
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Market Design Under Constraints

Permalink
https://escholarship.org/uc/item/7m30d8d1

Author
Root, Joseph

Publication Date
2020
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7m30d8d1
https://escholarship.org
http://www.cdlib.org/


Market Design Under Constraints

By

Joseph Root

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Economics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Associate Professor Haluk Ergin, Chair
Professor David S. Ahn
Professor Chris Shannon

Summer 2020



Market Design Under Constraints

Copyright 2020
By

Joseph Root



Abstract

Market Design Under Constraints

By

Joseph Root

Doctor of Philosophy in Economics

University of California, Berkeley

Associate Professor Haluk Ergin, Chair

With the development of market design and the increasing number of applications from
school choice to kidney exchange has come the need for flexibility. The wide variety
of practical settings calls for a set of tools which can be used broadly to incorporate
market specific details. This dissertation collects three efforts to this end. The first two
chapters concern the development of incentive compatible and Pareto efficient mecha-
nisms in a setting where constraints are taken very broadly. The third abandons Pareto
efficiency in favor of stability.

In the first chapter, coauthored with David S. Ahn, we study private-good allo-
cation mechanisms where an arbitrary constraint delimits the set of feasible joint allo-
cations. This generality provides a unified perspective over several prominent examples
that can be parameterized as constraints in this model, including house allocation,
roommate assignment, and social choice. We first characterize the set of two-agent
strategy-proof and Pareto efficient mechanisms, showing that every mechanism is a
“local dictatorship.” For more than two agents, we leverage this result to provide a
new characterization of group strategy-proofness. In particular, an N-agent mechanism
is group strategy-proof if and only if all its two-agent marginal mechanisms (defined
by holding fixed all but two agents’ preferences) are individually strategy-proof and
Pareto efficient. To illustrate their usefulness, we apply these results to the roommates
problem to discover the novel finding that all group strategy-proof and Pareto efficient
mechanisms are generalized serial dictatorships, a new class of mechanisms. Our results
also yield a simple new proof of the Gibbard–Satterthwaite Theorem.

The second chapter, coauthored with David S. Ahn, takes a more concrete ap-
proach. In the same setting as chapter 1, we introduce a large subclass of mechanisms
which we dub “constraint-traversing” and explore their properties. In particular, we
provide two weak conditions – forward consistency and backward consistency – which,
if satisfied, guarantee that a mechanism is group strategy-proof and Pareto efficient.
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We illustrate the usefulness of this approach by deriving the set of 3-agent and 3-object
house allocation mechanisms (already characterized by Pycia and Ünver (2017)). In ad-
dition, we demonstrate that these conditions can be equally applied to many “nearby”
problems that would otherwise be intractable. Constraint-traversing mechanisms have
a number of convenient properties. First, group strategy-proofness implies Pareto ef-
ficiency. Second, the marginal mechanisms of any constraint-traversing mechanism is
also constraint-traversing.

In the final chapter, I consider stability in a two-sided matching context rather
than incentive compatibility and Pareto efficiency in allocation mechanisms. I intro-
duce a unified framework for studying two-sided matching problems with constraints. I
introduce a matching algorithm called the constrained cumulative deferred acceptance
algorithm capable of accommodating a wide variety of constraints. Like the deferred
acceptance algorithm, one side of the market makes proposals to another. A “constraint
correspondence” dynamically limits the choices of the receiving side in order to enforce
that the ultimate match satisfies the constraint. If the constraint correspondence satis-
fies a “generalized substitutes” condition, the ultimate match will be constrained stable
in the sense that satisfying any blocking pair would lead to a violation of the constraint.
I provide two further conditions, “aggregate monotonicity” and “constraint IIA,” on the
constraint correspondence which ensure the constrained cumulative deferred acceptance
algorithm implements a strategy-proof mechanism. Finally, I study the comparative
statics of constraint correspondences.
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Chapter 1

Preface

In this chapter, David S. Ahn and I explore constrained allocation under constraints.
We aim to characterize the set of mechanisms which satisfy incentive and efficiency
conditions. Specifically, we focus on mechanisms that are group strategy-proof and
Pareto efficient. We arrive at a complete characterization for 2 agents and an indirect
characterization when there are more than two agents. Applied to a variety of special
constraints, this characterization yields new results. In the next chapter we use this
characterization to introduce a large class of mechanisms motivated by our findings.
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Incentives and Efficiency in
Constrained Allocation Mechanisms

Joseph Root1 and David S. Ahn2

1.1 Introduction

Many market design problems involve constraints. School choice assignments must
ensure quotas of low-income students are satisfied at high-performing schools. Medical
residency assignments must place enough doctors in rural areas. The allocation of radio
frequency in spectrum auctions must satisfy a large number of complicated engineering
conditions to ensure minimal cross-channel interference.

Although successful ad hoc approaches have been tailored for particular prob-
lems, to date there is little general understanding of how constraints affect efficiency
and incentives, the two classic criteria for implementation. Theoretically, a unified
approach would enable analytical insights to be shared between contexts. Practically,
a flexible theory of constraints for market design would greatly expand applicability.
Real-world problems involve many considerations that are difficult to anticipate. The
tools of market design should be general enough to accommodate these considerations.

We develop a model of object allocation with private values for completely gen-
eral constraints. A finite number of objects are allocated to a finite number of agents
and an arbitrary constraint circumscribes the set of feasible social allocations. Each
agent has strict preferences over the objects assigned to her, but is indifferent to others’
assignments.

While other agents’ assignments have no direct effect on one’s well-being, those
assignments do limit the profiles of allocations that are jointly feasible. Obviously,
the assignment of a house to another agent precludes my consumption of that house.

1Department of Economics, University of California, Berkeley, 530 Evans Hall, Berkeley, CA 94720-
3880. Email: jroot@econ.berkeley.edu

2Department of Economics, University of California, Berkeley, 530 Evans Hall, Berkeley, CA 94720-
3880. Email: jroot@econ.berkeley.edu
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So even with purely private values, constraints introduce linkage across agents’ alloca-
tions. Each agent i is indirectly concerned with any other j’s assignment, not because
i cares about j’s consumption, but rather because j’s assignment will limit the set of
objects for i that are jointly feasible with the j’s assignment. Our goal is to study the
set of incentive compatible and efficient mechanisms for a fixed arbitrary constraint.
In addition, we aim to study how different features of a constraint make it amenable
for implementation, that is, to understand what kinds of constraints yield what kinds
of truthful and efficient mechanisms. For any constraint on the set of feasible alloca-
tions, our main findings characterize the entire class of mechanisms that are immune
to manipulation by any group of agents yet still yield Pareto efficient outcomes.

Beyond its practical benefits, a general theory of constrained allocation yields
some surprising theoretical insights. Several prominent problems which at first glance
may appear unconstrained and unrelated can be neatly expressed as special constraints
of our model. For example, the classical social choice problem corresponds to the
special constraint of our model where all agents are constrained to consume the same
object.3 From this perspective, the social choice problem presents itself as a special
constrained private-goods allocation problem. In fact, a corollary application of our
results is the Gibbard–Satterthwaite Theorem: that all strategy-proof social choice
mechanisms are dictatorial. With this novel presentation of social choice as a constraint,
we can now sensibly formulate and prove a converse to Gibbard–Satterthwaite: under
what conditions does the constraint admit any non-dictatorial mechanism?

Another prominent application of our theory is to house allocation, where a finite
number of indivisible objects must be assigned to agents with unit-demand. Expressed
this way, the house allocation problem is almost the opposite of the social choice prob-
lem: no two agents can be assigned the same object. Recently, Pycia and Ünver (2017)
provided a full characterization of the group strategy-proof4 and Pareto efficient house
allocation mechanisms, building on earlier work by Papái (2000). In an earlier version
of this paper, we show how to use our results to replicate Pycia and Ünver (2017) for
a small number of agents.5

A third prominent problem that can be expressed as a constraint is the room-
mates problem, where an even number of agents need to match into pairs. In this case,
the “objects” are the other agents and the constraint requires that: first, no agent is
matched to herself; and second, if i is assigned to j then j is commensurately assigned
to i. In contrast to the previous two applications, to our knowledge no general char-
acterization of the incentive compatible, efficient mechanisms had yet been discovered.
As an application of our results, we provide such a characterization. We show that

3The term “object” is figurative. In social choice, the objects are usually policy choices or political
candidates.

4Roughly, a mechanism is group strategy-proof if no coalition of agents can jointly misreport their
preferences, without harming anyone in the group and making at least one agent strictly better off.

5The argument constructs a tedious change of variables to parameterize the Pycia and Ünver (2017)
as a special case of our general formulae in the three-agent case. Details are available from the authors
on request.
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all group strategy-proof and Pareto efficient roommates mechanisms are “generalized
serial dictatorships,” a class of mechanisms we will formally introduce later.6 The fact
that our results are useful in understanding and proving results across some well-known
problems is a fortunate side-effect of the model’s generality.

These examples illustrate a key conceptual contribution of our paper: to provide
a novel framework to unify positive and negative results across these applications, ty-
ing together seemingly disparate environments and results by viewing them as different
constraints on the image rather than through restrictions of preferences on the domain.
Traditionally, positive results in specific environments are seen as escaping the impossi-
bility of the Gibbard–Sattertwhaite Theorem by restricting preferences in the domain of
the mechanism to convenient special cases, such as assuming single-peaked rankings or
quasi-linear preferences. In our model, we can provide a different reconciliation of these
positive results by interpreting these environments as relaxing constraints in the image
of the mechanism: outside of the Arrovian social choice problem, all agents need not
consume the same object and instead there is room for compromise to yield mechanisms
beyond dictatorship. The “diagonal” constraint implicit in the social choice problem
generates maximal tension between efficiency and incentives, while other constraints
allow more scope for their coexistence. Our model explicitly exposes this tension, and
our results characterize the scope for positive incentive-compatible implementation of
efficient outcomes when this tension is relaxed. This provides a deeper understanding
of why certain environments like social choice admit so few good mechanisms while
other environments like house allocation admit a broad variety of good mechanisms.

Despite allowing for complete generality in the constraint, we fully character-
ization all mechanisms that satisfy standard incentive and efficiency desiderata. We
start by considering two-agent environments. This case admits a surprisingly parsi-
monious characterization of the set of individually strategy-proof and Pareto efficient
mechanisms for all constraints. We show that all individually strategy-proof and Pareto
efficient mechanisms are “local dictatorships” in which the set of infeasible allocations
is partitioned into two regions and each region is assigned a local dictator. For a given
preference profile, the agents’ top choices determine some (possibly infeasible) social
allocation. If this allocation is feasible, the mechanism assigns it. Otherwise, it is
infeasible and there is a local dictator assigned to the allocation. The non-dictator is
assigned their favorite object compatible with the dictator’s top object. However, not
all partitions will maintain efficiency and incentive compatibility. Instead, some struc-
ture is required of the partition to ensure these desiderata are maintained. We show
that every constraint can have its infeasible allocations “block diagonalized” to yield
an immediate characterization of the partitions that do yield desirable mechanisms.
Every block must be assigned to a single agent as the local dictator. So the number of
strategy-proof and Pareto efficient mechanisms is determined entirely by the number

6In common with standard serial dictatorship, there is a sequence of dictators and each dictator
picks her favorite object among those that are possibly feasible with the choices of earlier dictators. In
contrast to standard serial dictatorship, our generalized version allows the order of subsequent dictators
to depend on the choices of earlier dictators, rather than being locked in a fixed order.
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of blocks allowed by the constraint.
With three or more agents, the set of individually strategy-proof and Pareto

efficient mechanisms no longer admits such a straightforward characterization. Indeed,
even for the classic house allocation setting, the collection of all such mechanisms is
still unknown. Nevertheless, if we strengthen our incentive compatibility condition to
group strategy-proofness, we can leverage the two-agent results to get a novel recursive
characterization for the multi-agent case. Group strategy-proofness requires that no
group of agents can ever collectively misreport their preferences so that all agents in
the group are weakly better off and at least one agent is strictly better off. Our central
observation is that group strategy-proof mechanisms have the convenient property that
we can restrict attention to a subset of agents, fixing a preference profile of everyone else,
to get a new group strategy-proof mechanism for the subset. We call these the “marginal
mechanisms.” Importantly, the properties of just the two agent marginal mechanisms
are enough to capture the group incentives of the entire mechanism: if all two-agent
marginal mechanisms are Pareto efficient and individually strategy-proof, then the full
mechanism is group strategy-proof. This discovery is especially useful given our explicit
characterization of two-agent mechanisms. The two-agent mechanisms of our first result
are therefore the “building blocks” of all group strategy-proof mechanisms with many
agents.

Beyond its analytical power, group strategy-proofness is substantively natural for
a number of reasons. First, we show that, for any constraint, group strategy-proofness
is equivalent to individual strategy-proofness and a classic normative condition called
“nonbossiness”7. In bossy mechanisms, agents can manipulate the outcome of other
agents without affecting their own allocation. Therefore, the marginal power of re-
stricting attention to group strategy-proofness, relative to requiring only individual
strategy-proofness, is simply to rule out such bossy mechanisms. So the gap between
group and individual incentives boils down to whether one agent is allowed to alter
another’s outcome while not changing her own outcome. Second, in practice, incentive
problems have been highly detrimental to the practical appeal of mechanisms. Viola-
tions in strategy-proofness of the Boston mechanism lead to severe inequality between
“sophisticated” agents who knew how to game the system and “naive” agents who
didn’t. Ultimately, the mechanism was replaced in favor a strategy-proof mechanism
(Abdulkadiroğlu, Pathak, Roth, and Sonmez 2006). The Vickrey-Clarke-Groves mech-
anism, despite its attractive individual incentives, has largely not been implemented in
practice, in part because of its susceptibility to group manipulation (Rothkopf 2007).
We therefore believe that mechanisms with strong group incentives are especially useful
for practical considerations. In addition, group strategy-proofness is among the most
demanding incentive conditions in the literature, and this benchmark should be estab-
lished to understand the gains to efficiency from demanding weaker incentive conditions
like Bayesian implementation. Finally, group strategy-proofness has been long studied
in other environments, and especially for the house allocation problem, so using this as

7To our knowledge, nonbossiness was first introduced by (Satterthwaite and Sonnenschein 1981).
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our incentive condition facilitates comparisons with earlier results. That all said, our
focus on Pareto-efficiency and group strategy-proofness rules out some practical mech-
anisms. Deferred acceptance, for example, is not Pareto efficient, is not individually
strategy-proof for the accepting side, and is not group strategy-proof for the proposing
side.

1.1.1 Literature Review

To our knowledge, this paper is the first to identify the entire set of mechanisms that
satisfy criteria regarding incentives and efficiency for an arbitrary constraint in our
general allocation problem. However, several papers study mechanisms for specific
constraints in particular environments. One such environment is the two-sided matching
problem with distributional constraints, where for example there is a cap on the number
of medical residents assigned to hospitals in a certain area. The two-sided matching
problem can be expressed as a constraint in our more general model, and distributional
constraints can be expressed as a further sharpening of that constraint.8 A series of
papers summarized Kamada and Kojima (2017a) study the two-sided matching problem
with distributional constraints, with a primary focus on understanding stability.9 In
the two-sided matching problem, stability is the primary normative concern since the
ubiquitous deferred-acceptance mechanism is known to be neither strategy-proof nor
Pareto efficient. While specific mechanisms are shown to work well for specific classes
of constraints, a general accounting for the class of all mechanisms is still outstanding.
In principle, our results applied to this problem would characterize the set of all group
strategy-proof and Pareto efficient mechanisms. That said, our results are exclusively
about incentives and efficiency, and we have little to directly say about stability. This
is partly because, as a concept, stability is only sensible and well-defined in particular
examples of our environment such as two-sided matching.

