𝑝(𝜔) * 𝑆𝑔(𝜔) . (3.21)

As with the delay marginal, the frequency marginal can be used as an error check in

FROG. Specifically, if a power spectrum of the pulse is available, a convolution can be done

with the intention of comparing it against the recorded FROG trace’s frequency marginal.

The two traces should agree, and if they do not, certain error correction methods may be

suitable to force their agreement.

The frequency marginal on its own has also been discovered to contain enough information

to reconstruct the power spectrum directly from the FROG trace. We will examine this

particular point in our discussion of the RANA approach as an aid to pulse recovery in

Section 3.2.4.
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3.2 Iterative Fourier Transform Algorithm

The procedure for inverting a spectrogram into a pulse is an example of a well known

mathematical problem called phase retrieval [1] [16] [17]. A full treatment of the phase

retrieval problem is beyond the scope of this thesis. Nonetheless, in order to motivate the

retrieval algorithm, we take note here of some of the greatest hits:

• A 1-dimensional phase retrieval problem has no solution.

• A 2-dimensional phase retrieval problem has a (nearly) unique solution

• Both of the previous items can be derived from a discrete description of the spectrogram

using the Fundamental Theorem of Algebra.

FROG constitutes a 2-dimensional phase retrieval problem, since it involves a two dimen-

sional quantity (the spectrogram), for which only the amplitude is known. For our purposes,

we take this all to mean: if we find a solution to our retrieval problem, then it is the solution.

Unfortunately, despite this strong uniqueness claim, the definition of a solution to our

problem is qualitative at best. In brief, we will define a solution for an unknown pulse to

be one which computes a spectrogram that looks very similar to the one we measure. The

uniqueness statement above tells us that the pulse we use for the computation must be the

one that produced our trace. Although the quality of a computed spectrogram is based on

visual inspection, we will provide one quantitative metric for judging a solution when we get

to our measurements in Chapter 4.

3.2.1 Retrieval Process

The statement of uniqueness can be misleading, if interpreted incorrectly. In order to un-

derstand it more clearly, consider the FROG field, rather than the spectrogram. The FROG

field has a squared-magnitude that is the spectrogram. However, any number of FROG

fields compute the spectrogram: just add to it an arbitrary phase, and it will still produce

the correct spectrogram. Therefore, the uniqueness statement is really assurance that the

FROG field has the correct phase. If it has the correct phase and the correct magnitude,
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then it is uniquely the correct solution. Since the FROG field is computed directly from the

probe and gate, a correct FROG field implies a correct probe and gate.

It is a trivial matter to compute a guess for the FROG field from a guess for the probe

and gate. We will restate the steps below. On the other hand, it is a non-trivial task to

do the reverse. In other words, it is trivial to multiply two functions together, but it is

non-trivial to factor some arbitrary function into two functions which by definition must be

related in some particular way.

That the two functions are constrained in some way will turn out to benefit the retrieval

process. The basic steps are as follows:

• we will generate a guess for the pulse, either randomly or otherwise

• we will check the spectrogram computed from our guess against the trace that we

measured experimentally

• if necessary, we will subject our guess to a sequence of computational steps known as

the Iterative Fourier Transform Algorithm (IFTA) [1] [16]

• the algorithm will return a new guess, and we will iterate through the IFTA as needed.

We will now examine the complete process on a step by step basis.

First we need a guess to start the procedure, which we denote 𝐸(1)(𝑡). In Section 3.2.4

we will figure out a way to come up with an educated guess, but here we assume that our

guess is random.

Next, we form a signal field. The definition is repeated in Eq. (3.22):

𝐸sig(𝑡, 𝜏) = 𝐸𝑝(𝑡)𝐸𝑔(𝑡− 𝜏) . (3.22)

Eq. (3.22) provides a direct computation for the signal field from our guess: 𝐸
(1)
sig (𝑡, 𝜏) =

𝐸
(1)
𝑝 (𝑡)𝐸

(1)
𝑔 (𝑡 − 𝜏). Interpreted differently, Eq. (3.22) also specifies that if we already have

a signal field, as opposed to some other arbitrary function of 𝑡 and 𝜏 , then it must factor

into the right hand side of the above. If it does not factor, it is not a signal field. This

requirement is called the mathematical-form constraint, and we will address it at a later

step.
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From the signal field, we form a FROG field via a Fourier transform 𝐸̃
(1)
FROG(𝜔, 𝜏) =

ℱ{𝐸(1)
sig (𝑡, 𝜏)}. At this stage, we are able to check the spectrogram by taking the magnitude-

squared, by definition. The quality of our guess is evaluated by visually comparing the

computed spectrogram against the experimental trace. For all guesses except the correct

one, the spectrogram will not be a match.

Assuming an incorrect match, we proceed to improve our guess. To do so, we can apply

the data constraint. The statement of the data constraint is given by the definition of the

spectrogram, which we repeat in Eq. (3.23):

𝑆FROG(𝜔, 𝜏) = |𝐸̃FROG(𝜔, 𝜏)|2 . (3.23)

Explicitly, the goal is to apply the data constraint onto the FROG field we previously com-

puted. The expression for applying the data constraint is given by Eq. (3.24):

𝐸̃
′ (1)
FROG(𝜔, 𝜏) = 𝐸̃

‘ (1)
FROG(𝜔, 𝜏)

√︁
𝑆FROG(𝜔, 𝜏)

|𝐸̃‘ (1)
FROG(𝜔, 𝜏)|

. (3.24)

The prime symbol added to the left hand side implies that this quantity computes the correct

spectrogram. In other words, it satisfies the data constraint given by Eq. (3.23). This can

be seen by taking the magnitude squared of Eq. (3.24).

With the FROG field updated, it can be converted into a signal field with an inverse

Fourier transform: 𝐸
′ (1)
sig (𝑡, 𝜏) = ℱ−1{𝐸̃

′ (1)
FROG(𝜔, 𝜏)}. What remains is a two dimensional

function of 𝑡 and 𝜏 , which satisfies the data constraint. We wish to know whether the

function also satisfies the mathematical-form constraint.

Unfortunately, as mentioned above, this is a non-trivial task. Consider the case of a true

signal field for SHG FROG:

𝐸sig(𝑡, 𝜏) = 𝐸(𝑡)𝐸(𝑡− 𝜏) . (3.25)

It is simple to factor out of the left-hand side some function of 𝑡 alone, call it 𝑓(𝑡), so

that 𝐸sig(𝑡, 𝜏) = 𝑓(𝑡)𝑔(𝑡, 𝜏). The challenge is assuring that what remains satisfies the

mathematical-form constraint, which for Eq. (3.25) would imply that 𝑔(𝑡, 𝜏) must take
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the form 𝑔(𝑡, 𝜏) = 𝑓(𝑡− 𝜏).

It is generally not possible to find an exact factorization that satisfies the mathematical-

form constraint. In terms of our guess, then, this means that:

𝐸
′ (1)
sig (𝑡, 𝜏) = 𝐸(2)

𝑝 (𝑡)𝐸(2)
𝑔 (𝑡− 𝜏) , (3.26)

does not have a closed form solution for 𝐸(2)
𝑝 (𝑡) and 𝐸

(2)
𝑔 (𝑡−𝜏). The remainder of this section

will be concerned with producing a good approximation to a solution.

In the process of attempting to satisfy the mathematical-form constraint, we will nec-

essarily violate the data constraint. In reapplying the data constraint, we will necessarily

violate the mathematical-form constraint. The goal of the IFTA is to iteratively apply these

constraints until we converge on a solution that satisfies both, with as little error as possible.

In the next section, we will examine one scheme for applying the mathematical-form

constraint. Here, we summarize the remainder of the algorithm in Eq. (3.27):

𝐸
(𝑘)
sig (𝑡, 𝜏) = 𝐸(𝑘)

𝑝 (𝑡)𝐸(𝑘)
𝑔 (𝑡− 𝜏)

𝐸̃
(𝑘)
CALC(𝜔, 𝜏) = ℱ{𝐸

(𝑘)
sig (𝑡, 𝜏)}

𝐸̃
′ (𝑘)
FROG(𝜔, 𝜏) = 𝐸̃

(𝑘)
FROG(𝜔, 𝜏) ·

√︁
𝑆
(𝑘)
FROG(𝜔, 𝜏)

|𝐸̃(𝑘)
FROG(𝜔, 𝜏)|

𝐸
′ (𝑘)
sig (𝑡, 𝜏) = ℱ−1{𝐸̃

′ (𝑘)
FROG(𝜔, 𝜏)}

𝐸(𝑘+1)(𝑡) = 𝐸
′ (𝑡)
sig (𝑡, 𝜏)→ ■ .

(3.27)

Eq. (3.27) represents a single iteration of the IFTA. In the above, the superscript (𝑘)

corresponds to quantities that were computed from the 𝑘th guess, that is the 𝑘th iteration

of the algorithm. An iteration ends with an updated guess 𝐸(𝑘+1)(𝑡) which satisfies the

mathematical-form constraint, indicated by a black box in Eq. (3.27).
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3.2.2 The Discrete Mathematical-Form Constraint

Early implementations of the IFTA produced solutions to the mathematical-form constraint

using beam geometries other than SHG FROG. In the case of PG FROG—wherein the gate

is given by 𝐸𝑔(𝑡− 𝜏) = |𝐸(𝑡− 𝜏)|2—the final step took the form of a simple integration over

delay:

∫︁
𝐸(𝑡)|𝐸(𝑡− 𝜏)|2 d𝜏 = 𝐸(𝑡)

∫︁
|𝐸(𝑡− 𝜏)|2 d𝜏 ∝ 𝐸(𝑡) . (3.28)

We have noted previously that a delay does not change intensity, so the integral evaluates

to a constant. (This is not the case for SHG FROG, so we can not use this simple integral

approach.) A later incarnation of the final step was based on minimizing the difference be-

tween 𝑆FROG and 𝑆CALC, a procedure that has come to be known as a generalized-projections

(GP) [18].

The Principal Component Generalized Projections Algorithm (PCGPA) [19] is a cousin

of GP, but takes an altogether unique interpretation of the problem. It is predicated on

the clever observation that a discrete FROG spectrogram is formed from the outer product

of two discrete vectors. Emphasizing this point, we will find that in the ideal (noise-free)

case, the spectrogram is formed from a single outer product, a fact which qualifies it as

a rank-one matrix. More generally, we will show that any matrix of data can be formed

as a superposition of outer products, in the worst case rank 𝑁 , and it is a simple matter

to determine which vectors form the constituent outer products. In other words, PCGPA

frames the retrieval algorithm as an eigenvalue problem, asking the question: which two

vectors are mostly responsible for forming a particular matrix? Equivalently it asks: what

are the largest eigenvalues? We will find that by selecting eigenvectors corresponding to the

largest eigenvalues, we can produce better and better guesses for the probe and gate (i.e.

the pulse), until our guesses ultimately converge toward a solution.

To begin the derivation, we reiterate once more that in general, a FROG experiment

produces an optical signal that is the product of a probe 𝐸𝑝(𝑡) and a gate 𝐸𝑔(𝑡 − 𝜏). We

examined two schemes for producing the nonlinear signal 𝐸sig(𝑡, 𝜏) = 𝐸𝑝(𝑡)𝐸𝑔(𝑡 − 𝜏) in

physical terms in Section 2.2.3 (using collinear and non-collinear SHG). In this section, we
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examine an alternative formulation of 𝐸sig(𝑡, 𝜏) in strictly computational terms. It is this

formulation that provides a basis for understanding PCGPA.

The conceptual transition from theory to computation requires a corresponding mathe-

matical transition from continuous space to discrete space. In other words, we can only store

a finite amount of information about a continuous function by means of a discrete complex

vector, in our case of length 𝑁 . In this paper we denote the discrete vector corresponding

to the probe 𝐸𝑝(𝑡) using the notation:

|𝑝⟩ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑝1

𝑝2
...

