
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Design and Evaluation of High-Performance and Fault-tolerant Routing Algorithms for 3D-
NoCs

Permalink
https://escholarship.org/uc/item/7kz2n9cn

Author
Salamat, Ronak

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7kz2n9cn
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Design and Evaluation of High-Performance and Fault-tolerant Routing Algorithms
for 3D-NoCs

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Electrical and Computer Engineering

by

Ronak Salamat

Dissertation Committee:
Professor Nader Bagherzadeh, Chair

Professor Jean-Luc Gaudiot
Professor Rainer Doemer

2018

c© 2018 Ronak Salamat

DEDICATION

To my beloved Misagh, for all his endless love, support, patience and encouragement
not only in my academic endeavors but also in my everyday life. He has always been

the first person I turn to in the face of challenges.
I would also like to dedicate this thesis to my parents Saeid and Roshank, who put

my life and goals ahead of theirs, sacrificed a lot so I can follow my dreams, and
raised me to be where I am.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vii

ACKNOWLEDGMENTS viii

CURRICULUM VITAE ix

ABSTRACT OF THE DISSERTATION xi

1 Introduction 1

2 Related Work 13
2.1 3D Integration and 3D-NoC . 13
2.2 TSV Reliability . 14
2.3 Routing Algorithms . 15
2.4 Analytical Verification . 17

3 ETW Routing Algorithm 18
3.1 Overview of ETW . 19
3.2 Proof of Deadlock-freedom . 21
3.3 Routing Algorithm Procedure . 22

3.3.1 Destination is on the upper layer 22
3.3.2 Destination is on the lower layer 23

3.4 Algorithms for Elevator Assignment 24
3.4.1 Static Elevator Assignment (SEA) 26
3.4.2 Dynamic Elevator Assignment (DEA) 29

3.5 Formal Model of the Network . 33
3.6 Reliability Analysis . 35
3.7 Results and Discussion . 39

3.7.1 Traffic Scenarios . 39
3.7.2 Latency Analysis . 40
3.7.3 Reliability Evaluation . 49
3.7.4 Power and Area Analysis . 54

iii

4 CoBRA Routing Algorithm 56
4.1 Overview of CoBRA . 56

4.1.1 Current and destination are on the same layer: 57
4.1.2 Current and destination are not on the same layer: 57

4.2 Providing Partial Knowledge . 58
4.3 Discussion of Deadlock Freedom . 60
4.4 Results and Discussion . 63

4.4.1 Reliability Comparison under Synthetic Traffic 66
4.4.2 Reliability Comparison under Real Traffic 69
4.4.3 Power and Area Comparison 69

5 LEAD Routing Algorithm 72
5.1 Overview of LEAD . 72
5.2 Proof for Deadlock-freedom . 73
5.3 LEAD Algorithm Procedure . 74

5.3.1 Source and destination are on the same layer 74
5.3.2 Source and destination are not on the same layer 76

5.4 Results and Discussion . 80
5.4.1 Latency analysis . 80
5.4.2 Temperature Distribution . 90

5.5 Queuing Theory and Analytical Model 90
5.5.1 Analysis Framework . 93
5.5.2 Analysis vs. Simulation . 104

6 Future Work 107

7 Conclusion 110

Bibliography 113

iv

LIST OF FIGURES

Page

1.1 A NoC structure[1] . 3
1.2 A 3D-IC representation . 4
1.3 A 3D-NoC representation[2] . 5
1.4 A two-layer partially connected 3D-NoC [3] 6
1.5 Network topologies . 8
1.6 A router using VCs . 10

3.1 Two different regions . 20
3.2 An example of destination in the upper layer 23
3.3 An example of destination in the lower layer 25
3.4 Valid regions based on the input port to current node 31
3.5 An example of the DEA algorithm 31
3.6 An example of an 8× 8× 2 network with 10 TSVs 35
3.7 C matrix representation of the 8× 8× 2 network 36
3.8 Performance under random traffic for 5 TSVs 42
3.9 Performance under hotspot traffic for 5 TSVs 43
3.10 Performance under transpose traffic for 5 TSVs 43
3.11 Performance under shuffle traffic for 5 TSVs 44
3.12 Transpose traffic elevator usage for 5 TSVs 44
3.13 Shuffle traffic elevator usage for 5 TSVs 45
3.14 Performance under random traffic for 8 TSVs 45
3.15 Performance under hotspot traffic for 8 TSVs 46
3.16 Performance under transpose traffic for 8 TSVs 46
3.17 Performance under shuffle traffic for 8 TSVs 47
3.18 Performance under table-based traffic with 5 TSVs 48
3.19 Performance under table-based traffic with 8 TSVs 48
3.20 Average fraction of working pairs vs number of failed TSVs 49
3.21 Temporal trend of fraction of working pairs for different Weibull pa-

rameters . 52
3.22 Variation of failure rate and reliability 54
3.23 Life-time variation of fraction of working pairs 55

4.1 An example of a 3D-NoC . 59
4.2 Implementation of TSV status propagation. 61
4.3 Performance under random traffic for 4 TSVs 64

v

4.4 Latency comparison under real traffic for 8 TSVs 65
4.5 Performance under shuffle traffic for 5 TSVs 65
4.6 Reliability under single faults for 4 TSVs 67
4.7 Reliability under double faults for 4 TSVs 68
4.8 Reliability under triple faults for 4 TSVs 68
4.9 Single and double faults comparison for 8 TSVs 69
4.10 Reliability comparison for 8 TSVs . 70

5.1 Routing example . 76
5.2 An example of destination in the other layer 80
5.3 Different elevator configurations . 81
5.4 Performance comparison for east-most elevators 84
5.5 Performance comparison for west-most elevators 84
5.6 Performance comparison for cornered elevators 85
5.7 Performance comparison for centered elevators 85
5.8 Performance comparison for east-most elevators under bit-reversal and

butterfly traffic . 86
5.9 Performance comparison under real traffic 86
5.10 Performance under different number of elevators 87
5.11 Performance comparison for different elevator assignment mechanisms 89
5.12 Temperature distribution in LEAD vs Elf 91
5.13 Outline of analytical framework and the coupling of variables. 92
5.14 The flow method for calculating port usage probabilities 98
5.15 λri,j for all ports of 2nd layer of a 6 × 6 × 4 network with corner

TSVs under random traffic. Input and output port indices i and j
∈ {pe, u, d. n0, e0, s0, w0, n1, e1, s1, w1} 100

5.16 τ ri values (buffer waiting time). Each rectangle is 6 × 6, and the cor-
responding level is indicated above each rectangle with letter z. The
port index is also included at the top of each box. 100

5.17 . 106

vi

LIST OF TABLES

Page

1.1 Bus versus NoC Pros and Cons . 2

3.1 Completed pairs within each subnetwork 21
3.2 Disjoint subnetworks . 22
3.3 Elevator assignment in ETW-SEA . 29
3.4 Power consumption evaluation . 55

4.1 Verification results . 63
4.2 Power consumption comparison . 71

5.1 Completed pairs within each subnetwork 74
5.2 Distribution of elevator usage for centered elevators 88
5.3 Distribution of elevator usage for cornered elevators 88
5.4 Average power consumption . 91

vii

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my advisor, Professor Nader Bagherzadeh
for all his support, encouragements and my achievements during the past five years.
He is also a mentor of life.

I would also like to extend my sincere gratitude to an exceptional person both in my
academic and personal life, Masoumeh Ebrahimi. She is both a dear friend of mine
and the most caring motivator.

viii

CURRICULUM VITAE

Ronak Salamat

EDUCATION

Doctor of Philosophy in Computer Engineering 2018
University of California, Irvine Irvine, California

Master of Science in Computer Engineering 2012
University of Amirkabir, Tehran Polytechnic Tehran, Iran

Bachelor of Science in Computer Engineering 2009
Iran University of Science and Technology Tehran, Iran

RESEARCH EXPERIENCE

Graduate Research Assistant 2013–2018
University of California, Irvine Irvine, California

Graduate Research Assistant 2009–2012
University of Amirkabir, Tehran Polytechnic Tehran, Iran

TEACHING EXPERIENCE

Organization of Digital Computer Lab Winter 2017, Winter 2018
University of California, Irvine Irvine, California

Organization of Digital Computer Fall 2016, Fall 2017
University of California, Irvine Irvine, California

C Programming Spring 2015, Spring 2017
University of California, Irvine Irvine, California

Advanced Computer Architecture Fall 2014
University of California, Irvine Irvine, California

ix

REFEREED JOURNAL PUBLICATIONS

LEAD: An Adaptive 3D-NoC Routing Algorithm with
Queuing-theory Based Analytical Verification

2018

IEEE Transaction on Computers
A Resilient Routing Algorithm with Formal Reliability
Analysis for Partially Connected 3D-NoCs

2016

IEEE Transaction on Computers

REFEREED CONFERENCE PUBLICATIONS

CoBRA: Low cost compensation of TSV failures in 3D-
NoC

2016

IEEE International Symposium on Defect and Fault Tolerance in
VLSI and Nanotechnology System
An adaptive, low restrictive and fault resilient routing
algorithm for 3d network-on-chip

2015

Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing
Fault-tolerant assessment and enhancement in the re-
configurable network-on-chip

2012

International Symposium on Computer Architecture and Digital Systems
Susceptibility Analysis of LEON3 Embedded Processor
against Multiple Event Transients and Upsets

2012

International Conference on Computational Science and Engineering
Fault-tolerance assessment and enhancement in
SoCWire interface: A system-on-chip wires

2011

International On-Line Testing Symposium

x

ABSTRACT OF THE DISSERTATION

Design and Evaluation of High-Performance and Fault-tolerant Routing Algorithms
for 3D-NoCs

By

Ronak Salamat

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Irvine, 2018

Professor Nader Bagherzadeh, Chair

2D Network-on-Chips (NoCs) have been the mainstream interconnection technology

for multi-core systems. In this dissertation, different aspect of the alternative 3D-NoC

technology have been investigated. The 3D technology compensates for the deficien-

cies of 2D-NoCs such as long latency, power overhead and lack of scalability. While

the routers in a traditional 3D-NoC are fully-connected using Through-Silicon-Via

(TSV), we consider partially-connected 3d-NoCs to mitigate the silicon area over-

head of a fully-connected architecture. The TSV fault sources such as thermal stress,

warpage, impurities and misalignment have been reviewed. We investigate the deli-

cacies of designing routing algorithms for partially connected networks. Several high-

performance, fault-tolerant and adaptive routing algorithms have been suggested and

proved to be livelock- and deadlock-free. The proposed algorithms are capable of

tolerating faults on vertical links. The algorithms are then extended to be reconfig-

urable to tolerate both fabrication-time and run-time TSV failures. Both simulation

and analytical models are applied to evaluate the performance of the algorithms. An

analytical model, tailored to the adaptivity of the algorithm and under low traffic

scenarios, has been developed and the results have been verified by simulation. The

algorithms are tested under different traffic patterns, different number of elevators

xi

and different elevator assignment mechanisms and shown to outperform the previous

work in terms of both network latency and fault-tolerance.

xii

Chapter 1

Introduction

On a billion transistors chip, it may not be possible to send a global signal across

the chip within real-time bounds [4]. If the System-on-Chip (SoC) is synchronized by

a global clock signal, the circuit will be more prone to Electromagnetic Interference

(EMI) [1]. Synchronous SoC designs suffer from huge amount of power consumption

due to their critical paths and clock trees. Besides, these clock trees are difficult to

manage because of clock skew problem. On the other hand, designing an asynchronous

system is a more complex problem although they are modular and do not suffer from

issues such as clock skew, higher power consumption and EMI [5].

GALS (Globally Asynchronous and Locally Synchronous) have combined the ideas of

synchronous and asynchronous designs. GALS divides a system into smaller, locally

decoupled synchronous regions. These synchronous regions are connected to each

other in an asynchronous way in which there is no need to have a single global clock.

One GALS solution is NoC (Network-on-Chip) [4]. NoC improves design productivity

by supporting modularity and reusing the complex cores.

Global interconnect does not scale well with the technology advancement and it has

1

Bus Cons NoC Pros
Parasitic capacitance increases

as more units attached, therefore
performance degrades with growth

Performance is not degraded
with scaling

Bus timing is difficult in a
deep submicron process

Network wires can be pipelined
because links are point-to-point.

Bus arbitration can become a
bottleneck as the number of

masters grow Routing decisions are distributed.

Bandwidth is limited and
shared by all units attached

Aggregated bandwidth scales with
the network size.

Table 1.1: Bus versus NoC Pros and Cons

become as one of the major concerns in current and future high-performance SoC

designs. Scalability, higher bandwidth, better throughput and lower power consump-

tion of NoCs have encouraged researchers to consider NoCs as a promising alternative

for conventional interconnects [6][7]. Table 1.1 summarizes the cons and pros of SoC

versus NoC [8].

NoC consists of resources (Processing Elements) and switches (Routers) connected

using channels in a mesh structure so they are communicating with each other by

sending messages. According to Figure 1.1, a resource is either a computation or

storage unit. A switch S is responsible for routing and buffering messages between

resources. Each switch is connected to four other neighboring switches through input

and output channels. A channel consists of two one-dimensional point-to-point buses

between two switches or a resource and a switch. However, as the number of cores

increases, two-dimensional NoC-based (2D-NoC) infrastructures suffer from long la-

tency and power overhead. In other words, the geometric distance between cores

dramatically grow when the network size increases.

Three dimensional ICs have attracted a lot of attention in the past few years [9] [10].

3D-ICs provide better performance, more flexibility and higher throughput as com-

pared with traditional ICs [11] [12], allowing for continued performance improvements

2

Figure 1.1: A NoC structure[1]

using CMOS technology [13]. Figure 1.2 illustrates a 3D-IC in which 2D layers are

stacked on top of each other using Through-Silicon-Via (TSV). TSVs are conduct-

ing nails which extend out of the back-side of a thinned-down die and enable the

vertical interconnect to another die [14] [15]. TSVs are high-density, low-capacity

interconnects compared to traditional wire-bonds, and hence allow for many more in-

terconnections between stacked dies, while operating at higher speeds and consuming

less power [16].

Transistor density has increased in three dimensional (3D) ICs by vertically stacking

multiple dies using a dense and high-speed die-to-die interconnection [17]. Because of

the positive correlation between the length of long global wires and performance bot-

tlenecks such as delay and power consumption, it is anticipated that a decrease in the

wiring footprint leads to low latency and energy efficient 3D integration. Moreover,

3D-IC offers an opportunity to integrate heterogeneous processes in a more efficient

manner. Potential applications include processor (stacking CPU and various levels

3

Figure 1.2: A 3D-IC representation

of caches) [18][19], memory (stacking SRAM, DRAM and/or Flash) [20][21][22]. Al-

though there exist alternatives, like wire bonding and micro-bumping, using TSVs

achieves higher interconnection density and better performance [23][24].

3D-NoC emerges as an improvement of 2D-NoCs aiming to reduce the length and

number of global interconnections. Vertically stacked dies with TSV together with

NoCs is a powerful solution to tackle the on-chip communication problem [25] [26].

As can be seen in Figure 1.3, layers of 2D-NoCs are connected to each other through

vertical links located at the routers. To do so, every router is equipped with 7 ports

for North, South, East, West, Up, Down and Local. TSVs are the most promis-

ing solution among other vertical interconnections, since they provide high density,

high bandwidth and low power [27]. TSVs impose their own challenges. First, TSV

pads consume considerably larger bonding area in each layer compared to horizontal

wires[28] [17]. Second, TSV technology does not scale with feature size [29]. There-

fore, transistor and wire shrinkage make the above problems even more severe. Third,

4

Figure 1.3: A 3D-NoC representation[2]

the TSV fabrication process suffers from low yield [14] [30]. The higher the number

of TSVs, the lower is the yield [31]. The cost of high yield TSV manufacturing pro-

cess is only justifiable in presence of a practical solution to counteract TSV related

effects (such as voids in TSVs, TSV pinch-off, oxide defects such as pinholes, thermo-

mechanical stress, cracks in micro-bumps, chip warpage, and impurities [32]) which

may render the entire chip useless [33]. The low yield is caused by the wide range

of chemical and mechanical properties of the materials used in the TSV fabrication

process. Specifically, the non-uniformity of chemical and mechanical properties of

different materials magnifies the conversion of thermal stress into mechanical stress

during fabrication. While the mechanical stress itself can directly lead to mechanical

failures, it can also indirectly affect device performance by altering carrier mobility

in active silicon [34]. Finally, TSV parasitic parameters depend on the layout and

properties of the insulating barrier [35]. Consequently, a non-optimized layout design

or an improper insulating barrier material can take away TSV advantages such as

high bandwidth and low power consumption [36].

5

Figure 1.4: A two-layer partially connected 3D-NoC [3]

In short, although 3D-NoC exhibits higher speed and shorter wiring compared to 2D-

NoC, employing a large number of TSVs degrades reliability and causes area overhead.

To overcome some of these challenges, in partially connected 3D-NoCs, a subset of

routers are connected to the upper/lower layers using TSVs while the routers in the

same layer are connected using global links. This architecture takes advantage of

3D-NoC philosophy while mitigating the disadvantages of a fully-connected 3D-NoC.

As it can be seen in Figure 1.4 where r and c represent routers and cores respectively,

not all the routers in the 2D-plane are connected to the upper/lower layers through

TSVs.

As it has been mentioned, NoC nodes use packets to communicate to each other.

The process that is applied to forward the packets along appropriate directions in the

network between a source and destination is called routing. Therefore, NoCs should be

6

accommodated into the limited silicon area using efficient topology, routing algorithm

and router implementation. A brief discussion of NoC routing basics is presented.

1. Network topology includes the study of the arrangement and connectivity of

the routers. Shared-Bus, Ring, Crossbar, Torus and Mesh are among the most

popular topologies for on-chip interconnections as in figure 1.5. In shared-bus

topology, all PEs are connected to a common shared bus and they compete for

exclusive access to the bus. A small modification to the shared-bus topology to

allow more concurrent transactions is to create the ring topology where every

PE has exactly two neighbors. The crossbar topology is a fully connected one

which allows every PE to directly communicate with any other PE. Mesh and

torus networks are widely used in multiprocessor architectures because of their

simple connection and easy routing provided by adjacency. Both torus and

mesh topologies are fully scalable.

2. The switching mechanism determines how messages traverse a route in a net-

work. The goal is to effectively share the network resources among messages

traversing the network. Basically, circuit switching and packet switching form

the two extremes of switching mechanisms. In the packet switching domain,

buffered flow control defines the mechanism that deals with the allocation of

channels and buffers for the packets traversing between source and destination.

The flow control mechanism is necessary when two or more packets compete to

use the same channel, at the same time. Commonly three different buffered flow

control strategies are used: store-and-forward, virtual cut through, and worm-

hole. In store-and-forward [37], each router along the path stores the entire

packet in the buffer and then, the packet is forwarded to a selected neighbor-

ing router if the chosen neighboring router has enough empty buffering space

available to hold the whole packet. In virtual cut-through [37], the router starts

7

Figure 1.5: Network topologies

8

forwarding a packet before the whole packet has been received as opposed to the

store-and-forward. Finally, in wormhole, a packet is divided into smaller seg-

ments called FLITs (FLow control digIT)[38].Then, the flits are routed through

the network one after another in a pipelined fashion.

3. Virtual channels overcome the problem of blockages in the wormhole network.

There is a possibility of blocking in the wormhole network when a packet reserves

a channel along a path which is prevented to be used by other packets. Virtual

channel implementation is accomplished by assigning several VCs, each with a

separate flit queue, to each physical channel. For each VC, when the header

flit arrives, a buffer will be assigned to the incoming packet, and is reserved

until the trailer flit is transmitted. If a packet holding a VC gets blocked, other

packets from other VCs can still traverse the physical channel. A typical router

with virtual channels is represented in figure 1.6.

A routing algorithm can be seen as the routing function and the selection function.

First, the routing function computes the set of admissible output channels towards

which the packet can be forwarded to reach the destination. Then, the selection func-

tion is used to select one output channel from the set of admissible output channels

returned by the routing function. In a router implementing a deterministic routing

algorithm, the selection block is not present since the routing function returns only

a single output port. In a router implementing an oblivious routing algorithm, the

selection block takes its decision based solely on the information provided by the

header flit.

The main problem in vertically partially connected 3D-NoC is the packet routing

strategy where the traditional simple routing algorithms such as XYZ are not appli-

cable. XYZ simply means that packets take the X, Y and Z dimensions consecutively.

y following X, Y and Z dimensions in order, we might end up at node with no ver-

9

Figure 1.6: A router using VCs

10

tical link. An appropriate routing algorithm should be used to utilize a partially

connected 3D-NoC. The absence of TSVs at certain points results in more load being

pushed on the present TSVs, and the algorithm should be capable of distributing

the load across the TSVs more uniformly to enhance the network performance and

mitigate TSV aging. Routing algorithms are classified as deterministic and adaptive.

While the former is simple, it is incapable of balancing the load across the links in

non-uniform traffic [39]. The latter is applied to distribute load across the links and

avoiding congested regions, and enhance the network performance [40].

Designing an adaptive deadlock-free routing algorithm in partially connected 3D-NoC

is very challenging due to the possibility of forming a cycle within and between three

planes (i.e. XY , XZ, and Y Z) and the current state-of-the-art is still lacking a vi-

able solution. Another concern with the use of TSVs is the ensuing reliability issues.

