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ARTICLE

A state variable for crumpled thin sheets
Omer Gottesman1, Jovana Andrejevic1, Chris H. Rycroft1,2 & Shmuel M. Rubinstein1

Despite the apparent ease with which sheets of paper are crumpled and tossed away,

crumpling dynamics are often considered a paradigm of complexity. This arises from the

infinite number of configurations that disordered, crumpled sheets can take. Here we

experimentally show that key aspects of axially confined crumpled Mylar sheets have a very

simple description; evolution of damage in crumpling dynamics can largely be described by a

single global quantity—the total length of creases. We follow the evolution of the damage

network in repetitively crumpled elastoplastic sheets, and show that the dynamics are

deterministic, depending only on the instantaneous state of the crease network and not on

the crumpling history. We also show that this global quantity captures the crumpling

dynamics of a sheet crumpled for the first time. This leads to a remarkable reduction in

complexity, allowing a description of a highly disordered system by a single state parameter.
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From collapsed hulls of ships to discarded mathematical
theorems written on a white piece of paper, many thin
sheets end their life cycle as crumpled heaps. Nevertheless,

the dynamics by which an initially flat sheet develops into a
disordered and elaborate three-dimensional network of folds are
often considered a hallmark example of disordered and complex
systems1–7. When a thin sheet is crumpled, elastic energy focuses
to point and line singularities termed d-cones and stretching
ridges respectively2,8–12. The localization of stresses to individual
sharp folds is driven by the local minimization of the elastic
deformation energy9,13–16. However, the crumpled sheet is never
at its global energy minimum and the folds’ network structure is
determined dynamically; as a sheet is confined, existing defects
rearrange and new ones are created17,18. In elastoplastic sheets,
the material scars where the localized stress exceeds the plastic
yield threshold19,20. In this case, although defects may still
migrate, they leave a furrow-like scar in their wake21. Conse-
quently, the detailed history of the crumpling dynamics is written
into the intricate pattern of creases observed when the sheet is
unfolded. No two crumpled sheets are identical.

Geometrical and mechanical constraints forbid the smooth
sheet from folding to a ball without accumulating damage in the
form of a disordered network of creases. In principle, once the
damage is done, the sheet can capitalize on these existing degrees
of freedom and fold back smoothly into a ball, without creating
new scars. Nevertheless, despite the tendency of the sheet to bend
along preexisting scars, it is impossible to crumple the sheet again
without creating new folds. Unless the order of folding is
reproduced exactly, the system quickly jams at a state in which it
cannot conform to further compression; thus, ridges must break18

and new folds are created. As the process of crumpling and
uncrumpling of the sheet is repeated, the network of creases
becomes increasingly complex. It is unclear, however, if this
tumultuous process continues indefinitely or asymptotes to a
maximally crumpled state in which the sheet smoothly folds
along existing creases and no new scars are created.

We experimentally examine the evolution of the crease pat-
terns in thin sheets that are repeatedly crumpled n times and find
that the change of the total length of all creases, ‘, is not random
at all. Instead, it is a deterministic function whose evolution
depends only on its current value. Strikingly, the accumulation of
damage does not depend on the crumpling history or the struc-
ture of the crease network. Thus, ‘ can be interpreted as a state
variable of the crumpled sheet. We find that the increase in total
crease length, δ‘, for a given crumpling iteration, n, decays
exponentially with ‘, and that these dynamics are described by a
phenomenological equation for the evolution of the damage
network. By analyzing this equation in the limit of n= 1, we
precisely resolve the dynamics of initial crumpling of a smooth
sheet into a ball, a well-studied problem.