𝑝𝑁

⎤⎥⎥⎥⎥⎥⎥⎦ . (3.29)

The vector elements 𝑝𝑚 are determined from the probe according to 𝑝𝑚 = 𝐸𝑝(𝑡𝑚), with

𝑚 = 1, 2, · · · , 𝑁 . Here 𝑡𝑚 = (−𝑁/2+𝑚) ·𝛿𝑡, and the time increment 𝛿𝑡 is determined by the

resolution of the measurement. The discrete gate vector |𝑔⟩ corresponding to the un-delayed

gate function 𝐸𝑔(𝑡) is defined similarly with elements 𝑔𝑚 = 𝐸𝑔(𝑡𝑚).

To characterize the 2-dimensional quantity 𝐸𝑔(𝑡, 𝜏) = 𝐸𝑔(𝑡 − 𝜏) in a discrete fashion

requires additional complexity. Since such a characterization must discretize both 𝑡 and 𝜏 ,

we will need a distinct vector for each discrete value of delay. Matrix columns provide a

particularly convenient bookkeeping strategy for storing these vectors. Before examining the

form of the proposed matrix, we must address a subtle but crucial point: PCGPA requires

that delaying the gate be executed with a circular shift of the elements of |𝑔⟩. MATLAB

provides built-in functionality for a circular shift, but formally we can describe the discrete

delay by 𝜏𝑛 = (1−𝑛) · 𝛿𝑡, where some sort of modulo operator must be used to cycle through

the indices. The formal details are mostly unimportant, except to say that this convention

implies that if 𝑛 denotes the column of our matrix, then the first column 𝑛 = 1 should

correspond to zero delay 𝜏1. Increasing the column index corresponds to a more-negative

delay, that is an advance in time (left-shift on a delay axis), or an up-shift in the elements

of a column vector.

Matters can be elucidated by writing out the matrix 𝑀𝑔 corresponding to 𝐸𝑔(𝑡, 𝜏) as:
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𝑀𝑔 =

1

↑ · · ·
𝑁−1

↑⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦
𝑔1 𝑔2 · · · 𝑔𝑁 𝑡1

𝑔2 𝑔3 · · · 𝑔1 𝑡2
...

... . . . ...
...

𝑔𝑁 𝑔1 · · · 𝑔𝑁−1 𝑡𝑁

𝜏1 𝜏2 · · · 𝜏𝑁

(3.30)

Eq. (3.30) emphasizes that the 𝑚th row of 𝑀𝑔 corresponds to a constant time 𝐸𝑔(𝑡𝑚 − 𝜏),

whereas the 𝑛th column corresponds to a constant delay 𝐸𝑔(𝑡 − 𝜏𝑛). The arrows above the

matrix indicate by how many elements each column vector formed from |𝑔⟩must be circularly

shifted to produce 𝑀𝑔. Finally, in order for 𝑀𝑔 to more accurately describe 𝐸𝑔(𝑡, 𝜏) we

require a re-ordering of the columns according to increasing delay. Although we perform this

re-ordering in practice, we take the point for granted here, since it has no bearing on the

development: we simply assume that we can reorder the columns at will2.

Forming a matrix equivalent, 𝑀sig, to the function 𝐸sig(𝑡, 𝜏) is now a trivial task, involving

element-wise multiplication of |𝑝⟩ with the columns of 𝑀𝑔. We can simply write this matrix

as:

𝑀sig =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑝1𝑔1 𝑝1𝑔2 · · · 𝑝1𝑔𝑁

𝑝2𝑔2 𝑝2𝑔3 · · · 𝑝2𝑔1
...

... . . . ...

𝑝𝑁𝑔𝑁 𝑝𝑁𝑔1 · · · 𝑝𝑁𝑔𝑁−1

⎤⎥⎥⎥⎥⎥⎥⎦ . (3.31)

Eq. (3.31) says that 𝑀sig stores every possible interaction between individual elements of

the discrete vector |𝑝⟩ with those of |𝑔⟩. The rows of Eq. (3.31) are constant in time just as

in Eq. (3.30), and the columns are similarly constant in delay.

There is another mathematical operation that stores each interaction between two vectors.
2The procedure is simple: in MATLAB a single line can be written, fliplr(fftshift(Mg, 2)).

The inner function swaps the left and right halves of a matrix (the optional argument 2 indicates a swap
over the 2nd dimension of the trace); this effectively places zero delay at the center of the trace. The outer
function corrects the direction of time; this command is actually unnecessary for SHG FROG, since the trace
is symmetric in delay.
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The outer product of |𝑝⟩ and |𝑔*⟩ is defined

|𝑝⟩⟨𝑔*| =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑝1𝑔1 𝑝1𝑔2 · · · 𝑝1𝑔𝑁

𝑝2𝑔1 𝑝2𝑔2 · · · 𝑝2𝑔𝑁
...

... . . . ...

𝑝𝑁𝑔1 𝑝𝑁𝑔2 · · · 𝑝𝑁𝑔𝑁

⎤⎥⎥⎥⎥⎥⎥⎦ (3.32)

Note that for complex vectors ⟨𝑣| ≡ |𝑣⟩† = |𝑣⟩𝑇 * denotes the adjoint (transpose conjugate).

Eq. (3.31) does not include any conjugated factors, a fact we have anticipated in advance

by forming an outer product with the vector ⟨𝑔*| ≡ |𝑔⟩𝑇 . This additional conjugation is a

feature that will need to be tracked closely in writing retrieval scripts.

Comparison of Eq. (3.32) with Eq. (3.31) reveals a correspondence between the outer

product and the signal field. Being specific, if we already have two vectors |𝑝⟩ and |𝑔⟩,

then we can form a discrete signal field by forming the outer product, and then shifting the

rows of the resulting product to the left by the row number minus one. This is illustrated

conceptually as:

|𝑝⟩⟨𝑔*| =

⇐⇒⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦
𝑝1𝑔1 𝑝1𝑔2 · · · 𝑝1𝑔𝑁 0 ← 𝑝1𝑔1 𝑝1𝑔2 · · · 𝑝1𝑔𝑁

𝑝2𝑔1 𝑝2𝑔2 · · · 𝑝2𝑔𝑁 1 ← 𝑝2𝑔2 𝑝2𝑔3 · · · 𝑝2𝑔1
...

... . . . ...
...

...
... . . . ...

𝑝𝑁𝑔1 𝑝𝑁𝑔2 · · · 𝑝𝑁𝑔𝑁 𝑁−1 ← 𝑝𝑁𝑔𝑁 𝑝𝑁𝑔1 · · · 𝑝𝑁𝑔𝑁−1

⇐⇒

= 𝑀sig

(3.33)

where the arrows indicate by how many elements the rows of |𝑝⟩⟨𝑔*| must shift in order

to produce 𝑀sig. Note that a left/right shift leaves the factor 𝑝𝑚 in each matrix element

unaltered; the time 𝑡𝑚 is invariant over the rows, but the delay is not, as only the gate is a

function of delay. Since forming a FROG field from 𝑀sig can be done simply by computing

an FFT along each column, the salient result of this analysis is that up to some invertible

algorithm (involving row shifting, column re-ordering, and FFT’s), the outer product is
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equivalent to a discrete description of the FROG field 𝐸̃FROG(𝜔, 𝜏).

In the context of PCGPA, then, the mathematical-form constraint can be written

𝑀sig ∼ |𝑝⟩⟨𝑔*| , (3.34)

where the symbol ∼ in this context is used to denote equality up to some invertible algorithm.

We will refer to (3.34) as the discrete mathematical-form constraint.

PCGPA turns this development on its head, by framing the pulse retrieval problem as

follows: if we already have a FROG field, which two vectors form the corresponding outer

product? The remainder of this section is devoted to answering this question. We will find

that we can produce approximations to those two vectors, guesses for the probe and gate,

via a simple matrix multiplication.

To summarize, in a single iteration of the IFTA we will transform the outer product of

two guesses |𝑝⟩ and |𝑔⟩ into a FROG field, we will apply the data constraint, and then we

will apply the inverse transformation. The resulting matrix will be called the “outer product

form matrix” denoted 𝑂. Note that 𝑂 produces a spectrogram with the correct image (i.e.

magnitude, thanks to the data constraint), but itself has an arbitrary phase given by the

initial guesses.Thus 𝑂 is given by |𝑝⟩ and |𝑔⟩, and the program of PCGPA is a solution to

the equation

𝑂 = |𝑝′⟩⟨𝑔*′| (3.35)

for |𝑝′⟩ and |𝑔′⟩.

Unfortunately, by analogy with Eq. (3.26), it turns out that Eq. (3.35) also does not have

a closed form solution. The next section is dedicated to finding a reasonable approximation

to one.

3.2.3 Singular Value Decomposition

Here we state without derivation and for reference an important result from linear algebra:
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Any 𝑚 × 𝑛 matrix 𝑂 can be factored into the form 𝑂 = 𝑃Σ𝐺†, where 𝑃 is

𝑚 ×𝑚 unitary, Σ is diagonal, and 𝐺 is 𝑛 × 𝑛 unitary. This factorization is

called a singular value decomposition (SVD).

We will say more about unitary and diagonal matrices in Appendix B. The SVD is completely

equivalent to a linear combination of outer products. To quickly understand this equivalence,

we explicitly show the case for a 2× 2 matrix. Denoting the 𝑛th column of a general matrix

𝑋 as |𝑥𝑛⟩, with elements ( 𝑥1𝑛, 𝑥2𝑛, · · · , 𝑥𝑁𝑛 ), we can write:

𝑂 = 𝑃Σ𝐺† =
[︁
|𝑝1⟩ |𝑝2⟩

]︁⎡⎣𝜎1 0

0 𝜎2

⎤⎦[︁|𝑔1⟩ |𝑔2⟩]︁†

=

⎡⎣𝑝11 𝑝12

𝑝21 𝑝22

⎤⎦⎡⎣𝜎1 0

0 𝜎2

⎤⎦⎡⎣𝑔11 𝑔12

𝑔21 𝑔22

⎤⎦†

=

⎡⎣𝑝11 𝑝12

𝑝21 𝑝22

⎤⎦⎡⎣𝜎1 0

0 𝜎2

⎤⎦⎡⎣𝑔*11 𝑔*21

𝑔*12 𝑔*22

⎤⎦
=

⎡⎣𝑝11 𝑝12

𝑝21 𝑝22

⎤⎦⎡⎣𝜎1𝑔
*
11 𝜎1𝑔

*
21

𝜎2𝑔
*
12 𝜎2𝑔

*
22

⎤⎦
=

⎡⎣𝜎1𝑝11𝑔
*
11 + 𝜎2𝑝12𝑔

*
12 𝜎1𝑝11𝑔

*
21 + 𝜎2𝑝12𝑔

*
22

𝜎1𝑝21𝑔
*
11 + 𝜎2𝑝22𝑔

*
12 𝜎1𝑝21𝑔

*
21 + 𝜎2𝑝22𝑔

*
22

⎤⎦
= 𝜎1

⎡⎣𝑝11𝑔*11 𝑝11𝑔
*
21

𝑝21𝑔
*
11 𝑝21𝑔

*
21

⎤⎦+ 𝜎2

⎡⎣𝑝12𝑔*12 𝑝12𝑔
*
22

𝑝22𝑔
*
12 𝑝22𝑔

*
22

⎤⎦
= 𝜎1 |𝑝1⟩⟨𝑔1|+ 𝜎2 |𝑝2⟩⟨𝑔2|

This result is easily generalized, such that any matrix 𝑂 can be written as the linear combi-

nation:

𝑂 =
∑︁
𝑛

𝜎𝑛 |𝑝𝑛⟩⟨𝑔𝑛| . (3.36)

where the scalars 𝜎𝑛 are called the singular values of 𝑂; they have a geometric significance
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that we will not discuss.

In principle, the SVD provides a possible solution to the discrete mathmatical form

constraint: simply take the outer product form matrix 𝑂, produced from arbitrary guesses

for the probe and gate, and compute its SVD. If the guesses are correct, there will only be

one nonzero term in the linear combination, insofar as we know that a FROG spectrogram

is formed by a single outer product (via Eq. (3.34)).