While the reliability aspects of 2D networks have been extensively studied, investi-

gation of TSV fault sources and their implication in terms of network performance is

still a developing topic. Consequently, it is desirable to evaluate the reliability and

performance of the designed routing algorithm under the influence of TSV faults and

non-idealities.

Performance metrics of routing algorithms on a specific platform are typically evalu-

ated through simulation in order to determine whether or not the algorithm satisfies

application constraints [41] [42]. Unfortunately, simulation-based performance analy-

sis is considerably time-consuming and the situation exacerbates as the network size

increases. In addition, comparisons are challenging as different methods might be

applied on different tools. Analytical models are an alternative approach to estimate

performance metrics in a fraction of time. To be tractable, most analytical models

rely on certain assumptions. The validity of an analytical model is directly related to

how well the real-world scenario follows the assumptions. If a good enough analyt-

11

ical model is used to approximate the real-world situation, the desired performance

metrics can be calculated efficiently and reliably. Typically, the analytical models

are used to get the design within an acceptable vicinity of the desired outcome, and

then simulations are performed for fine tuning and removing the effect of assump-

tions. This analysis-simulation sequence saves designers considerable time and helps

them focus on improving the design by getting fast and accurate feedback from the

proposed designs.

The rest of the dissertation is organized as follows. Chapter 2 summarizes the re-

lated work focuses 3D integration 2.1, TSV reliability 2.2, routing algorithms 2.3 and

analytical verification 2.4 presented for 3D-NoC. In Chapter 3, ETW, a lightweight

and adaptive routing algorithm for partially connected 3D-NoC is presented. ETW

imposes specific rules on choosing elevators for vertical transmission which threatens

the fault tolerance of the network. Moreover, reliability analysis is conducted on the

TSVs of the partially connected 3D-NoC. CoBRA routing algorithm is presented in

Chapter 4 which makes some modifications on ETW to enhance the fault tolerance of

the network. Chapter 5 presents an adaptive routing algorithm named LEAD which

has no specific rules on choosing elevators. Also, the analytical models are applied to

estimate the performance of the network. Finally, Chapters 6 and 7 proposes possible

research topics for future work and concludes the dissertation respectively.

12

Chapter 2

Related Work

2.1 3D Integration and 3D-NoC

In the past few years a large amount of research has been devoted to 3D IC de-

sign [9] [10]. The main driving force behind this effort is the higher density, better

performance, more flexibility and higher throughput offered by 3D ICs as compared

to the traditional ICs [11] [12] [17]. Vertical stacking provides multiple levels of of

devices and multiple layers of on-chip metal interconnects. A promising method for

3D stacking is to first design and manufacture the 2D dies to be integrated vertically

using the traditional planar methods and processes, and then further process them

with additional steps such as substrate thinning and TSV filling [43]. Stacking pro-

cess might be face-to-face or face-to-back. In the former, the via stubs from each

metal layer of two candidate wafers are bonded directly. The Chemical-Mechanical

Polishing (CMP) is applied to thin the back side of the the top die for exposing buried

TSVs to connect to the I/O pads. In the latter, the back side silicon bulk of the top

wafer is first thinned by CMP and then thermo-compression bonding is applied with

13

the front side of the bottom wafer.

The modeling and performance evaluation of TSVs have been studied in different

works [44][45]. Unfortunately, TSVs are expensive, impose large area overhead, and

suffer from lower yield as compared to horizontal links. In order to take advantage

of reduced interconnection latency offered by 3D ICs and to address the scalability

and bandwidth bottleneck in NoC, many works [46] [13] [47] consider 3D-NoC with

limited TSV as a realistic design option. Partially connected 3D-NoCs reach a com-

promise between the advantages and disadvantages of vertical interconnections. In

other words, as the provision of TSVs introduces higher speed and shorter wiring as

compared to 2D systems, a smaller number of TSVs mitigates the disadvantages such

as degraded reliability and area issues of vertical interconnections.

2.2 TSV Reliability

An analytical model for reliability evaluation of 2D NoC has been reported in [48],

but it does not consider unexpected sources of faults in 3D die-stacked designs. The

impact of sub-micron TSVs on future 3D ICs is still unknown [49]. Chip warpage,

TSV coupling [50], and thermal stress are known as main causes of TSV failure [33].

To alleviate mechanical reliability issues in 3D ICs, [51] presented an analysis tool

as well as a design optimization framework. Reliability evaluation of a specific TSV

technology developed by Austria Microsystems AG has been reported in [52]. An an-

alytical reliability analysis for a fault-intolerant 3D NoC under transient TSV failures

has been proposed in [53]. While [53] focuses on the evaluation of the fraction of time

slots that are affected by transient TSV faults under the assumption of temporally

and spatially uniform traffic, here we intend to investigate the effect of permanent

faults on inter-level communications.

14

2.3 Routing Algorithms

3D-NoC routing algorithms have been widely studied in the literature. LA-XYZ [54],

AFRA [55], DyXYZ [56] and MAR [57] are the routing algorithms for 3D mesh archi-

tectures. Fault-tolerant routing algorithms for 3D mesh NoCs have been presented

in HamFa [58], 4NP-First [59], LAFT [60] and HLAFT [61]. However, there are few

works that consider partial connectivity.

TDAR [62] proposes an adaptive routing algorithm for the cases in which the vertical

bandwidth is less than the horizontal bandwidth. This routing algorithm works for

3D mesh NoCs with limited vertical bandwidth.

A fully adaptive routing algorithm with congestion consideration is presented in [56].

DyXYZ works on fully connected 3D meshes and it is proven to be deadlock free by

using 4, 4, and 2 virtual channels along the X, Y and Z dimensions, respectively.

Limited bandwidth in the vertical dimension has been discussed in [63] which is a

congestion-aware routing algorithm for the 3D mesh network. In this algorithm, when

a router wants to determine the output port, it considers the congestion information of

the neighboring nodes along with the distance from the current node to the destination

node. So, different weights are assigned to the router outputs and then routing is done

based on the congestion information and the assigned weights. This algorithm allows

using a non-minimal and adaptive routing algorithm to distribute traffic load over

the network.

4NP-First [59] introduces a fault-tolerant routing algorithm for 3D-NoC. In this rout-

ing algorithm, when the fault rate is above a threshold value, two redundant packets

are transmitted to the destination: one using the 4N-First turn model and the other

using 4P-First.

15

The 3D-FAR algorithm in [64] is another fully adaptive routing algorithm which uses

two, two and four virtual channels along the X, Y and Z dimensions respectively.

In this algorithm, the network is divided into four disjoint virtual subnetworks and

packets can use any shortest paths between the source and destination nodes. Non-

minimal routes are used in the case of faults.

Elevator-first [65] is a distributed routing algorithm for partially connected 3D-NoCs

which requires two virtual channels along X and Y dimensions. Elevator-first is a

deterministic routing algorithm with no limitation in choosing elevators to transfer the

packets to the destination layer. In this algorithm, two virtual channels per physical

link in X and Y dimensions are employed while there is no additional virtual channel

in the Z dimension.

A modification on the Elevator-first algorithm has been made in Redelf [66] which

requires no virtual channels to ensure deadlock-freedom. In Redelf, certain rules

are applied for choosing an elevator. To make distinguishable differences between

Elevator-first and Redelf, it is necessary to mention that in the Elevator-first routing

algorithm, there is no limitation on choosing an elevator when a packet traverses

between layers. In other words, the packet is free to take any elevator in order to

reach the destination layer. However, it is at the cost of using two virtual channels

in both X and Y dimensions to ensure deadlock-freedom. Redelf on the other hand

omits using virtual channels, but in order to guarantee deadlock-freedom, certain rules

are applied which are limitative. Both of the routing algorithms are deterministic and

are not able to distribute packets in congested networks.

16

2.4 Analytical Verification

Analytical latency models for NoC are formulated for specific topology and traffic

patterns in [67] and [68]. Queuing theory is used in [69] to determine individual

buffer depths for the given target application and available buffering space. However,

the approach relies on many simplistic assumptions such as packet size distribution

and deterministic routing. The allocation of link capacities in NoCs is addressed

in [70] through an analytical latency model where network contention and queuing

delays have been ignored.

Other works have tried to tailor the analysis to the characteristic of the wormhole-

switching network. Authors in [71] propose an analytical latency and throughput

analysis under Poisson packet arrival rates in low traffic scenarios. The formulation

may not be accurate enough under realistic traffic arrival rates and also near the satu-

ration point. In [72], an NoC latency model has been proposed for the priority-based

router architecture which takes into account the random processes that accommodate

bursty traffic. However, the framework is only applicable to deterministic routing al-

gorithms and is valid under the limiting assumption that packet inter-arrival processes

over different channels are identical. More complex and realistic models have been

proposed in [73] and [74] for deterministic routing algorithms, where comprehensive

information can be extracted from latency distribution, rather than average latency.

17

Chapter 3

ETW Routing Algorithm

As explained in Chapter 2, a light weight adaptive routing algorithm for partially

connected 3D-NoCs lacks the literature. These issues motivated us to develop an

efficient routing algorithm for partially connected 3D-NoCs, called East-Then-West

(ETW) [75]. This algorithm is reliable as long as there is at least one TSV at the

eastmost column while the performance can be improved by increasing the number

of TSVs. The ETW algorithm is extremely light-weight. That is, it only requires

one virtual channel along the Y dimension. This algorithm provides adaptivity to

deliver packets, preferably using the shortest paths. Besides, this adaptivity can be

applied to avoid congestion in the network. Whenever there are more than one valid

output channels available to deliver a packet, the utilization of the input buffer of the

neighboring routers is used to prioritize one output channel over the other.

In comparison with the Elevator-first algorithm, ETW uses one less virtual channel.

Elevator-first is a deterministic algorithm offering adaptivity with no significant limi-

tation as is the case with dimension order routing. In ETW, a group of eligible TSVs

is selected to support the communication between a source and destination. Then, a

18

single TSV is selected from these eligible TSVs. The ETW fault tolerance is based on

runtime elevator selection for every single node upon packet arrival. On the contrary,

the Elevator-first algorithm assigns a fixed elevator to a packet which results in packet

being blocked if the elevator is faulty. In the Elevator-first algorithm, a new header

is added to the packet containing the address of the elevator leading to both hard-

ware and timing overhead. There is no such a header update in ETW. Besides, the

main difference between the ETW routing algorithm and the Elevator-first routing

algorithm is that adaptivity in the former enables different paths for the same source

and destination pair depending on the network condition.

3.1 Overview of ETW

ETW is proposed for vertically partially connected 3D-NoCs. In ETW, every router

is statically informed about the location of the vertical links. This information is

stored locally at router registers. The vertical links are considered to be pillars. That

is, the TSV in the first layer connects to all the other layers. In vertically partially

connected 3D-NoCs, in order to deliver a packet to the destination, the packet needs

to be delivered to the destination layer through a vertical link (elevator), and then

routed toward the destination.

In the ETW algorithm, two virtual channels along the Y dimension is needed while

there is no need to have any further virtual channel along the X and Z dimensions.

To prove freedom from deadlock, the network can be virtually partitioned into two

disjoint subnetworks including different channels: Subnetwork1 (X+, Y 0∗, Z+) and

Subnetwork2 (X−, Y 1∗, Z−) where +, - represent channels along the positive and

negative directions respectively, while * stands for both positive and negative direc-

tions (bidirectional channels) as shown in Figure 3.1.

19

X+, Y0*, Z+X-, Y1* , Z-

Subnetwork1

Y1-

Y1+

X-

Z-

Y0+

X+

Z+

Y0-

Subnetwork2

Figure 3.1: Two different regions

Packets in Subnetwork1 have the flexibility to move along the following directions in

any order: (1) Eastward (X+), (2) Northward using the virtual channel number zero

(Y 0+), (3) Southward using the virtual channel number zero (Y 0−), or (4) upward

(Z+). Similarly, valid movements in Subnetwork2 are as follows: Westward (X−),

moving Northward or Southward using the virtual channel number one (Y 1∗), or

moving downward (Z−). Packets in each subnetwork can switch between the direc-

tions dynamically and do not necessarily follow the dimension order routing.

The basic idea of this routing algorithm is that packets are allowed to use any channels

either in Subnetwork1 or Subnetwork2 or move from Subnetwork1 to Subnetwork2 and

then use any channels of Subnetwork2 (no transfer from Subnetwork2 to Subnetwork1

is allowed). Thereby, if any Eastward movement is needed, a channel of Subnetwork1

should be used before using any channels of Subnetwork2. At the worst case, packets

should reach the East-most column with the flexibility to take Y 0∗, deliver to the

desired layer and then to the destination node. In other words, having at least one

TSV in the East-most column guarantees delivery of packets between each pair of

source and destination nodes.

20

Subnetworks Pair(X+, X−) Pair(Y +, Y −) Pair(Z+, Z−) CompletePair
(X+)(Y 0∗)(Z+) X− is missing Pair exists Z− is missing Y
(X−)(Y 1∗)(Z−) X+ is missing Pair exists Z+ is missing Y

Table 3.1: Completed pairs within each subnetwork

3.2 Proof of Deadlock-freedom

A sufficient condition for a routing algorithm to be deadlock-free is the exclusion of

cycles [64]. A cycle occurs if both positive and negative directions along at least

two dimensions can be adopted by a packet. As an example, to form a cycle in the

XY plane, it is necessary to take the X+, X−, Y + and Y − directions. The same

trend is true for XZ and Y Z as well. No U-turn (360-degree turn) is allowed in

the algorithm. As can be obtained from the subnetwork definition in Table 3.1, only

the Y dimension is completed (i.e. both positive and negative directions of Y can

be taken by packets) in each subnetwork, and thus there is no possibility of forming

a cycle. In order to prove the deadlock-freedom between subnetworks, it suffices to

show that two subnetworks are disjoint. A pairwise comparison in Table 3.2 between

the two subnetworks reveals that these two subnetworks are different in X and Z

direction and the virtual channel number along Y . That is, Subnetwork1 only covers

positive direction of X and Z while Subnetwork2 covers the negative parts. The two

subnetworks are disjoint in virtual channel number along Y . Packets are allowed to

use any channels either in Subnetwork1 or Subnetwork2 or move from Subnetwork1

to Subnetwork2 and then use any channels of Subnetwork2. Since no transfer from

Subnetwork2 to Subnetwork1 is allowed, a cycle can never be formed. Therefore,

moving toward X+ and Z+ will not be made after moving toward X− and Z− and

the freedom from deadlock is proved.

21

Subnetwork1 (X+)(Y 0∗)(Z+)
Subnetwork2 (X−)(Y 1∗)(Z−)
X Dimension Different in direction
Y Dimension Different in VC number
Z Dimension Different in direction

Table 3.2: Disjoint subnetworks

3.3 Routing Algorithm Procedure

If the destination is to the East of the source, Subnetwork1 will be used to deliver

the packet to the destination; otherwise, Subnetwork2 will be applied.

3.3.1 Destination is on the upper layer

Subnetwork1 should be used first since moving upward is allowed only in Subnetwork1.

When the packet reaches the destination layer, depending on the position of the

destination router, the packet either continues routing in Subnetwork1 (destination

is to the East of the current node) or switches to Subnetwork2 (destination is to the

West of the current node). In more details, the destination region can be in East-Up

or West-Up of the source. When the destination is in East-Up of the source, only

Subnetwork1 will be used to deliver the packet to the destination. In the other case

(i.e. the destination is on West-Up of the source), the channels of Subnetwork2 will

be used when the packet reaches the destination layer. In order to illustrate the two

scenarios, a 4 × 3 × 2 network is shown in Figure 3.2 having four TSVs connecting

the nodes 0 to 12 (0-12), 8-20, 10-22, and 7-19. The TSVs are bidirectional. Based

on the introduced algorithm, if the source node 17 targets the node 1 or node 4 as

the destination, two elevators (i.e. 10-22 and 7-19, bolded in the figure) can be taken

to transmit the packet to the destination layer and finally Subnetwork2 is used for

delivering the packet to the destination node. Moreover, when the source node 17

22

0

4
DST

8

1
DST

9

2

10

3

11

5 6

12

16

20

13

21

14

22

15

23

17
SRC

18 19

Subnetwork 1

Layer 1

Layer 2

7
DST

Subnetwork 2

Subnetwork 1, 2

N

S

EW

Figure 3.2: An example of destination in the upper layer

wants to send a packet to the destination node 7, again both bolded elevators are

eligible and Subnetwork1 will be sufficient to deliver the packet to the destination.

3.3.2 Destination is on the lower layer

Packets should be delivered to the destination layer through a TSV which is located to

the east side of the destination. The reason is that once the downward channel is used

(Z− from Subnetwork2), no further movement to the East direction is possible. So,

the packet has to move toward East sufficiently before moving downward. The desti-

nation can be in East-Down or West-Down of the source. In both cases, the packet is

23

first forwarded to an elevator in the east side of the destination (using Subnetwork1).

Then Subnetwork2 will be utilized to deliver the packet to the destination layer and

finally to the destination node. Let us consider two examples shown in Figure 3.3.

First, the source node 6 sends a packet to the destination 19. In this case, the elevator

10-22 should not be used as the packet has to take the East direction after delivering

to the destination layer and it is not possible when the packet is in Subnetwork2.

The elevator 7-19 is the only eligible elevator in this example. Second, for sending

a packet from the source node 6 to the destination 17, the elevator 10-22 is between

the source and destination nodes, and thus it can be used. The elevator 7-19 is also

valid and can be used. It is the same condition as the case when the source node

1 wants to send a packet to the destination 17. Since there is no elevator between

the source and the destination, the elevators on the East side of the destination are

eligible which are the elevator 10-22 and elevator 7-19.

3.4 Algorithms for Elevator Assignment

Since ETW suggests different routing options, one of the most important steps in

ETW is choosing an elevator among eligible options. The way in which elevators

are assigned to each pair of source and destination has a considerable impact on the

performance of the routing algorithm. In this section, we introduce two algorithms

which can be used on top of the proposed mechanism for the selection of an elevator

among the eligible options.

24

4

8

1

SRC

9

3

11

5 7

12

16

20

13

21

14

22

15

23

18

Subnetwork1

Subnetwork 2

Subnetwork 1, 2

19
DST

17
DST

0

Layer 1

Layer 2

Not

eligible

N

S

EW

10

2

6

SRC

Figure 3.3: An example of destination in the lower layer

25

3.4.1 Static Elevator Assignment (SEA)

The basic idea of this method is that elevators are assigned to the nodes statically

according to the region of the destination. The important consideration in assigning

elevators to nodes is the destination region, regardless of how far the destination

is from the source node. In this method, each router stores the location of three

elevators which will be used for the destinations located Up, East-Down and West-

Down of their source according to Table 3.3. In other words, each router registers the

location of the nearest eastern and western elevators relative to its location as well as

the east-most elevator in the network. The first one (elevator east) will be used for

all the destinations located on upper layer for that specific router without considering

how far they are from their source node. Moreover, this elevator will be used for the

destinations located on west down side of that router, if there is no elevator between

the source router and the destination. The second elevator (elevator west) will be

used for all destinations in west down of the source. That is, when a router wants

to send packets to a destination located on its west down region, first it tries to find

an elevator between the source and destination that is the nearest elevator in west

side of the node. If not, then the nearest elevator in the east side of the node will be

used. Finally, the third elevator (elevator east down) is for all the destinations on east

down of the current router. Since this elevator assignment is done offline, for all the

destinations on east down of the source the east most elevator will be used because

no further east transmission is allowed after taking down direction. Therefore, it is

necessary to move toward east as much as possible.

The pseudo code for assigning elevators to the nodes is shown in Algorithm 1. In

order to assign an elevator to a node, three conditions must be satisfied. The first

condition forces the X coordinate of the candidate elevators to be either greater or

less than the X coordinate of the current node, depending on the destination location.

26

Among these candidate elevators, the second condition chooses the elevators with the

least Manhattan distance from the elevator to the current node. Lines 10 and 13 of

Algorithm 1 summarize the first two conditions. The third condition further narrows

down the selection by choosing the elevators with minimum X distance (lines 11

and 14). At this point, there could be at most two candidate elevators on the same

column, one of which is selected arbitrarily as the target elevator (lines 12 and 15)

and the corresponding elevator ID is stored before runtime in local registers for all

routers. Then, the routing will be done according to Algorithm 2. As an example in

Figure 3.2, elevator east registered in the node 16 is 12. Therefore, the node 16 will

use the elevator at node 12 for all the destinations on east side (i.e. the nodes 0, 1,

2, 3, 4, 5, ... , 11).

Another example is that, according to Figure 3.2, the source node 1 generates a

packet destined for the node 18. Since the destination is in the east down side of

the source, the elevator at node 7 will be used while there is a closer elevator at

node 10. This suboptimal selection is an inherent requirement of the offline/static

elevator assignment that should work for any east-down destination. In other words,

whenever the destination is on the east-down of the source, the statically assigned

elevator should be such that the routing constraints hold regardless of the exact

location of source and destination. The only solution that would work for all such

situations is the east-most elevator named elevator east down. Since no further east

movement is allowed after taking the down direction, the packet has to be forwarded

toward east sufficiently in the source layer. Therefore, for all the destinations located

at east down of their source, the packet will use the elevator located at the east most

column. The main drawback of this technique is that if the elevator is faulty, no

further rerouting will be possible. The following technique mitigates this problem by

enabling elevator assignment during runtime.

