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Abstract: In this study, two Burkholderia strains, strain KNU17BI2 and strain KNU17BI3, were
isolated from maize rhizospheric soil, South Korea. The 16S rRNA gene and multilocus sequence
analysis and typing (MLSA-MLST) were used for the identification of the studied strains. Strain
KNU17BI2, which belonged to Burkholderia cenocepacia, was of a novel sequence type (ST)
designated ST-1538, while strain KNU17BI3 had a similar allelic profile with the seven loci of
Burkholderia contaminans strain LMG 23361. The strains were evaluated in vitro for their specific
plant growth promoting (PGP) traits, such as zinc solubilization, phosphate solubilization, ammonia
production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, indole acetic acid (IAA)
production, siderophore, and hydrolytic enzyme activity. Interestingly, the strains exhibited a positive
effect on all of the tested parameters. The strains also showed broad-spectrum antifungal activity
against economically important phytopathogens in the dual culture assay. Furthermore, the strains
were evaluated under greenhouse conditions for their in vivo effect to promote plant growth and
to suppress the root rot of maize that is caused by Fusarium temperatum on four Korean maize
cultivars. The results of the greenhouse study revealed that both of the strains were promising to
significantly suppress fusarium root rot and enhance plant growth promotion on the four maize
cultivars. This study, for the first time, reported in vitro antifungal potential of B. cenocepacia of
novel ST against economically important plant pathogens viz., F. temperatum, Fusarium graminearum,
Fusarium moniliforme, Fusarium oxysporum f.sp. melonis, Fusarium subglutinans, Phytophthora drechsleri,
and Stemphylium lycopersici. This is also the first report of zinc solubilization by B. cenocepacia.
Moreover, the present research work reports, for the first time, about the potential of B. cenocepacia
and B. contaminans to control the root rot of maize that is caused by F. temperatum. Therefore,
we recommend further studies to precisely identify the bioactive chemical compounds behind such
activities that would be novel sources of natural products for biological control and plant growth
promotion of different crops.

Keywords: Burkholderia cenocepacia; Burkholderia contaminans; Fusarium temperatum; MLSA-MLST;
sequence type (ST); root rot; Zea mays

1. Introduction

Globally, Fusarium species cause several diseases of maize (Zea mays L.), such as seed rot, seedling
blight, and stalk rot [1,2]. Fusarium temperatum has been reported to cause seed rot, seedling blight,
and stalk rot of maize in different parts of the world [3,4], and it is necessary in the proper monitoring
and control of disease in maize-growing areas [5].
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Management of Fusarium root rot with chemicals has previously been reported [6,7]. However,
due to environmental pollution and public concern, interest in the use of synthetic chemical fertilizers
and pesticides has been exceedingly diminished [8]. Interestingly, the use of plant growth promoting
rhizobacteria (PGPR), which plays a pivotal role in nutrient management, plant growth promotion,
and disease management, has been increased [9]. Nevertheless, there is no information regarding the
management of maize root rot that is caused by F. temperatum.

Members of the genus Burkholderia are the highly adaptable micro-organisms that can inhabit
highly diverse ecological niches [10]. Interestingly, the Burkholderia species are able produce plenty of
secondary metabolites, which are novel sources of bioactive compounds [11] with proteolytic [12] and
lipolytic activities [13]. Furthermore, rhizospheric Burkholderia species have been reported to solubilize
the phosphorus and zinc from insoluble sources [14,15]. More recently, several studies suggested the
potential biotechnological application of Burkholderia species to promote plant growth and control
plant diseases [16–18].

The genus Burkholderia was initially defined by Yabuuchi et al. [19] to accommodate seven
species of the former rRNA group II pseudomonads. Currently, the genus Burkholderia comprises
more than 100 species [20]. However, Burkholderia cepacia complex (Bcc) bacteria are highly closely
related species, in which the similarity level of the 16S rRNA gene sequence is more than 97.5% [18].
Interestingly, the multilocus sequence-based approach has been emerged as a powerful tool to identify
and type Bcc [18,21]. Thus, the present study aimed to identify the studied Burkholderia strains using
multilocus sequence analysis and typing (MLSA-MLST), and to determine their biocontrol and plant
growth promotion activity on four different Korean maize cultivars, namely Hikchal, Mibeak-2ho,
Chahong-chal, and Oluckdehack-chal.

2. Results and Discussion

In this study, the biochemical and genetic characteristics of two Burkholderia strains viz., KNU17BI2
and KNU17BI3, which were isolated from maize rhizosphere in South Korea, were investigated.