Realistically, it is most likely that the arbitrary guesses will be incorrect, and the SVD will

produce 𝑁 nonzero terms in the linear combination. Nevertheless, if we interpret the singular

values as weights in the linear combination, then we can select the term with the largest |𝜎𝑛|

and use the corresponding |𝑝𝑛⟩ and |𝑔𝑛⟩ as next guesses for the probe and gate. This amounts

to saying that the outer product with the largest weight produces a spectrogram that looks

most like the true spectrogram formed by 𝑂 (compared to the other outer products in the

sum). The vectors which formed the outer product with the greatest weight are called the

principal components of 𝑂.

The approximate solutions provided by the principal components can be made into better

solutions by projecting onto their outer product form matrix the data constraint. Then, we

select the principal components of the updated matrix, and repeat. This is the description

of the IFTA in the context of PCPGA.

MATLAB includes a routine for computing the SVD of an arbitrary matrix. The issue

is one of computational cost: the SVD routine returns three 𝑁 ×𝑁 matrices where PCGPA

requires only two 𝑁×1 vectors. For large 𝑁 and a complicated spectrogram, this can result in

very slow retrieval times that require many iterations of the SVD. Instead, an approximation

for the principal components can be quickly computed with a simple matrix multiplication,

in a routine called the “power method”. We derive the method in Appendix B, but we state

the result here, since it is the approach we will use in our retrieval algorithm. In the power

method, the approximate solution to the discrete mathematical form constraint is provided

by:
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|𝑝′⟩ ≈ 𝑂𝑂† |𝑝⟩ (3.37)

|𝑔′⟩ ≈ 𝑂†𝑂 |𝑔⟩ (3.38)

3.2.4 Generating a First Guess

For complicated pulses, as we expect to encounter for RQPM-based second-harmonic gen-

eration, convergence of the algorithm is not assured. Rather than making several attempts

at a stubborn retrieval, we were able to improve our success rate by producing high-quality

guesses to seed the first iteration of the IFTA. The approach we took was based on the

Retrieved-Amplitude N-Grid Algorithmic (RANA) approach [7].

In order to produce a guess, we appeal to the frequency marginal. We showed in Section

3.1.1 that the frequency marginal of an SHG FROG trace is the autoconvolution of the

power spectrum, up to a factor of 2𝜋, which we neglect. That is, 𝑀̃SHG(𝜔) = 𝑆(𝜔) * 𝑆(𝜔).

Therefore in the time domain, we can describe the frequency marginal by:

ℱ−1{𝑀̃SHG(𝜔)} = ℱ−1{𝑆(𝜔) * 𝑆(𝜔)} = 𝑠2(𝑡) , (3.39)

which means,

𝑠(𝑡) = ±
√︁
ℱ−1{𝑀̃SHG(𝜔)} . (3.40)

Here, 𝑠(𝑡) denotes the transform dual of the spectral intensity3.

The RANA approach invokes the Paley-Wiener theorem, which for our purposes ensures

that 𝑠(𝑡) and all of its derivatives are continuous. To understand why this is a powerful

statement, note that computing 𝑠(𝑡) from Eq. (3.40) gives rise to an ambiguity about the

sign of 𝑠(𝑡0) at a particular time 𝑡0: it is either the value corresponding to the positive square

root or the negative one. By default, the square root operation in MATLAB returns vector

elements that all have a positive real part, saying nothing about which elements correspond

to which solution. Therefore, computing Eq. (3.39) alone does not produce a description
3Emphatically, not the spectrum, whose dual is simply 𝐸(𝑡).
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of 𝑠(𝑡) and additional constraints are required to build one. The RANA approach forms

a vector corresponding to 𝑠(𝑡) on an element-by-element basis by selecting from the two

possibilities the one which produces the smoothest curve.

In discrete notation, we start with a vector of data |𝑝⟩ corresponding to the positive

square-root in Eq. (3.40). Then we form a second vector |𝑚⟩ = − |𝑝⟩ corresponding to

the negative square-root. Lastly we form an additional vector |𝑠⟩ element-by-element; the

elements of which are denoted by 𝑠𝑛.

The first few elements are set equal to the first elements of |𝑝⟩, denoted 𝑝1, 𝑝2, 𝑝3. We could

just as well have set them equal to the first elements of |𝑚⟩, as the first several elements of

each vector are near zero anyways. Subsequent elements 𝑠𝑛 are selected recursively from the

(𝑛− 1)th element by checking which next element between 𝑝𝑛 or 𝑚𝑛, is nearer in magnitude

to the element 𝑠𝑛−1. As a measure of closeness, we mean that we are selecting the quantity

with the smallest magnitude between the two options ∆𝑝 = 𝑝𝑛− 𝑠𝑛−1 and ∆𝑚 = 𝑚𝑛− 𝑠𝑛−1.

This is our metric for ensuring continuity of 𝑠(𝑡) in a discrete space. If it happens that there

is ambiguity in the next choice, i.e. if ∆𝑝 ≈ ∆𝑚, then we can impose continuity of the

derivatives instead.

In the cited reference, the RANA approach was implemented by defining vectors com-

puted from the difference between the above elements and checking for which vector the

magnitude is smallest. This procedure was done up to a second derivative, with vectors

whose elements are defined by:

∆(0)
𝑝,𝑛 = 𝑝𝑛 − 𝑠𝑛−1

∆(1)
𝑝,𝑛 = [𝑝𝑛 − 𝑠𝑛−1]− [𝑠𝑛−1 − 𝑠𝑛−2]

∆(2)
𝑝,𝑛 = {[𝑝𝑛 − 𝑠𝑛−1]− [𝑠𝑛−1 − 𝑠𝑛−2]} − {[𝑠𝑛−1 − 𝑠𝑛−2]− [𝑠𝑛−2 − 𝑠𝑛−3]}

∆(0)
𝑚,𝑛 = 𝑚𝑛 − 𝑠𝑛−1

∆(1)
𝑚,𝑛 = [𝑚𝑛 − 𝑠𝑛−1]− [𝑠𝑛−1 − 𝑠𝑛−2]

∆(2)
𝑚,𝑛 = {[𝑚𝑛 − 𝑠𝑛−1]− [𝑠𝑛−1 − 𝑠𝑛−2]} − {[𝑠𝑛−1 − 𝑠𝑛−2]− [𝑠𝑛−2 − 𝑠𝑛−3]} ,

(3.41)

Rather than checking each of these quantities individually, we followed an approach used
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in the same reference, wherein the researchers selected 𝑠𝑛 from the vector |𝑝⟩ or |𝑚⟩ that

yielded the lesser value between the quantities:

𝜖𝑝 = 𝑐0 |∆(0)
𝑝,𝑛|2 + 𝑐1 |∆(1)

𝑝,𝑛|2 + 𝑐2 |∆(2)
𝑝,𝑛|2

𝜖𝑚 = 𝑐0 |∆(0)
𝑚,𝑛|2 + 𝑐1 |∆(1)

𝑚,𝑛|2 + 𝑐2 |∆(2)
𝑚,𝑛|2 ,

(3.42)

where the weights 𝑐0, 𝑐1, 𝑐2 were determined from a large number of empirical tests. The

weights which produced convergence for 100% of trials corresponded to 𝑐0 = 0.09, 𝑐1 =

0.425, 𝑐2 = 1. These are the same weights we used in our retrieval scripts, wherein we

construct 𝑠(𝑡) using Eqs. (3.41) and (3.42).

Having constructed a discrete description of 𝑠(𝑡), we can take a Fourier transform to

recover a description of 𝑆(𝜔). This means that we are able to compute the spectral intensity

from the frequency marginal, that is, directly from the spectrogram. By adding a random

phase to the computed intensity, we have a good first guess for the pulse spectrum, and thus

a first guess for the pulse.

We can illustrate the RANA approach with the sample pulse we modeled in Chapter

2. Fig. 3-1 shows the spectrum of that pulse calculated from an FFT overlaid with the

spectrum computed from the RANA approach. The agreement is not perfect, nor was there

perfect agreement between the spectra that were presented in the original papers. However,

the RANA approach clearly provides a reasonable estimate for the spectrum, which is conve-

nient in that it is computed directly from the spectrogram with no additional measurements

required.

Figure 3-1: Power spectrum computed from RANA approach: The legend entry
“calc” was computed by an FFT.
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Strictly speaking, we did not find that the RANA approach was necessary for convergence,

but it did improve our lot by producing a higher success rate. With a properly calibrated

delay axis, convergence occurred on every attempt.

In Chapter 2 we discussed the physical theory that underlies our experiments, and in

this chapter we outline the steps necessary to produce a description of the pulse from a

measurement. In summary, we have provided a framework for performing an interferometric

measurement and recovering a pulse. Chapter 4 reports on the results of measurements we

made in this framework.
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Chapter 4

Experiment

In this chapter we will describe the experimental implementation of the theoretical processes

described in Chapters 2 and 3. We will state and analyze results from each of the measure-

ments previously discussed, and at each step we will detail the associated difficulties. In

Section 4.2 we will describe our initial experiments, and the issues faced in measuring the

spectrum directly. Section 4.3 will be mostly oriented towards establishing a reliable de-

scription of the power spectrum. We will build an interferometric autocorrelation in Section

4.4, and from the trace we will make some predictions about the pulse’s temporal intensity

profile. The most comprehensive analysis will be provided by FROG in Section 4.5, where we

will recover a mostly-complete description of the pulse in both time and frequency domains.

The chapter concludes in Section 4.6 with an additional experiment to determine the sign

of the spectral phase, as well as a brief catalog of the measurements we made over various

input polarizations.

4.1 Optical Layout

The complete optical layout of our system is illustrated in Fig. 4-1. The system consists

of an ultrafast laser source, the inner components of which were illustrated in Fig. 1-1. To

review, the source produces pulses with a center wavelength of approximately 1.2 𝜇m at a

repetition rate of 80 MHz. Directly from the source, the pulses are directed into a two-

lens telescope (Thorlabs LA1257-C and Thorlabs LA1805-AB) in order to narrow the beam
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profile from a full-width-at-half-maximum (FWHM) of 6.8 mm to 2.6 mm in the transverse

direction. The practical purpose of the telescope is to facilitate easier alignment, since the

beam profile directly from the source is large and unwieldy for use with typical lab optics. In

the complete experiment, the pulse also traverses an autocorrelator and a prism compressor.

The latter two components are indicated to be separate blocks by the dashed lines in Fig.

4-1. The mirrors that direct the beam into each of these blocks are attached to flip-mounts,

which allow for the beam to selectively bypass either block during alignment, and during

other phases of the experiment. The flip-mounts are indicated by curved double arrows.

Figure 4-1: Complete optical layout: Through the use of flip mirrors (illustrated by
double curved arrows), we were able to bypass the interferometer and compressor as needed.
The detector is left vague in this figure, since it can be replaced by either a photodiode
or a spectrometer. This has the nice feature that we can easily make the transition from
one measurement to another, and it means that measurements were recorded at the same
position.

The autocorrelator consists of an interferometer in a Mach-Zehnder configuration with a

photodiode (PD) (Thorlabs PDA100A2) at the secondary output port. The beamsplitters

in the interferometer are both designed to impart low group delay dispersion (GDD) over a

spectral range from 1000-2000 nm (Thorlabs UFBS50502). The PD is used to dynamically

calibrate the delay stage in a process that we will describe in Section 4.3. The mirrors

in the signal arm of the interferometer are mounted onto a delay stage controlled by a

nanopositioner with strain gauge, operated in “open-loop” mode (Newport NPX200SG and

NPC3SG).

The stage operates by driving a piezoelectric (PZT) element inside the controller with an
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electrical signal from a function generator. The PZT is a crystalline material that expands

and contracts with applied voltage; the expansion and contraction has the effect of moving

the mirrors in the signal arm of the interferometer, which shortens and lengthens the beam

path periodically. The long duration of our pulse produces similarly long autocorrelation

traces, which required that we drive the stage at the maximum supported voltage, in order

to produce maximum displacement of the mirrors and maximum delay extent. For our

autocorrelations we used a 10 Vpp triangle wave at a low frequency 15 mHz driving frequency.