Another example of a particular environment with a constraint on allocations
is the house allocation problem, although it is not often thought of as a constrained
problem. Abdulkadiroğlu and Sönmez (1999) and Papái (2000) construct classes of
group strategy-proof and Pareto efficient mechanisms that are strictly larger than two
classic examples of group strategy-proof and Pareto efficient mechanisms for house
allocation: top trading cycles, attributed to David Gale by Shapley and Scarf (1974)
and shown to have these desirable features by Bird (1984), and serial dictatorship,
analyzed comprehensively by Svensson (1994) and Svensson (1999), which obviously
has these features. A general characterization had remained a long-standing problem

8More precisely, the two-sided matching problem can be modeled by making the set of objects equal
to the union of agents from both sides of the market with the constraint that each agent is assigned to
an agent in the opposite side and that, if agent i is matched to agent j then j should also be matched
to i.

9Work in this literature includes contributions by Hafalir, Yenmez, and Yildirim (2013), by Ehlers,
Hafalir, Yenmez, and Yildirim (2013), by Kamada and Kojima (2015), by Kamada and Kojima (2017b),
and by Kamada and Kojima (2018).
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until Pycia and Ünver (2017) recently provided an impressive full description of all
group strategy-proof and Pareto efficient mechanisms mechanisms. These are exactly
the normative criteria explored in this paper, and in fact Pycia and Ünver (2017)
helped inspire this paper by demonstrating a general characterization of these criteria
is even attainable for an important problem like house allocation. House allocation
problems are a special constraint in our model, where ai 6= aj is required whenever
i 6= j. That is, our characterization when applied to this constraint also provides
another parameterization of mechanisms in Pycia and Unver. We explicitly verify the
connection between the two characterizations in the three-house case, and believe the
general change of variables between the two formulations is feasible but would be very
tedious.

While incentives and efficiency are relatively well-understood for two-sided match-
ing and for house allocation, one-sided matching such as in the classic problem of pairing
roommates into dormitory rooms has demonstrated itself to be much more intractable.
This is in large part because one-sided environments may fail to yield a stable match,
as originally observed by Gale and Shapley (1962) in the same article introducing their
eponymous algorithm for stable two-sided matching. Since then, a very large liter-
ature in operations research and computer science, starting with Irving (1985), tries
to find efficient algorithms to find stable matchings when they exist. This specific
computational problem has become so well-studied that it is now called the “stable
roommates problem.” In contrast, there seems to be almost no discussion of incentives
and efficiency for the roommates problem.10 An application of our main results yields a
characterization of group strategy-proof and Pareto efficient mechanisms for the room-
mates problem, which turn out to be the family of generalized serial dictatorships that
we introduce in this paper. To our knowledge, this is a new observation and, analogous
to the characterization theorem by Pycia and Ünver (2017) for house allocation or to
the Gibbard–Satterthwaite Theorem for social choice, establishes the characterization
of group strategy-proofness and Pareto efficiency for the roommates problem.

A final notable special constraint in our environment is the classic Arrovian social
choice model. The first result studying incentives and efficiency was the celebrated
negative finding by Gibbard (1973) and Satterthwaite (1975), which initiated the field
of implementation theory. Here, the classic Arrovian social choice environment in which
the Gibbard–Satterthwaite Theorem is cast corresponds to the case where all agents
must be assigned the same common outcome. That is, social choice corresponds to the
constraint that ai = aj for all agents i, j. Viewed in this way, the social choice constraint
is almost the opposite of the house allocation constraint. We derive the Gibbard-
Sattherhwaite Theorem as a corollary of our main characterization. This provides a
novel perspective on the classic result by casting light on the implications of constraining
allocations so that all agents consume a common object. Our perspective allows us to
understand the Gibbard–Satterthwaite Theorem as a consequence of the restrictiveness

10The one exception we found was a working paper by Abraham and Manlove (2004) that studies
the computational hardness of finding Pareto optimal matches for the roommates problem.
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of the constraint. Correspondingly, our perspective also offers a novel escape from the
assumptions of the Gibbard–Satterthwaite Theorem, namely relaxing the social choice
constraint. This escape is meaningful only when Arrovian social choice is framed as a
special case of private good economies. In fact, this framing allows us to generalize the
Gibbard–Satterthwaite Theorem in our environment: we completely characterize the
constraints where only serial dictatorships are group strategy-proof, finding the social
choice constraint as a particular example. It is interesting that social choice can be cast
as a special case of our model with the particular diagonal restriction on allocations,
since private-goods economies are usually viewed as a special case of social choice with
a particular restriction on preferences.

Our general environment with private goods was also recently studied by Bar-
berà, Berga, and Moreno (2016) from a social choice perspective. They work focuses
on the richness of preferences for a social choice function, that is, it focuses on the
richness of the domain of preference. Throughout our paper, by contrast, we allow
no restrictions on preferences and assume that mechanisms will find allocations for all
preference profiles. Instead of considering restrictions on the domain, we complement
Barberà, Berga, and Moreno (2016) by considering different constraints on the image
of allocations that are feasible for a mechanism.

Our different focus on constraints on allocations, rather than on restrictions over
preferences, stems partly from our different objectives. Barberà, Berga, and Moreno
(2016) are primarily concerned with the relationship between group and individual
incentives. Their main result reveals an important connection between group and indi-
vidual strategy-proofness when the space of admissible preferences is sufficiently rich.11

In contrast, our aim is not to relate different axioms for strategy-proofness, but rather
to characterize the entire space of mechanisms that satisfy the fixed axiom of group
strategy-proofness. Our main results examine the structure of the constraint to de-
scribe the structure of the group strategy-proof mechanisms. That is, our objective
is not to relate strategy-proofness to other normative conditions like nonbossiness or
monotonicity, but rather to relate the structure of group strategy-proof mechanisms
to the structure of the constraint. Our results address concerns like how the space
of strategy-proof mechanisms changes when constraints are relaxed or tightened. Of
course, an improved understanding of how group strategy-proofness relates to other
natural conditions can only be helpful. In fact, a key lemma in proving our character-
ization is to observe a tight relationship between group strategy-proofness, individual
strategy-proofness and nonbossiness, and Maskin monotonicity. So our development
owes a debt to these earlier realizations. However, our lemma is still distinct from these
earlier observations in both substance and message, as we will explain after formally
introducing the result.

Finally, a more distant body of work on random allocation tests whether a
random allocation is a convex combination of deterministic allocations satisfying a fixed

11This complements a similar connection between group and invidiual incentives for classic Arrovian
environments, discovered by the same authors (Barberà, Berga, and Moreno 2010) and by Le Breton
and Zaporozhets (2009).

8



constraint (Balbuzanov 2019, Budish, Che, Kojima, and Milgrom 2013), extending the
fairness gains of the random assignment mechanisms introduced by Bogomolnaia and
Moulin (1990) to constrained environments. We focus on deterministic mechanisms, so
as far as we can see our results have no direct relationship to this literature.

1.2 Model

We begin by introducing primitives. Let N be a finite set of agents andO be a finite set
of objects. We use the term “object” because of our leading examples, but note that
these are not necessarily physical objects, but can be political candidates, roommates,
and so on. Define A = ON to be the set of all possible allocations of objects to agents.
Equivalently, A is also the set of maps µ : N → O and we switch to this perspective
when it is more useful. A suballocation is a map σ : M → O where M ⊂ N . Let S
denote the set of suballocations. Our task is to assign objects to agents in a way that
is consistent with an exogenous constraint which reflects the set of feasible allocations
for a particular application. Importantly, the constraint is exogenous to the problem.
It is given to the mechanism designer as a fixed set of feasible outcomes. Formally, we
are given a nonempty constraint C ⊂ A and (ai)i∈N ∈ C means that it is feasible
to allocate each agent i the object ai simultaneously. Notice that since we place no
restrictions on the constraint, it is without loss of generality to have a common set
of objects for all agents because if each agent has her own set of objects then one
could add the constraint that all feasible allocations cannot assign these objects to
other agents.12 Agents have strict preferences over the objects and are assumed to be
indifferent between any two allocations in which they receive the same object. We will
use P to denote the set of strict preferences (i.e. linear orders) on O and P = PN to
denote the set of preference profiles.13 Our primary object of interest in this paper is
a feasible mechanism, which is simply a map f : P → C. Our task will be to find
feasible mechanisms satisfying desirable conditions regarding incentives and efficiency,
to be formally introduced in the sequel.

Some well-known problems can be expressed as special constraints in this model:

• House Allocation: A finite number of houses must be distributed to a finite num-
ber of agents. The houses cannot be shared so no two agents can be allocated the
same one. This gives rise to the constraint

C = {(ai)i∈N | ai 6= aj when i 6= j}.

This setting has been the subject of considerable interest since at least Shapley
and Scarf (1974). Two prominent mechanisms used in practice are Gale’s top
trading cycles algorithm and Gale and Shapley’s deferred acceptance algorithm
(with priorities for houses).

12More precisely, let O = tOi and define Cnew by (ai)i∈N ∈ Cnew if and only if (ai)i∈N ∈ C
13A binary relation B ⊂ O ×O is a linear order if it is complete, transitive, and antisymmetric
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• Roommates Problem: Universities are often tasked with assigning students into
shared dormitory rooms. Assuming N is even, this problem can be captured in
our environment by setting O = N and imposing the constraint

C = {µ : N → N |µ2 = id and µ(i) 6= i for all i}.

The first condition requires that if i is assigned roommate j then j is also assigned
i and the second condition requires that all agents are assigned a roommate.

• Social Choice: If the constraint specifies that all agents receive the same ob-
ject (without specifying ex-ante which object will be chosen) we get the classical
version of the social choice problem14. Specifically, if

C = {(ai)i∈N | ai = aj for all i, j}

the constraint requires that all agents be given the same social choice, but which
outcome is chosen is a function of the mechanism.

Our model is able to accommodate these examples as special cases because of its gen-
erality in admitting arbitrary constraints. We will have more explicit analyses of these
examples later in the paper.

Before moving on, we record here some notation used throughout the paper.
For any subset M ⊂ N , given a preference profile %= (%i)i∈N ∈ P and a profile of
alternative preferences for agents in M , (%′j)j∈M , we will write (%′M ,%−M) to refer to
the profile in which an agent j from M reports %′j and any agent i from M c reports
%i. We will often want to consider how a mechanism f changes when a few agents
change their preferences, that is the difference between f(%) and f(%′M ,%−M). When
the initial preference profile % is clear, we will sometimes write %− instead of %−M .
Given a constraint C ⊂ A and a subset of agents M ⊂ N , let CM = {µ : M → O |∃b ∈
C s.t. bi = µ(i)∀i ∈M} which we will call the projection of C on M . An element of
CM will be referred to as a feasible suballocation for agents in M . If µ : M → O and
µ′ : M ′ → O are suballocations with M ⊂M ′ which agree on their shared domain, µ′ is
called a extension of µ. If µ′ is a feasible suballocation (which of course implies that µ
is) then µ′ is called a feasible extension of µ. If µ′ assigns an object to each agent, it
is called a complete extension of µ. Given a feasible suballocation µ, we will let C(µ)
denote the set of complete and feasible extensions of µ. For any agent i, let πi : A → O
be the projection map so that given an allocation (aj)j∈N , πia = ai and for a set of
allocations B ⊂ A, we have πiB = {a ∈ O | there is a b ∈ B with πib = a}. For x ∈ O
and %i∈ P , define LC%i

(x) = {y ∈ O | y ≺i x} be the (strict) lower contour set of x
at %i. Likewise, UC%i

(x) = {y ∈ O | y �i x} is the (strict) upper contour set of x
at %i. For a preference %i, define τn(%i) as the nth top choice under %i. Likewise, for
any preference profile %, define τn(%) as the allocation in which each agent gets their
nth top choice. To save on notation, we will often omit the subscript when referring to

14See Barberà (2001) for a general statement of the social choice problem with restricted domains.
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the top choice (i.e. writing τ(%) to mean τ1(%)). We will use C̄ to denote the set of
infeasible allocations.

In practice, mechanisms are often designed to satisfy efficiency and incentive
properties. Here are several well-known desiderata for allocation mechanisms.

Definition 1. A mechanism f : P → C is

1. strategy-proof if, for every i ∈ N and every %∈P,

fi(%) %i fi(%
′
i,%−i)

for all %′i∈ P . That is, truth-telling is a weakly dominant strategy.

2. group strategy-proof if, for every %∈ P and every M ⊂ N , there is no %′M
such that

(a) fj(%′M ,%−M) %j fj(%) for all j ∈M ;

(b) fk(%′M ,%−M) �k fk(%) for at least one k ∈M .

3. weakly group strategy-proof if, for every %∈ P and every M ⊂ N , there is
no %′M such that

fj(%
′
M ,%−M) �j fj(%) for all j ∈M.

4. Pareto efficient if there is no allocation a ∈ C and preference profile % such
that a 6= f(%) and aj %j f(%) for all j.

5. nonbossy if, for all %∈P,

fi(%
′
i,%−i) = fi(%) =⇒ f(%′i,%−i) = f(%).

6. Maskin monotonic if, for all %,%′∈P,

LC%′i [fi(%)] ⊃ LC%i
[fi(%)] for all i =⇒ f(%′) = f(%).

Strategy-proofness requires that for every agent i and every possible profile of prefer-
ences for the other agents, i cannot improve her outcome by misreporting her preference.
Group strategy-proofness is similar except that it requires that no group can collectively
misreport their preferences without hurting anyone while strictly benefiting at least one
agent. This is often called “strong group strategy-proofness” to contrast it with weak
group strategy-proofness which requires that any deviating coalition make all its agents
strictly better off. Pareto efficiency might also be called “constrained efficiency” since
it requires that for every preference profile f selects a feasible allocation such that no
other feasible allocation can improve (at least weakly) all agents outcomes. Pareto
efficiency is also sometimes called “unanamity” in the literature. Nonbossiness simply
requires that no agent can exert influence on another agent without affecting her own
outcome. Finally, Maskin monotonicity is the seemingly weak condition that whenever

11



an allocation is chosen at a given preference profile, if all agents instead report a dif-
ferent profile in which their respective allocations have improved relative to all other
allocations, then f should maintain the same outcome. This condition was famously
shown to be necessary for Nash implementation by Maskin (1999).

A useful observation in building our results is the following equivalence across
these conditions. We present this lemma explicitly because it is of some independent
interest and to explain how this part of our argument relates to earlier observations.

Proposition 1. If f : P → A the following are equivalent:

1. f is group strategy-proof.

2. f is strategy-proof and nonbossy.

3. f is Maskin monotonic.