Results
Evolution of the crease patterns in thin sheets. The develop-
ment of damage networks is investigated by repeatedly crumpling
elastoplastic thin sheets of Mylar. The mechanical durability of
Mylar under repeated crumpling cycles makes it an ideal material
for this study: Even after accumulating damage over hundreds of
repeated crumpling tests, the Mylar sheet retains its spring-like,
crackling characteristic. Square sheets, 30 µm thick with side
length of L= 100 mm, are rolled into a cylinder, inserted into a
cylindrical container of diameter D= 27mm, and compressed
uniaxially to a given gap Δ < L, as shown schematically in Fig. 1a.
The dimensionless compaction parameter ~Δ � Δ=L can take
values between 0 and 1. After compression the sheets are unfol-
ded and their three-dimensional (3D) structure is scanned using a

custom laser profilometer4 as demonstrated in Fig. 1b. To deduce
the pattern of damage after every crumpling/unfolding iteration,
the measured height profiles of the creases are locally fitted to a
surface and converted into a map of mean curvatures. As the
crumpling dynamics are dominated by the localization of stresses
into folds, the curvature map is dominated by sharp valleys (red)
and ridges (blue) with high positive and negative curvatures,
respectively, as shown in Fig. 1c. Creases are detected with two
independent protocols: Canny edge detection algorithm and a
Radon transform method. In the main text we apply the Canny
edge detection algorithm to the curvature map. Before measuring
the length of creases by summing over pixels determined as edges,
the data are cleaned by removing small detected edges below a
threshold of a minimal number of connected pixels. Our main
results are insensitive to the choice of the parameters of the edge
detection algorithm, or to the scale over which the height map is
fitted. To validate this analysis, in the Supplementary Discussion
we compare it with a second approach based on the Radon
transform method and show that the results are independent of
the data processing method, as shown in Supplementary Fig-
ures 1-5. We then track the evolution of the crease network as a
function of the number of crumpling/unfolding iterations, n, as
shown for a typical example in Fig. 1c and Supplementary Movie.
The sheets are carefully flattened between every crumpling
iteration to replicate the initial conditions of each crumpling as
closely as possible.

When the thin sheet is repeatedly crumpled, the damage
network evolves as progressively more creases are created. These
dynamics lead to a monotonic increase in the total length of both
valleys and ridges, ‘v and ‘r respectively, as seen for a typical
example in Fig. 2a. The rate at which ‘v and ‘r increase slows
down with n, indicating that when more creases are present, the
sheet tends to fold along the already existing plastic scars rather
than create new folds. Changing ~Δ changes the rate at which
creases accumulate, as shown in Fig. 2b for the total length of all
creases, ‘ ¼ ‘r þ ‘v, for ~Δ ranging from 0.9 to 0.045 and
representing data from 507 individual scans. Despite the random
nature of crumpling, the evolution of ‘ with n is strikingly
reproducible. This can be seen, for example, by the open yellow

a b

c

n = 1 n = 7n = 2 n = 15

z

L

Δ

Fig. 1 Crumpled thin sheets scarred by ridges and valleys. a Mylar sheets
are crumpled uniaxially in a cylindrical container to a given gap, Δ. b The 3D
topography of an unfolded crumpled sheet. Height maps are obtained with
a laser profilometer similar to the one designed by Blair and Kudrolli4. c
Mean curvature maps for the scanned surfaces of crumpled thin sheets for
n=1, 2, 7, and 15 with ~Δ ¼ Δ

L ¼ 0:27: Red and blue correspond to positive
and negative mean curvatures respectively
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markers in Fig. 2b, which show ‘ðnÞ curves for five different
experiments in which sheets are crumpled repetitively to
~Δ ¼ 0:36.
As the sheet is re-crumpled, preexisting creases, where the

material is weakened, function as mechanical hinges along which
the sheet may bend without creating new scars. However, as the
compression increases, the sheet often deforms into a jammed
configuration in which it cannot compress further by only
bending along existing creases. This inevitably leads to the
creation of new scars, consistent with the curves shown in Fig. 2b,
in which the ‘ nð Þ curves do not plateau. We find that ‘ nð Þ ¼
a log 1þ b nð Þ is a good fit to all ‘ nð Þ curves, as shown for a
specific value of ~Δ in the inset to Fig. 2c, where a and b are fitting
parameters which depend on ~Δ, as shown in Fig. 2c.

