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Abstract

Genome editing through the development of CRISPR (Clustered Regularly Interspaced

Short Palindromic Repeat)–Cas technology has revolutionized many fields in biology.

Beyond Cas9 nucleases, Cas12a (formerly Cpf1) has emerged as a promising alternative to

Cas9 for editing AT-rich genomes. Despite the promises, guide RNA efficiency prediction

through computational tools search still lacks accuracy. Through a computational meta-

analysis, here we report that Cas12a target and off-target cleavage behavior are a factor of

nucleotide bias combined with nucleotide mismatches relative to the protospacer adjacent

motif (PAM) site. These features helped to train a Random Forest machine learning model

to improve the accuracy by at least 15% over existing algorithms to predict guide RNA effi-

ciency for the Cas12a enzyme. Despite the progresses, our report underscores the need for

more representative datasets and further benchmarking to reliably and accurately predict

guide RNA efficiency and off-target effects for Cas12a enzymes.

Introduction

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat)–Cas technology is argu-

ably now widely used for the generation of genetically modified organisms, synthetic biology

and biotechnology applications [1]. A class 2 CRISPR prototype system is comprised of a pro-

grammable single effector module that is capable of target recognition via its protospacer adja-

cent motif (PAM), DNA unwinding and R-loop formation, followed by DNA cleavage [2].

The widely used CRISPR effector from Streptococcus pyogenes SpyCas9 (thereafter Cas9), is

comprised of several functional domains, which each have specific functional roles in CRISPR

interference [3–6].

Recognition and binding in Cas9 endonuclease are enabled by two RNA molecules:

CRISPR RNA (crRNA) and trans-activating crRNA (tracrRNA) [3,4]. Together, these form a

chimeric guide RNA (gRNA) that recognizes its target through base complementarity with

Watson-Crick base pairing [5]. The Cas9 effector can cleave both DNA strands simultaneously
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[7] and is relatively intolerant to mismatches [8], depending on factors like the number of mis-

matches and their location in the target [4,9]. This means that while some mismatches will

abrogate target cleavage, others will not. For example, mismatches closer to the PAM are more

likely to abolish targeting than PAM-distal mismatches; due to Cas9 conformational changes

and RNA-DNA duplex impairing [10].

Unintended targets that are cleaved, known as off-targets, as well as unintended on-target

effects such as structural variants, can lead to cell lethality due to gene knockouts or loss of het-

erozygosity due to chromosomal translocations or rearrangements [11–13]. Because of this, in

the field of precision genome engineering, mismatch tolerance is usually undesirable and has

prompted groups to devise different strategies including the discovery on novel nucleases

[14,15]. This has prompted groups to investigate the specificity of other class 2 CRISPR sys-

tems, like the type V CRISPR system and its effector molecule Cas12a, to identify whether they

offer a greater mismatch intolerance to Cas9 [16]. Cas12a, formerly known as Cpf1, is a class 2

type V CRISPR system. Like Cas9, Cas12a is a class 2 CRISPR system (single effector molecule)

that is RNA-guided and induces a double stranded break at the target site [17]. But despite

these similarities, both the mechanism and structure of Cas12a differ from Cas9. One major

difference is that while Cas9 has a nuclease domain to cleave each DNA strand (RuvC and

HNH), Cas12a contains only a single nuclease domain (RuvC). Cas12a instead uses its lone

RuvC domain to cleave both strands of DNA, after R-loop formation [18]. Strands are there-

fore cleaved sequentially, with Cas12a first cleaving the non-target strand and then the target

strand [19]. Possibly due to the sequential cleavage events, mismatches may lead to variations

in cleavage kinetics, rather than just outright abrogation of cleavage [20]. This can include just

the nicking of just the non-target DNA strand [21,22]. Upon successful cleavage, Cas12a

results in a few nucleotides staggered cuts, unlike Cas9. Finally, Cas12a targets a different PAM

to Cas9. Where Cas9 requires the GC-rich 5’-NGG-3’ PAM sequence at the 3’ end of the guide

RNA, Cas12a enzymes requires the longer, AT-rich 5’-TTTN-3’ PAM sequence at the 5’ end of

the guide RNA [2]. This leads to a divergent landscape of genomic targets to Cas9.

Regarding specificity, previous reports that have compared both nucleases suggest that

Cas12a is either comparable to, or more specific than Cas9 [23,24]. Conversely, it has been

observed that Acidaminococcus Sp. Cas12a (AsCas12a) is less efficient than Cas9 [25,26] and

Cas12a enzymes have been reported to generate wide off-target effects and double stranded

DNA nicking [27]. Despite each system having advantages and disadvantages, it is possible to

design guide RNAs using computational tools to optimize for specificity and efficiency. Such

tools exist for both Cas9 and Cas12a. However, while many tools exist for Cas9, only a handful

exists were described for Cas12a [28–30]. Some Cas9 efficiency prediction tools, like sgRNA

designer [31] and sgRNA Scorer 2.0 [32], have been retrofitted with Cas12a support, however,

this work is unpublished and therefore the data not shared. As well as efficiency prediction, it

is also possible to predict the mutation that will result from CRISPR mutagenesis at a given tar-

get. For Cas9 three tools exist [33–35], whereas none exists for Cas12a in human cells. The

landscape for off-target tools is more similar between the two systems. Yet many of these tools

simply identify and rank targets by how unique they are in the genome and rarely consider

CRISPR kinetics [36,37].

This information makes apparent the large gap between Cas9 and Cas12a prediction tools.

This is likely because of a lack of data. For example, Cas9 datasets exist with up to 40,000

gRNAs [33]. No public Cas12a datasets exist to rival this magnitude. However, new datasets

are emerging, such as the 15,000 Cas12a guides used to train DeepCpf1 [28] or more recently

on using Cas12a for combinatorial screening [30].

In this study we confirmed previous evidence that nucleotide bias and mismatches at the

target site relative to the PAM sequence drive the cleavage activity and efficiency at the target
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and non-target sites. We noticed that Deepcpf1 predicting tool has a different mutational land-

scape in its training dataset to that observed in cells, potentially affecting its accuracy for guide

RNA efficiency prediction. Our alternative prediction model based on a small number of

endogenous targets could improve for over 15% guide RNA prediction efficiency for Cas12a.

However, despite the improvement, the lack of available datasets with large scale phenotypic

measures of guide RNA efficiency of endogenous targets adversely affects the ability to cor-

rectly predict guide RNA efficiency. Overall, our results highlight the need for more represen-

tative datasets and further benchmarking to accurately predict guide RNA efficiency and off-

target effects for Cas12a effectors.

Materials and methods

Analysis of predicted off-targets

To compare Cas9 and Cas12 off-target predictions at genome wide levels, based on GC content

and genome size, we selected 175 prokaryotic and eukaryotic genome assemblies from NCBI

RefSeq and Genebank databases with GC contents varying from 13.5% (Zinderia) to 73%

(Nocardioides) and genome size varying from 2kb to 23 Mb (S1 Table). A combination of a

custom script and gRNA search using Flashfry [38] was utilized to identified all the gRNA tar-

gets based on the Streptococcus pyogenes SpCas9 5’-NGG-3’ and the common Cas12a orthologs

Francicella novicida Cas12a (FnCas12a), Acidaminociccus. Sp (AsCas12a) and Lachnospiraceae
bacterium (LbCas12a) harboring 5’-TTTN-3’ PAM sequences. To identify potential off-targets,

a combination of Flashfry off-target prediction and Cas-OFFinder [36] was employed. Up to 5

mismatches were retained for off-target prediction. Statistical analyses, including Kruskal-

Wallis non-parametric tests, Welch’s t-test, median values, and interquartile ratio (IQR) from

25% and 75% quartiles and Bonferroni corrections for multiple testing were performed with R

software available at https://www.R-project.org.

Off-target analysis using GUIDE-Seq

To compare Cas9 and Cas12a off-targets using results from two previous GUIDE-Seq experi-

ments, we acquired Cas9 and Cas12a data from Kleinstiver et al. [24,39] (S2 Table). We manu-

ally curated read counts for cleaved genomic sites from these reports. The read count was

grouped by “target” and “number of mismatches” for plotting and analysis. Cas-OFFinder was

utilized with default settings to identify potential off-targets with up to five mismatches for

each target. The off-target guide prediction was compared to the experimental off-target rates

to ensure that targets from the two publications were comparable.

Editing outcome prediction from genome-wide experiments

We extracted raw read data from Kim et al. [28] from the sequence-read archive (SRA), acces-

sion number SRP107920. This data includes both “synthetic” and endogenous genomic targets

sequences delivered by lentiviral particles in HEK293T and HCT116 cell lines. Accession num-

bers for individual runs are available in S3 Table under “HT 1–1” and HEK293T-plasmid”.

The command to download the reads depended on the alignment type, with the following

used for single alignments (HT 1–1) and paired-end alignments (HEK293T-plasmid), respec-

tively. To quantify the mutational landscape, reads were aligned to a reference genome. For

the “HT 1–1” reads, reads barcode and adaptor sequences were trimmed using a custom script.

We aligned both sets of reads to the human GRCh38 genome using Bowtie2 [40] with the fol-

lowing function: bowtie2 -x /genomes/ensembl.release-90/Homo_sapiens.GRCh38–1

SRRxxxxxxx_1.fastq -2 SRRxxxxxxx_2.fastq -S out_file.sam—very-sensitive -p 10. Samtools
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[41] (https://www.htslib.org) was utilized to convert the resulting output from bowtie2

(https://bowtie-bio.sourceforge.net/bowtie2/index.shtml) into a BAM file, sort the BAM file

and index it. GOANA [42] (https://gt-scan.csiro.au/goana/src/) was used to quantify the muta-

tional landscape of the newly aligned reads. As GOANA excludes alleles with a low read cover-

age by default, common mutations will be filtered out if they occur on the same allele as rare

mutations. To mitigate this, the -mr 0 argument instructs GOANA to include all mutant

alleles, regardless of read coverage with the following instruction: python3 GOANA.py

regions.bed control.bam treated.bam -o output.file -mr 0. A custom python script was used to

parse the output and read it into a DataFrame. For each target, sgRNA sequence and target-

adjacent nucleotides, target coordinates, cleavage efficiency and mutations were recorded.

Statistical analysis and validation

To ensure the datasets were representative of CRISPR Cas12a editing in general, we compared

the distributions of insertions, deletions, and single nucleotide variances. To identify signifi-

cant differences between distributions, we used Cohen’s d statistics [43]. As well as different

editing outcomes, we also compared differences between insertions and deletions of different

lengths. This was for the HT 1–1 dataset and the HEK293T-plasmid dataset.

Machine leaning

To train models we used scikit-learn in Python. This consisted of three steps:

1. defining a model,

2. fitting the model on training data and

3. predicting labels for test data.

1) Defining a model involves specifying the algorithm and the hyperparameters. Each algo-

rithm has default hyperparameter values and tuning them may result in an improved model.

However, after trialing different hyperparameters, we only ended up adjusting the number of

decision trees in our Random Forest model (from 100 trees to 450). We selected the Random

Forest algorithm due to its generalizability and resistance to overfitting [44].

2) The “fit” step involves training the model on data (Fig 1). This process simply requires

two lists, one of the labels from each sample and one of the features. This can be performed on

the entire dataset or a slice of the dataset, with the latter being useful for model validation [45].

For example, decision trees model data through recursive partitioning. That is, they iteratively

split the training data based on the available features, scoring each split on a metric like impu-

rity. The feature that minimizes the impurity (i.e., results in more distinct groups) is selected

for the first split, and the algorithm repeats this process recursively until a criterion (such as

max-depth) is met.

3) The “predict” step takes the trained model and predicts the label for unlabeled samples

(Fig 1). The output from this step can be compared to known values for validation.

Downloading reads for model training and validation

To train our models we used a monocistronic CRISPR/Cas9 library from Liu and colleagues

[46]. This is a pooled-library knockout screen downloaded from SRA (accession number

SRP181683). The data included reads at different timepoints (weeks 1–4), as well as reference

reads. Because the data from SRA contained the time points in arbitrary concatenations, we

downloaded the original files from Google Cloud Platform (GCP). Here, each timepoint was

stored across two files (part1 and part2). These files are listed as mini-human in S3 Table.
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To validate our Cas12a efficiency models, we used the “HEK293T-plasmid” dataset

(S3 Table). We also used the “HEK-lentivirus” and “HCT116-plasmid” datasets.

Aligning reads for model training to the human reference genome

Because of the short read-lengths (20nt), we created a custom version of the GRCh38 reference

genome. We used a script to generate a FASTA file with an entry for each of the 2061 targets

listed in S3 Table from Liu and Colleagues [46]. The code is available in “custom-genome.py”

https://github.com/gburgio/Cas12a_predictor/blob/main/custom-genome.py. We then

indexed the FASTA file with bowtie2-build and aligned the mini-human reads to the index

using Bowtie 2.

Aligning reads for model validation

We aligned the HEK293T-plasmid, HEK-lentivirus and HCT116-plasmid to the GRCh38

genome. We subsequently generated a BAM file and index, and quantified the HEK293T-lenti-

virus and HCT116-plasmid reads using GOANA.

Inferring sgRNA efficiency for model training

As a pooled-library screen, efficiency can be inferred from the log-fold change in read-count,

for each CRISPR target, over time. Our hypothesis is that editing “essential genes”, i.e., genes

that are required for cell-viability, will result in non-viable cells. This in turn will result in

Fig 1. Flowchart of training and validating our model. This blue (top) square represents model training. The

algorithm accepts the input data (split into feature and labels), as well as any optional hyperparameters, and outputs a

model. The green (lower) square represents model validation. The trained model accepts features from a validation set.

It then outputs predictions. These predictions are then compared to the labels (truth) from the validation set. In a

perfect model, the predicted values would be equal to the truth values.

https://doi.org/10.1371/journal.pone.0292924.g001
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lower cell counts at later time points. Because of this, reads from targets with a low efficiency

will be relatively high (with few edits to disrupt cell viability) compared to reads from targets

with a high efficiency (with many edits to disrupt cell viability). There should be an inverse

correlation between sgRNA efficiency and change in read count over time. A confounding fac-

tor here is the “essentiality” of a gene. Because if edits do not reduce a cell’s viability, despite

disrupting a gene, then reads from that target will be remain high, regardless of sgRNA effi-

ciency. To minimize the effects of this confounding variable, we only included genes with a

high Bayes Factor (BF), as calculated with BAGEL (Bayesian Analysis of Gene EssentiaLity)

[47]. We downloaded BFs from “The Toronto KnockOut Library” [48] and merged them with

CRISPR targets based on gene name.

Integrating samples with chromatin accessibility data

An additional feature that has been observed to modulate sgRNA efficiency is chromatin

accessibility [49]. Quantified by DNase hypersensitivity, chromatin accessibility indicates the

accessibility of a target due to chromatin state. We downloaded the following narrow-peak

datasets from the ENCODE portal [50,51]:

• ENCFF127KSH (HEK293T)

• ENCFF912FSU (HCT116)

These datasets specify regions of DNA that are DNase hypersensitive for the respective cell

types (HEK293T and HCT116). To integrate this data with CRISPR targets, we use a custom

script to identify whether CRISPR targets lie within DNase hypersensitive regions. The script

assigns a 1 to targets that are in hypersensitive regions and a 0 to targets that are not.

Sequence processing

We tokenized the sequence for each sample using a custom function that is applied to each

row in the dataset. The input is a DNA sequence, and the output is an array of numerical val-

ues. This array represents the DNA sequence string using, for example, “global nucleotide”

counts and “positional nucleotide” counts. Global nucleotides represent the count of each

nucleotide in the string whereas positional nucleotides represent the nucleotide at each posi-

tion. As well as single nucleotides, we also include global/positional dinucleotides (i.e., AA,

AT, CT, etc.) and GC content.

We processed individual sequences separately. So, for example, to model the sgRNA,

ssODN and nucleotides adjacent to the target we would apply the above function to each of

these components separately. This minimizes the sequence of relevant components being

diluted by irrelevant components.

Validation

To validate a model, or quantify its performance, prediction values are compared to truth val-

ues. For example, the predicted sgRNA efficiency to experimentally measured sgRNA effi-

ciency. Every trained model was validated to quantify its performance and compare against

other models. This is achieved through an accuracy or error score for which there are various

measures that we used. For regression, an option is the mean squared error (MSE). This is the

average of the squared differences between the prediction and truth values for each sample,

where values closer to zero indicate predictions closer to the truth. MSE is a function included

in the scikit-learn Python library which we called on the two lists of values, i.e., mean_square-

d_error (truth, predicted). However, to be able to calculate a prediction measure for a model,
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samples which were not included when training said model were required. One option was to

divide the data into two discrete sets, a train set and a test set. However, another option was

cross-validation.

Cross-validation

Rather than dividing samples into two discrete sets for validation, we used k-fold cross-valida-

tion to quantify the performance of models [52]. Using 5 folds cross-validation, data is parti-

tioned across samples, into five groups, where each group contains one fifth of the samples.

Subsequently we trained models on each combination of four groups and tested on the fifth.

This allows us to evaluate the prediction error with better generalization to novel data than a

train/test set. For classification models we used “StratifiedKFold” [53] to create the folds, as

this preserves the distribution of positive and negative samples. Each time with the same algo-

rithm with the same hyperparameters, however, with each model trained on a different subset

of data. Next, we validated each model on the slice of data that it was not trained on. This

resulted in a score (such as MSE) for each model, on which we calculated the average to quan-

tify the overall performance.

Feature importance

An additional use of some ML algorithms is the ability to identify which features are correlated

with the label. For Random Forest models, after training a model, feature importance can be

retrieved using the feature_importances_ parameter. This returns a list of features (be that

nucleotides or reagent quantities) with an assigned weight value for each.

Visualization

Confusion matrix. To visualize classification predictions, we used a confusion matrix.

For two-class predictions (i.e. high/low) this is simply a 2x2 matrix where rows indicate predic-

tion values and columns indicate truth values. In effect, this presents the number of true posi-

tives, false positives, true negatives and false negatives. Here we used confusion_matrix from

scikit-learn which takes a list of truth values and a list of prediction values.

Percentile rank. The percentile rank presents how ranked prediction values compare to

ranked truth values. The percentile rank illustrates whether the ordering of predictions is

correct. Here we used the percentileofscore function from the scipy.stats module to calcu-

late the percentile ranks prediction and truth values and subsequently plot the results with

Matplotlib.

ROC curves. Receiver operator characteristic (ROC) curves plot the true positive rate

against the false positive rate. It represents the discrimination ability of a model, i.e. a model’s

ability to distinguish between high and low efficiency samples [54]. The area under the ROC

curve (AUC) provides a quantitative measure of this metric where 1 indicates a perfect dis-

crimination and 0.5 indicates that predictions are random. We used roc_curve and roc_auc_-

score from the sklearn.metrics to compute these values.

Results

In silico Cas9 and Cas12a comparison reveal that nucleotide bias and GC-

composition is an important driver for off-target prediction

Nucleotide bias, which is a preference towards A/T or C/G nucleotides, varies between organ-

isms or even within individual genomes [55]. We postulated that three-nucleotide protospacer

adjacent motif (SpCas9; 5’-NGG-3’) might occur more frequently by chance than four-
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nucleotide motifs (Cas12a; 5’-TTTN-3’) in the majority of genomes. We analyzed the correla-

tion between nucleotide bias and target ratio in 69 microbial and eukaryotic genomes with GC

contents ranging from 13% (Zinderia) to 73% (Nocardioides sambongensis) (S4 Table). Indeed,

we found the ratio of Cas9 to Cas12a targets was correlated with GC content (Fig 2A). Addi-

tionally, we found a better correlation between GC content and sgRNA availability for Cas9

(Pearson correlation R2 = 0.5153, p = 5x10-6) versus Cas12a (R2 = -0.3085, p = 0.09). It suggests

a disproportionate nature of Cas9 and Cas12a targets. Next, we investigated whether the pre-

dicted off-target effects would be a function of the GC content and genome size. We calculated

the predicted Cas12a and Cas9 off-target effects, normalized by genome size from 0 to 4 mis-

matches and calculated the ratio between Cas12a and Cas9 predicted off-targets. A ratio > 1

indicated a higher predicted off-target for Cas9 enzyme. For similar number of predicted

sgRNA for Cas9 and Cas12a (GC content = 38.4%), we found a significant difference between

Cas9 and Cas12a from none (median ratio (IQR) = 1.06 (1.01 to 1.09)) to three (median ratio

(IQR) = 0.83 (0.78 to 1.07)) and four predicted off-targets (median ratio (IQR) = 0.79 (0.74 to

0.95)) suggesting higher off-target rate for Cas12a in our genome sizes varying from 2 kb to 7

Mb (Fig 2B). To confirm this finding, we performed a similar analysis on low and high GC

content (respectively 30.8% and 66%) were respectively the number of Cas12a target sites are

higher and lower to Cas9. Interestingly, while we found a similar trend on low GC content

from none (median ratio (IQR) = 1.006 (1.002 to 1.07)) to four predicted off-targets

(median ratio (IQR) = 0.48 (0.32 to 0.64)) (S1 Fig) whereas we found a higher number Cas9

off-targets at high-GC content from none (median (IQR) = 1 (0.97 to 1.006)) to four predicted

off-targets (median (IQR) = 29.94 (20.83 to 32.94)) (S1 Fig). Together these analyses suggest

that nucleotide bias and GC-composition is a major driver for off-target prediction of Cas9

and Cas12a nucleases double stranded break cleavage. As these analyses regard computation-

ally predicted off-targets, we wondered whether this hypothesis would still be valid in an

empirical setting.

Meta-analysis of Cas9 and Cas12a off-target comparison from GUIDE-seq

experiments suggests a lower off-target effects for Cas12a enzyme

We next assessed the off-target cleavage behaviors for Cas9 and Cas12a on empirical data. we

compared side by side Cas12a and Cas9 enzyme specificities by performing a meta-analysis on

two publicly available datasets. These datasets compared Cas9 to Cas12a on identical target

sites and similar high-throughput off-target detection techniques (GUIDE-seq [56]). We iden-

tified eight gRNA for Cas9 and 18 gRNA for Cas12a. Across the targets, we re-aligned the

reads and off-targets cleavage rate was determined by counting reads from one to five mis-

matches. We firstly observed that off-target sites were cleaved less efficiently than on-target

sites, with cleavage efficiency decreasing as the number of mismatches increased (Fig 3A), for

Cas9 but not for Cas12a (Fig 3B), for similar on-target efficiencies [24]. Although cleavage effi-

ciencies were lower, there were more off-targets across the genome with higher numbers of

mismatches for Cas9 (Fig 3C) thanCas12a (Fig 3D). This was likely due to there being more

potential predicted off-targets (identified with Cas-OFFinder [36]) with higher numbers of

mismatches (Fig 3E and 3F). For example, although only 30% or less of potential detected off-

targets with three mismatches were cleaved respectively with Cas9 and cas12a (Fig 3G and

3H), there were more potential off-targets with three mismatches than with two mismatches

or one mismatch (Fig 3E and 3F). Together, despite the low sample size analyzed in this meta-

analysis, these observations suggest firstly that there are lower off-target effects from Cas12a,

and secondly, off-target sites are cleaved from Cas9 and Cas12a enzymes at low efficiencies,

confirming previous observations [56–59].
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Fig 2. In-silico Cas9 and Cas12a off-target prediction. (A) Number of available Cas9 and Cas12a genomic targets

measured by the number of gRNA designed corrected by genome size for 69 genomes with GC content varying from

13% to 73%. The dashed lines correspond to the linear regression between the ratio of available targets to the genomic

GC content (in %). (B) The ratio of Cas9 to Cas12a predicted off-targets across the genomes for each gRNA designed

for 35,517,198 Cas9 and 11,845,770 Cas12a gRNAs with zero to five mismatches to the original target and aggregated
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The mutational landscape of Cas12a enzymes

Previous works described that the outcomes of NHEJ and microhomology-mediated end join-

ing (MMEJ) are non-random and target site sequence dependent [33,60,61] meaning that

indels that result from Cas9 cleavage are not random but are instead based on the sequence of

the cleaved allele. We postulated that Cas12a editing outcomes would be predictable. For Cas9,

there are already numerous computational tools that enable the prediction of editing outcome.

This includes inDelphi [35], FORECasT [33] and SPROUT [34]. Recently Kim and colleagues

reported a large-scale resource (DeepCpf1) of 15,000 editing events in HT 1.1 cell line to pre-

dict Cas12a editing outcomes [28]. These were lentivirally integrated targets in the host

genome and therefore not endogenous [28]. We qualified these targets as “synthetic”. To verify

the generalizability of editing outcomes, we also analyzed a second dataset from the same

study. This dataset included 55 endogenous targets edited by Cas12a delivered by plasmid

transfection in HEK293T cell line (HEK293T-plasmid). Recent additional datasets and gRNA

libraries using Cas12a were recently published and made available to researchers (Humagne

[30] and Cas12-WGx [62]) but unfortunately were not included in this study due to the lack of

data on editing efficiency.

In the HT 1–1 dataset, we found that deletions occurred more frequently than insertions,

with 1.91 deletions for every insertion (independent t-test, t = 70.07, p< 10−5 and Cohen’s d of

0.776) (Fig 4A). For insertions, the most frequently occurring distribution, had a length of one

nucleotide. Insertions of two or more nucleotides occurred less frequently, with the observed

number of insertions decreasing as insertion length increased. The longest detectable insertion

was eight base-pairs in length. The difference between every distribution of insertions was sig-

nificant (p< 0.05) except for between seven and eight nucleotide insertions (independent t-
test, t = 0.94, p = 0.35).

For deletions, the most frequently occurring were one nucleotide in length (L1 deletions),

These accounted for 25% of all indels. We observed deletions of up to five nucleotides, as there

were zero reads capturing deletions of six or more nucleotides in length.

This is surprising as deletions of ten bases and longer were observed for Cas12a editing out-

comes in a previous study [63]. We postulated that the absence of reads for deletions of six

nucleotides and longer were due to alignment artifacts or others factors independent of

Cas12a editing. Supporting this, we observed deletions of up to 27 base pairs in the HEK293T-

plasmid dataset (Fig 4A). Deletions again had a higher frequency than insertions (independent

t-test, t = 13.16, p = 2.796x10-37), however, the difference between insertion frequency and

deletion frequency was greater in this dataset (Cohen’s d = 0.958). Perhaps contributing to the

increased rate of deletions in this dataset was that the full range of deletions were captured,

unlike in the HT 1–1 dataset. This is supported by more than half (53%) of all deletions being

greater than five bases in length, which was the maximum deletion length in the HT 1–1 data-

set. These observations suggest that the HT 1–1 dataset, whilst large, is not a true representa-

tion of the mutational outcomes. This may limit its use in modelling editing outcome.

We also noticed in the HEK293T-plasmid dataset, that single nucleotide variants (SNVs)

contributed to just 6.89% of all short variants whereas it was 63.4% in the HT 1–1 dataset. We

plotted the SNV outcome counts at each position in the gRNA targets. For control (no Cas12a

per genome. A ratio> 1 signifies Cas9 off-targets are higher than Cas12a. Statistical tests were performed using a non-

parametric test (Kruskal-Wallis) and multiple comparisons were corrected with a Bonferroni test. Fewer target sites

exist for Cas12a than Cas9 for each of zero to five mismatches. For both Cas9 and Cas12a, the number of sites increases

exponentially as the number of mismatches increase. ** indicates corrected p< 0.01 and *** indicates corrected

p< 0.001 n = 56 per group.

https://doi.org/10.1371/journal.pone.0292924.g002
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Fig 3. Meta-analysis of Cas9 and Cas12a off-target effects using GUIDE-seq experiments on the same target sites. Each plot

represents a different off-target distribution for each of one to five mismatches. (A) Cas9 n = 8 gRNA and (B) Cas12a n = 18

gRNA off-target cleavage efficiencies, relative to target cleavage efficiency in %. The number of respective Cas9 (C) and Cas12a

(D) off-target loci measured by read count (absolute number) from the GUIDE-seq experiments. n = 8 (Cas9) and n = 18

(Cas12a). (E) Cas9 and (F) Cas12a number of potential off-targets (from 1 to 5), as identified by CAS-OFFinder in absolute
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editing), SNVs existed in a uniform distribution across the length of the reads (Fig 4B). How-

ever, for the “synthetic” treated samples, SNVs existed in a bimodal distribution with the global

maximum at nucleotide position 17, downstream from the PAM (Fig 4B). This was three

nucleotides upstream from the end of the 20nt target. Where the expected proportion of SNVs

at each position in the sequenced region being 2.56%, the global maximum is more than three

numbers. n = 8 (Cas9) and n = 18 (Cas12a). The percentage of potential off-target that were cleaved from Cas9 (G) and Cas12a

(H). * indicates corrected p< 0.05 whereas ** indicates a corrected p< 0.01 and *** a corrected p< 0.001.

https://doi.org/10.1371/journal.pone.0292924.g003

Fig 4. Cas12a mutational landscape on “synthetic” and endogenous targets. (A) distribution of mutations

frequencies in Cas12a treated samples for endogenous (blue) and “synthetic” (orange) targets. Despite distributions

being similar, “synthetic” targets feature a hard cut-off for deletions with a length greater than five, which is not present

in endogenous targets. (B) SNV distribution across treated and control samples. The horizontal dotted line indicates

the expected uniform distribution (2.56) for evenly distributed SNVs across the 29 positions. The letters indicated the

editing outcome.

https://doi.org/10.1371/journal.pone.0292924.g004
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folds this value, at 7.82%. In fact, nearly half (47.30%) of all SNV-containing reads have an

SNV at position 17 and its three adjacent positions [14–20]. This data indicates that treating

targets in the HT 1–1 dataset with Cas12a has resulted in PAM-distal SNVs at the target.

We next investigated whether features were present in the dataset that were modulating

SNV outcome. We trained a Random Forest multiclass classifier on targets with an SNV at

position 17. We labelled this set of targets with the SNV outcome (A, C, G or T). To filter out

noise, we only included SNVs that were present in greater than 1% of target reads. we created

features from the nucleotide sequence of the target and surrounding region, 39 bases in total

based on the premise that prior nucleotides modulate Cas9 mediated double stranded break

outcomes [64,65]. From five-fold cross-validation, we observed an average out-of-bag (OOB)

error of 0.37. This indicated the five cross-validated models were predicting the outcome SNV

for most samples correctly. To visualize this, we trained a model on 80% of the samples and

validated the model on the remaining 20%. This model was able to predict most editing out-

comes correctly. Where the outcome SNV is a G, the model was correct 77% of the time

(Fig 5A). With three possible outcomes for each nucleotide, this is more than three folds

greater than the chance. Predicting a nucleotide A outcome was the least accurate, with an

accuracy of 49%, but this is still more a 200% improvement over chance. We plotted the model

as one versus all receiver operating curves (ROCs) (Fig 5B), with the average area under the

ROC of 0.84 further supporting the model.

Although this prediction model performs well on unseen HT 1.1, it was no better than

chance at predicting the SNV outcome on the HEK293T-plasmid dataset. Furthermore, we

observed that a single nucleotide 26 nucleotides upstream from the PAM was correlated with

the SNV outcome at position 17. This observation was not present in the HEK293T-plasmid

dataset, suggesting it is either a result of the non-endogenous targets, or another sequencing

artefact. In addition to the dataset lacking reads with deletions longer than five bases, we found

this dataset to not be a suitable candidate for modelling editing outcome.

Modelling Cas12a cleavage efficiency with machine learning

DeepCpf1, is trained on the HT 1–1 dataset. This model is reported to perform well, with a

Spearman’s coefficient of 0.87 on HEK293T-plasmid dataset and 0.77 on the HCT116-plasmid

dataset [28]. We next postulated that a model trained on endogenous targets would improve

Fig 5. Visualizations of a Random Forest model trained on 80% and validated on 20%. The label is the SNV

outcome, which is one of [‘A’, ‘C’, ‘G’, ‘T’]. The features are a tokenized list of nucleotides at and surrounding the

Cas12a 20nt target. (A) is a confusion matrix. (B) is a one vs. all ROC curve, training and testing on four models where

each label is alternately represented as true in each model.

https://doi.org/10.1371/journal.pone.0292924.g005
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upon the performance. We included the HEK293T-lentiviral dataset to increase our sample

size. This dataset also consists of endogenous targets like HEK293T-plasmid and

HCT116-plasmid, however, it varies regarding the mode of delivery (lentiviral transduction).

We also included a “synthetic” lentiviral transduced dataset. Finally, we separated the three

endogenous datasets into chromatin accessible and inaccessible targets. In total, this resulted

in eight different datasets (Fig 6).

The mean cleavage efficiency had a high degree of variability between groups, with means

ranging from 2% to 45% (Fig 6A). However, cleavage efficiency also had a high degree of vari-

ability within groups, with variances ranging from 21 to 1045 (Fig 6B). Cas12a cleavage was

significantly more efficient in cleaving “synthetic” targets (average = 41.39% ± 32.31) than in

endogenous targets (average = 6.98% ± 12.37); Welsh t statistics = 43.06, p< 1x10-10. Two fac-

tors that appeared to be correlated with cleavage efficiency were cell type and CRISPR delivery

method. Comparing different cell types for accessible targets with a plasmid delivery method,

cleavage efficiency of targets in HEK293T cells (average = 23.85% ± 18.91) was significantly

higher than the cleavage efficiency of targets in HCT116 cells (average = 8.84% ± 8.13); Welsh

t = 3.28, p = 0.003. Comparing different delivery methods for accessible targets in HEK293

cells, a plasmid delivery method resulted in a higher cleavage efficiency (average = 23.85% ±
18.91) than a lentiviral delivery method (average = 15.09% ± 17.35), however this was not sig-

nificant; Welsh t = 1.79, p = 0.08. More importantly, a potential confounding variable was

chromatin accessibility, as this has been observed to modulate cleavage efficiency [28,66,67].

This is because while “synthetic” targets are inherently accessible, endogenous targets com-

prise of both accessible and inaccessible targets, depending on the chromatin state. Out of the

endogenous targets, only 34% (n = 92) were accessible. We therefore compared “synthetic” tar-

gets to accessible targets. We observed that to a lesser degree, Cas12a editing in “synthetic” tar-

gets (average = 41.39% ± 32.31) were significantly more efficient than accessible endogenous

targets (average = 15.50% ± 16.68); Welsh t = 14.72, p = 2.85e-26. Overall, even when consider-

ing chromatin accessibility, the cleavage of Cas12a in “synthetic” targets is significantly more

efficient than that of accessible endogenous targets. We therefore hypothesized that a model

trained on endogenous targets would outperform the DeepCpf1 model. To do so, we aimed to

Fig 6. Distributions of cleavage efficiencies for the different datasets. (A) represents a box and whisker plot

demonstrating the different ranges. The inaccessible plot indicates that most inaccessible targets are inefficient and that

the more-efficient targets are outliers. (B) represents a density plot suggesting visualizing the different variances

between groups.

https://doi.org/10.1371/journal.pone.0292924.g006
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train a machine learning model on an endogenous dataset and validate on the same sets used

to validate DeepCpf1.

Machine learning training on endogenous loci improves the prediction of

editing events from Cas12a editing

Although there were no endogenous datasets with the same sample size as the HT 1–1 dataset

(15,000 sgRNAs), we identified a pooled-library screen (Mini-human) with 2,061 samples across

687 human genes [46]. In this knockout screen, Cas12a guides were designed for a set of genes,

and these regions were sequenced at a series of time points. This enabled the calculation of guide

efficiency through the log-fold change of gene depletion. This calculation was based on the relative

read count of each region. The log fold change is modulated by the confounding factor of whether

a gene is essential, or not. That is, how important a gene is for the cell to remain viable. To miti-

gate this, we excluded genes with a low Bayes Factor (BF) in the pre-processing stage [47].

After pre-processing, the sample size was reduced to 306 target sites. Because of the rela-

tively small sample size, we trained models using Random Forest algorithm. We included

global nucleotide counts and local nucleotide counts as features and sampled discrete regions

of the guide in a sliding window. We used five-fold cross validation on a customized mini-

human dataset for training and testing, and validated on each of the HEK293T-plasmid,

HCT116-plasmid and HEK293T-lentivirus deliveries datasets from Kim and colleagues [28].

We identified the model with the lowest OOB error and scored it using the Pearson correlation

coefficient on accessible targets from each of the validation sets. These scores are reported in

Table 1 along with Pearson’s coefficients from the DeepCpf1 model [28]. For each validation,

the Pearson’s coefficient of the Random Forest model was higher than the DeepCpf1 model.

The Pearson’s coefficient increased by from 14% for the HCT116-plasmid dataset to 50% for

the HEK293T-lentivirus dataset. This variation is likely a result of differences between the

training data each model used, and differences in efficiency distributions between cell types

and CRISPR delivery methods. Because where DeepCpf1 performs poorer on HEK293T-lenti-

virus delivery than HCT116-plasmid, the Random Forest model has a closer performance on

HEK293T-lentivirus and HCT116-plasmid. Regardless of the differences, for all validations

and with both models, the Pearson’s coefficients were significant (P< 0.05).

The improvement on the independent datasets achieved by Random Forest over DeepCpf1

was despite the training set for Random Forest being 50x smaller than the training set for

DeepCpf1. Despite the improvements, the models do share similarities regarding different

datasets, which suggests that both models are lacking in features modelled. This is because the

performance of both models varies between cell type and CRISPR delivery method. Further-

more, both models tend to over- or under-estimate the efficiencies of different datasets to dif-

ferent degrees (Fig 7A and 7B).

Predicting Cas12a guide RNA efficiency with a Cas12a predictor

To enable the use of our model, we have released it alongside a Cas12a predictor Python wrap-

per available as a Git repository https://github.com/gburgio/Cas12a_predictor. This script will

Table 1. Pearson correlation coefficients for “DeepCpf1” and “RF” models on accessible targets from three validation sets. The difference column indicates the

increase in these metrics for the RF model over DeepCpf1.

DeepCpf1 Random Forest model Difference

HEK293T-plasmid 0.466 (P = 9.14e-04) 0.578 (P = 6.84e-05) 24%

HCT116-plasmid 0.354 (P = 3.49e-03) 0.404 (P = 1.48e-03) 14%

HEK-lentivirus 0.273 (P = 9.95e-05) 0.409 (P = 5.64e-07) 50%

https://doi.org/10.1371/journal.pone.0292924.t001
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predict the Cas12a cleavage efficiency of one or more guides based on the target sequence. As a

Python script, it is platform agnostic and can be run from the command line. DNA sequence

strings need simply be placed in the provided text file, and executing the provided python file

will return the predicted efficiency for every sequence listed in the file. The only requirement

is that the input strings include four base-pairs downstream and 26 upstream of the PAM.

Two example sequences are included in the sequences file.

The code performs two primary tasks to predict the cleavage efficiency. The first task is our

tokeniser, which we describe in the “sequence processing” section. It encodes input DNA

sequences into a format that can be processed by the Random Forest algorithm. The second

task is to predict the efficiency of these processed sequences with our Random Forest model.

This model is included as a binary file alongside our source code.

Discussion

CRISPR Cas9 and Cas12 enzymes are widely utilized nucleases for many applications and

fields of research varying from molecular detection to genome engineering [1]. Both enzymes

have distinct features in target recognition and cleavage [19]. An important question is how

these enzymes are compared for target recognition, target site cleavage and off-targets in cells

or whole organisms.

Our computational investigation firstly suggests that nucleotide bias is an important driver

for target availability and off-target cleavage for Cas9 and Cas12a nucleases. We notably found

a disproportionate number of available targets between Cas9 and Cas12a related to the GC

content. Secondly, we found in our side-by-side comparison of Cas9 and Cas12a from

GUIDE-seq datasets that while Cas12 seems to be more specific, its efficiency in target cleavage

is lower. We also found low cleavage activity in off-target sites for both Cas9 and Cas12 nucle-

ases. This off-target cleavage activity seemed to be driven from the location of the target

Fig 7. Prediction results for DeepCpf1 and the Random Forest model. Measure of (A) Deep Cpf1 and (B) Random

Forrest model predicted versus measured cleavage efficiencies (in %) and their fitted linear regression models in

HEK293T-plasmid (blue), HEK293T-lentiviral (green) and HCT116-plasmid (orange) deliveries. The differing fitted

linear models are due to different cell lines and CRISPR delivery methods resulting in different efficiency distributions.

Although the Random Forest model predictions are closer to truth, it tends to underestimate efficiencies. The

DeepCpf1 model tends to overestimate efficiencies.

https://doi.org/10.1371/journal.pone.0292924.g007

PLOS ONE Predicting CRISPR-Cas12a guide efficiency using machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0292924 October 17, 2023 16 / 22

https://doi.org/10.1371/journal.pone.0292924.g007
https://doi.org/10.1371/journal.pone.0292924


sequence mismatches. Thirdly we found Cas12a cleavage behavior leads to over 50% of edits

being over 6 bp deletions while Cas9 mostly generate small indels of one or two base pairs.

Finally, we found the training data used in Deepcpf1 has a different mutational landscape than

endogenous targets, affecting its accuracy for guide RNA efficiency prediction. Our prediction

model based on a small dataset endogenous targets improved guide RNA prediction efficiency

in Cas12a by over 15%. However, despite the improvement, the lack of available datasets with

phenotypic measures of guide RNA efficiency of endogenous targets impedes the ability to cor-

rectly predict guide RNA efficiency and the mutational landscape in Cas12a. Overall, our

results underscore the requirement for more representative datasets and further benchmarking

to accurately predict guide RNA efficiency and off-target prediction for Cas12a effectors.

Previous works have investigated the Cas12a mutational landscape [16,24,58,68]. They

determined that Cas12a target availability is in general more restricted than Cas9 due to its

longer T-rich PAM sequence [68]. Our computational investigation supports these conclu-

sions by demonstrating that Cas12a targets are more unique in the human genome than Cas9,

with zero or more mismatches due to target availability and nucleotide composition. Although,

our findings did not consider Cas12 and Cas9 effector kinetics and observed cleavage effi-

ciency. Additional side-by-side comparison of Cas12a and Cas9 from GUIDE-seq data

revealed the variable nature of off-target cleavage. For example, off-targets with two mis-

matches presented cleavage efficiencies with an interquartile range of 12% to 70% for Cas9

enzyme. However, this is likely a result of the proximity of mismatches to the PAM, as based

on previous observations of a “seed’ region [4,9] and off-target cleavage kinetics [31,64,69,70].

This is supported by most two-mismatch off-targets with an efficiency of greater than 25%

having both mutations at least nine bases from the PAM. No two-mismatch potential off-tar-

gets with both mismatches within eight bases of the PAM demonstrated cleavage activity

based on our observations. This confirms previous genomic, biophysical and structural obser-

vations that the type of mismatches, their positioning and their numbers are critical to predict

off-target activity [10,56,58,64,70–74]. However, further highlighting the unpredictable nature

of CRISPR- Cas9 cleavage in our dataset is that the two-mismatch off-target with the second

highest cleavage efficiency had a mismatch just two-bases from the PAM.

DeepCpf1, the deep learning model for predicting the guide RNA efficiency for Cas12a

enzymes, is trained on the largest available empirical dataset (HT 1–1), to date [28]. However,

our assessment of the HT 1–1 dataset, which consists of 15,000 targets delivered by lentiviral

particles and a comparison dataset, with just 55 endogenous targets revealed a discrepancy in

the editing outcomes between the two datasets. This included less efficiency in targeting and

longer indels for endogenous targets (Fig 4). These observations on the endogenous targets are

consistent to previously published work, which has demonstrated a higher indel frequency

and length [42,63,75]. Then there were the predictable SNVs that we observed in the HT 1–1

dataset, that were not present in the endogenous targets. (Fig 4). Further suggesting these are

artefactual, a previous genome-wide sequencing effort on Cas12a edited cells revealed that

observed SNVs were largely from background rather than Cas12a mediated [76]. These collec-

tive results suggest that the DeepCpf1 model has room for improvement due to being trained

on a non-representative dataset of Cas12a editing results.

We therefore hypothesized that a model trained on endogenous targets would outperform

the DeepCpf1 model. We postulate that this is due to the discrepancy in the “synthetic” HT

1–1 dataset and the observed editing outcomes from endogenous targets (Fig 4). To test this

hypothesis, we trained a machine learning model on an endogenous dataset and validated on

the same datasets used to validate DeepCpf1. The results supported our hypothesis that a

model trained on more representative data will be more generalizable (Table 1). On accessible

targets, the correlation between predicted cleavage efficiency and observed cleavage efficiency
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improved from between 14% to 50%. This was despite our Random Forest modelling facing

several disadvantages. Firstly, the sample size was low. At just 306 sgRNAs, the size of this data-

set used in training was relatively small. We propose that a dataset the size of HT 1–1, with

15,000 sgRNAs at endogenous targets would result in an improved performance over both our

model and DeepCpf1. The second was the type of dataset being a pooled-library screen. As

although it enabled training an accurate efficiency prediction model, as a knock-out library,

the scope of modelling was limited. For example, it was not possible to model editing outcome

as the sequence reads represented changes in cell counts, rather than editing outcomes. Finally,

model validation suggested that the influence of other variables on cleavage efficiency modu-

late Cas12a cleavage efficiency. With both models separating the three experiments into differ-

ent distributions by cell type and CRISPR delivery method, this indicates that information is

still lacking from the model. To enable modelling of these properties, the hypothetical 15,000

endogenous targets would be required to exist across different cell types through different

delivery methods.

In conclusion, in accordance with previous work, we demonstrated that Cas12a enzymes

cleave more unique targets than Cas9 and exhibit in general lower cleavage efficiency at the

target and off-target sites. Importantly our results highlight that despite the recent progresses

in the field, it underscores the need to gain more information from experimental data to enable

an efficient predictive model of target cleavage efficiency from guide RNA design.

Supporting information

S1 Fig. In-silico Cas9 and Cas12a off-target prediction for low and high GC content

genomes. The ratio of Cas9 to Cas12a predicted off-targets across the genomes for each gRNA

designed for (a) low GC content (30.8%) and (b) high GC content (66%) with zero to five mis-

matches to the original target and aggregated per genome. A ratio> 1 signifies Cas9 off-targets

are higher than Cas12a. Statistical tests were performed using a non-parametric test (Kruskal-

Wallis) and multiple comparisons were corrected with a Bonferroni test. ** indicates corrected

p< 0.01 and *** indicates corrected p< 0.001 n = 10 (low GC content) and n = 18 (high GC

content) per group.

(PDF)

S1 Table. GC content and length of 165 prokaryotic and eukaryotic genomes used in this

study.

(XLSX)

S2 Table. Guide RNA sequences for Cas9 and Cas12a.

(XLSX)

S3 Table. Datasets used in this study.

(XLSX)

S4 Table. Number of Cas9 and Cas12 target sites normalized by the genome size of 69 pro-

karyotic and eukaryotic genomes used in this study.

(XLSX)

Author Contributions

Conceptualization: Aidan O’Brien, Denis C. Bauer, Gaetan Burgio.

Formal analysis: Aidan O’Brien, Denis C. Bauer.

Funding acquisition: Denis C. Bauer, Gaetan Burgio.

PLOS ONE Predicting CRISPR-Cas12a guide efficiency using machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0292924 October 17, 2023 18 / 22

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0292924.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0292924.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0292924.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0292924.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0292924.s005
https://doi.org/10.1371/journal.pone.0292924


Investigation: Aidan O’Brien, Denis C. Bauer, Gaetan Burgio.

Methodology: Denis C. Bauer, Gaetan Burgio.

Project administration: Denis C. Bauer, Gaetan Burgio.

Resources: Denis C. Bauer, Gaetan Burgio.

Software: Aidan O’Brien.

Supervision: Denis C. Bauer, Gaetan Burgio.

Writing – original draft: Aidan O’Brien, Gaetan Burgio.

Writing – review & editing: Aidan O’Brien, Denis C. Bauer, Gaetan Burgio.

References
1. Knott GJ, Doudna JA. CRISPR-Cas guides the future of genetic engineering. Science. 2018; 361

(6405):866–9. https://doi.org/10.1126/science.aat5011 PMID: 30166482

2. Hajizadeh Dastjerdi A, Newman A, Burgio G. The Expanding Class 2 CRISPR Toolbox: Diversity, Appli-

cability, and Targeting Drawbacks. BioDrugs. 2019; 33(5):503–13. https://doi.org/10.1007/s40259-019-

00369-y PMID: 31385197

3. Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates

specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A. 2012; 109(39):

E2579–86. https://doi.org/10.1073/pnas.1208507109 PMID: 22949671

4. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-

guided DNA endonuclease in adaptive bacterial immunity. Science. 2012; 337(6096):816–21. https://

doi.org/10.1126/science.1225829 PMID: 22745249

5. Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, et al. Structures of Cas9 endonucleases

reveal RNA-mediated conformational activation. Science. 2014; 343(6176):1247997. https://doi.org/10.

1126/science.1247997 PMID: 24505130

6. Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, et al. Crystal structure of Cas9

in complex with guide RNA and target DNA. Cell. 2014; 156(5):935–49. https://doi.org/10.1016/j.cell.

2014.02.001 PMID: 24529477

7. Gong S, Yu HH, Johnson KA, Taylor DW. DNA Unwinding Is the Primary Determinant of CRISPR-Cas9

Activity. Cell Rep. 2018; 22(2):359–71. https://doi.org/10.1016/j.celrep.2017.12.041 PMID: 29320733

8. Rutkauskas M, Sinkunas T, Songailiene I, Tikhomirova MS, Siksnys V, Seidel R. Directional R-Loop

Formation by the CRISPR-Cas Surveillance Complex Cascade Provides Efficient Off-Target Site

Rejection. Cell Rep. 2015; 10(9):1534–43. https://doi.org/10.1016/j.celrep.2015.01.067 PMID:

25753419

9. Zhang XH, Tee LY, Wang XG, Huang QS, Yang SH. Off-target Effects in CRISPR/Cas9-mediated

Genome Engineering. Mol Ther Nucleic Acids. 2015; 4(11):e264. https://doi.org/10.1038/mtna.2015.37

PMID: 26575098

10. Pacesa M, Lin CH, Clery A, Saha A, Arantes PR, Bargsten K, et al. Structural basis for Cas9 off-target

activity. Cell. 2022; 185(22):4067–81 e21. https://doi.org/10.1016/j.cell.2022.09.026 PMID: 36306733

11. Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S, et al. Analysis of off-target effects of CRISPR/Cas-

derived RNA-guided endonucleases and nickases. Genome Res. 2014; 24(1):132–41. https://doi.org/

10.1101/gr.162339.113 PMID: 24253446

12. Hendel A, Kildebeck EJ, Fine EJ, Clark J, Punjya N, Sebastiano V, et al. Quantifying genome-editing

outcomes at endogenous loci with SMRT sequencing. Cell Rep. 2014; 7(1):293–305. https://doi.org/10.

1016/j.celrep.2014.02.040 PMID: 24685129

13. Kosicki M, Tomberg K, Bradley A. Repair of double-strand breaks induced by CRISPR-Cas9 leads to

large deletions and complex rearrangements. Nat Biotechnol. 2018; 36(8):765–71. https://doi.org/10.

1038/nbt.4192 PMID: 30010673

14. Burgio G, Teboul L. Anticipating and Identifying Collateral Damage in Genome Editing. Trends Genet.

2020; 36(12):905–14. https://doi.org/10.1016/j.tig.2020.09.011 PMID: 33039248

15. Thomas M, Burgio G, Adams DJ, Iyer V. Collateral damage and CRISPR genome editing. PLoS Genet.

2019; 15(3):e1007994. https://doi.org/10.1371/journal.pgen.1007994 PMID: 30870431

PLOS ONE Predicting CRISPR-Cas12a guide efficiency using machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0292924 October 17, 2023 19 / 22

https://doi.org/10.1126/science.aat5011
http://www.ncbi.nlm.nih.gov/pubmed/30166482
https://doi.org/10.1007/s40259-019-00369-y
https://doi.org/10.1007/s40259-019-00369-y
http://www.ncbi.nlm.nih.gov/pubmed/31385197
https://doi.org/10.1073/pnas.1208507109
http://www.ncbi.nlm.nih.gov/pubmed/22949671
https://doi.org/10.1126/science.1225829
https://doi.org/10.1126/science.1225829
http://www.ncbi.nlm.nih.gov/pubmed/22745249
https://doi.org/10.1126/science.1247997
https://doi.org/10.1126/science.1247997
http://www.ncbi.nlm.nih.gov/pubmed/24505130
https://doi.org/10.1016/j.cell.2014.02.001
https://doi.org/10.1016/j.cell.2014.02.001
http://www.ncbi.nlm.nih.gov/pubmed/24529477
https://doi.org/10.1016/j.celrep.2017.12.041
http://www.ncbi.nlm.nih.gov/pubmed/29320733
https://doi.org/10.1016/j.celrep.2015.01.067
http://www.ncbi.nlm.nih.gov/pubmed/25753419
https://doi.org/10.1038/mtna.2015.37
http://www.ncbi.nlm.nih.gov/pubmed/26575098
https://doi.org/10.1016/j.cell.2022.09.026
http://www.ncbi.nlm.nih.gov/pubmed/36306733
https://doi.org/10.1101/gr.162339.113
https://doi.org/10.1101/gr.162339.113
http://www.ncbi.nlm.nih.gov/pubmed/24253446
https://doi.org/10.1016/j.celrep.2014.02.040
https://doi.org/10.1016/j.celrep.2014.02.040
http://www.ncbi.nlm.nih.gov/pubmed/24685129
https://doi.org/10.1038/nbt.4192
https://doi.org/10.1038/nbt.4192
http://www.ncbi.nlm.nih.gov/pubmed/30010673
https://doi.org/10.1016/j.tig.2020.09.011
http://www.ncbi.nlm.nih.gov/pubmed/33039248
https://doi.org/10.1371/journal.pgen.1007994
http://www.ncbi.nlm.nih.gov/pubmed/30870431
https://doi.org/10.1371/journal.pone.0292924


16. Kim D, Kim J, Hur JK, Been KW, Yoon SH, Kim JS. Genome-wide analysis reveals specificities of Cpf1

endonucleases in human cells. Nat Biotechnol. 2016; 34(8):863–8. https://doi.org/10.1038/nbt.3609

PMID: 27272384

17. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, et al. Cpf1

is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 2015; 163(3):759–71.

https://doi.org/10.1016/j.cell.2015.09.038 PMID: 26422227

18. Swarts DC, van der Oost J, Jinek M. Structural Basis for Guide RNA Processing and Seed-Dependent

DNA Targeting by CRISPR-Cas12a. Mol Cell. 2017; 66(2):221–33 e4. https://doi.org/10.1016/j.molcel.

2017.03.016 PMID: 28431230

19. Swarts DC, Jinek M. Mechanistic Insights into the cis- and trans-Acting DNase Activities of Cas12a. Mol

Cell. 2019; 73(3):589–600 e4. https://doi.org/10.1016/j.molcel.2018.11.021 PMID: 30639240

20. Swarts DC. Making the cut(s): how Cas12a cleaves target and non-target DNA. Biochem Soc Trans.

2019; 47(5):1499–510. https://doi.org/10.1042/BST20190564 PMID: 31671185

21. Fu BXH, Smith JD, Fuchs RT, Mabuchi M, Curcuru J, Robb GB, et al. Target-dependent nickase activi-

ties of the CRISPR-Cas nucleases Cpf1 and Cas9. Nat Microbiol. 2019; 4(5):888–97. https://doi.org/10.

1038/s41564-019-0382-0 PMID: 30833733

22. Strohkendl I, Saifuddin FA, Rybarski JR, Finkelstein IJ, Russell R. Kinetic Basis for DNA Target Speci-

ficity of CRISPR-Cas12a. Mol Cell. 2018; 71(5):816–24 e3. https://doi.org/10.1016/j.molcel.2018.06.

043 PMID: 30078724

23. Kim Y, Cheong SA, Lee JG, Lee SW, Lee MS, Baek IJ, et al. Generation of knockout mice by Cpf1-

mediated gene targeting. Nat Biotechnol. 2016; 34(8):808–10. https://doi.org/10.1038/nbt.3614 PMID:

27272387

24. Kleinstiver BP, Tsai SQ, Prew MS, Nguyen NT, Welch MM, Lopez JM, et al. Genome-wide specificities

of CRISPR-Cas Cpf1 nucleases in human cells. Nat Biotechnol. 2016; 34(8):869–74. https://doi.org/10.

1038/nbt.3620 PMID: 27347757

25. Alok A, Sandhya D, Jogam P, Rodrigues V, Bhati KK, Sharma H, et al. The Rise of the CRISPR/Cpf1

System for Efficient Genome Editing in Plants. Front Plant Sci. 2020; 11:264. https://doi.org/10.3389/

fpls.2020.00264 PMID: 32296449

26. Bin Moon S, Lee JM, Kang JG, Lee NE, Ha DI, Kim DY, et al. Highly efficient genome editing by

CRISPR-Cpf1 using CRISPR RNA with a uridinylate-rich 3’-overhang. Nat Commun. 2018; 9(1):3651.

https://doi.org/10.1038/s41467-018-06129-w PMID: 30194297

27. Murugan K, Seetharam AS, Severin AJ, Sashital DG. CRISPR-Cas12a has widespread off-target and

dsDNA-nicking effects. J Biol Chem. 2020; 295(17):5538–53. https://doi.org/10.1074/jbc.RA120.

012933 PMID: 32161115

28. Kim HK, Min S, Song M, Jung S, Choi JW, Kim Y, et al. Deep learning improves prediction of CRISPR-

Cpf1 guide RNA activity. Nat Biotechnol. 2018; 36(3):239–41. https://doi.org/10.1038/nbt.4061 PMID:

29431740

29. Zhu H, Liang C. CRISPR-DT: designing gRNAs for the CRISPR-Cpf1 system with improved target effi-

ciency and specificity. Bioinformatics. 2019; 35(16):2783–9. https://doi.org/10.1093/bioinformatics/

bty1061 PMID: 30615056

30. DeWeirdt PC, Sanson KR, Sangree AK, Hegde M, Hanna RE, Feeley MN, et al. Optimization of

AsCas12a for combinatorial genetic screens in human cells. Nat Biotechnol. 2021; 39(1):94–104.

https://doi.org/10.1038/s41587-020-0600-6 PMID: 32661438

31. Doench JG, Hartenian E, Graham DB, Tothova Z, Hegde M, Smith I, et al. Rational design of highly

active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol. 2014; 32(12):1262–7.

https://doi.org/10.1038/nbt.3026 PMID: 25184501

32. Chari R, Yeo NC, Chavez A, Church GM. sgRNA Scorer 2.0: A Species-Independent Model To Predict

CRISPR/Cas9 Activity. ACS Synth Biol. 2017; 6(5):902–4. https://doi.org/10.1021/acssynbio.6b00343

PMID: 28146356

33. Allen F, Crepaldi L, Alsinet C, Strong AJ, Kleshchevnikov V, De Angeli P, et al. Predicting the mutations

generated by repair of Cas9-induced double-strand breaks. Nat Biotechnol. 2018. https://doi.org/10.

1038/nbt.4317 PMID: 30480667

34. Leenay RT, Aghazadeh A, Hiatt J, Tse D, Roth TL, Apathy R, et al. Large dataset enables prediction of

repair after CRISPR-Cas9 editing in primary T cells. Nat Biotechnol. 2019; 37(9):1034–7. https://doi.

org/10.1038/s41587-019-0203-2 PMID: 31359007

35. Shen MW, Arbab M, Hsu JY, Worstell D, Culbertson SJ, Krabbe O, et al. Predictable and precise tem-

plate-free CRISPR editing of pathogenic variants. Nature. 2018; 563(7733):646–51. https://doi.org/10.

1038/s41586-018-0686-x PMID: 30405244

PLOS ONE Predicting CRISPR-Cas12a guide efficiency using machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0292924 October 17, 2023 20 / 22

https://doi.org/10.1038/nbt.3609
http://www.ncbi.nlm.nih.gov/pubmed/27272384
https://doi.org/10.1016/j.cell.2015.09.038
http://www.ncbi.nlm.nih.gov/pubmed/26422227
https://doi.org/10.1016/j.molcel.2017.03.016
https://doi.org/10.1016/j.molcel.2017.03.016
http://www.ncbi.nlm.nih.gov/pubmed/28431230
https://doi.org/10.1016/j.molcel.2018.11.021
http://www.ncbi.nlm.nih.gov/pubmed/30639240
https://doi.org/10.1042/BST20190564
http://www.ncbi.nlm.nih.gov/pubmed/31671185
https://doi.org/10.1038/s41564-019-0382-0
https://doi.org/10.1038/s41564-019-0382-0
http://www.ncbi.nlm.nih.gov/pubmed/30833733
https://doi.org/10.1016/j.molcel.2018.06.043
https://doi.org/10.1016/j.molcel.2018.06.043
http://www.ncbi.nlm.nih.gov/pubmed/30078724
https://doi.org/10.1038/nbt.3614
http://www.ncbi.nlm.nih.gov/pubmed/27272387
https://doi.org/10.1038/nbt.3620
https://doi.org/10.1038/nbt.3620
http://www.ncbi.nlm.nih.gov/pubmed/27347757
https://doi.org/10.3389/fpls.2020.00264
https://doi.org/10.3389/fpls.2020.00264
http://www.ncbi.nlm.nih.gov/pubmed/32296449
https://doi.org/10.1038/s41467-018-06129-w
http://www.ncbi.nlm.nih.gov/pubmed/30194297
https://doi.org/10.1074/jbc.RA120.012933
https://doi.org/10.1074/jbc.RA120.012933
http://www.ncbi.nlm.nih.gov/pubmed/32161115
https://doi.org/10.1038/nbt.4061
http://www.ncbi.nlm.nih.gov/pubmed/29431740
https://doi.org/10.1093/bioinformatics/bty1061
https://doi.org/10.1093/bioinformatics/bty1061
http://www.ncbi.nlm.nih.gov/pubmed/30615056
https://doi.org/10.1038/s41587-020-0600-6
http://www.ncbi.nlm.nih.gov/pubmed/32661438
https://doi.org/10.1038/nbt.3026
http://www.ncbi.nlm.nih.gov/pubmed/25184501
https://doi.org/10.1021/acssynbio.6b00343
http://www.ncbi.nlm.nih.gov/pubmed/28146356
https://doi.org/10.1038/nbt.4317
https://doi.org/10.1038/nbt.4317
http://www.ncbi.nlm.nih.gov/pubmed/30480667
https://doi.org/10.1038/s41587-019-0203-2
https://doi.org/10.1038/s41587-019-0203-2
http://www.ncbi.nlm.nih.gov/pubmed/31359007
https://doi.org/10.1038/s41586-018-0686-x
https://doi.org/10.1038/s41586-018-0686-x
http://www.ncbi.nlm.nih.gov/pubmed/30405244
https://doi.org/10.1371/journal.pone.0292924


36. Bae S, Park J, Kim JS. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-tar-

get sites of Cas9 RNA-guided endonucleases. Bioinformatics. 2014; 30(10):1473–5. https://doi.org/10.

1093/bioinformatics/btu048 PMID: 24463181

37. O’Brien A, Bailey TL. GT-Scan: identifying unique genomic targets. Bioinformatics. 2014; 30(18):2673–

5. https://doi.org/10.1093/bioinformatics/btu354 PMID: 24860161

38. McKenna A, Shendure J. FlashFry: a fast and flexible tool for large-scale CRISPR target design. BMC

Biol. 2018; 16(1):74. https://doi.org/10.1186/s12915-018-0545-0 PMID: 29976198

39. Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, et al. High-fidelity CRISPR-

Cas9 nucleases with no detectable genome-wide off-target effects. Nature. 2016; 529(7587):490–5.

https://doi.org/10.1038/nature16526 PMID: 26735016

40. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012; 9(4):357–9.

https://doi.org/10.1038/nmeth.1923 PMID: 22388286

41. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format

and SAMtools. Bioinformatics. 2009; 25(16):2078–9. https://doi.org/10.1093/bioinformatics/btp352

PMID: 19505943

42. Reti D O’Brien A, Wetzel P, Tay A, Bauer DC, Wilson LOW. GOANA: A Universal High-Throughput

Web Service for Assessing and Comparing the Outcome and Efficiency of Genome Editing Experi-

ments. CRISPR J. 2021; 4(2):243–52. https://doi.org/10.1089/crispr.2020.0068 PMID: 33876955

43. Cohen J. Statistical power analysis for the behavioral sciences (Rev. ed.). Lawrence Erlbaum Associ-

ates I, editor 1977.

44. Biau G. Analysis of Random Forests Model. Journal of Machine Learning Research. 2012; 13:1063–95.

45. Breiman L. Classificationand Regression Trees. Routledge ed. New York: Routledge; 2017. 368 p.

46. Liu J, Srinivasan S, Li CY, Ho IL, Rose J, Shaheen M, et al. Pooled library screening with multiplexed

Cpf1 library. Nat Commun. 2019; 10(1):3144. https://doi.org/10.1038/s41467-019-10963-x PMID:

31316073

47. Hart T, Moffat J. BAGEL: a computational framework for identifying essential genes from pooled library

screens. BMC Bioinformatics. 2016; 17:164. https://doi.org/10.1186/s12859-016-1015-8 PMID:

27083490

48. Hart T, Chandrashekhar M, Aregger M, Steinhart Z, Brown KR, MacLeod G, et al. High-Resolution

CRISPR Screens Reveal Fitness Genes and Genotype-Specific Cancer Liabilities. Cell. 2015; 163

(6):1515–26. https://doi.org/10.1016/j.cell.2015.11.015 PMID: 26627737

49. Xu H, Xiao T, Chen CH, Li W, Meyer CA, Wu Q, et al. Sequence determinants of improved CRISPR

sgRNA design. Genome Res. 2015; 25(8):1147–57. https://doi.org/10.1101/gr.191452.115 PMID:

26063738

50. Consortium EP. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012; 489

(7414):57–74. https://doi.org/10.1038/nature11247 PMID: 22955616

51. Davis CA, Hitz BC, Sloan CA, Chan ET, Davidson JM, Gabdank I, et al. The Encyclopedia of DNA ele-

ments (ENCODE): data portal update. Nucleic Acids Res. 2018; 46(D1):D794–D801. https://doi.org/10.

1093/nar/gkx1081 PMID: 29126249

52. Geisser S. The Predictive Sample Reuse Method with Applications. Journal of the American Statistical

Association. 1975; 70(350):320–8.

53. Pedregosa FV G.; Gramfort A.; Michel V.; Thirion B.; Grisel O.; Blondel M.; et al. Scikit-learn: Machine

Learning in Python. J Mach Learn Res. 2011:2825–30.

54. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic

(ROC) curve. Radiology. 1982; 143(1):29–36. https://doi.org/10.1148/radiology.143.1.7063747 PMID:

7063747

55. Romiguier J, Ranwez V, Douzery EJ, Galtier N. Contrasting GC-content dynamics across 33 mamma-

lian genomes: relationship with life-history traits and chromosome sizes. Genome Res. 2010; 20

(8):1001–9. https://doi.org/10.1101/gr.104372.109 PMID: 20530252

56. Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, et al. GUIDE-seq enables genome-

wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol. 2015; 33(2):187–97.

https://doi.org/10.1038/nbt.3117 PMID: 25513782

57. Hoijer I, Johansson J, Gudmundsson S, Chin CS, Bunikis I, Haggqvist S, et al. Amplification-free long-

read sequencing reveals unforeseen CRISPR-Cas9 off-target activity. Genome Biol. 2020; 21(1):290.

https://doi.org/10.1186/s13059-020-02206-w PMID: 33261648

58. Jones SK Jr, Hawkins JA, Johnson NV, Jung C, Hu K, Rybarski JR, et al. Massively parallel kinetic pro-

filing of natural and engineered CRISPR nucleases. Nat Biotechnol. 2021; 39(1):84–93. https://doi.org/

10.1038/s41587-020-0646-5 PMID: 32895548

PLOS ONE Predicting CRISPR-Cas12a guide efficiency using machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0292924 October 17, 2023 21 / 22

https://doi.org/10.1093/bioinformatics/btu048
https://doi.org/10.1093/bioinformatics/btu048
http://www.ncbi.nlm.nih.gov/pubmed/24463181
https://doi.org/10.1093/bioinformatics/btu354
http://www.ncbi.nlm.nih.gov/pubmed/24860161
https://doi.org/10.1186/s12915-018-0545-0
http://www.ncbi.nlm.nih.gov/pubmed/29976198
https://doi.org/10.1038/nature16526
http://www.ncbi.nlm.nih.gov/pubmed/26735016
https://doi.org/10.1038/nmeth.1923
http://www.ncbi.nlm.nih.gov/pubmed/22388286
https://doi.org/10.1093/bioinformatics/btp352
http://www.ncbi.nlm.nih.gov/pubmed/19505943
https://doi.org/10.1089/crispr.2020.0068
http://www.ncbi.nlm.nih.gov/pubmed/33876955
https://doi.org/10.1038/s41467-019-10963-x
http://www.ncbi.nlm.nih.gov/pubmed/31316073
https://doi.org/10.1186/s12859-016-1015-8
http://www.ncbi.nlm.nih.gov/pubmed/27083490
https://doi.org/10.1016/j.cell.2015.11.015
http://www.ncbi.nlm.nih.gov/pubmed/26627737
https://doi.org/10.1101/gr.191452.115
http://www.ncbi.nlm.nih.gov/pubmed/26063738
https://doi.org/10.1038/nature11247
http://www.ncbi.nlm.nih.gov/pubmed/22955616
https://doi.org/10.1093/nar/gkx1081
https://doi.org/10.1093/nar/gkx1081
http://www.ncbi.nlm.nih.gov/pubmed/29126249
https://doi.org/10.1148/radiology.143.1.7063747
http://www.ncbi.nlm.nih.gov/pubmed/7063747
https://doi.org/10.1101/gr.104372.109
http://www.ncbi.nlm.nih.gov/pubmed/20530252
https://doi.org/10.1038/nbt.3117
http://www.ncbi.nlm.nih.gov/pubmed/25513782
https://doi.org/10.1186/s13059-020-02206-w
http://www.ncbi.nlm.nih.gov/pubmed/33261648
https://doi.org/10.1038/s41587-020-0646-5
https://doi.org/10.1038/s41587-020-0646-5
http://www.ncbi.nlm.nih.gov/pubmed/32895548
https://doi.org/10.1371/journal.pone.0292924


59. Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR. High-throughput profiling of off-target

DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol. 2013; 31(9):839–

43. https://doi.org/10.1038/nbt.2673 PMID: 23934178

60. Miyaoka Y, Berman JR, Cooper SB, Mayerl SJ, Chan AH, Zhang B, et al. Systematic quantification of

HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing. Sci Rep. 2016;

6:23549. https://doi.org/10.1038/srep23549 PMID: 27030102

61. van Overbeek M, Capurso D, Carter MM, Thompson MS, Frias E, Russ C, et al. DNA Repair Profiling

Reveals Nonrandom Outcomes at Cas9-Mediated Breaks. Mol Cell. 2016; 63(4):633–46. https://doi.

org/10.1016/j.molcel.2016.06.037 PMID: 27499295

62. Petiwala S, Modi A, Anton T, Murphy E, Kadri S, Hu H, et al. Optimization of Genomewide CRISPR

Screens Using AsCas12a and Multi-Guide Arrays. CRISPR J. 2023; 6(1):75–82. https://doi.org/10.

1089/crispr.2022.0093 PMID: 36787117

63. Bernabe-Orts JM, Casas-Rodrigo I, Minguet EG, Landolfi V, Garcia-Carpintero V, Gianoglio S, et al.

Assessment of Cas12a-mediated gene editing efficiency in plants. Plant Biotechnol J. 2019; 17

(10):1971–84. https://doi.org/10.1111/pbi.13113 PMID: 30950179

64. Boyle EA, Becker WR, Bai HB, Chen JS, Doudna JA, Greenleaf WJ. Quantification of Cas9 binding and

cleavage across diverse guide sequences maps landscapes of target engagement. Sci Adv. 2021; 7(8).

https://doi.org/10.1126/sciadv.abe5496 PMID: 33608277

65. Chen W, McKenna A, Schreiber J, Haeussler M, Yin Y, Agarwal V, et al. Massively parallel profiling and

predictive modeling of the outcomes of CRISPR/Cas9-mediated double-strand break repair. Nucleic

Acids Res. 2019; 47(15):7989–8003. https://doi.org/10.1093/nar/gkz487 PMID: 31165867

66. Horlbeck MA, Witkowsky LB, Guglielmi B, Replogle JM, Gilbert LA, Villalta JE, et al. Nucleosomes

impede Cas9 access to DNA in vivo and in vitro. Elife. 2016;5. https://doi.org/10.7554/eLife.12677

PMID: 26987018

67. Isaac RS, Jiang F, Doudna JA, Lim WA, Narlikar GJ, Almeida R. Nucleosome breathing and remodeling

constrain CRISPR-Cas9 function. Elife. 2016;5. https://doi.org/10.7554/eLife.13450 PMID: 27130520

68. Gao L, Cox DBT, Yan WX, Manteiga JC, Schneider MW, Yamano T, et al. Engineered Cpf1 variants

with altered PAM specificities. Nat Biotechnol. 2017; 35(8):789–92. https://doi.org/10.1038/nbt.3900

PMID: 28581492

69. Eslami-Mossallam B, Klein M, Smagt CVD, Sanden KVD, Jones SK Jr, Hawkins JA, et al. A kinetic

model predicts SpCas9 activity, improves off-target classification, and reveals the physical basis of tar-

geting fidelity. Nat Commun. 2022; 13(1):1367. https://doi.org/10.1038/s41467-022-28994-2 PMID:

35292641

70. Zhang L, Rube HT, Vakulskas CA, Behlke MA, Bussemaker HJ, Pufall MA. Systematic in vitro profiling

of off-target affinity, cleavage and efficiency for CRISPR enzymes. Nucleic Acids Res. 2020; 48

(9):5037–53. https://doi.org/10.1093/nar/gkaa231 PMID: 32315032

71. Cameron P, Fuller CK, Donohoue PD, Jones BN, Thompson MS, Carter MM, et al. Mapping the geno-

mic landscape of CRISPR-Cas9 cleavage. Nat Methods. 2017; 14(6):600–6. https://doi.org/10.1038/

nmeth.4284 PMID: 28459459

72. Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, et al. Optimized sgRNA design

to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol. 2016; 34(2):184–

91. https://doi.org/10.1038/nbt.3437 PMID: 26780180

73. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, et al. DNA targeting specificity of

RNA-guided Cas9 nucleases. Nat Biotechnol. 2013; 31(9):827–32. https://doi.org/10.1038/nbt.2647

PMID: 23873081

74. Modrzejewski D, Hartung F, Lehnert H, Sprink T, Kohl C, Keilwagen J, et al. Which Factors Affect the

Occurrence of Off-Target Effects Caused by the Use of CRISPR/Cas: A Systematic Review in Plants.

Front Plant Sci. 2020; 11:574959. https://doi.org/10.3389/fpls.2020.574959 PMID: 33329634

75. Kurgan G, Turk R, Li H, Roberts N, Rettig GR, Jacobi AM, et al. CRISPAltRations: a validated cloud-

based approach for interrogation of double-strand break repair mediated by CRISPR genome editing.

Mol Ther Methods Clin Dev. 2021; 21:478–91. https://doi.org/10.1016/j.omtm.2021.03.024 PMID:

33981780

76. Tang X, Liu G, Zhou J, Ren Q, You Q, Tian L, et al. A large-scale whole-genome sequencing analysis

reveals highly specific genome editing by both Cas9 and Cpf1 (Cas12a) nucleases in rice. Genome

Biol. 2018; 19(1):84. https://doi.org/10.1186/s13059-018-1458-5 PMID: 29973285

PLOS ONE Predicting CRISPR-Cas12a guide efficiency using machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0292924 October 17, 2023 22 / 22

https://doi.org/10.1038/nbt.2673
http://www.ncbi.nlm.nih.gov/pubmed/23934178
https://doi.org/10.1038/srep23549
http://www.ncbi.nlm.nih.gov/pubmed/27030102
https://doi.org/10.1016/j.molcel.2016.06.037
https://doi.org/10.1016/j.molcel.2016.06.037
http://www.ncbi.nlm.nih.gov/pubmed/27499295
https://doi.org/10.1089/crispr.2022.0093
https://doi.org/10.1089/crispr.2022.0093
http://www.ncbi.nlm.nih.gov/pubmed/36787117
https://doi.org/10.1111/pbi.13113
http://www.ncbi.nlm.nih.gov/pubmed/30950179
https://doi.org/10.1126/sciadv.abe5496
http://www.ncbi.nlm.nih.gov/pubmed/33608277
https://doi.org/10.1093/nar/gkz487
http://www.ncbi.nlm.nih.gov/pubmed/31165867
https://doi.org/10.7554/eLife.12677
http://www.ncbi.nlm.nih.gov/pubmed/26987018
https://doi.org/10.7554/eLife.13450
http://www.ncbi.nlm.nih.gov/pubmed/27130520
https://doi.org/10.1038/nbt.3900
http://www.ncbi.nlm.nih.gov/pubmed/28581492
https://doi.org/10.1038/s41467-022-28994-2
http://www.ncbi.nlm.nih.gov/pubmed/35292641
https://doi.org/10.1093/nar/gkaa231
http://www.ncbi.nlm.nih.gov/pubmed/32315032
https://doi.org/10.1038/nmeth.4284
https://doi.org/10.1038/nmeth.4284
http://www.ncbi.nlm.nih.gov/pubmed/28459459
https://doi.org/10.1038/nbt.3437
http://www.ncbi.nlm.nih.gov/pubmed/26780180
https://doi.org/10.1038/nbt.2647
http://www.ncbi.nlm.nih.gov/pubmed/23873081
https://doi.org/10.3389/fpls.2020.574959
http://www.ncbi.nlm.nih.gov/pubmed/33329634
https://doi.org/10.1016/j.omtm.2021.03.024
http://www.ncbi.nlm.nih.gov/pubmed/33981780
https://doi.org/10.1186/s13059-018-1458-5
http://www.ncbi.nlm.nih.gov/pubmed/29973285
https://doi.org/10.1371/journal.pone.0292924



