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Abstract

On Design and Machine Learning Resiliency of Memristor- and eFlash-Memory-Based

Strong Physical Unclonable Functions

by

Shabnam Larimian

The emergence of the Internet of Things (IoT) has enabled an unprecedented expan-

sion of interconnected networks and devices over which a huge amount of personal and/or

sensitive data is carried. As a result, privacy and security issues are among the most sig-

nificant challenges in designing IoT devices. These challenges can hardly be addressed

using conventional cryptographic approaches because they rely on storing secret keys in

memories, which not only are vulnerable to physical and side-channel attacks but also

consume huge area and vast amounts of power.

Hardware-based security approaches such as physical unclonable functions (PUFs)

have attracted considerable attention as replacements for conventional methods. PUFs

are well suited to a wide spectrum of security applications including key generation and

authentication because they generate secure keys on the fly (rather than explicitly storing

any security-critical information). This is achieved by utilizing electronic devices that

entail inherent sources of randomness, which in turn help create unique keys for different

physical entities.

Recently, a variety of emerging nano-scale non-volatile memories are being explored

for use in the design of PUFs including memristors and embedded flash (eFlash) mem-

ories. The highly non-linear current-voltage characteristics and the inherent process

variations of these memory devices make them promising candidates for designing PUFs.

Additionally, the ultra-low power consumption and low computation time of these de-
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vices enable their use in applications with stringent requirements on energy efficiency

and throughput.

This dissertation presents memristor- and eFash-memory-based PUF designs that

show promising security characteristics such as near-to-ideal uniformity, diffuseness, ro-

bustness, and reliability. The robustness is verified by demonstrating the high output

randomness with the test suits of the National Institute of Standards and Technology

and by studying various machine learning attacks.

The specific contributions of this dissertation is that investigates several unexplored

areas in crossbar-memory-design PUFs, e.g., finding optimal design for maximizing ro-

bustness characteristics, studying the impact of the capacity of machine learning models

on robustness, and the impact of environmental change and thermal noise on reliability.
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Chapter 1

Introduction

With the fast and continuing development of Internet of Things, smart devices and inter-

connected networks have become ubiquitous for everyday tasks. In many of those tasks,

significant volume of personal and/or sensitive information is carried which raises secu-

rity and privacy issues. The conventional cryptographic approaches can hardly address

those challenges because they rely on storing secret keys in memories and assume that

the keys are unknown to adversary. However, it is difficult to uphold this assumption

because the memories are vulnerable to physical and side-channel attacks. Moreover, to

store the secret keys, the memories consume huge area and power. As a result, securing

a resource-constraint, integrated system is an ongoing challenging problem [1, 2, 3, 4].

As a replacement for conventional cryptographic approaches, hardware-based secu-

rity approaches such as physical unclonable functions (PUFs) have attracted substantial

attentions. PUFs utilize the inherent randomness in electronic devices to generate keys

on the fly rather than storing them in non-volatile memories which makes PUFs well

suited to variety of security applications such as key generation and authentication.

The conventional PUFs utilize uncontrollable process variation in conventional Complementary-

Metal-Oxide-Semiconductor (CMOS) fabrication technology. Process variations in purely

1



Introduction Chapter 1

CMOS analog circuits often limit computation accuracy and result in large performance

overheads due to over-designing and calibration techniques. As a result of scaling down

to nano region, the next generation of PUFs will be implemented using nano-electronic

devices ([5]) such as memristors ([6]) and flash memories ([7]) whose highly non-linear

current-voltage characteristics and the inherent process variations make them promising

candidates for designing PUFs. Moreover, the mentioned nano-electronic devices are

CMOS compatible and have ultra-low power consumption and low computation time

[8, 9].

This thesis contains several contributions to the field of PUFs. We have proposed two

techniques to boost memristor-based strong PUFs robustness against machine learning.

Furthermore, we present a lightweight, integrated flash-memory-based design of PUF and

true random number generator (TRNG) on a shared silicon which can be effectively used

in mutual authentication applications. Below are the summary of the chapters.

Chapter 2. In this chapter, after defining PUF, we discuss its main types, applica-

tions, and cryptographic metrics. Then, we briefly discuss how TRNGs are associated

with PUFs. Finally, we summarize the prior work on PUFs.

Chapter 3. Previous works have shown excellent prospects for implementing strong

PUFs with memristive crossbar circuits. In this chapter, we propose two techniques for

boosting the robustness of such PUFs to machine learning attacks. The general idea

behind both proposals is to maximize the contribution of each crosspoint device to the

PUF output to make the response less predictable. Specifically, we present results for

choosing an optimal ratio of selected rows and columns and investigate in detail the

improvements in robustness due to the balancing of device conductances in the crossbar

array. The effectiveness of the proposed algorithm for conductance balancing is confirmed

by modeling the response of two-sided PUF based on a 20×20 crossbar memristive circuit

with a multilayer perceptron network. Then, we explore some open questions which

2



Introduction Chapter 1

require in-depth analysis. Specifically, we quantify the effect of device nonlinearity and

device analog-tunability. We show that nonlinear, analog memristive PUFs outperform

the PUFs that have either linear or digital devices. Finally, we explore the effect of

stuck-at fault devices (non-ideal yield) on PUFs uniformity. Indeed, by modeling this

hardware imperfection, we show that the proposed algorithm results in a more-robust

PUF.

Chapter 4. In chis chapter, we present a lightweight, integrated design of flash-

memory-based PUF and TRNG on a shared silicon. Specifically, the randomness in

nonlinear I-V characteristics and temporal current fluctuations of embedded flash memo-

ries are exploited to generate static entropy (for PUF functionality) and dynamic entropy

(for TRNG functionality). A time-multiplexed architecture is designed to enhance the

security and expand the challenge-response pair space to 10211. Experimental results

demonstrate 50.3% average uniformity, 49.99% average diffuseness, and native ≤ 5% bit

error rate. Moreover, accelerated aging measurements is done for the designed PUF.

The measurements indicate stable PUF response after 900 minutes of baking at 85◦C.

The analysis of the measured data also shows strong resilience against machine learning

attacks and possibility for extremely energy efficient, 0.56 pJ/b operation.

3



Chapter 2

Preliminaries and Prior Work

Physically unclonable functions and true random number generators are two main cryp-

tography primitives. The former is used to implement secure secret key generation and

low-cost device authentication whereas the latter generate random numbers from a phys-

ical process.

This chapter presents a concise background on physically unclonable functions. After

defining physically unclonable function, its main types, applications, and cryptographic

metrics are discussed. Then, it is discussed how true random number generators are

associated with physically unclonable functions. Finally, the prior work on physically

unclonable functions are summarized.

2.1 Physically Unclonable Functions (PUF)

Nowadays, cryptographic keys are the foundation of secure cryptographic protocols

in electronic systems and are typically stored in non-volatile memories (NVMs). Because

the key is assigned by an outside source and stored in a NVM, it is vulnerable to be

copied and it is not trivial to maintain its security without dedicated protection.

4
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Physical unclonable function, or PUF, is a cost-effective alternative approach that

does not have the mentioned issues. Indeed, PUF is a class of hardware security prim-

itives that generates cryptographic keys by exploiting the inherent random variations

introduced during manufacturing process. Because the generated key is internal and is

not assigned by an outside source, it is infeasible to clone it and create an identical physi-

cal copy. This form of randomness is inexpensive to access and does not affect the original

functionality of the devices [10, 11]. Additionally, by leveraging intrinsic or extrinsic ran-

domness sources, PUF works as a one-way function that maps an input (challenge) to an

output (response). The set of generated challenge-response pairs (CRPs) are then used

in different applications. Below, PUF types (based on number of CRPs), applications,

and metrics are discussed.

2.1.1 Types

PUFs are typically classified as weak and strong based on the size of CRPs. This

usually corresponds to how the number of CRPs increases when device size increases

(scaling rate). Weak PUF has a small access-restricted CRPs (due to linear or polynomial

scaling rate) which means that the full set of CRPs can be read if an attacker holds

physical possession of the device. While it is not possible to reproduce the physical PUF

itself, the attacker can deduce the mapping function with the knowledge of observed

CRPs. Strong PUF, on the other hand, has huge number of CRPs (due to exponential

scaling rate) that prevents a full read-out of CRPs even if the attacker gains physical

access for a considerable time. This makes PUF mapping function resilient to learn or

reproduce [8, 12, 2].
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2.1.2 Applications

The most fundamental security applications of Internet of Things are key genera-

tion and authentication. Key generation (and key storage) requires a random source to

generate unique keys (and a protected memory to hide them from an attacker). Compar-

atively, authentication requires validity of the identifying information. Depending on the

application, either one-way or mutual authentication should be implemented. A com-

mon authentication approach relies on the challenge-response protocols where the verifier

provides a challenge and the prover provides the response to be authenticated. In this

section, some of the PUF security requirements for each of the mentioned applications

are reviewed.

Key Generation

Secure keys are typically generated by seeding pre-stored keys to pseudorandom num-

ber generators [13]. However, by using PUFs, the unique keys can be generated on the fly

which eliminates the need for key storage. Because this application typically needs a lim-

ited capacity and CRP space, weak PUF is a promising candidate for it. Additionally, in

this application, the generated keys should be reliable. Indeed, the PUF response should

be reproducible across process, voltage, and temperature (PVT) variations. Because no

error is tolerable in key generation applications, error correction codes and algorithms

are often applied to improve the PUF reliability. Furthermore, the weak PUFs being

considered in key generation application should have high throughput and low power

and area overhead [8].

6
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Authentication

For authentication applications, it is crucial for PUF to be unpredictable. Indeed,

the PUF should be both physically and mathematically unclonable. For this purpose,

the CRP space should be large enough to avoid man-in-the-middle attack by changing

the challenge after each run. Additionally, the PUF circuit should be complex enough

that it cannot be modeled or deduced even if an attacker has physical access to it and

observe a certain number of CRPs. As a result of the mentioned requirements, strong

PUFs are the best candidates for the authentication applications [8].