For large ~Δ creases accumulate at a slower rate, consistent with
the observation that a decreases linearly with ~Δ and b decreases as
~Δ
�1
, as shown in Fig. 2c. Note that since no creases are created

when the sheet is not compressed, α~Δ ¼ 1
� �

= 0, as expected.
Thus, ‘ and n can be rescaled by ð1� ~ΔÞ and ~Δ respectively,
leading to a remarkable collapse of all ‘ðnÞ curves, as shown in

Fig. 2d. Moreover, all our data can now be replotted and fitted by

‘ nð Þ ¼ c1 1� ~Δ
� �

log 1þ c2n
~Δ

� �
; ð1Þ

with only two fitting parameters c1 ¼ 5200 ± 200, and c2 ¼
0:063 ± 0:005 as shown in the inset to Fig. 2d.

Changing ~Δ varies the rate at which creases accumulate as well
as the statistics of the crease pattern, as can be seen by comparing
two typical crease patterns with similar ‘ shown in Fig. 3a, b.
When crumpling a sheet a few times to a small ~Δ (Fig. 3a), creases
tend to be relatively long and uniformly distributed across the
sheet. The same ‘ can be obtained by crumpling a sheet many
times less vigorously to larger ~Δs. However, in this case the
pattern is dominated by short, more localized creases (Fig. 3b).

So far we only addressed crumpling protocols where one ~Δ was
used repeatedly. We test whether the evolution of ‘ðnÞ is history
dependent by implementing a new crumpling protocol with two
values of ~Δ. ‘~Δ1;~Δ2

ðnÞ is measured by initially crumpling a sheet n0
times to ~Δ1, and then crumpling the same sheet several times to a
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Fig. 2 The evolution of damage networks. a ‘rðnÞ for ridges (blue) and ‘vðnÞ for valleys (red). Full circles correspond to the four crease patterns shown in
Fig. 1c. b ‘ nð Þ ¼ ‘r þ ‘v for ~Δ ranging from 0.9 to 0.045 for 507 scans. Different markers of identical colors correspond to different sheets crumpled to the
same values of ~Δ. c The a (blue diamonds) and b (red circles) as a function of ~Δ. The dashed lines are the respective fits to a ¼ c1ð1� ~ΔÞ c1 ¼ 5200± 200ð Þ
and b ¼ c2=~Δ c2 ¼ 0:063±0:005ð Þ. Note that for ~Δ→0, ‘ diverges for any finite n. (inset) Fit (red curve) of a single ‘ðnÞ curve to ‘ nð Þ ¼ a logð1þ b nÞ. d
‘=ð1� ~ΔÞ as a function of n=~Δ for all data shown in (b) collapse, demonstrating that all ‘ðnÞ curves follow Eq. 1 (inset)
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different ~Δ2, as shown in Fig. 3c, d. We compare ‘~Δ1;~Δ2
nð Þ to the

curves obtained by crumpling a fresh sheet repeatedly to a single
~Δi,‘~Δi

, and note that ‘~Δ1;~Δ2
nð Þ indeed deviates from ‘~Δ1

ðnÞ for n
>n0. Remarkably, ‘~Δ1;~Δ2

ðn>n0Þ overlaps perfectly with ‘~Δ2
ðnÞ by a

shift along the n axis, marked by open squares in Fig. 3c, d. The
overlap of the two curves demonstrates that when two sheets with
similar ‘ but different crumpling histories are crumpled
repetitively to the same ~Δ, the evolution of ‘ for both is identical.
This implies that the evolution of ‘ is independent of the
crumpling history. Furthermore, as the crumpling history
determines the structure of the crease pattern, this history
independence also implies that the evolution of the global
quantity ‘ is independent of the local statistics of the structure;
hence, the evolution of ‘ is determined solely by its instantaneous
value. Drawing an appealing analogy with statistical physics, the
history independence of the evolution of ‘ suggests that this
observable can be thought of as a macroscopic state variable
quantifying the “crumpledness” of a damaged sheet. Identifying a
global quantity that evolves independently of the details of the
pattern significantly reduces the complexity of this system.