27

Algorithm 1 SEA Pseudo code

1: E = {ei} (set of elevator indices)
2: Xc, Yc, Zc ← X, Y , Z coordinates of current router
3: Xe, Ye, Ze ← X, Y , Z coordinates of elevator e
4: MD(e, c) = (|Xe −Xc|+ |Ye − Yc|)
5:

6: if (current node is an elevator) then
7: address elev east ← current node
8: address elev west ← current node
9: else

10: S1 ← {e ∈ E : (Xe ≥ Xc) and MD(e, c) = mini(MD(ei, c))}
11: S1 ← arg mine∈S1Xe

12: address elev east ← S1(1)
13: S2 ← {e ∈ E : (Xe ≤ Xc) and MD(e, c) = mini(MD(ei, c))}
14: S2 ← arg maxe∈S1Xe

15: address elev west ← S2(1)
16: end if
17: address elev east down ← {e ∈ E : Xe = maxi(Xei) and MD(e, c) =

mini(MD(ei, c))}

Algorithm 2 ETW-SEA routing algorithm

1: Xc, Yc, Zc ← X, Y , Z coordinates of current router
2: Xd, Yd, Zd ← X, Y , Z coordinates of destination router
3: ETW(e) (function for routing through elevator e)
4:

5: if (Zd > Zc) then
6: ETW(address elev east)
7: else
8: if (Xd < Xc) then
9: if (Xd ≤ Xaddress elev west ≤ Xc) then

10: ETW(address elev west)
11: else
12: ETW(address elev east)
13: end if
14: else if (Xd > Xc) then
15: ETW(address elev east down)
16: else
17: ETW(address elev east)
18: end if
19: end if

28

Destination Region

Used Elevator
East
Up

West
Up

East
Down

West
Down

Elevator-
right

Elevator-
right

Elevator-right-
down

Elevator-right
or

elevator-left

Table 3.3: Elevator assignment in ETW-SEA

3.4.2 Dynamic Elevator Assignment (DEA)

In this method, elevators are assigned to routers at runtime. This technique is pro-

posed in order to enhance the fault tolerance of the routing algorithm. When the

packet reaches a faulty elevator, the current node has the capability to choose a new

elevator and reroute the packet toward a new elevator. It is considered that a faulty

elevator is considered as a node which has no vertical link. Therefore, by changing

a node status, Algorithm 3 is called to assign a new elevator for the current node.

The algorithm assigns an elevator in the valid region according to the location of

destination. Figure 3.4 shows valid regions for different locations of destination as

compared to the current node.

Figure 3.4 (a) shows that if the current node receives an eastbound packet from its

western input port (packet has already been forwarded toward East) or the case when

the current node is the source, no matter where the destination is (upper or lower

layer compared to the current node), the valid region for selecting an elevator is at east

side of the current node. Figure 3.4 (b) represents the valid region when the input

direction to the current node is North (packet has already been forwarded toward

South). According to the figure, the red part of the figure will not be considered

because the input direction of the node is North and forwarding the packet toward

North might make a loop. Figure 3.4 (c) illustrates the case in which the input port

is South. Again, the red part is forbidden in order to avoid deadlock.

29

At the next step, the algorithm attempts to find a unique elevator in the valid re-

gion according to Algorithm 3. In the algorithm, T is the set of eligible TSVs in

the valid region. MD(i, j) is the Manhattan Distance between the two nodes i and

j. OMD(s, d, t) is the Overall Manhattan Distance from the source node s to the

destination d using the TSV at node t. PMD(s, t) is the Partial Manhattan Distance

from the source node s to the TSV. The algorithm calculates, for all the elevators

located in the valid region, the overall Manhattan distance, which is the Manhattan

distance from the source to TSV plus Manhattan distance from the TSV to the desti-

nation. If this calculation does not result in identifying a unique elevator, Manhattan

distance from the source to the TSV will be considered. If a unique elevator cannot

be found by these two steps, in the third step, the elevator leading to the shortest

X separation (|Xelev −Xsource|) will be chosen in order to avoid transferring toward

east prematurely. Finally, if the above criteria do not lead to selecting a unique TSV,

the source node selects the TSV in the lower (upper) Y-half-plane, if the node is in

the upper (lower) Y-half plane. If the size of Y dimension of the network is Ny, a

node is said to be in the upper (lower) Y-half plane, if its y coordinate is less than or

equal to (greater than) bNy/2c. By selecting the Y-half-plane that is not the same

as Y-half-plane of the source, a larger number of TSVs can be used to carry out the

communication, leading to higher resilience to the TSV failure.

An example is illustrated in Figure 3.5. Let us consider a case where the source node

4 targets the node 23 as its destination. For this example, all the elevators (i.e. 1, 2,

3, 9, 10, 11, and 14) are in the valid region. Step 1 determines that six elevators (i.e.

1, 2, 3, 9, 10, and 11) have the same overall Manhattan distance from the source to

destination. Step 2 limits the list to two elevator (i.e. 1 and 9) since they have the

least Manhattan distance from the source. Step 3 has no effect on the list since both

elevators have the same X separation from the source. Finally, Step 4 chooses node

9 as its elevator because it is not in the same Y-half-plane with the source (source is

30

Cur Cur Cur

(a) Input

direction: W, L

(b) Input

direction: N

(c) Input

direction: S

W

L

N

S

Valid region

Forbidden region

Figure 3.4: Valid regions based on the input port to current node

4

SRC

8

12

5

9

13

6

10

7

20

24

21 22
23

DST

14

Vertical link

N

S

EW

15

11

25 26 27

0 1 2 3

16 17 18 19

28 29 3130

Figure 3.5: An example of the DEA algorithm

in the upper Y-half-plane).

As it was discussed earlier, DEA can handle faulty elevators by selecting new ones

during runtime and thus enhances the fault tolerance of the 3D NoC.

31

Algorithm 3 DEA Pseudo code

1: Input: T = {t1, · · · , tn}, s, d
2: Output: t ∈ T
3: Auxiliary functions:
4: MD(i, j) = (|Xi −Xj|+ |Yi − Yj|)
5: OMD(s, d, t) = MD(s, t) +MD(t, d)
6: PMD(s, t) = MD(s, t)
7:

8: if (|T | = 1) then
9: return t1

10: else
11: T ← {t ∈ T :
12: OMD(s, d, t) = mini=1···n(OMD(s, d, ti))}
13: n← |T |
14: if (|T | = 1) then
15: return t1
16: else
17: T ← {t ∈ T :
18: PMD(s, t) = mini=1···n(PMD(s, ti))}
19: n← |T |
20: if (|T | = 1) then
21: return t1
22: else
23: T ← {t ∈ T :
24: |Xt −Xs| = mini=1···n(|Xti −Xs|)}
25: n← |T |
26: if (|T | = 1) then
27: return t1
28: else
29: if Ys < bNy/2c then
30: return t ∈ T : Yt ≥ bNy/2c
31: else
32: return t ∈ T : Yt < bNy/2c
33: end if
34: end if
35: end if
36: end if
37: end if

32

3.5 Formal Model of the Network

Consider an Nx × Ny × Nz network. The nodes of the network are linearly indexed

from 1 to Nx × Ny × Nz. Similarly, TSVs are linearly indexed by a set of numbers

T = {t1, · · · , t|T|} ⊆ {1, · · · , NxNy}. If i ∈ T , there is a TSV whose base is at node

i. As an example, consider the planar view of a network with two layers as shown

in Figure 3.6. The location of TSVs are highlighted in black. Each cell contains two

numbers, corresponding to the node index in each layer. In this example, the nodes

are indexed from 1 to 8× 8× 2 = 128. Also, the total number of TSVs, |T|, is equal

to 10 and we have T = {6, 8, 10, 13, 22, 41, 54, 55, 60, 64} = {t1, · · · , t10}.

Furthermore, denote each source-destination pair by (s, d), where s is the source ID

and d is the destination ID. As we are concerned with vertical transmissions, we

focus on pairs in which the source and destination are in two different layers. In

addition, it suffices to focus on 2 layer networks because TSVs are pillars and cross

through all layers. Then, the total number of source destination pairs, with the source

and destination located at two different layers, is equal to 2(NxNy)
2. For notational

convenience in what follows, we map each (s, d) to a scalar k as follows:

(1, NxNy + 1)→ 1 (3.1)

(1, NxNy + 2)→ 2

...

(2, NxNy + 1)→ NxNy + 1

...

or k = NxNy(s − 1) + ((d − 1) mod NxNy) + 1. With this notation, the pair (s, d)

can be symbolically represented by αk.

33

To model the dynamic routing, suppose that network topology N and routing algo-

rithm A are known. The communication corresponding to αk attempts to use some

TSV tk,1 ∈ T. If TSV tk,1 fails, the algorithm attempts to use TSV tk,2 and so on.

Denote the set of prioritized TSVs for αk by tk = (tk,1, · · · , tk,nk) ⊆ T. As a sidenote,

we require that the routing algorithm is such that each αk corresponds to exactly one

tk. Also note that if tk has only one member for all k, this model reduces to a static

routing algorithm. Symbolically, we can define a function FN ,A that maps αk to tk:

tk = FN ,A(αk) (3.2)

As an example, suppose that the source 1 and the destination 87 (circled in Figure

3.6) are denoted by αk=23. Also suppose that the routing algorithm has the possibility

to use TSVs 10, 13, and 22 to carry out the transmission from the source 1 to the

destination 87. Thereby, we have t23 = {10, 13, 22} = {t23,1, t23,2, t23,3}.

It is possible to illustrate the mapping αk → tk by constructing a |T| × 2(NxNy)
2

(row×column) binary matrix C, where a 1 in C(i, j) represents the fact that TSV ti

can be used to support the communication of pair αj, or ti ∈ tj. As an example, the

23rd column of C, denoted by C(:, 23), of the aforementioned example looks like this:

C(:, 23) =

[
0 0 1 1 1 0 0 0 0 0

]T
(3.3)

Figure 3.7 shows the entire C matrix for the network of Figure 3.6. The number of

columns is equal to the number of source-destination pairs and the number of rows

is equal to the number of TSVs (10 in this example). The x axis is labeled by k

34

x

y

1
65

9
73

17
81

25
89

33
97

41
105

49
113

57
121

2
66

10
74

18
82

26
90

34
98

42
106

50
114

58
122

3
67

11
75

19
83

27
91

35
99

43
107

51
115

59
123

4
68

12
76

20
84

28
92

36
100

44
108

52
116

60
124

5
69

13
77

21
85

29
93

37
101

45
109

53
117

61
125

6
70

14
78

22
86

30
94

38
102

46
110

54
118

62
126

7
71

15
79

23
87

31
95

39
103

47
111

55
119

63
127

8
72

16
80

24
88

32
96

40
104

48
112

56
120

64
128

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Figure 3.6: An example of an 8× 8× 2 network with 10 TSVs

and the y axis is labeled with the ID of TSVs t1, · · · , t10. The black (white) bars

correspond to 1 (0) in the C matrix. By looking at a row of this figure, it is possible

to estimate the fraction of source-destination pairs that use the TSV corresponding

to that row. For example, it is observed that the 2nd and 10th row of C (shown by

arrow on Figure 3.7) are the darkest rows, signifying the fact that a large number

of source-destination pairs use the corresponding TSVs (8 and 64). In general, the

tendency of our routing algorithm to send the packets to the east leads to more usage

of TSVs on the right hand side of Figure 3.6.

3.6 Reliability Analysis

Traditionally, the reliability of an ‘object’ at time t, R(t), is defined as the probability

of observing a ‘fault’ in the ‘object’ after time t. We take the ‘object’ to be a source-

destination pair αk, and the ‘fault’ corresponds to an unsuccessful packet delivery

from the source to the destination through TSVs. Considering the mechanism of

35

pair index

T
S

V
 in

de
x

1000 2000 3000 4000 5000 6000 7000 8000

 6

 8

10

13

22

41

54

55

60

64

Figure 3.7: C matrix representation of the 8× 8× 2 network

routing, a communication fails if none of TSVs in tk are healthy. This is equivalent

to the concept of ‘parallel systems’ in reliability theory. Following the same course of

deduction, we can write the reliability of αk as:

Rαk(t) = 1− (1−RTSV(t))nk (3.4)

where it is assumed that all TSVs follow the same reliability model RTSV(t) and

fail independently. The reliability can be readily derived from a life distribution.

Fortunately, many different life distributions have been examined in the literature

and shown to either empirically fit the failure behavior of electrical components or

comply with the underlying processes that generate the failure. Examples of such

life distributions include exponential, Weibull, Bayesian Weibull, normal, lognormal,

mixed Weibull, Gamma and generalized Gamma, logistic, loglogistic, and Gumbel

among others.

In practice, the reliability of the communication of a specific αk is not of interest.

Rather, it is of interest to evaluate a measure of ‘overall’ reliability of the system.

Such a measure is defined with the specific concept of reliability in mind. In this

36

thesis, we focus on the average fraction of source destination pairs that communicate

successfully at time t, henceforth denoted by f(t).

To calculate f(t), we first focus on the fraction of αk that does not fail if certain TSVs

are faulty at time t. Let us denote the failure status of TSVs at time t by a binary

vector `(t) of size |T|. A zero in location i of `(t) means that TSV ti is faulty at time

t. As an instance, `(t) = [1 1 1 1 0 0 0 0 0 0] for the example of Section 3.5 means

that TSVs 22, 41, 54, 55, 60, and 64 are faulty at time t .To see what fraction of

source-destination pairs are still connected at time t, the rows of C indexed by zeros

of `(t) are set to zero, resulting in a new matrix C`(t). The matrix C`(t) is of the same

size as C, but with certain rows of C set to 0. For example, `(t) = [1 1 1 1 0 0 0 0 0 0]

leads to a C`(t) matrix identical to Figure 3.7 except for the 5th through 10th row

set to 0. Then, the number of non-zero columns in C`(t) represents the number of

pairs that can communicate at time t. This is because a zero column in C`(t) means

that no TSV exists to support the communication between the source-destination

pair corresponding to that column. Dividing this number by 2(NxNy)
2 returns the

fraction of connected pairs given `(t). Denote this fraction by f`(t). For example, if

the 5th through 10th row of Figure 3.7 are set to zero, only 7808 out of 8192 pairs

can communicate, which is a fraction of about 95% (f[1111000000] = .95).

In order to relate f`(t) to f(t), we note that each ` occurs with the time dependent

probability:

p`(t) = (1−RTSV(t))|T|−sum(`)R
sum(`)
TSV (t) (3.5)

where sum(`(t)) returns the sum of elements of `(t) (i.e. the number of healthy TSVs).

Denote the set of all possible binary vectors of length |T| by B|T| (for example, B3 =

{[000], [001], [010], [011], [100], [101], [110], [111]}). In other words, B|T| represents all

37

different combinations of faulty TSVs. Then, f(t) is a weighted sum of f`(t), where

the weights are probabilities of individual `s:

f(t) =
∑
`∈B|T|

p`(t)f` (3.6)

=
∑
`∈B|T|

(1−RTSV(t))|T|−sum(`)R
sum(`)
TSV (t)f`

To further simplify this identity, note that p`(t) is the same for all binary vectors ` with

equal number of ones (same sum(`)). The total number of `s with n 1s is equal to
(|T|
n

)
.

Denote the set of `s with n 1s by Ln = {`n,1, · · · , `n,(|T|n)}. For example, with total

number of TSVs (|T|) equal to 3, we have L1 = {[001], [010], [100]} = {`1,1, `1,2, `1,3}.

Then, the previous equation can be rewritten as a summation over the number of

healthy TSVs (n = sum(`)):

f(t) =

|T|∑
n=0

(1−RTSV(t))|T|−nRn
TSV(t)

(|T|n)∑
m=1

f`n,m

=

|T|∑
n=0

(1−RTSV(t))|T|−nRn
TSV(t)

(
|T|
n

)∑(|T|n)
m=1 f`n,m(|T|

n

)
=

|T|∑
n=0

(1−RTSV(t))|T|−nRn
TSV(t)

(
|T|
n

)
f̄`n,∗ (3.7)

where f̄`n,∗ is the average fraction of connected pairs when n TSVs are healthy. Given

C, f̄`n,∗ can be calculated by setting to zero different combinations of |T| − n rows of

C and counting the number of non-zero columns of C.

The following example illustrates the concept. Suppose that the total number of

TSVs is equal to 3. For notational convenience, temporarily replace RTSV(t) with R.

38

Then we have:

f(t) =(1−R)3−0R0f[000]+ (3.8)

(1−R)3−1R1(f[001] + f[010] + f[100])+

(1−R)3−2R2(f[011] + f[110] + f[101])+

(1−R)3−3R3f[111]

where the terms with same sum (`) have been factored together.

3.7 Results and Discussion

In order to perform a complete set of tests including different traffic scenarios, the Ac-

cessNoxim simulator is used [76]. AccessNoxim is an integration of Noxim (i.e. a cycle-

accurate SystemC NoC simulator) [77] and HotSpot (i.e. providing the architecture-

level thermal model) [78]. This co-simulator combines the network model, power

model and thermal model of the 3D NoC.

The experiments are carried out for a 4 × 4 × 4 3D-NoC. All the routers have 5-flit

FIFOs and the packet size is 8 flits. Out of the 11000 cycles, the first 1000 cycles

were excluded to allow the transient faults to fade away.

3.7.1 Traffic Scenarios

In order to make a meaningful comparison, the Elevator-first routing algorithm was

also implemented as a baseline along with the ETW routing algorithm. Therefore,

the Elevator-First routing algorithm and ETW algorithm with static and dynamic

elevator assignments are compared versus each other in terms of latency and reliability

39

by using both synthetic and real traffic scenarios. In uniform traffic, each node has

the same probability to be chosen as a destination for the other node. In transpose

traffic, a node (i, j) only sends packets to a node (N − 1− j,N − 1− i), where N is

the total number of nodes in the network. Assuming a 4 × 4 × 4 network, in shuffle

traffic the first half of nodes (0 to 31) target destinations which have IDs that are

twice of the source node IDs. As an example, node with ID equals 10 has node 20

as its destination. Besides, sources in the second half (32 to 63) target destinations

whose IDs equal twice of the source node minus 63. In a hotspot traffic scenario,

certain nodes receive hotspot traffic in addition to the regular uniform traffic. Given

a hotspot percentage h, a newly generated packet is directed to each hotspot node

with an additional h percent probability. Finally two real traffic scenarios named

barnes [79] and streamcluster [80] are considered.

3.7.2 Latency Analysis

In order to evaluate the efficiency of the proposed routing algorithms, two architec-

tures have been tested. In the first architecture, five elevators are used located at

nodes 0, 2, 7, 8 and 10. Second, an architecture with eight elevators located at nodes

0, 2, 5, 7, 8, 10, 13 and 15 is tested.

The following line graphs compare the efficiency of the Elevator-first routing algorithm

and the ETW algorithm under SEA and DEA. It is necessary to mention that to

make a fair comparison, elevator assignment in Elevator-first is based on the nearest

elevator assignment which provides the least number of hop counts from the source to

the elevator and from the elevator to the destination. In the line graphs, the horizontal

line represents the packet injection rate of every router (packet/cycle/node) and the

vertical line reports latency. Latency is measured in cycles.

40

Figures 3.8, 3.9, 3.10 and 3.11 compare the latency results under random, hotspot,

transpose and shuffle traffic for the first scenario where five elevators are employed.

According to Figures 3.8 and 3.9, the Elevator-first routing algorithm enhances la-

tency for random and hotspot traffic. The reason is one more virtual channel com-

pared to the ETW. ETW-based approaches (SEA and DEA) follow the same trend

in random and hotspot traffic.

Figure 3.10 compares the latency results for the routing algorithms under the trans-

pose traffic. This traffic is based on vertical link transmission for every pair of source

and destination. This traffic pattern is the one having the most vertical transmission

compared to any other traffic since every pair of source to destination are on different

layers. According to Figure 3.10 for the transpose traffic, ETW-SEA outperforms the

other two algorithms.

Figure 3.12 illustrates the number of times a specific elevator is being used in that

traffic. So, the horizontal line represents the index of the elevators in the first layer. As

it has already been mentioned, the elevators are pillars, meaning that the elevator at

node 0 will be connected to node 48. According to this figure, traffic on the elevators

located at node 2 and 8 are extremely high in the Elevator-first routing algorithm.

Therefore, this technique suffers from long latency. A comparison between SEA and

DEA implies that the usage of every elevator in SEA is less than DEA except the

elevator at node 7. Traffic on this elevator is relatively high because SEA always

forwards the packets toward the east most elevators especially for destinations located

at east down of their source. Due to the variety of the paths from source to the east

most elevator in SEA, traffic on horizontal link will be distributed. Therefore, SEA

performs relatively better compared to DEA. Latency comparison in Figure 3.11 for

shuffle traffic reveals that DEA outperforms the other two algorithms. According

to Figure 3.13, the elevator usage in SEA is higher than DEA and Elevator-first

41

0

10

20

30

40

50

60

70

80

90

100

0.008 0.013 0.018 0.023 0.028

L
a

te
n

cy

Packet Injection Rate

ETW-DEA

ETW-SEA

Elevator-First

Figure 3.8: Performance under random traffic for 5 TSVs

routing algorithm. Therefore, traffic increases on the elevators and latency increases

accordingly. Moreover, elevator usage in DEA is better than the Elevator-first routing

algorithm.

