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Model misspecification misleads inference of the spatial
dynamics of disease outbreaks
Jiansi Gaoa,1 ID , Michael R. Maya , Bruce Rannalaa ID , and Brian R. Moorea
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Epidemiology has been transformed by the advent of Bayesian phylodynamic models
that allow researchers to infer the geographic history of pathogen dispersal over a set of
discrete geographic areas (1, 2). Thesemodels provide powerful tools for understanding
the spatial dynamics of disease outbreaks, but containmany parameters that are inferred
fromminimal geographic information (i.e., the single area in which each pathogen was
sampled). Consequently, inferences under these models are inherently sensitive to our
prior assumptions about the model parameters. Here, we demonstrate that the default
priors used in empirical phylodynamic studies make strong and biologically unrealistic
assumptions about the underlying geographic process. We provide empirical evidence
that these unrealistic priors strongly (and adversely) impact commonly reported aspects
of epidemiological studies, including: 1) the relative rates of dispersal between areas;
2) the importance of dispersal routes for the spread of pathogens among areas; 3)
the number of dispersal events between areas, and; 4) the ancestral area in which a
given outbreak originated. We offer strategies to avoid these problems, and develop
tools to help researchers specify more biologically reasonable prior models that will
realize the full potential of phylodynamic methods to elucidate pathogen biology and,
ultimately, inform surveillance and monitoring policies to mitigate the impacts of
disease outbreaks.

phylodynamics | prior sensitivity | biogeography | viral evolution | epidemiology

Phylogenies are now central to epidemiological studies; this phylodynamic approach
is used to infer various aspects of pathogen biology, including patterns of variation in
demographic and geographic history. The approach developed by Lemey et al. (1, 2)—
implemented in the BEAST software package (3, 4)—is now the standard approach used
to elucidate the geographic history of disease outbreaks and has featured prominently
in studies of the COVID-19 pandemic (5–11). These discrete-geographic models allow
us to infer key aspects of disease outbreaks, including: 1) the area in which an epidemic
originated; 2) the dispersal routes by which the pathogen spread among geographic areas
(where a dispersal route is a direct path between a pair of geographic areas); and 3) the
number of dispersal events between areas.

Under this approach, geographic history involves dispersal among a set of discrete
areas (e.g., cities, states, and countries) over the branches of the pathogen phylogeny.
Geographic history is modeled as a probabilistic process with parameters that specify
the average rate of pathogen dispersal among all geographic areas, and the relative
rates of pathogen dispersal between pairs of geographic areas. Inference under these
discrete-geographic models is performed within a Bayesian statistical framework. Bayesian
inference requires that we specify a prior probability distribution for each parameter of
the geographic model (reflecting our beliefs about the corresponding parameter values
before evaluating the data at hand); the priors are updated by the information in our
data (the geographic area from which each pathogen was sampled) to provide a posterior
probability distribution for each of the model parameters (reflecting our beliefs about the
parameter values after evaluating our study data).

These geographic models contain many parameters that must be inferred from
minimal information; the data are limited to a single observation for each sampled
pathogen (i.e., the area in which each pathogen was sampled). Accordingly, geographic
inference under this approach is inherently sensitive to the assumed priors. Here,
we demonstrate that the priors on the average dispersal rate and the number of
dispersal routes implemented as defaults in BEAST (and used in most empirical studies;
Fig. 1) make strong and biologically unrealistic assumptions about the underlying
geographic process. We present empirical evidence demonstrating that these priors are
strongly disfavored by real data, and that these priors strongly (and adversely) distort
central conclusions of epidemiological studies. Finally, we offer strategies—and develop
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Fig. 1. Empirical phylodynamic studies of pathogen geographic history. The bar plot at Left depicts the choice of priors on the average dispersal rate and/or
number of dispersal routes in the 749 published empirical studies (obtained from Google Scholar on August 11, 2022) that inferred the geographic history
of pathogens using the approach of Lemey et al. (1). The vast majority of these studies explicitly (orange) or implicitly (gray) specified default priors on these
parameters; only 7.1% of published studies used nondefault priors on the average dispersal rate and/or number of dispersal routes (blue). The Right panel
depicts the size of published empirical datasets in terms of the number of geographic areas (x-axis) and the number of tips (y-axis). Orange dots indicate
empirical datasets included in our study; open blue dots indicate SARS-CoV-2 datasets.

tools—to help researchers specify more biologically reasonable
priors that will enhance the potential of phylodynamic methods
to elucidate pathogen biology.