2.1.3 Quality Metrics

Assessing if a physical PUF behaves as a theoretically ideal PUF is not trivial. To

assist the evaluation process, several metrics are suggested over the years [14, 15, 16, 1,

17, 18]. Here, the main and common metrics are discussed.

Fractional Hamming Weight or Uniformity

The Hamming weight (HW) of a vector is the number of non-zero elements in the

vector. For a binary vector, HW is equal to the number of ‘1’s in the string. Because the

length of vector may vary, HW is normalized by dividing its value by the vector length.

This is called fractional Hamming weight (FHW) or uniformity (UF) and is calculated

as

FHW (R) = UF (R) =
1

|R|
HW (R) =

1

|R|

|R|−1∑
i=0

(Ri)

where |R| is the length of response vector. This metric is used to assess the PUF random-

ness by measuring the balance of its response vector and is usually reported in percentage.

The ideal value for UF is 50% indicating a perfect balance between possible responses

7
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(same number of ‘0’s and ‘1’s in a response vector). UF value that is either much below

or much above 50% can indicate that PUF responses are biased, and thus PUF might

have non-ideal behavior.

Fractional Hamming Distance or Diffuseness

The Hamming distance (HD) between two equal-length vectors is defined as the num-

ber of positions at which the corresponding elements are different. Because the length

of vector may vary, HD is normalized by dividing its value by the vector length. This is

called fractional Hamming distance (FHD) or diffuseness (DF) and is calculated as

FHD(Ri, Rj) = DF (Ri, Rj) =
1

|R|
HD(Ri, Rj) =

1

|R|

|R|−1∑
i=0

(Ri −Rj)

where Ri and Rj are two equal-length vectors of the same PUF under different challenges.

This metric is used to assess PUF randomness by measuring dissimilarity among response

vectors of the same PUF under different challenges and is usually reported in percentage.

The ideal value of diffuseness is 50% which shows the complete dissimilarity between

PUF response when different challenges are applied. This metric that represents self-

dissimilarity has little meaning in certain cases such as a weak SRAM PUF which has a

single CRP.

Uniqueness

Uniqueness (UQ) is another metric that assess PUF randomness. It measures the

dissimilarity of responses of different PUFs to the same challenge. Uniqueness is defined

as

UQ(R, R̄) =
1

|R|
HD(R, R̄) =

1

|R|

|R|−1∑
i=0

(R− R̄)

8
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where R and R̄ are two equal-length response vectors of different PUF under the same

challenge and HD is the Hamming distance of the two vectors. This metric is used

to assess how different PUFs respond uniquely to the same challenge. UQ is usually

reported in percentage and its ideal value is 50%. Any large deviations from this ideal

value demonstrate correlation between different PUF instances.

Bit Error Rate

Bit error rate (BER) is used to measure PUF reliability and reproducibility. BER

shows the difference between the same PUF response under the same challenge but

different situations caused by variation in temperature, variation in voltage, or noise.

BER is usually reported in percentage and its ideal value is 0% meaning that PUF

always produce the same response for a given challenge. When BER is not close to 0%,

excessive error correction is needed to reduce it, which is costly in terms of computation

time, energy consumption, and memory usage.

Entropy

In information theory, entropy, a basic quantity associated to any random variable,

is interpreted as the average level of information or uncertainty inherent in the variable’s

possible outcomes. Based on Shannon equation, entropy (H(X)) is defined as

H(X) = −
n∑

i=1

pilog2(pi)

where pi = P (X = xi) is a probability of a random variable X that can take on values

x1, x2,. . . , xn, pi ≥ 0, and
∑n

i=1 pi = 1. The entropy is expressed in the number of bits

that carry information. For example, in a truly random binary process (pi = 0.5), the

entropy is calculated as

9
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H(X) = −(0.5log2(0.5) + 0.5log2(0.5)) = 1

The maximum entropy (1 in a binary process) indicates the maximum uncertainty of

next response bit that is not observed yet [9, 19].

Correlation

Correlation is a metric that shows if the PUF output has any bias towards any of

its inputs. Although many of the above metrics indirectly represents correlation, it can

be directly calculated by the percentage of ‘0’s or ‘1’s in the output when one specific

input changes and the other inputs stay the same. The ideal correlation value if 50%

which means the output is 0 or 1 with equal probability regardless of the specific bit in

challenge.

National Institute of Standards and Technology (NIST) Test Suite

Various statistical tests can be applied to a sequence to evaluate its randomness by

assessing the presence or absence of a pattern which if detected would indicate that the

sequence is not random. The National Institute of Standards and Technology (NIST)

test suite ([19]) is one of the online public statistical packages consisting of sixteen tests

that is developed to test the randomness of binary sequences by calculating P-value.

P-value is the probability that a sequence less random than the tested sequence can be

generated. The P-value of 1 indicates that the sequence is perfectly random while the

P-value of 0 means that the sequence is completely non-random. A significance level can

be chosen as a threshold for P-value so that any value higher/lower than that indicates

that the sequence is random/non-random. Typically, the significance level is chosen in

the range of [0.001, 0.01]. The significance level that is used in NIST test suite in this
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thesis is 0.01. This means that if the P-value of a sequence is greater/less than 0.01, the

sequence passes/fails that test.

Predictability (Machine Learning Test)

An ideal PUF should be unpredictable to attackers. To perform predictability analy-

ses, machine learning (ML) models are considered as they are currently the most effective

attack form for strong PUFs [13]. The machine learning models would be trained on a

subset of CRPs and then would be tested on a mutually exclusive subset of CRPs. The

input and output of the machine learning models would be connected to the challenge

and response of PUF, respectively. For a single-output PUF, different binary classifiers

such as logistic regression (LR), support vector machine (SVM), and multilayer percep-

tron (MLP) can be used. In an ideal PUF, the accuracy of the ML test should be 50%

which means that the attacker cannot model the PUF by accessing a subset of CRPs.

The LR algorithm uses logistic (sigmoid) function to find the relationship between

input and output. The sigmoid function is an S-shaped curve that can take any real-

valued number and map it to a value between 0 and 1. LR is mostly used for a linear-

separable data. Therefore, it might not be the best ML algorithm for strong PUFs where

the output is a nonlinear function of the inputs.

The SVM algorithm creates a hyperplane or line (decision boundary) which separates

data into classes. It uses the kernel trick to find the best line separator (decision boundary

that has same distance from the boundary point of both classes). In other words, SVM

tries to reduce the error by finding the best margin (distance between the line and the

support vectors) that separates the classes. Although SVM is a more powerful way

of learning complex nonlinear functions (comparing to LR), it runs very slow on huge

amount of data. As a result, for a PUF with huge exponential CRP space, SVM is not

the most efficient ML algorithm.
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The MLP algorithm is a class of feedforward neural network consists of at least three

layers: an input layer, a hidden layer, and an output layer. Except from the input

nodes, each node is a neuron that uses a nonlinear activation function (e.g. sigmoid).

MLP uses backpropagation technique for training. Because MLP has multiple layers

and utilizes nonlinear activation function, it can be used to distinguish data that is not

linearly separable. That is why, MLP is a good ML algorithm candidate to asses the

predictability of strong PUFs.

Based on the PUF design, the attacker can choose any ML algorithm to model PUF

behaviour. An ideal PUF should be resilient to any type of ML algorithms. In other

words, the trained ML model should ideally has 50% accuracy on the unseen data meaning

that the attacker cannot model the relationship between the input and the output of PUF

using ML algorithms.

2.2 True Random Number Generator (TRNG)

It is important to mention that the process variation explained in Section 2.1 can be

a source of randomness for true random number generators (TRNG) as well. Indeed,

process variation leads to two types of random behavior namely static and dynamic.

While the static response behavior is used in PUF applications, the dynamic response

behavior (which is mostly due to the very small differences in operating conditions and

circuit noise) is used in TRNG applications. These two randomness sources can be

combined in a circuit and provides both PUF and TRNG functionalities for cryptography

applications. The unified design will be very efficient in terms of area, power, and energy

[16].

In order to evaluate the statistical properties of TRNG output, different metrics need

to be calculated and measured. In this section, three of well-known quality metrics are
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reviewed and defined which ensure the presence of cryptography quality randomness.

The first metric to evaluate the TRNG output sequence is NIST test suite that is

explained in detail in Section 2.1.3. NIST test suite consists of sixteen tests to evaluate

randomness of a binary sequence. The generated TRNG sequence should pass all of the

designed test with a sufficient significance level, so that we can use it in cryptographic

applications.

The second metric to evaluate the predictability of TRNG output sequence is ML

algorithms. In TRNG applications, we want to make sure the output is not predictable

given the previous part of the output sequence. Due to the importance of past output

bits, history-based ML algorithms such as long short-term memory could be used. In

these algorithms, the output sequence of TRNG sequence would be used for both input

and output [20]. Specifically, N adjacent bits within response sequence are used as one

input, whereas the immediate bit after the input bit sequence is used as the output.

Ideally, the ML accuracy should be 50% for the TRNG output sequence meaning that

the output is not predictable even if the past N bits are given.

The third metric that is used to evaluate TRNG output sequence is auto-correlation.

Auto-correlation is a mathematical metric that identifies randomness of a sequence as

well as independence of each bit of the sequence with respect to the previous bits.

Auto-correlation (RXX [k]) is calculated by the expectation between two sub-sequences

of TRNG output sequence (x) that are separated by k-lag. Auto-correlation can be

rewritten as

RXX [k] =
E[xi − µ, xi+k − µ]

σ2

where k ∈ [1 − N,N − 1] is the lagged interval, N is the length of sequence x, µ and σ

are the mean and the standard deviation of x. In an ideal case, the auto-correlation of
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a random sequence has a zero auto-correlation for k 6= 0 and has maximum value of 1

when k = 0. This means that each sub-sequence has no correlation with the other lagged

sub-sequences, resulting in a totally random sequence.

2.3 Prior Work

Pappu et al. [21] introduced an optical PUF where the output (response) is a func-

tion of the input laser location/polarization (challenge). The optical PUF requires large

external measurement devices and is difficult to be integrated on resource-constrained

hardware device. Additionally, its reliability is highly dependent on the accurate calibra-

tion of the input location.