The connection between individual and weak group-strategy proofness was ex-
amined in social choice environments by Le Breton and Zaporozhets (2009) and by
Barberà, Berga, and Moreno (2010) and in private-goods environments such as ours
by Barberà, Berga, and Moreno (2016), who prove that, when the domain of pref-
erence is sufficiently rich, weak group strategy-proofness is equivalent to individual
strategy-proofness for a broad class of social choice functions satisfying generalizations
of nonbossiness and Maskin monotonicity. An immediate difference is our use of strong
rather than weak group strategy-proofness, which follows the literature on house allo-
cation that also studies strong group strategy-proofness.15 While perhaps a seemingly
technical distinction, this is quite a substantively important departure from the weak
concept. For example, deferred acceptance is only weakly group-strategyproof on the
proposing side, but is not group strategy-proof in our stronger sense. Even ignoring
the difference between weak and strong incentives, the theorem of Barberà, Berga, and
Moreno (2016) bears no obvious relation to Proposition 1. The two results have very
different aims and messages. Barberà, Berga, and Moreno (2016) take generalizations of
Maskin monotonicity (that they call “joint monotonicity”) and nonbossiness (that they
call “respectfulness”) as assumptions in their results and ask how large the domain of
preferences must be to ensure group and individual incentives align. Our result gener-
ates nonbossiness and Maskin monotonicity as implications of group strategy-proofness
for full preference domains, which is important in subsequent applications where we ver-
ify that a mechanism is group strategy-proof by testing that it is Maskin monotonic. On
the other hand, we assume the domain of all strict preferences throughout this paper,
and have nothing to say here about the consequences of restrictions on preferences.

The relationship between group strategy-proofness and Maskin monotonicity
was first revealed by the proof of the Muller–Satterwthwaite Theorem, which proceeds
by showing that either group or individual strategy-proofness is equivalent to Maskin

15For the specific problem of house allocation, the equivalence between (1) and (2) was first observed
by Papái (2000).

12



monotonicity for the social choice problem (Muller and Satterthwaite 1977).16 This
equivalence between group strategy-proofness and Maskin monotonicity was then fur-
ther demonstrated to hold for other problems as well, including for house allocation by
Svensson (1999) and for two-sided matching by Takamiya (2001). Takamiya (2003) uni-
fied these observations in a general statement for all indivisible-good economies without
externalities that also applies to our model, and should be credited for the equivalence
between (1) and (3) in Proposition 1.

Group strategy-proofness requires that no group of agents can collectively mis-
report their preferences and benefit at least one agent without making anyone in the
group worse off. One possible coalition is the grand coalition. Thus if f is group
strategy-proof and f(%) = a for some profile %, then a can never Pareto dominate
f(%′) for any other profile %′, since all agents would collectively report %.

Lemma 1. If f : P → A is group strategy-proof then it is Pareto efficient on its
image.17

Having established this, the goal of this paper is to understand the correspon-
dence between the primitives (the set of agents, objects, and the constraint) and the set
of group strategy-proof, Pareto efficient mechanisms. We will denote the set of feasible
group strategy-proof mechanisms which map into C, GS(C).

1.3 Characterization Results

We begin by considering the two-agent case where we find an explicit characterization
of the set of strategy-proof and Pareto efficient mechanisms for an arbitrary constraint.
Each mechanism with these properties turns out to be a “local dictatorship.” We then
turn to the n-agent case where we show that an n-agent mechanism is group strategy-
proof if and only if each 2-agent marginal mechanism is group strategy-proof.

1.3.1 Two Agents

Given just two agents, we will show that for every constraint the set of strategy-proof
and Pareto efficient mechanisms corresponds exactly to the set of “local dictatorships”
in which the set of infeasible allocations C̄ is partitioned into two disjoint subsets
and each agent is assigned a set. After the agents announce their preferences, if the
allocation in which both agents get their top choice is feasible, the mechanism must pic
this allocation by Pareto efficiency. Otherwise, it is infeasible to give both agents their
top choices and one agent must compromise and consume a less-favored object. The
agent who does not have to compromise is the “local dictator” and gets her top choice,

16Recall the Muller–Satterwhaite Theorem: all Maskin monotonic and surjective social choice func-
tions are dictatorial.

17That is, if the constraint C is exactly im(f).
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and the “local compromiser” receives her favorite object among those that are jointly
feasible with the local dictator’s top choice.

One possible complication with this procedure is that there may be no object
for the local compromiser that is jointly feasible with the local dictator’s top choice.
For example, if the local dictator at (x, y) is agent 1, and (x, y′) /∈ C for all objects
y′ ∈ O, then there is no choice for agent 2 that will allow agent 1 to consume her
favorite object x. On the other hand, since agent 1 can never feasibly be assigned
object x, it would seem that her preference for x is immaterial to the social choice.
This turns out to be true, and we can ignore objects that are never assigned to an
agent without loss of generality. To make this precise, for any constraint C ⊂ O2 let
R1 = {x ∈ O | (x, y) /∈ C for all y ∈ O} and R2 = {y ∈ O | (x, y) /∈ C for all x ∈ O}.
In words, Ri is the set of objects which are always infeasible for agent i because there
is no object a−i for the other agent that will make the joint allocation (ai, a−i) feasible.
More generally, we can likewise define Ri for any number of agents as the set of objects
which are always infeasible to agent i no matter what objects are assigned to everyone
else. Since these objects are immaterial to the agents, it would seem natural and would
certainly be convenient if the ranking of always infeasible objects should have no effect
on the outcome of a mechanism. The following lemma says exactly that.

Lemma 2. Let C be a constraint for n agents. If f : P → C is group strategy-proof
and Pareto efficient and if % and %′ are preference profiles in which for every i the
relative ordering of elements in O \Ri is unchanged then f(%) = f(%′)

Let C̄∗ = {(x, y) | (x, y) /∈ C and x /∈ R1, y /∈ R2}. That is, C̄∗ is the set of
infeasible allocations in which both agents could get the associated object for some
choice of the other agents’ object. As mentioned, all Pareto efficient mechanisms will
assign top choices to both agents when doing so is feasible. The main job of a mechanism
is to adjudicate the outcome when one agent must give up on her top choice. It turns
out that strategy-proofness will demand a local dictator is determined as a function of
only the agents’ top objects. We prove this claim by taking an approach to strategy-
proofness originally developed by Barberà (1983). This approach begins with the simple
but deep observation that strategy-proof social choice functions can always be written
as if an “option set” is available to player i as a function of everyone else’s (j 6= i)
report, and then i’s allocation maximizes agent i’s reported preference over that option
set. We explicitly restate Barberà’s observation for our environment of private goods,
because we feel it is not as generally well-known as it should be and to acknowledge
the role it plays in our argument. Let PN−1 = ×j 6=iP denote the space of preference
profiles for all players beside agent i.

Lemma 3 (Barberà (1983)). A mechanism f : P → C is strategy-proof if and only if
there exist nonempty correspondences gi : PN−1 ⇒ O such that, for all agents i,

fi(%) = max
%i

gi(%−i)
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With some work, Barberà’s Lemma can be used to show that all strategy-proof
and Pareto efficient two-agent mechanisms assign a local dictator who gets her top
choice, and the assignment of dictatorship can depend only on the top choice for each
agent. So such mechanisms can be described by coloring the set C̄∗ with one color
for the top-choice pairs where agent 1 is the local dictator and the other color for the
top-choice pairs where j is the local dictator.

However, not all such colorings will be strategy-proof. For example, if agent 1
is the local dictator when (a, b) are the top choices and agent 2 is the local dictator at
(a, b′), then agent 2 may want to misreport her top choice as b′ even in situations where
b is actually her top choice because she gets dictatorship power by misreporting. The
coloring of the infeasible set C̄∗ will have to satisfy some restrictions, which motivates
the following constructions. Define the binary relation B on C̄∗ by (a, b)B(a′, b′) if
a = a′ or b = b′. Two allocations are related by B if (at least) one agent gets the same
object in both allocations. Now if (a, b)B(a′, b′), then the example above suggests that
the same agents must be assigned as the dictator in both cases, to prevent the situation
where one agent can move from being the local compromiser to being the local dictator
by individually misreporting her top object. This relation must hold across pairs of
top choices that are even indirectly linked, so common assignment of local dictatorship
must also hold transitively across B. Let T be the transitive closure of B.18 Since B is
reflexive and symmetric, it can easily be shown that T is an equivalence relation.19 As
an equivalence relation on a finite set, it can be expressed as a partition with a finite
number of equivalence classes E1, E2, . . . Ep, where (a, b)T (a′, b′) if and only if (a, b) and
(a′, b′) are both in some Ei. We will refer to the equivalence classes of T as the blocks
of C̄∗.

Figure 1.1 illustrates an example of the relation T for a specific constraint. The
top-left panel shows the constraint; grey cells are infeasible allocations. Panel (B)
permutes R1 = {a4} and R2 = {a4, a6} to the top and left most objects. In panel (C),
a particular 4-element block of C̄∗ consisting of (a2, a1), (a2, a3), (a6, a3), and (a6, a8) is
shaded black. No element of the grey set is related by B to any member of C̄∗ which is
not also shaded black. Since the order of objects is not important, we can permute the
rows and columns to display the equivalence classes more easily. Hence in panel (D),
we again permute the objects. As we can now easily see there are three equivalences
classes of T which are indicated as E1, E2 and E3. We can then assign a dictator to
each block independently as described below.

Let C1(b) = {a ∈ O | (a, b) ∈ C} and likewise C2(a) = {b ∈ O | (a, b) ∈ C}.
A mechanism f : P2 → C is called a local dictatorship if each block Ei of C̄∗ is

18The transitive closure is the minimum binary relation containing B which is transitive.
19It is reflexive because B is. To see that it is symmetric, if we have (a, b)T (a′, b′) since C̄∗ is finite,

there are (a1, b1), . . . (an, bn) such that (a, b)B(a1, b1)B . . . B(an, bn)B(a′, b′). By reversing all these,
we see that (a′, b′)T (a, b).
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Figure 1.1: Two-agent Example

assigned a (local) dictator di so that for any % if τ(%1,%2) = (a, b)

f(%) =


(a, b) if (a, b) ∈ C
(a,max%2 C

2(a)) if (a, b) ∈ Ek and dk = 1

(max%1 C
1(b), b) if (a, b) ∈ Ek and dk = 2

One can easily see that any local dictatorship is strategy-proof and Pareto effi-
cient. The surprising fact is that the converse holds. That is, T directly indicates how
to construct every mechanism.

Theorem 1. f : P 2 → C is strategy-proof and Pareto efficient if and only if it is a
local dictatorship.

To see how this works for more familiar constraints, consider Figure 1.2. On the
left is the house allocation constraint and on the right is the social choice constraint.
Each grey square on the left is a different equivalence class of T , so every mechanism
corresponds to a labeling of the grey boxes with 1’s and 2’s, which can be done inde-
pendently. Another way to think about this is that each object is owned by one of the
agents. If either agent top-ranks an object they own, they’re guaranteed the ability to
consume it. If both agents top-rank the other agents’ object, they can trade. On the
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right is the social choice constraint. Clearly T has a single block for this constraint since
it is possible to move from any grey square to any other grey square, only changing one
coordinate at a time, and only passing through grey squares. Then Theorem 1 imme-
diately yields the two-agent version of the Gibbard–Satterthwaite Theorem, that every
mechanism is a dictatorship. Famously, the Gibbard–Satterthwaite Theorem requires
at least three alternatives. Our analysis provide a new perspective on this cardinality
requirement: observe that if the social choice constraint in Figure 1.2 had only two
objects, the constraint would be the top-left 2 × 2 constraint. In this case, T has two
equivalence classes corresponding to the two grey squares.

2 2
1 1

a9 a10

a3

a4

a10 a8a4 a5 a6 a7a3a1 a2

a10 a10

a6 a6

a7 a7

a8 a8

a5 a5

a3

a4

a9 a9

House Allocation

a1 a1

a2 a2

a5a4a3a2a1 a6 a7 a9a8

Social Choice

Figure 1.2: The social choice and house allocation constraints for two agents and 10
objects.

In independent and contemporaneous work, Meng (2019) provides an impressive
characterization of all strategy-proof and Pareto efficient mechanisms for the two-agent
social choice problem when agents are known to be indifferent between classes of al-
ternatives that are fixed a priori. His characterization involves assigning a dictator at
all profiles of preferences over announced indifference classes, where the dictator as-
signment must respect a cell-connected property. The structure of his result closely
resembles our assignment of local dictators to the infeasible set. In fact, either result
can be deduced from the other. However, these results are cast for very different ques-
tions, his for indifference and ours for constraints, so their substantive applications and
contributions are quite different.

1.3.2 N Agents

When there are three or more agents, the approach we used for two agents fails to
provide a straightforward characterization. The notion of a “local dictator” does not
immediately generalize for more than two agents. One issue is that the set of compro-
mising agents is not identified by knowing the local dictators because there are multiple
agents besides the dictator. In fact, the ambiguity is deeper: not only is the identity
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of the compromising agent ambiguous, but the number of compromising agents is not
even necessarily fixed: it may be the case that having a single compromising agent is
insufficient to move to a feasible solution, and instead multiple compromising agents
must move to less-preferred assignments.

However, there is a subclass of constraints for which the basic intuition does
follow the two-agents case and its characterization is therefore no more difficult. A
constraint C is called single-compromising if for every infeasible allocation (ai)i∈N
and every agent i there is a reassignment a′i for agent i such that (a′i, a−i) is feasible.
Thus, from any infeasible allocation, any agent can unilaterally compromise to make the
social allocation feasible. In this case, every group strategy-proof and Pareto efficient
mechanism can be written in a simple manner analogous to the characterization of the
two-agent case. The generalization again partitions the space of infeasible allocations,
but now each infeasible allocation is assigned a subset of agents who must compromise.
We mention this special case where the two-agent approach extends because it exposes
some of the limitations in generalizing that approach to more agents. First, it will be
useful to have some definitions.

A local compromiser assignment is a map α : A → 2N such that for every
infeasible x ∈ C̄, α(x) is nonempty and for every feasible y ∈ C, α(y) = ∅. For x ∈ C̄ an
agent i ∈ α(x) is referred to as a local compromiser at x. This definition is motivated
by the following algorithm, called the constraint-traversing algorithm for α, which
take a profile of preferences as an input and returns a feasible allocation, or, if unable
to do so, returns the symbol ∅. For a given preference profile %:

Step 0 Let x0 = τ1(%)

Step k If xk−1 is feasible, stop and return xk−1. Otherwise, if there is any

l ∈ α(xk−1), such that LC(xk−1l ) is empty, stop and return ∅. If not, define
xki = xk−1i for all i /∈ α(xk−1) and let xkj = max%j

LC(xk−1j ) for all j ∈ α(xk−1).