Theoretical Concerns and Proposed Solutions

Each tip of the study phylogeny corresponds to a sampled
pathogen that occurs in one of k discrete geographic areas. We
simplify our presentation by assuming that the study phylogeny
with divergence times is known. (In practice, the geographic
history and study phylogeny are usually inferred simultaneously;
see SI Appendix, section S2.) We first describe the discrete-
geographic model proposed by Lemey et al. (1); we then discuss
theoretical concerns related to the priors on the parameters
of that model and suggest alternative priors to address these
concerns.

The Model. Discrete-geographic models describe the history of
pathogen dispersal over the tree,9, as a continuous-time Markov
chain (CTMC). For a geographic history with k discrete areas,
this stochastic process is fully specified by a k × k instantaneous-
rate matrix, Q , where an element of the matrix, qij, is the
instantaneous rate of change between states i and j (i.e., the
instantaneous rate of dispersal from area i to area j). In principle,
we may wish to treat each element of this matrix as a free
parameter to be estimated from the data. In practice, k is typically
large, such that the geographic model includes many parameters,
while the data are limited to a single geographic observation
(the location where each pathogen was sampled). This raises
concerns about our ability to estimate each parameter in the
matrix, which motivated Lemey et al. (1) to develop a Bayesian
approach to simplify the geographic model. This is accomplished

by specifying each element, qij, of the instantaneous-rate matrix,
Q , as:

qij = rijδij,

where rij is the relative rate of dispersal between areas i and
j, and δij is an indicator variable that takes one of two states
(0 or 1). When δij = 1, the instantaneous dispersal rate for the
corresponding element, qij, is simply qij = rij. Conversely, when
δij = 0, the instantaneous dispersal rate for the corresponding
element, qij, is zero, effectively removing that parameter from
the geographic model. For a given Q matrix, there is a vector
of δij and a vector of rij. Each unique vector of δij—i.e., �,
a string of zeros and ones for each of the possible pairwise
dispersal routes between the k geographic areas—corresponds
to a unique geographic model (Fig. 2). By convention, the Q
matrix is rescaled such that the expected number of dispersal
events in one time unit is equal to the parameter µ (12).

The original method (1) assumes that instantaneous-rate
matrix, Q , is symmetric, where qij = qji (i.e., rij = rji and
δij = δji). Accordingly, this model assumes that the instantaneous
rate of dispersal from area i to area j is equal to the dispersal rate
from area j to area i. For a dataset with k areas, the symmetric
model has

(k
2
)

dispersal-route indicators and up to
(k

2
)

relative-
rate parameters. A subsequent extension (2) allows the Q matrix
to be asymmetric, i.e., qij and qji are not constrained to be equal.
Accordingly, this model allows the rate of dispersal from area
i to area j to be different from the rate of dispersal from area
j to area i. For a dataset with k areas, the asymmetric model
has k × (k − 1) dispersal-route indicators and up to k × (k − 1)
relative-rate parameters.

Lemey et al. (1) estimate the parameters of these geographic
models in a Bayesian framework. Following Bayes’ theorem
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Fig. 2. Discrete-geographic models for k = 3 areas. The approach of Lemey et al. (1) models the evolution of geographic range using a continuous-time Markov
chain (CTMC). The CTMC is completely described by the instantaneous-rate matrix, Q, where each element qij specifies the instantaneous rate of dispersal
between areas i and j. Each element, qij , is a function of the relative-rate parameter, rij , and a dispersal-route indicator, �ij (Left panel). The dispersal-route
indicator, �ij , is 1 when the corresponding dispersal route exists, and 0 when it does not exist. Alternative geographic models are specified by different
configurations of dispersal routes. In the first model, all possible dispersal routes exist; the remaining models have two viable dispersal routes, corresponding
to different vectors of dispersal-route indicators, � (Right panels). The total number of dispersal routes for a given geographic model is 1. Note that there may
be multiple distinct geographic models with an equal number of dispersal routes, 1 (e.g., the three distinct models depicted here for which 1 = 2). The models
depicted are all symmetric; i.e., they assume that the rate of dispersal from area i to area j is equal to the rate of dispersal from area j to area i.

(13), the joint posterior probability distribution of the model
parameters is:

posterior distribution︷ ︸︸ ︷
P(r, �,µ | G,9) =

likelihood︷ ︸︸ ︷
P(G | r, �,µ,9)

prior distribution︷ ︸︸ ︷
P(r)P(�)P(µ)

P(G | 9)︸ ︷︷ ︸
marginal likelihood

,

where r is a vector that contains all of the relative-rate parameters,
� is a vector that contains all of the dispersal-route indicators,
µ is the average rate of dispersal, 9 is the phylogeny, and
G is the observed geographic data. The likelihood function is
equal to the probability of the observed geographic data, G,
given the geographic model, Q , and phylogeny, 9. The joint
prior probability distribution reflects our beliefs about the model
parameters before evaluating the geographic data at hand; the
prior is updated by the information in the geographic data via the
likelihood function to produce the joint posterior distribution,
which reflects our beliefs about the model parameters after
observing the geographic data. When the data contain limited
information to update the assumed priors, posterior estimates
may be sensitive to the assumed priors, a phenomenon known as
prior sensitivity.