The low frequency sweep produced traces with high resolution. The sweep configuration for

FROG was different, and we will address its operation in Section 4.5. The controller includes

a monitor signal produced by a strain gauge, which acts as an indicator of the voltage across

the PZT and thus of the position of the stage along its sweep. The monitor voltage was used

in our first attempt at producing a delay axis, which was a troublesome procedure that we

will discuss shortly.

The compressor consists of two fused silica prisms designed for dispersion compensation

in ultrafast lasers (Thorlabs AFS-FS). The operation of a prism compressor is such that the

angular dispersion produced by the first prism can be a source of negative GDD, which can

compensate the positive GDD introduced by material dispersion. The second prism acts to

realign all frequency components to a similar propagation direction. A mirror at the back

end of the compressor makes the prism pair equivalent to a four prism sequence, the output

of which is nearly collinear with the input beam path. The output signal of the compressor

is slightly misaligned with respect to the input, so that a pick-off mirror can be used to

redirect it toward a different path.

The remainder of the system consists of a polarizer, a 10 𝜇m thick crystal of 𝛽-barium

borate (BBO) crystal with a strong second-order nonlinear optical response1, a colored-glass

bandpass filter (BPF), and a detector. The bandpass filter (Thorlabs FGS600) is designed to

pass signals in the wavelength range from 335 to 665 nm, thus enabling us to select the second-

harmonic output of the nonlinear crystal, as is necessary in a collinear arrangement. We can

easily remove the BPF to observe the fundamental component in an FTIR measurement.
1We do not say much about the theory of nonlinear optics in this paper. For our purposes, the BBO is a

material that, when illuminated by 𝐸(𝑡), produces two outputs 𝐸(𝑡) and 𝐸2(𝑡).
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Additionally, the setup includes a 15-mm focal length N-BK7 lens (Thorlabs LA1540-C)

in front of the BBO, which serves to tightly focus all of the optical power into the crystal.

This tight focusing enables us to produce a maximum SHG signal. A second lens (Thorlabs

LA1805-AB) is positioned shortly behind the crystal in order refocus the output onto a

detector. A kinematic-mounted mirror is the final optical component, and is used as a

steering mirror to guide the signal onto the detector. The system is configured in such a way

that we can easily exchange detectors between a photodiode and a spectrometer, depending

on the measurement.

4.2 Initial Measurements

Before launching our pulse into the autocorrelator, we made some simple measurements in

a direct path from the source to a detector, in this case a spectrometer (Fig. 4-2). The only

transmissive optical elements in this measurement are the two lenses that form the telescope,

a polarizer, and the two lenses that refocus the optical power onto the detector.

Figure 4-2: Direct-path layout: Compared to the complete layout in Fig. 4-1, all mirror
flip-mounts were in the down position, and we removed the nonlinear crystal and bandpass
filter. The latter two elements were reinserted for the measurement of the SHG spectrum.

We began by making a simple measurement of the pulse spectrum. The spectrometer we

used was a Blue-Wave Miniature Series model with measurement wavelengths in the 200-

1150 nm range, manufactured by StellarNet Inc.. The spectrometer was calibrated to an

integration time of 50 ms with smoothing disabled. The fundamental pulse spectrum from

our initial measurement is plotted in Fig. 4-3a.

Reinserting the BBO crystal and a BPF into the beam path gave us a direct measurement
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(a) (b)

Figure 4-3: Directly measured fundamental and SHG power spectra: The funda-
mental spectrum is shown in 4-3a. This signal appears finely structured, but we found
that this measurement was unrepeatable, in that the spectrum we ultimately recovered with
FROG extends past the bandwidth of the spectrometer. The SHG spectrum is shown in
4-3b. The latter signal was reliable and its measurement easily repeated.

of the second harmonic spectrum. The second harmonic signal was substantially weaker than

the fundamental, but we were able to easily observe it on the spectrometer with a slight

increase in integration time. This spectrum is plotted in Fig. 4-3b

Although we were able to observe a strong signal, we quickly faced a number of difficulties

in recording a reliable fundamental spectrum. First, we observed a substantial change in the

shape of the spectrum as we translated the entrance slit of the spectrometer in a direction

transverse to the beam path. The effect is illustrated in Fig. 4-4, which shows variation in

the spectral intensity as the alignment of the spectrometer is slightly altered over 6 random

positions in the beam profile. We first interpreted this result to suggest that the beam

exhibited a high degree of spatial chirp, a feature where certain frequency components were

more prominent than others at different positions in the transverse direction.

Although we later determined that this issue was more likely a fault of the spectrometer

bandwidth, we continued to attribute other measurement difficulties to spatial chirp, such as

an inability to produce total destructive interference in our FTIR (Section 4.3). In any case,

our final determination was that our spectrometer had insufficient bandwidth (with a cutoff

of 1150 nm) to accurately produce the fundamental pulse spectrum. On the other hand,

since the second-harmonic power spectrum is located near the center of the spectrometer

measurement range, we remained confident that we produced the SHG spectrum accurately
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and that our device was sufficient to record a FROG measurement.

Figure 4-4: Spatially-varying power spectrum: We observed a variation in the observed
power spectrum for six random positions of the spectrometer entrance slit.

The second unusual effect we observed was a dramatic change in the spectral intensity

with the input polarization. We will look more at the results of our polarization experiments

in Section 4.6. Neither of these effects were predicted, nor have we been able to characterize

them completely. Although the spatial effects mentioned above were not observed in the

second-harmonic spectrum, the unusual polarization effects persisted in the SHG signal.

4.3 FTIR

FTIR is the simplest interferometric measurement we made, in that it comprises a linear

system. However, despite the simplicity of the interferometer, our complex pulses introduced

compilcations to these measurements. Our first conclusive observation of this complexity was

the form of the FTIR trace.
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Figure 4-5: FTIR layout

Although we drove our controller with the maximum peak-to-peak voltage supported by

the PZT, we observed that the signal was not fully contained by our sweep. In other words,

the full autocorrelation trace could not be covered by the full range of our stage. This was

not a catastrophic failure of our system however, since from signal processing we know that

extending the range of a time domain signal has the effect only of increasing resolution in the

spectral domain. This means that while clipping the trace may be a source of lost definition

in our power spectrum, all of the most important structural features are recorded in the

center of the trace. Therefore, the range of our stage still produced a good approximation

to the power spectrum via an FFT.

Our interferometer was aligned so that the center of the autocorrelation corresponded to

the center of the monitor voltage sweep. The FTIR trace and monitor voltage are plotted

in Fig. 4-6. At a glance, the trace is even more structured than the multiple-peaked pulse

we modeled in Section 2.2.2, implying fine detail in the pulse intensity profile.
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Figure 4-6: FTIR signal

The FTIR-recovered power spectrum is plotted in Fig. 4-7. These two images provide us

our first insight into the complex structure of the pulse.

Figure 4-7: FTIR-recovered power spectrum

Before proceeding, we should note that initially we were not able to reliably produce

the spectrum in Fig. 4-7. In hindsight, we have determined that this issue was a result

of improper delay calibration. Being specific, we first modeled a very simple delay axis by

fitting a line to the controller monitor voltage and doing a unit conversion (Fig. 4-8a). The

conversion factor was estimated from the controller data sheet to be 𝐿 = 200 𝜇m/10 V.

The result of the conversion gave us a displacement axis that approximately corresponded

to the physical position of the signal mirrors. These were converted to delay via another

unit conversion given by 2𝐿/𝑐, where 𝑐 is the speed of light and the factor of two accounts

for propagation into and out of the signal arm (see Fig. 4-5).

The FTIR trace was plotted along this delay axis (uncalibrated) in Fig. 4-8b. Overlaid
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is precisely the same data plotted on a delay axis that was formed with dynamic calibration

(see below).

(a) (b)

Figure 4-8: The effects of delay axis calibration: 4-8a shows a linear fit to the controller
monitor voltage, which is easily changed into a delay axis via two conversion factors (see
main text).

The two traces in Fig. 4-8 appear very similar. Nonetheless, we find significant discrepancies

between the spectra recovered from the uncalibrated and calibrated delay axes, as shown in

Fig. 4-9. In hindsight, we have determined that the monitor signal indicates non-uniform

motion of the stage over its maximum and minimum displacement. We solved this problem

using dynamic calibration.

Figure 4-9: Delay axis calibration and the power spectrum

The procedure for dynamic calibration involves using the secondary output port of the

interferometer to measure mirror displacement via an optical signal. By transmitting the

secondary output signal through a narrow-bandpass filter, we can produce a “reference”
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trace that approximates one that would be produced by cw inputs (Fig. 2.15): a narrower

spectrum looks more like an impulse, and thus corresponds to a broader temporal extent.

Furthermore, over a narrow spectral band the time-domain oscillations in the trace should

be relatively unmodulated, that is, they should exhibit a stable wavelength 𝜆 corresponding

to the center wavelength of the BPF.

The filtered signal can be used to calibrate a delay axis by subtracting the mean value of

the signal and finding the zero crossings of the recorded data. Since the trace should cross

zero every 𝜆/2 units, this provides a precise measurement of the motion of the delay stage

synchronized with the measurement of the primary output.

For our dynamic calibration we used a BPF with a center wavelength of 1100 nm and a

FWHM estimated at 10 nm (Thorlabs FBH1100-10). The signal was recorded on a silicon

photodetector (Thorlabs PDA100A2). The resulting trace is plotted in Fig. 4-10a.

(a) (b)

Figure 4-10: Dyanamic calibration signal: 4-10a shows the signal observed at the sec-
ondary output of the interferometer. Despite the narrow BPF, the trace still decays to zero
at the edges, motivating the need for an even narrower filter. Fig. 4-10b shows the computed
zero crossings for a small portion of the signal. Each scatter point corresponds to a vector
element where the signal crosses zero, which for a narrow band signal occurs at a regular
spacing of 𝜆/2 throughout the entire duration of the trace (unmodulated). These crossings
give a direct measurement of the motion of the delay stage, and can be used to construct a
delay axis.

Dynamic calibration improved the quality and repeatability of our measurements substan-

tially, although further improvements could be made by using an even narrower BPF. Ideally,

the BPF would be narrow enough to produce a trace that appears to be cw over the entire
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extent of the delay sweep.

Another problem related to delay calibration was a determination of the correct center

wavelength of the measured spectrum. This issue was first observed when varying parameters

in the processing of the raw FTIR data. To understand this problem, note that when the

control stage reaches a maximum or minimum in its sweep, distortions may arise from the

sudden change of direction. As a solution, we clipped the trace at the edges to approximate

a more linear sweep, at the cost of spectral resolution (see discussion above). Depending on

the amount of clipping we chose, we observed an unexpected shift in the center frequency of

the spectrum.

We resolved this ambiguity by computing a center frequency from the independently

measured second-harmonic spectrum that we examined in section 4.2. By interpreting the

spectrum as a probability density function and computing its mean via Eq. (A.2), we de-

termined a second-harmonic center wavelength. This was easily converted to a fundamental

wavelength, which we used in aligning the spectra for all subsequent analysis in this thesis.

Fig. 4-11 illustrates the shift in center frequency as a function of trace clipping, with and

without correction. In the corrected panel, all spectra share a common center wavelength,

and a change in resolution is observed by increasing the extent of the trace, as expected.

(a) (b)

Figure 4-11: FTIR-recovered power spectrum with changing resolution: In 4-11a
we observe an unexpected shift in the center frequency, depending on the exact window size
our FTIR trace Also observed is a change in the trace resolution, which was expected. The
change is resolution is repeated in 4-11b, but in that figure each spectrum was positioned to
a common center frequency.
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In order to further compensate the limited range of the delay stage, we used a micrometer

in the reference arm of the interferometer to slightly adjust the position of the reference

mirrors. This had the effect of altering the center of the autocorrelation trace with respect

to the monitor voltage. We recorded two autocorrelations shifted to either side of center.