In words, the algorithm works by starting with the allocation in which all agents get
their top choice. If this is feasible, the algorithm terminates. If not, there are number of
local compromisers determined by α. The algorithm next tries the allocation in which
the local compromisers switch to their next-best alternative, and the other agents keep
their top choice. If this is feasible, the algorithm stops. Otherwise, there are again
some local compromisers and the algorithm continues in the same manner. In this
way the algorithm continues down agents’ preference lists. For completeness, the state-
ment of the algorithm includes a description of what to do if the algorithm exhausts
an agents objects. The assumption that the constraint is single-compromising, along
with proposition 2 will ensure that this never happens. When the constraint-traversing
algorithm always yields a well-defined allocation, we call the induced mechanism a
constraint-traversing mechanism. The following proposition gives a characteriza-
tion of all group strategy-proof and Pareto efficient mechanisms for single-compromising
constraints, analogous to Theorem 1 for the case with just two agents.
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Proposition 2. Let n be arbitrary and let C be single-compromising. A mechanism
is group strategy-proof and Pareto efficient if and only if it is a constraint-traversing
mechanism such that the local compromiser assignment satisfies

1. |α(a)| ≤ 1 for all a

2. α(a) = i =⇒ α(a′i, a−i) = i whenever (a′i, a−i) ∈ C̄

An earlier working version of this paper included a more comprehensive ex-
amination of constraint-traversing mechanisms in general environments beyond single-
compromising constraints, and this material is currently being incorporated into another
paper.20 For more general structures of constraints, constraint-traversing mechanisms
are not necessarily incentive compatible and efficient, and the main work of this ad-
ditional material is finding sufficient conditions that guarantee these conditions are
satisfied.

From hereon, we consider the general case of arbitrary constraints, and not
just single-compromising constraints. This will force the characterization to be more
involved. For the remainder of this section, we will proceed with this characterization.
The key insight is to consider marginal mechanisms, defined as follows.

Definition 2. Let f : P → C and let M be a proper subset of N . Let %Mc be a
profile of preferences of agents not in M . The marginal mechanism of f holding M c

at %Mc is denoted fM%Mc
: PM → OM and is defined by

% 7→ [fj(%,%Mc)]j∈M

we will denote IM(%Mc) = im(fM%Mc
) which will be referred to as M ’s option set

holding M c at %Mc

Thus a marginal mechanism holds fixed some of the agents’ preferences %Mc

and defines an M -agent mechanism for the remaining agents, mapping their profile of
announcements %M to an M -agent allocation fM%Mc

(%) ∈ OM .
Clearly, marginal mechanisms inherit the group strategy-proofness of the original

grand mechanism. The main result in this section shows that, going the other direction,
it is enough to check that the two-agent marginal mechanisms are group strategy-proof
to guarantee that the full mechanism is group strategy-proof.

Theorem 2. The mechanism f : P → C is group strategy-proof if and only if for
every pair of agents {i, j} and any profile %N\{i,j} of the other agents, the marginal
mechanism of f holding N \ {i, j} at %N\{i,j} is group strategy-proof.

For two-agent mechanisms, there is only one group coalition—namely the grand
coalition. Therefore group strategy-proofness of a two-agent mechanism is equivalent
to individual strategy-proofness and Pareto efficiency on its image.

20Details are available from the authors upon request.
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This drastically reduces the number of conditions one needs to check to en-
sure that a given mechanism is group strategy-proof. Rather than verifying incentives
for all coalitions, it is sufficient to check that no two agents can profitably misreport
their preferences. Furthermore, Theorem 2 is especially useful in conjunction with
our previous characterization in Theorem 1 for all two-agent mechanisms. Application
of Theorem 1 to all marginal mechanisms then provides a more explicit characteri-
zation of group strategy-proofness. We can show that the two-agent strategy-proof
and Pareto efficient mechanisms form the “building blocks” of all group strategy-proof
mechanisms. To do so we will need some notation. Let Fn = {f : P n → On} and
En,m = {φ : P n → GS(Om)}. So f ∈ Fn is just any map from the set of profiles for n
agents to the set of possible allocations and any σ ∈ En,m provides, for each preference
profile of n agents, a group strategy-proof mechanism for m other agents. Likewise,
define Fn,m = {η : P n → Fm}. We will need the following definition:

Definition 3. If f ∈ Fn and g ∈ Fm we may define the direct sum f ⊕ g : P n+m →
On+m by

f ⊕ g(%) = [f (%1,%2, . . . ,%n) , g (%n+1,%n+2, . . . ,%n+m)]

This operation extends in the following way. For any σ ∈ Fn,m and ρ ∈ Fm,n, we may
define σ ⊕ ρ : P n+m → On+m to be the map

% 7→ [ρ (%n+1, · · · %n+m) (%1, · · · %n) , σ (%1, · · · %n) (%n+1, · · · %n+m)]

The final claim records these observations, explicitly providing a formula that
characterizes the set of group strategy-proof mechanisms. This corollary says little
other than 2, however explicitly justifies the notion the the two-agent mechanisms form
the “building blocks” of arbitrary mechanisms.

Corollary 1.

GS(On) =
⋂

τ∈Sym(N)

τ ◦ [En−2,2 ⊕F2,n−2] ◦ τ−1

Where Sym(N) is the set of permutations of the agents N .

1.4 Applications

In this section, we will apply our general characterizations to specific constraints. These
applications will feature a new class of mechanisms which are generalizations of serial
dictatorships. In a basic serial dictatorship, agents take turns in a fixed order choosing
their favorite objects among all objects which are feasible with the objects chosen
by earlier dictators. In principle, the order of future agents might depend on earlier
agents’ choices. Our generalization of serial dictatorship does exactly that. We begin
by formally describing the class of generalized serial dictatorships. We then apply this
as well as our characterization results to the social choice problem and the roommates
problem.
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1.4.1 Generalized Serial Dictatorship

First, let us recall the definition of a serial dictatorship.

Definition 4. Let σ(1), . . . , σ(N) be a strict ordering of the agents {1, 2, . . . , N}. For
any constraint C, we may define the serial dictatorship mechanism which for each
preference profile % gives the allocation defined by the following algorithm:

Step 1 Agent σ(1) chooses her favorite object a1 from πσ(1)C. Let µ1 be the

suballocation in which σ(1) is assigned a1 and all other agents are unassigned.

Step k The agent σ(k) chooses his favorite object ak from πσ(k)C(µk−1). Let

µk be the allocation whose graph is G(µk−1) ∪ {(σ(k), ak)}. If all agents have
been assigned an object, stop. If not, continue to step k + 1.

Serial dictatorships are well-defined for any constraint and are always group
strategy-proof and Pareto efficient.21 It turns out, however, that we can easily generalize
this notion to allow early dictators’ choices to determine who will be the subsequent
dictator. The main tension here is that, in order to maintain group strategy-proofness,
we will have to ensure that the mechanism is nonbossy. That is, the early dictators will
not be able to determine the subsequent order arbitrarily, but will be able to determine
it only through the expression of their choices.

Recall that S is the set of suballocations (i.e. the maps µ : M → O where
M ⊂ N). Let S ′ be the set of incomplete suballocations22. A GSD-ordering is a
map ζ : S ′ → N such that for any suballocation µ, ζ(µ) is an agent not allocated
an object under µ. For each GSD-ordering and for any constraint C we may define
a generalized serial dictatorship mechanism whose allocation at any preference
profile is determined by the following algorithm:

Step 1 The agent d1 ≡ ζ(∅) is the first dictator. She chooses her favorite
object a1 from πd1C. Let µ1 be the suballocation in which d1 is assigned a1 and
all other agents are unassigned.

Step k The agent dk ≡ ζ(µk−1) chooses her favorite object ak from πdkC(µk−1).

Let µk be the allocation whose graph is G(µk−1) ∪ {(dk, ak)}. If all agents have
been assigned an object, stop. If not, continue to step k + 1.

Clearly, the standard serial dictatorship is the generalized serial dictatorship
mechanism attained by setting ζ(∅) = σ(1), ζ(µ) = σ(2) for all suballocations µ in
which a single agent is matched and so on. Unfortunately, a single mechanism can admit
many GSD-orderings, that is, two different orderings might define the same mechanism.

21A fact we will prove shortly.
22M is a proper subset of N .
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This is because the GSD-ordering ζ can be defined in any way off the “algorithm
path” in the sense that, suballocations which will never be realized can be assigned any
agent. For example, in the serial dictatorship mechanism, any allocation in which a
single agent other than the dictator is assigned an object will never be realized, so the
GSD assignment there is immaterial to the mechanism. Nevertheless, it is convenient
to take S ′ as the domain of GSD-orderings. The following proposition shows that
generalized serial dictatorships share the good incentive and efficiency properties of
serial dictatorships.

Proposition 3. For any constraint C, the generalized serial dictatorship mechanisms
are group strategy-proof and Pareto efficient.

Notice that this proposition demonstrates that GS(C) is never empty.23

We can use these ideas to extend mechanisms defined on projections of the
constraint. Suppose we have a constraint C and that for a proper subset M ⊂ N , we
have a group strategy-proof and Pareto efficient mechanism fM on the constraint CM .
Fix a GSD-ordering ζ. We will extend fM to a mechanism on all of N and all of C by
using a generalized serial dictatorship mechanism for agents in N \M . In particular,
define (fM , ζ) : P → C via the following algorithm:

Step 1 Allocate fMi (%M) to every agent i in M . Let µ0 this suballocation.

Let agent d1 = ζ(µ0) choose her favorite object a1 from among πd1C(µ0) and let
µ1 be the suballocation whose graph is G(µ0)∪{(d1, a1)}. If all agents have been
allocated an object, stop. Otherwise, proceed to next step.

Step k The agent dk ≡ ζ(σk−1) chooses her favorite object xk from πdkC(µk−1).

Let µk be the allocation whose graph is G(µk−1) ∪ {(dk, xk)}. If all agents have
been assigned an object, stop. If not, continue to step k + 1.

Proposition 4. If fM : PM → CM is Pareto efficient and group strategy-proof, for any
GSD-ordering ζ, the mechanism (fM , ζ) is group strategy-proof and Pareto efficient.

1.4.2 The Roommates Problem

We now apply our general results to the canonical roommates problem. Our main
contribution here is characterizing the group strategy-proof and Pareto efficient mech-
anisms for this problem.

In the roommates problem, an even number of agents who need to be paired as
roommates. Each agent has a strict preference over the other agents as roommates. As
discussed earlier, we can model this in our environment by letting O = N and using
the constraint

C = {µ : N → N |µ(i) 6= i for all i and µ2 = id}
23So long as the constraint is nonempty, which we assume throughout.
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Any feasible mechanism for this constraint will be called a roommates mechanism.
As mentioned in the introduction, the literature on the roommates problem has focused
on the computational complexity of finding stable matching, and there is very little
understanding of incentives and efficiency for one-sided matching.

Theorem 3 gives a full characterization of group strategy-proof and Pareto effi-
cient mechanisms for the roommates problem. This is akin to the Gibbard–Satterthwaite
Theorem that demonstrates all such mechanisms are dictatorships for the social choice
problem and the recent result of Pycia and Ünver (2017) that characterizes all such
mechanisms for the house allocation problem, but had not yet been discovered for one-
sided matching. We settle this question for the roommates problem, and show that
all mechanisms with these properties for the roommates problem are generalized serial
dictatorships.

Theorem 3. A roommates mechanism is group strategy-proof and Pareto efficient if
and only if it is a generalized serial dictatorship.

Although our results are generally unrelated to stability, this is one exception. As
mentioned, a defining feature of the roommates problem is the lack of stable outcomes.
One approach is to relax stability, with a possible direction to only require that pairs of
agents where each ranks the other as her favorite must be matched. This weaker stability
condition is called “mutually best” by Toda (2006) and “pairwise unanimity” by Takagi
and Serizawa (2010). However, generalized serial dictatorships cannot satisfy even this
very weak form of stability. So a corollary of Theorem 3 is that no group strategy-proof
and Pareto efficient mechanism can satisfy mutual best or pairwise unanimity, exposing
a tension between incentives and stability for the roommates problem. This negative
observation for the roommates problem is not new; in fact, this corollary of our result
can also be implicitly derived from Theorem 2 of Takamiya (2013) without an explicit
characterization of group strategy-proofness.24 Our constructive approach shows how
this tension is related to the structure of the roommates problem as a constraint in our
more general environment.

1.4.3 Social Choice

Here we apply the earlier theorems to provide a new proof for and insights into one of
the canonical impossibility results of social choice,z by examining the structure of the
social choice problem once it is expressed as a special constraint of our general model.

The first theorem in implementation theory was the celebrated negative result
of Gibbard (1973) and Satterthwaite (1975) that the only strategy-proof and surjec-
tive social choice mechanisms are dictatorships. Since Pareto efficient mechanisms are
necessarily surjective, this negative finding illuminates a fundamental tension between
incentives and efficiency for social decisions. This tension can also be deduced as a
corollary of our main result. Beyond providing a novel proof, our approach to the

24We thank Yuichiro Kamada for pointing this out to us.
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Gibbard–Sattertwhaite Theorem yields additional insights that help understand the
theorem more deeply. First, our environment for the theorem, in a model that includes
social choice as a special case, demonstrates that the reason why social choice must
yield a simple dictatorship, rather than a serial dictatorship, is because the structure
of the constraint forces all agents’ allocations to be immediately determined by fixing
the dictator’s allocation. If this feature is relaxed, then the dictator could consume her
favorite object while still leaving flexibility in the allocation for other agents, that is,
serial dictatorship is possible. So our approach shows how the dictatorship implied by
the Gibbard–Satterthwaite Theorem can be seen as a special case of a more general
feature of serial dictatorship.

Second and related, an immediate corollary of our main result is if all group
strategy-proof mechanisms are serial dictatorships, then the marginal T relation, de-
rived from the marginal constraint Ci,j, can have only one equivalence class. This
provides a converse to the Gibbard–Sattertwhaite Theorem, showing that if all group
strategy-proof mechanisms are serial dictatorships, then the constraint C must have a
special structure. Again, this converse is only well-posed in a model where social choice
is cast as a special case of private goods allocation, rather than vice versa as is more
traditional.

One convenient feature of the diagonal social choice constraint is that, since all
mechanisms are necessarily nonbossy to satisfy the constraint, there is no gap between
group and individual strategy-proofness.25

Lemma 4. Let C be the social choice constraint, i.e. C = {(ai)i∈N | ai = aj for all i, j ∈
N} then a map f : P → C is group strategy-proof if and only if it is individually
strategy-proof.

We can then apply our main characterization results to the special case of the
diagonal social choice constraint to derive that all group strategy-proof and onto mech-
anisms are dictatorships, which by virtue of Lemma 4 is equivalent to the Gibbard–
Satterthwaite Theorem.

Theorem 4 (Gibbard–Satterthwaite). If |O| > 2 and f : P → C is surjective and
strategy-proof then it is dictatorial. 26

As mentioned, the setup of our model enables us to sensibly ask the converse
question: which types of constraints, beyond the diagonal social choice constraint, have
the feature that all of the feasible, group strategy-proof mechanisms are (in some sense)
dictatorial? In our context, the appropriate form of dictatorship is generalized serial
dictatorship, since these always exist and specialize to dictatorship in the social choice
setting. As a consequence of Proposition 4 and Theorem 1 we can show that if any

25This observation can also be alternatively deduced directly from the Gibbard–Sattertwhaite The-
orem, since dictatorships are both individual and group strategy-proof. Since our aim is to prove that
theorem, this is clearly not valid for our approach.

26In fact, we only need that |im(f)| > 2 in which case we could drop items never allowed and recover
the same statement.
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two-agent projection of the constraint is such that T has two equivalence classes, then
GSN(C) admits mechanisms beyond GSD.