The denominator of Bayes theorem is the marginal likelihood
(the likelihood function averaged over the parameter values,
weighted by the prior probability of those parameter values),
which represents the probability of observing our study data
under the model. The joint posterior probability distribution is
approximated using Markov chain Monte Carlo, which samples
parameter values with a frequency proportional to their posterior
probabilities.

Prior on the Number of Dispersal Routes. Recall that each
vector, �, specifies a unique configuration of dispersal routes,
which corresponds to a unique geographic model. The total
number of dispersal routes for a given geographic model is
denoted1. For a given value of1, there may be multiple distinct
geographic models (e.g., the three distinct symmetric models with
1 = 2 dispersal routes depicted in Fig. 2). Lemey et al. (1) impose
a prior on irreducible geographic models—where each area can
be reached (either directly or indirectly) from any other area—
by: 1) placing a prior on the total number of dispersal routes,1,
and; 2) assuming that all irreducible geographic models with a

given value of1 are equiprobable. For example, the three distinct
geographic models with1 = 2 depicted in Fig. 2 are assumed to
have equal prior probability. Together, these assumptions induce
a prior probability that a given dispersal route between areas i and
j exists, i.e., that δij = 1.

For the symmetric model, Lemey et al. (1) specify an offset
Poisson prior on the total number of dispersal routes,1. That is,
the prior on 1 assigns zero probability to all geographic models
with fewer than k − 1 dispersal routes; this reflects the constraint
that a dataset with k geographic areas cannot be realized under a
CTMC with fewer than k − 1 nonzero qij values (i.e., dispersal
routes).* The prior on the number of dispersal routes greater
than or equal to k − 1 is described by a Poisson prior with rate
parameter, λ. Lemey et al. (1) express an explicit prior preference
for geographic models with the minimal number of dispersal
routes. Specifically, by default, λ = ln(2), which places ∼40%
of the prior mass on models with the absolute minimum number
of dispersal routes (1 = k − 1; Fig. 3, Left panel). For the
asymmetric model, the number of dispersal routes is assumed
to be drawn from a Poisson prior with rate λ. In this case, λ
is specified such that the expected number of dispersal routes is
k − 1 (SI Appendix, Fig. S1; note that this prior does not enforce
a minimum number of dispersal routes).

The number of dispersal-route indicators grows rapidly as a
function of the number of areas, k; however, the prior expected
number of dispersal routes grows linearly as a function of k.
Consequently, the prior probability that any given dispersal route
exists rapidly decreases as k increases (Fig. 3,Right). For inferences
with large (and common; cf. Fig. 1) values of k, the default prior
on 1 results in an extremely informative prior on models with
the minimum number of dispersal routes.

In the experiments below, we specify alternative and more
diffuse priors on 1, where the expected number of dispersal
routes is about half the maximum possible number. We specify
the prior mean to be half the maximum possible number so that
the Poisson prior is relatively diffuse across all possible values of1
(Fig. 3, Left) and this results in a relatively flat prior probability
that any given dispersal route exists for all values of k (Fig. 3,
Right). Specifically, for the symmetric model, we specify an offset
(i.e., by k − 1) Poisson prior on 1 with λ specified so that the

*The real constraint on the geographic model is that it must be irreducible. A model with
fewer than k − 1 dispersal routes cannot be irreducible; however, a model with at least
k − 1 dispersal routes is not guaranteed to be irreducible. See SI Appendix, section S2, for
details.
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Fig. 3. Prior on dispersal routes under the symmetric geographic model. The left panel illustrates the default (orange) and alternative (blue) prior distributions
on the total number of dispersal routes, 1, as a function of the number of areas, k. The default-prior distributions are highly focused on the minimal number
of dispersal routes, k − 1, whereas the alternative-prior distributions are centered on an intermediate number of dispersal routes (i.e., the expected number
of dispersal routes is about half the maximum number for a given value of k). The Right panel illustrates the prior probability under the default (orange)
and alternative (blue) prior models that a given dispersal route exists (i.e., that �ij = 1) as a function of the total number of geographic areas, k. Under the
default-prior model, the probability that a given dispersal route exists drops rapidly for datasets with a moderately large (and common; cf. Fig. 1) number of
geographic areas; by contrast, under the alternative-prior model, this probability remains relatively constant for all values of k.

expected number of dispersal routes is about half of the maximum
number,

(k
2
)
, for a dataset with k areas. For the asymmetric model,

we specify a Poisson prior distribution on1with λ =
(k

2
)
, which

represents a prior belief that half of all possible dispersal routes
are included in the geographic model.