Gassend et al. [22] then proposed the Arbiter PUF (APUF) which generates re-

sponse based on the time difference between the two signal paths. The APUF consists

of serially connected individual stages, where the path through each stage is determined

by the input bit vector. Because the APUF is based on linear additive blocks, it is

vulnerable to modeling attacks if an adversary gain access to the CRPs [23, 24]. To in-

crease the complexity of such modeling attacks, some variants of the APUFs such as the

XOR-APUFs ([23, 25]) and feed forward APUFs ([23, 26]) are proposed. To implement

APUFs, latches are used which can cause meta-stable state, leading to poor reliability.

To overcome the meta-stability issues, another type of delay-based PUFs, namely Ring

Oscillator PUF (ROPUF) is proposed in [22, 25]. The ROPUF contains ring oscillators

which are connected to two counters through two multiplexers. The select lines of the

multiplexers become the challenge input to the PUF design. The counters count the

number of oscillations. The comparison between the two counted number generate the

output (either 0 or 1). Due to the manufacturing variations in the fabrication phase, the

oscillation frequencies will not be the same for all ring oscillators, so the output bit will
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change each time that two ring oscillators are selected through the multiplexers. The

proposed ROPUF design is then improved in [27] and [28]. [29] includes an overview of

different ROPUFs.

In addition to the delay-based PUFs, there are other types of PUFs such as traditional

memory-based PUFs (e.g. SRAM). As explained in [30, 31], a SRAM cell consists of six

transistors whose initial random states determine the PUF output when power is applied

to the SRAM cell. The overview of other conventional PUF architectures is studied

in [1] and [14]. The mentioned conventional PUFs exploit uncontrollable process vari-

ation in conventional Complementary-Metal-Oxide-Semiconductor (CMOS) fabrication

technology.

Although the conventional CMOS-based PUFs are well established in industry, the

technological developments are particularly important for building PUFs. As a result,

the next generation of PUFs will be implemented using emerging nano-electronic devises

[5]. Nano-technologies such as memristors ([6]) and flash memories ([7]) provide new

opportunities due to severe inherent randomness (as a result of scaling down to nano

region), low-energy consumption, simple fabrication, and CMOS compatibility [8, 9].

The memristor- and flash-memory-based weak PUFs operate based on the intrinsic

statistical (mostly in switching characteristics) properties of a single memory cell in an

array of devices (Figure 2.1). Therefore, the CRP space is a linear function of the

array size which makes the output predictable after observing a subset of the CRPs.

As shown in Figure 2.1, with each CRP, a challenge is used as the address to select

rows and columns. The response is then generated by comparing the resistance of two

selected devices or by comparing the current of the selected device with a reference current

[32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43]. Table 2.1 provides the comparison between

the experimental features of memristor- and flash-memory-based weak PUFs [8].

The memristor- and flash-memory- based strong PUFs operate based on the intrinsic
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Figure 2.1: Basic architecture of NVM-based weak PUF.

statistical properties (mainly device-to-device variations) of multiple memory cells in an

array or layers of arrays of devices. The basic idea is shown in Figure 2.2 where the current

of two paths (which includes the sneak-path currents) are compared with each other to

ensure that all the devices (selected, half-selected, and non-selected) are contributing to

the response.

Figure 2.2: Basic architecture of NVM-based strong PUF.

The first demonstration of the NVM-based strong PUF is proposed in [20, 44] which
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utilizes the variations in the nonlinear, analog tunable I–V characteristics of passive

memristors. The basic building block of the proposed PUF is a CMOS-compatible two-

level stack of 10x10 memristor arrays. In each CRP, 5 rows and 2 columns are selected.

Thus, the CRP space is
(
20
5

)
×
(
10
2

)
≈ 7 × 107. The experimental data for about 4 ×

107 collected CRPs show 50% uniformity, 50% uniqueness, 50% diffuseness, and 1.5%

reliability. Moreover, the responses pass NIST tests and show resiliency against a 30 ×

250× 250× 1 MLP classifier.

The proposed PUF ([20, 44]) has been then extended in [45] using the same source of

randomness. [45] consists of a 20× 20 memristors whose conductance values are chosen

from a Gaussian distribution. It is shown that the devices which have the tail values of

the distribution could result in a week bias in the output. To overcome this issue, two

auxiliary lines in the array are used to generate the response in two cycles. In the first

cycle, the currents sensed at the auxiliary columns are compared, and then, it is XORed

by the result of the generated bit in the next cycle to produce the final bit. This procedure

is introduced as resistive-XOR PUF (RX-PUF). RX-PUF show 50.04% uniqueness, 50%

diffuseness, and 4.1% reliability. In addition, the responses pass NIST tests. Moreover,

the results show that RX-PUF has high resiliency against a 40 × 500 × 500 × 1 MLP

classifier which is trained on a subset of observed CRPs (≈ 120 × 103) and then tested

on a mutually exclusive observed set (5 × 103). Table 2.2 provides the comparison the

experimental features of memristor-based strong PUFs [8].

2.4 Summary

We started this chapter with a description of PUF, its main types, and applications.

Next, we discussed the most important metrics by which the quality of PUFs is assessed.

Then, we discussed the description of TRNG followed by the main metrics by which the
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randomness of TRNGs are evaluated. Finally, we provided a summary of prior work on

PUFs.
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Table 2.1: Comparison of experimentally demonstrated memristor- and Flash-memo-
ry-based weak PUFs.
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Table 2.2: Comparison of experimentally demonstrated memristor-based strong PUFs.
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Chapter 3

Improving Machine Learning Attack

Resiliency via Conductance

Balancing in Memristive Strong

PUFs

As thoroughly explained in Chapter 2, among various emerging technology PUFs [8, 10],

the implementations based on memristive crossbar circuits are especially promising due

to their simple and low-cost fabrication process, small footprint, and CMOS integra-

tion compatibility [20]. Indeed, prior work has shown memristive strong PUFs with

superior resiliency against most powerful modeling attacks as compared to CMOS PUFs

[8]. Memristive PUFs utilize spatial device-to-device variations, e.g., in I-V nonlinearity

[20, 34, 45], in an array of memory cells to generate random responses. Promising results

were also reported for reliability and statistical properties of generated keys, as well as

physical performance. The main goal of this study is to further improve the robustness

of the memristive strong PUFs based on an architecture presented in [20], [45], [13].
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In addition to the PUF robustness improvement, some of the open questions in de-

signing the memristive strong PUFs are explored in this study. For example, the effect

of device nonlinearity and leakage current are quantified. Additionally, the impacts of

device analog-tunability, crossbar uniformity, and selection scheme are explored.

The rest of the word is organized as follows: Section 3.1 provides a brief overview

of the memristive strong PUF circuits. Section 3.2 and 3.3 describe the memristors

modeling approach and the evaluation metrics used in this study, respectively. Section

3.4 introduces PUF optimization methods and their results. Section 3.5 explores the

hardware imperfection. Finally, Section 3.6 is dedicated to the discussion and summary

of the work.

3.1 Background: Memristive Strong PUF

The focus of this study is on the strong PUF circuit (Figure 3.1), consisting of an

M×M array of 0T1R memristive crossbar array and its peripheral circuitry (SCs) used

for biasing specific rows and columns according to the applied challenge. The memristive

PUF circuit can operate in either one-sided [20, 35] or two-sided [46] approaches. The

one-sided scheme requires only half of the peripheral circuitry, e.g. left and bottom SCs

shown with blue color. Specifically, one bit of the output (i.e. response) is generated

when applying 2M bit input (challenge). The ’1’s in the first M bits of the input encode

the positions of “selected” rows (out of M total). Similarly, the remaining M bits specify

the position of “selected” columns. All selected rows are biased with a read voltage Vread,

all selected columns are grounded, while all the remaining lines (rows or columns) are

kept floating. The output bit is computed by comparing the total current flowing in the

left half of the selected columns IL to that of the right half IR, i.e. output is 1 if IR > IL

and 0 otherwise.
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With such a selection scheme, the devices can be classified according to the type of

rows/columns they are connected to. The device is called “selected” when both its row

and column are selected. The device is called “half-selected” when either its row (type

B) or its column (type A) are selected, while the other electrode is floating. The device

is called “non-selected” when both of its row and column are floating. Assuming that n

rows and m columns are selected in the M x M crossbar array, the total number of the

district CRPs is
(
M
m

)
×
(
M
n

)
, which is a very large number even fore moderate M, n, and

m values.

In the two-sided scheme, an output bit is generated in two phases. In the first

phase, one intermediate output bit is generated as discussed for the one-sided approach.

In the second phase, the input biases are applied to the columns, while currents are

read from rows to generate another intermediate bit, i.e. effectively using the same

single-sided design but with a rotated crossbar array by 90 degrees with respect to the

peripheral circuitry. The output bit is then generated by XORing these two intermediate,

independent bits. The two-sided PUF features a more uniform response, and hence more

robust to the machine learning attacks [13], though at the cost of halved throughput and

doubled the energy consumption.

To demonstrate the benefits of the two-sided approach over a one-sided one, the

response uniformity and yield of 2K CRPs of 25 instances for a variety of PUF sizes

are considered. The realistic values of target conductance distribution (mean of 8.3 µS

and standard deviation of 2%) are considered for all cases. The simulation results are

plotted in Figure 3.2. As shown in Figure 3.2a, the response uniformity of most of

the two-sided PUFs are near-to-ideal (50%) whereas the response uniformity of most of

the one-sided PUFs deviates from the ideal value. Additionally, Figure 3.2a shows that

response uniformity improves when the size of the PUF crossbar increases. Furthermore,

as shown in Figure 3.2b, the yield of the two-sided approach is more than two times
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Figure 3.1: The top level architecture of the two-sided PUF design based on passive-
ly-integrated (0T1R) memristive crossbar circuit. The crosspoint devices are colored
according to the types of crossbar electrodes that they are connected to.

higher than the yield of a one-sided one. The yield is calculated based on the number

of cases that pass the NIST frequency tests. Additionally, Figure 3.2b shows that yield

of the two-sided approach improves when the crossbar size increases. This trend is not

clear for the one-sided approach which may be due to the lack of the number of tested

instances.