2.1. Identification of Bacterial Isolates

According to BLAST-based search, 16S rRNA gene sequence of the studied strains, KNU17BI2
and KNU17BI3, had high similarity (99%) to the 16S rRNA gene sequences of reference Burkholderia
species (data not shown). The phylogenetic relationship based on 16S rRNA gene sequence analysis
showed that strain KNU17BI2 and strain KNU17BI3 were closely related to Burkholderia cenocepacia
and Burkholderia contaminans in our phylogenetic tree, respectively (Figure 1). Thus, for a better
identification of the studied strains from other closely related to reference Burkholderia species,
multilocus sequence analysis and typing (MLSA-MLST) was performed. MLSA-MLST is the best
option for the identification of the B. cepacia complex [18,22,23]. Thus, the phylogenetic tree that is
inferred from MLSA revealed that the strain KNU17BI2 and strain KNU17BI3 belong to B. cenocepacia
and B. contaminans, respectively (Figure 2). More importantly, the result of multilocus sequence
typing (MLST) analysis revealed that the strain KNU17BI2 belongs to B. cenocepacia was of a novel
sequence type (ST) that was designated ST-1538. The novel ST-1538 differs from other closely related
sequence types by at least three loci in the allelic profile (Table 1). On the other hand, strain KNU17BI3,
identified as B. contaminans, had a similar allelic profile when compared to all of the seven loci of
B. contaminans with the sequence type 102 of the strain LMG23361 (Table 1). The MLST data of our
strain KNU17BI2 of sequence type 1538, including the nucleotide sequences of each loci, allelic profiles,
as well as sequence type, have been deposited in the Burkholderia cepacia complex PubMLST database
at http://pubmlst.org/bcc. The isolation of B. cenocepacia and B. contaminans from rhizospheric soil
has previously been reported [14,24]. However, this is the first report on the isolation of B. cenocepacia
in maize rhizosphere in South Korea.

http://pubmlst.org/bcc
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Figure 1. Neighbor-joining phylogenetic analysis based on the 16S rRNA gene sequences of B. 
cenocepacia strain KNU17BI2 and B. contaminans strain KNU17BI3. Bootstrap values were determined 
based on 1000 trials and bootstrap values only >50 are indicated at branch nodes. The scale bar 
represents the number of nucleotide substitutions per site. Sequences of type species are indicated by 
a symbol (T). 

Figure 2. Phylogenetic tree based on MLSA of the concatenated nucleotide sequences of seven loci 
from the studied strains (B. cenocepacia strain KNU17BI2 and B. contaminans strain KNU17BI3) and 
reference strains of Burkholderia species. Values (>50%) that were based on 1000 bootstraps are shown 
at branch nodes. The scale bar represents the number of nucleotide substitutions per site. Sequences 
of type species are indicated by a symbol (T). 

Figure 1. Neighbor-joining phylogenetic analysis based on the 16S rRNA gene sequences of
B. cenocepacia strain KNU17BI2 and B. contaminans strain KNU17BI3. Bootstrap values were determined
based on 1000 trials and bootstrap values only >50 are indicated at branch nodes. The scale bar
represents the number of nucleotide substitutions per site. Sequences of type species are indicated by a
symbol (T).
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Table 1. Allelic profile of the seven loci of strain KNU17BI2 and strain KNU17BI3 as compared with
closely related strains of B. cenocepacia and B. contaminans.

Strain Species Source
MLST a

atpD gltB gyrB recA lepA phaC trpB ST

KNU17BI2 B. cenocepacia Environmental 23 605 307 15 93 8 144 1538

HI2424 B. cenocepacia Environmental 23 134 57 15 93 8 14 122
MDIII-T99 B. cenocepacia Environmental 23 16 86 15 93 8 14 125
SBL04-528 B. cenocepacia Clinical 23 16 352 15 93 6 14 414
VC19081 B. cenocepacia Clinical 16 134 352 15 93 8 144 1500

KNU17BI3 B. contaminans Environmental 64 80 76 89 105 97 70 102

LMG 23361 B. contaminans Environmental 64 80 76 89 105 97 70 102
VC19056 B. contaminans Clinical 151 192 245 152 158 173 151 482
PACA05 B. contaminans Clinical 151 192 245 152 11 173 151 637
BCS10 B. contaminans Clinical 64 192 245 152 158 173 151 716

CNM20101068 B. contaminans Clinical 318 192 245 152 158 173 151 771
A39318 B. contaminans NA 64 192 631 378 428 118 420 912

a Multilocus sequence type (ST). NA—not available.