In MATLAB we pieced together an extended trace with a wider temporal extent, using the

peak of each as a reference point for stitching together the two signals. The extended trace is

plotted in Fig. 4-12a, with the spectrum shown in Fig. 4-12b. The spectrum is overlaid with

the original spectrum that was recovered with the clipped trace. While the temporal trace

in Fig. 4-12a appears seamless, we can observe from the red shaded region in Fig. 4-12b a

small disagreement between the two spectra. We attribute this disagreement to remaining

calibration issues.

(a) (b)

Figure 4-12: Extended FTIR signal and power spectrum

With further improvements to our calibration method, we may be able to produce better

agreement between the spectra in Fig. 4-12b, and therefore a better overall measurement

of the pulse spectrum. Nevertheless, the FTIR method provided a good sense of the spec-

tral structure of our pulse. We will compare the spectrum recorded in this section to a

power spectrum recovered by FROG in Section 4.5. The FTIR proved to the most reliable

measurement of the fundamental pulse spectrum apart from FROG.

Our confidence in this technique was bolstered by comparing the spectra recovered by

an FTIR measured on two different photodiodes. A photodiode is characterized by its

responsivity—or the amount of photocurrent it can produce per unit of input optical power—
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as a function of wavelength. The responsivity can be interpreted as a measure of the transfer

function of the photodiode, or its filtering characteristics. The photodetectors used in the

experiment described here are based on silicon (Si) (Thorlabs PDA10A2) and indium gallium

arsenide (InGaAs) (Thorlabs PDA10D2). The silicon detector has a responsivity that decays

in the neighborhood of 1100 nm, near the center of our pulse spectrum. On the other hand,

the InGaAs detector has a fairly flat responsivity over the entire pulse spectral region.

The responsivity of these two detectors was resolved by recording two FTIR traces, and

recovering the pulse spectrum from each. The responsivity raw data was taken directly from

Thorlabs, and is plotted as patched shaded regions in Fig. 4-13. The InGaAs-recovered

spectrum was shifted to a center wavelength that agreed with the independently measured

SHG spectrum, in the same method that was previously described. Due to the persistent

calibration issues, additional measurements were required in order to align the Si-recovered

spectrum, including re-shifting and appropriate normalization. Note that the results of

this experiment are not precise, but they are a good indicator of the quality of our FTIR

retrievals.
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(a) (b)

(c)

Figure 4-13: Detector responsivity resolved with FTIR: A trace was recorded on a
Si detector (blue) and an InGaAs detector (red). The light shaded regions indicate the
responsivity of each detector that was used to record the solid trace of the corresponding
color. Notice the Si responsivity decays in the neighborhood of the pulse spectrum, and so
the signal detected with Si becomes attenuated over those wavelengths. (The data provided
by Thorlabs does not extend completely into the spectral region of interest, but the trend is
clear.)

4.4 Interferometric Autocorrelation

In principle, the experimental transition from FTIR to interferometric autocorrelation in-

volves simply reinserting the BBO and BPF. In practice however, we found that the SHG

signal that was produced in the nonlinear element was too weak to overcome the electronic
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noise in the photodiode/oscilloscope circuit.

Figure 4-14: IAC layout

We overcame this problem by employing a technique common in optics involving a chop-

per and a lock-in amplifier (LIA), illustrated in Fig. 4-14. In short, the chopper modulates

the beam so that the PD detects a square wave whose frequency 𝑓𝑅 is related to the chopper

speed, and whose amplitude is the signal of interest. An electrical signal oscillating at 𝑓𝑅

produced by the chopper controller is used as the reference for a lock-in amplifier, and the

PD signal is used as the input. The LIA mixes the two inputs. Since the optical signal

was modulated by the chopper, it too has a fundamental component at 𝑓𝑅, and so it gets

downconverted to baseband. With lowpass filtering and amplification, the signal overcomes

the noise, and a measurement of the weak SHG signal can be made. The output of the

amplifier forms our interferometric autocorrelation trace, which we plot in Fig. 4-15. This

trace was produced by a Stanford Research Sytems SR830 set to a time-constant of 30 𝜇s,

a filter rolloff of 6 dB per decade, and a sensitivity of 200 mV. The amplifier was also set

to low-noise mode, and notch filters at the line frequency and twice the line frequency were

selected.
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Figure 4-15: Interferometric autocorrelation signal: The signal shows an erroneous
peak to background ratio of 6.7. From Section 2.2.2 we expected a ratio of 8. This immedi-
ately gave us concerns as to the quality of our measurement. Ultimately this proved to be a
simple matter of clipping, where the extent of the trace was insufficient to allow it to decay
to the true background.

In Fig. we extended the interferometric autocorrelation trace to a wider extent, in the

same way that we did with FTIR. This revealed that the peak to background ratio of 6.7 that

we observed in Fig. 4-15 was erroneous, since the true background was off scale. Increasing

the extent improved the ratio to 7.5. Fig. 4-16b shows the SHG spectrum recovered from

IAC against the same trace measured directly on a spectrometer. The IAC trace was shifted

so that its center wavelength aligned with that of the spectrometer measurement, and it was

normalized differently to highlight the areas of agreement. Although the main structure is in

agreement between the two measurements, we observe that this was not the most accurate

way to reproduce an SHG spectrum. We might have predicted this from our Section 2.2.2

analysis—specifically from Fig. 2-12 we see that the SHG component of the IAC spectrum

is dwarfed by the baseband component and the modulated first harmonic component. That

is, the signal to noise ration (SNR) is very low. FROG, by contrast, recovers the pulse from

the baseband term (with a much higher SNR), and so we will find that the SHG spectrum it

produces will agree much more closely with the spectrum produced by a spectrometer (Fig.

4-24).
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(a) (b)

Figure 4-16: Extended IAC trace with recovered SHG spectrum: In 4-16a we see
that the peak to background ratio improves to 7.5 (compared to value of 6.7 in Fig. 4-15)
after we extended the trace to include the true background. In 4-16b we compare the SHG
spectrum recovered from the second-harmonic band of the IAC trace with the spectrum
measured on a spectrometer. The IAC recovery was shifted in wavelength and normalized
to a peak of 1.5 (off scale) in order to improve the agreement. Better delay calibration may
improve the need for these adjustments.

4.5 FROG

With the autocorrelator and nonlinear optics already positioned, the experimental transition

to FROG involves simply replacing the photodiode with a spectrometer (and bypassing the

lock-in circuit). The experiment is illustrated in Fig. 4-17.

Figure 4-17: FROG layout

The ideal way to record a spectrogram involves driving the controller with the same
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parameters as used in our other measurements, that is, with a function generator. The

spectrometer should be automated to record the trace as the function generator produces

a smooth sweep over the delay stage. Such methods of recording a spectrogram “on-the-

fly” were studied in preliminary experiments. Unfortunately, the instruments in our setup

required us to incrementally shift the delay stage, wait for the spectrometer to record a

spectrum, and then repeat. The incremental motion of the delay stage can be unstable, and

we observed ringing in the dynamic reference signal. This also caused recording times to be

slowed dramatically, especially when recovering pulses from weak signals, which require an

increased integration time. Common recording times in our setup were around 20 minutes.

Finally, the incremental motion of the stage caused further problems in delay axis calibra-

tion for FROG. Ultimately this problem was resolved by finding a retrieval that converged

successfully with a dynamically calibrated axis and using that axis as a calibration for all

subsequent retrievals.

In order to build the system for recording a spectrogram, we first wrote a script in

MATLAB to interface with both the controller and the spectrometer. Once communication

was established, we set up a for loop to drive the controller with a linear sweep and to record

a spectrum for each driving voltage. Several failures were logged in the first attempts, which

were caused by user error due to improper calibration of the spectrometer. Calibration

parameters were not many, but included options for varying the integration time as well as

a default for “smoothing” the spectrum, which should be disabled.

With the spectrometer properly calibrated, we were able to successfully record a spec-

trogram. A good recording is plotted in Fig. 4-18a. This trace was recorded over 3500 delay

points at an integration time of 150 ms per delay point, averaged over 2 spectra for every

delay. In total, the raw trace had dimensions 2048× 3500, which is very large for a FROG

retrieval2. Fortunately, the SHG spectrum is fairly narrow compared to the bandwidth of

the spectrometer (350 - 1150 nm), so there were many redundant zeros in the trace. This

allowed us to crop the trace to a smaller size before attempting retrieval.
2Simple Gaussian pulses were reported to be retrieved successfully on traces as small as 64 × 64 in the

early days of FROG!
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(a)

(b)

Figure 4-18: Raw interferometric FROG spectrogram: Interference fringes are ob-
served in 4-18b, as expected from our analysis in Section 2.2.2.

A detailed view of the interesting portion of the raw spectrogram is shown in Fig. 4-18b.

Interference fringes are clearly observed, and are in good agreement with the form of the

theoretical trace we predicted from Fig. 2-14.

The first true sanity check on our measurement is provided by the delay marginal. Inte-

grating the spectrogram over the vertical dimension, we recovered a close match for the IAC

trace we recorded in Fig. 4-15. These results are plotted with a relative offset in Fig. 4-19.

Their agreement gave us confidence that the trace was recorded successfully.
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Figure 4-19: Interferometric FROG delay marginal

In order to recover the SHG FROG trace, we filtered the raw spectrogram according to

the methods we discussed in Section 2.2.2. Taking an FFT over each row of the raw trace gave

the 2-dimensional spectrum as a function of wavelength and delay-frequency shown in Fig.

4-20a. We plotted the square root of the spectrum in order to accentuate less intense regions

of the spectrum. In this figure we clearly observe the baseband, fundamental, and second

harmonic spectral bands. By selecting the baseband with a supergaussian filter applied over

each row, and then inverse Fourier transforming back to the wavelength-delay domain, we

recovered the image shown in Fig. 4-20b. Finally, we subtracted the background term which

can be taken either from the first or last column of the trace; this is the component at large

delay corresponding to 𝑆𝐵(𝜔) in Eq. (2.35). This gave us our first glimpse of the SHG

FROG trace contained within our measurement (Fig. 4-20c).
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Figure 4-20: SHG FROG trace recovered from raw spectrogram: In 4-20a, the
spectrogram was Fourier transformed over the delay direction. The baseband was isolated,
and then an inverse Fourier transform over delay produced 4-20b. To recover the SHG
FROG trace in 4-20c required subtraction of the final column of the resulting trace from
each column. The orientation of the vertical axis was also reversed to produce the image in
4-20c, which has been zoomed in to focus on the interesting portion of the trace.

4.5.1 Pulse Measurement Results

With the spectrogram processed, we began our retrieval attempts. The final trace size was

1024 × 1024 pixels. The delay direction was padded with zeros so that the fractions of the

trace in either direction filled by nonzero data were approximately equal. After zero padding,

the trace was interpolated over delay to a square trace. In order to produce a good guess for

the pulse, we implemented the RANA approach, discussed in Section 3.2.4. The algorithm

ran for 100 iterations on the full size trace, and converged in ∼ 20 seconds. The retrieval

was considered successful since the guess for the pulse produced a FROG trace that was in

close agreement with the measured trace. This is the most reliable method for evaluating a

retrieval, though it is a qualitative measure. The quantitative metric of success is stated in

Section 4.5.2.

The recovered pulse temporal and spectral intensity profiles are plotted in Fig. 4-21, along

with the temporal and spectral phase. The FWHM of the pulse intensity and the root-mean-

square (rms) width were in exact agreement at 125 fs. The rms width of the spectrum was
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measured to be 28 nm about a center wavelength of 1141 nm. This center wavelength is

shifted from the center of the main portion of the spectrum due to a significant second lobe

centered around 1120 nm. The rms width in both cases was computed from Eq. (A.3). The

center frequency was determined from the mean value of an independently measured SHG

spectrum using Eq. (A.2).

