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The accuracy of the compressible Reynolds equation for
predicting the local pressure in gas-lubricated textured parallel
slider bearings

Mingfeng Qiu, Brian N. Bailey, Rob Stoll, and Bart Raeymaekers
Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA

Bart Raeymaekers: bart.raeymaekers@utah.edu

Abstract

The validity of the compressible Reynolds equation to predict the local pressure in a gas-

lubricated, textured parallel slider bearing is investigated. The local bearing pressure is

numerically simulated using the Reynolds equation and the Navier-Stokes equations for different

texture geometries and operating conditions. The respective results are compared and the

simplifying assumptions inherent in the application of the Reynolds equation are quantitatively

evaluated. The deviation between the local bearing pressure obtained with the Reynolds equation

and the Navier-Stokes equations increases with increasing texture aspect ratio, because a

significant cross-film pressure gradient and a large velocity gradient in the sliding direction

develop in the lubricant film. Inertia is found to be negligible throughout this study.

1. Introduction

Surface texturing is used to enhance the load-carrying capacity of parallel slider bearings

and to reduce friction and wear [1, 2, 3]. While groove-texture, and in particular spiral-

grooved bearings [4] and herringbone-grooved bearings [5] have been used for several

decades, surface microtexturing is a more recent development. Microtexture is commonly

implemented as a dense array of micro-sized concave features (“dimples”) fabricated using,

e.g., laser surface texturing (LST) [6, 7]. Reduced friction and increased load-carrying

capacity have been reported for a spectrum of practical applications including journal

bearings [8], thrust bearings [9, 10], piston rings [11], mechanical seals [12, 13], gas seals

[14], and magnetic tape drive systems [15].

The local pressure distribution and the load-carrying capacity of a textured slider bearing are

typically computed using the Reynolds equation. However, the presence of the surface

texture potentially causes some of the key assumptions of the Reynolds equation to break

down. Recently, a number of studies have discussed the validity of these assumptions to
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simulate hydrodynamic pressure in textured bearings with an incompressible lubricant, as a

function of surface texture geometry and/or surface roughness and operating conditions [16,

17, 18, 19, 20, 21, 22, 23]. Numerical solutions of the Navier-Stokes equations or Stokes

equations are typically used to investigate the validity of the assumptions of the Reynolds

equation. Hu and Leutheusser [16] studied parallel slider bearings with sinusoidal grooves

on one of the surfaces. For large Reynolds numbers they suggested that inertia is important

when defining the limits of applicability of the Reynolds equation. Others have

demonstrated that the Reynolds equation inaccurately predicts the pressure when the film

thickness is on the same order of magnitude as the surface roughness feature wavelength

(Stokes roughness) [17, 18, 19]. Arghir et al. [17] found that inertia becomes increasingly

important when calculating the hydrodynamic pressure for a large Reynolds number. They

concluded that this effect cannot be accurately simulated with the simplified Reynolds

equation. In addition, van Odyck and Venner [18] demonstrated by comparing the solutions

of the Stokes equations and the Reynolds equation that even without considering inertia, the

results of the Reynolds equation display a significant difference with a more complete model

for the case of Stokes roughness. Sahlin et al. [20] and Cupillard et al. [21] investigated

inertia effects in infinitely long parallel sliders textured with two-dimensional dimples, by

comparing results of the Navier-Stokes equations and the Stokes equations. The dimple

depth and the film thickness were chosen to be on the same order of magnitude. Both studies

confirm that inertia affects bearing load-carrying capacity. Similarly, de Kraker et al. [22]

demonstrated that for simulating mixed lubrication in a textured bearing, the Reynolds

equation with a cavitation model is appropriate when the film thickness is much smaller than

the dimple depth. When the film thickness is larger than the dimple depth, inertia dominates

and the Navier-Stokes equations must be used. Dobrica and Fillon [23] studied the effect of

inertia as a function of the texture aspect ratio and concluded that the solutions of the

Reynolds equation and the Navier-Stokes equations match well when the texture aspect ratio

and the Reynolds number are both small. For large values of the Reynolds number they

found that the accuracy of the Reynolds equation can be improved significantly by

introducing corrections for inertia. However, as pointed out by Feldman et al. [24], the

conclusions of some of these studies must be interpreted with care because cavitation, which

is the primary mechanism to generate load-carrying capacity in these bearings that use an

incompressible lubricant, is either neglected [17, 19, 20, 21, 23] or treated in a simplified

way [18].