2.2. In Vitro Plant Growth Promoting (PGP) Activity Assays

With regard to plant growth promoting traits, both of strains showed a promising effect.
The results of phosphate solubilization assay revealed that the strains showed the ability to solubilize
tricalcium phosphate (TCP) according to the formation of clear solubilization zone around its colony
(Table 2 and Figure 3). Strain KNU17BI2 showed a higher phosphate solubilization index (SI) (2.3) as
compared to strain KNU17BI3 (1.8) after 10 days of incubation. The phosphate solubilization index
(SI) of both strains increased with the increasing incubation period (Table 2). The formation of the
solubilized halo zone around the bacterial colonies may be due to the ability of the strains to produce
phosphatase enzymes or other chemical compounds, such as organic acids and polysaccharides [25].
Similarly, the potentiality of B. cenocepacia to solubilize inorganic phosphates has been previously
reported [26]. Phosphorus is the second most important nutrient after nitrogen for plant growth;
however, only less than 5% of total soil phosphorus is found in available form to plants [27,28]. Thus,
the ability to solubilize the insoluble phosphates is one of the most important features of plant growth
promoting bacteria to enhance plant nutrition through an increase in phosphorus uptake by plants [29].
The application of phosphate solubilizing bacteria could contribute to the reduction of excessive
fertilizers chemical usage and thereby reduce the harmful effects of fertilizers on the environment and
human health [28].

Table 2. Qualitative estimation of phosphate and zinc solubilization efficiency of the studied strains.

Solubilization
Incubation

Period (Days)

Strains

KNU17BI2 KNU17BI3

Halo Zone
Diameter (mm) a

Solubilization
Index

Halo Zone
Diameter (mm) a

Solubilization
Index

Phosphate 7 17.0 ± 1.15 1.9 23.0±2.25 1.6
10 21.5±1.21 2.3 30.0±1.20 1.8

ZnO b 7 21.6±0.50 1.2 19.0±1.58 1.4
10 25.2±1.34 1.3 22.4±2.2 1.5

ZnCO3
b 7 17.0±1.80 1.1 18.0±1.28 1.2

10 19.6±1.60 1.2 21.8±1.29 1.3
a Values are means of three replications; b Insoluble zinc sources containing 1% zinc (ZnO, 1.244 g·L−1 and ZnCO3, 1.913 g·L−1).
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Figure 3. (A,E) In vitro phosphate solubilization on national botanical research institute’s phosphate
growth (NBRIP) plates (B,F) zinc solubilization on Pikovskaya (PVK) agar plates supplemented with
an insoluble ZnO (1.244 g/L) (C,G) siderophore production, and (D,H) amylase activity after seven
days of incubation (top = strain KNU17BI2, bottom = strain KNU17BI3).

In addition, the Zn solubilization assay result revealed that both strains had the potential to
solubilize an insoluble zinc sources, ZnO (1.244 g·L−1) and ZnCO3, 1.913 g·L−1 in Pikovskaya
(PVK) agar media. The Zn solubilization ability of strain KNU17BI2 was comparatively higher than
KNU17BI3 on both tested zinc sources (Table 2 and Figure 3). In addition, both of the strains showed
higher solubilization efficiency on ZnO amended PVK agar media than ZnCO3 media. These results
comply with the previous studies [14,30] that Burkholderia species have the potential to solubilize
the insoluble form of zinc. The solubilization potential may be attributed to the release of different
chemical compounds, including gluconic acid and 2 keto gluconic acids [31]. Zn has the propensity to
form insoluble complexes in the soil and become unavailable for plant uptake [32]. Thus, the lack of
Zn is a continual challenge in crop production, being particularly in high pH soils, and its significant
impact on human nutrition has been previously reported [33,34]. Interestingly, the solubilization of an
insoluble soil Zn by bacterial inoculations has been reported to significantly increase in the total Zn
uptake and thereby increase plant growth [32].

Both the studied strains developed yellow-orange halo around their colonies on blue Chrome
Azurol S (CAS) agar medium signifying their ability to produce siderophore. Strain KNU17BI3
exhibited higher (23 mm) siderophore production, while KNU17BI2 exhibited very low siderophore
(12 mm) after seven days of incubation (Figure 3). Similar to our study, previous studies [35,36]
reported the potential of Burkholderia species to produce siderophores. A PGPR having siderophore
production potential plays an important role in helping plants to acquire iron for optimal growth and it
also offers competitive advantages to PGPR by suppressing the proliferation of plant pathogens [37,38].