Theorem 5. If a constraint C is such that for some i, j, the equivalence relation T on
Ci,j admits more than one equivalence class, GSn(C) is strictly larger than the set of
generalized serial dictatorship mechanisms.
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1.5 Appendix

It will be convenient to introduce some additional notation for the proofs. If A and B
are sets of objects and %∈ P , we say A % B if a % b for all a ∈ A and b ∈ B. For
disjoint sets of objects A1, A2 . . . Am we will denote

P [A1, A2 . . . Am] = {%∈ P |A1 � A2 � · · · � Am}

and

P ↑ [A1, A2 . . . Am] =
{
%∈ P |Aj � O \

j⋃
i=1

Ai for all j
}

When the Ai are singletons, we will abuse notation and drop the curly brackets, writing
for example P ↑[a] to denote P ↑[{a}]. We will also abuse notation slightly and use N to
refer both to the set of agents and to the number of agents.

1.5.1 Proof of Propositon 1

We first need the following lemma, which is simply the forward direction of Lemma 3:

Lemma 5. Let f : P → A be strategy-proof. Then for each i there is a nonempty
correspondence gi : P n−1 ⇒ O such that for all %

f(%) =

(
max
%i

gi(%−i)

)
i∈N

Proof. Define gi(%−i) = fi(P,%−i) then the result follows from strategy-proofness.

We can now demonstrate the desired implications for the equivalence in turn:
(1) =⇒ (2): Of course any group strategy-proof mechanism is individually

strategy-proof. Suppose there is a profile % and an agent i with an alternative an-
nouncement %′i such that fi(%) = fi(%′i,%−i) but for some j, fj(%) 6= fj(%′i,%−i).
Then if fj(%) �j fj(%′i,%−i), the coalition {i, j} can improve their outcome at (%′i,%−i)
by announcing (%i,%j). Conversely, if fj(%) ≺j fj(%′i,%−i), the coalition {i, j} can
improve their outcome at % by announcing (%′i,%j).

(2) =⇒ (3): Suppose we have two profiles %,%′∈P such that

LC%′i [fi(%)] ⊃ LC%i
[fi(%)] for all i

then notice that f1(%′1,%2, . . . ,%n) = f1(%) by Lemma 5 and by nonbossiness we have
f(%′1,%2, . . . ,%n) = f(%). We can proceed, changing one preference at a time, to show
that f(%′) = f(%) as desired.

(3) =⇒ (1): Suppose f is Maskin monotonic; we will show that f is group
strategy-proof. Let %∈P and %′A be a candidate violation for agents in A so that

f(%′A,%−A) %j f(%) for all j ∈ A
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we will show that this implies f(%′A,%−A) = f(%). For each j ∈ A construct %∗j to be
identical to %j except that it puts fj(%′A,%−A) first. For any j ∈ A we have

LC%∗j (fj(%
′
A,%−A)) ⊃ LC%j

(fj(%
′
A,%−A)) and

LC%∗j (fj(%)) ⊃ LC%j
(fj(%))

for all j. The first is immediate. To see the second, notice that if fj(%′A,%−A) =
fj(%) then it holds trivially. If instead, fj(%′A,%−A) 6= fj(%), by assumption we have
fj(%′A,%−A) �j fj(%) and since %∗ only moves up the position of fj(%′A,%−A), the
second statement holds. However, by Maskin monotonicity, the first statement gives
f(%∗A,%−A) = f(%′A,%−A) and the second gives f(%∗A,%−A) = f(%), so putting them
together we get

f(%′A,%−A) = f(%∗A,%−A) = f(%)

as desired.

1.5.2 Proof of Lemma 1

By way of contradiction, suppose that f : P → im(f) is group strategy-proof and
that there is a profile % and an allocation (ai)i∈N ∈ im(f) such that ai %i fi(%) for
all i with at least one strict. By definition, there is an alternative profile %′ such that
f(%′) = (ai)i∈N which is a profitable deviation from %.

1.5.3 Proof of Lemma 2

Let {gi}i∈N be as in Lemma 3. For each j the preference %′j does not change the relative
ranking of the objects in gj(%−j) hence we have fj(%′j,%−j) = fj(%) so by nonbossiness
f(%′j,%−j) = f(%). Repeating this argument one agent at a time gives the result.

1.5.4 Proof of Theorem 1 (Two-agent characterization)

(⇐= ) Applying lemma 3, we see that local dictatorships are strategy-proof. They are
Pareto efficient by construction.
( =⇒ ) If C = O2 then any Pareto efficient mechanism always gives both agents their
top choice, which is trivially a local dictatorship.

Suppose now that C is a nonempty, proper subset of O2. By Lemma 2, it is
without loss to assume that for any (a, b) ∈ C̄ there are a′ and b′ with (a′, b) and (a, b′)
in C. Fix f : P 2 → C which is strategy-proof and Pareto efficient.27 The proof will
proceed in two steps. First we show that for any infeasible allocation (a, b) there is a
local dictator who gets their top choice at every preference profile where a and b are
top-ranked respectively. Then we show that the local dictator is constant within blocks.

27Serial dictatorship always is both Pareto efficient and strategy-proof (as shown in proposition 3,
so the set is nonempty.
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Let (a, b) ∈ C̄ and a′, b′ as above. Let %1∈ P ↑ [a, a′] and %2∈ P ↑ [b, b′]. By
Pareto efficiency, f(%1,%2) = (a, b′) or f(%1,%2) = (a′, b). Assume without loss that
f(%1,%2) = (a, b′). We will show that this implies that 1 is the local dictator at (a, b).
Pick any other %′2 which top-ranks b. By 2’s strategy-proofness, f2(%1,%′2) 6= b, but
then from Pareto efficiency, f1(%1,%′2) = a, since otherwise, the allocation (a′, b) would
Pareto dominate f(%1,%′2). Thus f1(%1,%′2) = a whenever %′2∈ P ↑ [b]. By 1’s strategy-
proofness, we have that f1(%′1,%

′
2) = a for all %′1,%

′
2 with τ(%′1,%

′
2) = (a, b). Finally,

by Pareto efficiency, f(%′1,%
′
2) = (a,max%′2 C

2(a)) whenever τ(%′1,%
′
2) = (a, b). Thus

we say that 1 is the local dictator at (a, b). Since (a, b), was arbitrary every other
infeasible allocation has a local dictator.

Now suppose that (a, b)B(a′, b′) and (a, b) 6= (a′, b′). Then either a = a′ or
b = b′. Without loss, assume a = a′. Suppose by way of contradiction that, that
(a, b) and (a, b′) have different local dictators. For example, suppose 1 is the local
dictator at (a, b) and 2 is the local dictator at (a, b′). Consider the preference profile
(%1,%2) where %1∈ P ↑ [a] and %2∈ P ↑ [b, b′, b′′] where b′′ is such that (a, b′′) ∈ C.
Then from the analysis above, we get f(%1,%2) = (a, b′′) since 1 is the local dictator
at (a, b). However, if %′2∈ P ↑ [b′], then f2(%1,%′2) = b′ �2 b

′′ = f2(%1,%2) since 2 is
the local dictator at (a, b′), which is a violation of strategy-proofness. Thus either 1 is
the local dictator at (a, b) and (a, b′) or 2 is. For any two infeasible allocations (a, b)
and (a′, b′) in an equivalence class of T , there is a sequence of infeasible allocations
such that (a, b)B(a1, b1)B · · ·B(an, bn)B(a′, b′), so (a, b) and (a′, b′) have the same local
dictator.

1.5.5 Proof of Proposition 2

First we show that every group strategy-proof and Pareto efficient mechanism is constraint-
traversing. Let C be a single-compromising constraint and fix and a group strategy-
proof, Pareto efficient mechanism f : P → C. Let a = (ai)i∈N be infeasible. For every
i there is an object a′i such that (a′i, a−i) ∈ C. Let %i∈ P ↑ [ai, a

′
i] for each i. Since f is

feasible, there is at least one agent k who doesn’t get their top choice at the constructed
preference profile %= (%i)i∈N . However, Pareto-efficiency then implies that fi(%) = ai
for all i 6= k and fk(%) = a′k. By Maskin monotonicity and Lemma 5 we have that for
any %′−k with max%′j O = aj for all j 6= k, ak /∈ gk(%−k), so that k always compromises

when the top choice is a. Define α(a) = k (we can do this unambiguously because no
other agent always compromises at a, e.g. at the profile %). Since a was an arbitrary
infeasible allocation, we can do the same for any other infeasible allocation to define α
on all of C̄. Finally, we establish inductively that f is constraint-traversing according
to α. Pick any preference profile %′. Start at a1 = (max%′i O)i∈N . If this is feasible,
then f being Pareto efficient implies f(%′) = a1. Otherwise, it is infeasible, and by
the previous argument, we have an agent k = α(a1) who must compromise. Replace
%′k with the same preference, except that it puts a1k last. By Maskin monotonicity,
this cannot affect the outcome of f . We therefore repeat the above process at the new
profile. This is exactly how the constraint-traversing mechanism according to α works,
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giving the result.
Now we need to show that α has to satisfy the property that if α(a) = i then

for any (a′i, a−i) ∈ C̄, we have α(a′i, a−i) = {i}. However this follows from similar
reasoning as in the two-agent case. If, instead k = α(a′i, a−i) consider the profile % with
τ(%) = a and τ2(%i) = a′i and τ2(%k) = a′k where (a′k, a−k) ∈ C. We get a violation
of Pareto efficiency since the constraint-traversing algorithm would make both i and k
compromise to their second-best choice, which would be Pareto dominated by (a′k, a−k).

The fact that this mechanism is group strategy-proof and Pareto efficient is now
a simple consequence of Maskin monotonicity and Proposition 1.

1.5.6 Proof of Theorem 2 (N-agent characterization)

If f is group strategy-proof, the marginal mechanisms are group strategy-proof by
definition. For the other direction, suppose that every two-agent marginal mechanism
is group strategy-proof. Then f is individually strategy-proof since for any i and any
profile % we can choose j 6= i and consider the marginal mechanism f i,j%−i,j

then in
this marginal mechanism i cannot profit from misreporting, hence she cannot in f . It
remains to show that f is nonbossy. Now suppose we have fi(%′i,%−i) = fi(%) and
for some j, fj(%′i,%−i) 6= fj(%), either fj(%′i,%−i) �j fj(%) or fj(%′i,%−i) ≺i fj(%).
However, by assumption the marginal mechanism f ij%−ij

is group strategy-proof. From
the two-agent characterization, no two-agent group strategy-proof mechanism can have
this property.

1.5.7 Proof of Corollary 1

The proof is an immediate application of Theorem 2.

1.5.8 Proof of Proposition 3

Maskin monotonicity is easily seen to be satisfied, since starting from the first dictator,
each agent will be given the same option set and will weakly prefer their original choice
to any alternative. To see that it is Pareto efficient, by Lemma 1 it is enough to
establish that its image is exactly C. By construction, the image is a subset of C. For
any feasible allocation a ∈ C let %i put ai first. Then f(%) = a so im(f) = C.

1.5.9 Proof of Proposition 4

We will show that (fM , ζ) is Maskin monotonic and Pareto efficient. Pick any %∈ P
and let %′ satisfy the conditions in the definition of Maskin monotonicity. I.e.

LC%′i
[
(fM , ζ)i(%)

]
⊃ LC%i

[
(fM , ζ)i(%)

]
for all i

Since fM is group strategy-proof for the agents in M , it is Maskin monotonic. Hence
we have fM(%M) = fM(%′M), then by definition, (fM , ζ)i(%′) = (fM , ζ)i(%) for all
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i ∈M . As a consequence, the sequence of dictators is the same. Thus we have Maskin
monotonicity.

By Lemma 1 it is enough to establish that the image of (fM , ζ) is exactly C. To
see this, let (ai)i∈N ∈ C, since fM is Pareto efficient on CM there is some profile %M
with fM(%M) = (ai)i∈M . For agents not in M let %j∈ P ↑(aj). At this profile, we have
(fM , ζ) = (ai)i∈N as desired.

1.5.10 Proof of Theorem 3 (Roommates characterization)

The “if” direction follows directly from Proposition 3.
We will prove the “only if” Theorem by mathematical induction. First, by

Lemma 2, we ignore any agents’ ranking for infeasibly matching with herself. If N = 2
there is only one feasible allocation, so every mechanism is trivially a generalized serial
dictatorship. If N = 4, then the problem is a social choice problem since a single agent’s
match determines the full outcome. In this case, the result follows from the Gibbard–
Satterthwaite Theorem. Suppose that for all m < n when there are 2m agents, all
group strategy-proof and Pareto efficient roommates mechanisms are generalized serial
dictatorships. We will show this for 2n agents. It will be enough to show that there
is an agent j such that fj(%) = max%j

N for all %, since, conditional on each of
j’s choices, the remaining 2n − 2 agents need to assigned a roommate, which itself
gives a roommates mechanism guaranteed to be a generalized serial dictatorship by the
induction assumption.

Let f be a group strategy-proof and Pareto efficient roommates mechanism for 2n
agents with n ≥ 3. We will first consider the possible two-agent marginal mechanisms.
Let i 6= j and fix a profile %−ij of the other agents. Assume (j, i) ∈ I ij(%−ij), so that
it is possible for i and j to match when the other agents announce %−ij. For all k 6= i,
(j, k) /∈ I ij(%−ij) since (j, k) has i matched to j but j matched to k. Likewise, for all
k 6= j we have (k, i) /∈ I ij(%−ij). Define Ri = {x ∈ N | (x, y) /∈ I ij(%−ij) for all y ∈ N}
and Rj = {y ∈ N | (x, y) /∈ I ij(%−ij) for all x ∈ N}. Then after possibly permuting
agents, we get a marginal constraint like the one shown on the left of Figure 1.3, with the
exception that some non-grey squares on the bottom right may actually be infeasible.
As usual, we will ignore agents preferences over objects they can never receive 28. If
[N −Ri ∪ {j}] × [N −Rj ∪ {i}] intersects any infeasible point, then the equivalence
relation T has a single equivalence class, as illustrated on the right-hand picture of
Figure 1.3.29 Therefore there must be a single dictator in the marginal mechanism f ij%−ij

by Theorems 1 and 2. Otherwise, every allocation in [N −Ri ∪ {j}] × [N −Rj ∪ {i}]
is feasible or the set is empty. In the latter case I ij(%−ij) is a singleton, and obviously
only one marginal mechanism. In the former case, as a consequence of Theorem 1 there
are four possible Pareto efficient, strategy-proof marginal mechanisms as illustrated in
Figure 1.4.

28In this case, Ri and Rj are not possible for i and j to match holding fixed the preferences %−j
29Recall the relation T was defined immediately before the statement of Theorem 1.
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Figure 1.3: The marginal Constraint I ij(%−ij)

In panel (A), j is the dictator since i must compromise at every infeasible alloca-
tion. In panel (B), i is the dictator. In Panel (C), i and j are matched together if either
top-ranks the other and are only unmatched if both i prefers someone in N −Ri ∪ {j}
and j prefers someone in N −Rj ∪ {i}. In panel (D), i and j are matched only if both
top-rank the other and are unmatched otherwise.

Summarizing, if (j, i) ∈ I ij(%−ij), there are four possible types of mechanisms
f ij%−ij

:

1. f ij%−ij
is constant and (j, i). In this case, N −Ri = {j} and N −Rj = {i}.