Prior on the Average Dispersal Rate. Recall that the rate matrix,
Q , is rescaled so that the average rate of dispersal among all areas
is µ. For a tree of length T (i.e., the sum of the durations of all
branches in the tree), the expected number of dispersal events is
µ× T . Therefore, the prior on µ is related to our prior belief
about the number of dispersal events over the tree. By default,
µ is assigned a gamma prior with shape parameter α = 0.5 and
rate parameter β = T .† The gamma distribution has a mean of
α/β; therefore this prior expresses the belief that the average rate
of dispersal is 0.5/T (Fig. 4, Left).

Because the expected number of dispersal events is µ× T ,
the prior expected number of dispersal events under this prior
is 0.5, independent of the duration of the entire geographic
history (i.e., the tree length, T ), or the number of areas, k, in
which the pathogen occurs. Similarly, the prior distribution on
the number of dispersal events is independent of T and k: the
95% prior interval is [0, 3] dispersal events, which implies that we
would be very surprised if a geographic history of any duration
with any number of areas involved more than three dispersal
events (Fig. 4, Right panel). Logically, however, a geographic
history that includes k areas minimally requires k − 1 dispersal
events. Therefore, this prior becomes increasingly unreasonable
as k grows to large (and common; cf. Fig. 1) values.

In our experiments below, we specify a more diffuse prior
on the dispersal rate, µ. Specifically, we specify an exponential
prior on µ with parameter θ (with a mean of 1/θ ). To address
concerns about the potential impact of assuming a fixed value of
θ on posterior estimates, we treat the mean of the exponential
prior, 1/θ , as a random variable to be estimated from the data.

†Note that the gamma prior on the average dispersal rate is referred to as the CTMC-rate
reference prior in the BEAUti program used to generate input files for BEAST analyses.

Specifically, we specify a gamma hyperprior on 1/θ with shape
parameter, α = 0.5, and rate parameter, β = 0.5 (fixing the
shape and rate parameters to be equal ensures that the resulting
prior on µ is proper; i.e., that it integrates to one). The resulting
prior—known as the K -distribution (14)—is more diffuse than
the default prior on µ (Fig. 4, Right), as is the resulting prior
distribution on the number of dispersal events (Fig. 4, Left).
Importantly, this alternative-prior distribution on the number
of dispersal events sensibly scales with the duration of the entire
geographic history, T .

Empirical Consequences

In this section, we explore the empirical consequences of using the
default priors on the number of dispersal routes and the average
dispersal rate. We collected 14 datasets from published empirical
studies, and reanalyzed each under a suite of geographic models,
including all combinations of: 1) symmetric and asymmetric Q
matrices; 2) default and alternative priors on the number of
dispersal routes; and 3) default and alternative priors on the
average dispersal rate. We first evaluated the relative and absolute
fit of the eight candidate models to each empirical dataset to
demonstrate that the default priors provide a poor description of
the underlying geographic process. We then estimated the joint
posterior distribution under each of the candidate models for each
dataset to demonstrate how the strongly misinformative default
priors adversely impact inferences about the geographic history
of disease outbreaks. We detail these analyses in SI Appendix,
section S3.

The Impact of Prior Choice onModel Fit. Our concern regarding
the default priors is that they represent strongly informative and
biologically unrealistic beliefs about the geographic process that
generates empirical data. Accordingly, we expect default priors
to poorly fit empirical datasets compared to more biologically
reasonable alternative priors.

Following Lemey et al. (1), we first tested this prediction
by comparing the relative fit of the competing prior models
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Fig. 4. Prior on the average dispersal rate and the implied prior on the number of dispersal events. The Left panel illustrates the default (orange) and alternative
(blue) prior distributions on the average dispersal rate as a function of the duration of the geographic history, T . The default-prior distributions are highly
focused on extremely low average dispersal rates, whereas the alternative-prior distribution is more permissive of higher rates. The Right panel illustrates
the implied prior distribution on the total number of dispersal events under the default (orange) and alternative (blue) prior models. Under the default-prior
model, the expected number of dispersal events is 0.5, independent of the duration of the geographic history, T , whereas under the alternative-prior model,
the expected number of dispersal events sensibly increases with the duration of the geographic history.

to our empirical datasets. Specifically, we assessed the relative
fit of each dataset to the eight candidate models using Bayes
factors, which are computed as twice the difference in the log
marginal likelihoods of the competing models (15). Bayes-factor
comparisons indicate that the default prior on the number of
dispersal routes and the average dispersal rate are both biologically
unrealistic; the alternative priors for both parameters were
significantly preferred compared to their default counterparts
(SI Appendix, Table S2).