The studied strains displayed positive results for ammonia production and IAA production. The
amount of ammonia that is produced by strain KNU17BI3 was by far higher (14.1 µg·mL−1) than
strain KNU17BI2 (6.3 µg·mL−1) after three days of incubation. In addition, both of the strains were
able to produce IAA in LB medium, regardless of amendment of L-tryptophan (Figure 4). After three
days of incubation, the amount of IAA production by strain KNU17BI3 in LB medium without the
amendment of L-tryptophan was higher (7.9 µg·mL−1) when compared to KNU17B2 (6.1 µg·mL−1)
(Figure 4). In L-tryptophan amended LB medium, the amount of IAA was increased as L-tryptophan
concentration increased in both strains (Figure 4). The maximum IAA (26.6 7.9 µg·mL−1) was produced
by strain KNU17BI3 at higher L-tryptophan concentration (2.0 µg·mL−1). Indole-3-acetic acid (IAA)
and ammonia are produced by many plant-associated bacteria that can enhance plant growth [39,40]
with enhanced water and nutrients uptake [41].
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The strains exhibited fast and luxuriant growth colonies on DF-agar plate that was supplemented
with 3mM ACC as the unique nitrogen source (data not shown). This signifies ACC deaminase
activity of the strains, as they were capable of using ACC as a nitrogen source. Our result complies
with previous reports [42,43] that ACC deaminase is the widespread enzyme in diverse Burkholderia
species, including B. caryophylli, B. cenocepacia, and B. contaminnans. Furthermore, strain KNU17BI2
exhibited a positive reaction for amylase, while strain KNU17BI3 did not show the activity (Figure 3).
Amylase activity can help PGPR to easily hydrolyze the cell wall of phytopathogens [44].
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2.3. In Vitro Antifungal Activity

In the dual-culture assay, the antagonistic activity of strain KNU17BI2 and strain KNU17BI3 were
tested against F. temperatum, maize root rot pathogen. The results revealed that both of the strains were
effective in inhibiting the mycelial growth of F. temperatum (Table 3). The strains were further tested for
their broad-spectrum activity against eight important phytopathogens (Table 3). The results showed
that both of them had strong antifungal activity against all of the tested phytopathogens (Table 3 and
Figure 5). The zone of inhibition around the tested plant pathogens (Figure 5) by the studied strains
may be attributed to the ability of the strains to produce toxin metabolites, proteolytic enzymes, and
siderophore [36,45]. Previous studies [14,15] reported the biocontrol potential of Burkholderia species,
including B. cepacia and B. contaminans against several phytopathogens. However, the antifungal
activity of B. cenocepacia against Fusarium graminearum, Fusarium moniliforme, Fusarium oxysporum f.sp.
melonis, Fusarium subglutinans, F. temperatum, Phytophthora drechsleri, and Stemphylium lycopersici
has not previously been reported. F. graminearum, F. moniliforme, and F. subglutinans are destructive
disease of cereals that cause yield loss and grain quality due to their associated toxic metabolites [46,47].
P. drechsleri is one of the most devastating plant pathogen causing sever root rot in various crops [48,49].
S. lycopersici is an emerging plant pathogen causing leaf spot, stem rot, and fruit rot in various
commercial crops [50–52]. This generally shows the essence of exploiting B. cenocepacia and
B. contaminans for the control of the aforementioned pathogens, which causes huge economic loss in
different crops.
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Table 3. Broad spectrum antifungal activity of the study Burkholederia strains.

Target Phytopathogens Percent Inhibition Zone (mm) a (Mean ± SE)

KNU17BI2 KNU17BI3

A. alternate 44.4 ± 1.5 b,c 46.7 ± 1.4 a,b,c

F. graminearum 44.0 ± 2.2 b,c 50.0 ± 1.5 a,b

F. moniliforme 50.1 ± 1.5 a,b,c 41.1 ± 0.8 c,d

F. oxysporum f.sp. melonis 50.2 ± 0.9 a,b,c 47.8 ± 1.2 a,b

F. subglutinans 44.5 ± 0.9 b,c 41.0 ± 0.9 c,d

F. temperatum 41.2 ± 0.9 c 40.0 ± 0.9 d

P. drechsleri 58.9 ± 2.1 a 38.9 ± 2.5 d

S. lycopersici 55.6 ± 2.3 a,b 51.6 ± 1.8 a

a Values are means of three replications. Mean values having the same letter(s) in each a column are not
statistically different (p ≤ 0.05) according to the Duncan’s multiple range test (DMRT) test.
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(top = B. cenocepacia strain KNUBI2, bottom = B. contaminans strain KNUBI3).