Based on the results of this study, two-sided PUFs are considered for the rest of this

study.

3.2 Modeling Approach

In this study, the PUF metrics were estimated by assuming ideal peripheral circuits

and modeling the output currents of the crossbar circuit with the help of the SPICE tool

(the simulation setup is briefly explained in Appendix A). To model the memristor static

I-V characteristics, the nonlinear current via crosspoint device was approximated with a
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Figure 3.2: The effect of one-sided and two-sided approaches on (a) response unifor-
mity and (b) yield. In both approaches, the response uniformity improves and the
yield increases when PUF size increases.
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generic expression

I = a sinh(bV )

where a and b are constants that capture nonlinearity and device-to-device variations.

These constants were randomly indirectly initialized for each device of the crossbar cir-

cuit. Specifically, to make the choice of the nonlinearity and variations more intuitive

and representative of the real circuits, each device is characterized by the device current

at “tuning” voltage V = 0.25 V, and the nonlinearity NL, which is defined as

NL = I(0.25V )/I(0.1V )× 0.1V/0.25V

.

Unless otherwise specified, in all simulations in this study, NL is sampled from Gaus-

sian distribution with an average of 1.5 and a specific standard deviation. Additionally,

the device current at the tuning voltage is sampled from a Gaussian distribution with an

average of 33.3 µA and a specific standard deviation σ. After a unique NL and current

at 0.25 V has been assigned for each device, the constants a and b (and hence com-

plete unique static I-V characteristics) are derived. Note that the described approach

for choosing currents crudely corresponds to the uncertainty in the tuning process for

configurable PUFs [20, 45] as well as representative of the variations in the crosspoint

device conductances in the fixed-resistance PUFs based on the as-fabricated devices [46].

Also, note that the absolute values for the tuning currents are not important for this

particular study due to the focus on the functional characteristics of the PUFs and the

assumption of the ideal peripheral circuits.
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3.3 Evaluation Metrics

To assess the performance of the PUF, we consider three main metrics e.g. uniformity

(UF), NIST and predictability which are widely discussed in the literature [20, 17, 47].

Note that it is not feasible to measure bit error rate (BER) in this study because the

temperature variation and conductance drift models are not available. Additionally, note

that uniqueness is more relevant in evaluating experimental data. Furthermore note that

diffuseness is a weaker PUF metric as it stays near to ideal value (50%) even if other

metrics show low performance.

To perform predictability analyses, machine learning models are considered as they

are currently the most effective attack form for strong PUFs [13]. Memristive cross-

bar PUF has a nonlinear input-output relationship, a huge CRP space, and a time-

independent output response. As a result, multilayer perceptron (MLP) is chosen as an

attack over logistic regression (used for linear-separable data), support vector machine

(runs very slow for huge data), and recurrent neural network and long short-term mem-

ory (both use history of data). The studied MLP network consists of 2M inputs so that

the challenge can be directly applied to the MLP input, and one output, correspond-

ing to the PUF output, while the number of layers/neurons in the hidden layer(s) were

varied in the simulations. A rectified linear (sigmoid) activation function was used for

the hidden (output) layer neurons. The MLP classifier was trained and validated using

the conventional backpropagation method on 80% of the simulated CRPs. The trained

network is then used to predict PUF response on the remaining, mutually exclusive 20%

of the CRPs.
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3.4 PUF Optimization

This section first describes two proposed techniques for improving robustness against

machine learning attacks. The common rationale for both techniques is that PUF ro-

bustness is increased when all crosspoint devices in the crossbar equally contribute to

the output currents. The PUF response, in this case, would be a nontrivial function of

the input, which depends on the unique I-V characteristics of all devices in the crossbar

array. Furthermore, this section explores how the unique features of memristors namely

device nonlinearity and analog tunability excel PUF security metrics. Moreover, this

section studies the effect of crossbar size on PUF predictability.

3.4.1 Optimal Selection Ratio

This section proposes a technique to improve PUF robustness against machine learn-

ing attacks by maximizing the contribution of the current of all devices in IL and IR.

The requirement for the balanced contribution can be simplified to having currents via

selected devices similar to those via (type A) half-selected devices, given that the output

current is the sum of these two parts. The circuit parameters for having similar currents

can be found from the approximate equivalent circuit of the crossbar array (Figure 3.3a),

which is derived assuming negligible line resistance and similar static I-V characteristics

of all crosspoint devices. Using the approximate equivalent circuit, the selected current

and the leakage current can be written as s2M2a sinh(bVS) and s(1−s)M2a sinh(bVHSA),

respectively.

Our preliminary analysis for the considered average NL shows that selection ratios

n/M = 0.25 and m/M = 0.2, i.e. n = 8 and m = 6 for M = 32, are close to the optimal

values. To see if these selection ratios actually lead to the maximum contribution of all

devices, a 32 × 32 crossbar with a fixed row selection ratio (0.25) and different column
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selection ratios (changes from 0.0625 to 0.5) are considered and 200K CRPs are collected

for each of the PUFs. Then, the NIST test suite is conducted (Figure 3.3b) and MLP

is applied to verify the predictability of the PUF output (Figure 3.3c). Although all

column selection ratios pass the NIST test suite (P-values are greater than 0.01), the

MLP accuracy is optimal when the column selection ratio is 0.2. In fact, with this

selection ratio, the contribution of all devices is maximized resulting in more complex

and less predictable PUF behavior. These optimum selection ratios are considered for

the rest of the work.

3.4.2 Balancing Crossbar Array Conductances

The main focus of the work is on the technique of balancing the crossbar array

conductances, which allows improving PUF robustness by optimizing crosspoint device

conductances resulting in a uniform crossbar. Figure 3.4a presents a motivation for this

technique. It shows that PUF becomes more predictable as the dispersion in the device

conductances grow. This is explained by the fact that for larger σ, the output current

is more likely dominated by only a few devices with larger conductance – a feature that

apparently makes such PUF easy to model with MLP network.

Given the challenges in the accurate tuning of the memristors, especially in the passive

crossbar circuits, the natural goal is to achieve better robustness for larger σ. The specific

objective of this study is to find such optimal mapping of the devices with predetermined

(fixed) I-V characteristics to the locations in the crossbar array circuit that would max-

imize the PUF robustness. A balancing heuristic algorithm is introduced to address this

goal (Figure 3.5). The algorithm tries to balance the total device conductances (at tuning

voltage 0.25 V) across rows and columns. The intuitive idea behind such an approach is

that in the crossbar array with matched conductances along the rows and columns, the
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Figure 3.3: (a) simplified equivalent model of M x M crossbar circuit when read voltage
Vread is applied to sM selected rows, the output currents are read from sM virtually
grounded columns, while all the remaining lines are floated. (b) Effect of different
column selection ratio in 32 × 32 crossbars (b) on NIST test suite and (c) on MLP
prediction accuracy.
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devices with larger conductances along the current path will be compensated with those

with the smaller conductances, which would in turn help in making the output currents

close to each other and ultimately reduce the bias in the PUF response.

Specifically, starting with random mapping, the algorithm tries to iteratively swap

the locations of two randomly chosen memristors to minimize the cost function

Γ =
∑
i

(
∑
j

Gij −MGa)
2 +

∑
j

(
∑
i

Gij −MGa)
2

where Gij is a conductance at 0.25V via device located in the i-th row and j-th

column and Ga =
∑

i

∑
j Gij − (0.25V )/M2 is an average conductance of all devices in

the simulated instance of the crossbar array. The first/second term in the cost function

is a sum of squared differences between the conductance of the row/column and the

global average value. The cost function optimizes PUF for both one-sided and two-sided

architectures and is independent of the number of selected columns.

A simulated annealing approach was implemented so that a move is always accepted

if the cost function is reduced, while it is accepted with a certain probability, determined

by the change in the cost and the current annealing temperature, even if the cost is

increased. The annealing parameters are chosen such that most of the memristors are

swapped multiple times.

Figure 3.6a-c shows an example of applying an algorithm for a 10×10 crossbar array.

The sum of the conductances across rows and columns has significant dispersion for the

initial, random distribution of conductances (Figure 3.6a), while these sums become very

close to each other after applying the algorithm (Figure 3.6b). Figure 3.6c shows how

the value of the cost function reduces after each iteration. The algorithm effectiveness is

investigated for different scenarios of the machine learning attacks (Figure 3.7). In the

first study, the prediction accuracy of the MLP network was studied as a function of the
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Figure 3.4: Prediction accuracy of two-sided PUF response modeled by 40-100-1 MLP
network as a function of the (a) the crosspoint device conductance variations σ and
(b) device nonlinearity mean value. The error bars represent standard deviation for
the 5 simulated PUF instances, each with different device I-V characteristics. For all
cases, M = 20, n = 5, m = 4, and Vbias = 0.3V. MLP accuracy decreases when the
device nonlinearity mean value increases or when the conductance standard deviation
decreases.
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Figure 3.5: Pseudo-code of the proposed heuristic algorithm for balancing conduc-
tances in the crossbar. The typical values for initial / final temperatures, annealing
rate, and the number of iterations per temperature are 2 / 1e−9, 0.95, and 5000,
respectively.
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number of CRPs used in training for three cases of the crossbar conductances (Figure

3.7a). For a smaller number of CRPs, the accuracy is close to the ideal 50% when the

device conductance distribution in the crossbar array is very tight. The accuracy is

more than 60%, on average, for the naive (random) mapping with σ = 25%, though

the application of the algorithm allows reducing it to the ideal value. As expected,

increasing the number of CRPs makes machine learning attacks more effective, though

the prediction accuracy seems to saturate, which might be related to the limited capacity

of the used MLP network.