Figure 4-21: Retrieval results: 4-21a shows the measured SHG FROG trace, and the
recovered trace is plotted in 4-21b. The pulse temporal intensity profile and phase are
plotted in 4-21c. The spectral intensity and phase are illustrated in 4-21d.

The spectral intensity computed in the RANA approach was in fair agreement with the

spectral intensity computed from the FTIR and from FROG, although we do note that the

agreement was not perfect (Fig. 4-22). In the paper that introduced the approach, similar

disagreements between their spectra were noted [6].
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Figure 4-22: Comparison of FROG, FTIR, and RANA

4.5.2 Error Checks

The success of any FROG algorithm to accurately recover a pulse is characterized by an

error metric usually called the ‘𝐺 error’ [6]. Other names are the ‘FROG error’ and the

‘rms error’. This metric, as the latter names suggests, is the rms difference between the

spectrogram computed from the current guess 𝑆
(𝑘)
CALC(𝜔, 𝜏) and the measured spectrogram

𝑆FROG(𝜔, 𝜏). The difference is computed on a pixel by pixel basis for each iteration of the

algorithm. It is described by:

𝐺(𝑘) =

⎯⎸⎸⎷ 1

𝑁2

𝑁∑︁
𝑚=1

𝑁∑︁
𝑛=1

⃒⃒⃒
𝑆FROG(𝜔𝑚, 𝜏𝑛)− 𝑆CALC(𝜔𝑚, 𝜏𝑛)

⃒⃒⃒2
, (4.1)

where (𝜔𝑚, 𝜏𝑛) denotes the value in the 𝑚th row and the 𝑛th column of the discrete trace.

The magnitude of the 𝐺 error on its own is meaningless. However, compared to the value

between iterations, the 𝐺 error provides a quantitative metric for evaluating the success of

the retrieval. The 𝐺 error should always be reported with the size of the trace.

Our retrieval produced a minimum 𝐺 error of 0.013 on a 1024× 1024 matrix. A plot of

the 𝐺 error representative of this retrieval is shown in Fig. 4-23.
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Figure 4-23: 𝐺 error.

There are other checks we can perform to see if our recovered pulse is consistent with our

other measurements. First, we find that the second-harmonic spectrum computed from the

FROG recovery agrees very well with our spectrometer reading. This comparison is plotted

in Fig. 4-24.

Figure 4-24: SHG power spectrum computed from FROG: A directly measured SHG
power spectrum is overlaid with the same quantity computed from the FROG retrieval.

Next, we computed the autoconvolution of the power spectrum, and we compared the

result with the frequency marginal of our SHG FROG trace 𝑀̃(𝜆), in accordance with Eq.

(3.20). This autoconvolution was performed on spectra recovered via 3 different methods,

including the RANA approach, FROG, and FTIR. Agreement was good for the first two,

and poor for the latter, as shown in Fig. 4-25. The good agreement is expected since each of

the quantities under comparison were computed from the same data. The poor disagreement

in the FTIR autoconvolution may be related to the delay calibration issues noted in Section

4.3.
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(a) (b)

Figure 4-25: SHG FROG frequency marginal: Overlaid is 𝑆(𝜔) * 𝑆(𝜔) (plotted over
wavelength), where 𝑆(𝜔) was computed both from the retrieved pulse, and from the RANA
approach. In 4-25a we observe good agreement between the frequency marginal for 𝑆 *𝑆 and
the result from FROG and RANA. This agreement is not particularly enthralling, however,
since these measurements are self-referential in the sense that they were each computed from
the raw spectrogram: the recovered pulse creates the correct spectrogram, so of course it
creates the correct frequency marginal. The true test is a check against an independently
measured spectrum. 4-25b shows the same computation using the power spectrum recovered
from an FTIR, measured in an entirely different system. The disagreement is troubling;
however we note that the main double-peak feature is observed in both measurements.

Lastly, we repeat the comparison in Fig. 4-22 for only FROG and FTIR. Agreement

between these two quantities is arguably the best indicator of the overall quality of our

system: FROG is nonlinear, FTIR is linear; FROG is recorded on a spectrometer, and FTIR

is recorded on a photodiode. They form two distinct methods. In Fig. 4-26 we see good

agreement between the power spectrum that each measurement produced. As previously

noted, the most significant disagreement is in the relative size of the large “satellite” lobe

in the spectral region around 1120 nm. The size of this lobe varied from measurement to

measurement in the course of our experiments. This phenomenon remains unexplained.

76



Figure 4-26: FROG and FTIR comparison - The red shaded region indicated the dif-
ference between the two distinct measurements we made, and thus acts a a measure of
uncertainty in the precise shape of the spectrum.

4.6 Additional Measurements

4.6.1 SHG FROG Ambiguities

SHG FROG returns a complete characterization of an ultrafast pulse only up to a number

of trivial ambiguities. Before addressing these ambiguities, we should address a subtle point

about notation. In the FROG literature it is common to define the relationship between the

real field and the complex field as ℰ(𝑡) = Re{𝐸(𝑡)𝑒𝑖𝜔0𝑡}, so that 𝐸(𝑡) is the envelope function

[1]. We deviated from this convention in our previous analysis because it was a suitable way

to proceed from pure electromagnetics. This may seem problematic to our formation of the

spectrogram, until we note that in our notation the spectrogram can be written by inserting

our convention for an ultrafast pulse Eq. (2.18) into the expression for the SHG FROG trace

given by Eq. (3.2):

𝑆SHG
FROG(𝜔, 𝜏) =

⃒⃒⃒⃒∫︁
𝐴(𝑡) 𝑒𝑖𝜔0𝑡𝐴(𝑡− 𝜏) 𝑒𝑖𝜔0(𝑡−𝜏) 𝑒−𝑖𝜔𝑡 d𝑡

⃒⃒⃒⃒2
=

⃒⃒⃒⃒∫︁
𝐴(𝑡)𝐴(𝑡− 𝜏) 𝑒−𝑖Δ𝜔𝑡 d𝑡

⃒⃒⃒⃒2
,

(4.2)

where ∆𝜔 = 𝜔−2𝜔0 and a factor of 𝑒−𝑖𝜔0𝜏 was pushed through the integral and erased by the

magnitude-squared. The form of the spectrogram in Eq. (4.2) is equivalent to the definition

provided by Eq. (3.2) up to some frequency offset determined by the pulse carrier frequency.
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This means that FROG cannot resolve the carrier frequency in the first place, and it returns

only the envelope function of the pulse. In other words, our original notation for the trace

is equivalent to the conventional notation. For the remainder of this discussion we assume

the conventional notation wherein 𝐸(𝑡) is the pulse envelope returned by the algorithm.

It is important that we noted this distinction in order to understand a FROG ambiguity

that is inherent to SHG FROG, called the “direction-of-time” ambiguity, which results from

the fact that the SHG FROG trace is symmetric in delay. We can derive this fact by noting:

𝑆SHG
FROG(𝜔, 𝜏) =

⃒⃒⃒⃒∫︁
𝐸(𝑡)𝐸(𝑡− 𝜏) 𝑒−𝑖𝜔𝑡 d𝑡

⃒⃒⃒⃒2
=

⃒⃒⃒⃒∫︁
𝐸(𝑡′ + 𝜏)𝐸(𝑡′) 𝑒−𝑖𝜔𝑡′ d𝑡′

⃒⃒⃒⃒2
= 𝑆SHG

FROG(𝜔,−𝜏)

(4.3)

A successful FROG retrieval should produce an accurate description of the real field

ℰ(𝑡). The direction-of-time ambiguity tells us that even if a retrieval attempt converges,

we cannot be certain whether our recovery describes ℰ(𝑡) or ℰ(−𝑡). In terms of the pulse

envelope—which is the quantity returned by the algorithm—this is also an ambiguity in the

sign of the temporal phase. This can be seen by expanding 𝐸(𝑡) (which is complex-valued)

as 𝐸(𝑡) = |𝐸(𝑡)| 𝑒𝑖∠𝐸(𝑡). Then by definition we have:

ℰ(𝑡) = Re{𝐸(𝑡) 𝑒𝑖𝜔0𝑡} = |𝐸(𝑡)|
2

[︀
𝑒𝑖(𝜔0𝑡+∠𝐸(𝑡)) + 𝑒−𝑖(𝜔0𝑡+∠𝐸(𝑡))

]︀
, (4.4)

which implies:

ℰ(−𝑡) = |𝐸(−𝑡)|
2

[︀
𝑒−𝑖(𝜔0𝑡−∠𝐸(−𝑡)) + 𝑒𝑖(𝜔0𝑡−∠𝐸(−𝑡))

]︀
= Re{𝐸*(−𝑡) 𝑒𝑖𝜔0𝑡} . (4.5)

Thus, the direction-of-time ambiguity between ℰ(𝑡) and ℰ(−𝑡) is equivalently written as an

ambiguity between 𝐸(𝑡) and 𝐸*(−𝑡). The additional conjugation is an important detail

that must be tracked when performing computational tests on the pulse “as-recovered” or

time-flipped. We also mention that in the frequency domain an ambiguous direction-of-

time corresponds to an ambiguous sign-of-phase. This follows immediately from the basic

properties of the Fourier transform, which tell us that ℱ{𝐸*(−𝑡)} = 𝐸̃*(𝜔).

In order to more completely characterize our pulse, and to make predictions about its
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compressibility, we resolved the direction-of-time ambiguity with an additional measurement.

Specifically, we were able to imprint onto our pulse the predicted phase shift from a glass

sample. We chose for our sample 5 mm of zinc-selenide (ZnSe), which has a group delay

dispersion of around 2500 fs2 near our center wavelength of 1141 nm.

The procedure begins by adding to the spectrum of our recovered pulse 𝐸̃1(𝜔) the phase

shift from ZnSe denoted 𝜙ZnSe, which was computed from 𝜙(𝜔) = 𝜔𝐿 𝑛(𝜔)/𝑐. Here the

refractive index 𝑛(𝜔) was computed from the Sellmeier equation, 𝑐 is the speed of light in

vacuum, and 𝐿 is the thickness of the sample. The spectrum of the broadened pulse is

denoted by 𝐸̃𝑏(𝜔) = 𝐸̃0(𝜔) 𝑒
−𝑖𝜙(𝜔). Separately, we place a true 5-mm thick sample of ZnSe

into our beam path, and we perform another FROG retrieval. The spectrum of the recovered

pulse in this case is denoted 𝐸̃2(𝜔). The temporal equivalents of these spectra are denoted

𝐸1(𝑡), 𝐸𝑏(𝑡), and 𝐸2(𝑡).

Individually, both 𝐸1(𝑡) and 𝐸2(𝑡) are ambiguous about their direction, for a total of four

possible permutations. Together, the ambiguity can be resolved by comparing the profile of

𝐸𝑏(𝑡) to that of 𝐸2(𝑡) for each permutation of ℰ1(±𝑡) and ℰ2(±𝑡). Agreement exists for only

one permutation, as shown in Fig. 4-27. This agreement indicates the correct direction of

time for both retrievals.

Figure 4-27: Direction-of-time ambiguity: Four permutations are plotted corresponding
to possible directions for the recovered pulse and a separately recovered pulse after passage
through 5 mm of ZnSe.
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The resolved ambiguity is illustrated in the frequency domain in Fig. 4-28a. Note that our

pulse has a complicated intensity profile where the intensity nears zero more than once. The

phase is not defined when the intensity goes to zero, so FROG cannot resolve the value of the

phase in those regions. This makes sense intuitively by noting that FROG cannot resolve any

relative phase between the probe and gate (or a carrier-envelope offset), which follows from

the fact that a global phase factor 𝑒𝑖𝜙0 pushes through the Fourier transform operator, and

gets deleted by recording the intensity, i.e. |ℱ{𝐸(𝑡) 𝑒𝑖𝜙0}|2 = |ℱ{𝐸(𝑡)}𝑒𝑖𝜙0|2 = |ℱ{𝐸(𝑡)}|2.