2.4. SEM Analysis

Scanning electron microscope was used to examine any morphological defects from the edges of
the inhibitory clear zone of the tested phytopathogens due to the studied strains. The SEM analysis
revealed that the studied strains caused serious defects in the hyphal morphology of the selected
phytopathogens, while hyphae from the untreated control were intact with normal morphology.
The studied strains caused the hyphae of the phytopathogens to shrink, lyse, and deform (Figure 6).
Similar to our study, such morphological defects in an interaction between bacterial strains and
fungi in a dual culture have previously been reported [53]. However, to the best of our knowledge,
the deleterious effects of B. cenocepacia against F. moniliforme, F. subglutinans, and F. temperatum have
not previously been reported.
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Figure 6. Scanning electron micrographs of (A,D,G) F. moniliforme, (B,E,H) F. subglutinans and
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G–I = untreated control), (scale bars: 20 µm). (A) White arrows denote shrinked, deformed and/or
lysed fungal structures.

2.5. Greenhouse Experiments

2.5.1. Effect of Strain KNU17BI2 and Strain KNU17BI3 on Virulence of F. temperatum

The influence of KNU17BI2 and KNU17BI3 in reducing the virulence of F. temperatum on the
seedlings of four maize cultivars viz., Hikchal, Mibeak-2ho, Chahong-chal, and Oluckdehack-chal was
assessed after 30 days of planting. Subsequently, typical symptoms that were caused by the root rot
pathogen, F. temperatum, were observed on pathogen-inoculated plants, as indicated by discolored
primary and secondary roots [54,55] (Figure 7). The severity data showed that root rot disease was
significantly reduced in all of the tested Korean maize cultivars following the soil drenching of
the studied strains (Figure 8). To the contrary, non-bacterized plants, but pathogen-challenged
(negative control treatment), had the highest F. temperatum-induced root rot severity (Figures 7 and 8).
The development of healthy roots on bacterized plants of each cultivar may be due to the direct effect of
the Burkholderia strains on pathogen, F. temperatum [56]. Similar to our result, previous studies [7,57]
reported the potential of PGPR to suppress maize root diseases. Burkholderia cepacia has been reported
to suppress Pythium damping-off of sweet corn through lysis of zoospores and the prevention of cyst
germination and germ tube growth [57]. Furthermore, Omar and his co-workers [58] demonstrated
the bio-control capacity of Burkholderia cepacia against Fusarium crown and root rot of. However,
no previous study has reported the potential of B. cenocepacia and B. contaminans to control root rot of
maize that is caused by F. temperatum. Among, the four maize verities tested, root rot severity was
comparatively higher on cv. Hikchal than cv. Mibeak-2ho (Figures 7 and 8). This is the first report
showing the reaction of Korean maize cultivars to the root rot causing pathogen, F. temperatum.
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Figure 8. Effectiveness of strain KNU17BI2 and strain KNU17BI3 for the control of root rot of maize
caused by F. temperatum in greenhouse. Percent severity index (mean of three replications having
10 plants per replication) assessed 30 days after treatment. Mean values having the same letter(s)
in each cultivar are not statistically different (p ≤ 0.05) according to DMRT test. Non-treated plants
(neither pathogen, nor Burkholderia strains) were served as non-treated control and non-bacterized
plants, but pathogen-challenged were served as negative control.
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2.5.2. Plant Growth Promotion Effect of Strain KNU17BI2 and Strain KNU17BI3

