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Applying Topological Data Analysis to Logistics Systems 
Analysis 

EXECUTIVE SUMMARY 

The purpose of this project has been to apply computational tools from topological data 
analysis (TDA) to study logistical systems, with an emphasis on freight networks. TDA is a 
relatively nascent research area that allows one to describe geometric properties of a data set, 
such as connectivity, existence of holes, or clustering, in a way that imposes minimal 
assumptions on parametric structures like coordinate systems or forms of probability 
distributions. In recent years, TDA has been successfully applied to many different scientific 
domains, such as aviation, path planning, and time series analysis. To the best of our 
knowledge, this project has been the first to apply TDA to the logistics domain. 

TDA is particularly useful for identifying coarse features in a datset, such as clusters, connected 
components, cycles, or holes. These all have natural interpretations within the context of 
freight network analysis; for example, a cluster of points likely corresponds to a large 
metropolitan region with major activity, and a cycle may correspond to desirable sequences of 
loads that shippers undertake so as to start and end at their home destination. The ability to 
identify these features represents a powerful tool in the analysis of a wide range of problems in 
freight and network analysis, such as identifying bottlenecks, cyclic behavior, or clustering. 

The basic principle that we have exploited is that TDA excels at identifying coarse features in 
datasets using a technique called persistence, and is not sensitive to more localized 
phenomena. The fundamental data structure in TDA is called a simplicial complex, which is a 
generalization of a network structure that allows one to identify not only pairwise relationships 
(i.e. arcs or links in a network”), but also relationships between three or more entities (e.g., 
“these four cities are all part of the same metropolitan region). We have used these tools to 
make descriptive insights about the interconnectedness of freight networks.  
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Introduction 

The purpose of this report is to apply techniques from topological data analysis (TDA) to 
problems in logistics systems analysis. TDA is a relatively nascent research area that allows one 
to describe geometric properties of a data set, such as connectivity, existence of holes, or 
clustering, in a way that imposes minimal assumptions on parametric structures like coordinate 
systems or forms of probability distributions. In recent years, TDA has been successfully applied 
to many different scientific domains, such as time series analysis, text mining, cancer biology, and 
materials science. To the best of our knowledge, this project has been the first to use TDA in the 
area of transportation, or operations research in general. The basic principle that we exploit is 
that TDA excels at identifying coarse features in datasets using a technique called persistence, 
and is not sensitive to more localized phenomena. This enables us to use its strengths in unique 
ways, such as identifying coarse features in network flows and improving the performance of 
local search methods for logistical optimization problems.  

The structure of this report is as follows: Chapter 1 introduces the foundational techniques of 
TDA and persistent homology and illustrates its use via several examples. In Chapter 2, we define 
a new simplicial complex construction associated to a stochastic matrix and steady state vector. 
The persistence function is defined axiomatically in such a way that leverages the available 
structure of a random process.  Chapter 3 investigates the complex’s efficacy in recovering 
coarse features of Markov chains on data taken from origin-destination pairs in the US freight 
network. 

1. Topological Data Analysis: A Primer 

Topology is the branch of mathematics that studies shapes and spatial relations. Its application 
to the analysis of high-dimensional data sets is called Topological Data Analysis (TDA). Topology 
has several features that make it ideal for applications to data [1]. First, topological techniques 
are "coordinate free," meaning the geometric properties being studied are intrinsic and do not 
depend on the choice of coordinates. Second, topology studies properties that are invariant 
under small deformations, making it possible to pick out the "shape" of objects despite 
variation and deformation. Thirdly, extensions of topological methods like homology allow one to 
construct summaries of the invariants of a space over a range of parameter values. This is useful 
because the results of point cloud techniques often depend on the choice of parameter, so a 
summary over a changing parameter value is oftentimes more valuable. These properties, which 
are illustrated in Figure 1, make topology an effective lens through which to view data. 



 

 2 

 

Figure 1. Essential features that make topology ideal for data applications. 

In recent years, TDA has been successfully applied to many different scientific domains such as 
time series analysis [2], image processing [3, 4, 5], text mining [6], and materials science [7]. 
Figure 2 shows an example of a TDA pipeline applied to point cloud data from a human hand, in 
which coarse features - the finger and thumbs - are recognized as distinct entities. In the 
following sections of this report, we will utilize TDA methodology in a novel application to 
logistics systems analysis, exploiting the ability of TDA to identify coarse features in datasets via 
a technique called persistence. 
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Figure 2. A computational topology analysis of point cloud data from the human hand from 
[1]. 

1.1 Homology and persistence 

When considering a topological space, we often wish to characterize its intrinsic properties. 
Specifically, we want information regarding its connected components, loops, and higher 
dimensional analogues. Algebraic topology formalizes this notion of connectivity information 
via the homotopy group, the set of equivalence classes of loops under an equivalence relation 
which encodes the “sameness” or essential difference of loops. Unfortunately, the homotopy 
group of a space is typically difficult to compute. However, a more computable extension called 
the homology group exists. From the homology group of a space we can derive a vector of 
integers called Betti numbers, where the k-th Betti number counts the number of equivalence 
classes of k-dimensional surfaces in the space under the extended equivalence relation. 
Informally speaking, the lower dimensional Betti numbers have natural, visual 
interpretations: the zeroth Betti number β0 counts the number of connected 
components, the first Betti number β1 counts the number of 1-dimensional holes, or 
loops, and the second Betti number β2 counts the number of voids of a shape. Figure 3 
shows a few examples of some shapes and their corresponding Betti numbers.  

 

Figure 3. A 2-dimensional "blob" has β0 = 1 because it consists of one component, and βk = 0 
for all other k (3a). The 2-dimensional blob with holes in (3b) still has β0 = 1, but β1 = 3 
because there are three holes present. The (hollow) sphere in (3c) has β0 = 1, β1 = 0, β2 = 1, 
and βk = 0 for all other k; the β2 = 1 is due to the interior of the sphere. Finally, the torus in 
(3d) has β0 = 1, β1 = 2, β2 = 1, and βk = 0 for all other k; the β1 = 2 is due to the two holes 
indicated with thickened lines (one for the "donut" hole and one that wraps around the 
thickness of the torus). The β2 = 1 is due to the interior of the torus. 
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1.2 Filtered simplicial complexes using persistent homology 

Rather than computing Betti numbers at a single filtration value of the complex, we compute a 
summary of the Betti numbers over a range of filtration values to examine features in the point 
cloud which "persist." An example is explained in detail below. 

We begin with a point cloud X = {(−1, 0), (1, 0), (−1, 2), (1, 2), (0, 3)}  (Figure 4). These points form a 
house-like shape in R2. We can construct a Vietoris-Rips complex V R(X, t) with filtration value t 
in the following way: take the set X as the vertex set for the complex, and include the k-simplex 
{x0, x1, . . . , xk} if and only if d(xi, xj) ≤ t for all 0 ≤ i, j ≤ k. We then allow the filtration value t to 
vary from 0 to a maximum value tmax = 4 and observe how the complex changes in terms of its 
Betti numbers. As long as the maximum filtration value is larger than the diameter of X, all 
edges will eventually be included.  We will illustrate this process below, using balls of radius t 
centered at each vertex point. An edge [a, b] is included when b ∈ Bt(a) and a ∈ Bt(b), where 
Bt(x) is the ball of radius t centered at point x. 

First, analyzing β0, we begin with five connected components at t = 0 (each point is its own 

component). For filtration values 0 ≤ t < √2, none of the balls intersect, and we maintain five 

connected com- ponents. At filtration value t = √2, edges [(−1, 2), (0, 3)] and [(0, 3), (1, 2)] are 
included in the simplex, reducing the number of connected components to three. This structure 
persists until t = 2, where edges [(−1, 2), (−1, 0)], [(−1, 0), (1, 0)] and [(1, 0), (1, 2)] are included. 
This reduces the number of connected components to one. Similarly for β1, there are no 1-
dimensional holes until filtration value t = 2, at which point the hollow square appears. This hole 

is filled at t = √8, at which point the edges [(−1, 2), (1, 0)] and [(−1, 0), (1, 2)] are added to the 
complex and the 2-dimensional simplices that make up the square are included. 

 

Figure 4. Evolution of VR(X) for increasing values of t. Intervals shown: 0 ≤ t <√2, √2 ≤ t < 

2, 2 ≤ t <, √8, √8 ≤ t. 

The relationship between β0, β1 and t can be summarized in Betti barcodes (Figure 5, which 
show the intervals of t over which each connected component (first-dimensional hole) exists. 
These barcodes provide a concise summary of the set’s key geometric features, including those 
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that persist over large intervals of filtration values and those that appear and "die" over 
comparatively shorter intervals. 

 

Figure 5. Zeroth and first Betti barcodes for the house point cloud under Vietoris-Rips 
complex. 

2. The Persistent Homology of a Transportation Flow Network 

In this section, we introduce a new filtered persistence complex construction associated to a 
transportation flow network.  So as to side-step issues in non-conservation of flows, we find it 
most helpful to frame our construction in the language of Markov chains by normalizing the 
rows of the flow matrix, thus resulting in a stochastic matrix together with a steady state 
vector. We then consider several examples of varying complexity. To the best of our 
knowledge, no other Markov chain-based filtered complex constructions exist. First, we begin 
with some intuition behind the complex. 

Markov chains are used to model many different things; one advantage they possess is that one 
can use (for example) first transition analysis to derive coarse algebraic features of a model. The 
best example of such a feature is the stationary distribution, which roughly speaking provides 
information about the importance of the various states, but other features include transient 
versus recurring states, degree sequences, hitting times, and information from first transition 
analysis. These "features" can aid in making observations and conclusions about the process. 
The purpose of this chapter is to use topological data analysis to identify coarse features in 
Markov chains that are not accessible via traditional methods. 
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2.1 Conceptual example: the predator-prey model 

The Lotka-Volterra model studies the interactions of a population of X prey particles (animals, 
agents) and Y predator particles. We assume the following three possible reaction events: 

1. Prey reproduction, X → 2X 

2. Prey consumption generates a predator, X + Y → 2Y 

3. Predator death, Y → ϕ 

Furthermore, each prey reproduces at rate α, prey and predator encounters occur at rate 
β, and predators die off at rate γ. Letting X(t) and Y(t) be the predator and prey populations 
as functions of time, the Lotka-Volterra equations are given by 

𝑑𝑋

𝑑𝑡
= 𝛼𝑋(𝑡) − 𝛽𝑋(𝑡)𝑌(𝑡) 

𝑑𝑌

𝑑𝑡
= 𝛽𝑋(𝑡)𝑌(𝑡) − 𝛾𝑌(𝑡) 

Solutions to this set of equations are characterized by boom and bust cycles within the predator 
and prey populations, pictured in Figure 6. Intuitively, these capture the phenomenon that 
when predator populations are high, prey are consumed at a higher rate and experience 
population decline. Similarly, when prey populations are low because of over-hunting, 
predators no longer have a robust food source and begin experiencing population decline until 
prey populations recover.  Examining the state space diagram of the Lotka-Volterra equations 
reveals an orbital structure constrained by the initial state (X(0), Y (0)), as shown in Figure 7. 

A continuous-time Markov chain (CTMC) version of this model is given in [8]. Let (X, Y), the 
number of prey and predator particles, be the states of the CTMC and define the following state-
dependent transition rates: 

• (X, Y ) → (X + 1, Y ) with rate c1X (prey reproduction) 

• (X, Y ) → (X − 1, Y + 1) with rate c2XY (predator-prey encounter) 

• (X, Y ) → (X, Y − 1) with rate c3Y (predator death) 
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Figure 6. Boom and bust cycles in the predator-prey model. 

 

Figure 7. State space diagram for the Lotka-Volterra equations showing orbits for several 
initial conditions. 
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Figure 8. Transition structure of the CTMC model for predator-prey interactions as defined by 
[21]. 

These transitions are summarized in Figure 8. Of course there are other ways of capturing the 
predator-prey relationship in a stochastic model. However, for the purpose of TDA applications, 
we choose this particular stochastic model to study. We consider the transition matrix P 
derived from the associated jump chain with modifications to ensure that there are no 
absorbing states (that is, no population extinctions or growth beyond maximum values Mprey, 
Mpred). The entries of P are defined as follows: 

𝑃((𝑖, 𝑗), (𝑖 + 1, 𝑗)) =
𝑐1𝑖

𝑐1𝑖 + 𝑐2𝑖𝑗 + 𝑐3𝑗
, 𝑖 ≠ 𝑀𝑝𝑟𝑒𝑦  

𝑃((𝑖, 𝑗), (𝑖 − 1, 𝑗 + 1)) =
𝑐2𝑖𝑗

𝑐1𝑖 + 𝑐2𝑖𝑗 + 𝑐3𝑗
, 𝑖 ≠ 1, 𝑗 ≠ 𝑀𝑝𝑟𝑒𝑑  

𝑃((𝑖, 𝑗), (𝑖, 𝑗 − 1)) =
𝑐3𝑗

𝑐1𝑖 + 𝑐2𝑖𝑗 + 𝑐3𝑗
, 𝑗 ≠ 1 

𝑃 ((𝑖, 𝑀𝑝𝑟𝑒𝑑), (𝑖 + 1, 𝑀𝑝𝑟𝑒𝑑)) =
𝑐1𝑖

𝑐1𝑖 + 𝑐3𝑀𝑝𝑟𝑒𝑑
, 𝑖 ≠ 𝑀𝑝𝑟𝑒𝑦  

𝑃((𝑖, 𝑀𝑝𝑟𝑒𝑑), (𝑖, 𝑀𝑝𝑟𝑒𝑑 − 1)) =  
𝑐3𝑀𝑝𝑟𝑒𝑑

𝑐1𝑖 + 𝑐3𝑀𝑝𝑟𝑒𝑑
 

𝑃 ((𝑀𝑝𝑟𝑒𝑦 , 𝑗), (𝑀𝑝𝑟𝑒𝑦 − 1, 𝑗 + 1)) =
𝑐2𝑀𝑝𝑟𝑒𝑦𝑗

𝑐2𝑀𝑝𝑟𝑒𝑦𝑗 + 𝑐3𝑗
, 𝑗 ≠ 𝑀𝑝𝑟𝑒𝑑  

𝑃 ((𝑀𝑝𝑟𝑒𝑦 , 𝑗), (𝑀𝑝𝑟𝑒𝑦 , 𝑗 − 1)) =
𝑐3𝑗

𝑐2𝑀𝑝𝑟𝑒𝑦𝑗 + 𝑐3𝑗
, 𝑗 ≠ 1 
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𝑃((𝑀𝑝𝑟𝑒𝑦 , 𝑀𝑝𝑟𝑒𝑑), (𝑀𝑝𝑟𝑒𝑦 , 𝑀𝑝𝑟𝑒𝑑 − 1)) = 1 

𝑃((1, 𝑗), (1, 𝑗 − 1)) =
𝑐3𝑗

𝑐1 = 𝑐3𝑗
, 𝑗 ≠ 1 

𝑃((1, 𝑗), (2, 𝑗)) =
𝑐1

𝑐1 + 𝑐3𝑗
 

𝑃((𝑖, 1), (𝑖 + 1,1)) =
𝑐1𝑖

𝑐1𝑖 + 𝑐2𝑖
, 𝑖 ≠ 𝑀𝑝𝑟𝑒𝑦  

𝑃((𝑖, 1), (𝑖 − 1,2)) =
𝑐2𝑖

𝑐1𝑖 + 𝑐2𝑖
, 𝑖 ≠ 1 

𝑃 ((𝑀𝑝𝑟𝑒𝑦 , 1), (𝑀𝑝𝑟𝑒𝑦 − 1,2)) = 1 

𝑃((1,1), (2,1)) = 1 

 

Figure 9. A simulation of 500 steps from the Markov chain defined by Equations (3)-(17). 

Figure 9 shows a simulation of 500 steps from the resulting Markov chain starting from a 
randomly selected state. Parameter choices were Mprey = Mpred = 35, c1 = 1, c2 = 0.075, c3 = 1 and 
Mprey = Mpred = 20, c1 = 1, c2 = 0.2, c3 = 1. [8] states that there is no single limit cycle, but rather a 
family of perturbed cycles. However, common sense says that there is really just one cycle, but 
we lack the machinery to identify it. Our objective in the next section is to construct a complex 
that captures this cycle. 
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2.2 A filtered complex for network transportation flows 

We now describe in detail the construction of the new filtered complex for modelling flows in a 
transportation network, as interpreted as movement on a Markov chain. Let P be a stochastic 
matrix for a Markov chain with n states, with stationary distribution π such that πP = π.  Let 
[Pm]ij denote the ij-th entry of that matrix Pm. We propose the Carlsson-Sweitzer-Siojo (CSS) 
function which induces a matrix Q by 

𝑄𝑖𝑗 = max
𝑚≥1

([𝑃𝑚]𝑖𝑗 − 𝜋𝑗) 

Another possibility is to consider a matrix Q induced by the discrete Green function [9] 

𝑄𝑖𝑗 = ∑
𝑚≥1

([𝑃𝑚]𝑖𝑗 − 𝜋𝑗) 

For each of these functions, the entry Qij quantifies how much node i contributes to node j over 
the long run. Next, since stationary distributions have the convention that high values of πi 
correspond to significant states i, we will reverse the usual convention for persistence of 
simplices. That is, if two simplices satisfy the inclusion relation Δ′ ⊆ Δ, then the persistence 
function should satisfy 𝑓(Δ′) ≥ 𝑓(Δ).  We now construct the persistence function for the new 
complex in an axiomatic fashion as interpreted via flows in a transportation network. 

First, the persistence value of a simplex {j0, . . . , jk} should be an aggregate of all the 
contributions to it, from all the n nodes in the chain. Furthermore, nodes with low stationary 
distribution values should make proportionally small contributions. Thus, our persistence 
function should be of the form 

𝑓(Δ) = ∑ 𝜋𝑖ℎ(𝑄𝑖𝑗0
, 𝑄𝑖𝑗1

, … , 𝑄𝑖𝑗𝑘

𝑖

) 

Next, the function h should only be large if all its arguments 𝑄𝑖𝑗0
, 𝑄𝑖𝑗1

, … , 𝑄𝑖𝑗𝑘
 are large.  This is 

because 𝑓(Δ) should always be thought of as a property of the entire simplex, not merely its 
components. We therefore take a product of the entries 𝑄𝑖𝑗0

, 𝑄𝑖𝑗1
, … , 𝑄𝑖𝑗𝑘

.  To summarize, the 

final form of the persistence function for our complex construction is 

𝑓({𝑗0, … , 𝑗𝑘}) = min
𝑝∈Δ𝑘

∑ 𝜋𝑖𝑄𝑖𝑗0

𝑝0 ⋯ 𝑄𝑖𝑗𝑘

𝑝𝑘

𝑖

 

Where 𝑝 ∈ Δ𝑘 denotes an entry of the probability simplex. 

2.2.1 Lotka-Volterra revisited 

We now return to the Lotka Volterra model from the previous section. The persistence 
barcodes obtained from applying the Markov chain complex to the transitions matrix P are 
given in Figure 10. The longest β1 barcode indicates a cycle in the Markov chain, which is best 
interpreted as a cycle of increasing and decreasing predator and prey populations. While the 
state space diagram shows individual orbits tied to specific initial conditions, the TDA technique 
reveals the overall cyclic nature of the Markov chain. This coarse feature is not uncovered by 
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traditional methods. Furthermore, the β0 barcodes indicate that there are many states (i, j) that 
are disconnected, i.e., not typically visited by the chain. This experiment not only demonstrates 
the use of the new filtered complex and TDA techniques applied to a theoretical model, but 
also the use of higher order Betti numbers to analyze the structure of Markov chains. 

3. An Empirical Study 

One “real-world” application is to a set of commercial flight departure and arrival data available 
through BTS [10]. The dataset includes details from commercial flights between October 1987 
and April 2008 with nearly 120 million records. Taking just the "Origin" and "Destination" 
columns from the data set for a single year, we build a Markov chain that uses the frequency of 
origin-destination pairs to derive transition probabilities for each location pair. That is, the 
probability of a transition from location x to location y is simply the number of flights from x to 
y divided by the total number of flights departing from x. Additionally, in order to avoid 
absorbing states, we delete any locations that are either a destination but never an origin, or an 
origin but never a destination. We can now apply the filtered complex to the resulting 
transition probability matrix and observe the resulting persistence barcodes. The barcodes 
obtained from performing these steps for the 1987 data are shown in Figure 11. There is one β1 
barcode of significant length, and we can visualize the cities and edges that make up a 
representative cycle for this barcode, as shown in Figure 12. 

 

Figure 10. β0 and β1 barcodes for a stochastic model of predator-prey interactions obtained 
from the Markov chain complex. 
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Figure 11. β0 and β1 persistence barcodes for airline data from 1987. 

 

Figure 12. A representative cycle for the longest β1 barcode. 

Following the same procedure with the 2008 data, we obtain the barcodes shown in Figure 13, 
which show three significant β1 barcodes. Javaplex can identify a (nonunique) representative 
cycle for each of the three longest β1 barcodes, which we display in Figure 14.  Viewing the 
subcomplexes in this way reveals three empty 2-simplices composed of the following edges (1-
simplices): ABQ-DFW, DFW-PHX, PHX-ABQ; ABQ-DFW, DFW-DEN, DEN-ABQ; DEN-DFW, DFW-
PHX, PHX-DEN. Recall that, intuitively, a simplex is added to this Markov chain complex if there 
are sufficiently many nodes with large enough stationary distribution values that contribute to 
it over the long run. Furthermore, if Qij′ = 0 for some j′ in the simplex, then the term for node i 
in the persistence value is zero. Thus, the appearance of an empty 2-simplex implies that in the 
long run, there are nodes that contribute to both cities in each edge of the simplex, but not to 
all three. To confirm this, we can examine the matrix Q. Specifically, taking the empty 2 simplex 
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ABQ-DFW-DEN as an example, we consider the top 10% of values Q(i, j) for j ∈ {ABQ, DFW, 
DEN} and all possible nodes i and look for contributing nodes j that are in common to two but 
not all three cities in the 2-simplex. The Venn diagrams in Figure 15 and Figure 16 show the 
results of this process for both the ABQ-DFW-DEN and ABQ-DFW-PHX empty 2-simplices. 
Additionally, plotting these contributing cities on a map of the United States shows them as 
belonging to three geographically separated regions (see Figure 17 and Figure 18). The top 
contributors for an edge are also smaller local metropolitan regions, possibly implying that the 
two edge cities but not the third in the simplex act as a "hub" for the geographic region.  Cycles 
such as these can be interpreted as potential opportunities for agglomeration, as their 
components have many individual commonalities in terms of flows. 

 

Figure 13. β0 and β1 persistence barcodes for airport flow data from 2008. 

 

Figure 14. Representative cycles for the three longest β1 barcodes: ABQ-AUS-DAL-DFW-PHX-
ABQ, ABQ-AUS-DAL-DFW-DEN-SJT-LAX-PHX-ABQ, and ABQ-AUS-DAL-DFW-IAH-ATL-ORD-MSP-
DEN-SJT-LAX-PHX-ABQ. 
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Figure 15. Cities from the top 50 contributors to ABQ, DEN, and DFW were considered. 

 

Figure 16. Cities from the top 50 contributors to ABQ, PHX, and DFW were considered. 
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Figure 17. A Google map showing the highlighted cities from Figure 15 and the three cities 
that compose the empty 2-simplex (in yellow). 

 

Figure 18. A Google map showing the highlighted cities from Figure 16. 

4. Conclusions 

This project has attempted to bridge the gap between topological data analysis and logistics 
systems analysis. We have introduced a novel simplicial complex construction applicable to 
transportation flow networks that capture similarity structures and cycles between cities. Its 
use in exploring the underlying structure and coarse features of a stochastic process identifies a 
new way to determine coarse features in Markov chains such as cycling or clustering. Our 
results broaden the relevance and suitability of topological data analysis as an interdisciplinary 
tool for many fields of study, and its future applications in transportation. 
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Data Summary 

Products of Research  

The data that were collected were obtained from the Bureau of Transportation Statistics and 
are free to use by the public. 

Data Format and Content  

The Commodity Flow Survey (CFS) is the primary source of national and state-level data on 
domestic freight shipments by American establishments. Data are provided on the types of 
commodities being moved, along with their origins and destinations, values, weights, modes of 
transportation, distance shipped, and ton-miles of commodities shipped. The CFS is a 
component of the Census Bureau’s economic census and is conducted every five years. 

Data Access and Sharing  

The general public can access the data by visiting https://www.bts.gov/product/commodity-
flow-survey.  

Reuse and Redistribution  

There are no restrictions on reuse and redistribution of the data used in this report. 

https://www.bts.gov/product/commodity-flow-survey
https://www.bts.gov/product/commodity-flow-survey
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