In addition to assessing the relative fit of competing prior
models to our empirical datasets, we also assessed the absolute fit
of the prior models to these datasets using posterior-predictive
simulation (16, 17). This approach is based on the following
premise: If a given model provides an adequate description of
the process that gave rise to our observed data, then new datasets
simulated under that model should resemble our study data.
Results of the posterior-predictive simulations corroborate our
findings based on Bayes-factor comparisons: in all cases, the
alternative priors provide an adequate fit to the empirical datasets,
whereas the default priors are inadequate (SI Appendix, Figs. S2
and S3 and Tables S3 and S4).

Both default priors—on the number of dispersal routes and
the average dispersal rate—negatively impact the relative and
absolute fit of geographic models to our empirical datasets,
providing empirical evidence to support our premise that these
default priors are strongly unrealistic. Nevertheless, it remains to
be seen whether these unrealistic priors distort inferences about
the geographic history of disease outbreaks. To this end, we
inferred the joint posterior distribution for each dataset under
two candidate models: one model with both default priors
(“default-prior model”) and one model with both alternative
priors (“alternative-prior model”). For both the default- and
alternative-prior models, we specified the preferredQ matrix (i.e.,
symmetric or asymmetric). Note that—in all cases—the default-
prior models are decisively rejected compared to the alternative-
prior models (Table 1).

The Impact of Prior Choice on Pairwise Dispersal Rates. To
explore the impact of prior (mis)specification on commonly

reported geographic inferences, we first explored estimates of
the Q-matrix parameters—i.e., r, �, and µ—under the default-
prior model to those estimated under the alternative-prior model.
Although these parameters are not usually reported in empirical
studies, they are the actual basis of commonly reported aspects
of geographic history, i.e., commonly reported inferences are a
function of these Q-matrix parameters. The Left two panels of
Fig. 5 compare posterior-mean estimates of Q under the default-
and alternative-prior models for the deformed-wing virus dataset
(19); the choice of prior model strongly impacts estimates of
the dispersal rates between many areas. Perhaps unsurprisingly—
given that the default priors imply fewer dispersal routes and
a lower number of dispersal events—posterior-mean estimates

Table 1. The relative fit of geographic models with
default and alternative priors
Dataset* Default Alternative 2 ln BF

1 −187.65± 0.12 −147.32± 0.11 80.67
2 −142.52± 0.04 −128.76± 0.04 27.53
3 −214.89± 0.12 −174.02± 0.07 81.76
4 −106.20± 0.03 −91.47± 0.12 29.46
5 −1176.37± 0.24 −1037.50± 0.04 277.75
6 −1309.05± 0.12 −1164.72± 0.04 288.65
7 −835.94± 0.30 −726.80± 0.15 218.29
8 −2873.90± 0.42 −2275.48± 0.04 1196.85
9 −2333.80± 0.69 −1872.88± 0.02 921.84
10 −305.88± 0.12 −258.13± 0.15 95.79
11 −2519.33± 0.12 −2159.85± 0.31 718.97
12 −1983.57± 0.35 −1721.13± 0.12 524.88
13 −1754.35± 0.04 −1536.92± 0.04 434.88
14 −1372.08± 0.09 −1225.46± 0.24 293.24

We inferred marginal likelihoods for each dataset under two models: one using both
default priors, the other both alternative priors. For each combination of priors, we
assumed the preferred geographic model (i.e., with a symmetric or asymmetric rate
matrix). Marginal-likelihood estimates for the default- and alternative-prior models are
listed in the middle two columns (± SD among four replicates); 2 ln BF between the two
models are listed in the last column. The default-prior models are decisively rejected for
all datasets (i.e., 2 ln BF� 10). *Dataset sources: 1 (18); 2 to 4 (19); 5–7 (20); 8 to 9 (21); 10
(22); 11 (23); 12 (9), and; 13 to 14 (6).
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Fig. 5. The impact of prior choice on estimates of pairwise dispersal rates. Heatmaps summarize posterior-mean estimates of the instantaneous rate of
dispersal between each pair of geographic areas, qij , estimated for the deformed-wing virus dataset (19) under the (disfavored) default (Left panel) and
(preferred) alternative (Center panel) prior models. At Right, we summarize dispersal-rate estimates for each pair of areas across all 14 empirical datasets. Note
that dispersal-rate estimates under the default-prior model are consistently lower than those estimated under the alternative-prior model. (Uncertainty in
these estimates is summarized in SI Appendix, Fig. S7.)

under the default-prior models are systematically much lower
than those inferred under the alternative-prior models.