Latency comparisons for architecture with eight TSVs under different traffic patterns

are shown in Figures 3.14, 3.15, 3.16 and 3.17. According to the figures, as the num-

ber of elevators increases, the Elevator-first routing algorithm boasts a better latency

performance compared to the other routing algorithm. This is because the load is

distributed among a larger number of elevators, and each elevator receives a smaller

portion of traffic. Moreover, the network will be saturated in higher packet injec-

tion rates. The observations for the five elevators case also hold for eight elevators.

According to the results, ETW performs better under the lower number of TSVs.

In order to demonstrate the performance of the proposed routing algorithm versus

the Elevator-first routing algorithm, a set of application benchmarks from standard

suits including PARSEC [80] and SPLASH2 [79] have been employed. Figures 3.18

and 3.19 illustrate the latency comparison for the routing algorithms for different

42

0

10

20

30

40

50

60

70

80

90

100

0.008 0.013 0.018 0.023 0.028

L
a

te
n

cy

Packet Injection Rate

ETW-DEA

ETW-SEA

Elevator-First

Figure 3.9: Performance under hotspot traffic for 5 TSVsETW-DEA 13.175 16.743 29.563 74.472 134.576

ETW-SEA 13.225 15.358 21.322 27.157 55.35 113.402

Elevator-First 13.121 17.792 59.153 155.212 162.975

0.01 0.014 0.018 0.02 0.022 0.023

0

10

20

30

40

50

60

70

80

90

100

0.008 0.013 0.018 0.023

L
a

te
n

cy

Packet Injection Rate

Elevator-First

ETW-DEA

ETW-SEA

Figure 3.10: Performance under transpose traffic for 5 TSVs

43

0

10

20

30

40

50

60

70

80

90

100

0.008 0.013 0.018 0.023

la
te

n
cy

Packet Injection Rate

ETW-DEA

ETW-SEA

Elevator-First

Figure 3.11: Performance under shuffle traffic for 5 TSVs

0 2 7 8 10
0

5

10

15

20

25

TSV index

E
le

va
to

r
us

ag
e

ETW−SEA

ETW−DEA

Elevator−first

Figure 3.12: Transpose traffic elevator usage for 5 TSVs

44

0 2 7 8 10
0

2

4

6

8

10

12

14

16

18

20

TSV index

E
le

va
to

r
us

ag
e

ETW−SEA

ETW−DEA

Elevator−first

Figure 3.13: Shuffle traffic elevator usage for 5 TSVs

0

10

20

30

40

50

60

70

80

90

100

0.008 0.018 0.028 0.038

L
a

te
n

cy

Packet Injection Rate

ETW-DEA

ETW-SEA

Elevator-First

Figure 3.14: Performance under random traffic for 8 TSVs

45

0

10

20

30

40

50

60

70

80

90

100

0.008 0.018 0.028 0.038

L
a

te
n

cy

Packet Injection Rate

ETW-DEA

ETW-SEA

Elevator-First

Figure 3.15: Performance under hotspot traffic for 8 TSVs

0

10

20

30

40

50

60

70

80

90

100

0.008 0.013 0.018 0.023 0.028 0.033

la
te

n
cy

Packet Injection Rate

ETW-DEA

ETW-SEA

Elevator-First

Figure 3.16: Performance under transpose traffic for 8 TSVs

46

0

10

20

30

40

50

60

70

80

90

100

0.008 0.013 0.018 0.023 0.028 0.033

L
a

te
n

cy

Packet Injection Rate

ETW-DEA

ETW-SEA

Elevator-First

Figure 3.17: Performance under shuffle traffic for 8 TSVs

applications for two architectures. The former has only five TSVs and the latter is

for the architecture with eight TSVs. The results are based on a 4× 4× 4 network in

which buffer depth is five and the packet size is randomly chosen between five to eight

flits. According to these figures, as the number of TSVs increases, the performance

gap between the Elevator-first and ETW routing algorithm decreases as well. As

Figure 3.18 illustrates, the Elevator-first algorithm provides better latency than ETW

with each of DEA and SEA elevator assignment. However, according to Figure 3.19,

the routing algorithms perform relatively the same for different benchmarks. The

results reveal that as the number of elevators increases, especially the centrally located

elevators, a better traffic distribution among vertical links is obtained. So, ETW

provides nearly the same performance as the Elevator-first routing algorithm although

it has one less virtual channel.

47

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Streamcluster Barnes Freqmine Blackscholes

L
a

te
n

c
y

SEA

DEA

Elevator-first

Figure 3.18: Performance under table-based traffic with 5 TSVs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Streamcluster Barnes Freqmine Blackscholes

L
a

te
n

cy

SEA

DEA

Elevator-first

Figure 3.19: Performance under table-based traffic with 8 TSVs

48

1 2 3 4 5 6 7 8 9
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of failed TSVs

av
er

ag
e

fr
ac

tio
n

of
 w

or
ki

ng
 p

ai
rs

ETW−DEA
Elevator first

Figure 3.20: Average fraction of working pairs vs number of failed TSVs

3.7.3 Reliability Evaluation

Figure 3.20 compares f̄`n,∗ vs |T| − n (number of failed TSVs) for ETW-DEA and

Elevator-first. Compared to the dashed line which corresponds to the Elevator-first

algorithm, it is observed that the bold line corresponding to ETW-DEA resists falling

when the number of failed TSVs increases. This signifies the higher resilience of ETW-

DEA to loss of TSVs as compared to the Elevator-first algorithm. As an example, with

2 failed TSVs, ETW-DEA results in 98% healthy pairs, while Elevator-first retains

only 80% of the pairs. With 5 failed TSVs, 90% of pairs have successful packet

delivery while this value is less than 50% in the Elevator-first algorithm. Similarly,

under 9 faulty TSVs, the average fraction of healthy pairs of ETW-DEA is 4 times

larger than that of the Elevator-first algorithm (40% vs. 10%).

Next, we use f̄`n,∗ to calculate f(t) and obtain the overall reliability of the system

over time. The specific temporal pattern of f(t) depends on the individual TSV

49

reliability model RTSV(t). While there are many choices for this, we choose the

Weibull distribution due to its versatility [81] in modeling component failure. The

3-parameter Weibull distribution is:

p
Weibull

(t; β, γ, η) =
β

η

(
t− γ
η

)β−1

e−(t−γη)
β

(3.9)

Here, we consider (t − γ)/η as ‘normalized’ time, and focus on the single parameter

Weibull distribution:

p
Weibull

(t; β) = c1t
β−1e−t

β

(3.10)

where c1 is a normalization factor such that
∫∞
−∞ p

2
Weibull

(t)dt = 1. It is a well-known

fact [81] that with β = 1, the Weibull distribution reduces to exponential distribution

and can be used to model component life during its ‘working life’. Moreover, 0 < β <

1 and β > 1 can model component life during the ‘infant mortality’ and ‘wear out’

phases of the component’s life. The reliability function corresponding to the Weibull

distribution is given by:

R
Weibull

(t) = e−t
β

(3.11)

Once plugged into f(t):

f(t) =

|T|∑
n=0

(1− e−tβ)ne−t
β(|T|−n)

(
|T|
n

)
f̄`n,∗ (3.12)

Figure 3.21 shows f(t) for different choices of β. The figure illustrates the superior

resilience of ETW-DEA compared to the Elevator-first algorithm for all phases of the

component’s life. For instance, by comparing the blue dashed and solid line, it is clear

50

that the fraction of working pairs falls much more rapidly in time when Elevator-first

is used. The same observation holds for the working life and wear-out phases of TSVs.

In practice, the life distribution of a component should be calculated by taking the

transition between life phases (infancy, working, and wear out) into account. Unfor-

tunately, equating RTSV(t) to a single Weibull distribution does not accomplish this

goal. To model the transition, we start with the traditional belief that the failure rate

λ(t) of a component with the three life phases follows a bath-tub curve over time.

Specifically, assume that the infancy and working life of a component are of duration

∆Ti and ∆Tw respectively, and that the failure rate during the working life is λ. Also,

take the two functions λ1(t) and λ2(t) to be monotonically decreasing and increasing

with time, and with λ1(∆Ti) = λ2(0) = λ. Then, the failure rate of the component is

given by:

λ(t) =


λ1(t) 0 ≤ t < ∆Ti

λ ∆Ti ≤ t < ∆Ti + ∆Tw

λ2(t−∆Ti −∆Tw) t ≥ ∆Ti + ∆Tw

Next, R(t) can be calculated from λ(t) by solving the following differential equation:

−dR(t)
dt

R(t)
= λ(t), t > 0 subject to R(0) = 1 (3.13)

and plugged into f(t). Interestingly, if R1(t) and R2(t) corresponding to λ1(t) and

λ2(t) are known, R(t) can be calculated readily as follows. Clearly, solving the dif-

ferential equation in [0 ∆Ti] results in R(t) = R1(t). The differential equation in

51

0 2 4 6 8 10
0

0.5

1

normalized time

f(
t)

0 1 2 3 4 5 6 7
0

0.5

1

normalized time

f(
t)

0 0.5 1 1.5 2 2.5 3
0

0.5

1

normalized time

f(
t)

infancy, ETW−DEA
infancy, Elevator−first

working, ETW−DEA
working, Elevator−first

wear out, ETW−DEA
wear out, Elevator−first

Figure 3.21: Temporal trend of fraction of working pairs for different Weibull param-
eters

52

[∆Ti ∆Ti + ∆Tw] is now:

−dR(t)
dt

R(t)
= λ (3.14)

, t ∈ [∆Ti ∆Ti + ∆Tw] subject to R(∆Ti) = R1(∆Ti)

which means:

R(t) = R1(∆Ti)e
−λ(t−∆Ti), t ∈ [∆Ti ∆Ti + ∆Tw] (3.15)

Similarly, for t > ∆Ti ∆Ti + ∆Tw:

R(t) = R1(∆Ti)e
−λ∆TwR2(t−∆Ti −∆Tw), t > ∆Ti + ∆Tw (3.16)

In a nutshell:

R(t) =R1(t), t < ∆Ti (3.17)

R(t) =R1(∆Ti)e
−λ(t−∆Ti), ∆Ti ≤ t < ∆Ti + ∆tw

R(t) =R1(∆Ti)e
−λ∆TwR2(t−∆Ti −∆Tw)

, t > ∆Ti + ∆Tw

Figure 3.22 shows an example of λ(t) and R(t) where λ1(t) is Weibull failure rate

with parameters γ1 = −.25, η1 = 1, and β1 = .5. Also, ∆Ti = 1 and ∆Tw = 5. λ2(t)

is Weibull failure rate with parameters γ2 = ∆Ti + ∆Tw, η2 = 1, and β2 = 2.5. Using

R(t), f(t) is calculated for both Elevator-first and the proposed algorithm. Figure

3.23 compares f(t) for the two algorithms for the entire life of the system, including

infancy, working life, and wear out. As can be seen from Figure 3.23, there is a large

gap between the two algorithms in terms of fraction of healthy connections especially

53

−1 0 1 2 3 4 5 6 7 8 9 10
0.4

0.6

0.8

1

time

la
m

bd
a(

t)

−1 0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

time

R
(t

)

infancy working wear out

working wear outinfancy

Figure 3.22: Variation of failure rate and reliability

during the working life of the system.

3.7.4 Power and Area Analysis

In this section power results extracted from AccessNoxim are reported. Table 3.4

compares power consumption of the Elevator-first routing algorithm with the ETW

algorithm under SEA and DEA. The power results are extracted for the architecture

with 8 TSVs. Two elevator assignment mechanisms have been used for Elevator-first.

According to Table 3.4, the power consumption of Elevator-first with nearest elevator

assignment and ETW-DEA is nearly the same under random and shuffle traffic while

Elevator-first with random elevator assignment and ETW-SEA consume more power

54

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

time

f(
t)

ETW−DEA
Elevator−first

infancy working wear out

Figure 3.23: Life-time variation of fraction of working pairs

Random 8 TSV Shuffle 8 TSV

Routing algorithm
Avg power

(µW)

Avg power
per router

(nW)
Avg power

(µW)

Avg power
per router

(nW)
Elevator-first(SMD) 4.29 67 3.54 55.3

Elevator-first(random) 4.63 72.3 3.91 61.1
ETW-SEA 4.64 72.5 3.96 61.9
ETW-DEA 4.30 67.2 3.55 55.5

Table 3.4: Power consumption evaluation

since the traversed paths are longer. The tables report the average power and average

power per router.

Regarding the area, the routing unit is a light-weight unit and the area consumption

of Elevator-first and ETW are nearly the same. Buffers are the most area-hungry

part of a router design. In this respect, Elevator-first uses one more virtual channel

than ETW, occupying a relatively larger area.

55

Chapter 4

CoBRA Routing Algorithm

In this chapter, some modifications have been made in ETW to enhance the fault

tolerance of the network. According to Chapter 3, ETW with dynamic elevator

assignment reroutes the packet to a new elevator located on the east side of the

network imposed by the routing rules. CoBRA tries to postpone moving toward east

in order to take advantage of using the elevators located in the same column as the

current node.

4.1 Overview of CoBRA

In this algorithm, routers do not have a global knowledge about the location of TSVs

as it is the case in the Elevator-first routing algorithm. The only information that

routers maintain is the presence of any healthy TSV in the same column (with the

same X value) as the current router. The details on the propagation of TSV statuses

are elaborated in Section 4.2.

CoBRA uses two virtual channels along the Y dimension to guarantee the freedom

56

from deadlock. For this purpose, the network is virtually partitioned into two disjoint

subnetworks: Subnetwork1 (X+, Y 0∗, Z+) and Subnetwork2 (X−, Y 1∗, Z−) where +,

- represent channels along positive and negative directions respectively, while * stands

for both directions. Based on this partitioning, packets can use the channels of either

Subnetwork1 or Subnetwork2. In addition packets can move from Subnetwork1 to

Subnetwork2 or vice versa but switching is allowed only in one direction at a time to

avoid deadlock. The deadlock-freedom is elaborated in Section 4.3.

In CoBRA, the default transition occurs from Subnetwork1 to Subnetwork2. If all

TSVs fail in the eastmost column, the algorithm is reconfigured to route packets first

in the Subnetwork2 and then in Subnetwork1. This reverses all the conditions and

thus TSV failures are tolerated again as long as there is one healthy TSV in the

westmost column.

In more details, CoBRA routing algorithm can be described as follows:

4.1.1 Current and destination are on the same layer:

If the destination is on the east side of the current node, Subnetwork1 is used to

deliver the packet (i.e. channels X+ and Y 0∗). On the other hand, if the destination

is on the west side of the current node, the channels of Subnetwork2 are used (i.e.

channels X− and Y 1∗).

4.1.2 Current and destination are not on the same layer:

As it was mentioned, the routers are aware of TSV statuses in their columns. If no

elevator is found in the column, the packet is forwarded one hop to the east and

the process is repeated until a healthy TSV is found. In the worst case, if no TSV

57

is found at the eastmost column, the packet has to be dropped. This implies that

a healthy elevator in the eastmost column guarantees the delivery of packets to all

destinations no matter how many elevators are available in the network or disabled

at runtime. Upon the loss of all TSVs in the eastmost column, CoBRA routing

algorithm is reconfigured to deliver the packets toward the west direction. After this

reconfiguration, every router forwards the packet one hop to the west if there is no

healthy elevator in the same column.

Figure 4.1 shows a 4× 4× 2 network where the source node 20 sends a packet to the

destination node 6. Since there is no TSV at the source column, packets are forwarded

toward east through Subnetwork1. In the next column (with X = 1), there are two

available TSVs, located at node 17 and 25. Since the node 6 is in the upper Y -half

plane, the elevator located at the node 17 is a better choice to deliver the packet. The

routing path is as follows: 20 → 21 → 17 → 1 → 2 → 6, or alternatively the packet

can take the path 20 → 21 → 17 → 1 → 5 → 6. When the source node 10 targets

the destination node 21, the elevator at the node 2 is used since the destination is in

the upper Y -half plane.

4.2 Providing Partial Knowledge

Propagation of TSV statuses locally enhances the reliability of 3D-NoC significantly.

Providing global information about the location of healthy and faulty elevators in a

network may improve the performance but in turn it consumes more resources. In

CoBRA, routers in the same column share the TSV statuses with each other. For

this purpose, a router is equipped with two signals as it is shown in Figure 4.2, one

transferring the TSV status from north to south (i.e. called signal A) and another

one from south to north (i.e. called signal B). Figure 4.2 represents how these signals

58

0

4

8

12

1

5

9

13

2

6

D

10

S

3

7

11

16

20

S

24

28

17

21

D

25

29

18

22

26

30

19

23

27

31

14 15

N

S

EW

Regular Router

Router with TSV

 Path from

20 to 6

Path from

10 to 21

Figure 4.1: An example of a 3D-NoC

59

have been connected among four routers located in the same column. According to

the figure, the signal A reflects the fault information on the north neighbors of a

router. If this signal value is one, it means that there is at least one healthy elevator

on the north direction of the node. Similarly, the signal B propagates the fault

information in the south direction. The signal A and the TSV information of the

current router are ORed together to form the signal A that should be sent to the

next router. Therefore, if A = 1 or the current node has an elevator, the signal A of

the next router gets the value of one representing the existence of a healthy elevator

in the north direction of a node. The same trend is applied to the signal B.

Figure 4.2 (a) shows the value of signals when there are two TSVs at the routers 4

and 12. As it is clear, the router at the node 4 does not have any elevator at the north

direction while there is one at the south direction which is indicated by the value of

the signals A = 0 and B = 1, respectively. The router at the node 4 does not exactly

know where the healthy elevator is located or how many healthy elevators there are

on the south direction. The router just knows that there are healthy elevators in the

south direction that can be used for vertical transmission.

If a fault disconnects one of the TSVs during runtime, the new status is propagated

in the column through the wires. The ORed signals will be updated and routers will

adapt themselves to TSV failures. Figure 4.2 (b) shows the value changes on the

signal A when the TSV at the router 4 becomes faulty.

4.3 Discussion of Deadlock Freedom

We have already mentioned that the network will be deadlock free if packets use

either the channels of Subnetwork1 or Subnetwork2 in addition to the possibility

60

R 4

R 0

R 4

R 8

R 12

00

11

11

1111

11

11

00

00

11

R 0

R 8

R 12

00

00

00

0011

11

11

00

00

00

00

(a)(a) (b)(b)

A
 =

 0

B
 =

 1

A
 =

 1B
 =

 1

A
 =

 1

B
 =

 1

A
 =

 0

B
 =

 1

A
 =

 0
B

 =
 1

A
 =

 0

B
 =

 1

Regular Router

Router with

TSV

Figure 4.2: Implementation of TSV status propagation.

of switching from Subnetwork1 to Subnetwork2. Based on subnetwork definition,

there are no circular dependencies in each subnetwork. Moreover, when packets are

switched from Subnetwork1 to Subnetwork2, there cannot exist any circular path

since the direction of moving along X and Z, as well as the virtual channel index

along Y , change upon subnetwork switch. In this section, we use formal methods to

verify three properties. The routing logic has to ensure deadlock- and livelock-freedom.

Additionally, even in the presence of faulty TSVs, the routing logic should always be

connected. In other words, for any pair of source and destination, there must be at

least one possible route. All these properties depend on the assumption that between

each pair of layers, there is at least one non-faulty TSV.

Let a configuration be an assignment of TSVs (faulty or not) to nodes. Each con-

figuration induces a new channel dependency graph as each configuration causes the

routing logic to make different choices. Let x, y and z be the dimension of the mesh

61

and let t be the number of TSVs. The total number of configurations is:

∑
f≤t

(
xyz

e

)
·
(
e

f

)
(4.1)

For example, in a 4×4×4 mesh with 6 TSVs there are 512, 512 different configurations.

It is infeasible to run simulations for all these configurations or perform a manual

proof.

To address this issue, we have used DCI2 to formally verify CoBRA for all of the

above properties [82]. DCI2 takes as input a model of the routing logic in the form

of a function R :: N × N 7→ P , i.e., a function R that takes as input the current

node and the destination node and produces as output the port to which the packet

is routed. DCI2 enumerates all configurations and generates the corresponding chan-

nel dependency graphs. Based on these graphs, it checks a necessary and sufficient

condition for deadlock-free adaptive routing.

We integrated DCI2 and AccessNoxim and instead of analyzing a separate model,

DCI2 has been applied to the exact same routing code as was used for AccessNoxim.

When given a 4× 4× 4 mesh with 6 TSVs, all 512, 512 configurations are generated.

Among all, 208, 252 configurations satisfy the assumption that there is at least one

healthy elevator at the eastmost column. All these configurations are formally proven

to be deadlock- and livelock-free and to be connected. Other configurations are not

considered. We have verified CoBRA for any number of elevators from 0 up to and

including 6. The total verification time is about 90 minutes on a 4 core 2 GHz Intel

Core i7 machine. Table 4.1 reports the required verification time for 1, 2, 4, and 6

elevators. A configuration is an assignment of locations to elevators.

62

Number of
elevators

Number of
faults

Total number of
config

Number of
eastmost config

Verification
time (Sec)

1 0 16 4 2

2 0 120 54 3
1 240 60 3

4 0 1820 1325 28
1 7280 4420 93
2 10920 4914 113
3 7280 1280 46

6 0 8008 7084 127
1 48048 39336 640
2 120120 87450 1355
3 160160 97240 1655
4 120120 54054 980
5 48048 12012 248

Table 4.1: Verification results

4.4 Results and Discussion

The efficiency of the proposed routing algorithm under different number of faults has

been evaluated using AccessNoxim simulator [76].