Incidentally, this required us to zero all spectral phase plots in this thesis at the center of the

spectrum, for better comparisons. The upshot here is that the shape of the spectral phase

in each nonzero region is recovered accurately by FROG, but due to this so-called zeroth-

order phase ambiguity, the relative values of the phases between distinct spectral regions

are not known. Therefore the shape of ∠𝐸̃2(𝜔) agrees with ∠𝐸̃𝑏(𝜔) only up to some offset

which might vary between spectral regions. This same ambiguity is illustrated by plotting

the phase shift from ZnSe (minus the linear phase) along with the difference in the phases

between the two retrieved pulses.

(a) (b)

Figure 4-28: Sign-of-phase ambiguity: This is a spectral representation of the direction-
of-time ambiguity. “meas” denotes a quantity recovered by FROG, and “calc” denotes a
prediction. See main text for definitions.

4.6.2 Polarization Effects

The RQPM pulse we measured had a complex spatial profile. Indications of this complexity

were first noted by observing the beam profile on a near-infrared camera. We previously
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noted in this thesis that a source of complexity in the beam profile might be related to

spatial chirp.

We observed another unexpected effect in measurements related to the polarization of

the beam. Specifically, we observed that changing the polarization direction of the beam

significantly altered each of our measurements. We recorded FTIR, IAC, and FROG traces

for beam polarizations between -90 and 90 degrees from vertical, where vertical was defined

to be the direction normal to the optical table, and the positive direction was defined by a

right hand rule. Measurements were taken at increments of 10 degrees.

The polarization effect was first observed in the FTIR trace. The fact that the trace is

dependent on polarization suggests that the pulse spectrum varies with polarization. This

in turn implies that the pulse temporal profile differs among the polarization components

within the beam. Results of the FTIR measurements are plotted in Fig. 4-29.
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(a) (b)

Figure 4-29: Polarization effects observed in the FTIR: In Fig. 4-30a we polarized the
beam and observed changes in the FTIR. A change in the FTIR is accompanied by a change
in the power spectrum (4-29b). Polarizer degrees are defined with 0 degrees corresponding
to vertical, that is normal to the optical table (s polarization).

We then observed the polarization effects via changes in our IAC trace, as illustrated in

Fig. 4-30.
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Figure 4-30: Polarization effects observed in the IAC: Similar polarization effects were
observed in the IAC, as compared with the FTIR (4-29).

Lastly, we performed a FROG retrieval for the pulse observed at each polarization, with

the direction of time corrected by a supplemental measurement with ZnSe, per Section 4.6.1.

These recordings are cataloged in Fig. 4-31.
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(a) (b)

Figure 4-31: Polarization effects observed in FROG: A FROG retrieval was done for
each beam polarization observed in the previous two measurements (FTIR and IAC). In 4-
31a we observed the pulse temporal intensity profile changing with beam polarization. The
corresponding power spectra are plotted in 4-31b.
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Chapter 5

Outlook and Concluding Remarks

5.1 Compression

Of the many reasons for studying a pulse, one of the most important is determining whether

it is compressible. In order to understand compressibility, we must understand that the

spectral phase of a pulse is a major factor in determining the temporal shape. We will not

go into the analysis here, but if a pulse has large variations in its spectral phase, then it is

generally broader in time than the duration permitted by its bandwidth. In fact, a pulse with

a completely flat spectral phase corresponds to the shortest possible pulse duration, given

its particular power spectrum. A pulse with no phase variations is said to be transform-

limited.

The question of compressibility is therefore equivalent to a question of whether there are

any measures a researcher can take to manipulate the spectral phase of the pulse. There

are a number of methods for exploring this question, but the one we take here is based on a

simple sequence of prisms.

There is a straightforward derivation for the phase that a pulse would accumulate were

it to propagate through a compressor, given certain parameters that define the compressor.

If the phase on the pulse is suitable to manipulation, the possibility exists that the phase of

the compressor, when added to the phase of the pulse, can alter the pulse temporal profile

appreciably.

It can be shown that the phase introduced by propagation through a prism compressor
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is given by:

𝜙(𝜔) =
2𝜔𝐿

𝑐
cos (𝜃0 − 𝜃(𝜔)) . (5.1)

Here 𝐿 is the distance between the apices of the prisms in the sequence, 𝜃(𝜔) is the exit-angle

of the pulse with respect to the first prism, and 𝜃0 is the exit angle of the shortest frequency

component in the power spectrum, that is 𝜃0 = 𝜃(𝜔min). The parameter 𝜔min is determined

by inspection of the power spectrum.

The exit angle 𝜃(𝜔) can be derived from geometry. The expression we used is:

𝜃(𝜔) = sin−1

{︂
𝑛(𝜔) · sin

[︂
𝛼− sin−1

(︂
sin 𝜃𝐵
𝑛(𝜔)

)︂]︂}︂
. (5.2)

In Eq. (5.2), 𝑛(𝜔) is the refractive index of the prism glass, 𝛼 is the apex angle of the prism

(in our case provided by the manufacturer), and 𝜃𝐵 is the angle of incidence formed by the

pulse and the surface of the first prism in the sequence. We have labelled it 𝜃𝐵, because in

our configuration, it corresponds to Brewster’s angle, which is determined by the material.

First, we simulated the effects of a compressor with a apex separation of 𝐿 = 46.5 cm.

The prisms used for the simulation had an apex angle of 69.1∘ and were manufactured out of

fused-silica (Thorlabs AFS-FS). The manufacturer also provided Brewster’s angle, ≈ 55.6∘.

The refractive index of fused-silica was computed from a Sellmeier equation.

Separately, we built a prism compressor with specifications identical to those used in

our simulation. We performed another FROG retrieval, which ran for 100 iterations and

produced a minimum 𝐺 error of 0.004. The agreement between the recovered trace and

the measured trace was excellent, and the recovered power spectrum agreed with the power

spectrum before compression.
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Figure 5-1: FROG retrieval results for compressed pulse: 5-1a shows the measured
SHG FROG trace, and the recovered trace is plotted in 5-1b. In 5-1c the power spectrum
for the orignal pulse is plotted as a shaded region, with an orange trace overlaid, which cor-
responds to the power spectrum of the compressed pulse. These two quantites should agree,
since the compressor should only affect the phase. The legend entry “meas” corresponds to
the original retrieval, “calc” is the calculated phase after adding the phase of the compressor,
and “comp” is the retrieved phase of the compressed pulse.

Comparison of the temporal profiles is provided by Fig. 5-2. The figure shows excellent

agreement between our computation and measurement, and indicates that we have achieved

compression. The main double-peak with FWHM of 125 fs was compressed to a central peak

with a FWHM around 37 fs, albeit with significant satellite peaks. Additional calculations

suggest that other compressor configurations might reduce the intensity of the satellites. The

magnitude of the recovered pulse was set to match that from our computation, which saw a

factor of 1.95 increase with respect to the original pulse. The rms width decreased from 125

fs to 93 fs.
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Figure 5-2: Compressed pulse temporal profile. Shown are the profiles of the original
pulse, denoted by a shaded region with the label “meas”, along with the profile predicted
when the computed compressor phase was added, denoted by the blue trace with label “calc”.
The recovered compressed pulse is shown by the orange trace, with the label “comp”.

5.2 Conclusion

In this thesis we reported on the first measurement of an ultrafast laser pulse produced by

SHG via random quasi-phase-matching in polycrystalline ZnSe/S. We provided a theory of

operation for a number of ultrafast experiments, and outlined the procedure for carrying

out a pulse retrieval in a SHG FROG arrangement. We performed experiments using linear

optics and nonlinear optics, and we discussed their measurement at both a photodiode and

a spectrometer. We were successful at recovering a nearly complete description of the pulse

temporal intensity profile and spectral phase. Cross-referencing the results of the retrieval

with other measurements showed good agreement. We resolved an ambiguity inherent to

our experiment in an additional measurement which amounted to resolving the phase shift

from a known glass sample using FROG. We detailed the structure of the pulse, which has

a center wavelength around 1141 nm and a temporal extent of around 125 fs. We cataloged

a variety of pulse measurements corresponding to unusual and unexplained effects. Finally,

we were successful in our initial compression attempts, and we plan to explore more options

for compressing this pulse.
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Appendix A

Ultrafast Metrics

For simple pulse shapes and spectral intensity profiles, the center frequency can be taken

to be the frequency of maximum intensity. For complicated profiles, we measure the center

frequency by interpreting the spectral intensity as a probability density function. This

amounts to computing the mean value of the spectral intensity. The computation is a simple

extension of the discrete mean to continuous functions. The mean of an arbitrary distribution

𝐹 over the discrete index 𝑛 is given by:

𝐹av =

∞∑︁
𝑛=−∞

𝑛 · 𝐹𝑛

∞∑︁
𝑛=−∞

𝐹𝑛

(A.1)

For a distribution 𝑓(𝑥) over a continuous variable 𝑥, the mean is written as:

𝑓av =

∫︁ ∞

−∞
𝑥 · 𝑓(𝑥) d𝑥∫︁ ∞

−∞
𝑓(𝑥) d𝑥

. (A.2)

We will use Eq. (A.2) to compute the center frequency of a complicated power spectrum

𝑆(𝜈).

Additionally, the standard deviation can be used to give a sense of pulse width and band-

width. We will call this quantity the rms (root-mean-square) pulse width. For continuous

functions, this takes the form:
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∆𝑓rms =

∫︁ ∞

−∞
(𝑥− 𝑓av)

2 · 𝑓(𝑥) d𝑥∫︁ ∞

−∞
𝑓(𝑥) d𝑥

. (A.3)

We will report on our pulses using both the FWHM and the rms width.
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Appendix B

The Power Method

In addition to a singular value decomposition (SVD), this derivation requires that we take

for granted two additional results from linear algebra:

• By definition, a unitary matrix 𝑈 has the property 𝑈 † = 𝑈−1 ⇒ 𝑈𝑈 † = 𝑈 †𝑈 = 𝐼,

where 𝐼 is the identity matrix. The columns of 𝑈 also form an orthonormal basis for

C𝑛 (given that 𝑈 is an 𝑛× 𝑛 matrix).

• A diagonal matrix 𝐷 with real entries has the property 𝐷† = 𝐷, and thus 𝐷𝐷† = 𝐷†𝐷.

B.1 Eigendecomposition

Since Σ is diagonal, it follows that ΣΣ† = Σ†Σ ≡ Λ, where Λ is diagonal with real nonnegative

entries 𝜆𝑛 = 𝜎𝑛𝜎
*
𝑛 = 𝜎*

𝑛𝜎𝑛. We begin by showing that {𝜆𝑛} are the eigenvalues of both 𝑂𝑂†

and 𝑂†𝑂, with corresponding eigenvectors {|𝑝𝑛⟩} and {|𝑔𝑛⟩}.

Writing out the products explicitly, we have:

𝑂𝑂† = (𝑃Σ𝐺†)(𝑃Σ𝐺†)† = (𝑃Σ𝐺†)(𝐺††Σ†𝑃 †)

= 𝑃Σ(𝐺†𝐺)Σ†𝑃 † = 𝑃ΣΣ†𝑃 †

= 𝑃Λ𝑃 †

(B.1)
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𝑂†𝑂 = (𝑃Σ𝐺†)†(𝑃Σ𝐺†) = (𝐺††Σ†𝑃 †)(𝑃Σ𝐺†)

= 𝐺Σ†(𝑃 †𝑃 )Σ𝐺† = 𝐺Σ†Σ𝐺† =

= 𝐺Λ𝐺†

(B.2)

First addressing Eq. (B.1), we multiply on the right by an arbitrary column of 𝑃 , and

expand quantities as needed to make each point:

𝑂𝑂† |𝑝𝑛⟩ = 𝑃Λ𝑃 † |𝑝𝑛⟩ = 𝑃Λ

⎡⎢⎢⎢⎣
⟨𝑝1|
...

⟨𝑝𝑁 |

⎤⎥⎥⎥⎦ |𝑝𝑛⟩ = 𝑃Λ

⎡⎢⎢⎢⎣
⟨𝑝1|𝑝𝑛⟩

...