The Impact of Prior Choice on Dispersal Routes. Empirical
studies often focus on the evidential support for dispersal routes
between each pair of geographic areas; these inferences are
intended to identify dispersal routes that were important to the
geographic spread of the disease. This involves computing Bayes
factors for each of the dispersal-route indicators in the geographic
model. Above, we computed Bayes factors for models as the

difference in their log marginal likelihoods; an alternative (but
equivalent) formulation is to compute the ratio of the posterior
and prior odds for two competing models. For each dispersal-
route indicator in the Q matrix, we compute the Bayes factor as:

BFij =
P(δij = 1 | G)
P(δij = 0 | G)

÷
P(δij = 1)
P(δij = 0)

,

where P(δij = 1) is the prior probability that a dispersal route
between areas i and j exists, and P(δij = 1 | G) is the posterior
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Fig. 6. The impact of prior choice on the inferred support for dispersal routes. The Left panel compares the evidential support for dispersal routes under the
default (orange) and alternative (blue) prior models for the H3N2 influenza virus dataset (21). Each bar indicates the 2 ln BF (Bayes factor) for the corresponding
dispersal route between two geographic areas; only “significant” dispersal routes (i.e., 2 ln BF > 2) are plotted. Background shading indicates the level of support;
following Kass and Raftery (15), the support level is “positive” (light gray) when 2 < 2 ln BF ≤ 6, “strong” (gray) when 6 < 2 ln BF ≤ 10, and “decisive” (dark gray)
when 2 ln BF > 10. Some dispersal routes identified as significant under the default-prior model have no support (i.e., 2 ln BF ≤ 2) under the alternative-prior
model, and vice versa. Additionally, the rank order of dispersal routes according to their Bayes-factor support differs between the default- and alternative-prior
models. The Right panel plots the 2 ln BF for each dispersal route under the default (y-axis) and alternative (x-axis) prior models across all empirical datasets.
Note that, under the alternative-prior model, many dispersal routes have equivocal Bayes-factor support (i.e.,−2 ≤ 2 ln BF ≤ 2); conversely, Bayes factors under
the default-prior model tend to be larger than those under the alternative-prior model (dots above the diagonal indicate greater support under the default-prior
model compared to the alternative-prior model). (Uncertainty in these estimates is summarized in SI Appendix, Fig. S10.)
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probability that it exists (the latter is computed as the proportion
of MCMC samples for which δij = 1). This formulation of the
Bayes factor captures the degree to which our beliefs (about
the existence of a dispersal route) changed after observing
the geographic data. Because the default-prior model favors
geographic models with a small number of dispersal routes,
the prior probability that each dispersal route exists is corre-
spondingly small. As a result, we expect the default-prior model
to increase the apparent Bayes-factor support for individual
dispersal routes.

Our analyses of the H3N2 influenza virus dataset (21) illustrate
the impact of the default- and alternative-prior models on
the inferred support for dispersal routes (Fig. 6, Left panel).
The default-prior model obscures our ability to identify the
dispersal routes that played a potential role in the spread of
this H3N2 influenza outbreak; e.g., 5 of the 35 dispersal
routes decisively supported under the default-prior model (i.e.,
where 2 ln BF ≥ 10) appear to be spurious, and two decisively
supported dispersal routes are not identified. Additionally, the
rank order of these decisively supported dispersal routes differs
markedly under the two prior models. The impact of prior
choice on the estimated support for individual dispersal routes
is pervasive across all the sampled empirical datasets (Fig. 6,
Right panel). The scale of the Bayes factors inferred under the
default-prior model is on average much higher than under the
alternative-prior model.

The Impact of Prior Choice on Inferences of GeographicHistory.
Empirical studies frequently report summaries that are based on
the conditional probability distribution of geographic histories
over the tree. The distribution of histories depends on—
i.e., is conditioned on—the instantaneous-rate matrix, Q , the
geographic data, G, and the phylogeny, 9. Conceptually, for a
given tree and rate matrix, we imagine simulating a geographic
history over the tree from root to tips, where the rate matrix

specifies the waiting times between dispersal events. We can
construct the conditional distribution of geographic histories
by simulating many individual histories, and retaining only
those histories that realize the observed geographic areas at the
tips, G. This conditional distribution contains the information
required to compute two commonly reported summaries: the
ancestral areas at internal nodes of the tree, and the number
of dispersal events between geographic areas. Because these
summaries depend on the rate matrix, which in turn is sen-
sitive to the choice of prior (Fig. 5), we expect the prior to
influence these summaries. We detail the impacts of default
and alternative priors on each of these commonly reported
summaries below.
Inferring ancestral areas. It is often critical to identify the point
of origin for an outbreak. This involves inferring the probability
that the corresponding internal node of the tree (including the
root) occurred in each of the k geographic areas. The probability
that a given node was in a particular area is simply the proportion
of conditional histories for which the node is in that area. Our
reanalysis of the SARS-CoV-2 Global dataset (23) reveals that
the choice of prior model may exert a strong impact on estimates
of ancestral areas. The first known outbreak of COVID-19
in North America occurred in the state of Washington. The
origin of this “Washington Clade” is therefore of considerable
interest (5, 24); the default-prior model unequivocally identifies
Western North America as the source of this outbreak (posterior
probability 90.0%). By contrast, the (preferred) alternative-prior
model reveals Western North America (posterior probability
35.7%) and China (posterior probability 38.9% combining
subareas) to be equiprobable sources of the Washington COVID-
19 outbreak (Fig. 7, Left panel). The impact of prior models on
ancestral-area estimates is prevalent across the 14 datasets; the
choice of prior not only impacted the inferred probability of
the most probable area at an internal node, but also changed
the identity of the most probable (MAP) ancestral area for
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Fig. 7. The impact of prior choice on ancestral-area estimates. The Left panel compares the posterior probabilities for the geographic source of the Washington
clade of SARS-CoV-2—the first known outbreak of COVID-19 in North America—inferred under the default- and alternative-prior models for the SARS-CoV-2
Global dataset (23). The default-prior model provides overwhelming support that the virus was introduced to Washington state from Western North America
(with probability 90.0%); by contrast, the alternative-prior model reveals that SARS-CoV-2 was equally likely to be introduced from either Western North
America (35.7%) or China (subarea combined, 38.9%). The Right panel plots the posterior probability of the most-probable (MAP) ancestral area under the
default-prior model for each internal node in the inferred summary tree across all datasets (y-axis) against the corresponding posterior probability of that area
under the alternative-prior model (x-axis). Pink dots represent the internal nodes where the MAP ancestral area inferred under the default-prior model differs
from that inferred under the alternative-prior models. The summary statistic p denotes the fraction of internal nodes that are shared between the inferred
summary trees under the default- and alternative-prior models; f is the fraction of shared nodes where the MAP ancestral area differs under the default- and
alternative-prior models. Note that the posterior probability of the MAP ancestral area inferred under the default-prior model is generally higher than that
under the alternative-prior model. (Uncertainty in these estimates is summarized in SI Appendix, Fig. S11.)
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Fig. 8. The impact of prior choice on the inferred number of dispersal events between areas. The Left panel compares the number of dispersal events inferred
under the default (orange) and alternative (blue) prior models for the SARS-CoV-2 Brazil dataset (6). Each bar indicates the estimated percentage of domestic
dispersal events originating from each area within Brazil (mean [bar height] and 95% credible interval [whiskers]). Under the default-prior model, São Paulo is
inferred to be the single major source of SARS-CoV-2 dispersal within Brazil, with 84.6% of all domestic dispersal events originating from this area. By contrast,
our analyses of this dataset under the alternative-prior model reveals that only 19.5% of the domestic dispersal events originated from São Paulo, with five
additional areas playing a significant role in domestic dispersal, including; two areas in Southeast Brazil (Minas Gerais 12.8% and Rio de Janeiro 9.4%), two
areas in South Brazil (Santa Catarina 10.8% and Rio Grande do Sul 9.2%), and one area in Central-West Brazil (Distrito Federal 9.4%). Note that the rank order of
dispersal routes according to their inferred percentage of dispersal events differs between the default- and alternative-prior models. The Right panel plots the
number of dispersal events across each dispersal route inferred under the default (y-axis) and alternative (x-axis) prior models across all empirical datasets.
(Uncertainty in these estimates is summarized in SI Appendix, Fig. S12.)

≈10% of the internal nodes (Fig. 7, Right panel). On average,
the ancestral-area estimates tend to be more certain under the
default-prior model—where the MAP ancestral area is generally
inferred with a higher posterior probability compared to that
under the alternative-prior model—which is consistent with our
expectation given that the default priors are strongly informative.
Inferring the number of dispersal events. Empirical phylody-
namic studies often infer the number of dispersal events between
each pair of areas, e.g., to understand whether a given area is a
major source of disease outbreaks. A given conditional geographic
history includes the number of dispersal events between each
pair of areas; therefore, we can compute the average number
of dispersal events between each pair of areas as the posterior-
mean number of events over the conditional distribution of
histories. The choice of prior model exerts a strong influence
on estimates of the number of dispersal events. For example,
our analyses of the SARS-CoV-2 Brazil dataset (6) under the
default-prior model identified São Paulo as the single major
source of SARS-CoV-2 dispersal within Brazil; 84.6% of the
dispersal events within Brazil were inferred to have originated
from this area (cf. the second-ranking area, Rio de Janeiro, was
the source of only 3.7% domestic dispersal events). Analyses
under the preferred alternative-prior model reveal a strikingly
disparate history of SARS-CoV-2 spread within Brazil: these
analyses identified six areas to be significant sources of domestic
dispersal, with only 19.5% of all the domestic dispersal events
stemming from São Paulo (Fig. 8,Left panel). The impact of prior
choice on the inferred number of dispersal events was pervasive
across all of our empirical datasets. As might be expected from
the default prior on the number of events, we infer a larger
number of dispersal events under the alternative-prior model
(Fig. 8, Right panel).