The impact of the MLP capacity is further investigated by increasing the number of

hidden layer neurons for the two-layer network (Figure 3.7b) and increasing the number

of hidden layers while fixing the number of hidden layer neurons (Figure 3.7c). The ac-

curacy first rapidly improves and then saturates in the former study case, which is likely

due to the limited number of CRPs. Surprisingly, the accuracy is almost independent of

the number of hidden layers for the latter. Finally, just like for the first experiment, the

algorithm allows reducing prediction accuracy for the PUFs with σ = 25% device con-

ductance distribution to that of naive one with σ = 2%, which confirms the effectiveness

of the algorithm.

It should be noted that the crossbar (either naive or balanced one) is secure against

side-channel attacks because generating IR/IL does not reveal any extra information

compared to IR/IL [47, 48, 49, 50, 51]. To study this claim, the power profile of 5K

CRPs of 10 20 × 20 PUF instances are collected. Statistics show that 50% of the time

response = 1 consumes more power than response = 0. This is because measuring none

of the IL and IR has any power dominance comparing to the other one.
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Figure 3.6: The example of applying balancing algorithm for a 10×10 crossbar circuit
with σ = 25%: (a) conductance heat-map before and (b) after applying the algorithm.
The color bars at the edges of the arrays show the total conductances summed along
the corresponding rows and columns. (c) The corresponding evolution of the cost
function. All conductance maps are specified at 0.25V.
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Figure 3.7: MLP prediction accuracy of the two-sided PUF (M = 20, n = 5, m
= 4) response as a function of (a) the number of CRPs used in training 40-100-1
network, (b) the number of hidden layer neurons in two-layer network, and (c) the
number of hidden layers in 40-100-...-100-1 network. There different scenarios for
crossbar conductances scenarios were simulated: sigma = 2% (blue circle symbols),
sigma = 25% without applying algorithm (red cross symbols), sigma = 25% with
applying algorithm (green square symbols). In panel b and c studies, 50K CRPs were
used for training MLP network. The error bars represent standard deviation for the
5 simulated PUF instances, each with different device I-V characteristics.
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3.4.3 Device Nonlinearity and Analog Tunability

The memristive PUFs have been widely studied in different literature [4, 8, 9], but

they lack detailed studies on the effect of memristor nonlinearity and analog tunability

on PUF security metrics. The former device feature leads to nonlinear PUF operation

which makes the modeling attacks almost impossible. The latter device feature leads

to tunable PUF which means the devices can be custom-tuned for a specific goal in the

configuration phase. The analog-tunability of memristors results in a uniform crossbar

which makes output random and independent of the input.

To study the effect of the device nonlinearity, 50K CRPs of 5 nonlinear and linear

20 × 20 PUF instances (one-sided approach) are simulated. Furthermore, to study the

effect of device analog tunability, 50K CRPs of 5 analog and digital 20 × 20 PUF in-

stances (one-sided approach) are simulated. Specifically, in analog crossbars, the target

conductances are chosen as explained in Section 3.2 whereas in digital crossbars, the

target conductances are chosen from two Gaussian distributions that are centered on

ON- and OFF- conductance values (mean value of 8.3 µS and 1 µS, respectively). Based

on the simulation results (Figure 3.8), nonlinear, analog-tunable, memristive crossbars

outperform resistive crossbars and digital crossbars in UF (Figure 3.8a), NIST frequency

test (Figure 3.8b), ML (Figure 3.8c), and entropy (Figure 3.8d).

Moreover, to evaluate the PUF robustness as a function of device nonlinearities, NL is

swept from 1 to 2. As results are demonstrated in Figure 3.4b, when device nonlinearity

increases, the PUF output will be a more complex function of all devices resulting in a

less predictable PUF behavior.
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Figure 3.8: Effect of device nonlinearity and analog tunability on (a) UF, (b) NIST
frequency test P-value, (c) MLP prediction accuracy, and (d) Entropy. Nonlinear
analog crossbar outperforms linear and digital crossbars in all four mentioned metrics.

3.4.4 Crossbar Size

Another design variable that affects PUF predictability is crossbar size. In fact,

when the crossbar size increases, the PUF complexity increases which results in a less

predictable PUF behaviour. To study this claim, 1M CRPs for 20× 20, 30× 30, 40× 40,

and 50 × 50 PUF instances are collected. The realistic values of µG = 8.3 µS with

25% variations in the target conductance distribution as well as balancing algorithm

are considered for all cases. As shown in Figure 3.9, when the size increases, the MLP

accuracy reduces. This is because when the crossbar size increases, the number of ML

features increases quadratically and the number of CRPs increases exponentially.
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Figure 3.9: Effect of crossbar size on ML accuracy for different sizes of CRPs. When
the crossbar size increases, the PUF complexity increases which results in a less lower
ML accuracy.

3.5 Hardware Imperfection

Previous studies explored how IR-drop ([4]) affect PUF robustness. As explained

in [4], when the wire resistance of interconnects are non-zero ideal, it causes IR drop

along interconnects. In fact, the devices that are closer/further than the voltage source

will have a lower/higher IR drop along the interconnects which results in insufficient

voltage over crosspoint devices. As a result, some of the devices will have greater current

reduction resulting in an undesired bias which reduces PUF reliability.

This study studies the effect of another hardware imperfection on PUF, namely non-

ideal yield. When the yield is not 100%, some faulty devices exist that are stuck- at either

ON or OFF state. When a device is stuck-at ON/OFF, its current is much higher/smaller

than other devices. In this case, the column that consists of the stuck-at fault device

becomes dominant resulting in a bias in the output which makes PUF unreliable. To
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simulate the effect of yield on PUF reliability, we collected 5K CRPs of 5 PUF instances

for a variety of ReRAM-based PUF sizes which have different percentages of stuck-at

ON (without loss of generality) devices. The realistic values of µG = 8.3 µS with 2%

(without balancing algorithm) and 25% (with balancing algorithm) variations in the

target conductance distribution are considered for all cases.

The simulation results for PUF uniformity as a function of yield before and after ap-

plying the balancing heuristic are plotted in Figure 3.10a and Figure 3.10b, respectively.

As shown in Figure 3.10a, initially, UF diverges from the ideal 50% when yield decreases.

However, it converges back to the ideal value at some point. This is probably because

the effect of some of the stuck-at ON devices is compensated with some other ones. Ad-

ditionally, as shown in Figure 3.10b, the balancing heuristic improves PUF uniformity

because it can map the devices such that devices with lower conductance values be in

the same column as the stuck-at ON devices.

Furthermore, the simulation results for PUF uniformity as a function of crossbar size

before and after applying the balancing heuristic are plotted in Figure 3.10c and Figure

3.10d, respectively. As shown in Figure 3.10c, the UF will be more resistant to hardware

imperfection caused by yield when size increases. In fact, when the PUF size increases,

the CRP space increases exponentially. Therefore, it will be less probable for the stuck-

at faulty device to be selected. Additionally, as shown in Figure 3.10d, the balancing

heuristic improves PUF uniformity because it can map the devices such that devices with

lower conductance values be in the same column as the stuck-at ON devices.

3.6 Discussion and Summary

The simulation results confirm that the robustness to machine learning attacks of

memristive PUF is significantly improved by balancing conductances in the crossbar
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Figure 3.10: UF values of different 20 × 20 PUF instances when yield is not ideal in
absence (a) and presence (b) of the balancing algorithm. UF values of different sizes
when yield is not ideal in absence (a) and presence (b) of the balancing algorithm. In
all panels, 5K CRPs were used for the 5 simulated PUF instances, each with different
device I-V characteristics.
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circuit, which can be achieved by either enforcing very similar conductances of all crossbar

devices or by using the proposed heuristic algorithm. The latter can be helpful in the

reconfigurable memristor PUFs [20, 38], for which the crosspoint device conductances

can be tuned to certain optimal values. Additionally, when only crude tuning is possible,

the proposed algorithm can be extended to dynamically update the optimal distribution

of conductances based on the measured states of the already tuned devices. In addition,

when stuck-at fault devices are present in a PUF, the proposed algorithm can map the

devices so that the effect of the stuck-at fault devices become minimized. More balanced

device conductances naturally lead to a narrower distribution of differential currents

IL − IR. The impact of σ and conductance balancing is not just in the scaling of such

distribution but also in making the responses less correlated, as confirmed by the MLP

modeling. The tighter margins in reading differential currents, however, may degrade

reliability. This issue is currently neglected in our study, in part due to the assumption

of ideal peripheral circuitry. The investigation of the reliability/robustness trade-off is

the next important immediate goals.
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Chapter 4

Lightweight Integrated Design of

PUF and TRNG Security Primitives

Based on eFlash Memory in 55nm

CMOS

A fundamental part of secure Internet of Things systems is authentication, which is to

confirm the identity of a prover entity to a verifier. A mutual authentication is a common

approach based on challenge–response protocol, which requires physically unclonable

functions (PUFs) and true random number generators (TRNGs) as security primitives.

The widely researched mutual authentication protocol is shown in Figure 4.1 [52, 53].

In this protocol, the server encrypts the PUF identifier (K1) with the nonce generated

by its local TRNG (T1) and sends the encrypted data (E1) to the device. On reception,

the device decrypts the cipher-text by its own key (K1) to extract the nonce. Then, it

encrypts the key with a locally generated number (T2 and T1 + T2) and transmits them

(E2 and E3) to the server. At this stage, the server decrypts the pair and extracts the
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initialization nonce prior to granting the authentication. For encryption and decryption,

an advanced encryption standard (AES) algorithm, based on the same number of PUF

and TRNG bits, is utilized. As the data are encrypted, there is no access to raw data

which reduce the scope of side-channel attacks [52, 53].

Figure 4.1: Privacy-preserving mutual authentication protocol with PUF and TRNG
security primitives [52]

The main entropy generators in Internet of Things devices operating based on the

mutual authentication are PUFs and TRNGs. The former generates a stable unique

identifier by exploiting the underlying process variations in integrated circuit fabrication,

whereas the latter is used to create a stochastic unbiased bitstream, which has no cor-

relation with the circuit features. For edge devices, operating for years on batteries and

harvested energy, low-power, low-cost, and secure implementation of entropy generator

is a big challenge.