The result of our study revealed that F. temperatum highly affected the negative control plants,
thereby significantly reducing the shoot growth and amount of total chlorophyll content (Figure 9).
On the other hand, plants that were treated with either of the strains had a highly significant positive
effect on all plant growth parameters that were tested viz., total chlorophyll content, plant height,
shoot dry weight, and root dry weight in all maize cultivars (Figures 9 and 10). Similar to our
study, previous studies [1,4] reported that seedling chlorosis, reduction in shoot growth, and fresh
weight were observed on maize that was growing in F. temperatum inoculated soil. Furthermore,
previous reports [1,59,60] explained that the degree of virulence by F. temperatum was defined as
the inhibition of shoot elongation and chlorosis symptoms. More importantly, the increase in all
tested plant growth parameters may be due to the plant growth promoting traits that the strains
possess. In addition, the plant growth promotion effect of Burkholderia species on maize plant has been
previously reported [14,61]. It is worth to note that B. cenocepacia has been reported as plant-beneficial
endophytic bacterium to control Fusarium wilt of banana [62,63]. However, this is the first report
demonstrating the bio-control potential of B. cenocepacia and B. contaminans against root rot of maize
that is caused by F. temperatum.
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Figure 9. Effect of strain KNU17BI2 and strain KNU17BI3 on (A–D) total chlorophyll content and
(E–H) plant height of Korean maize cultivars (left to right = Hikchal, Mibeak-2ho, Chahong-chal,
and Oluckdehack-chal) after 30 days of planting. Mean values having the same letter(s) in each
cultivar are not statistically different (p ≤ 0.05) according to the DMRT test. Non-treated plants
(neither pathogen, nor Burkholderia strains) were served as non-treated control and non-bacterized
plants, but pathogen-challenged were served as negative control.
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Figure 10. Effect of strain KNU17BI2 and KNU17BI3 on root and shoot biomass of Korean maize
cultivars after 30 days of planting. Mean values having the same letter(s) in each cultivar are not
statistically different (p ≤ 0.05) according to DMRT test. Non-treated plants (neither pathogen,
nor Burkholderia strains) were served as non-treated control and non-bacterized plants, but
pathogen-challenged were served as negative control.

In conclusion, MLSA-MLST revealed that strain KNU17BI2, which belongs to B. cenocepacia,
was of a novel sequence type (ST) designated ST-1538. On the other hand, strain KNU17BI3, identified
as B. contaminans, had similar allelic profile when compared to all seven loci of B. contaminans strain
LMG 23361 with a sequence type 102. The current study reported two multi-trait bacterial strains
viz., B. cenocepacia strain KNU17BI2 and B. contaminans strain KNU17BI3 possessing promising
in vitro PGP traits, such as zinc solubilization, phosphate solubilization, ammonia production,
1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, indole acetic acid (IAA) production,
siderophore, and hydrolytic enzyme activity. This study is the first report on the strong in vitro
antifungal activity of B. cenocepacia strain KNU17BI2 of novel ST against several economically important
plant fungal pathogens. These include, against F. temperatum, F. graminearum, F. moniliforme, F. oxysporum
f.sp. melonis, F. subglutinans, P. drechsleri, and S. lycopersici. In our study, root drenching of plants of
four maize cultivars with the studied strains lead to an increase in the growth of the four maize
cultivars and a significant positive effect in the control of root rot of maize seedlings on four different
maize cultivars. The present research work reports, for the first time, the potential of B. cenocepacia and
B. contaminans to control root rot of maize that is caused by F. temperatum. Hence, further studies are
needed to precisely identify the prevailing bioactive chemical compounds behind such activities that
would be novel sources of natural products for plant growth promotion as well as biological control.

3. Materials and Methods

3.1. Microbial Sources

In this study, two bacterial strains (strain KNU17BI2 and strain KNU17BI3) were isolated from
maize rhizosphere soil that was located in Gangwon-do province (37◦86′ N, 127◦75′ E), South Korea.
For subsequent experiments, inoculum suspensions of each strain were grown in a tryptic soy broth
(TSB) medium on a shaking incubator at 150 rpm in the dark at 28 ± 2 ◦C for 48 h. To harvest the
bacterial cells, the growing media was centrifuged (6000 rpm, 5 min) and the bacterial cells were washed
five times using phosphate-buffered saline solution (PBS; 5 mM K2HPO4, 150 mM NaCl, pH 7.0).
Subsequently, the inoculum concentration of each strain was adjusted to 108 cells·mL−1.
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The study phytopathogens were obtained from Korean agricultural culture collection (KACC),
South Korea. The phytopathogens were: A. alternate (KACC43921), F. graminearum (KACC47499),
F. moniliforme (KACC41032), F. oxysporum f.sp. melonis (KACC47669), P. drechsleri (KACC40190), and
S. lycopersici (KACC40967). F. temperatum and F. subglutinans were kindly provided by Prof. Kim
Kyoung Su, Kangwon National University, South Korea. The tested phytopathogens were maintained
on potato dextrose agar (PDA) plates at 4 ◦C for further experimental use and mycelia colonized PDA
plugs (8 mm) of the pathogens from the edge of culture plate were used in all of the experiments.