Discussion

The development of Bayesian geographic models has the po-
tential to transform our ability to study pathogen biology.
The complexity of these geographic models is both an asset
and a liability. It is an asset because it offers the potential to
describe complex geographic processes. It is a liability because
inference under these geographic models relies on minimal
information (the geographic area in which each pathogen was
sampled), rendering posterior estimates sensitive to the choice
of priors. Moreover, the complexity of these geographic models
obscures the biological interpretation of their parameters, making
it difficult to formulate biologically sensible priors for those
parameters. We suspect this underlies the fact that the vast
majority of empirical phylodynamic geographic studies (≈93%)
have assumed default priors.

In the present study, we have demonstrated that the de-
fault priors on the average dispersal rate and the number
of dispersal routes implemented in BEAST imply biologically
unrealistic assumptions about the geographic process (Figs. 3
and 4). We have presented empirical evidence demonstrating
that these default priors are in fact biologically unrealistic, i.e.,
they are strongly disfavored by all of the empirical datasets
that we evaluated (Table 1 and SI Appendix, Tables S2–
S4). We have also demonstrated the consequences of these
strongly misinformative priors; their use qualitatively changes
our understanding of key aspects of pathogen geographic
history, including inferences of relative dispersal rates between
areas (Fig. 5), the dispersal routes by which a disease spread
across areas (Fig. 6), the ancestral area in which an outbreak
originated (Fig. 7), and the number of dispersal events between
areas (Fig. 8).
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Importantly, the unrealistic default priors not only distort
inferences about key aspects of the geographic history of disease
outbreaks, they also threaten to mislead public-health measures
intended to mitigate those outbreaks. For example, inferences of
the domestic spread of COVID-19 in Brazil under the (misspec-
ified) default-prior model suggests that surveillance/testing and
containment measures should be focused in a single area, whereas
inferences under the (preferred) alternative-prior model reveal
that effective mitigation requires deployment of these measures
across multiple areas (Fig. 8, Left panel).

Our study highlights the need to develop and adopt best
practices for empirical phylodynamic studies. All empirical
datasets examined in our study (which are typical examples of
empirical datasets, Fig. 1) decisively rejected the default priors in
favor of the alternative priors (Table 1 and SI Appendix, Table S2).
Nevertheless, the alternative priors explored in our study are not
intended as a panacea; that is, we are not advocating that the
alternative priors explored herein be adopted indiscriminately in
studies of discrete-geographic history. Rather, empirical studies
should carefully consider the choice of priors and rigorously assess
possible sensitivity of geographic inferences to those choices.

As illustrated in our study, numerous strategies are available
to identify (and navigate) prior sensitivity. For example, robust
Bayesian inference (25) and data cloning (26–29) can be used to
identify when a given discrete-geographic inference is prior sen-
sitive. Robust Bayesian inference involves performing a series of
MCMC analyses—of the same dataset under the same inference
model—where we iteratively change one (or more) priors of our
discrete-geographic model: an analysis is prior sensitive when our
posterior estimates differ for the candidate priors. Data cloning
involves performing a series of MCMC analyses—under the
same inference model with identical priors—where we iteratively

increment the number of copies (“clones”) of our original dataset;
these analyses can identify when the prior makes a relatively large
contribution to the posterior. In cases where prior sensitivity is
detected, we can adopt various approaches to navigate the choice
of priors, including: 1) assessing the relative fit of candidate prior
models (using Bayes factors), and; 2) assessing the absolute fit of
candidate prior models (using posterior-predictive simulation).
We have developed an interactive graphical utility, PrioriTree
(https://github.com/jsigao/prioritree; 30), to facilitate adoption
of these strategies, and thereby improve the reliability of
geographic studies of disease outbreaks.

We are optimistic that rigorous empirical application of
current phylodynamic models—with careful attention to identi-
fying and navigating prior sensitivity—will greatly advance our
understanding of pathogen biology and minimize the impact of
infectious disease outbreaks.

Materials and Methods

We provide details of the methods and analyses, as well as supplementary
results, in SI Appendix.

Data, Materials, and Software Availability. All data, phylogenies, and code
necessary to reproduce our results are available on Dryad (https://doi.org/10.
25338/B8B93T)andGitHub(https://github.com/jsigao/prior_misspecification_
phylodynamic_biogeography).
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