Traditionally, crumpling is considered a random and dis-
ordered process. The crease pattern obtained for a given sheet is
specific to the details of the crumpling dynamics, and is thus
impossible to reproduce perfectly. However, as ‘ is a state variable
with a known functional dependence on ~Δ and n, it is a striking
corollary that it is possible to fully predict the evolution of ‘ for
any arbitrary crumpling sequence. δ‘~Δ can be estimated by
differentiating Eq. 1 with respect to n, yielding

δ‘~Δ � ∂‘
∂n ¼

c1c2 1�~Δð Þ
~Δ

1
1þc2n

~Δ

¼ c1c2 1�~Δð Þ
~Δ

e
� ‘

c1 1�~Δð Þ; ð2Þ

where the second equality is equivalent to Eq. 1. The total length
of new creases created at any crumpling iteration, δ‘~Δ, is a
function only of ~Δ and of ‘ (measured before the current
crumpling cycle) and not a function of n. Note that Eq. 2 is an
equation of state for the damage evolution, highlighting that ‘ is
always memoryless. Through iterative summations of Eq. 2, ‘ðnÞ
can be predicted for any crumpling protocol given as a sequence
of ~Δ’s.
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We crumple a sheet 12 times according to the protocol
described in Fig. 4a., i.e., we crumple the sheet 6 consecutive
times, each time to a smaller volume than the previous crumple (a
smaller ~Δ), and then repeat this cycle. The measured ‘ nð Þ curve
for this crumpling protocol is in excellent agreement with the
prediction obtained from Eq. 2, as seen in Fig. 4a (top). Note that
there are no fitting parameters used in Fig. 4a, as c1 and c2 are
extracted from the data shown in Fig. 2c. This is possible only
because ‘ nð Þ is a state variable that evolves without memory.
Additionally, Eq. 2 indicates that δ‘~Δ cannot be broken down into
two separate functions of ‘ and of ~Δ. This nontrivial functional
form suggests that the predictive power of Eq. 2 is not likely to
result from any artifact of image processing or crease detection.

The agreement between experiment and prediction demon-
strated in Fig. 4a further indicates that the evolution of ‘ is history
independent, and supports the claim that it may be treated as a
state variable of crumpling. Such a statement will be more
meaningful if it could be applied to a general loading
configuration; however, so far we have only considered this

history independence for fold networks created by uniaxially
crumpling sheets in a cylindrical configuration. We therefore
repeat the crumpling protocol shown in Fig. 4a and measure ‘ nð Þ
for two pre-creased sheets with distinctively different loading
histories; one sheet was first hand crumpled into a ball, and the
other folded along straight lines to create the initial crease
patterns shown in the insets to Fig. 4b. For both sheets, Eq. 2 with
c1 and c2 extracted from Fig. 2c still accurately predicts the
evolution of ‘, as shown in Fig. 4b.

An equation of state for the evolution of the crease network.
The history independence of ‘ for sheets that are repeatedly
crumpled allows us to take an unconventional approach to
understanding the dynamics of crumpling. By this approach we
gain direct insight into the crumpling process, resolving the ques-
tion regarding the evolution of the crease network as a smooth sheet
is confined to an increasingly shrinking volume. That is, how does ‘
depend on eΔ? Rather than tracking the evolution of ‘ðnÞ as a sheet
is repeatedly crumpled to a given ~Δ, we now inspect ‘ð~ΔÞ for a
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on Eqs. 3 and 1, respectively. A 1D heuristic model predicts ‘ to depend linearly on ð1� ~ΔÞ for mild compression ~Δ � 1
� �

(schematic 1) and to scale with ~Δ
�1

for large compression ~Δ � 0
� �

(schematic 2)
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given n. In Fig. 4c we re-plot the data presented in Fig. 2a as the
surface ‘ðn; ~ΔÞ, where we highlight two ‘ð~ΔÞ traces. The history
independence of the crumpling dynamics corresponds to path
independence along the ðn; ~ΔÞ phase space; thus, ‘ð~ΔÞ curves at
constant n are mathematically and physically meaningful even
though it requires many different sheets, with their unique network
of creases, to experimentally generate one such curve.