2. f ij%−ij
is dictatorial, so i gets their top choice from N − Ri or j gets their top

choice from or N − Rj and the other agent gets their top choice consistent with
the dictators’ allocation. Note that in a dictatorial mechanism, the non-dictator
cannot affect the option set of the dictator.

3. i and j are matched by default, and are unmatched only if both agree. This is
shown in panel (C). In this case, all allocations in [N −Ri ∪ {j}]× [N −Rj ∪ {i}]
are feasible.

4. i and j are unmatched by default and are matched only if both agree. This is
shown in Panel (D). In this case, all allocations in [N −Ri ∪ {j}]× [N −Rj ∪ {i}]
are feasible.

In the remainder of the proof, we will often need to show that a given two-agent
marginal mechanism is dictatorial. To do that, we need show that it is possible for
both agents to match with one another, that it is non-constant (i.e. that there are at
least two possible allocations for the two agents holding the other agents’ preferences
fixed), and that it is not of the third or fourth types. The third type of mechanism
is usually easy to rule out. If we can find a preference where one agent top-ranks the
other and they are still not matched, it cannot be of type three. Type (4) is somewhat
more subtle, but we can rule it out if an agent can match with a second agent even
when that agent bottom-ranks the first agent.
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Figure 1.4: The possible marginal mechanisms f ij%−ij

We now need the following lemma, whose validity depends on the induction
assumption.

Lemma 6. Let A be a nonempty proper subset of N with an even number of agents

and |A| ≥ 4. If %N\A∈
[
P ↑(N \ A)

]N\A
, then there is an agent j ∈ A such that

fj(%A,%N\A) = max
%j

N

whenever max%j
N ∈ A. Equivalently, gj(%A−{j},%N\A) ⊃ A− {j} for all %A−{j}.

Proof. For notational convenience, let A = {1, 2, . . . , l} and N \A = {l+ 1, . . . N}. Fix
a profile %N\A. For any %1, · · · %l∈ P ↑({1, 2, . . . , l}), by Pareto efficiency, f(%1,%2

, . . . ,%l,%N\A) will match agents in {1, 2, . . . , l} with other agents in {1, 2, . . . , l} and
agents in {l+1, . . . N} with other agents in {l+1, . . . N}. Thus the marginal mechanism

f(·,%N\A) restricted to profiles in
[
P ↑({1, 2, . . . , l})

]l
gives a roommates mechanism

for the agents in {1, 2, . . . , l}. By the group strategy-proofness and efficiency of f ,
the marginal mechanism is also group strategy-proof and efficient. By the induction
assumption this marginal mechanism is a generalized serial dictatorship. Without loss,
assume that 1 is the first dictator. Then we have g1(%2, . . . ,%l,%N\A) ⊃ {2, 3, . . . l} for
all %2, . . . ,%l in P ↑({1, 2, . . . , l}). For any %3, . . . ,%l in P ↑({1, 2, . . . , l}), consider the
1, 2-marginal mechanism. Since g1(%2, . . . ,%l,%N\A) ⊃ {2.3. . . . l} for all %2, . . . ,%l
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in P ↑({1, 2, . . . , l}), if 1 top-ranks 2 and 2 announces a preference in P ↑({1, 2, . . . , l}),
1 and 2 are matched. Thus (2, 1) ∈ I1,2(%3, . . . ,%l,%N\A). From the considerations
above, there are four possibilities for this marginal mechanism. Let %∗1 top rank j 6= 2
and j ≤ l and %2 in P ↑({1, 2, . . . , l}) top-rank 1. At this profile, 1 and j are matched.
Hence the 1, 2 marginal mechanism is not constant. Furthermore, it cannot be of type
(3), since 1 is matched with j, despite 2 top-ranking 1. Let %∗2 be in P ↑({1, 2, . . . , l})
and top-rank her match at the profile (%∗1,%2). Since 1 and 2 are matched when 1
top-ranks 2 and 2 announces %∗2, the mechanism also cannot be of type (4) (At %∗2,
agent 2 is top-ranking a feasible match in the 1, 2 marginal mechanism, but 1 can
still match with her). The only possibility left is that the 1, 2-marginal mechanism is
dictatorial with agent 1 as the dictator. Since non-dictators cannot affect the option
set of dictators, we get that g1(%′2,%3, . . . ,%l,%N\A) ⊃ {2.3. . . . l} for any %′2 and any
%3, . . . ,%l in P ↑({1, 2, . . . , l}). We could have carried out the above argument with any
i in place of 2, so in fact we have

g1(%2, . . . ,%i−1,%
′
i,%i+1, · · · %l,%N\A) ⊃ {2, 3, . . . l}

for any %′i and any %2, . . . ,%i−1,%i+1, · · · %l in P ↑({1, 2, . . . , l}).
The goal is to show that

g1(%
′
2, . . . ,%l,%N\A) ⊃ {2, 3, . . . l}

for all %′2, . . . ,%
′
l. We will do this by induction. Specifically we will show that if for

any 0 < q−1 < l−1 and any A′ ⊂ A−{1} with |A′| = q−1 we have g1(%′A′ ,%A−A′∪{1}
,%N\A) ⊃ {2, 3, . . . l} for any %′A′ and any %A−A′∪{1} in

[
P ↑(A)

]A−A′∪{1}
then the same

holds for any A′ ⊂ A− {1} with q agents.
For simplicity, let A′ = {2, . . . q+1} and pick any %′2, . . . ,%

′
q+1. By the induction

assumption, we have g1(%′2, . . . ,%
′
q,%q+1, · · · %l,%N\A) ⊃ {2, 3, . . . l} for any%′2, . . . ,%

′
q

and any %q+1, · · · %l in P ↑(A). Now by the same arguments as above, the 1, q + 1-
marginal mechanism at this profile is either of type (2) (i.e. dictatorial) or it is of type
(4). Suppose, by way of contradiction, that it is of type (4) and let %∗q+1 bottom-rank
1. Then doing so removes q + 1 from 1’s option set, but leaves it otherwise the same.
Let %∗∗1 top-rank q + 1 and second-rank q. From the above discussion, we get that 1 is
matched to q at the marginal profile (%∗∗1 ,%

∗
q+1). If we let %∗q∈ P ↑(A) top-rank 1, then

by Maskin-monotonicity, we have

f(%∗∗1 ,%
′
2, . . . ,%

′
q,%

∗
q+1,%q+2, . . . ,%l,%N\A) = f(%∗∗1 ,%

′
2, . . . ,%

′
q−1,%

∗
q,%

∗
q+1,%q+2, . . . ,%l,%N\A)

but on the left we have 1 is matched to q, her second-top choice. By the induction
assumption, on the right we should have q + 1 in 1’s option set since the agents q, q +
2, . . . , l are all announcing a preference in P ↑(A), leaving only q− 1 agents announcing
a possibly different preference. This gives a contradiction so we must have that 1 is the
dictator in the 1, q + 1-marginal mechanism.
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We will call agent j in the lemma above, the marginal dictator. Having done
this, the idea is to partition the agents in two ways. First we consider the partition
{1, 2}{3, 4, . . . , N}. By lemma 6, for %∗1∈ P ↑(2) and %∗2∈ P ↑(1) there is a marginal dic-
tator among {3, 4, . . . , N}. Second, we consider the partition {1, 2, 3, 4}, {5, 6, . . . , N}
and again lemma 6 says that given %∗5, . . . ,%

∗
n∈ P ↑({5, . . . , n}) , there is a marginal

dictator among {1, 2, 3, 4}. We show that by comparing these two dictators, we can
find a single dictator for the whole mechanism.

As above, let %∗1∈ P ↑(2), %∗2∈ P ↑(1) and without loss assume that 3 is the
marginal dictator among {3, . . . N}. By Maskin-monotonicity, it is also without loss to
suppose that both%∗1 and%∗2 bottom-rank 3 30. Also choose%∗5, . . . ,%

∗
n∈ P ↑({5, . . . , n}).

By lemma 6 g3(%∗1,%
∗
2,%

′
4, . . . ,%

′
N) ⊃ {4, . . . , N} for all %′4, . . . ,%

′
N . Likewise, for

some i ∈ {1, 2, 3, 4}, we have gi(%′{1,2,3,4}−{i},%
∗
5, . . . ,%

∗
n) ⊃ {1, 2, 3, 4} − {i} for all

%′{1,2,3,4}−{i}. This gives four cases, corresponding to the possible identities of i. How-

ever, note that i cannot be 4 since 3 and 4 are matched at the profile (%∗1,%
∗
2,%3,%4

,%∗5, . . . ,%
∗
n) where 3 top ranks 4 regardless of %4. Since 1 and 2 are so far symmetric,

this leaves two cases: i = 1 (and i = 2 by symmetry) and i = 3.
We will start with the latter case. So we have

g3(%
∗
1,%

∗
2,%

′
4, . . . ,%

′
N) ⊃ {4, . . . , N} for all %′4, . . . ,%

′
N , and (1.1)

g3(%
′
1,%

′
2,%

′
4,%

∗
5, . . . ,%

∗
n) ⊃ {1, 2, 4} for all %′1,%

′
2,%

′
4 (1.2)

In particular, g3(%∗1,%
∗
2,%

′
4,%

∗
5 . . . ,%∗N) = N − {3} for all %′4. Consider the 3, 5-

marginal mechanism at the profile %∗1,%
∗
2,%

′
4,%

∗
6 . . . ,%

∗
N for any %′4. From equation

1.1 above, 3 and 5 are matched whenever 3 top ranks 5, regardless of 5’s preference. It
is also possible for 3 to match with 4 regardless of 5’s preference. From the discussion
about the possible two-agent marginal mechanisms, the only possibility for this marginal
mechanism has 3 as the dictator. In this case, 5’s announcement cannot affect 3’s option
set. Thus we have g3(%∗1,%

∗
2,%

′
4,%

′
5,%

∗
6 . . . ,%

∗
N) = N −{3} for any %′4,%

′
5. Repeating

this argument one agent at a time implies that

g3(%
∗
1,%

∗
2,%

′
4, . . . ,%

′
N) = N − {3} for all %′4, . . . ,%

′
N , and (1.3)

a symmetric argument shows that

g3(%
′
1,%

′
2,%

′
4,%

∗
5, . . . ,%

∗
n) = N − {3} for all %′1,%

′
2,%

′
4 . (1.4)

Let %∗∗1 be identical to %∗1, except that 3 is top ranked. Define %∗∗2 equivalently. Now
we want to show that the following three equations hold:

g3(%
∗∗
1 ,%

∗
2,%

′
4, . . . ,%

′
N) = N − {3} for all %′4, . . . ,%

′
N , and (1.5)

30Let %∗1∈ P ↑(2), %∗2∈ P ↑(1), by lemma 6, we have g3(%∗1,%
∗
2,%

′
4, . . . ,%

′
N ) ⊃ {4, . . . , N} Let %∗∗1

and %∗∗2 be the same as %∗1 and %∗2 respectively, except both bottom-rank 3. Let %3 top rank k ∈
{4, . . . , N}. Then f3(%∗1,%

∗
2,%3,%′4, . . . ,%

′
N ) = k for any %′4, . . . ,%

′
N . But Maskin-monotonicity then

says f3(%∗∗1 ,%
∗∗
2 ,%3,%′4, . . . ,%

′
N ) = k for any %′4, . . . ,%

′
N .
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g3(%
∗
1,%

∗∗
2 ,%

′
4, . . . ,%

′
N) = N − {3} for all %′4, . . . ,%

′
N , and (1.6)

g3(%
∗∗
1 ,%

∗∗
2 ,%

′
4, . . . ,%

′
N) = N − {3} for all %′4, . . . ,%

′
N . (1.7)

Since the arguments are all symmetric, we will just show equation 1.5. From equation
1.4, we know that g3(%∗∗1 ,%

∗
2,%

′
4,%

∗
5, . . . ,%

∗
N) = N − {3}. Consider the 3, 5-marginal

mechanism at the profile %∗∗1 ,%
∗
2,%

′
4,%

∗
6, . . . ,%

∗
N . Let %3∈ P ↑(5, 4) and %′′3∈ P ↑(4, 5).

Then we have that 3 and 5 are matched at the profile (%3,%∗5) and 3 and 4 are matched
at the profile (%′′3,%

∗
5). Thus the 3, 5-marginal mechanism is not constant and if it

is dictatorial, 3 must be the dictator. We must also rule out type (3) and type (4)
mechanisms. Let %′′5 top-rank 3. In a type (3) mechanism, we would have that 3 and
5 are matched at the profile (%′′3,%

′′
5). However, going back to the full mechanism, this

would imply, by Maskin monotonicity that

f(%∗∗1 ,%
∗
2,%

′′
3,%

′
4,%

′′
5,%

∗
6, . . . ,%

∗
N) = f(%∗1,%

∗
2,%

′′
3,%

′
4,%

′′
5,%

∗
6, . . . ,%

∗
N)

however, on the right hand side, we have 3 matched with 4 by equation 1.3. Thus the
3, 5-marginal mechanism cannot be of type (3). Finally, suppose that %′′′5 ranks agent
3 last. If the marginal mechanism were type (4), we could not have 3 and 5 matched at
(%3,%′′′5 ). However, in a type (4) mechanism, either agent can only remove themselves
from the other agents option set. Hence in this case we would have that 3 is matched
to 4 at (%3,%′′′5 ). But for the same reasons as above, Maskin monotonicity implies this
cannot happen. Hence 3 is the dictator in the marginal mechanism and 5’s preference
does not affect 3’s option set so

g3(%
∗∗
1 ,%

∗
2,%

′
4,%

′
5,%

∗
6, . . . ,%N ∗) = N − {3} for all %′4,%

′
5 .

Repeating this argument one agent at a time gives us equation 1.5.
Now we claim that equations 1.3 and 1.6, together imply that

g3(%
∗
1,%

′
2,%

′
4, . . . ,%

′
N) = N − {3} for all %′2,%

′
4, . . . ,%

′
N (1.8)

Equation 1.3 says that 3 has the option to match with 2, even though 2 bottom-ranks
3 by assumption. Equation 1.6 that 3 has the option to not match with 2, even if 2
top ranks her. Thus we can only have 3 as the marginal dictator in the 2, 3-marginal
mechanism at any %∗1,%

′
4, . . . ,%

′
N . Since 2 cannot affect 3’s option set, we get eqation

1.8. Repeating the same arguments with equations 1.5 and 1.7 show that

g3(%
∗∗
1 ,%

′
2,%

′
4, . . . ,%

′
N) = N − {3} for all %′2,%

′
4, . . . ,%

′
N (1.9)

Finally, by comparing equations 1.8 and 1.9, we get the desired result that g3(%′1,%
′
2

,%′4, . . . ,%
′
N) = N − {3} for all %′2,%

′
4, . . . ,%

′
N .

Now we must come to the case in which 1 is the marginal dictator among
{1, 2, 3, 4} at the profile %∗5, . . . ,%

∗
N . Our strategy will be to reduce this to the previ-

ous case by showing that for some %†3∈ P ↑(4), %†4∈ P ↑(3), that 1 is also the marginal
dictator among {1, 2, 5, . . . , N}.