Few studies document the validity and accuracy of the Reynolds equation to simulate

bearings lubricated with a compressible fluid. Van Odyck and Venner [25] found that for a

compressible parallel slider bearing with an asperity protruding from one surface, a large

pressure gradient develops across the lubricant film thickness when increasing the relative

sliding velocity between the bearing surfaces. Nevertheless, they concluded that the load-

carrying capacity is predicted accurately by the Reynolds equation. Asperity texture on a

parallel slider bearing with elastohydrodynamic lubrication was studied by Almqvist and

Larsson [26]. They found that the Reynolds equation inaccurately predicts the local bearing

pressure when the ratio of the film thickness and the horizontal asperity feature wavelength

is larger than 0.01. This is a similar conclusion to the results shown in [17, 18, 19].

Additionally, Guardino et al. [27] studied sinusoidal roughness on a Rayleigh step bearing,
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and concluded that the Reynolds equation accurately predicts the load-carrying capacity

when the roughness is small in amplitude compared to the film thickness. The only study to

directly evaluate the validity of the Reynolds equation for gas-lubricated textured bearings

was performed by Feldman et al. [24]. They evaluated a hydrostatic bearing, i.e., pressure

driven flow, and concluded that the load-carrying capacity of the bearing is predicted

accurately by the Reynolds equation despite some of the simplifying assumptions being

violated locally for certain operating conditions.

Most of these studies focus on validating the prediction of the load-carrying capacity by the

Reynolds equation as a function of the texture geometry. Hence, the validity of the Reynolds

equation to predict load-carrying capacity in textured bearings is well established for both

incompressible and compressible fluids. However, the breakdown of the assumptions

inherent to the Reynolds equation when simulating textured bearings with a compressible

lubricant has only been partially addressed. In addition to applications where it is sufficient

to predict the load-carrying capacity, an accurate prediction of local pressure is the first step

in developing fast and accurate particle and mass transport simulations, and is essential in

lubricant-solid interaction problems for the case of elastohydrodynamic lubrication and foil

bearings [28]. Moreover, no published studies exist that evaluate the validity of the

Reynolds equation for modeling shear driven lubricant flow in gas-lubricated, textured slider

bearings. Therefore, the objective of this paper is to evaluate the validity and accuracy of the

compressible Reynolds equation for gas-lubricated textured parallel slider bearings. We

compare simulation results of the Navier-Stokes equations and Reynolds equation,

specifically focusing on computing the local bearing pressure and evaluating the accuracy of

the assumptions inherent in the application of the Reynolds equation.

2. Methodology

2.1 Model description

Figure 1 shows a gas-lubricated textured parallel slider bearing. Figure 1 (a) displays the x-z

cross-section along the centerline of the dimple and Fig. 1 (b) shows the top view of the

model. The dimple is a segment of a sphere of radius rp and depth hp, and is centered in a

square unit cell of length 2r1. The local spacing between the bearing surfaces is denoted by

h(x,y).

A model for the bearing pressure between the two sliding surfaces is developed using the

following assumptions: (1) the lubricant is air in laminar flow; (2) the relative sliding

velocity U is constant, and much smaller than the speed of sound in the lubricant. Therefore,

the gas flow is isothermal, isoviscous and the density is directly proportional to pressure

(ideal gas); (3) hydrodynamic lubrication is maintained; (4) the bearing spacing is much

larger than the mean free path of the gas. Thus, no slip occurs between the gas and any of

the solid walls. Under these assumptions the following steady-state mass and momentum

conservation equations describe the three-dimensional flow field in the bearing

(compressible Navier-Stokes (NS) equations),
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(1)

where ρ is the density of air, v = [u, v, w]T is the velocity vector with components

corresponding to velocity in the x-, y- and z-directions, respectively (Fig. 1). p is the local

pressure and μ is the dynamic viscosity. The energy equation and the viscosity constitutive

equation are not needed because constant temperature and viscosity are maintained. Periodic

boundary conditions are enforced at the inlet and outlet of the dimple cell to account for the

patterned texture in the stream-wise direction, while symmetric boundary conditions are

applied on the lateral boundaries of the cell to model the presence of adjacent dimples in the

span-wise direction. Thus,

(2)

Three key assumptions are made to derive the Reynolds equation from the Navier-Stokes

equations (Eq. (1)) [28]; (1) the pressure is constant across the lubricant film thickness

because the vertical dimension (z-direction) is much smaller than the other dimensions (x-

and y-directions); (2) the dominant spatial velocity gradient is ∂u/∂z; (3) inertia effects are

neglected because of the small sliding velocity and extremely small bearing spacing [15,

24]. Hence, the steady-state two-dimensional (2D) compressible Reynolds equation (RE) in

non-dimensional form is given as

(3)

where X = x/rp and Y = y/rp are the non-dimensional Cartesian coordinates, and rp is the

dimple radius. The non-dimensional local pressure P(X,Y) = p(x,y)/p0 is the local air bearing

pressure divided by the atmospheric pressure p0. The non-dimensional local spacing H(X,Y)

= h(x,y)/c is the local spacing divided by the minimum spacing between the bearing surfaces

c. λ = 3μU/2rpp0 is the flow factor and δ = c/2rp is the non-dimensional minimum spacing

between the sliding surfaces. λ and δ describe the operating conditions of the textured

bearing. The texture aspect ratio ε is defined as the ratio of the dimple depth over the

diameter, ε = hp/2rp. Similar to Eq. (2), the boundary conditions for the RE are periodic in

the stream-wise direction, and symmetric on the lateral boundaries.

2.2 Numerical simulation

The following dimensional parameters are used to solve the NS equations. The dynamic

viscosity of air at room temperature μ = 1.8×10-5 Pa s. The relative sliding velocity between

the bearing surfaces U = 10 m/s. The dimple radius rp = 50 μm, typical for engineering

applications [14, 24, 29]. The effect of the texture radius, when the texture aspect ratio
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remains constant, is minimal. The texture density Sp = 0.15, which is favorable in terms of

maximizing hydrodynamic bearing pressure [30]. To fully explore the effect of texture

geometry across a wide range of values used in experiments [23], the dimple depth is varied

between 5.0 and 50.0 μm so that the dimple geometry ranges from very shallow to a

hemisphere. The minimum spacing between the bearing surfaces, c, is varied between 0.3

and 2.0 μm, relevant to different applications [15, 29]. Table 1 summarizes the bearing

operating and design parameters studied in this paper, displayed in non-dimensional form.

56 combinations of texture aspect ratio and bearing spacing are investigated. The so-called

“Stokes roughness” (ratio of film thickness to texture characteristic length in the x-direction)

[17, 18] does not fall within the range of operating conditions considered in this study and,

thus, its influence on the validity of the Reynolds equation is not investigated.

The NS equations are solved using a commercial finite volume computational fluid

dynamics software package (FLUENT version 6.3.26). A non-conformal mesh is used to

discretize the computational domain. The upper (rectangular) channel uses a uniform

hexahedral mesh, while the dimple is discretized using tetrahedral elements. The meshing is

challenging in particular for shallow dimple geometries and small bearing spacing. Element

sizes are chosen to suit the geometry of each case such that further refinement does not

change the average bearing pressure by more than 0.01%. The geometries examined in this

study use numerical grids ranging from 1.1×106 discrete volumes in the case of the largest

dimple depth to 6.3×106 volumes in the case of the smallest dimple depth and smallest

bearing spacing. Smaller dimple depths required very small grid volumes in order to have

enough volumes in the vertical direction. When combined with volume aspect ratio limits, a

large number of volumes is required to fill the horizontal extent of the dimple. The resulting

execution times are approximately 3-24 hours per case including meshing time.

The RE is solved iteratively by discretizing Eq. (3) using a second order central finite

difference scheme on a 251-by-251 staggered grid [31]. Convergence of the non-

dimensional pressure solution is assumed to occur when the relative change in pressure at

every grid node is less than 10-5 between two successive iterations. The computing time for

each case is typically less than one minute on a similar computer than the one used for the

NS simulations. The pressure results computed using the RE (pRE(x,y)) are compared with

the NS solution for pressure at the upper sliding surface (pNS(x,y)) (Fig. 1), and the

assumptions of the RE are quantitatively evaluated using the NS solution. All the results are

presented as a function of the non-dimensional quantities ε and δ, which are key parameters

for determining bearing performance [12].

Compressible flow simulations with periodic boundary conditions in FLUENT require a

reference pressure at a fixed point in the solution domain to solve Eq. (1). The arbitrary

treatment of this reference point precludes direct comparison of absolute pressure values

needed to determine the load-carrying capacity. However, it does not affect the ability to

compare local bearing pressure results. The average pressure computed for both the NS

 and RE  simulations is subtracted from the respective absolute local pressure

results, and both are non-dimensionalized with the atmospheric pressure p0. Finally, the
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non-dimensional results of the pressure simulations obtained with the NS equation

 and with the RE  are compared.

3. Results and discussion

3.1 Local bearing pressure

The non-dimensional local pressure difference ΔPr between the RE and NS solutions is

defined as the vector norm (L2-norm [32]) of the difference between both non-dimensional

pressure solutions, divided by the vector norm of the non-dimensional NS pressure solution.

(4)

Figure 2 shows ΔPr contour lines as a function of the texture aspect ratio ε and the non-

dimensional bearing spacing δ. It is observed that the deviation of the local pressure between

the RE and NS solutions is almost independent of δ, but increases with ε. The RE predicts

the local pressure accurately for most of the texture geometries, as suggested by ΔPr ≤ 0.03

for ε ≤ 0.05, which is especially important in modeling and optimizing texture geometry for

gas-lubricated bearings [30]. However, ΔPr increases to approximately 0.2 for ε = 0.25, and

becomes larger than 0.7 when ε approaches 0.5 (hemispherical dimple geometry).

Figure 3 displays the local non-dimensional differential pressure, PRE and PNS, along the

center line of the top bearing surface for the case of (a) ε = 0.1, and (b) ε = 0.4 with δ =

0.003. These results illustrate that solutions obtained with the RE and the NS equations

match well for small texture aspect ratios (e.g. less than 10% relative difference for ε = 0.1).

However, a large deviation may occur for large ε values (e.g. approximately 50 % relative

difference for ε = 0.4).

3.2 Cross-film pressure gradient

The RE assumes that because of the extremely small vertical dimension of the bearing (z-

direction) compared to the other two horizontal dimensions (x- and y-directions), the

pressure remains constant across the lubricant film thickness. This assumption can be

evaluated by examining the curvature of the isobar contour lines computed from the NS

solution along the x-z cross-section through the center line of the textured bearing. Figure 4

shows the isobar contour lines for four different combinations of texture aspect ratio ε and

non-dimensional spacing δ. To scale the vertical bearing dimension uniformly for the four

cases, the local spacing h(x,y) is non-dimensionalized with the minimum bearing spacing c

of the dimple in Fig. 4 (a), which will be referred to as c*.

For both small (Fig. 4 (a) and (c)) and large values (Fig. 4 (b) and (d)) of the texture aspect

ratio ε, the isobar contour lines are almost independent of the non-dimensional minimum

spacing δ. This indicates that the effect of δ on the cross-film pressure gradient is negligible.

Additionally, for a small value of ε the isobars remain mostly perpendicular to the primary

flow direction (x-direction) across the lubricant film thickness both inside and outside the

dimple area (Fig. 4 (a) and (c)). For a large ε value, the isobar contours are no longer
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perpendicular to the x-direction across the lubricant film thickness in the entire dimple

geometry. In particular, close to the bottom surface and the inlet/outlet of the dimple (Fig. 4

(b) and (d)), the isobars display significant curvature. This indicates that the pressure is no

longer constant across the lubricant film thickness. Thus, the cross-film pressure gradient is

negligible for small values of ε, but becomes more significant with increasing ε. Note that

compared to pressure-driven flow in textured bearings, the cross-film gradient in shear-

driven flow is much less significant [24].

3.3 Velocity gradients

The RE assumes that the only dominant spatial gradient of the velocity components is the

derivative of u with respect to the z-direction (Fig. 1), which means that the ratio R = (∂u/

∂x)/(∂u/∂z) is assumed to approach zero. The volume between the sliding bearing surfaces is

triangulated into tetrahedral cells using the nodes of the finite volume elements from the NS

solution. R is calculated at the center of each tetrahedral cell, and is then averaged over the

total volume to yield Ravg,

(5)

where Vl is the volume of each tetrahedral cell l, and V is the total volume between the

bearing surfaces. Figure 5 displays Ravg contour lines as a function of the texture aspect ratio

ε and non-dimensional spacing δ.

From Fig. 5 it is observed that Ravg is almost independent of δ, but increases with increasing

ε. Ravg reaches approximately 0.2 when ε is larger than 0.25 and exceeds 0.5 for ε

approaching 0.5. This indicates that the two velocity gradients (∂u/∂x) and (∂u/∂z) are

approaching the same order of magnitude. Thus, the assumption of negligible velocity

gradient with respect to the x-direction is violated for dimples with a large texture aspect

ratio, which correlates well with the deviation in the local pressure calculation (Fig. 2).

3.4 Local inertia effects

The inertia effects in the flow field are examined by computing the local ratio of inertia

forces and viscous forces in the NS solution. This local Reynolds number is estimated at the

center of each tetrahedral cell (as discussed in Section 3.3) from the NS solution [33], and

averaged throughout the total volume of the bearing spacing (Eq. (6)). The definitions of Vl

and V are the same as in Eq. (5). Figure 6 displays the result for different combinations of

texture aspect ratio ε and non-dimensional spacing δ.

(6)

Figure 6 shows that the cell-averaged local Reynolds number is smaller than 0.05 for almost

any combination of ε and δ, which indicates that inertia is indeed negligible compared to

viscosity in the bearing spacing throughout the range of parameters considered. Note that the
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local Reynolds number increases with increasing texture aspect ratio ε, indicating that the

effect of inertia becomes more important as the dimple depth increases.

3.5 Recirculation flow

Several authors have attempted to describe the effect of recirculation flow in textured

bearings. Sahlin et al. [20] and Cupillard et al. [21] both emphasized that vortices have an

influence on the bearing load-carrying capacity. Feldman et al. [24] also suggested that the

inception of recirculation flow affects the validity of the Reynolds equation in predicting

pressure for hydrostatic gas bearings. In this study, recirculation is evaluated by examining

the NS velocity profiles in the x-z cross-section along the center line of the textured bearing.

Figure 7 displays four dimples with different texture aspect ratios and equal non-

dimensional minimum spacing δ. When the texture aspect ratio is small (ε = 0.03, Fig. 7 (a))

the stream-wise velocity stays positive or near zero everywhere, suggesting no recirculation.

With increasing texture aspect ratios, a recirculation zone forms in the dimple, clearly

indicated by the negative stream-wise flow velocity in the lower region of the dimple. The

recirculation region increases with increasing texture aspect ratio, and the stream-wise

velocity becomes more negative (Fig. 7 (b-d)). As also pointed out in [24], the development

of recirculation regions indicates a large gradient of velocity with respect to the x-direction,

violating the assumption of negligible stream-wise velocity gradient inherent in the RE. This

is illustrated by the increase of recirculation with increasing texture aspect ratio in Fig. 7

(and Fig. 5).

3.6 Discussion

For small ε and δ, the RE and NS solutions of the local bearing pressure show minimal

deviation. These texture geometries are also the most difficult ones for which to create a

high quality mesh required for the NS solution. The maximum bearing spacing is several

orders of magnitude smaller than the bearing length and width and, thus, a very large

number of finite volume cells are needed to resolve this geometry, which also requires

significant computing time. In contrast, for these geometries the RE performs exceptionally

well in terms of both accuracy and computational cost.

The deviation between the NS and RE solutions for the local bearing pressure increases with

increasing ε. This deviation can largely be explained by the breakdown of the assumption

that the dominant velocity gradient is ∂u/∂z. The ratio of the velocity gradients in the flow

direction and the vertical direction increases with increasing texture aspect ratio ε, which

matches the increasing deviation between the local pressure computed with the RE and NS

equations (Fig. 2 and Fig. 5). The development of recirculation flow is found to be

associated with increasing inaccuracy of the local pressure prediction by the RE compared to

the NS equations, which can also be attributed to significant velocity gradients in the x-

direction. The development of a cross-film pressure gradient also contributes to the

inaccuracy in the local pressure prediction (Fig. 4). The reason for the breakdown of these

two assumptions with increasing texture aspect ratio is likely that with increasing ε the

vertical and horizontal dimensions of the dimple become similar. Thus, the assumption of a

significantly smaller vertical bearing dimension ceases to be accurate.
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The non-dimensional parameters used in this study are particularly relevant to textured

bearings. Conventional notation uses the bearing number Λ to describe compressibility

effects. In this study, for a single dimple the bearing number can be expressed as Λ = λ/

δ2=6μUrp/(p0c2). To compare with traditional gas bearings a modified bearing number Λm =

6μUL/(p0c2) can be defined using a characteristic length equal to the total length of the

bearing L. Assuming a bearing with 10 unit cells (L is approximately 2.3 mm), Λm ranges

from 6 to 270 for the range of ε and δ values used in this study. This suggests that

compressibility effects are important in this type of textured bearings and that a

compressible flow model has to be used in this study.

4. Conclusion

The validity and accuracy of the compressible Reynolds equation in predicting the local

pressure in a gas-lubricated, textured parallel slider bearing is studied by comparing the

local bearing pressure obtained with the Reynolds equation and the Navier-Stokes equations

for a single dimple textured bearing model. The following conclusions are made.

1. Deviation between the local pressure obtained with the Reynolds equation and the

Navier-Stokes equations exists. This deviation is independent of the bearing

spacing but increases with increasing texture aspect ratio. Beyond a texture aspect

ratio of ε = 0.25, the deviation of the local pressure between the two models may

exceed 20%.

2. The deviation between the local pressure solution of the Reynolds equation and the

Navier-Stokes equations for increasing texture aspect ratio can be explained by the

breakdown of the assumption that the stream-wise velocity vertical gradient

dominates the other velocity gradients and by the development of a significant

cross-film pressure gradient.

3. Inertia effects are confirmed to be negligible for the range of bearing and texture

parameters considered in this study.
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Nomenclature

c Minimum spacing between the parallel bearing surfaces

c* Reference minimum spacing, minimum spacing between bearing surfaces in

the case of ε = 0.1, δ = 0.01

H(X,Y) Non-dimensional local spacing H(X,Y) = h(x,y)/c

h(x,y) Local spacing between the bearing surfaces

hp Dimple depth

L Total length of the textured bearing consisting of ten unit cells

P(X,Y) Non-dimensional local pressure, P(X,Y) = p(x,y)/p0

PNS(X,Y)
equations, 

PRE(X,Y) Non-dimensional differential bearing pressure solution from the Navier-

Stokes equations, 

ΔPr(X, Y) Non-dimensional local pressure difference, 

p Local pressure

p0 Atmospheric pressure

pavg Average bearing pressure

pNS(x,y) Local bearing pressure solution from the Navier-Stokes equations

pRE(x,y) Local bearing pressure solution from the Reynolds equation

Average bearing pressure from the Navier-Stokes equations

Average bearing pressure from the Reynolds equation

R Velocity gradient ratio, = R(∂u/∂x)/(∂u/∂z)

Ravg Average velocity gradient ratio calculated for all finite volume cells

Reloc Average local Reynolds number calculated for all finite volume cells

r1 Half-length of the square unit cell

rp Dimple characteristic radius

Sp Texture density

U Relative sliding velocity

u Velocity in the x-direction

V Volume of the clearance between the bearing surfaces

Vl Volume of a tetrahedral cell l

ν Velocity in the y-direction
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v Velocity vector, v = [u, ν, w]T

w Velocity in the z-direction

X,Y,Z Non-dimensional Cartesian coordinates, X = x/rp, Y = y/rp, Z = z/c

x,y,z Cartesian coordinates

δ Non-dimensional minimum spacing between the bearing surfaces, δ = c/2rp

ε Texture aspect ratio, ε = hp/2rp

Λ Bearing number, Λ = 6μUrp/(p0c2)

Λm Modified bearing number, Λm = 6μUL/(p0c2)

λ Flow parameter, λ = 3μU/2rpp0

μ Gas dynamic viscosity

ρ Gas density
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Highlights

• We evaluate the accuracy of the Reynolds equation for gas lubricated textured

bearings

• The accuracy of Reynolds equation decreases with increasing texture aspect

ratio

• The accuracy of Reynolds equation is independent of the bearing spacing

• The velocity gradient assumption breaks down with increasing texture aspect

ratio

• A cross film pressure gradient develops with increasing texture aspect ratio
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Figure 1.
Textured parallel slider bearing with one dimple: (a) x-z cross-sectional view; (b) top view

(z-direction).
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Figure 2.
Non-dimensional local pressure difference ΔPr between the RE and the NS solutions

calculated using the L2 norm. The gray-shaded area limits the range of the non-dimensional

bearing spacing and texture aspect ratio evaluated.
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Figure 3.
Local non-dimensional differential pressure along the center line of the upper surface of the

textured bearing obtained with the RE (PRE) and NS (PNS) equations for (a) ε = 0.1, δ =

0.003; (b) ε = 0.4, δ = 0.003.
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Figure 4.
Isobar contour lines in the x-z cross-section along the center line of the textured bearing: (a)

ε = 0.1, δ = 0.01; (b) ε = 0.4, δ = 0.01; (c) ε = 0.1, δ = 0.02; (d) ε = 0.4, δ = 0.02. To scale all

sub-figures uniformly, the vertical dimension is normalized with the minimum spacing c* in

the case of (a).
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Figure 5.
Average ratio of velocity gradients in the x- and z-directions Ravg as a function of ε and δ.

The gray-shaded area limits the range of the non-dimensional bearing spacing and texture

aspect ratio evaluated.
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Figure 6.
Average local Reynolds number as a function of ε and δ. The gray-shaded area limits the

range of the non-dimensional bearing spacing and texture density evaluated.
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Figure 7.
Velocity vectors for the x-z cross-section along the center line of the textured bearing, δ =

0.02; (a) ε = 0.03; (b) ε = 0.05; (c) ε = 0.1; (d) ε = 0.2. The insets show a magnification of

the velocity profile at the deepest point of the dimple.
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Table 1

Textured bearing parameters investigated in this study.

Flow factor, λ Texture density, Sp Texture aspect ratio, ε Non-dimensional spacing, δ

5.3×10-5 0.15 0.010-0.500 0.003-0.020
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