For large n, ‘ðnÞ curves are smooth and ‘ðn ¼ const; ~ΔÞ curves
are traced well by Eq. 1, as seen in the inset to Fig. 4d. By
examining Eq. 1 at n= 1 we can obtain a prediction for the
accumulation of creases as a smooth sheet is crumpled for the
first time. The great advantage of this approach is that the
phenomenological Eq. 1 and the two constants c1 and c2 are
obtained by fitting the entire ‘ðn; ~ΔÞ surface—a fit dominated by
the large n data, where the noise is significantly reduced. As
c2 ¼ 0:063; for n= 1, Eq. 1 is approximated by

‘ n ¼ 1; ~Δ
� � � ‘1 ~Δ

� � ¼ c1c2 1�~Δð Þ
~Δ

: ð3Þ

Equation 3 is in striking agreement with the experimental results
for n=1, as seen in Fig. 4d.

Equation 3 indicates that for small compression ð~Δ � 1Þ, ‘1 is
proportional to the strain applied by the piston ð1� ~ΔÞ, while for
very large compression ð~Δ ! 0Þ, ‘1 is inversely proportional to ~Δ.

A heuristic one-dimensional (1D) model of crumpling,
described schematically in the insets to Fig. 4d, provides intuition
for the behavior of ‘ n ¼ 1; ~Δ

� �
in the two limits. For small

compression, the sheet can be compacted by creating a
circumferential fold along the sheet, which at this stage of the
crumpling is roughly cylindrical. This fold serves as a hinge that
the cylinder can bend along without the need to create new folds.
The sheet can thus compress continuously, creating new hinges
when the freedom of travel provided by the existing hinges runs
out, as described in inset schematic 1. In this regime ‘ is
proportional to the number of hinges created, leading to a linear
relation between ‘ and the distance the piston compressed the
sheet, i.e., ‘ � ð1� ~ΔÞ. For large compression, the sheet is tightly
packed and all facets of the sheet must be broken when
compression is increased. This breaking of all facets doubles the
total length of creases for every halving of ~Δ, leading to
the observed scaling of ‘ � ~Δ

�1
, and represented in inset

schematic 2.

Discussion
The crumpled state can be thought of as one point in a hyper-
dimensional configuration space, where the angle of each indi-
vidual fold corresponds to a dimension, and the folding dynamics
are represented by a trajectory in configuration space. The see-
mingly unbounded increase of ‘ for large n implies that most of
these trajectories lead to a dead-end where the system jams. The
sheet cannot smoothly compact by deforming along existing
creases; instead, to reach the designated compaction new, ener-
getically expensive creases are created. Because of the complexity
of such a configuration space, it is nontrivial that much of this
system’s evolution can be captured by a single state equation. In
contrast to classical glassy systems, where the dynamics are illu-
strated as a stroll in a complex energy landscape, our system
holds richer dynamics. When our system jams in a local mini-
mum, it supports further confinement by introducing new ridges
or valleys, increasing the dimensionality of the system. Further-
more, the energy landscape changes as a result of the interactions
between the new and existing folds. It would be meaningful in the
future to explore the dynamics of how the energy landscape
evolves as folds accumulate. It may also be noteworthy to look for

state variables in other systems that evolve under geometric and
mechanical constraints. For example, earthquake fault networks
evolve via the accumulation and release of tectonic stresses by the
formation of new faults or slip along pre-existing faults that are
themselves remnants of its seismic history22. More provocatively,
we may consider the evolution of functional materials, such as
proteins23–25, where several recent works suggest that through
continuous structural alterations, resulting from cyclic loading,
genetic complexity is reduced via evolutionary selection to per-
form a specific mechanical task.

Data availability
The data that support the findings of this study are available from
the authors on reasonable request.
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