⟨𝑝𝑁 |𝑝𝑛⟩

⎤⎥⎥⎥⎦ . (B.3)

The set {|𝑝𝑛⟩} is orthonormal, meaning ⟨𝑝𝑛|𝑝𝑚⟩ = 𝛿𝑛𝑚, so the vector of inner products on

the right just returns the 𝑛th standard basis vector |𝑒𝑛⟩ = (0 · · · 1 · · · 0), where the nonzero

entry occurs at the 𝑛th index. (For example, in C3, we have |𝑒2⟩ = (0, 1, 0).) Plugging this

result in, we find:

𝑂𝑂† |𝑝𝑛⟩ = 𝑃Λ |𝑒𝑛⟩ = 𝑃

⎡⎢⎢⎢⎣
𝜆1 ⟨𝑒1|

...

𝜆𝑁 ⟨𝑒𝑁 |

⎤⎥⎥⎥⎦ |𝑒𝑛⟩ = 𝑃𝜆𝑛 |𝑒𝑛⟩ , (B.4)

where the form Λ =
[︁
𝜆1 ⟨𝑒1| · · · 𝜆𝑁 ⟨𝑒𝑁 |

]︁
follows from the diagonality of Λ and the final

step follows from the orthonormality of the standard basis. Thus, we have:

𝑂𝑂† |𝑝𝑛⟩ = 𝑃𝜆𝑛 |𝑒𝑛⟩ = 𝜆𝑛𝑃 |𝑒𝑛⟩ = 𝜆𝑛

[︁
|𝑝1⟩ . . . |𝑝𝑛⟩

]︁
|𝑒𝑛⟩ = 𝜆𝑛 |𝑝𝑛⟩ , (B.5)

where again, |𝑒𝑛⟩ picks out the 𝑛th column. Eq. (B.5) is an eigenvalue equation. Therefore

by definition the columns of 𝑃 are eigenvectors of 𝑂𝑂†, with corresponding eigenvalues

𝜆𝑛. By inspection of Eq. (B.2), the columns of 𝐺 are eigenvectors of 𝑂†𝑂, with the same

corresponding eigenvalues.
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B.2 Principal Component Analysis

Any vector |𝑣⟩ ∈ R𝑛 can be written as a linear combination of basis vectors. If we choose

our basis to be {|𝑝𝑛⟩}, then we can write:

|𝑣⟩ =
∑︁
𝑛

𝑐𝑛 |𝑝𝑛⟩ , (B.6)

for some scalars 𝑐𝑛. Multiplying on the left by 𝑂𝑂† gives:

𝑂𝑂† |𝑣⟩ = 𝑂𝑂†
∑︁
𝑛

𝑐𝑛 |𝑝𝑛⟩ =
∑︁
𝑛

𝑐𝑛𝑂𝑂† |𝑝𝑛⟩ =
∑︁
𝑛

𝑐𝑛𝜆𝑛 |𝑝𝑛⟩ , (B.7)

where the final step follows from Eq. (B.5) Multiplying on the left once more, we find:

(𝑂𝑂†)2 |𝑣⟩ = 𝑂𝑂†
∑︁
𝑛

𝑐𝑛𝜆𝑛 |𝑝𝑛⟩ =
∑︁
𝑛

𝑐𝑛𝜆𝑛𝑂𝑂† |𝑝𝑛⟩ =
∑︁
𝑛

𝑐𝑛𝜆
2
𝑛 |𝑝𝑛⟩ . (B.8)

This generalizes to arbitrary number 𝑚 of multiplications:

(︀
𝑂𝑂†)︀𝑚 |𝑣⟩ =∑︁

𝑛

𝑐𝑛𝜆
𝑚
𝑛 |𝑝𝑛⟩ . (B.9)

Here’s the rub: if 𝜆𝑗 is the largest of the eigenvalues (𝜆𝑗 > 𝜆𝑛 for each 𝑗 ̸= 𝑛), then for large

𝑚, 𝜆𝑚
𝑛 overwhelms the other eigenvalues, and we can say

(︀
𝑂𝑂†)︀𝑚 |𝑣⟩ ≈ 𝑐𝑗𝜆

𝑚
𝑗 |𝑝𝑗⟩. Better

yet, if we neglect the magnitude (we really only care about the magnitude relative to the

other eigenvectors, and in practice we normalize our results anyway), then we can write:

(︀
𝑂𝑂†)︀𝑚 |𝑣⟩ ≈ |𝑝𝑗⟩ . (B.10)

An exactly analogous development shows that, we also can write:

(︀
𝑂†𝑂

)︀𝑚 |𝑣⟩ ≈ |𝑔𝑗⟩ . (B.11)
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B.3 PCGPA

Finally we are prepared to contextualize the results given by Eqs. (B.10) and (B.11). Since

in our approximation 𝜆𝑗 ≫ 𝜆𝑛 for all other 𝑛, it follows that |𝜎𝑗| ≫ |𝜎𝑛|. If we interpret 𝜎𝑛

as weights in the linear combination given by Eq. (3.36), then that equation reduces to a

simple form:

𝑂 ≈ 𝜎𝑗 |𝑝𝑗⟩⟨𝑔𝑗| . (B.12)

Eq. (B.12) is of the same form as the discrete mathematical form constraint given by

Eq. (3.2.2), up to a factor of 𝜎𝑗 which we drop in normalization. Therefore, Eqs. (B.10) and

(B.11) provide our approximate solutions. Explicitly,

|𝑝′⟩ ≈ 𝑂𝑂† |𝑝⟩ (B.13)

|𝑔′⟩ ≈ 𝑂†𝑂 |𝑔⟩ (B.14)
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Appendix C

Selected Computational Aspects

Besides the obvious experimental skills needed to perform the measurement of an ultrafast

laser pulse, certain computational skills are also a necessity. The laboratory experiment itself

produces an image of a spectrogram, or more fundamentally, a matrix of data. Obviously

a number of numerical techniques must be deployed in order to properly manage this data

and to transform it into the information we ultimately seek. Specifically, in order to recover

the pulse completely, we have written a number of scripts which accomplish the tasks of:

processing the raw data; performing the retrieval algorithm; and interpreting the recovered

data. Each of these scripts of course includes a host of nested scripts and functions to perform

individual tasks. Many of these are straightforward, but in this chapter we will discuss some

of the more crucial aspects of computation that are perhaps less trivial (or obvious) than

others.

C.1 Change of Coordinates

Ordinarily, spectrometers measure a spectrum against wavelength. The FROG retrieval

algorithm involves iteratively transforming the spectrogram between the time and frequency

domains, that is, not between the time and wavelength domains. Thus, we need a way to

convert a spectrum between wavelength and frequency; mathematically this is accomplished

by a change of coordinates. In addition to simply changing the independent variable, this

involves scaling the spectrum by a factor called the Jacobian.
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We can better understand this problem by noting that by conservation of energy, the

integral of the power spectrum over frequency (the signal energy) must equal the integral

over wavelength (also the signal energy), that is,

∫︁
𝑆(𝜈) d𝜈 =

∫︁
𝑆(𝜆) d𝜆 . (C.1)

This equation must hold over any wavelength (frequency) range, no matter how small, which

requires

𝑆(𝜈) d𝜈 = 𝑆(𝜆) d𝜆 , (C.2)

or

𝑆(𝜈) = 𝑆(𝜆)

⃒⃒⃒⃒
d𝜆

d𝜈

⃒⃒⃒⃒
. (C.3)

where the absolute value brackets are required in the case of a negative derivative (the power

spectrum is strictly nonnegative—see below). Rather than plugging in for this derivative,

note again that the spectrometer provides wavelength data, meaning 𝜆 is the independent

variable, and we need our derivative to reflect that fact. Therefore, we instead write:

𝑆(𝜈) = 𝑆(𝜆)

⃒⃒⃒⃒
d𝜈

d𝜆

⃒⃒⃒⃒−1

. (C.4)

Noting that 𝜈 = 𝑐/𝜆, and d𝜈/d𝜆 = −𝑐/𝜆2 (notice the need for the absolute value brackets)

we end up with:

𝑆(𝜈) = 𝑆(𝜆)
𝜆2

𝑐
. (C.5)

So in this case, the Jacobian scaling factor is given by 𝜆2/𝑐. In pre-processing, the

experimental FROG trace is processed for retrieval, and so we employ the change of coor-

dinates described above. In post-processing, we wish to display our recovered data against

wavelength, which involves the inverse change of coordinates. The Jacobian for the latter

transformation is simply 𝜈2/𝑐.

When it comes to computations involving data that are inevitably discrete, scaling the

spectrogram is only half of the story. Notice that since 𝜈 and 𝜆 are not linearly related,
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a discrete collection of data uniformly distributed in one domain will not be uniformly

distributed in the other, even after scaling by the Jacobian. This problem is nicely illustrated

by considering a double pulse, whose power spectrum is shown in Fig. C-1 below.

Figure C-1: Computational aspects involved in a discrete change of coordinates: A
power spectrum against wavelength is simulated in (a). In (b), the Jacobian transformation
is applied, but the resulting data is not uniformly distributed. Plots (b) and (d) convey the
same data, but in (d) and abscissa is not specified, so the plot is skewed. Conversely, (c)
shows a spectrum that was interpolated to a uniform frequency distribution, and (e) shows
the same plot without an abscissa specified. The fact that they are identical emphasizes that
(c) on its own indeed conveys uniformly distributed data.

In Fig. C-1a, we have plotted an example of a simulated power spectrum against wave-

length, as might be recorded by a spectrometer. The plot was created in MATLAB using

the command plot(y, Sy), where y denotes discrete wavelength data provided by the

detector. Fig. C-1b shows the same spectrum against frequency using the prompt plot(v,

Sv), where Sv is equivalent to Sy only scaled (vertically) by the Jacobian, the frequency

vector was computed using v = c/y, and c was specified to be the speed of light in vacuum.

Visually, this plot is scaled correctly, but this illusion is only accountable to the plot()

command, which allows us to specify the abscissa (horizontal axis). Notice the problem:

the data are not uniformly distributed, so the shorter frequencies (longer wavelengths) be-

come much more tightly packed than the higher frequencies (shorter wavelengths). This

is an artifact of the way we computed the frequency vector, which is an obvious result of

the relationship 𝜆 ∝ 1/𝜈. This problem is further emphasized by comparing figure C-1b to

C-1d, the latter of which plots the same exact data without specifying the abscissa, i.e. by

commanding plot(Sv). The data in this plot only appear to be uniformly distributed, but

they are not scaled correctly in the horizontal direction.

This becomes a particularly salient problem when we think about the spectrogram. If we
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did not provide a solution, then the “correct" image of the spectrogram would require some

pixels to be larger than others, in the same way that some data spacings are larger than

others in Fig. C-1b. This is of course not sensible. Moreover, note that the image is simply

a way of viewing the spectrogram—the spectrogram itself is no more than a matrix of data.

The algorithm does not include any features for determining how the data are distributed.

All data are assumed by the algorithm to be uniformly distributed, so the data we provide

to it need to be distributed as such.

To solve this problem, we need to interpolate the data. In brief, this involves creating

a vector of frequency points that are uniformly distributed over the same frequency range

vUniform, and then prompting SUniform = interp1(v, spectrum_v, vUniform).

The result is shown in Fig. C-1c. For comparison, Fig. C-1e was generated using the

command plot(SUniform) without specifying the abscissa. Notice the two figures are

identical, indicating that the data in Fig. C-1c are indeed uniformly distributed.

As a final word, we caution that the data plotted in Fig. C-1c were interpolated to a

frequency spacing that matches the minimum frequency spacing in Fig. C-1b, hence the

tightly packed data. This comes at the price of increasing the size of the data, which can

be very costly to the retrieval algorithm. If the spectrum is not too finely structured then it

is sufficient to interpolate over the same number of data points as the original spectrum. If

the data is finely structured, care must be taken that the interpolation does not average-out

any crucial spectral features.
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