35



By lemma 6, we have

g1(%
′
2,%

′
3,%

′
4,%

∗
5, . . . ,%

∗
n) ⊃ {2, 3, 4} for all %′2,%

′
3,%

′
4 (1.10)

Let k ∈ 5, . . . , N and %3 top-rank k. Then f matches 1 and 2 and also 3 and k in the
match f(%∗1,%

∗
2,%3,%′4,%

∗
5, . . . ,%

∗
N) for any %′4∈ P ↑({3, . . . , N}). Let %∗∗2 be the same

as %∗2, except that it top-ranks 3 and let %∗∗3 be the same as %3, except that it top-ranks
2. Since 1 is the marginal dictator among {1, 2, 3, 4}, 1 and 2 are still matched at the
profile (%∗1,%

∗∗
2 ,%

∗∗
3 ,%

′
4,%

∗
5, . . . ,%

∗
N), so by Maskin monotonicity, we have

f(%∗1,%
∗∗
2 ,%

∗∗
3 ,%

′
4,%

∗
5, . . . ,%

∗
N) = f(%∗1,%

∗
2,%

∗
3,%

′
4,%

∗
5, . . . ,%

∗
N)

and in particular, 3 and k are still matched. Now consider the 1, k-marginal mechanism
at (%∗∗2 ,%

∗∗
3 ,%

′
4,%

∗
5, . . . ,%

∗
k−1,%

∗
k+1, . . . ,%

∗
N). Let %∗∗1 be the same as %∗1, except that

it top-ranks k and let %∗∗k be the same as %∗k, except that it top-ranks 1. We must have
that 1 and k are matched in the marginal mechanism at (%∗∗1 ,%

∗∗
k ), since otherwise

Maskin monotonicity says that f gives the same result as though they had announced
(%∗1,%

∗
k), but in this case, 1 and 2 are matched and 3 and k are matched which is

inefficient since we could swap 1 and 3’s matches. Thus (k, 1) is in I1,k(%∗∗2 ,%
∗∗
3 ,%

′
4,%

∗
5

, . . . ,%∗k−1,%
∗
k+1, . . . ,%

∗
N). From the considerations above, there are four possibilities

for this mechanism. However, since both (2, 3) and (k, 1) are in the marginal option
set, the marginal mechanism is not constant. Note also that if 1 top ranks 3 and k
announces %∗k, then by equation 1.10, 1 and 3 are matched. Thus it is possible for both
1 and k to match with 3 in this marginal mechanism. But since both can’t match with
3 at the same time, the marginal constraint is like the one shown on the right of figure
1.3, and there must be a single dictator. We will show that this dictator must be 1. To
do this, we will have to take a detour to the 3, l-marginal mechanism.

By equation 1.10, f1(%∗1,%
∗∗
2 ,%

′
3,%

′
4,%

∗
5, . . . ,%

∗
N) = 2 for all %′3,%

′
4, so by

Maskin monotonicity, we have

f(%∗1,%
∗∗
2 ,%

′
3,%

′
4,%

∗
5, . . . ,%

∗
N) = f(%∗1,%

∗
2,%

′
3,%

′
4,%

∗
5, . . . ,%

∗
N)

for all %′3,%
′
4. In particular, we have g3(%∗1,%

∗∗
2 ,%

′
4,%

∗
5, . . . ,%

∗
N) = {4, . . . , N} for all

%′4 by equation 1.3. Consider the 3, k-marginal mechanism at this profile. If 3 top ranks
k they are matched. If 3 top ranks 4 they are not. In the latter case, k is matched to
someone from {5, . . . , N}, which she prefers. Hence the marginal mechanism is either
a dictatorship with 3 as the dictator, or it is of the third type in which 3 and k are
matched if either top-ranks the other. Let %′′3 top rank 4 and %′′k top rank 3. In the
type (3) marginal mechanism, we would have 3 and k matched in

f(%∗1,%
∗∗
2 ,%

′′
3,%

′
4,%

∗
5, · · · %∗k−1,%′′k,%∗k+1, . . . ,%

∗
N)

but then Maskin-monotonicity would imply that we get the same outcome if 2 an-
nounced %∗2, yet at this profile , by equation 1.3, we would have 3 matched to 4.
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Hence we have that 3 is the dictator in the 3, k-marginal mechanism at (%∗1,%
∗∗
2 ,%

′
4

,%∗5, · · · %∗k−1,%∗k+1, . . . ,%
∗
N) for all %′4. This implies that g3(%∗1,%

∗∗
2 ,%

′
4,%

∗
5, . . . ,%

∗
k−1

,%′k,%
∗
k+1, . . . ,%

∗
N) = {4, . . . , N} for all %′4 and %′k. So we have f3(%∗1,%

∗∗
2 ,%

∗∗
3 ,%

′
4,%

∗
5

, . . . ,%∗k−1,%
∗∗
k ,%

∗
k+1, . . . ,%

∗
N) = k, and by non-bosiness

f(%∗1,%
∗∗
2 ,%

∗∗
3 ,%

′
4,%

∗
5, . . . ,%

∗
k−1,%

∗∗
k ,%

∗
k+1, . . . ,%

∗
N) = f(%∗1,%

∗∗
2 ,%

∗∗
3 ,%

′
4,%

∗
5, . . . ,%

∗
k−1,%

∗
k,%

∗
k+1, . . . ,%

∗
N)

and on the right hand side 1 and 2 are matched and 3 and k are matched. This
implies that if k switches from %∗k to %∗∗k , 1 and k are not matched in the 1, k-marginal
mechanism at (%∗∗2 ,%

∗∗
3 ,%

′
4,%

∗
5, . . . ,%

∗
k−1,%

∗
k+1, . . . ,%

∗
N). Since either 1 or k must be

the dictator in thier marginal mechanism by earlier arguments, it must be 1 and we
have

k ∈ g1(%∗∗2 ,%∗∗3 ,%′4,%∗5, . . . ,%∗N)

and since 2, 3, 4 can’t affect 1’s option set we get

k ∈ g1(%′2,%′3,%′4,%∗5, . . . ,%∗k−1,%∗k+1, . . . ,%
∗
N)

for all %′2,%
′
3,%

′
4. Since k was arbitrary, together with equation 1.10, we have

g1(%
′
2,%

′
3,%

′
4,%

∗
5, . . . ,%

∗
k−1,%

∗
k+1, . . . ,%

∗
N) = N − {1} (1.11)

for all %′2,%
′
3,%

′
4. This, however, gets us back to the first case since 1 is the marginal

dictator among {1, 2, 3, 4} at %∗5, . . . ,%
∗
N and if %†3∈ P ↑(4), %†4∈ P ↑(3), then we must

have a marginal dictator among {1, 2, 5, . . . , N}, however the only marginal dictator
consistent with equation 1.11 is 1.

1.5.11 Proof of Lemma 4

Nonbossiness is immediate. Then the result follows from the observation that strategy-
proofness and nonbossiness are equivlent to group strategy-proofness, recorded in Pro-
postion 1.

1.5.12 Proof of Theorem 4 (Gibbard–Satterthwaite Theorem)

Let C be the diagonal and |O| ≥ 3.
From Proposition 1, it suffices to show that any group strategy-proof mechanism

is dictatorial. We will show this in two steps. First, we will show that for some i, j
and some profile %−ij= (%k)k 6=i,j we have |I ij(%−ij)| ≥ 3. From the characterization
of two-agent mechanisms, we will see that f ij%−ij

is dictatorial. We will then show that
this implies the entire mechanism is dictatorial.

1. Suppose by way of contradiction that for all i, j and all %−ij we have |I ij(%−ij
)| < 3. First, note that if for all i, j and all %−ij we have |I ij%−ij

| = 1 then f is
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single-valued31 which contradicts the surjectivity of f . Hence there is at least one
pair of agents i, j and %−ij such that |I ij(%−ij)| ≥ 2. For simplicity and without
loss, let i = 1 and j = 2. By assumption then |I ij(%−ij)| = 2 and without loss
assume I ij(%−ij) = {a, b}. Then there must be a local dictator assigned to the
incompatible pairs (a, b) and (b, a). This leaves (up to symmetry) two marginal
mechanisms φ1 and φ2 where

φ1(%1,%2) =

{
a if a �1 b

b if a ≺1 b

and

φ2(%1,%2) =

{
a if a �1 b and a �2 b

b otherwise

In the first, agent 1 is a dictator. In the second, b is chosen by default and
a is only chosen if both agents prefer it to b. Let c be another object in O.
If we let %∗2∈ P↑[c, a, b] then in either case we have f(%1,%∗2,%−1,2) = a if
a �1 b and f(%1,%∗2,%−1,2) = b if b �1 a. We then have that a and b are in
I1,3(%∗2,%4, . . . ,%n). As before we have two possible mechanisms and in either
one, if %∗3∈ P↑[c, a, b] we have f(%1,%∗2,%

∗
3,%4, . . . ,%n) = a if a �1 b and

f(%1,%∗2,%
∗
3,%4, . . . ,%n) = b if b �1 a. Continuing in this way, we get a profile

of preferences in which all agents prefer c, but c is not chosen. Since any group
strategy-proof map is efficient on its image we must either have that c /∈ im(f)
or f is not group strategy-proof. Either way we have a contradiction.

2. From the characterization of two-agent mechanisms, if |I1,2(%−1,2)| ≥ 3 we have a
single dictator in the marginal mechanism f ij%−ij

. For simplicity let i = 1, j = 2 and

assume 1 is the dictator. We will show that for any %′, f(%′) = max%′1 I
1,2(%−1,2).

Begin with f(%′1,%2, . . . ,%n). The statement holds by assumption. Now since 1 is
the marginal dictator, changing %2 to %′2 cannot change the outcome. Hence the
statement holds for f(%′1,%

′
2, . . . ,%n). Now we have that I1,3(%′2,%4, . . . ,%n)

contains I1,2(%−1,2) as a subset. Hence there either 1 or 3 is a local dictator.
Clearly it must be 1. Therefore 3’s announcement cannot change the outcome, so
we have f(%′1,%

′
2,%

′
3,%4, . . . ,%n) = max%′1 I

1,2(%−1,2). Continuing in this way
gives the desired result. The assumption that f is surjective implies that 1 is a
dictator.

1.5.13 Proof of Theorem 5

If Ci,j admits more than one equivalence class we may assign a different local dictator to
each class as in Theorem 1. We can then extend this mechanism via any GSD-ordering
as in Proposition 4.

31To see that f(%) = f(%′), change one preference at a time. No single change can alter f , so we
get the result.
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Chapter 2

Preface

In this chapter, David S. Ahn and I continue to explore constrained allocation mech-
anisms. We focus on introducing a large class of mechanism which have a number of
desirable properties. These mechanisms are defined algorithmically; the mechanism
greedily attempts to match agents with their most-preferred alternatives. When con-
flicts arise, a local priority rule is used to determine which direction is next pursued.
This class of mechanisms generalizes many of the known mechanisms used in practice
and is applicable to any constraint. In the final chapter, I instead search for stable
mechanisms.
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Constraint-Traversing Mechanisms

Joseph Root1 and David S. Ahn2

2.1 Introduction

We introduced the notion of a constraint-traversing mechanism in Chapter 1. Here we
extend that idea to arbitrary constraints, and provide an analogue to Proposition 2
which guarantees that if the local compromiser assignment follows a set of rules, the
resulting mechanism will be group strategy-proof and Pareto efficient.

2.2 Results

Constraint-traversing mechanisms are often pleasant to work with because the notion
of group strategy-proofness is strictly stronger than Pareto efficiency.

Proposition 5. If a constraint-traversing mechanism is group strategy-proof, it is
Pareto efficient. However, a constraint-traversing mechanism can be Pareto efficient,
but not group strategy-proof.

Recall that there is no guarantee that an arbitrary local compromiser assignment
induces a mechanism. It is possible that the constraint-traversing algorithm will ask an
agent to compromise so much that they exhaust all objects. In this case, the algorithm
returns ∅. We will return to this discussion towards the end of this section, for now
proceeding with local compromiser assignments for which this does not happen. If α is
such that the constraint-traversing algorithm terminates in an allocation for any pref-
erence profile, we say α is implementable. An implementable α induces a mechanism
fα, in which every preference profile yields the allocation derived from the associated
constraint-traversing algorithm. Conversely, a constraint-traversing mechanism is

1Department of Economics, University of California, Berkeley, 530 Evans Hall, Berkeley, CA 94720-
3880. Email: jroot@econ.berkeley.edu

2Department of Economics, University of California, Berkeley, 530 Evans Hall, Berkeley, CA 94720-
3880. Email: jroot@econ.berkeley.edu
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a feasible mechanism f : P → C such that there is some local compromiser assignment
α which induces it.

An initial difficulty is that the local constraint assignment may not be unique. In
Figure 2.1, the three panels correspond to three different two agent local compromiser
assignments. Each is implementable, so induces a two agent allocation mechanism.
However, all three local compromiser assignments induce the same mechanism. In
panels (II) and (III), only 1 or 2 are listed as compromisers at the allocation (a, a),
despite the fact that wherever they compromise, the other agent must compromise
next. In panel (I), both agents are asked to compromise immediately.

2 2 2
1 1 1

1&2 1 1 1 1 1 2 1 1

2 2 2

2 2 2

a b c a b c a

(I) (II) (III)

c c c

b c

a a a

b b b

Figure 2.1: Three different local constraint assignments which induce the same mecha-
nism.

Notice, however, that the local compromiser assignment in panel (I) is the point-
wise union of the local compromiser assignments in panels (II) and (III). It turns out
that this is a general phenomenon when the induced mechanism is group strategy-proof.
The pointwise union of all local compromiser assignments which induce a given group
strategy-proof mechanism also induces the same mechanism. Furthermore, we show
that for any local compromiser assignment, a pointwise nonempty subset, also induces
the same mechanism.

Proposition 6. Let f be a constraint-traversing, group strategy-proof mechanism and
let A be the set of local compromiser assignments which induce f . Then A is closed
under (pointwise) unions and for any α ∈ A and α′ such that

∅ ( α′(x) ⊂ α(x) for all x ∈ C̄

and α′(y) = ∅ for all y ∈ C, we have that α′ ∈ A.

Definition 5. A local compromiser assignment α is complete if for every x ∈ C̄ there
is no i /∈ α(x) such that i ∈ α(y) for every y with xj = yj for all j /∈ α(x).

In words, the local compromiser assignment is complete if there is no agent, not
included in α(x) who nevertheless must compromise when the algorithm has reached x
3. The local compromiser assignment is complete in panel 1 above and is not complete

3Since no matter where the local compromisers go, this agent will need to compromise.
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in panels 2 and 3. The following proposition shows that for any group strategy-proof
mechanism the pointwise union of all local compromiser assignments which induce it is
complete.

Proposition 7. If f : P → C is group strategy-proof and constraint-traversing and
A is the set of local compromiser assignments which implement f , then α∗ = ∪α∈Aα is
complete.

Henceforth, when we refer to the local compromiser assignment for a given constraint-
traversing mechanism we will mean the pointwise union of all local compromiser as-
signments which induce f .

Another nice feature of group strategy-proof, constraint-traversing mechanisms
is that all their marginal mechanisms are also constraint-traversing.

Proposition 8. Every marginal mechanism of a group strategy-proof constraint-traversing
mechanism is constraint-traversing.