A 4 × 4 × 4 mesh NoC has been considered for experiments. All the routers have

5-flit FIFO and the packet size is 8 flits. The simulator is warmed up for 1000 cycles

and then the reliability is evaluated over another 20, 000 cycles. The defective TSV

is modelled as an open fault. Therefore, if a TSV or a bundle of TSVs are faulty, the

entire vertical connection is considered broken.

To evaluate the reliability of the proposed routing algorithm against available routing

algorithms, Elevator-first is implemented in AccessNoxim alongside CoBRA. It is

necessary to mention that there are few algorithms in literature tolerating faults in

partially connected 3D-NoCs. For this reason, the performance of CoBRA cannot

be compared with the commonly used routing algorithms, such as XY Z which is

proposed for the fully connected 3D-NoCs. The measure of reliability defined in this

63

0

50

100

150

0.008 0.013 0.018
L

a
te

n
cy

Packet Injection Rate

Elevator-first

CoBRA

Figure 4.3: Performance under random traffic for 4 TSVs

dissertation is the percentage of flits successfully delivered to the target destinations.

In order to model run-time TSV failures, faults are injected at every 5000 cycles.

This value is selected to ensure that the network is stabilized before injecting a new

fault. Moreover, results for different traffic patterns including synthetic and real

traffic scenarios are reported [79] [80].

Three architectures have been used to evaluate the efficiency of the CoBRA routing

algorithm. The first one has four elevators at four corners located at nodes 0, 3, 12

and 15 based on the numbering given in Figure 4.1. The second one has eight TSVs

at nodes 0, 2, 5, 7, 8, 10, 13 and 15. Finally, the third one has five TSVs located at

nodes 0, 2, 7, 8 and 10. Figures 4.3, 4.4 and 4.5 illustrate the latency comparison for

the fault-free Elevator-first and CoBRA routing algorithms for the three architectures

under random, real traffic, and shuffle, respectively.

According to Figure 4.3, under the uniform random traffic pattern and by the avail-

ability of four TSVs, Elevator-first outperforms CoBRA. According to Figure 4.4,

CoBRA and Elevator-first perform relatively close under the real traffic. As it is clear

in Figure 4.5, CoBRA outperforms Elevator-first under shuffle traffic if there are five

elevators in the network at nodes 0, 2, 7, 8 and 10. Therefore, the number and the

location of elevators affect the performance of CoBRA and Elevator-first.

64

9

9.2

9.4

9.6

9.8

10

10.2

10.4

10.6

10.8

11

Barnes Freqmine StreamCluster Blackscholes

la
te

n
cy

Elev-first

CoBRA

Figure 4.4: Latency comparison under real traffic for 8 TSVs

0

10

20

30

40

50

60

70

80

90

100

0.008 0.013 0.018 0.023 0.028

L
a
te

n
cy

Packet injection rate

CoBRA

Elevator-First

Figure 4.5: Performance under shuffle traffic for 5 TSVs

65

4.4.1 Reliability Comparison under Synthetic Traffic

The reliability comparison for the architecture with four TSVs at four corners have

been represented in this section. For this architecture, the effects of single, double

and triple faults have been assessed. According to the results (Figure 4.6), CoBRA

provides full reliability in the presence of a single fault. The reliability of Elevator-

first drops to nearly 85% and 70% under random and transpose traffic, respectively.

Since the transpose traffic is based on vertical transmission for every pair of source

and destination, a single fault has more severe effect on this traffic. As it is clear,

Elevator-first can not adapt itself to faults at runtime.

The effect of changing the location of double faults is presented in Figure 4.7. CoBRA

is fully fault-tolerant as long as there exists one healthy TSV at the eastmost column.

When both TSVs in the eastmost column fail, CoBRA is reconfigured to switch from

Subnetwork2 to Subnetwork1. By routing packets to the west, CoBRA will be able

to tolerate faults as long as there exists at least one healthy TSV in the westmost

column. For all of the presentend fault scenarioa, the reliability of Elevator-first falls

within 47% to 78%.

Three failure scenarios have been considered in the Figure 4.7, where in each scenario

two TSVs have been disconnected:

1. Faulty TSVs at nodes 0 and 12: under this scenario CoBRA supports full

reliability since it dynamically seeks for the healthy elevators by forwarding the

packet to the east direction.

2. Faulty TSVs at nodes 3 and 15: In this case the reliability of CoBRA decreases

considerably as no elevator can be found in the east direction. The reconfigu-

ration, to the contrary, provides full reliability due to the existence of healthy

66

Random Hotspot Transpose Random Hotspot Transpose

Elev-first 0.85 0.84 0.69 0.85 0.8 0.69

CoBRA 1 1 1 1 1 1

Single Fault at location 12 Single Fault at location 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Random Hotspot Transpose Random Hotspot Transpose

Single Fault at location 12 Single Fault at location 3

R
el

ia
b

il
it

y

Elev-first

CoBRA

Figure 4.6: Reliability under single faults for 4 TSVs

elevators in the westmost column. It should be noted that some packets are

dropped in the reconfiguration phase until the network backs to its stable con-

dition again. Elevator-first drops 30% of flits under this condition.

3. Faulty TSVs at nodes 0 and 15: CoBRA provides full reliability because of one

healthy elevator at the node 3.

Figure 4.8 illustrates the effect of triple faults. According to this figure, only one

healthy elevator located at the node 15 guarantees the delivery of all packets to

destinations in CoBRA while Elevator-first delivers only 45% and 15% of packets to

destinations under random and transpose traffic respectively. Moreover, triple faults

at locations 0, 3 and 15 provide a reliability of 50% for the Elevator-first. On the

other hand, no healthy elevator at the eastmost column drops the reliability by 55%

and 70% for the random and transpose traffic in CoBRA, respectively compared to

full reliability support in the first triple fault scenarios. Again, reconfiguration solves

the problem.

67

Sheet1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
an

d
o

m

H
o

ts
p

o
t

T
ra

n
sp

o
se

R
an

d
o

m

H
o

ts
p

o
t

T
ra

n
sp

o
se

R
an

d
o

m

H
o

ts
p

o
t

T
ra

n
sp

o
se

Double Faults at

nodes 0, 12

Double Faults at

nodes 3,15

Double Faults at

nodes 0, 15

R
el

ia
b

il
it

y

Chart Title

Elev-First CoBRA without Reconfiguration CoBRA with Reconfiguration

Page 2

Figure 4.7: Reliability under double faults for 4 TSVs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Random Hotspot Transpose Random Hotspot Transpose

Triple Faults at

nodes 0, 3, 12

Triple Faults at

nodes 0, 3, 15

R
e
li

a
b

il
it

y

Chart Title

Elev-First CoBRA without Reconfiguration CoBRA with Reconfiguration

Figure 4.8: Reliability under triple faults for 4 TSVs

68

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
ar

n
es

F
re

q
m

in
e

B
ar

n
es

F
re

q
m

in
e

B
ar

n
es

F
re

q
m

in
e

B
ar

n
es

F
re

q
m

in
e

B
ar

n
es

F
re

q
m

in
e

Single Fault at

node 8

Single Fault at

node 7

Double Faults at

nodes 0, 5

Double Faults at

nodes 2, 7

Double

Faults at

nodes 7, 15

R
e
li

a
b

il
it

y

Chart Title

Elev-First CoBRA without Reconfiguration CoBRA with Reconfiguration

Figure 4.9: Single and double faults comparison for 8 TSVs

4.4.2 Reliability Comparison under Real Traffic

The fault tolerance of CoBRA versus Elevator-first for single, double and four faults

have been evaluated for the real traffic Barnes and Freqmine. The Streamcluster and

Blackscholes perform relatively close to Freqmine so they have been omitted due to

the lack of space. Based on Figure 4.9, CoBRA delivers all the packets to destinations

unless double faults are located at nodes 7 and 15. Figure 4.10 illustrates the reliability

comparison under 4 faults.

4.4.3 Power and Area Comparison

In this section, the power consumption of CoBRA and Elevator-first are compared

under different fault scenarios for the random traffic. The power reports are extracted

from AccessNoxim which accumulates energy upon flit reception/transmission at a

router.

69

Elev-First CoBRA without ReconfigurationCoBRA with Reconfiguration

1

0.66

1

0.75

0.6 1

0.82

0.65 1

0.87

0.77 1

0.7

0.81 1

0.61

Barnes

Freqmine

Barnes

Freqmine

Barnes

Freqmine

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Barnes Freqmine Barnes Freqmine Barnes Freqmine

R
el

ia
b

il
it

y

Elev-First CoBRA without Reconfiguration CoBRA with Reconfiguration

Faults at noeds 2, 5, 10, 13 Faults at nodes 2, 7, 10, 15 Faults at nodes 0, 7, 8, 15

Figure 4.10: Reliability comparison for 8 TSVs

Table 4.2 reveals that the power consumption of CoBRA is higher than Elevator-first

in most cases. This is because Elevator-first drops packets when a TSV is faulty.

Therefore, network congestion reduces and the power consumption decreases as well.

It is in contrast with CoBRA where packets are rerouted when they encounter a faulty

TSV. In a fault-free network, the energy consumption of CoBRA might be higher or

lower than Elevator-first depending on the number and location of TSVs. It is worth

noting that Elevator-first consumes more static power due to the extra buffers in the

north and south input ports. However, static power consumption is not considered

in the results as it is independent of the routing algorithm.

The packet injection rates for the fault scenarios are adjusted to be on the saturation

threshold. It can be observed from the table that these PIRs are different for each

fault scenario. Specifically, the PIRs of the first (faults at 0 and 15) and the third

fault scenario (faults at 0, 3 and 12) are noticeably lower that the PIR of the second

scenario (faults at 3 and 15). Also, the PIR of the third faulty scenario (faults at 0,

3 and 12) is slightly lower than the PIR of the first case (faults at 0 and 15). This

observation is based on the fact that for example when faults are presented at 3 and

15, the drop rate is higher compared to the other two cases, which allows the nodes

70

Random Traffic
Average power

(Whole network)
(µJ/cycle)

Routing algorithm

Double Faults
0, 15

PIR = 0.007

Double Faults
3, 15

PIR = 0.017

Triple Faults
0, 3, 12

PIR = 0.006

CoBRA without Reconfiguration 1.68 2.22 1.52

Elevator-first 1.15 2.78 0.9

Random Traffic
Average power

per router
(nJ/cycle)

Routing algorithm

Double Faults
0, 15

PIR = 0.007

Double Faults
3, 15

PIR = 0.017

Triple Faults
0, 3, 12

PIR = 0.006

CoBRA without Reconfiguration 26.23 34.6 23.8

Elevator-first 18 43.5 14.12

Table 4.2: Power consumption comparison

to inject more packets into the network before reaching the saturation point.

Regarding the area, Elevator-first occupies relatively larger area compared to CoBRA

since it uses two virtual channels along the X and Y dimensions while CoBRA has

just two virtual channels along the Y dimension.

71

Chapter 5

LEAD Routing Algorithm

In this chapter, LEAD routing algorithm is proposed which relaxes the condition for

moving toward east in ETW routing algorithm. LEAD has no specific condition in

choosing the elevator for vertical transmission. Besides, the analytical models are

applied to compare the performance with the simulation results.

5.1 Overview of LEAD

The LEAD algorithm takes into account the vertical partial connectivity in 3D-NoCs

where the traditional routing algorithms (e.g. XY Z) are not applicable. In this

routing algorithm, a packet is free to take any elevator without limitation.

LEAD needs two, two and one virtual channels along the X (X0, X1), Y (Y 0, Y 1)and

Z dimensions, respectively. X0 and Y 0 refer to virtual channel 0, while X1 and Y 1

refer to virtual channel 1. The algorithm takes advantage of adaptivity for transmit-

ting the packets in source and destination layers. To prove the deadlock-freedom, we

assume that the network is virtually partitioned into five disjoint subnetworks: Sub-

72

network1 (X0+, Y 0∗), Subnetwork2 (X0−), Subnetwork3 (Z∗), Subnetwork4 (X1+)

and Subnetwork5 (X1−, Y 1∗). The +, - and * symbols in the subnetwork definition

represent positive, negative and bi-directional channels respectively. In Subnetwork1

and Subnetwork5, packets have the flexibility to take X and Y dimensions in any

order. In other words, moving along the X and Y dimensions is random and does

not necessarily follow the dimension order routing.

In addition to subnetwork definitions, a rule for switching between subnetworks is

provided to completely characterize the routing algorithm. The switching rule is very

simple: the only allowed switching from subnetwork i is i→ j, for j > i.

The subnetwork definitions and the switching rule imply that in the source layer

packets move adaptively toward east and deterministically toward west. Next, Sub-

network3 is applied to deliver packets to the destination layer. Finally, packets follow

the reverse pattern in the destination layer (i.e. adaptively toward west and determin-

istically toward east). Overall, the adaptivity leads to a more balanced load across

the network.

5.2 Proof for Deadlock-freedom

A routing algorithm is deadlock-free if no cycle forms in the network. A deadlock is a

situation in which packets are waiting for each other to release the reserved resources.

In other words, if a waiting activity never finishes, deadlock lasts forever.

To prove the routing algorithm is deadlock-free, it is necessary to show that each

subnetwork is deadlock-free and also transitions between subnetworks do not form

cycles. We argue that to form a cycle, positive and negative directions along at

least two dimensions have to be taken. Based on this definition, all subnetworks

73

Subnetworks CompletedPair Missed Dimension MissedDirection
(X0+, Y 0∗) Y Z is missing X0− is missing

(X0−) - Y and Z are missing X0+ is missing
(Z∗) Z X and Y are missing -

(X1+) - Y and Z X1− is missing
(X1−, Y 1∗) Y Z is missing X1+ is missing

Table 5.1: Completed pairs within each subnetwork

are deadlock free. Table 5.1 illustrates how the subnetworks are deadlock-free in this

algorithm. As an example, subnetwork1 is deadlock-free as packets can use only three

channels and with these three channels no cycles can be formed. We should note that

180-degree turns are not allowed. Transitions between deadlock-free subnetworks in

an ascending order (or descending order) can not lead to a deadlock as it forms a

spiral rather than a closed cycle.

5.3 LEAD Algorithm Procedure

The basic goal of every routing algorithm is to find a path from a specific source

to a specific destination. Routing algorithms proposed for partially connected 3D-

NoCs are responsible for delivering the packets to the elevator in the source layer

and determine a path from the elevator to the destination in the destination layer.

The proposed routing algorithm based on the subnetwork definition is described as

follows:

5.3.1 Source and destination are on the same layer

The virtual channel number is randomly selected from {0, 1}, which corresponds

to (X0, Y 0) and (X1, Y 1) respectively. The randomness in selecting the channel

distributes the traffic more evenly compared to deterministic assignment of one fixed

74

channel to source and destinations located in the same layer. The algorithm behaves

as follows:

1) Virtual channel 0 is selected: Two cases can happen depending on the relative

position of source and destination:

1a) If the destination is to the east of the source, Subnetwork1 (X0+, Y 0∗) is used

to deliver the packet to the destination adaptively, not necessarily following the

dimension-ordered routing.

1b) If the destination is to the west of the source, first, Subnetwork1 is applied and

the packet is forwarded through Y 0 channel. Then, the packet is delivered to the

destination by switching to Subnetwork2 and taking X0− direction. The routing

algorithm is deterministic if the destination is to the west of the source.

2) Virtual channel 1 is applied:

2a) If the destination is to the east of the source, the packet is delivered to the

destination deterministically. That is, the packet takes Subnetwork4 (X1+) first

since moving eastward is not allowed in Subnetwork5. Second, the packet is delivered

to the destination by switching to Subnetwork5 and taking the Y 1∗ dimension.

2b) If the destination is on the west side of the source, the packet is delivered to the

destination adaptively by moving in Subnetwork5 X1−, Y 1∗.

Figure 5.1 illustrates an example in which the destination is located on the east or

west side of the source. First, suppose that source node 9 generates a packet for node

7 at the east side of the source. Since source and destination are on the same layer,

either of the virtual channels 0 or 1 might be selected randomly. If virtual channel

0 is chosen, the channels of subnetwork1 are utilized which allows the packet to be

delivered to the destination through one of the possible paths: {9, 10, 11, 7}, {9, 10,

75

0 1 2 3

4 5 6
7

DST

8 9

SRC
10 11

(a) Using VC0

0 1 2 3

4 5 6
7

DST

8 9
SRC

10 11

(b) Using VC1

0 1 2 3

4 5 6
7

SRC

8
9

DST
10 11

(c) Using VC0

0 1 2 3

4 5 6
7

SRC

8
9

DST
10 11

(d) Using VC1

Figure 5.1: Routing example

6, 7} or {9, 5, 6, 7}, as shown in Figure 5.1(a). If the virtual channel 1 is selected

as in Figure 5.1(b) , the packet is delivered to the destination by taking the channels

of Subnetwork4 and then Subnetwork5 which enables the packet to take X1+ before

taking Y 1+, referring to the path {9, 10, 11, 7}.

Now lets us assume that the source node is node 7 and destination is at node 9 to cover

the case where the destination is to the west of the source. In this example, taking

(X0, Y 0) virtual channels result in deterministic routing as in Figure 5.1(c) while

applying (X1, Y 1) virtual channels takes advantage of adaptive routing as shown in

Figure 5.1(d) .

5.3.2 Source and destination are not on the same layer

A vertical transmission is necessary to deliver a packet to a destination that is not

located on the same layer as the source. Therefore, the packet needs to be forwarded

to the elevator in the source layer, transferred to the destination layer, and delivered

from the elevator to the destination in the destination layer.

A random elevator is assigned to each packet upon its creation if the packet needs

76

to move vertically. With this strategy, the traffic between any source-destination

pair is distributed uniformly over the network. Compared to fixed elevator assign-

ment, the random method improves the overall performance by not overwhelming

any specific elevator. The advantage is much more significant if there are hot-spots

in the network, which could cause bottlenecks if traffic is not distributed uniformly.

Moreover, random elevator assignment improves the fault tolerance of the network.

Although a smart deterministic selection can outperform random selection, such a

scheme requires availability of global network knowledge at the cost of more compli-

cated hardware. The algorithm delivers the packets to elevators using Subnetwork1

or/and Subnetwork2; then utilizes Subnetwork3 to forward the packet to the desti-

nation layer, and finally switches to Subnetwork4 or/and Subnetwork5 to deliver the

packet to the destination.

Figure 5.2 illustrates an example in which the source node 0 delivers packets to the

destination at node 21. Suppose that the elevator at node 6 is randomly selected for

this transmission among the elevators located at nodes 6, 7 and 8. Since the elevator

is to the east side of the source, the channels of Subnetwork1 are used to forward the

packet to the elevator adaptively. Then, the channels of Subnetwork3 are applied to

deliver the packet to the destination layer. Packets are ultimately delivered to the

destination by using the channels of Subnetwork5 because the destination is located

at the west of the elevator.

77

Algorithm 4 Routing algorithm procedure

1: Xs, Ys, Zs ← X, Y , Z coordinates of source router
2: Xc, Yc, Zc ← X, Y , Z coordinates of current router
3: Xd, Yd, Zd ← X, Y , Z coordinates of destination router
4: Sub1 ← Subnetwork1{X0+, Y 0∗}
5: Sub2 ← Subnetwork2{X0−}
6: Sub3 ← Subnetwork3{Z∗}
7: Sub4 ← Subnetwork4{X1+}
8: Sub5 ← Subnetwork5{X1−, Y 1∗}
9: Route VC0(a,b) (function for routing from a to b through VC0)

10: Route VC1(a,b) (function for routing from a to b through VC1)
11:

12:

13: if (Zs = Zd) then
14: Randomly chosen VC {0,1}
15: if (V C = 0) then
16: Route VC0(S, D)
17: else
18: Route VC1(S, D)
19: end if
20: else
21: Route VC0(S, E)
22: Vertical transmission to destination layer through Sub3
23: Route VC1(E, D)
24: end if
25:

78

Algorithm 5 Routing function through specific virtual channels

1: function Route VC0(a, b)
2: {
3: if (Xa < Xb) then
4: Randomly choose channels from Sub1
5: else if (Xa > Xb) then
6: Y 0∗ submission from Sub1 then X0− from Sub2
7: else
8: Y 0∗ submission from Sub1
9: end if

10:

11: return
12: }
13:

1: function Route VC1(a, b)
2: {
3: if (Xa < Xb) then
4: X1+ Submission from Sub4 then Y 1∗ from Sub5
5: else if (Xa > Xb) then
6: Randomly choose channels from Sub5
7: else
8: Y 1∗ submission from Sub5
9: end if

10:

11: return
12: }

79

4

8

1

9

3

11

5 7

16

20

13

21
DST

14

22 23

18

VC0 (X0, Y0)

VC1 (X1, Y1)

1917

0
SRC

Layer 1

Layer 2

N

S

EW

2

6
Elev

15

10

12

Elevator

Figure 5.2: An example of destination in the other layer

5.4 Results and Discussion

5.4.1 Latency analysis

AccessNoxim simulator [76] is used for the simulation-based results. Noxim [77] (a cy-

cle accurate simulator) and HotSpot [78] (providing architecture-level thermal model)

are integrated in AccessNoxim. This co-simulator combines the network model, power

model and thermal model of 3D-NoC.

A 4 × 4 × 4 3D-NoC is considered as the baseline architecture. The routers have

two pipeline stages and the buffer depth equals 4-flit FIFOs in all the routers. Also,

the packet is assigned a size between a minimum and maximum value of two and

six flits, respectively. The latency results are reported for 100,000 cycles simulations

with 10,000 cycles for warm-up.

80

0

4

8

12

1

5

9

13

2

6

10

14

3

7

11

15

Regular

node

Elevator

0

4

8

12

1

5

9

13

2

6

10

14

3

7

11

15

0

4

8

12

1

5

9

13

2

6

10

14

3

7

11

15

0

4

8

12

1

5

9

13

2

6

10

14

3

7

11

15

(a) (b) (c) (d)

Figure 5.3: Different elevator configurations

We compare the efficiency of LEAD routing algorithm with three recently proposed

routing algorithms named Elevator-first [65], Redelf [83] and ETW [84]. While Redelf

has no virtual channels, ETW has only one extra virtual channel along the Y dimen-

sion. Moreover, both Elevator-first and LEAD have two virtual channels along both

X and Y dimensions. A variation of Redelf so called Redelfv2 [83] with two added

virtual channels is considered in order to increase performance and make a fair com-

parison with LEAD and Elevator-first which employ two extra virtual channels. The

routing algorithms are compared under various traffic patterns, number of elevators

and elevator assignment mechanisms. Different TSV configurations are illustrated in

Figure 5.3. The applied traffic patterns span both synthetic and real traffics.

Horizontal lines in the line graphs represent the packet injection rate in every router

(packet/cycle/node) and the vertical lines reports latency (cycles). While this section

provides intuitive reasons justifying relative performance of LEAD versus other algo-

rithms, more solid mathematical verification based on queuing theory is presented in

the next section.

Performance under synthetic traffics

Figures 5.4(a), 5.4(b) and 5.4(c) illustrate the latency comparisons under random,

transpose and shuffle traffic for the elevators located at the east-most column, i.e.

81

the pattern of Figure 5.3(a). Under random traffic (Figure 5.4(a)), Redelfv2 outper-

forms LEAD by a small margin, while both LEAD and Redelfv2 perform relatively

better than Elevator-first and ETW. Under Transpose traffic (Figure 5.4(b)), Re-

delfv2 performs better than all other algorithms. This can be attributed to the traffic

being distributed more evenly as a result of the rules imposed by Redelfv2 under

this specific TSV configuration and traffic. However, the applicability of Redelfv2

is limited to TSV configurations with a south-east corner elevator. This limitation

also threatens the fault tolerance of the system when there is no healthy elevator at

south-east corner of the network. Under shuffle traffic (Figure 5.4(c)), LEAD pro-

vides the best performance compared to the other three routing algorithms. Also,

Elevator-first and Redelfv2 provide nearly the same performance. The performance

improvement of LEAD is due to taking advantage of adaptivity in moving toward

east and distributing the traffic more uniformly compared to the other algorithms.

Figures 5.5 through 5.7 compare the performance of LEAD and Elevator-first. ETW

and Redelfv2 have the limiting requirement of the presence of an east most column

TSV and a south-east corner TSV respectively. Both ETW and Redelfv2 create these

rules as a byproduct of removing virtual channels and providing lower communication

cost.

Figures 5.5(a), 5.5(b) and 5.5(c) represent the latency results for the aforementioned

traffics where elevators are located similar to Figure 5.3(b). Moreover, Figure 5.5(a)

includes the performance comparison for the hot-spot traffic. For this TSV configura-

tion, the same trend as the random traffic is observed but the network saturates at a

lower rate since specific nodes receive more load compared to uniform traffic. The su-

periority of LEAD over Elevator-first is due to Elevator-first taking the X dimension

first by applying the XY algorithm and thus increasing the traffic on the west-most

elevators. Therefore, these elevators are applied both as intermediate node to for-

82

ward the packet to the proper elevator and as elevator to the other layers. LEAD, on

the other hand, performs a deterministic routing in this configuration by using the

Y dimension first and elevators are only responsible for transmitting packets to the

other layers.

Figures 5.6(a), 5.6(b) and 5.6(c) report the performance with the TSV configuration

of Figure 5.3(c). LEAD and Elevator-first perform relatively similar when elevators

are located at four corners of the network. Based on Figure 5.6(b), Elevator-first

performs slightly better than LEAD because in this configuration the impact of TSV

selection on the performance is minimized.

Figures 5.7(a), 5.7(b) and 5.7(c) illustrate the latency result under the TSV config-

uration of Figure 5.3(d). LEAD marginally outperforms Elevator-first for the same

reasons discussed in justification of Figures 5.4 and 5.5, where same column elevators

lead to better performance.

Figure 5.8 illustrates the latency comparison for two more traffic patterns named bit-

reversal and butterfly for elevators located at the east-most column. LEAD outper-

forms Elevator-first for two cases. Figure 5.8(b) shows that the network is saturated

at higher injection rates for butterfly traffic, since many sources target themselves as

their destinations according to this traffic pattern.

Performance under real traffics

Besides synthetic traffic patterns, a set of application benchmarks including PARSEC

[80] and SPLASH2 [79] are used for performance evaluation. Figures 5.9(a) and 5.9(b)

compare the latency of the west-most and cornered elevators illustrated in Figure 5.3.

The reported results are based on a 4 × 4 × 4 network in which buffer depth equals

four and the packet size is randomly chosen between two to six flits. LEAD provides

83

LEAD 13.877 14.906 16.538 20.457 22 24 25 27 32.511

Elevator-first 13.818 15.004 17.162 26.775 59.163 225.747 366.27

ETW 11.869 12.863 14.576 20.709 31.332 40.837 165.01 651.566 1146.39

Redelfv2 11.755 12.532 13.74 16.025 17 17.5 18.162 19.5 23.701

0.01 0.02 0.03 0.04 0.043 0.044 0.045 0.047 0.049

0

10

20

30

40

50

60

70

80

90

100

0.008 0.018 0.028 0.038 0.048 0.058

L
a

te
n

cy

Packet Injection Rate

LEAD

Elevator-first

ETW

Redelfv2

(a) Random traffic

LEAD 15.881 17.189 19.602 27.234 29 34 42 62.115 204.335

Elevator-first 15.833 17.298 20.926 78.002 195.479 869.192 1333.44 2858

ETW 13.064 16 19 21.758 25 29 31.81 161.93 527.151

Redelfv2 12.913 13.486 15 16.288 16.5 17 17.5 18 18.437

0.01 0.02 0.03 0.04 0.041 0.042 0.043 0.045 0.046

0

10

20

30

40

50

60

70

80

90

100

0.008 0.028 0.048 0.068

L
a

te
n

cy

Packet Injection Rate

LEAD

Elevator-first

ETW

Redelfv2

(b) Transpose traffic

LEAD 13.413 14.233 15.685 15.9 16 17 19.085 26.017 31.907

Elevator-first 13.406 14.555 17.153 23 26.902 132.542 304.14 2114.5

ETW 10.934 11.671 13.08 13.1 13.3 14 14.816 108.042

Redelfv2 11.007 12.055 15.896 29.974 466 1855

0.01 0.02 0.03 0.034 0.037 0.039 0.04 0.045 0.046

0

10

20

30

40

50

60

70

80

90

100

0.008 0.018 0.028 0.038 0.048 0.058

L
a

te
n

cy

Packet Injection Rate

LEAD

Elevator-first

ETW

Redelfv2

(c) Shuffle traffic

Figure 5.4: Performance comparison for east-most elevators

LEAD, random 13.764 14.555 15.819 16 16.2 17 18 20.888 29.219

ELF, random 14.5 15.5 17.197 28.731 40 61.686 172.01 562.088

LEAD, hot-spot13.714 14.576 15.753 18.31 18.848 22 25 28 31.581

ELF, hot-spot 13.782 15.008 17.181 34.652 184.456

0.01 0.02 0.03 0.04 0.041 0.042 0.043 0.045 0.05

0

10

20

30

40

50

60

70

80

90

100

0.008 0.018 0.028 0.038 0.048 0.058

L
a

te
n

cy

Packet Injection Rate

LEAD, random

ELF, random

LEAD, hot-spot

ELF, hot-spot

(a) Random and hot-spot traffic

0

10

20

30

40

50

60

70

80

90

100

0.008 0.018 0.028 0.038 0.048 0.058

L
a

te
n

cy

Packet Injection Rate

LEAD

Elevator-first

(b) Transpose traffic

0

10

20

30

40

50

60

70

80

90

100

0.008 0.018 0.028 0.038 0.048

L
a

te
n

c
y

Packet Injection Rate

LEAD

Elevator-first

(c) Shuffle traffic

Figure 5.5: Performance comparison for west-most elevators

84

0

10

20

30

40

50

60

70

80

90

100

0.008 0.018 0.028 0.038 0.048 0.058
L

a
te

n
cy

Packet Injection Rate

LEAD

Elevator-first

(a) Random traffic

0

10

20

30

40

50

60

70

80

90

100

0.008 0.018 0.028 0.038 0.048

L
a

te
n

cy

Packet Injection Rate

LEAD

Elevator-first

(b) Transpose traffic

0

10

20

30

40

50

60

70

80

90

100

0.008 0.018 0.028 0.038 0.048

L
a

te
n

cy

Packet Injection Rate

LEAD

Elevator-first

(c) Shuffle traffic

Figure 5.6: Performance comparison for cornered elevators

0

10

20

30

40

50

60

70

80

90

100

0.008 0.018 0.028 0.038 0.048 0.058

L
a

te
n

cy

Packet Injection Rate

LEAD

Elevator-first

(a) Random traffic

0

10

20

30

40

50

60

70

80

90

100

0 0.01 0.02 0.03 0.04 0.05 0.06

L
a

te
n

cy

Packet Injection Rate

LEAD

Elevator-first

(b) Transpose traffic

LEAD 10.978 11.65 12.798 15.397 29.163 56.938 161.016

Elevator-first 10.987 11.703 12.888 15.845 68.069 236.283 512.038

0.01 0.02 0.03 0.04 0.048 0.049 0.05

0

10

20

30

40

50

60

70

80

90

100

0.008 0.018 0.028 0.038 0.048 0.058

L
a

te
n

cy

Packet Injection Rate

LEAD

Elevator-first

(c) Shuffle traffic

Figure 5.7: Performance comparison for centered elevators

85

LEAD 12.603 13.485 14.872 20 22.125 34.008 41.331 394.769

Elevator-first 12.53 13.488 15.244 32.367 136.931

0.01 0.02 0.03 0.043 0.045 0.048 0.049 0.05

0

10

20

30

40

50

60

70

80

90

100

0.008 0.018 0.028 0.038 0.048 0.058

L
a

te
n

cy

Packet Injection Rate

LEAD

Elevator-first

(a) Bit-reversal traffic

LEAD 8.758 9.963 11 13.607 21.505 917.263

Elevator-first 8.756 9.972 11.486 16.39 282.31

0.01 0.04 0.055 0.07 0.08 0.09

0

10

20

30

40

50

60

70

80

90

100

0 0.02 0.04 0.06 0.08 0.1

L
a

te
n

cy

Packet Injection Rate

LEAD

Elevator-first

(b) Butterfly traffic

Figure 5.8: Performance comparison for east-most elevators under bit-reversal and
butterfly traffic

LEAD 0.982 0.983 0.992 0.983

Elevator-first 1 1 1 1

StreamclusterBarnes Freqmine Blackscholes

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Streamcluster Barnes Freqmine Blackscholes

L
a

te
n

cy
 LEAD

Elevator-first

(a) Westmost elevators

LEAD 0.99 0.996 0.998 1

Elevator-first 1 1 1 0.998

StreamclusterBarnes Freqmine Blackscholes

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Streamcluster Barnes Freqmine Blackscholes

L
a

te
n

cy

LEAD

Elevator-first

(b) Cornered elevators

Figure 5.9: Performance comparison under real traffic

noticeable performance improvement especially when elevators are located at the

west-most column. For corner located elevators, LEAD performs slightly better than

Elevator-first.

Performance under different number of elevators

To illustrate the effect of the number of elevators on performance, Figure 5.10 provides

the results for a fully connected 3D-NoC and 3D-NoC with 50% and 75% reduction in

the number of TSVs under transpose traffic. The fully connected 3D-NoC provides the

best performance as expected. By decreasing the number of TSVs, the performance

degrades accordingly, since more traffic is directed toward TSVs. In a fully connected

86

0

10

20

30

40

50

60

70

80

90

100

0.008 0.028 0.048 0.068 0.088

L
a

te
n

cy

Packet Injection Rate

LEAD, 16 TSV

ELF , 16 TSV

LEAD, 8 TSV

ELF , 8 TSV

LEAD, 4 TSV

ELF , 4 TSV

Figure 5.10: Performance under different number of elevators

3D-NoC, every router has an elevator to forward the packet to the destination layer.

In a 3D-NoC with 8 TSVs, every other router has an elevator. In a 3D-NoC with 4

TSVs, TSVs are located at the center of the network. To make a fair comparison,

elevators are chosen using the minimum hop count scheme.

Performance under different elevator assignments

To investigate how elevator assignment affects the performance, Figure 5.11 com-

pares three mechanisms of elevator assignment under random traffic in a 4 × 4 × 4

3D-NoC. The mechanisms are as follows: random elevator, the closest elevator to

the source and the elevator that minimizes the hop count between the source and

destination called (MHpCnt). All previous results are based on random elevator as-

signment for every source-destination pair. Figure 5.11(a) compares the performance

of LEAD versus Elevator-first under random and (MHpCnt) elevator assignments for

the centered elevators. According to Figure 5.11(a), LEAD and Elevator-first perform

considerably better compared to (MHpCnt) under the random elevator assignment,

since random elevator assignment distributes traffic on the elevators and the network,

87

Percentage of elevator usage
Random

assignment
Minimum
hop count

Routing
algorithm

Node
5

Node
6

Node
9

Node
10

Node
5

Node
6

Node
9

Node
10

LEAD 25.1 25 25 24.9 80 13 5.76 1.24
Elevator-first 25.1 24.9 25 25 76.35 4.37 17.8 1.48

Table 5.2: Distribution of elevator usage for centered elevators

Percentage of elevator usage
Random

assignment
Minimum
hop count

Routing algorithm
Node

0
Node

3
Node

12
Node

15
Node

0
Node

3
Node

12
Node

15
LEAD 25.11 24.91 25.02 24.96 71.8 13.2 10.6 4.4

Percentage of elevator usage
Closest assignment

Routing algorithm Node 0 Node 3 Node 12 Node 15
LEAD 24.6 25.43 24.29 25.68

Table 5.3: Distribution of elevator usage for cornered elevators

thus the saturation point extends. Table 5.2 lists the percentage of times that dif-

ferent elevators are used for different mechanisms. Random assignment distributes

the traffic symmetrically in the network while the minimum hop count forwards the

majority of the traffic to a specific elevator.

Figure 5.11(b) compares the performance of the three different elevator assignments

for the cornered elevators. According to this figure, when the closest elevator to the

source is chosen to transfer packets to the destination layer, LEAD and Elevator-

first outperform both the random assignment and elevator with minimum hop count.

Table 5.3 summarizes the percentage of elevator assignments for the three cases. As it

is clear, minimum hop count assignment targets specific elevators, and thus decreases

the performance dramatically.

88

0

10

20

30

40

50

60

70

80

90

100

0.008 0.018 0.028 0.038 0.048 0.058

L
a

te
n

cy

Packet Injection Rate

LEAD, Random

ELF, Random

LEAD, MHpCnt

ELF, MHpCnt

(a) Centered elevators

0

10

20

30

40

50

60

70

80

90

100

0.008 0.018 0.028 0.038 0.048 0.058

L
a

te
n

cy

Packet Injection Rate

LEAD, Random

ELF, Random

LEAD, Closest

ELF, Closest

LEAD, MHpCnt

ELF, MHpCnt

(b) Cornered elevators

Figure 5.11: Performance comparison for different elevator assignment mechanisms

89

5.4.2 Temperature Distribution

Thermal distribution of LEAD and Elevator-first are compared using a traffic-thermal

and mutual coupling co-simulation platform [85]. The physical floor-plans and power

traces based on Intel 80-core chip are used as the inputs of the thermal simulation.

To compare the thermal distribution of the two routing algorithms, a 4 × 4 × 4

NoC under two routing algorithms are simulated for 3 million cycles with 10000

cycles for warm-up. Figure 5.12 illustrates the temperature distribution for the west-

most elevator configuration and the packet injection rate of 0.042 and under random

traffic for LEAD and Elevator-first. According to the figure, there are eight nodes in

Elevator-first hotter than 110◦C while these temperature are not found in LEAD. As

expected, the TSV-located nodes are among these very hot nodes which can increase

the likelihood of fault on TSVs. It is noteworthy that the same behavior is observed

under other simulation configurations.

Furthermore, Table 5.4 reports the power consumption of LEAD and Elevator-first

routing algorithms under random traffic for the west-most TSV configuration. Ac-

cessNoxim accumulates energy upon flit reception and transmission at every router.

LEAD and Elevator-first consume nearly the same amount of energy for these cases.

The two algorithms have the same number of virtual channels along the X and Y

dimensions.

5.5 Queuing Theory and Analytical Model

The overall latency of a routing algorithm is a coarse performance metric used to

gauge the merit of the algorithm. The overall latency is typically calculated as the

average of end-to-end latencies experienced by all packets in the network. Although

90

Figure 5.12: Temperature distribution in LEAD vs Elf

Random Traffic
Average power

(Whole network)
(µJ/cycle)

Average power
(per router)
(nJ/cycle)

Routing algorithm
Westmost
elevators

Westmost
elevators

LEAD 5.0 78.1

Elevator-first 5.0 78.1

Table 5.4: Average power consumption

91

Figure 5.13: Outline of analytical framework and the coupling of variables.

the average case analysis is not sufficient for some purposes (for example, calculating

the fraction of times a specific application is serviced properly), it is much simpler to

handle, provides useful insight into design bottlenecks, and can be used to compare

different algorithms/architectures.

The end-to-end latency experienced by packets between a specific source-destination

pair depends on the latency imposed by the individual links of the path traversed.

Consequently, the individual buffer latencies should be estimated first. In wormhole

routing, the latency experienced by a header flit consists of buffer waiting time (from

the time flit enters the buffer until it reaches the router) plus residual service time, the

latter of which depends on router architecture. The buffer waiting time is naturally

calculated with queuing theory.

The relationship between involved variables is outlined in Figure 5.13. Each set of

lines with a common color represents a mathematical relationship exploited in one of

the subsections that follow. Importantly, we develop a tractable method to calculate

the required variables for adaptive algorithms from the knowledge of network topology

and routing algorithm. Finally, the results of the analytic model are compared with

simulation under various scenarios to verify their accuracy and examine any possible

shortcomings.

92

5.5.1 Analysis Framework

Service Time

Under wormhole-switching network with low packet injection rates the service time

of a packet at the buffer head (i.e. after waiting in the buffer) is given by:

T = HS +
S

W
(5.1)

in unit of cycles, where HS is the router service time (in cycles) seen by a header flit at

the buffer head (which depends on the router architecture), S is the packet size in bits,

and W is the channel bandwidth in bit per cycle. Note that in wormhole-switching

network, once the header flit is serviced, the trailing flits follow in a pipelined fashion.

If there is no head-of-line blocking in the following routers, the trailing flits follow at a

maximum uniform rate. This condition holds under low traffic rate, and consequently

there is no need to consider the delay added by the head-of-line blocking.

Average Number of Packets in Buffer

For an input buffered router r with P channels, denote the average number of packets

in buffer i by N r
i . Let us assume that the header flit arrival rate on the channel i

follows a Poisson distribution with the mean λri . Then the following equilibrium

equation relates τ ri , the average waiting time in a queue for an incoming packet, and

the average number of packets in buffer:

λri =
N r
i

τ ri
(5.2)

93

The average waiting time τ ri is composed of 1) service time of packets already waiting

in the same buffer 2) packet waiting time in other buffers of the same router that

are served before the target packet, and 3) residual service time [86], R, seen by the

target packet. Mathematically, these components are written as:

τ ri = TN r
i + T

P∑
k=1,k 6=i

cri,kN
r
k +R (5.3)

where cri,k terms, called ‘contention probabilities’, represent the probability that a

header flit at buffer k of router r is serviced before a header flit at buffer i of the same

router, assuming that both headers are present at the buffer head during the decision

cycle. The contention probabilities can be calculated for different scheduling policies

(priority, round robin, etc.).

The last two equations can be combined to remove variable τ ri :

N r
i

λri
= TN r

i + T
P∑

k=1,k 6=i

cri,kN
r
k +R (5.4)

which is one equation for P unknowns N r
1 , N r

2 , · · · , N r
P . A similar equation can

be derived for all P input ports, leading to a linear system of P equations for P un-

knowns. After some algebraic manipulation and vectorization , the following equation

is obtained:

(I − TΛrCr)N r =ΛrR (5.5)

94

where

N r =

[
N r

1 N r
2 · · · N r

P

]T
(5.6)

Λ =diag(λr1, · · · , λrP) (5.7)

(Cr)T =

[
(Cr

1)T (Cr
2)T · · · (Cr

P)T
]

(5.8)

Cr
i =

[
cri,1 cri,2 · · · cri,P

]
(5.9)

RT =

[
R R · · · R

]
(5.10)

with the solution:

N r = (I − TΛrCr)−1ΛrR (5.11)

In summary, given traffic arrival rates Λ on all ports of a router, the contention

probabilities C, and the residual service time R, the average number of packets N

in each input buffer of the router can be calculated by solving the linear system of

equations in Eq. 5.11.

Contention Probabilities

To calculate the contention probabilities under round robin policy, let f rj|i represents

the probability that a packet exits port j (of router r) given that it is entering through

port i. A contention happens if two packets from different input channels need to

use the same output channel. Assuming statistical independence, the contention

probability cri,j (i 6= j) is estimated by:

cri,j =
P∑
k=1

f rk|if
r
k|j (5.12)

95

The f terms are calculated from the knowledge of packet arrival rates on different

ports. Specifically, if λri,j denotes the arrival rate of packets that enter through the

port i and exit through the port j of the router r , then:

f rj|i =
λri,j
λri

(5.13)

Injection Rate and Port Utilization Probability

The λri,j parameters can be calculated from the routing algorithm and the source-

destination traffic pattern. Denote the packet generation rate from source s to desti-

nation d by xs,d. Each packet generated at source s and destined to destination d can

potentially enter through any input port i and exit from any output port j of any

router r with some probability. Let Rr
s,d(i, j) denote this probability. Then, Tλri,j is

given by:

λri,j =
∑
s,d

xs,dR
r
s,d(i, j) (5.14)

To calculate R, let’s consider a specific source-destination pair (s, d). First, the

behavior of router r is modeled by a P × P relaying matrix M r
s,d. The (i, j) element

of the matrix, mr
s,d(i, j), is the probability that a packet generated by s toward d and

entering on port i of router r exits through port j. This transition matrix can be

explicitly derived from the the routing algorithm.

In the first scenario, assume that an input port i of the router r is connected to

96

exactly one output port of another router, but not to the local port that is connected

to PE. Let’s denote this neighbor router by N(r, i) and the corresponding output port

by O(r, i). Next, the R variable of neighbors can be related to each other recursively

by:

Rr
s,d(i, j) = mr

s,d(i, j)×
P∑
k=1

R
N(r,i)
s,d (k,O(r, i)) (5.15)

Simply stated, the target input port i of router r is connected to the port O(r, i)

of router N(r, i). The probability of a packet passing from port i to port j is the

corresponding forwarding probability (first term) times the probability of a packet

exiting through O(r, i) (second term).

In the second scenario, assume that the input port i of router r is connected to the

local output port, called Ps. In this simple case, the utilization probability of the

input port is equal to 1:

Rr
s,d(i, j) = mr

s,d(i, j) (5.16)

The last two equations provide a set of P×nr linear equations for the same number of

unknowns, where nr is the total number of routers. Although any general methods can

be used to solve the system, the dependence of each variable on only P other variables

(rather than all P×nr−1 other variables) significantly simplifies the solution. On top

of that, for simple enough routing algorithms, one could start from the source node,

and calculate the R values for all immediately connected nodes. The same procedure

is applied to each new node until all R values are calculated. In other words, the

probability is calculated as flowing and distributing away from source to destination.

97

1
/2

1/2 1/4
1
/4

1/4
1
/4

1/8

1
/8

1/4

1
/4

1/8

1
/8

1
/8

3/16

3
/1
6

3/16

3
/1
6

1/8 5/16

5
/1
6

3/16

3
/1
6

1/2

1
/2

source

TSV

*
*

@
@

@
@

#

#

#
#

#

#

$

$
$

$

$

$

%

%

%

%

&

&

Figure 5.14: The flow method for calculating port usage probabilities

To illustrate the flow method, consider the 6×6 network of Figure 5.14. Each central

square represents a router, and the same-color immediate long hands represent the

input buffers of that router. The numbers on input buffers represent the probability

of that buffer being used. Suppose that node (2,2) decides to transmit a packet to

TSV at (5,5). Based on the proposed routing algorithm, the network will use V C0

and subnetwork1. The input buffer of router (2,2) connected to the PE (the PE and

the corresponding input buffer of router not shown here) is used with a probability

of 1. Next, the ∗ probabilities are calculated, @ calculated from ∗, # from @, $ from

#, and so on.

In general, R values are completely specified from the knowledge of routing algorithm

and network geometry. The definition of R values are by no means bound to the spe-

98

cific geometry and routing algorithms presented in this dissertation. An independent

module could calculate these R values and provide them as inputs to the queuing

analysis framework. Once the probabilities are calculated, the traffic pattern xs,d can

be added to Eq. 5.14 to calculate the port-to-port injection rates. Once λri,j values are

calculated, all other queuing parameters are found through the discussed equations.

As an example, consider a 6 × 6 × 4 network with 4 TSVs at the corners carrying a

random traffic using the proposed routing algorithm. Figure 5.15 illustrates the λri,j

values (in log scale) for the second layer of the network. In this 11×11 representation,

each square represents a 6×6 heat-map of the traffic rate injected from port specified

by the horizontal index into the port specified by the vertical index. A black color

represents no traffic, while a white color represents maximum traffic among all.

Buffer Waiting Time

To relate the overall latency to the calculated loads, we start by using Little’s theorem

to relate waiting time, injection rate, and number of packets in queue:

τ ri = N r
i /λ

r
i (5.17)

τ ri is the average waiting time of packets in an input buffer i of a router r. Figure 5.16

shows an example of the calculated waiting times (in log scale) for the same 6× 6× 4

network using LEAD under a uniform random traffic pattern with the waiting times

ranging from 1 cycle to 10 cycles for service time T = 10 and residual time R = 1.

99

pe u d n0 e0 s0 w0 n1 e1 s1 w1

pe

u

d

n0

e0

s0

w0

n1

e1

s1

w1

Figure 5.15: λri,j for all ports of 2nd layer of a 6 × 6 × 4 network with cor-
ner TSVs under random traffic. Input and output port indices i and j ∈
{pe, u, d. n0, e0, s0, w0, n1, e1, s1, w1}

z=1, pe z=1, u z=1, d z=1, n0 z=1, e0 z=1, s0 z=1, w0 z=1, n1 z=1, e1 z=1, s1 z=1, w1

z=2, pe z=2, u z=2, d z=2, n0 z=2, e0 z=2, s0 z=2, w0 z=2, n1 z=2, e1 z=2, s1 z=2, w1

z=3, pe z=3, u z=3, d z=3, n0 z=3, e0 z=3, s0 z=3, w0 z=3, n1 z=3, e1 z=3, s1 z=3, w1

z=4, pe z=4, u z=4, d z=4, n0 z=4, e0 z=4, s0 z=4, w0 z=4, n1 z=4, e1 z=4, s1 z=4, w1

Figure 5.16: τ ri values (buffer waiting time). Each rectangle is 6 × 6, and the corre-
sponding level is indicated above each rectangle with letter z. The port index is also
included at the top of each box.

100

End-to-End Latency

Once individual buffer latencies (waiting times) are calculated, the end-to-end latency

of a packet generated at router s and destined to the router d is found by adding

the individual latencies of the buffers traversed by the packet. In adaptive routing,

however, the packet may take different paths with different probabilities. Denote the

set of paths traversed by packets generated from s to d by Πs,d. Also, let Bs,d(k)

represents the set of input buffers traversed by the kth member path πs,d(k) ∈ Πs,d.

If ps,d(k) represents the probability of path πs,d(k) being used, the end-to-end latency

for a single source-destination pair (s, d) is found by:

Ls,d = Ws +
S

W
+
∑
k

ps,d(k)
∑

(r,b)∈Bs,d(k)

(Hs + τ rb) (5.18)

where Ls,d is the average latency between source s and destination d, Ws is the header

service time at source, S is average packet length, W is the bandwidth, Hs is header

service time at each buffer, and τ rb is the average waiting time at buffer b of router

r. Unfortunately, enumeration of all possible paths between all possible source and

destination pairs is computationally inefficient. To resolve this issue, consider Figure

5.14 again, and assume that the bottom left node (1,1) is sending packets to top right

node (6,6). From the point of view of (6,6), a fraction of the N packets arrives from

west (Nw), and the rest from south (Ns = N − Nw). The Nw packets arriving from

west have experienced a random delay right before entering the west input buffer of

(6,6), where the randomness comes from both the path taken and the system status

during the packet traversal. Denote the average of these delays by `(5,6)(e) (average

delay experienced by packets (from (1,1) to (6,6)) at the moment of being ejected

from the east port of (5,6)). Then, the average added delay until each such packet

101

header is serviced by (6,6) is:

`(6,6)(pe) = `(5, 6)(e) + τ (6,6)
w (5.19)

where buffer waiting times τ can be calculated using Equation 5.17. This equation

only holds for the packets arriving from west. If we consider all arriving packets, from

both south and west, a correct averaging results in:

`(6,6)(pe) =
Nw

N
[`(5,6)(e) + τ (6,6)

w] +
Ns

N
[`(6,5)(n) + τ (6,6)

s] (5.20)

This suggests a recursive relationship between variables `. Similar to the flow method

used to calculate the probabilities, ` values can be calculated by starting from the

source and flowing toward the destination. Also, note that the relative occurrence

terms such as Nw/N are calculated directly from the previously calculated probabil-

ities R.

In general, if `rs,d(j) represents the average delay experienced by packets from s to

d at the moment of being ejected into output port j of router r, we can write the

following recursive equation:

`rs,d(j) =
P∑
i=1

N r
i∑

kN
r
k

[
τ ri + `

N(r,i)
s,d (O(r, i))

]
(5.21)

It is observed that, similar to Rr
s,d(i, j), `

r
s,d(j) of neighbor ports are related to each

other recursively. Consequently, the same flow method used to calculate R values can

be used to calculate ` values.

102

Overall Network Latency

Finally, once Ls,d values are calculated, the overall latency of the network (considering

all source destination pairs) is found by the following waited averaging:

L =
∑
s,d

xs,d∑
s′,d′ xs′,d′

Ls,d (5.22)

Overview of the Procedure

To summarize, the following sequence of calculations is performed to find the network

overall latency:

1. Using the flow method, port utilization probabilities, Rr
s,d(i, j), are calculated

from the knowledge of network topology and routing algorithm (Section 5.5.1).

2. R values and traffic injection rates, xs,d, are combined to calculated buffer in-

jection rates λri,j (Section 5.5.1).

3. Contention probabilities are calculated from the knowledge of injection rate into

and out of router ports. (Section 5.5.1).

4. Contention probabilities and injection rates are combined to find the average

number of packets in buffers (Section 5.5.1).

5. Buffer waiting times are calculated from average number of packets and injection

rates (Section 5.5.1).

6. End-to-end latencies for each source destination pair are calculated using the

flow method (Section 5.5.1).

7. Overall network latency is found by averaging single source destination pair

103

end-to-end latencies, with a weighting determined by traffic injection rates xs,d

(Section 5.5.1).

Applicability to Generic Topologies

One of the advantages of our formulation is applicability to general topologies. To

see why, note that all derivations before Section 5.5.1 are local equations holding for

a single router, and thus will not be affected by the ’global’ picture of the network,

including topology. On the other hand, in Section 5.1.4, we have introduced the

quantity Rr
s,d(i, j) which quantifies the probability that for an s→ d communication,

port i and j of router r will be used as input and output ports, respectively. As

mentioned previously, R will depend on network geometry and routing algorithm.

Given the endless variety in the design of routing algorithms and geometries, it is

prohibitive to formulate R for all combinations. Consequently, we assume that R

is available as an input. Designers of other geometries/routing algorithms can use

the definition of R to calculate it and then feed it into the proposed queuing based

framework.

5.5.2 Analysis vs. Simulation

In this section, the simulation and analytical results are compared to verify the ana-

lytical model and cross check simulation results. Figure 5.17 shows a comparison of

analytical and simulation results under four different scenarios using different rout-

ing algorithms. In Figure 5.17(a), the latencies of LEAD and Elevator-first, under

random traffic with corner-located TSVs as in Figure 5.3(c), is repeated using the an-

alytical framework and then compared with simulation results. The remaining three

figures follow the same goal for other configurations explained in the captions. The

104

following observations are consistent in all figures:

• For a given routing algorithm, the latencies reported by simulation and analysis

agree very well within an error margin of 5% for the low injection rate zone.

• Although only significant under higher injection rates, the analytical latencies

generally underestimate the actual latency reported by simulation. This can be

contributed to the model ignoring head of line blocking.

• The accuracy of analytical latency drops as injection rate increases. This is

an expected result since the model is formulated under the assumption of low

injection rates.

• Even though the accuracy drops with increasing injection rate, the analytical

model reports valid relative results at all injection rates. For example, in Figure

5.17(c), it is observed that analytical results verify the same saturation point

superiority of LEAD over Elevator-first as reported by the simulation. Conse-

quently, the analytical framework can still be used to compare the performance

of different routing algorithms for all injection rates.

In summary, analytical results show very good accuracy at low injection rates and

also provide meaningful relative performance measures for all injection rates. The

saturation points, however, cannot be accurately estimated since the analysis is built

upon the assumption of low injection rates. If the final goal is not to estimate satura-

tion points accurately, the analytical framework can be used to calculate performance

measures, either relatively or individually, in a fraction of the time consumed by sim-

ulation. Finally, although accurate estimation of saturation point is not possible with

the analytical model, it is possible to find the vicinity of true saturation point and

then fine tune with simulation.

105

(a) LEAD and Elevator-first, transpose
traffic, Westmost TSVs

(b) LEAD and Elevator-first, shuffle
traffic, Eastmost TSVs

(c) LEAD and Elevator-first, transpose
traffic, Centered TSVs

(d) LEAD and Elevator-first, random
traffic, Cornered TSVs

Figure 5.17

106

Chapter 6

Future Work

3D-NoC architectures are considered necessary for future systems following the trend

of increasing the number of cores . The increase in the number of cores on 2D planes

and the ensuing increase in the latency and power consumption encourage architec-

tures in which layers of 2D-NoC are stacked on top of each other and communicating

through TSVs. However, the large bonding area of TSVs as compared to horizontal

wires along with the low yield of TSV fabrication process promote the idea of partially

connected 3D-NoCs. The proposed routing algorithms in this dissertation distribute

the traffic over the network, thus enhancing the performance and improving the fault

tolerance of the overall network.

One extension to the proposed ideas is to determine the optimum number and location

of TSVs for different routing algorithms. The routing algorithms impose certain

limitations on the routing paths according to their number of virtual channels to

avoid deadlock in the network. Therefore, the number and location of TSVs will have

an impact on the performance of the routing algorithm under study. In other words,

for every routing algorithm there is an optimum TSV configuration that provides

107

much better performance compared to a random TSV placement.

Moreover, for a given number and location of TSVs, further modifications in the

routing algorithms can enhance the fault tolerance of the network . In general, when

a TSV fails, the load on the other TSVs in the network increases. If not taken care

of probably, this increased load will lower the network performance. However, if the

routing algorithms design takes the possibility of TSV failure into account, it may be

possible to obtain higher performance compared to a failure-agnostic algorithm. In

other words, a good routing algorithm should not only guarantee good performance

for a specific TSV configuration, but it should also be fault-tolerant and guarantee

a certain level of performance by properly distributing the traffic over the network

when faults are present.

Further extensions are possible to take into account the widely studies high tem-

perature problem of TSVs. It is possible to design a routing algorithm capable of

distributing the traffic over the network and TSVs under some upper-bound con-

straints on TSVs temperatures. One enabling mechanism is providing information

about TSV temperature during run-time. When TSV temperature reaches a thresh-

old, the routing algorithm can be reconfigured to detour the high temperature regions.

Another interesting approach is to deploy machine learning algorithms in the routers

to enable them make routing decisions based on the information provided by TSVs

regarding their current temperature.

The analytical methods presented in this thesis may also be extended to more general

models. Current analytical models predict performance metrics in an average sense.

For instance, it is possible to obtain the average network latency, the average buffer

occupancy, the average temperature of a certain TSV and so on. Unfortunately, these

average measures may not be sufficient for certain applications. As an example, con-

sider a NoC running a streaming application alongside other possible applications.

108

Streaming applications typically specify a minimum QoS in terms of the tolerable

distribution of delays. Therefore, an ideal analytical model should provide complete

distributional information, rather than just an average, about the requested perfor-

mance metric. A reasonable first step toward this extension is to predict the variance

of the performance metric along with the average if a unimodal and approximately

Gaussian distribution on the performance metric can be assumed.

109

Chapter 7

Conclusion

Planar 2D NoC has limitations for floor planning. Long global wires causes increased

latency and therefore limit the performance improvements resulting from Network-

on-Chip paradigm. This challenge comes basically from the high network diameter

that NoC suffers from. Thus the need to optimize the 2D-NoC system arises and

one possible solution was porting the 2D-NoC architecture to the third dimension to

enhance the performance of NoC systems and alleviate their limitations. A 3D-NoC

is a composite of multiple device layers of 2D NoC with direct vertical interconnects

using TSVs. Although there are various alternatives to build the vertical interconnects

such as wire bonding and micro bumping, TSVs are the most popular choice since

they enhance the overall performance. On the other hand, employing a large number

of TSVs has negative effects on reliability issues and the consumed area. Partially

connected 3D-NoC emerges to take advantage of 3D-NoC with respect to the limiting

number of TSVs.

A partially connected 3D-NoC achieves a compromise between the scalability of NoC

and the considerable footprint of fully connected 3D-NoC. The first part of the disser-

110

tation proposes an adaptive routing algorithm named ETW for partially connected

3D-NoC. The routing algorithm tolerates faults on the vertical links by enabling the

intermediate routers to opt for other TSVs whenever the vertical link at the router’s

location is faulty. Our simulations show that the proposed algorithm is slightly infe-

rior to the non-adaptive fault-intolerant Elevator-first algorithm in terms of latency.

However, ETW has the advantage of using fewer virtual channels as compared to

Elevator-first. Moreover, our analytical results show that the proposed algorithm is

significantly more resilient to permanent TSV faults.

The vulnerability of TSVs during manufacturing process makes these interconnections

susceptible to faults which is discussed in the second part of the dissertation. TSV

failures might occur during or after manufacturing process. Either the TSV yield

should be increased or chips with faulty TSVs should be discarded but both solutions

are costly. We proposed a reconfigurable routing algorithm, called CoBRA, to tolerate

TSV failures during runtime and manufacturing process. First, the routing algorithm

dynamically searches for a healthy elevator in the same column. If no TSV is found,

the packet moves to east and and if the packet reaches the eastmost column and fails

to find a healthy TSV, the network is reconfigured to find an elevator at the west

direction. Simulation results indicate that CoBRA enhances reliability considerably

compared to Elevator-first.

The last part of the dissertation is dedicated to relaxing the moving toward east

condition in the already proposed routing algorithms. LEAD provides lower latency,

higher saturation point and better temperature distribution under a variety of traffic

patterns and TSV configurations. Also, a queuing theory based model targeting

adaptive routing algorithms is developed. In low injection rate regime, simulation and

analytical results agree very well within a 10% margin, proving that the analytical

model can be reliably used to estimate performance in a fraction of the time consumed

111

by simulation. Even though analytical results deviate from simulation under the high

injection rate regime, it is observed that the analytical model can reliably provide a

valid relative saturation point comparison between two different algorithms.

112

Bibliography

[1] Shashi Kumar, Axel Jantsch, J-P Soininen, Martti Forsell, Mikael Millberg,
Johny Oberg, Kari Tiensyrja, and Ahmed Hemani. A network on chip archi-
tecture and design methodology. In VLSI, 2002. Proceedings. IEEE Computer
Society Annual Symposium on, pages 117–124. IEEE, 2002.

[2] Nejib Mediouni, Samir Ben Abid, Oussama Kallel, and Salem Hasnaoui. Model-
ing and performance evaluation of 2d and 3d nocs using discrete event simulation.
International Journal of Computer Applications, 137(12), 2016.

[3] Kanchan Manna, Shivam Swami, Santanu Chattopadhyay, and Indranil Sen-
gupta. Integrated through-silicon via placement and application mapping for 3d
mesh-based noc design. ACM Transactions on Embedded Computing Systems
(TECS), 16(1):24, 2016.

[4] Axel Jantsch, Hannu Tenhunen, et al. Networks on chip, volume 396. Springer,
2003.

[5] K Emerson. Asynchronous design-an interesting alternative. In VLSI Design,
1997. Proceedings., Tenth International Conference on, pages 318–320. IEEE,
1997.

[6] Wen-Hsiang Hu, Seung Eun Lee, and Nader Bagherzadeh. Dmesh: a diagonally-
linked mesh network-on-chip architecture. Network on Chip Architectures,
page 14, 2008.

[7] Xiaohang Wang, T. Mak, Mei Yang, Yingtao Jiang, M. Daneshtalab, and
M. Palesi. On self-tuning networks-on-chip for dynamic network-flow dominance
adaptation. In Networks on Chip (NoCS), 2013 Seventh IEEE/ACM Interna-
tional Symposium on, pages 1–8, April 2013.

[8] Tobias Bjerregaard and Shankar Mahadevan. A survey of research and practices
of network-on-chip. ACM Computing Surveys (CSUR), 38(1):1, 2006.

[9] Philip Garrou, Christopher Bower, and Peter Ramm. Handbook of 3d integration:
volume 1-technology and applications of 3D integrated circuits. John Wiley &
Sons, 2011.

113

[10] Anna W Topol, DC La Tulipe, Leathen Shi, David J Frank, Kerry Bernstein,
Steven E Steen, Arvind Kumar, Gilbert U Singco, Albert M Young, Kathryn W
Guarini, et al. Three-dimensional integrated circuits. IBM Journal of Research
and Development, 50(4.5):491–506, 2006.

[11] B. Black, M. Annavaram, N. Brekelbaum, J. DeVale, Lei Jiang, G.H. Loh, D. Mc-
Cauley, P. Morrow, D.W. Nelson, D. Pantuso, P. Reed, J. Rupley, Sadasivan
Shankar, J. Shen, and C. Webb. Die stacking (3d) microarchitecture. In Microar-
chitecture, 2006. MICRO-39. 39th Annual IEEE/ACM International Symposium
on, pages 469–479, Dec 2006.

[12] B.S. Feero and P.P. Pande. Networks-on-chip in a three-dimensional environ-
ment: A performance evaluation. Computers, IEEE Transactions on, 58(1):32–
45, Jan 2009.

[13] Luca P Carloni, Partha Pande, and Yuan Xie. Networks-on-chip in emerging
interconnect paradigms: Advantages and challenges. In Proceedings of the 2009
3rd ACM/IEEE International Symposium on Networks-on-Chip, pages 93–102.
IEEE Computer Society, 2009.

[14] Bart Swinnen, W Ruythooren, P De Moor, L Bogaerts, L Carbonell,
K De Munck, B Eyckens, S Stoukatch, D Sabuncuoglu Tezcan, Z Tokei, et al.
3d integration by cu-cu thermo-compression bonding of extremely thinned bulk-
si die containing 10 µm pitch through-si vias. In 2006 International Electron
Devices Meeting, pages 1–4. IEEE, 2006.

[15] J. Van Olmen, A. Mercha, G. Katti, C. Huyghebaert, J. Van Aelst, E. Seppala,
Z. Chao, S. Armini, J. Vaes, R. C. Teixeira, M. Van Cauwenberghe, P. Verdonck,
K. Verhemeldonck, A. Jourdain, W. Ruythooren, M. de Potter de ten Broeck,
A. Opdebeeck, T. Chiarella, B. Parvais, I. Debusschere, T. Y. Hoffmann, B. De
Wachter, W. Dehaene, M. Stucchi, M. Rakowski, P. Soussan, R. Cartuyvels,
E. Beyne, S. Biesemans, and B. Swinnen. 3d stacked ic demonstration using a
through silicon via first approach. In 2008 IEEE International Electron Devices
Meeting, pages 1–4, Dec 2008.

[16] K. Banerjee, S. J. Souri, P. Kapur, and K. C. Saraswat. 3-d ics: a novel chip
design for improving deep-submicrometer interconnect performance and systems-
on-chip integration. Proceedings of the IEEE, 89(5):602–633, May 2001.

[17] W.R. Davis, J. Wilson, S. Mick, J. Xu, H. Hua, C. Mineo, A.M. Sule, M. Steer,
and P.D. Franzon. Demystifying 3d ics: the pros and cons of going vertical.
Design Test of Computers, IEEE, 22(6):498–510, Nov 2005.

[18] G. H. Loh, Y. Xie, and B. Black. Processor design in 3d die-stacking technologies.
IEEE Micro, 27(3):31–48, May 2007.

114

[19] C. C. Liu, I. Ganusov, M. Burtscher, and Sandip Tiwari. Bridging the processor-
memory performance gap with 3d ic technology. IEEE Design Test of Computers,
22(6):556–564, Nov 2005.

[20] K. T. Park, D. Kim, S. Hwang, M. Kang, H. Cho, Y. Jeong, Y. I. Seo, J. Jang,
H. S. Kim, S. M. Jung, Y. T. Lee, C. Kim, and W. S. Lee. A 45nm 4gb 3-
dimensional double-stacked multi-level nand flash memory with shared bitline
structure. In 2008 IEEE International Solid-State Circuits Conference - Digest
of Technical Papers, pages 510–632, Feb 2008.

[21] P. Batude, M. A. Jaud, O. Thomas, L. Clavelier, A. Pouydebasque, M. Vinet,
S. Deleonibus, and A. Amara. 3d cmos integration: Introduction of dynamic
coupling and application to compact and robust 4t sram. In 2008 IEEE Inter-
national Conference on Integrated Circuit Design and Technology and Tutorial,
pages 281–284, June 2008.

[22] Uksong Kang, Hoe-Ju Chung, Seongmoo Heo, Soon-Hong Ahn, Hoon Lee, Soo-
Ho Cha, Jaesung Ahn, DukMin Kwon, Jin Ho Kim, Jae-Wook Lee, Han-Sung
Joo, Woo-Seop Kim, Hyun-Kyung Kim, Eun-Mi Lee, So-Ra Kim, Keum-Hee Ma,
Dong-Hyun Jang, Nam-Seog Kim, Man-Sik Choi, Sae-Jang Oh, Jung-Bae Lee,
Tae-Kyung Jung, Jei-Hwan Yoo, and Changhyun Kim. 8gb 3d ddr3 dram using
through-silicon-via technology. In 2009 IEEE International Solid-State Circuits
Conference - Digest of Technical Papers, pages 130–131,131a, Feb 2009.

[23] B. Kim, C. Sharbono, T. Ritzdorf, and D. Schmauch. Factors affecting copper
filling process within high aspect ratio deep vias for 3d chip stacking. In 56th
Electronic Components and Technology Conference 2006, pages 6 pp.–, 2006.

[24] P. Benkart, A. Kaiser, A. Munding, M. Bschorr, H. J. Pfleiderer, E. Kohn,
A. Heittmann, H. Huebner, and U. Ramacher. 3d chip stack technology using
through-chip interconnects. IEEE Design Test of Computers, 22(6):512–518, Nov
2005.

[25] Silke Spiesshoefer, Leonard Schaper, Susan Burkett, Gowtham Vangara, Ziaur
Rahman, and Parthiban Arunasalam. Z-axis interconnects using fine pitch,
nanoscale through-silicon vias: Process development. In Electronic Components
and Technology Conference, 2004. Proceedings. 54th, volume 1, pages 466–471.
IEEE, 2004.

[26] Igor Loi, Federico Angiolini, and Luca Benini. Supporting vertical links for 3d
networks-on-chip: toward an automated design and analysis flow. In Proceedings
of the 2nd international conference on Nano-Networks, page 15. ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications Engineer-
ing), 2007.

[27] James Burns, Lisa McIlrath, Craig Keast, Craig Lewis, Andrew Loomis, Keith
Warner, and Peter Wyatt. Three-dimensional integrated circuits for low-power,

115

high-bandwidth systems on a chip. In Solid-State Circuits Conference, 2001.
Digest of Technical Papers. ISSCC. 2001 IEEE International, pages 268–269.
IEEE, 2001.

[28] Sudeep Pasricha. Exploring serial vertical interconnects for 3d ics. In Proceedings
of the 46th Annual Design Automation Conference, pages 581–586. ACM, 2009.

[29] Shamik Das, Andy Fan, Kuan-Neng Chen, Chuan Seng Tan, Nisha Checka,
and Rafael Reif. Technology, performance, and computer-aided design of three-
dimensional integrated circuits. In Proceedings of the 2004 international sympo-
sium on Physical design, pages 108–115. ACM, 2004.

[30] Robert S Patti. Three-dimensional integrated circuits and the future of system-
on-chip designs. Proceedings of the IEEE, 94(6):1214–1224, 2006.

[31] Igor Loi, Subhasish Mitra, Thomas H Lee, Shinobu Fujita, and Luca Benini.
A low-overhead fault tolerance scheme for tsv-based 3d network on chip links.
In Proceedings of the 2008 IEEE/ACM International Conference on Computer-
Aided Design, pages 598–602. IEEE Press, 2008.

[32] K. Chakrabarty, S. Deutsch, H. Thapliyal, and Fangming Ye. Tsv defects and
tsv-induced circuit failures: The third dimension in test and design-for-test. In
Reliability Physics Symposium (IRPS), 2012 IEEE International, pages 5F.1.1–
5F.1.12, April 2012.

[33] KN Tu. Reliability challenges in 3d ic packaging technology. Microelectronics
Reliability, 51(3):517–523, 2011.

[34] A. P. Karmarkar, X. Xu, and V. Moroz. Performanace and reliability analysis
of 3d-integration structures employing through silicon via (tsv). In 2009 IEEE
International Reliability Physics Symposium, pages 682–687, April 2009.

[35] G. Katti, M. Stucchi, K. De Meyer, and W. Dehaene. Electrical modeling and
characterization of through silicon via for three-dimensional ics. IEEE Transac-
tions on Electron Devices, 57(1):256–262, Jan 2010.

[36] Aditya P Karmarkar, Xiaopeng Xu, Sesh Ramaswami, John Dukovic, Kedar
Sapre, and Ajay Bhatnagar. Material, process and geometry effects on through-
silicon via reliability and isolation. In MRS Proceedings, volume 1249, pages
1249–F09. Cambridge Univ Press, 2010.

[37] Jose Duato, Sudhakar Yalamanchili, and Lionel M Ni. Interconnection networks:
an engineering approach. Morgan Kaufmann, 2003.

[38] Prasant Mohapatra. Wormhole routing techniques for directly connected multi-
computer systems. ACM Computing Surveys (CSUR), 30(3):374–410, 1998.

[39] A Touchstone Delta System Description, 1991.

116

[40] Masoumeh Ebrahimi and Masoud Daneshtalab. A light-weight fault-tolerant
routing algorithm tolerating faulty links and routers. Computing, 97(6):631–648,
2013.

[41] Davide Bertozzi, Antoine Jalabert, Srinivasan Murali, Rutuparna Tamhankar,
Stergios Stergiou, Luca Benini, and Giovanni De Micheli. Noc synthesis flow for
customized domain specific multiprocessor systems-on-chip. IEEE transactions
on parallel and distributed systems, 16(2):113–129, 2005.

[42] Partha Pratim Pande, Cristian Grecu, Michael Jones, Andre Ivanov, and Resve
Saleh. Performance evaluation and design trade-offs for network-on-chip inter-
connect architectures. IEEE transactions on Computers, 54(8):1025–1040, 2005.

[43] Hsien-Hsin S Lee and Krishnendu Chakrabarty. Test challenges for 3d integrated
circuits. IEEE Design & Test of Computers, 26(5), 2009.

[44] Guruprasad Katti, Michele Stucchi, Kristin De Meyer, and Wim Dehaene. Elec-
trical modeling and characterization of through silicon via for three-dimensional
ics. Electron Devices, IEEE Transactions on, 57(1):256–262, 2010.

[45] M. Motoyoshi. Through-silicon via (tsv). Proceedings of the IEEE, 97(1):43–48,
Jan 2009.

[46] Abbas Sheibanyrad, Frédéric Pétrot, and Axel Jantsch. 3D integration for NoC-
based SoC Architectures. Springer, 2011.

[47] H. Matsutani, M. Koibuchi, and H. Amano. Tightly-coupled multi-layer topolo-
gies for 3-d nocs. In Parallel Processing, 2007. ICPP 2007. International Con-
ference on, pages 75–75, Sept 2007.

[48] A. Dalirsani, M. Hosseinabady, and Z. Navabi. An analytical model for reliability
evaluation of noc architectures. In On-Line Testing Symposium, 2007. IOLTS
07. 13th IEEE International, pages 49–56, July 2007.

[49] Dae Hyun Kim and Sung Kyu Lim. Design quality trade-off studies for 3-d ics
built with sub-micron tsvs and future devices. Emerging and Selected Topics in
Circuits and Systems, IEEE Journal on, 2(2):240–248, June 2012.

[50] Pooria M Yaghini, Ashkan Eghbal, Misagh Khayambashi, and Nader
Bagherzadeh. Coupling mitigation in 3-d multiple-stacked devices. 2014.

[51] Moongon Jung, J. Mitra, D.Z. Pan, and Sung Kyu Lim. Tsv stress-aware full-
chip mechanical reliability analysis and optimization for 3-d ic. Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on, 31(8):1194–
1207, Aug 2012.

[52] C. Cassidy, J. Kraft, S. Carniello, F. Roger, H. Ceric, A.P. Singulani, E. Langer,
and F. Schrank. Through silicon via reliability. Device and Materials Reliability,
IEEE Transactions on, 12(2):285–295, June 2012.

117

[53] Misagh Khayambashi, Pooria M Yaghini, Ashkan Eghbal, and Nader
Bagherzadeh. Analytical reliability analysis of 3d noc under tsv failure. ACM
Journal on Emerging Technologies in Computing Systems (JETC), 11(4):43,
2015.

[54] A Ben Ahmed and A Ben Abdallah. La-xyz: low latency, high throughput look-
ahead routing algorithm for 3d network-on-chip (3d-noc) architecture. In The
6th IEEE international symposium on embedded multicore SoCs, pages 167–174,
2012.

[55] Sara Akbari, Ali Shafiee, Mahmoud Fathy, and Reza Berangi. Afra: A low cost
high performance reliable routing for 3d mesh nocs. In 2012 Design, Automation
& Test in Europe Conference & Exhibition (DATE), pages 332–337. IEEE, 2012.

[56] Mojtaba Ebrahimi, Xin Chang, Masoud Daneshtalab, Juha Plosila, Pasi Lilje-
berg, and Hannu Tenhunen. Dyxyz: Fully adaptive routing algorithm for 3d
nocs. In Parallel, Distributed and Network-Based Processing (PDP), 2013 21st
Euromicro International Conference on, pages 499–503. IEEE, 2013.

[57] Masoumeh Ebrahimi, Masoud Daneshtalab, Pasi Liljeberg, Juha Plosila, Jose
Flich, and Hannu Tenhunen. Path-based partitioning methods for 3d networks-
on-chip with minimal adaptive routing. IEEE Transactions on Computers,
63(3):718–733, 2014.

[58] M. Ebrahimi, M. Daneshtalab, and J. Plosila. Fault-tolerant routing algorithm
for 3d noc using hamiltonian path strategy. In 2013 Design, Automation Test in
Europe Conference Exhibition (DATE), pages 1601–1604, March 2013.

[59] S. Pasricha and Yong Zou. A low overhead fault tolerant routing scheme for
3d networks-on-chip. In Quality Electronic Design (ISQED), 2011 12th Interna-
tional Symposium on, pages 1–8, March 2011.

[60] Akram Ben Ahmed and Abderazek Ben Abdallah. Architecture and design
of high-throughput, low-latency, and fault-tolerant routing algorithm for 3d-
network-on-chip (3d-noc). The Journal of Supercomputing, 66(3):1507–1532,
2013.

[61] Akram Ben Ahmed and Abderazek Ben Abdallah. Graceful deadlock-free fault-
tolerant routing algorithm for 3d network-on-chip architectures. Journal of Par-
allel and Distributed Computing, 74(4):2229–2240, 2014.

[62] M. Zhu, J. Lee, and K. Choi. An adaptive routing algorithm for 3d mesh noc
with limited vertical bandwidth. In VLSI and System-on-Chip, 2012 (VLSI-
SoC), IEEE/IFIP 20th International Conference on, pages 18–23, Oct 2012.

[63] Mingyang Zhu, Jinho Lee, and Kiyoung Choi. An adaptive routing algorithm
for 3d mesh noc with limited vertical bandwidth. In VLSI and System-on-Chip
(VLSI-SoC), 2012 IEEE/IFIP 20th International Conference on, pages 18–23,
Oct 2012.

118

[64] M. Ebrahimi, M. Daneshtalab, P. Liljeberg, and H. Tenhunen. Fault-tolerant
method with distributed monitoring and management technique for 3d stacked
meshes. In Computer Architecture and Digital Systems (CADS), 2013 17th CSI
International Symposium on, pages 93–98, Oct 2013.

[65] Florentine Dubois, Abbas Sheibanyrad, Frederic Petrot, and Maryam Bahmani.
Elevator-first: A deadlock-free distributed routing algorithm for vertically par-
tially connected 3d-nocs. IEEE Transactions on Computers, 62(3):609–615, 2013.

[66] Jinho Lee and Kiyoung Choi. A deadlock-free routing algorithm requiring no
virtual channel on 3d-nocs with partial vertical connections. In Networks on
Chip (NoCS), 2013 Seventh IEEE/ACM International Symposium on, pages 1–
2, April 2013.

[67] Abbas Eslami Kiasari, Hamid Sarbazi-Azad, and Mohamed Ould-Khaoua. An
accurate mathematical performance model of adaptive routing in the star graph.
Future Generation Computer Systems, 24(6):461–474, 2008.

[68] Jong Kim and Chita R. Das. Hypercube communication delay with wormhole
routing. IEEE Transactions on Computers, 43(7):806–814, 1994.

[69] J. Hu, U. Y. Ogras, and R. Marculescu. System-level buffer allocation for
application-specific networks-on-chip router design. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 25(12):2919–2933,
Dec 2006.

[70] Zvika Guz, Isask’har Walter, Evgeny Bolotin, Israel Cidon, Ran Ginosar, and
Avinoam Kolodny. Network delays and link capacities in application-specific
wormhole nocs. VLSI Design, 2007, 2007.

[71] Umit Y Ogras, Paul Bogdan, and Radu Marculescu. An analytical approach for
network-on-chip performance analysis. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 29(12):2001–2013, 2010.

[72] A. E. Kiasari, Z. Lu, and A. Jantsch. An analytical latency model for networks-
on-chip. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
21(1):113–123, Jan 2013.

[73] Jeffrey T Draper and Joydeep Ghosh. A comprehensive analytical model for
wormhole routing in multicomputer systems. Journal of Parallel and Distributed
Computing, 23(2):202–214, 1994.

[74] Po-Chi Hu and Leonard Kleinrock. An analytical model for wormhole routing
with finite size input buffers. In Teletraffic Science and Engineering, volume 2,
pages 549–560. Elsevier, 1997.

[75] R. Salamat, M. Ebrahimi, and N. Bagherzadeh. An adaptive, low restrictive and
fault resilient routing algorithm for 3d network-on-chip. In Parallel, Distributed

119

and Network-Based Processing (PDP), Euromicro International Conference on,
pages 392–395, March 2015.

[76] http://access.ee.ntu.edu.tw/noxim/index.html.

[77] V. Catania, A. Mineo, S. Monteleone, M. Palesi, and D. Patti. Noxim: An open,
extensible and cycle-accurate network on chip simulator. In Application-specific
Systems, Architectures and Processors (ASAP), 2015 IEEE 26th International
Conference on, pages 162–163, July 2015.

[78] Wei Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron, and
M.R. Stan. Hotspot: a compact thermal modeling methodology for early-stage
vlsi design. Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on, 14(5):501–513, May 2006.

[79] Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. Splash: Stanford
parallel applications for shared-memory. ACM SIGARCH Computer Architecture
News, 20(1):5–44, 1992.

[80] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The parsec
benchmark suite: Characterization and architectural implications. In Proceedings
of the 17th international conference on Parallel architectures and compilation
techniques, pages 72–81. ACM, 2008.

[81] Georgia-Ann Klutke, Peter C Kiessler, and MA Wortman. A critical look at the
bathtub curve. IEEE Transactions on Reliability, 52(1):125–129, 2003.

[82] Freek Verbeek and Julien Schmaltz. A decision procedure for deadlock-free rout-
ing in wormhole networks. IEEE Transactions on Parallel and Distributed Sys-
tems, 25(8):1935–1944, 2014.

[83] Jinho Lee, Kyungsu Kang, and Kiyoung Choi. Redelf: An energy-efficient
deadlock-free routing for 3d nocs with partial vertical connections. ACM Journal
on Emerging Technologies in Computing Systems (JETC), 12(3):26, 2015.

[84] Ronak Salamat, Misagh Khayambashi, Masoumeh Ebrahimi, and Nader
Bagherzadeh. A resilient routing algorithm with formal reliability analysis for
partially connected 3d-nocs. IEEE Transactions on Computers, 65(11):3265–
3279, 2016.

[85] Kai-Yuan Jheng, Chih-Hao Chao, Hao-Yu Wang, and An-Yeu Wu. Traffic-
thermal mutual-coupling co-simulation platform for three-dimensional network-
on-chip. In VLSI Design Automation and Test (VLSI-DAT), 2010 International
Symposium on, pages 135–138. IEEE, 2010.

[86] Dimitri P Bertsekas, Robert G Gallager, and Pierre Humblet. Data networks,
volume 2. Prentice-Hall International New Jersey, 1992.

120

http://access.ee.ntu.edu.tw/noxim/index.html

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Introduction
	Related Work
	3D Integration and 3D-NoC
	TSV Reliability
	Routing Algorithms
	Analytical Verification

	ETW Routing Algorithm
	Overview of ETW
	Proof of Deadlock-freedom
	Routing Algorithm Procedure
	Destination is on the upper layer
	Destination is on the lower layer

	Algorithms for Elevator Assignment
	Static Elevator Assignment (SEA)
	Dynamic Elevator Assignment (DEA)

	Formal Model of the Network
	Reliability Analysis
	Results and Discussion
	Traffic Scenarios
	Latency Analysis
	Reliability Evaluation
	Power and Area Analysis

	CoBRA Routing Algorithm
	Overview of CoBRA
	Current and destination are on the same layer:
	Current and destination are not on the same layer:

	Providing Partial Knowledge
	Discussion of Deadlock Freedom
	Results and Discussion
	Reliability Comparison under Synthetic Traffic
	Reliability Comparison under Real Traffic
	Power and Area Comparison

	LEAD Routing Algorithm
	Overview of LEAD
	Proof for Deadlock-freedom
	LEAD Algorithm Procedure
	Source and destination are on the same layer
	Source and destination are not on the same layer

	Results and Discussion
	Latency analysis
	Temperature Distribution

	Queuing Theory and Analytical Model
	Analysis Framework
	Analysis vs. Simulation

	Future Work
	Conclusion
	Bibliography