While most of the previous works focus either on PUF [54, 55, 56] or TRNG [57, 58,

59, 60], the very recent work [52] describes a unified approach of generating both PUF

and TRNG from a common entropy source. Such approach improves the area utilization

by 25% over standalone designs and achieves an excellent energy efficiency. This work
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introduces a low-power and secure design of integrated PUF and TRNG using analog-

grade embedded flash memories. The presented work is the extension of our previous

PUF design [61] and has the following key contributions.

1. Integration of TRNG design into the previously proposed PUF security primitive

by modifying the architecture and reusing the same silicon circuits (which results

in a low-power and dense architecture). We demonstrate that the designed TRNG

satisfies the relevant cryptography features and tests.

2. Extensive aging measurements and verification of the behavior of the circuit under

extreme temperature conditions, which is crucial for the long-term reliability.

3. Extended analysis of the PUF robustness against advanced machine learning tech-

niques. The operating principle of the proposed unified entropy generator is dis-

cussed in Section 4.1, whereas the results for various metrics are provided in Section

4.2.

4.1 Unified Entropy Generator

In this work, commercial embedded NOR flash memories, with a compact ∼ 25F 2

footprint, where F is the feature size, are used as the base of the integrated design of PUF

and TRNG. In [61], we showed several rich sources of variations in this technology. Sub-

threshold slope (and leakage current) variations in devices biased in weak inversion are

the major source of randomness harnessed in the present approach for building a complex

one-way function. In addition, the analog-grade flash memories allow fine-tuning of their

states using write–verify algorithm with high accuracy. The unpredictable programming

error is the second source of randomness. By means of extensive experimental mea-

surements on such analog-grade floating gate devices, we have reported process-induced
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variations in the static behavior of eFlash memories and preliminary results on designing

a low-power PUF circuit [61]. (Note that implementation of a specific PUF instance

involves one-time tuning of all cells, in a trusted environment, to some predetermined in

advance desired values [62].)

4.1.1 Operation Principle

As shown in Figure 4.2a, the top-level architecture consists of two layers (L1 and L2)

of 25-to-1 primitive blocks, one 40-bit hidden shift register (HSR), and two 2-to-1 XOR

gates. The whole architecture is fed by 1010 challenge bits. Each C1
1 , . . . ,C1

5 , . . . ,C8
1 ,

. . . ,C8
5 input has 25 challenge bits and is used to fed one of the primitive blocks of L1.

In addition, each C6 and C7 input has 5 bits and is used to fed one of the primitive blocks

of L2. The 1010 challenge bits are given in nine sequential cycles. Specifically, during

each of the first eight cycles, 125 bits of challenge are applied to L1, and the generated

5 bits are stored in HSR. At the end of eight cycles, 1000 bits of challenge are used to

calculate 40 bits, which are then stored in HSR. In the ninth cycle, 10 remaining bits of

the challenge along with 40 generated bits are applied simultaneously to L2 followed by

XOR gates to generate a single PUF bit (RF ) or a TRNG bit (TF ).

Figure 4.2b shows the structure of each primitive block, which consists of eFlash

memory array, switching circuits, and a comparator. A 10 × 10 eFlash memory array

is the main part of the primitive block, in which all the devices are operating in deep

subthreshold. This is easily ensured during programming phase with the prior knowledge

of applied biasing voltages. The operation is extremely nonlinear because for each flash

memory cell, the current has an exponential dependence to the applied drain–source

voltage in a weak inversion. In addition, all the flash memory cells contribute to the

output either directly or indirectly through the circulation path of leakage current which
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adds to the nonlinearity of the operation. The idea is similar to the one in [20], in

which sneak path currents are circulated in a crossbar of passively integrated memristors

to build a compact security primitive. However, memristor fabrication technology is

still in need of improvement to enable building practical security systems. Commercial

flash memories, on the other hand, are already embedded in high-end CMOS process

technologies and are excellent candidate for low-power operation.

Switching circuits are the other parts of the primitive block, which determine the

selection and operations of eFlash memory array. Specifically, each primitive block is

fed by a 25-bit challenge, of which 10 bits are used for row selection, 10 bits are used

for column selection, and 5 bits are used for source line (SL) selection. When a row is

selected, the associated control gate (CG) and word line (WL) are biased with VCG,SEL

and VWL,SEL, respectively. CGs of the devices in the non-selected rows are left floating,

with their WLs connected to VWL,UNSEL. When a column is selected, the correspond-

ing bit-line (BL) is grounded. When a SL is selected, it is connected to the dynamic

current comparator. The BLs for the non-selected columns and non-selected SLs are

floated. With such biasing approach, the floating gate transistors in the memory ar-

ray are categorized into four groups when a particular challenge is applied, namely: 1)

selected, 2) half-selected type-A, 3) half selected type-B, and 4) non-selected devices

(Figure 4.2b). In the selected and half-selected type-A devices, SLs and BLs act as drain

and source, respectively. In the half-selected type-B devices, the current flows from BL

to SL. However, for the non-selected devices, the current can unpredictably flow at ei-

ther direction based on the selection scheme and current flowing in other devices. This

selection scheme in conjunction with the nonlinear operation in weak inversion enables

a circulation of leakage current through the floating devices biased in the very nonlinear

regime, making the modeling attacks almost impossible. It should be noted that the

selection of eFlash memories (e.g. switching circuits) are implemented using only one
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Figure 4.2: (a) The proposed time-multiplexed entropy generator and (b) primitive
block topology. The top hierarchy in panel (a) consists of 7 primitive blocks, and is
fed by a 1010 bits of a challenge. Each primitive blocks is supplied with 25 bits.
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MOS transistor switch per line because ‘1’s/‘0’s of an input bit-vector directly specify

position of the selected/non-selected lines.

To compute the output bit in PUF mode, S1 and S3 are closed after the capacitors

C1 and C2 are pre-charged to VBL. Then, similar to [61], C1 and C2 are discharged by

IR and IL, respectively. During the discharge period, the dynamic comparator compares

the currents and produces the response bit.

In TRNG mode, we utilize the dynamic entropy source of flash memory cells, namely

the current fluctuations due to thermal and low frequency (flicker and random telegraph

noise). We exploit this feature by reading the current from the same SL in two consecutive

cycles. Indeed, after C1 and C2 are pre-charged to VBL, IR discharges C1 and C2 in two

consecutive cycles and so does IL. Hence, two bits are generated in four cycles. In the

top-level design, TRNG mode is only activated in P7, and the outputs (two bits) are

XORed to generate the final output bit (TF ). This means that while utilizing the same

silicon for both PUF and TRNG, the throughput does not change. In fact, since all

primitive blocks in L1 are operating in parallel and each of them generates 8 bits per

cycle (with a delay of td), the throughput is ∼ td/8 for both PUF and TRNG security

primitives.

4.1.2 Challenge–Response Pair Space

In a proposed time-multiplexed design, the throughput and energy efficiency are sac-

rificed to dramatically increase challenge–response pair (CRP) space, which, in turn,

results in a very secure PUF. Indeed, in each primitive block of the design, five out of

ten rows, five out of ten columns, and two out of five SLs are selected. This leads to

#CRPP =
(
10
5

)
×
(
10
5

)
×
(
5
2

)
possible selections per primitive block. Each primitive block

of L1 operates in eight cycles. Thus, for each primitive block, eight possible selections
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out of #CRPP are chosen, which results in
(
#CRPP

8

)
total number of combinations. The

number of combinations is increased to
(
#CRPP

8

)5
, since all five primitive blocks in L1

equally contribute to the output and further multiplied by
(
5
2

)2
, because 2 out of 5 bits

of C6 and C7 are used for P6 and P7. Therefore, the maximum number of distinct CRPs

is given by (
#CRPP

8

)5

×
(

5

2

)2

Due to the exponential number of CRPs, it is impossible for adversaries to fully read

out all of the CRPs even if they hold physical possession of the PUF.

4.2 Experimental Results

4.2.1 Design Prototype

We have fabricated 10 × 10 analog-grade flash memory circuits in standard Global

Foundries (GF’s) 55nm embedded CMOS process based on redesigned layout [62]. Each

primitive block is individually programmed and measured on a custom-made printed cir-

cuit board using Keysight characterization tools. In fact, Keysight B1500A and B1530A

tools and a custom made switch matrix were utilized for characterization, programming,

and measurements. The fully integrated design occupies 1.3× 1.0mm2. It is dominated

by low-voltage (0.3mm2) and high-voltage (0.1mm2) inputs/outputs and unused silicon

(≈ 0.9mm2). Active circuits, including programming circuitry (4475µm2), flash memory

array (235µm2), registers (19, 250µm2),comparators (150µm2), and logic (110µm2) are

very compact (total of 24, 216µm2).

The tuning process is explained in detail in our previous work [61]. Figure 4.3a shows

an example of a current map after tuning the array with 10% accuracy to the randomly

generated distribution with µ = 500nA and σ = 150nA. Due to reconfigurability of
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our approach, a completely different map, i.e., a new fingerprint, is obtained after re-

tuning the same physical array to a new distribution with µ = 7.5µA and σ = 1.5µA

(Figure 4.3b). Figure 4.3c and 4.3d shows, respectively, the measured read-out current

distribution (IR and IL) and their difference for the PUF instance (with VWL,SEL = 1.25V ,

VWL,US = 1.35V , VCG,SEL = 0.3V , and VSL = 0.1V ) corresponding to Figure 4.3a. Figure

4.3c shows the distribution of IL and IR for 3000 random CRPs, highlighting a very

symmetric current distribution which is achieved due to the analog-grade reconfigurability

of the devices. To obtain these results, the specific sets of rows and columns of P1 were

selected based on the applied CRP in accordance with the described procedure in Section

4.1-B. The measured IL and IR correspond to the sum of the currents through all of

the devices in the selected left and right columns, respectively. The similar shapes of

distributions indicate that there is no explicit bias in the output. The corresponding

uniformity is 52.6%, which is very close to the ideal, 50% value. The lack of bias is also

confirmed by the data in Figure 4.4, which shows that the output response is balanced

with respect to the selected line in the array, i.e. value of ‘1’ at certain position in the

challenge bit-vector. Moreover, we have measured the response uniformity of 12 different

primitive block using 4 different silicon chips. For each primitive, we employed the same

tuning procedure (Gaussian distribution with 10% targeted accuracy) but with different

common-mode current, using mean values randomly picked from 200nA to 5µA range.

Also, we have studied sensitivity of uniformity metric to biasing condition. This was

done by selecting appropriate VWL from 0.65 V to 1.35 V, VSL from 0.1 V to 0.5 V, and

VCG from 0.1 V to 0.5 V to match the selected common-mode currents for each instance.

For each block, 4K randomly selected challenges have been applied and the response was

measured at room temperature. The experimental results (Figure 4.5) show again close

to 50% uniformity for majority of the considered instances.

Furthermore, a StrongArm current comparator, with 10nA sensitivity in 55nm CMOS,
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is used to compare the current of SLs and then generate the output bits in each primitive

block (similar to [45]). The main benefit of the current comparator is that the differential

scheme is more noise immune and has a higher power supply rejection ratio in comparison

with single-ended designs.

Figure 4.3: Measurements of one of the primitive blocks (P1) at room temperature:
(a, b) two examples of resultant map of conductance states in 10 × 10 array of cells,
(c) the distribution of read-out currents for 3000 cases, and (d) the corresponding
distribution of differential current.

4.2.2 Functionality and Security Metrics

As TRNG security primitive is unified with the existing PUF security primitive, we

need to make sure that PUF and TRNG output bits (RF and TF ) are not correlated.

For this purpose, the Pearson correlation coefficient between PUF and TRNG output

bits is calculated. The Pearson correlation coefficient is a number between -1 and 1 that

shows the extent to which two variables are linearly related. The ideal value for two
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Figure 4.4: Measured correlation (fraction of ‘1’s in the response when particular bit
at the input is selected) based on 4K random challenge-response pairs.

Figure 4.5: Response uniformity of 12 different primitive blocks obtained from repro-
gramming 4 different chips.
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uncorrelated variables is 0. The Pearson correlation coefficient of 0.003 calculated based

on 55K bits of PUF and TRNG indicates a negligible correlation in the responses.

In order to measure the uncertainty of PUF and TRNG output bits, Shannon entropy

is calculated. The Shannon entropy for events with two possible outcomes is a number

between 0 and 1. The Shannon entropy reaches its maximum when the outcome can

be either of the two possible values with 0.5 probability. In the proposed architecture,

Shannon entropy is 0.99958 and 0.99998 on the same data set for PUF and TRNG

responses, respectively. Such almost ideal values of Shannon entropy show that the PUF

and TRNG output bits have the maximum uncertainty.

To further study the cryptographic quality of PUF output bits, the uniformity of

HSR bits and the fractional Hamming weight distributions of R1, R2, and RF were

calculated. Specifically, Figure 4.6a shows that the measured uniformity of HSR bits

is near ideal for P1,2,4 blocks, though there is visible bias in P3,5 responses. Despite

that, the differential current distribution of P6,7 looks symmetrical as shown in Figure

4.6b for P6. (Here, P6 was tuned using 500 nA average state current and operated at

VWL,SEL = 0.85V , VWL,US = 0.9V , VCG,SEL = 0.3V , and VSL = 0.3V .) Interestingly, the

measured correlations (Figure 4.7), based on 100K challenge response pairs, are much

weaker, as compared to those for single primitive block. The randomness in the output

response is also highlighted by 2D visual representation of 1K randomly selected 128-bit

keys (Figure 4.8). Furthermore, the fractional Hamming weight distributions of R1, R2,

and RF were calculated based on 5K randomly selected 64- and 128-bit responses. The

normalized average Hamming weights were very close to ideal ∼ 50% values (Figure 4.9a)

[61]. Figure 4.9b shows near optimal results for diffuseness - the other important metric

that evaluates the difference (Hamming distance) between unique keys generated by the

same PUF under different challenges [63]. Similar to Hamming weight distribution, the

average of the fractional Hamming distance of 1K randomly selected 64- and 128-bit keys
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is very close to ideal ∼ 50% value (Figure 4.9b).

Figure 4.6: : (a) Normalized Hamming weight of HSR bits over 100K applied chal-
lenges. (b) Differential current distribution of P6, with the inset showing the corre-
sponding CDF.

Figure 4.7: Measured correlation based on 100K random challenge-response pairs.

Figure 4.10 shows the probability of producing a ‘1’ response, i.e., the normalized

number of ‘1’ s in the PUF outputs, as a function of the challenges for which the specified

index of bit of the 1010-bit challenge is fixed to ‘1’, while allowing any values on the

remaining bits of the challenge. As demonstrated, the response bit can be ‘0’ or ‘1’ with

equal probability, irrespective of the specific bit of the input being set to ‘1’. This means

that the PUF response bit is not correlated with any of the inputs. Hence, it is hard,

if not impossible, for the attacker to extract any information from the system by only

measuring or modeling the part of the system. It is worth mentioning that an undesired

55



Lightweight Integrated Design of PUF and TRNG Security Primitives Based on eFlash Memory in
55nm CMOS Chapter 4

Figure 4.8: 2D representation of 1K 128-bit keys (black=’1’).

Figure 4.9: (a) Fractional Hamming weight and (b) fractional Hamming distance
distribution of R1, R2, and RF. The results were computed based on (a) 5K and (b)
1K randomly generated 64-bit and 128-bit keys. All of the distributions have almost
ideal mean value of 50%.
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stuck-at-fault device in an eFlash array can bias the PUF response and make the circuit

potentially vulnerable to probing attacks. However, the impact of such devices, if any,

is significantly reduced by having eight 10× 10 eFlash arrays, as compared to one large

array.)

Figure 4.10: Output bit probability, based on 100K measured responses, for having a
‘1’ PUF response as a function of the specific set of challenges for which the specified
index of the input bit is fixed to ‘1’. The results indicate that there is no bias in the
output response.

To further study the cryptographic quality of TRNG output bits, the speckle pattern

is represented along with the probability mass function of TRNG response bit, auto-

correlation of TRNG response bits, and National Institute of Standards and Technology

(NIST) test results. In particular, the randomness of TRNG is qualitatively demonstrated

using a speckle pattern shown for 256 randomly selected 128-bit keys, with black and

white pixels representing ‘1’ and ‘0’, respectively (Figure 4.11). The random distribution

of black and white pixels is in correspondence with the cryptographic quality of TRNG

output bits.

The probability mass function is calculated for 58K TRNG bits. The result shows

that the TRNG output is ‘0’ or ‘1’ with a probability of 0.5. This uniform distribution of

probability mass function demonstrates that TRNG output is an ideal random number

[64]. The auto-correlation for TRNG outputs is calculated for the 10K-bit-long sequences

within an experimentally measured stream of 55K bits. (The auto-correlation identifies
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Figure 4.11: Speckle pattern of 256 128-bit keys (black = ‘1’, white = ‘0’) generated
by the TRNG engine.

the non-randomness in a sequence and is calculated between a sequence and its lagged

version [64]. In an ideal case, the auto-correlation of a random sequence should be zero

for all nonzero lag values and should have a spike at a lag of 0.) The auto-correlation

results again show high-quality, almost ideal randomness 4.12.

Figure 4.12: Auto-correlation of TRNG response and its lagged version.

To evaluate the statistical properties of the entropy generator, the NIST test suite is

conducted over 175K measured PUF data and 56K data generated by the TRNG engine.

As shown in Figure 4.13, both PUF and TRNG responses pass all relevant NIST tests
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with an average of 0.53 and 0.51 p-values, respectively. The results are very promising

when compared with previous works [61].

Figure 4.13: NIST randomness test results for both PUF (based on 87 2K-bit-long
bitstreams) and TRNG (based on 28 2K-bit-long bitstreams). Average p-values and
parameters used are shown in the table.

4.2.3 Reliability

In order to explore the reliability of the PUF security block in the designed archi-

tecture, an experiment was performed using 5 different block instances with specified

current-mode currents. Each primitive block was characterized by measuring responses

to 1K challenges at different ambient temperatures (with ±5◦C accuracy) and nominal

voltage deviations. The dependence of BER on the utilized common-mode current is

shown in Figure 4.14 ([61]). The results show that increasing temperature above the

nominal 25◦C, at which devices were tuned, results in a semi-quadratic increase of BER,

while the reliability is always improved by operating at higher bias currents. This is most

likely due to the weaker temperature dependency at larger subthreshold currents. Indeed,
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the currents are almost independent of the temperature in strong inversion (which can

be used to build a temperature insensitive current-reference [65]b). Therefore, there is

a clear trade-off between power consumption and BER, and, e.g., the desired operating

point could be determined based on the power budget and BER requirements of the PUF

application. The same trend in BER is also observed with respect to the variations on

the biased SL voltage (Figure 4.14b), though the dependence is weaker.

As results of Figure 4.14 showed, we can tune the devices to achieve a certain common-

mode current and subsequently, a desirable BER. Based on Figure 4.14, the native BER

of 5% can be achieved with ≈ 30µA SPICE simulations of the proposed design, including

peripheral circuitry, show that the energy efficiency is 0.58 pJ/bit, with 88% / 12%

contributed by array / comparators. Several previously proposed post-processing and

error correction methods [66] can be utilized in our design to further improve reliability.

Furthermore, the aging measurements for a single PUF primitive block were per-

formed by baking at ∼ 80◦C. At every measurement step, after baking, the chip was

cooled to 25◦C to obtain 1kB of data. Figure 4.15 shows that the observed PUF response

is stable and reliable in long term even after significant heating. The average uniformity

remains very close to 50%, and error is below 3% after baking for a cumulative period

of 15h. This stems from the differential nature of the circuit and optimized retention

characteristics of analog-grade eFlash memories. Unlike the previous work [67], [15], the

implemented design does not need an additional circuitry to maintain uniformity.

4.2.4 Machine Learning Modeling Attack

We have investigated modeling attacks based on several machine learning models,

including multilayer perceptron (MLP), long short-term memory (LSTM), and typical

online packages used in the previous works for studying PUF robustness. Specifically, in
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Figure 4.14: Measured BER as function of (a) temperature at nominal SL readout
voltage for several common-mode readout currents and (b) bias voltage deviation for
different common-mode currents at room temperature.

Figure 4.15: Accelerated aging test to verify the impact of the ambient temperature
and the drift of the states over time on BER and the response uniformity. The results
demonstrate the desired long-term reliability for PUF.
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the first modeling attack study, a 1010×100×100×100×1 MLP network with a rectified

linear activation function in hidden layers and a sigmoid function in the output layer and

RMSprop optimizer with a manually found 0.001 learning rate is used to model PUF

response. The classifier was trained and validated with a specific subset of the observed

CRPs and then tested on another mutually exclusive data. Specifically, the measured

160k of CRPs are divided into three groups—64% of the data are used for training, 16%

for validation, and 20% for testing. Figure 4.16 shows the accuracy for predicting correct

PUF response, when benchmarked on mutually exclusive (with training and validation)

test data, as a function of the size of the data set utilized during training. The results

indicate near ideal 50% accuracy even when using relatively large > 100k measured

training set.

Figure 4.16: MLP modeling attack accuracy as a function of training data size. Train-
ing is performed with RMSdrop optimizer with the learning rate of 0.001. For all data
points, the test set size is 20% of the data. The inset shows the prediction accuracy
on the training and validation data sets over different 150 epochs.

In the second modeling study, we used the LIBLINEAR and LIBSVM open-source

packages [64, 55] which support logistic regression and support vector machine algo-

rithms. These open-source packages also resulted in close to 50% prediction accuracy

when benchmarked on the test data.

Finally, an LSTM recurrent neural network was used to predict an output based on
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Figure 4.17: : (a) The die photo of a primitive block fabricated in GF’s 55nm CMOS
process and (b) the measurement setup.

the memory of past inputs. The implemented network has two LSTM layers, each with

128 units and rectified linear unit (ReLU) as activation function. The extracted features

are then fed into two dense (fully connected) layers with sigmoid and softmax functions,

respectively. The network uses an RMSprop optimizer for the binary classification task.

To prepare LSTM inputs and outputs, we used a similar approach to that described

in [68]. Specifically, N adjacent bits within response sequence are used as one input,

whereas the immediate bit after the input bit sequence is used as the output. Then, the

response sequence is shifted by 3-bit positions and is used as another input. Similarly, the

immediate bit after the new N bits of the input is used as the new output. The shifting

process continues until all of the LSTM input sequences and outputs are generated. After

preparing the input sequences and outputs, the machine learning predictability of input

sequences with length N = 32, 64, and 128 is studied for 10K-bit-long experimentally

measured sequences. In all cases, the predictability is approximately 50%. This means

that PUF response is either ‘0’ or ‘1’ with the probability of 50% regardless of the previous

PUF response values. In other words, even if the history of PUF responses is given to

attackers, they cannot predict the next PUF response.
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4.3 Discussion and Summary

Table 4.1 shows the comparison between the presented design and state-of-the-art

works. In addition to better quantative performance, the design is reconfigurable, and

the features unified the implementation of PUF and TRNG, which is robust against

machine learning attacks, thus offering additional functionalities compared to other works

[54]–[59]. We also proposed blocking and time-multiplexed architecture to expand the

PUF capacity and mitigate the impact of defective devices. The time-multiplexed design

has slightly lower throughput when compared to another unified design [52], which was

implemented in 14 nm.

In summary, we proposed and experimentally demonstrated PUF and TRNG, which

are two fundamental hardware primitives, on a shared silicon (the die photo and the

measurement setup is shown in 4.17). Since the same number of bits is generated for

TRNG and PUF at one step, the proposed integrated design is, especially, suitable for

AES algorithm used in privacy-preserving mutual authentication protocol. The design

takes an advantage of intrinsic thermal and low-frequency noise of the circuit to generate

both the static entropy and dynamic entropy. Experimental results demonstrate ∼ 10211

key space (in only 24, 216µm2 because of using a time-multiplexing technique), 0.58pJ/b

energy efficiency for < 5% controllable BER at ∼ 80◦C, and 192.3Mbps throughput.

The proposed design offers average uniformity of 50.3% average diffusivity of 49.99% for

PUF. Both PUF and TRNG pass random NIST tests. We used several machine learning

models to attack the PUF and showed that the system is resilient toward machine learning

attacks. The important future work includes a detailed analysis and hardening against

side channel and fault attacks, especially those related to the tuning circuitry. The other

important future work includes finding the optimum distribution for cell currents, during

tuning and under nominal biasing conditions, is an important future work.
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Table 4.1: Comparison with Previous Work.
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Chapter 5

Conclusion and Future

Opportunities

The ever-increasing presence of network-enabled devices in our daily lives requires cryp-

tographic building blocks more than ever. Physically unclonable functions (PUFs) are

a recently discovered class of cryptographic primitives that are suitable for a variety of

security applications including including key generation and authentication. PUFs gener-

ate secure keys on the fly (rather than explicitly storing any security-critical information)

by utilizing electronic devices that entail inherent sources of randomness.

Chapter 2 is reserved mainly for preliminaries information on PUFs. After defining

physically unclonable function, we discuss the PUF main types, applications, and crypto-

graphic metrics. Then, we discuss how TRNGs are associated with PUFs as well as main

metrics by which the quality of a TRNG can be ascertained. Furthermore, we discuss

the prior work on PUFs.

In Chapter 3, we propose two techniques to increase memristive strong PUF robust-

ness against machine learning attacks. In both of the proposed techniques, we maximize

the contribution of each crosspoint device to the PUF output. In the first approach, we
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choose an optimal ratio of selected rows and selected columns. In the second approach,

we balance the device conductances in the crossbar array by either enforcing very similar

conductances of all crossbar devices or by using the proposed balancing heuristic. The

simulation results confirm that the robustness to machine learning attacks of memristive

PUF is significantly improved by balancing conductances in the crossbar circuit. Then,

we show that nonlinear analog tunable PUFs outperform the PUFs that have either lin-

ear or digital devices. Moreover, we investigate the effect of crossbar array size on the

PUF robustness. Finally, we study the effect of stuck-at fault devices on PUFs. In fact,

by modeling the hardware imperfection, we show that the balancing heuristic is effective

to improve the effect of non-ideal yield.

In Chapter 4, we expand our previous work about flash-memory-based strong PUF by

integrating the TRNG functionality on the same silicon. The proposed integrated design

is especially suitable in privacy-preserving mutual authentication protocol because the

same number of bits is generated for both TRNG and PUF. The design takes an advantage

of intrinsic thermal noise and low-frequency noise of the circuit to generate the static

entropy and the dynamic entropy, respectively. Experimental results demonstrate 10211

challenge-response pair space, 0.58 pJ/b energy efficiency for < 5% controllable BER at

∼ 80◦C, and 192.3 Mbps throughput. Moreover, the accelerated aging measurements

indicate stable PUF response after 900 minutes of baking at 85◦C. Both of the PUF

and TRNG pass all relevant NIST randomness tests and are resilient against machine

learning attacks.

Future Opportunities. Although a significant amount of research has been con-

ducted on PUFs in the past few years, several open problems still exist. Here, we sum-

marize the opportunities for PUF designs based on emerging nano-electronic devices.

1. Standard Models: There are no industry standard models for the memristors,
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eFlash memories, and many other nano-electronic devices. Therefore, the simu-

lation results might not reflect all of their features and we cannot fully compare the

simulation results of different technologies. Furthermore, the lack of the temper-

ature and other dependencies in the current device models make some reliability

results speculative.

2. Complexity: In order to increase the PUF complexity, we can try different ap-

proaches that are not fully explored yet. For example, we can run several crossbars

in parallel and then merge the output with XOR or majority voter. As an another

example, we can use the cascade of PUFs to propagate the complexity from the

first layer to the last one.

3. Hardware Imperfection Countermeasures: When PUFs are physically implemented,

they suffer from different hardware imperfections such as line resistances. These

problems can result in bias in the output which makes PUF predictable. Coming

up with countermeasures that prevent such biases is crucial in designing robust

PUFs.

4. Hybrid Attacks: So far, either the machine learning modeling attacks or side-

channel attacks are studied in most of the articles. A detailed analysis on hybrid

attacks which utilizes a combination of machine learning algorithms and PUF cir-

cuit characteristics (such as power consumption) is needed to further evaluate the

robustness of different PUFs.

5. Design Trade-Offs: The investigation of the reliability/robustness/other metrics

trade-off is an important research direction which can optimize PUF architecture

based on a specific application.

6. Application Specification: Each PUF-based security application requires specific
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features. An extensive industry-based survey on specifications of each application

can be very informative in designing application-specific PUFs.

By conducting research on the mentioned areas, we can substantially improve the

existing PUFs or coming up with new secure strong PUFs which are well-aligned with

industry security applications.
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Appendix A

Simulation Setup

To optimize and automate the simulation process for the work presented in Chapter 3,

about 10000 lines of code is written. Here, we briefly review the main modules (Figure

A.1) of the written software.

Module 1. In this module, challenge bits are generated based on the number of

selected rows and columns.

Module 2. In this module, memristor parameters are generated based on specific

distribution and device features. Then, the balancing algorithm is applied if the crossbar

is needed to be balanced.

Module 3. In this module, HSPICE simulation files are generated which include the

memristor model, crossbar connections, measurement commands, and the bias connec-

tions. While the first three files are fixed for a specific crossbar, the fourth file changes

based on the input challenge.

Module 4. In this module, scripts are prepared, so that HSPICE files can be run

in batch and in parallel. This step is substantially important for the simulation speedup

specially when a huge number of CRPs and/or a big PUF is under study.
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Module 5. In this module, the generated HSPICE output files are parsed and

processed, so that the desired information (such as device current) is extracted. With

this information, the output bit can be found.

Module 6. In this module, the CRPs are divided into train and test data sets. Then,

the machine learning models are trained and tested.

Module 7. In this module, other PUF related metrics such as uniformity or corre-

lation are calculated.

Figure A.1: Software Modules.
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