Having done this work, we are now ready to provide sufficient conditions on α
for the induced mechanism (provided α is implementable), to be group strategy-proof.

Definition 6. Given a local compromiser assignment α, a monotone path is a se-
quence of allocations

z0
i1−→ z1

i2−→ · · · ip−→ zp

such that (1) {i | zl 6= zl−1} = {il} ⊂ α(zl−1) for all l = 0, 1, . . . p and (2) for all agents
i, if l < m and zli = zmi then for any l ≤ n ≤ m, we have zli = zni = zmi

A monotone path is simply a sequence of infeasible allocations (except poten-
tially the last allocation) such that at each step a single agent from the set of local
compromisers changes her allocation and such that no agent cycles through objects.

Theorem 6. If α is implementable and satisfies

• [Forward Consistency] For all x ∈ C̄ if ∅ ( A ( α(x) and y is such that yj = xj
for all j /∈ A then y ∈ C̄ and α(y) ⊃ α(x)− A

• [Backward Consistency] For all monotone paths,

z0
i1−→ z1

i2−→ · · · ip−→ zp

if j 6= i1 is in α(zp) then for all x ∈ O, (x, z0−j) ∈ C̄ and α(x, z0−j)∩{i1, . . . , ip−1}
is nonempty.

then the induced mechanism fα is group strategy-proof and Pareto efficient.

Thus far we have simply assumed that the local compromiser assignment is
implementable, and therefore induces a mechanism. The following proposition says
that it is sufficient to check monotone paths in order to verify that a local compromiser
assignment is indeed implementable.
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Proposition 9. A local compromiser assignment α which satisfies forward and back-

ward consistency is implementable if and only if there is no monotone path z0
i1−→ z1

i2−→
· · · ip−→ zp in which an agent i compromises |O| − 1 times.

In the following section we show how this can be used to find mechanisms for a
number of constraints.

2.2.1 Examples

No Agent Gets Their Top Choice

Similar to the two-agent case, one might conjecture that the set of constraint-traversing
mechanisms when n > 2 is in some way related to the set of “local generalized serial
dictatorships.” These might work as follows: partition the infeasible allocations in such
a way that each partition can be assigned a GSD-ordering without conflicting with the
other partitions. As in the two-agent case, the top choice of all agents would determine
which GSD-ordering is used and the mechanism would yield ex-post the same outcome
as in the local GSD-ordering. The following example demonstrates that, at least for
some constraints, there are group strategy-proof mechanisms which do not fall into this
category.

2 2 2
1 1 1

1&2 1 1 1 1 1 2 1

2 3 2 2

2 2

3:a 3:b 3:c

a b c a b c a

c c c

b c

a a a

b b b

Figure 2.2: A non-GSD mechanism

Consider Figure 2.2. The three panels list all possible allocations of three objects
{a, b, c} to 3 agents. 1’s allocation is determined by the row, 2’s allocation is determined
by the column and 3’s allocation is determined by the panel. Grey squares are infeasible
and white squares are feasible. For example, the allocation (b, b, a) is infeasible, but the
allocation (a, c, c) is feasible. Also listed in Figure 2.2 is a local compromiser assignment
which determines a mechanism. Both forward and backward compatibility can be easily
checked, giving the following lemma:

Lemma 7. The mechanism introduced in Figure 2.2 is group strategy-proof and Pareto
efficient.

To see that this is not a local generalized serial dictatorship, consider the pref-
erence profile a �i b �i c. We start with (a, a, a), move to (b, b, a) and finally to
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(b, b, b) which is the outcome. Notice that no agent is getting her top choice, despite
the fact that it is possible for all agents to get a4. Hence this is inconsistent with any
GSD-ordering starting at (a, a, a).

The example is important because it illustrates that constraint-traversing mech-
anisms are strictly larger than the class of generalized serial dictatorships. Serial dicta-
torships are sometimes criticized for their lack of fairness in privileging the agents who
choose first. In fact, there are constraint-traversing mechanisms that force all agents to
compromise.

Variations on the House Allocation Problem

Pycia and Ünver (2017) provide a full characterization of all group strategy-proof and
Pareto efficient mechanisms for the house allocation problem. With just three agents
and three objects, the house allocation constraint can be visualized as in Figure 2.3.
In this section, we will make a slight perturbation to this constraint. With this small
perturbation, all existing analyses of the house allocation problem are now inapplicable.
However, by traversing the constraint in the way we just described, we can find non-
trivial group strategy-proof and Pareto efficient mechanisms for this problem that are
not generalized serial dictatorships. This is a “proof of concept” exercise to concretely
illustrate how constraint-traversing mechanisms can be constructed for a reasonable-
looking problem that would have been otherwise unsolvable. Moreover, the resulting
mechanism is of some interest on its own, since it illuminates how tensions between
property rights and efficiency are adjudicated by the mechanism in the present of a
slightly relaxed constraint.

2 2 2
1 1 1

c c c

b c

a a a

b b b

3:a 3:b 3:c

a b c a b c a

Figure 2.3: Constraint for House Allocation Problem

In Figure 2.4 we list (up to a relabeling of the agents and objects) the set of
local compromiser assignments which satisfy both consistency conditions. We drop the
labels above to make the figure more compact. These mechanisms have a number of
interesting properties. When, for example we list “1 or 2,” we mean that the cell can
be filled with a ‘1” or a ‘2”, but not both.

It turns out that this is exactly the set of group strategy-proof and Pareto
efficient mechanisms characterized by Pycia and Ünver (2017). There are “heirarchical

4The allocations (a, c, c), (c, a, b) and (c, c, a) are all feasible
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1 1 1 1 2 1 3 1&2 1 1 1 or 2 2 2 2

2 2 1 1&2 1 1 3 2 1 or 2 1 1&2 1 2 2

3 1 2 1 3 1 1&3 2 2 2 2 3 3 2&3

1 1 1 1 2 1 3 1&2 1 1 1 3 2 2

2 2 1 2 3 2 3 2 1 1 1&3 3 1 3

3 1 2 2 3 3 3 2 2 3 2 3 3 2&3

1&2 1 1 1 or 2 2 1 or 2 2

2 1 or 2 1 1&2 1 1 or 2 2

2 1 or 2 2 1 or 2 1 1 1&2

Figure 2.4: All group strategy-proof and Pareto efficient 3-Agent Mechanisms (up to
symmetry)

exchange” mechanisms as in Papái (2000) and “broker” mechanisms as in Pycia and
Ünver (2017). We show how to find the set of local compromiser assignments in the
supplemental appendix.

Suppose, however, that the constraint is as shown in Figure 2.5.

2 2 2
1 1 1

c c c

b c

a a a

b b b

3:a 3:b 3:c

a b c a b c a

Figure 2.5: A Variation on the House Allocation Constraint

Now, the allocation (a, a, a) is feasible. Otherwise the constraint is exactly the same.
Without Theorem 6, one would need to find a way to modify the proof of Pycia and
Ünver (2017) to this constraint. In light of this theorem, however, we can simply find the
set of local compromiser assignments which satisfy forward and backward consistency.
These are listed in Figure 2.6. We demonstrate the process for constructing all of them
in the Supplemental Appendix.

These mechanisms demonstrate many of the qualities observed in house alloca-
tion problems. In the first mechanism, we have a broker as in Pycia and Ünver (2017).
The second mechanism is a mix between serial dictatorship and top trading cycles.
The mechanism behaves as though agent 2 owns object b and agent 3 owns object c.
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3 1 3 3 3 3

2 or 3 2 3 2&3 3 2 3

3 1 2 2 3 3 3

1 or 3 1 1 3 1 or 2 2

1 1 1 1&3 1 1 2

1 1 3 1 1 1 1&2

1 1 1 or 2 2 1 or 2 2

1 1 1 1&2 1 1 or 2 2

1 1 2 1 or 2 1 1 1&2

Figure 2.6: The Constraint-Traversing Mechanisms for the Constraint in Figure 2.5

If both agents 2 and 3 top-rank a, then the social allocation is (a, a, a) regardless of
1’s preferences. However, 1 can also has some power. If we opt for 3 in the square
labeled “1 or 3” and 2 in the square labeled “1 or 2”, whenever either 2 or 3 top-ranks
the object she owns and there is a conflict between the other two agents over a, in this
case 1 forces the other agent to compromise. This demonstrates that simply follow-
ing the consistency conditions to construct constraint-traversing algorithms can yield
mechanisms with interesting properties.
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2.3 Appendix

2.3.1 Proof of Proposition 5

By construction, a constraint traversing mechanism’s image is C. By Lemma 1, we thus
have that if f group strategy-proof, it is also Pareto efficient. The following mechanism
is easily seen to be Pareto efficient, but letting a �3 b �3 c the marginal mechanism for
agents 1 and 2 is not group strategy-proof5.

2 2 2
1 1 1

1 3 3

2

c c c

b c

a a a

b b b

3:a 3:b 3:c

a b c a b c a

2.3.2 Proof of Proposition 6

The proofs of these two statements are nearly identical. Let α and α′ induce f which is
group strategy-proof. Let% be an arbitrary preference profile and set%0=%. Iteratively
define the sequence %0,%1, . . . ,%N so long as τ(%n) /∈ C by %n+1

i =%ni for all i /∈
α ∪ α′(x) and %n+1

j is identical to %nj except τ(%nj ), is sent to the bottom for all
j ∈ α∪α′(x). At each step, we have fj(%n) 6= τ(%nj ) for all j ∈ α∪α′(τ(%n)) so Maskin
monotonicity implies that f(%n) = f(%n+1). However the sequence τ(%n) is precisely
the set of allocations achieved in the constraint traversing algorithm under α∪α′. The
algorithm ends at the first feasible assignment, and since f(%n) is unchanged throughout
the process, we get that f(%N) = fα∪α

′
(%) which gives the result. To prove the second

claim, set %0=% as before and again iteratively define the sequence %0,%1, . . . ,%N so
long as τ(%n) /∈ C by %n+1

i =%ni for all i /∈ α′(x) and %n+1
j is identical to %nj except

τ(%nj ), is sent to the bottom for all j ∈ α′(τ(%n)). Maskin monotonicity implies that fα

is unchanged along the sequence and again the sequence of τ(%n) follows the allocations
in the steps of the constraint-traversing mechanism.

2.3.3 Proof of Proposition 7

Let x ∈ C̄ and i be an agent such that whenever x is top ranked (i.e xi is top-ranked for
each i), must always compromise. That is, if % is any profile such that xj = max%j

O
for all j then fαi (%) 6= xi. Let α′ be identical to α except that α′(x) = {i}. We
claim that for every preference profile the constraint traversing algorithm using α and

5The cells filled with a number are the infeasible allocations. For example, (a, a, a) and (b, a, a) are
infeasible, but (b, b, a) is feasible.
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α′ yield the same allocation, so that α′ is implementable and fα = fα
′
. Of course,

the constraint traversing algorithm for α and α′ can only yield different outcomes for
preference profiles % in which the constraint-traversing algorithm lands at x at some
point. Any such preference profile must satisfy xj %j fαj (%) for all j. Given such a
profile %, define %′ so that agent j 6= i has the preference %′j defined by

xj %
′
j LC%j

(xj) %
′
j UC%j

(xj)

where the ranking within groups is identical to %j and i has the preference %i defined
by

LC%i
(xi) %

′
i UC%i

(xi) %
′
i xi

but again the ranking within the three sets is determined by %i. Maskin monotonicity
implies that fα(%) = fα(%′) since we have only reduced the upper contour sets of the
fαj (%). And since xi is i’s last choice, the constraint-traversing algorithm for %′ never

lands on x so we have fα
′
(%′) = fα(%′). Finally, the algorithm under α′ at % eventually

lands on x at which point i compromises. After that, the algorithm operates identically
to the algorithm under α at %′, and therefore yields the same outcome.

2.3.4 Proof of Proposition 8

Let f be a constraint-traversing mechanism for the local constraint assignment α. Pick
any proper subset M of N and a preference profile %Mc for the other agents. We
must show that fM

%C
M

is constraint-traversing on IM(%Mc) for some local compromiser

assignment. First, let xM ∈ OM−IM(%Mc) so that xM is a suballocation for the agents
in M which is unacheivable under f when the agents in M c announce the preference
profile %Mc . Let %M be a preference profile such that τ(%M) = xM . Now τ(%M ,%Mc) is
infeasible because otherwise by Pareto efficiency we would have f(%M ,%Mc) = τ(%M
,%Mc) and hence xM ∈ IM(%Mc). Let x∗ be the first allocation in the constraint-
traversing algorithm at (%M ,%Mc) under α in which α(x∗) ∩M is nonempty. Such a
point is guaranteed again because x ∈ OM − IM(%Mc). Define α∗(x) = α(x∗) ∩M .
This choice is independent of the choice of %′M with the property that τ(%M) = x, since
the constraint-traversing algorithm under α, until reaching x∗, only depends on the top
choices of the agents in M . Thus we may define α∗ likewise on the rest of OM − IM
in a well-defined way. It remains to show that α∗ implementable and that the induced
algorithm agrees with fM%Mc

.

To see this, pick an arbitrary %M . If τ(%M) ∈ IM%Mc
, then the constraint

traversing algorithm under α∗ gives the suballocation τ(%M), which agrees with f(%M
,%Mc) by group strategy-proofness. Otherwise, τ(%M) /∈ IM%Mc

. Now by definition
we have that the agent(s) in α∗(τ(%M)) cannot get their top choice under f at the
profile (%M ,%Mc). We can therefore modify %M to %2

M by having each agent in
α∗(τ(%M)) move their top choice to the bottom. Now Maskin monotonicity implies
that f(%2

M ,%Mc) = f(%M ,%Mc). If τ(%2
M) ∈ IM(%Mc), we stop. Otherwise, we repeat

the process. Continuing in this way, we get a sequence of profiles %1
M ,%

2
M , . . . ,%

n
M
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with f(%kM ,%Mc) = f(%lM ,%Mc) for all l, k. Furthermore, the sequence τ(%i) fol-
lows the allocations in the constraint-traversing mechanism under α∗ exactly. Thus
fM(%nM ,%Mc) = τ(%nM) and τ(%nM) is the outcome of the constraint-traversing algo-
rithm under α∗.

2.3.5 Proof of Theorem 6

We show this in four steps. First, we show that if α satisfies forward consistency, then
any α′ such that for all x ∈ C̄, ∅ ( α′(x) ⊂ α(x) also implements fα. Next, we
show that this, along with forward consistency imply that the marginal mechanisms
holding a single agents’ preferences fixed for fα are all constraint-traversing. Third, we
show that these constraint traversing mechanisms also satisfy forward and backward
consistency. Finally, we establish the result by showing that forward and backward
consistency imply the group strategy-proofness of the two-agent marginal mechanisms.

To see that the set of local compromiser assignments which induce f is closed
under (nonempty) pointwise subsets, let x ∈ C̄ such that α(x) is multi-valued with
i ∈ α(x). Define α′(y) = α(y) for all y 6= x and α′(x) = α(x) − {i}. Of course
for any preference profile such that the constraint-traversing algorithm under α never
lands on x will yield the same result under α′. Let % be a preference profile such that
the constraint-traversing algorithm under α eventually lands on x. Then the sequence
of allocations achieved in both algorithms is identical until they both land on x. