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Abstract

Background: Clinically significant dysregulation of the insulin-like growth factor (IGF) family proteins occurs in
HIV-infected individuals, but the details including whether the deficiencies in IGFs contribute to CNS dysfunction are
unknown.

Methods: We measured the levels of IGF1, IGF2, IGFBP1, IGFBP2, and IGF2 receptor (IGF2R) in matching plasma and
cerebrospinal fluid (CSF) samples of 107 HIV+ individuals from CNS HIV Antiretroviral Therapy Effects Research (CHARTER)
and analyzed their associations with demographic and disease characteristics, as well as levels of several soluble
inflammatory mediators (TNFα, IL-6, IL-10, IL-17, IP-10, MCP-1, and progranulin). We also determined whether IGF1
or IGF2 deficiency is associated with HIV-associated neurocognitive disorder (HAND) and whether the levels of
soluble IGF2R (an IGF scavenging receptor, which we also have found to be a cofactor for HIV infection in vitro)
correlate with HIV viral load (VL).

Results: There was a positive correlation between the levels of IGF-binding proteins (IGFBPs) and those of inflammatory
mediators: between plasma IGFBP1 and IL-17 (β coefficient 0.28, P = 0.009), plasma IGFBP2 and IL-6 (β coefficient 0.209,
P = 0.021), CSF IGFBP1 and TNFα (β coefficient 0.394, P < 0.001), and CSF IGFBP2 and TNF-α (β coefficient 0.14, P < 0.001).
As IGFBPs limit IGF availability, these results suggest that inflammation is a significant factor that modulates IGF protein
expression/availability in the setting of HIV infection. However, there was no significant association between HAND and
the reduced levels of plasma IGF1, IGF2, or CSF IGF1, suggesting a limited power of our study. Interestingly, plasma IGF1
was significantly reduced in subjects on non-nucleoside reverse transcriptase inhibitor-based antiretroviral therapy (ART)
compared to protease inhibitor-based therapy (174.1 ± 59.8 vs. 202.8 ± 47.3 ng/ml, P = 0.008), suggesting a scenario in
which ART regimen-related toxicity can contribute to HAND. Plasma IGF2R levels were positively correlated with plasma
VL (β coefficient 0.37, P = 0.021) and inversely correlated with current CD4+ T cell counts (β coefficient −0.04, P = 0.021),
supporting our previous findings in vitro.

Conclusions: Together, these results strongly implicate (1) an inverse relationship between inflammation and IGF
growth factor availability and the contribution of IGF deficiencies to HAND and (2) the role of IGF2R in HIV infection
and as a surrogate biomarker for HIV VL.
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Background
The insulin-like growth factor (IGF) system consists of
growth peptides (IGF1 and IGF2), their receptors
(IGF1R and IGF2R), and circulating binding proteins
(IGFBPs 1-6) [1-3]. Multiple factors influence IGF levels
in biological fluids including nutrition, endocrine status,
liver disease, chronic inflammatory diseases, diabetes melli-
tus, and ethnicity (African American <Asian < Caucasian)
[4]. Plasma levels of IGFs are much higher (10 to 100 fold)
than required for biological action, as the majority are
bound to IGF-binding proteins (IGFBPs) [5,6]. Most circu-
lating IGF1 is produced by the liver, which is under the
regulation of pituitary growth hormone (GH). Extrahepatic
(non-GH-dependent) IGF1 synthesis also occurs [3]. IGF2
is also produced from hepatic and extrahepatic sources but
its production is not tightly regulated by GH [7]. IGF1 and
IGF2 are also synthesized in the CNS and surrounding
cells [8-10] and have neurotrophic effects [11-14]. Both
IGF1 and IGF2 signal through IGF1R, whereas IGF2R is a
non-signaling receptor involved in the removal of excess
IGF2 during development [15,16]. IGFBPs regulate the bio-
logical activity of IGFs by controlling IGF efflux from the
vascular space, regulating IGF clearance, and modulating
interaction of IGFs with their receptors [17,18]. The liver is
a major site of synthesis for IGFBP1. IGFBP1 has been pro-
posed as a dynamic regulator of IGF bioactivity in vivo.
IGFBP1 may be partly responsible for the decrease in lean
body mass observed in catabolic/inflammatory conditions
associated with low IGF1. Proinflammatory cytokines can
directly enhance IGFBP-1 synthesis [19,20]. IGFBP2 also
modulates IGF1 activity [21]. In the brain, IGFBPs are pro-
duced by neurons, glial cells, choroid plexus epithelia, and
cerebral blood vessels [3]. IGFBP2 is the most abundant
IGFBP in the CNS/cerebrospinal fluid (CSF) [18].
There is evidence that reduced IGF1 levels correlate

with impaired cognitive function in adults [22,23].
Alzheimer’s patients show increased serum TNFα and
decreased IGF1 levels, with the two showing a negative
correlation [22]. In a study of motor neuron disease, CSF
(but not serum) levels of IGF1 were diminished [23].
Uptake of circulating IGF1 into the CSF can be sub-
stantial and circulating IGF1 could aid brain function
[24,25]. This may explain why circulating IGF1 levels
correlate with deterioration of cognitive functioning in
elderly patients [26].
IGFs and related factors have been studied in the con-

text of HIV infection and associated diseases, as they may
play a role in the immune response to HIV and influence
the rate of HIV disease progression [27,28]. HIV/AIDS is
associated with reduced IGF1 and IGF2 levels [7,28].
Dysregulation of IGF1 also contributes to metabolic syn-
dromes and lipodystrophy in these individuals [7,29,30].
IGFBP1 and IGFBP2 may also function as proinflamma-
tory factors correlating with HIV disease activity [31-33].
The effect of antiretroviral therapy (ART) on IGF proteins
can also be substantial [34,35]. Specifically, certain types
of ART have been linked to lipodystrophy [36,37], vitamin
D deficiency, and reduced serum IGF1 levels [38,39].
Little or no information is available on the role of IGFs

and related proteins in neuroAIDS. HIV-associated neu-
rocognitive disorder (HAND) affects approximately 50%
of HIV+ individuals through several different mecha-
nisms [40-42]. Intact virus and viral components as well
as host inflammatory mediators and ART have all been
implicated. There is a pressing need to identify clinically
useful biomarkers for HAND. Studies by this and other la-
boratories suggest that depletion of neuronal growth fac-
tors might contribute to the development of HAND.
Specifically, we have shown that the essential CNS growth
factor progranulin is deficient in the CSF of HIV-
undetectable adults with neurocognitive impairment
(NCI) but not HIV-detectable adults with HAND [43,44].
Both progranulin and IGF1 are produced by microglia and
modulated by inflammatory mechanisms [13,45]. A related
protein IGF2 can replace IGF1 for IGF1R signaling and
neuroprotection [13]. IGF2R that is normally expressed by
neurons alone in the CNS is highly upregulated in micro-
glia in HIV encephalitis and functions as a cofactor for
HIV infection [46]. High levels of (soluble) IGF2R are
present in blood, urine, and amniotic fluid [47,48], suggest-
ing its potential usefulness as a biomarker.
The purpose of this study was to determine whether

IGF1 or IGF2 deficiency exists in HIV+ individuals,
especially in the context of neurocognitive dysfunction
(HAND) and to examine the relationship between IGFs
(IGF1 and IGF2) and IGFBPs (IGFBP1 and IGFBP2) in a
well-characterized HIV+ cohort. We hypothesized that re-
duced levels of IGF1 in plasma or CSF (or both) would be
associated with HAND and that chronic inflammation
state in HIV infection would contribute to this. In
addition, given the novel finding that IGF2R is upregu-
lated in activated microglia and macrophages and func-
tions as an HIV cofactor, we examined the association
between IGF2R levels and HIV viral load (VL).

Methods
CHARTER subjects
CSF and plasma pairs were collected from 107 adults en-
rolled in the cross-sectional component of the CNS HIV
Antiretroviral Therapy Effects Research (CHARTER) co-
hort, a six-center, US-based project funded by the National
Institutes of Health. The project was approved by the insti-
tutional review board (IRB) of each participating institution
(Johns Hopkins University, Mt. Sinai School of Medicine,
University of California, San Diego, University of Texas
Medical Branch-Galveston, University of Washington, and
Washington University), as well as Albert Einstein College
of Medicine. All participants provided written informed



Suh et al. Journal of Neuroinflammation  (2015) 12:72 Page 3 of 11
consent. Individuals with abnormal serum glucose, HCV
seropositivity, or current substance use (based on urine
drug screening) were excluded. Individuals receiving
human growth hormone (GH), GH releasing factor, or
hematopoietic growth factors such as erythropoietin
were also excluded.

Neuropsychological testing
All participants completed a comprehensive neurocogni-
tive test battery (speed of Information processing, learn-
ing and memory, executive functions, language, working
memory, motor, self-report questionnaires, psychiatric
interviews), covering seven cognitive domains that are
commonly affected by HIV. The best available normative
standards were used, which correct for effects of age, edu-
cation, gender, and ethnicity, as appropriate. Test scores
were automatically converted to demographically corrected
standard scores (T-scores) using available computer pro-
grams. To classify presence and severity of neurocognitive
impairment, a published objective algorithm that has been
shown to yield excellent interrater reliability in previous
multisite studies [49] was applied. This algorithm conforms
to the Frascati criteria for diagnosing HAND [42], which
requires presence of a least mild impairment in at least two
domains.

IGF1 ELISA
IGF1 levels were quantified by enzyme-linked immuno-
sorbent assay (ELISA, ALPCO Diagnostics, Salem, NH,
USA: cat # 22-IGFHU-E01, sensitivity 90 pg/ml) using
the core service of the Einstein Diabetes Research Center
(Biomarker Analytic Research Core). We measured total
IGF1 levels, that is, free and IGFBP-associated, following
the manufacturer’s instructions. Briefly, ALPCO kits sep-
arate IGF1 from IGFBPs by acidification. Re-association of
IGF1 with IGFBPs (after restoration of neutral pH) is
prevented with an excess of IGF2. IGF2 blocks the
access of IGF1 to the IGFBP binding sites without inter-
fering with the IGF1-specific antibodies used in the assay.
Samples were assayed in duplicate.

IGF2 ELISA
IGF2 levels were also quantified by ELISA (ALPCO
Diagnostics, NH: cat # 22-IGF-E30, sensitivity 20 pg/ml)
using the core service of the Einstein Diabetes Research
Center (Biomarker Analytic Research Core, Bronx, NY,
USA). Similar to IGF1 ELISA, results do not depend on
the binding protein concentration of the sample. There
is no cross-reactivity with IGF1. IGF2 was separated
from the binding proteins by acidification, and re-
association of the freed binding proteins with IGF2
was prevented by excess IGF1. Samples were assayed
in duplicate.
IGF2R ELISA
Soluble IGF2R levels were quantified by ELISA (R&D
Systems, Minneapolis, MN, USA: cat #DY 2447, sensitivity
approximately 150 pg/ml), following the manufacturer’s
instructions. The samples were diluted until the values fell
within the linear range of detection (approximately 1:80
for plasma and approximately 1:10 for CSF).

Other biomarker quantifications
Concentrations of inflammatory mediators were deter-
mined in the plasma and CSF samples of all 107 subjects,
as previously reported [43]. A multiplex bead array quan-
tified concentrations of IFNγ, IL-1β, IL-4, IL-6, IL-10, IL-
13, IL-17, TNFα, CCL2/MCP-1, CXCL10/IP-10, IGFBP1,
and IGFBP2 (EMD Millipore, Billerica, MA, USA).
Samples were diluted until the final concentrations were
within the linear range of detection for the assay. Progra-
nulin was measured by ELISA (DY2420, R&D Systems), as
reported [43]. All samples were tested in duplicate and
concentrations interpolated from a standard curve con-
structed by four-parameter fitting of internal standards.

Data analysis
Inflammatory mediators whose levels were below the de-
tection limit of the assay in >90% of samples were ex-
cluded from analysis. These were IL-1β, IL-4, and IL-13
for plasma and IL-1β, IL-4, IL-13, IFNγ, and IL-17 for
CSF. Undetectable HIV VL designates HIV RNA levels
below 50 copies/ml, the lower limit of quantification
(Amplicor, Roche Diagnostics, Indianapolis, IN, USA).
For normalization, plasma IGFBP1, plasma IGF2R, CSF

IGF2, and CSF IGFBP2 concentration values were trans-
formed with natural logarithms, and CSF IGF2R values
were square-root transformed. Differences in demographic
characteristics, AIDS status, current CD4 count, HIV VL,
alcohol dependence, albumin, AST, ALT, and IGF1 levels
in the plasma and CSF between HIV-infected individuals
with and without neurocognitive impairment were exam-
ined using t-tests or Wilcoxon rank-sum tests for continu-
ous variables and using chi-squared or Fisher’s exact tests
for categorical variables. Initial analysis of associations of
demographic and disease characteristics with plasma and
CSF IGF protein concentrations were examined using
t-tests or Wilcoxon rank-sum tests for categorical vari-
ables and Spearman correlation coefficients for con-
tinuous variables. Linear regression models or analysis
of covariances (ANCOVA) were used to examine asso-
ciations of IGF proteins with neurocognitive status ad-
justed for demographics, HIV VL, and inflammatory
mediators. Variables with a P-value ≤0.2 in initial ana-
lysis were included in multivariate analysis. Because
neither log-transformation nor square root transform-
ation normalized CSF IGF1, CSF IGFBP1, or plasma
IGFBP2, non-parametric analysis of covariances was
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used for these three variables. Statistical analyses were
performed using SAS (version 9.1, SAS Institute, Cary,
NC, USA) software.

Results
Demographic and clinical characteristics of HIV+
individuals in the cohort
The demographic and clinical characteristics of HIV+
individuals in the cohort are listed in Table 1. This co-
hort is identical to that used for our recent progranulin
study [43]. Additional factors that are relevant to IGF
analysis (such as BMI, liver function tests) are also listed.
Individuals with HCV infection are excluded from the
study. When the characteristics were stratified by NC
impairment, there were no significant differences be-
tween individuals with and without NC impairment, ex-
cept age. Individuals with NC impairment were older
than those without NC impairment (45.3 ± 9.3 vs. 41.8 ±
7.6, P = 0.033) (Table 1).

Measurement of IGFs and related proteins in plasma
and CSF
The raw values for the IGFs and related proteins mea-
sured in plasma and CSF are listed in Table 2. As these
factors are infrequently measured, especially in CSF, we
Table 1 Demographic and clinical characteristics (combined a

Characteristics All subjects

(n = 107)

Age, years - mean ± SD 43.7 ± 8.7

Gender, male - N (%) 93 (86.9%)

Race

White - N (%) 59 (55.1%)

Black 34 (31.8%)

Other 14 (13.1%)

AIDS - N (%) 68 (63.6%)

ART use - N (%) 84 (78.5%)

Plasma HIV VL undetectable - N (%) 53 (49.5%)

CSF HIV VL undetectable - N (%) 79 (73.8%)

Current CD4+ count (<200 cells/μL) - N (%) 22 (20.8%)

Current CD4+ count - median (IQR) 405 (216 to 582)

Albumin (<5 g/dL) 72 (67.9%)

Alcohol dependence - N (%) 25 (23.2%)

HGB (mean ± SD) 14.1 ± 1.5

AST - median (IQR) 30 (23 to 37)

ALT - median (IQR) 33 (22 to 43)

Body mass index (BMI)

BMI≤ 25 45 (42.1%)

25 < BMI < 30 45 (42.1%)

BMI≥ 30 17 (15.8%)
listed the available references for comparison. The levels
measured in our study are in general agreements with
those reported. The median plasma IGF1 and IGF2
levels had the known ratio of approximately 1:3. The
CSF IGF1 levels were extremely low, representing ap-
proximately 1/200 of the plasma level. The CSF IGF2
and IGFBP1 were approximately 1/20 and approximately
1/7 of the plasma levels, respectively, and the CSF
IGFBP2 levels were approximately 2.3-fold higher than
plasma levels, suggesting that IGF2 and IGFBP2 play
more significant roles in the CNS relative to IGF1 and
IGFBP1. The median CSF IGF2R level was 6.65 ng/ml
and represented approximately 1/20 of the plasma levels.
To our knowledge, this is the first reported measure-
ment of IGF2R levels in CSF.

IGFs and related proteins in subjects with or without NC
impairment
We next compared the levels of IGFs and related pro-
teins in subjects with or without NC impairment to de-
termine whether the levels of any of these factors differ
in the two groups. The results showed no significant dif-
ferences in plasma or CSF IGFs in the two groups
(Table 3). Although the median CSF IGF1 levels were re-
duced in the subgroup with NC impairment compared
nd stratified by neurocognitive impairment)

NC impaired NC unimpaired

(n = 58) (n = 49) P value

45.3 ± 9.3 41.8 ± 7.6 0.033

52 (89.7%) 42 (85.7%) 0.406

31 (53.5%) 28 (57.1%) 0.962

18 (31.0%) 16 (32.7%)

9 (15.5%) 5 (10.2%)

38 (65.5%) 30 (61.2%) 0.554

45 (77.6%) 39 (79.6%) 0.956

29 (50.0%) 24 (50.0%) 0.838

44 (75.9%) 36 (73.5%) 0.910

9 (15.5%) 13 (26.5%) 0.160

435 (260 to 589) 360 (175 to 531) 0.247

37 (64.9%) 35 (71.4%) 0.474

12 (20.7%) 13 (26.5%) 0.514

14.1 ± 1.6 14.1 ± 1.4 0.882

31 (24 to 39) 30 (22 to 36) 0.673

36 (23 to 43) 30 (22 to 40) 0.298

0.290

24 (41.4%) 21 (42.9%)

22 (37.9%) 23 (46.9%)

12 (20.7%) 5 (10.2%)



Table 2 IGFs and related protein levels in the plasma and CSF

Factors Plasma CSF Ratio (CSF:plasma)

Median (IQR) (ng/ml) References Median (IQR) (ng/ml) References

IGF1 195.3 (165.0 to 224.8) [57,60-63] 1.11 (0.92 to 1.48) [61,64,65] 1:134

IGF2 693.9 (587.2 to 817.0) [60,62,64,66] 40.26 (34.6 to 45.4) [64,67] 1:17

IGFBP1 3.95 (2.53 to 7.01) [62,63,68] 0.48 (0.35 to 0.77) [68] 1:7

IGFBP2 33.97 (14.44 to 51.76) [60,62] 77.03 (59.3 to 101.2) [64,67] 1:0.4

IGF2R 99.73 (52.3 to 176.3) [47,48,69,70] 6.65 (3.79 to 10.00) None 1:17

IQR, interquartile range.
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with non-impaired (1.11 vs. 1.13), this was far from signifi-
cant (P = 0.821). Similarly, both the plasma IGF1 (186.0 vs.
200.1 P = 0.127) and IGF2 (686.1 vs. 723.3, P = 0.520) were
reduced in the subgroup with NP impairment but without
significance (see the ‘Discussion’ section).

Analyses of plasma proteins
Multivariate analyses of factors associated with plasma
IGFs and related proteins
In order to examine the relationship between plasma
IGF protein expression and the demographic and clinical
factors as well as inflammation, we initially performed
(1) univariate analyses of factors associated with plasma
IGFs and related proteins and (2) correlation analyses of
IGF proteins and inflammatory mediators as described
under the ‘Methods’ section. The results are presented
in Additional file 1: Table S1A and S1B, respectively. We
additionally performed multivariate analyses for each of
the plasma IGF proteins to determine significant associ-
ations. The results are shown in Tables 4, 5, 6, 7, and 8.
Table 4 shows multivariate analysis for plasma IGF1. Men
had higher plasma IGF1 compared to women (β coeffi-
cient = 31.81, P = 0.039). Older age (β coefficient = −1.31,
P = 0.033), AIDS (β coefficient = −18.91, P = 0.081) and
Table 3 Comparison of IGFs and related proteins in plasma a
impairment

Factors All subjects

(n = 107)

Plasma IGF1 (mean ± SD, ng/ml) 192.5 ± 55.3

IGF2 (mean ± SD, ng/ml) 703.3 ± 165.2

log IGFBP1 (mean ± SD, ng/ml)a 1.43 ± 0.74

IGFBP2 - median (IQR) 33.97

(14.44 to 51.76)

log IGF2R (mean ± SD, ng/ml)a 4.51 ± 0.88

CSF IGF1 - median (IQR) 1.11 (0.92 to 1.48)

log IGF2 (mean ± SD, ng/ml)a 3.70 ± 0.17

IGFBP1 - median (IQR) 0.48 (0.35 to 0.77)

log IGFBP2 (mean ± SD, ng/ml)a 4.35 ± 0.37

IGF2R0.5 (mean ± SD, ng/ml)b 2.56 ± 0.84
aPlasma IGFBP1, plasma IGF2R, CSF IGF2 and CSF IGFBP2 were transformed with natur
higher AST (β coefficient = −0.36, P = 0.026) were asso-
ciated with lower plasma IGF1. NC impairment was
not associated with plasma IGF1. Table 5 shows multi-
variate analysis for plasma IGF2. Lower IP-10 (β coe-
fficient = −125.0, P = 0.017) and alcohol dependence
(β coefficient = 71.8, P = 0.023) were associated with
higher plasma IGF2. NC impairment was not associ-
ated with plasma IGF2. Table 6 shows multivariate
analysis for plasma IGFBP1. Higher IL-17 was associ-
ated with higher plasma IGFBP1 (β coefficient = 0.28,
P = 0.009). Plasma IGFBP1 was lower in subjects with 25
< BMI < 30 (β coefficient = −0.46, P = 0.001) or subjects
with BMI ≥ 30 (β coefficient = −0.94, P <0.001) compared
to subjects with BMI ≤ 25. Table 7 shows non-parametric
multivariate analysis of plasma IGFBP2. Plasma IGFBP2
was higher in whites compared to blacks or other race
(P = 0.027). Higher IL-6 was associated with higher
plasma IGFBP2 (P = 0.021). NC impairment was not associ-
ated with plasma IGFBP2. Multivariate linear regression
analysis of factors associated with plasma IGF2R is shown
in Table 8. Men had lower plasma IGF2R compared to
women (β coefficient = −0.48, P = 0.042). Detectable plasma
VL (β coefficient = 0.37, P = 0.021) and lower CD4
count (β coefficient = −0.04, P = 0.021) were associated
nd CSF in subjects with or without neurocognitive

NC impaired NC unimpaired P value

(n = 58) (n = 49)

186.0 ± 63.28 200.1 ± 43.7 0.127

686.1 ± 170.5 723.3 ± 158.3 0.520

1.45 ± 0.85 1.40 ± 0.59 0.797

38.59 26.00 0.346

(16.13 to 47.72) (6.54 to 54.39)

4.47 ± 0.97 4.56 ± 0.77 0.716

1.11 (0.88 to 1.48) 1.13 (0.92 to 1.51) 0.821

3.72 ± 0.17 3.68 ± 0.17 0.345

0.50 (0.37 to 0.75) 0.47 (0.33 to 1.59) 0.880

4.35 ± 0.32 4.36 ± 0.41 0.986

2.51 ± 0.87 2.62 ± 0.80 0.498

al logarithms; bCSF IGF2R was square root transformed. IQR, interquartile range.



Table 4 Multivariate linear regression analysis of factors
associated with plasma IGF1

Plasma characteristics β coefficient (S.E.) P value

Neurocognitive impairment −8.48 (10.45) 0.418

Gender, male 31.81 (15.2) 0.039

Age −1.31 (0.61) 0.033

AIDS −18.91 (10.74) 0.081

AST −0.36 (0.16) 0.026

β coefficients less than zero indicate an inverse association between the
characteristic and plasma IGF1.

Table 6 Multivariate linear regression analysis of factors
associated with plasma IGFBP1

Plasma characteristics β coefficient (S.E.) P value

Neurocognitive impairment 0.14 (0.13) 0.261

IL-17, per log10 0.28 (0.11) 0.009

25 < BMI < 30 (reference: BMI ≤25) −0.46 (0.14) 0.001

BMI ≥30 (reference: BMI≤ 25) −0.94 (0.18) <0.001

β coefficients less than zero indicate an inverse association between the
characteristic and plasma IGFBP1.

Table 7 Non-parametric analysis of covariance of factors
associated with plasma IGFBP2

Plasma characteristics Median (IQR) P value

Neurocognitive impairment 0.624

Yes 38.59 (16.53 to 47.72)
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with higher plasma IGF2R. Higher IL-10 (β coefficient =
0.18, P = 0.061) was associated with higher plasma IGF2R,
but this result is borderline significance. NC impairment
(β coefficient = −0.03, P = 0.859) was not associated with
plasma IGF2R.

Analyses of CSF proteins
Multivariate analyses of factors associated with CSF IGFs
and related proteins
Univariate analyses of factors associated with CSF IGFs
and related proteins, as well as correlation analyses of
CSF IGFs, related proteins and inflammatory mediators
are presented in Additional file 1: Table S2A and S2B,
respectively. Multivariate analyses of CSF IGF proteins
are shows in Table 9. Table 9 shows multivariate analysis
for CSF IGF1. Whites had higher CSF IGF1 compared to
blacks or other race (P = 0.002). No association between
CSF IGF1 and NC impairment was found. Table 10
shows multivariate analysis for CSF IGF2. Higher IP-10
(β coefficient = 0.11, P < 0.001) and ART use (β coeffi-
cient = 0.14, P < 0.001) were associated with higher CSF
IGF2. Blacks (β coefficient = −0.12, P < 0.001) or other
race (β coefficient = −0.13, P = 0.004) were associated
with lower CSF IGF2. Alcohol dependence was also as-
sociated with lower CSF IGF2 (β coefficient = −0.07, P =
0.029). There was no association between CSF IGF2 and
NC impairment. Table 11 shows non-parametric analysis
of covariance of factors associated with CSF IGFBP1. CSF
IGFBP1 was higher in subjects with AIDS (P = 0.016) and
alcohol dependence (P = 0.037). Higher CSF TNFα was as-
sociated with higher CSF IGFBP1 (P < 0.001). Higher BMI
was associated with lower CSF IGFBP1 (P < 0.001). No
association was found with NC impairment. Table 12
Table 5 Multivariate linear regression analysis of factors
associated with plasma IGF2

Plasma characteristics β coefficient (S.E.) P value

Neurocognitive impairment −21.9 (31.0) 0.482

IP-10, per log10 −125.0 (51.5) 0.017

Alcohol dependence 71.8 (31.3) 0.023

β coefficients less than zero indicate an inverse association between the
characteristic and plasma IGF2.
shows multivariate analysis for CSF IGFBP2. Higher CSF
TNFα was associated with higher CSF IGFBP2 (β coeffi-
cient = 0.14, P < 0.001). No association was found with
other factors. Table 13 shows multivariate analysis for CSF
soluble IGF2R. Older age was associated with higher CSF
IGF2R (β coefficient = 0.03, P = 0.002). Alcohol depend-
ence was associated with lower CSF IGF2R (β coeffi-
cient = −0.35, P = 0.049). Blacks had lower CSF IGF2R
compared to whites (β coefficient = −0.31, P = 0.068) while
other race had higher CSF IGF2R compared to white
(β coefficient = 0.49, P = 0.035). There was no significant
association between CSF IGF2R and NC impairment.

Multivariate analyses of IGFs stratified by ART regimen
We analyzed whether IGF protein levels differ based on
the ART regimen. Of the 86 subjects with ART, 36 re-
ceived non-nucleotide reverse transcriptase inhibitors
(NNRTI)-based regimen and 40 received protease in-
hibitors (PI)-based regimen, and 8 received combined
regimen. Univariate analyses of IGFs stratified by ART
regimen are presented in Additional file 1: Table S3,
and multivariate analyses are shown in Table 14. The
results show that mean plasma IGF1 levels were lower
in subjects on NNRTI-based regimen compared to those
on PI-based regimen (174.1 ± 59.8 vs. 202.8 ± 47.3), and
this difference was highly significant on multivariate ana-
lysis (P = 0.008). Other plasma IGF proteins did not differ
significantly in the two subgroups. There were no
No 26.0 (6.54 to 54.39)

Race 0.027

Black 24.57 (3.90 to 45.44)

Other 15.08 (6.54 to 44.26)

White 40.84 (22.09 to 54.39)

IL-6 0.209a 0.021
aSpearman correlation coefficient between IL-6 and plasma IGFBP2. IQR,
interquartile range.



Table 8 Multivariate linear regression analysis of factors
associated with plasma IGF2R

Plasma characteristics β coefficient (S.E.) P value

Neurocognitive impairment −0.03 (0.16) 0.859

Gender, male −0.48 (0.23) 0.042

Current CD4+ count, per 50 copies −0.04 (0.02) 0.021

Detectable HIV VL 0.37 (0.16) 0.021

IL-10, per 10 units 0.18 (0.10) 0.061

β coefficients less than zero indicate an inverse association between the
characteristic and plasma IGF2R.

Table 10 Multivariate linear regression analysis of factors
associated with CSF IGF2

CSF characteristics β coefficient (S.E.) P value

Neurocognitive impairment 0.02 (0.03) 0.429

Black race (reference =White) −0.12 (0.03) <0.001

Other race (reference =White) −0.13 (0.04) 0.004

ART use 0.14 (0.04) <0.001

IP-10, per log10 0.11 (0.02) <0.001

Alcohol dependence −0.07 (0.03) 0.029

β coefficients less than zero indicate an inverse association between the
characteristic and CSF IGF2.

Table 11 Non-parametric analysis of covariance of factors
associated with CSF IGFBP1

CSF characteristics Median (IQR) P value

Neurocognitive impairment 0.613

Yes 0.49 (0.37 to 0.75)

No 0.47 (0.33 to 1.62)

AIDS 0.016
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significant differences in CSF IGF proteins between
subjects on NNRTI-based regimen and those on PI-based
regimen.

Discussion
Our analyses of IGF proteins included association with
demographic and clinical parameters which confirmed
many of the previously known associations, such as with
age, gender, race, BMI, and liver function. As these fac-
tors have rarely been examined in the CSF, our study
also provides useful information in comparison to their
plasma levels. For example, while plasma IGF1 levels de-
creased with aging (as reported [26]), CSF IGF2R (as
well as IGF1 and IGF2 levels) tended to increase with
aging. Black race was associated with lower plasma levels
of IGF family proteins (as reported [50,51]), and their
levels (IGF1, IGF2, and IGF2R) measured in the CSF
were also lower in Blacks. Lower IGFBP1 levels in both
plasma and CSF were strongly (P < 0.001) associated
with high BMI [52]. Alternations of many CSF IGF
family proteins were also associated with alcohol de-
pendence. While we cannot explain exact mechanisms
Table 9 Non-parametric analysis of covariance of factors
associated with CSF IGF1

CSF characteristics Median (IQR) P value

Neurocognitive impairment

Yes 1.11 (0.88 to 1.48) 0.557

No 1.18 (0.92 to 1.48)

Race

Black 0.92 (0.73 to 1.29) 0.002

Other 1.09 (0.95 to 1.48)

White 1.22 (0.99 to 1.71)

Alcohol dependence

No 1.07 (0.88 to 1.48) 0.042

Yes 1.29 (1.03 to 1.82)

Age 0.16a 0.075
aSpearman correlation coefficient between age and CSF IGF1. IQR, interquartile range.
for these associations, our data suggest that IGF pro-
teins play dynamic and complex roles under physiologic
and pathologic conditions and form the basis for future
studies.
There are well-known associations between certain

IGF family proteins, suggesting that their productions
are coordinately regulated. Our study confirms some of
these associations and provides additional information
on their relationships (see the ‘Results’ section including
Additional file 1). For example, in plasma, IGF1 and
IGF2 were closely correlated and IGFBP1 and IGFBP2
were closely correlated (Additional file 1: Table S1B).
Yes 0.49 (0.36 to 1.17)

No 0.44 (0.34 to 0.65)

Body mass index (BMI) <0.001

BMI≤ 25 0.60 (0.46 to 1.53)

25 < BMI < 30 0.41 (0.33 to 0.66)

BMI≥ 30 0.37 (0.23 to 0.40)

Alcohol dependence 0.037

Yes 0.64 (0.40 to 1.62)

No 0.43 (0.34 to 0.72)

Albumin 0.061

3 or 4 0.48 (0.37 to 1.50)

5 0.44 (0.30 to 0.62)

TNF-α 0.394a <0.001

Current CD4 Count −0.044b 0.067
aSpearman correlation coefficient between TNF-α and CSF IGFBP1; bSpearman
correlation coefficient between current CD4 count and CSF IGFBP1. IQR,
interquartile range.



Table 12 Multivariate linear regression analysis of factors
associated with CSF IGFBP2

CSF characteristics β coefficient (S.E.) P value

Neurocognitive impairment 0.01 (0.07) 0.861

TNF-α, per log10 0.14 (0.03) <0.001

β coefficients less than zero indicate an inverse association between the
characteristic and CSF IGFBP2.

Table 14 Multivariate linear regression analysis of factors
associated with plasma IGF1 in 76 subjects on ART

Plasma characteristics β coefficient (S.E.) P value

Neurocognitive impairment −6.25 (12.37) 0.615

AIDS −29.01 (15.89) 0.072

PIa 34.33 (12.61) 0.008

AST −0.97 (0.46) 0.036

β coefficients less than zero indicate an inverse association between the
characteristic and plasma IGF1. a37 on NNTRI-based and 40 on PI-based
regimen (see text).
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Inflammatory mediators showed positive correlations
with IGFBP1/IGFBP2 and negative correlations with
IGF1/IGF2, indicating that inflammation suppresses
IGF1/IGF2 production (Additional file 1: Table S1B).
The inflammatory mediators that showed correlations in-
cluded IL-6, which is an established biomarker for sys-
temic inflammation in HIV+ individuals [53], as well as
the newly defined proinflammatory cytokine IL-17. These
findings together suggest that inflammation is a highly sig-
nificant underlying mechanism that regulates plasma IGF
protein levels. IGF2R, which has not been examined in the
context of HIV until now, showed a correlation with
IGFBP1 and IGFBP2, as well as all of the inflammatory
mediators examined (IL-17, IFNγ, IL-10, TNF-α, IL-6, and
MCP-1) except IP-10 on univariate analyses (Additional
file 1: Table S1B). These results suggest that plasma IGF2R
is induced by inflammatory mediators and is a potential
biomarker for systemic inflammation in HIV+ individuals.
In our study, we also find that ART use was associated

with alternations of plasma and CSF IGF protein levels.
Specifically, higher plasma IGF2, CSF IGF2, and CSF
IGF2R levels were associated with ART use on univari-
ate analysis (Additional file 1: Table S1A and Table 4),
possibly reflecting virologic and immunologic improve-
ments associated with ART. Another important change
in the IGF axis relates to the types of ART. For example,
in our cohort, lower IGF1 levels were strongly associated
with non-nucleotide reverse transcriptase inhibitors
(NNRTI)-based regimen compared to protease inhibitors
(PI)-based regimen (P = 0.008). This is consistent with
the notion that efavirenz-induced vitamin D deficiency
caused circulating IGF-1 deficiency in our cohort, as (1)
efavirenz has been reported to induce vitamin D
Table 13 Multivariate linear regression analysis of factors
associated with CSF IGF2R

CSF characteristics β coefficient (S.E.) P value

Neurocognitive impairment −0.24 (0.15) 0.121

Age, per year 0.03 (0.01) 0.002

Black race (reference =White) −0.31 (0.17) 0.068

Other race (reference =White) 0.49 (0.23) 0.035

Alcohol dependence −0.35 (0.18) 0.049

β coefficients less than zero indicate an inverse association between the
characteristic and CSF IGF2R.
deficiency [39], (2) vitamin D is a known modulator of
circulating IGF1 [38], and (3) efavirenz is the main
NNRTI used by CHARTER subjects. These results add
significantly to the notion that toxicity related to ART
can contribute to neurocognitive impairment, in part,
through growth factor depletion.
Analyses of CSF revealed that IGF2R levels correlated

with IGF2 but not with other proteins or with inflamma-
tory mediators (Additional file 1: Table S2B). These results
may reflect that the source of CSF IGF2R in this cohort is
mostly neuronal with little or no contributions from
microglia or macrophages. This is consistent with our pre-
vious study which showed that de novo IGF2R induction
in microglia is found in HIV encephalitis but not in most
HIV+ (but HIVE-) brains [46]. In the CSF, IGF2 appears
to play a more significant role than IGF1. First, the IGF2:
IGF1 ratios were considerably higher in the CSF (approxi-
mately 40:1) than plasma (approximately 3:1), indicating
intrathecal production. Second, CSF IGF2 showed correla-
tions with most other CSF factors including IGF2R, IGF1,
IGFBP1, IGFBP2, IL-10, IP-10, and TNFα (Additional file
1: Table S2B). Furthermore, CSF IGFBP1 correlated with
CSF IGFBP2, and both IGFBPs correlated with inflamma-
tory mediators. The correlations were most significant
with IGFBP2, whose CSF levels were higher than those in
plasma, again indicating intrathecal production. The
emerging picture is then IGF2 and IGFBP2 are the
major IGF family proteins in the CSF/CNS. The source of
IGF2 in the CSF compartment includes the choroid plexus
and the meninges [14]. We found in vitro that while both
IGFs were equally neuroprotective, IGF2 was upregulated
and IGF1 was downregulated by proinflammatory media-
tors in cultured microglia [13], suggesting that the two
IGFs may not (necessarily) be co-regulated in the CNS.
The potential source of IGF1 in the brain and CSF com-
partment is also multiple including monocyte-lineage cells
and other mesenchymal cells [13]. However, because
intrathecal IGF1 production is minimal compared to sys-
temic circulation, the most important source of CSF IGF1
might be circulating IGF1 [18]. Furthermore, as IGF2R is
a scavenging receptor for both IGFs, upregulated IGF2R
expression in CSF/CNS (in HIV encephalitis, for instance
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[46]) could function as a significant modulator of IGF pro-
tein expression. For instance, soluble IGF2R shed from
cells (such as activated microglia and macrophages) can
capture IGF2 and IGF1, effectively blocking their binding
to cognate signaling receptor IGF1R. In this regard, the
soluble IGF2R we detect in plasma/CSF should be consid-
ered a kind of IGF1R antagonist.
Our study confirms some of the reported IGF axis alter-

ations associated with HIV infection and also adds new
data. The association of low plasma IGF1 (or IGF2) and
high IGFBPs with HIV progression (AIDS, low CD4 T cell
counts) have been well established [28,31-33,54-56]. We
also show for the first time that increased plasma IGF2R
is associated with detectable plasma VL and low CD4+ T
cell counts. As de novo IGF2R expression occurs in hu-
man microglia in HIV encephalitis (a model of tissue
macrophages HIV infection) and IGF2R is a cellular cofac-
tor for HIV replication [46], our biomarker data supports
that IGF2R (likely induced by inflammatory mediators)
boosts HIV replication (hence detectable VL) and induces
CD4+ T cell depletion. Together, these results show a
novel finding that IGF2R is an important new player in
the IGF axis that connects inflammation, HIV replication,
and growth factor depletion.
We initially hypothesized that lower CSF IGF1 might be

associated with NC impairment in HIV+ individuals but
our hypothesis has not been borne out by our analyses.
There are several possible reasons for this. First, the CSF
IGF1 levels are very low (approximately 1/100 to 1/200 of
plasma levels) and therefore proving our hypothesis may re-
quire a much larger cohort. Second, the IGF axis has been
shown to exhibit great inter-individual heterogeneity. For
example, longitudinal analysis of 1,422 HIV+ women
showed only a trend for association between low IGF1
levels and HIV disease progression [57]. In our analysis of
107 HIV+ subjects, plasma IGF1 and IGF2 levels as well as
CSF IGF1 levels were lower in NC impaired (n = 58) com-
pared to those in NC unimpaired (n = 49) subjects, though
they were not statistically significant. Of the three, plasma
IGF1 showed the largest difference between the two groups
(186.5 ± 63.28 vs. 200.1 ± 43.7, P = 0.127), possibly suggest-
ing that a much larger cohort may have shown a significant
association between low plasma IGF1 and NC impairment.
Furthermore, a combined growth factor deficiency (rather
than a single deficiency) may contribute to significant func-
tional outcome. In this regard, positive correlation between
CSF IGF1 and CSF progranulin in our cohort (r = 0.26,
P = 0.008) (Additional file 1: Table S2B) suggests a com-
mon mechanism of growth factor regulation in HIV+ indi-
viduals and lend further support to this hypothesis. Given
the number of studies hinting at the role of CNS growth
factor deficiencies in HAND [43,58,59], further studies are
warranted to examine their potential roles in the patho-
genesis and this complex CNS disorder.
Additional file

Additional file 1: Univariate analyses of factors associated with
plasma and CSF insulin-like growth factors and related proteins.
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