3.2. Identification of Bacterial Isolates

16S rRNA Gene Sequencing

Almost the full-length 16S rRNA gene sequences were PCR amplified with the universal primers
27f (5′-AGAGTTTGATCATGGCTCAG-3′) and 1492R (5′-TACGGYTACCTTGTTACGACTT-3′) [64].
Sequencing was carried out at Macrogen Inc. (Seoul, South Korea) using a 3730XL DNA sequencer
(Applied BioSystems, Waltham, CA, USA). The search for sequence similarity was carried out using
the BLAST server (http://www.ncbi.nlm.nih.gov/BLAST/). The phylogenetic tree of 16S rRNA gene
was constructed by the neighbor-joining method using Kimura’s two-parameter model [65] that was
implemented in the MEGA 6 software [66]. A bootstrap confidence analysis was performed with
bootstrap 1000 replicates.

3.3. Multilocus Sequencing Analysis and Typing (MLSA-MLST)

The studied strains were further studied by MLSA. In this analysis, the primers of the seven
loci were used following the method of Spilker et al. [22]. The concatenated sequence of MLSA
(2773 bp) were constructed as: atpD (443 bp), gltB (400 bp), gyrB (454 bp), recA (393 bp), lepA (397 bp),
phaC (385 bp), and trpB (301 bp). The concatenated sequences of each studied strain and the reference
strain were used to construct the phylogenetic tree using MEGA6.0 [66]. For MLST, all seven
housekeeping gene (atpD, gltB, gyrB, recA, lepA, phaC and trpB) sequences of the studied strains
were compared to reference strains available in the Burkholderia cepacia complex PubMLST database
(https://pubmlst.org/bcc/).

3.4. Genbank Accession Numbers

The nucleotide sequences of each allelic profiles and the sequence type of strain KNU17BI2 are
found at the Burkholderia cepacia complex PubMLST database (http://pubmlst.org/bcc) with sequence
type (ST) 1538. In addition, the nucleotide sequences of 16S rRNA gene and each MLSA-MLST loci of
strain KNU17BI2 and strain KNU17BI3 have been deposited in GenBank/EMBL/DDBJ (Table 4).

Table 4. Genebank accession numbers of strain KNU17BI2 and KNU17BI3.

Loci
Accession Number

KNU17BI2 KNU17BI3

16S rDNA MK212365 MK212366
atpD MK225579 MK225586
gltB MK225580 MK225587
gyrB MK225581 MK225588
lepA MK225582 MK225589
phaC MK225583 MK225590
recA MK225584 MK225591
trpB MK225585 MK225592

http://www.ncbi.nlm.nih.gov/BLAST/
https://pubmlst.org/bcc/
http://pubmlst.org/bcc
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3.5. In Vitro Antifungal Activity

The broad-spectrum inhibitory activity of the studied strains was tested in vitro against seven
different economically important plant fungal pathogens using dual culture technique on PDA. These
were: F. temperatum, A. alternate, F. graminearum, F. moniliforme, F. oxysporum f.sp. melonis, P. drechsleri,
and S. lycopersici. After five days of incubation at 28 ± 2 ◦C, the inhibitory activity of the strains
was determined as the length of the zone of mycelial growth inhibition between the bacterial colony
and the test phytopathogen. The percent inhibition of mycelial growth of the tested phytopathogens
was calculated based on the formula: PI = (C − T)/C × 100, where PI is the inhibition of mycelial
growth in percent, C is the radial growth of the phytopathogen in control, and T is the radial growth of
the phytopathogen in dual culture. The experiment was carried out in three replications and the
experiment was repeated three times.

3.6. Scanning Electron Microscope (SEM) Analysis

To study the interaction of the selected phytopathogens (F. moniliforme, F. subglutinans, and
F. temperatum) and the studied strains, the mycelia of the phytopathogens from the edge of the halo
zone in the dual culture Petri plates were taken and then observed under scanning electron microscope
(SEM). The mycelia samples were prepared by thin coating with gold and palladium (60:40). The coated
mycelia samples were observed under SEM (LEO Model 1450VP Variable Pressure Scanning Electron
Microscope; Carl Zeiss, Cambridge, MA, USA).

3.7. In Vitro Plant Growth Promoting (PGP) Activity Assays

The strains were also tested for important traits of plant growth promotion activity. The traits
were: phosphate solubilization, zinc solubilization, indole-3-acetic acid (IAA) production, ammonia
production, and siderophore production. For each trait, the experiments were conducted in triplicates
and the experiment was repeated three times.

Phosphate solubilizing ability of the studied strains was assessed on national botanical research
institute’s phosphate growth (NBRIP) medium that was supplemented with tricalcium phosphate
(TCP). In addition, the zinc solubilizing potential of the strains was determined on PVK medium
supplemented with an insoluble zinc sources containing 1% zinc (ZnO, 1.244 g·L−1 and ZnCO3,
1.913 g·L−1). After seven days of incubation at 28 ± 2 ◦C, the diameter of the clear zone around the
bacterial colonies was measured. The solubilization index (SI) of phosphate and zinc by the studied
strains was determined as the ratio between the halo zone diameter and the colony diameter.

The potential of the studied strains to produce ammonia was determined following the method of
Cappuccino and Sherman [67]. The amount of ammonia produced was spectrophotometrically
determined (UV–1800, Shimadzu Corporation, Kyoto, Japan) from the standard curve of ammonium
sulfate (0–10 µmol·mL−1). The method of Gordon and Weber [68] was employed to determine
the potential of the tested strains to produce indole acetic acid (IAA). The concentration of IAA in
culture was determined while using a standard curve of IAA that was prepared by diluting pure
IAA (Sigma-Aldrich, St. Loise, MO, USA) in LB medium at various concentrations (0 to 2 mg·mL−1).
The strains were also qualitatively tested for the aminocyclopropane-1-carboxylate (ACC) deaminase
activity on Dworkin and Foster (DF) minimal salt medium amended with 3 mM filter sterilized ACC
as the sole nitrogen source [69]. Amylase activity was determined on starch agar plates [67].

3.8. Greenhouse Experiments

Strain KNU17BI2 and strain KNU17BI3 were further evaluated for biological control of maize
root rot on four Korean maize cultivars under greenhouse conditions. The cultivars were Hikchal,
Mibeak-2ho, Chahong-chal, and Oluckdehack-chal. In this study, four mycelia colonized PDA plugs
(8 mm) of F. temperatum were mixed with the top 5 cm of soil in each plastic pot (10 cm diameter) [70].
After 24 h of pathogen inoculation, the seeds of each cultivar were planted at a depth of approximately
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4 cm (one seed per pot). Subsequently, one milliliter of bacterial inoculum adjusted at a concentration of
108 cells·mL−1 was applied to seeds of each cultivar prior to covering with soil. Non-treated plants
(neither pathogen, nor Burkholderia strains) were served as non-treated control and non-bacterized
plants, but the pathogen-challenged were served as negative control. In this experiment, treatments
(single Burkholderia strains, non-treated control, and negative control) were arranged in a completely
randomized design (CRD) with three replications with 10 plants per replication, and the experiment
was repeated twice.

3.9. Assessment of Effect of Burkholderia Strains on Virulence of F. temperatum

The effect of strain KNU17BI2 and strain KNU17BI3 in controlling the root rot of maize due to
F. temperatum on the four Korean maize cultivars was assessed after 30 days of planting. Disease
scaling of root rot that is caused by F. temperatum was done based on a 0–4 scale, where 0 = 0, healthy
root; 1, less than 25% of the root spoiled due to rotting; 2, 25–50% of the root spoiled, evident from
dropping of the leaves during daytime; 3, up to 75% of the root damaged, as evident from starting of
wilt and drying of leaves from bottom to top; and, 4, complete rotting of the root, completely wilted,
dead, and dry plants [57]. For analysis, the scale was converted into the percentage severity index
(PSI) [71].

PSI = ∑ of all numerical ratings × 100
Total number of observations × maximum score on scale

Furthermore, based on previous studies [37,38], the degree of virulence that is caused by
F. temperatum was defined as the inhibition of shoot elongation and chlorosis symptoms. Hence,
leaf chlorosis that was based on total chlorophyll content (SPAD unit) was measured using
chlorophyll-meter SPAD 502 (Konica Minolta, Tokyo, Japan) from the middle leaf of each plant.
Morphological data, including shoot and root dry weight (oven dried at 65 ◦C for 72 h), were
also recorded.

3.10. Statistical Data Analysis

Analysis of variance (ANOVA) of all experimental data was carried out using SAS software
version 9.2 [72]. All of the experiments of in vitro and greenhouse were conducted in three replications
and were repeated twice. The results of the experiments were expressed as mean ± standard error.
Mean separation was carried out using the multiple comparison procedure and Duncan’s multiple
range test (DMRT) at p ≤ 0.05.
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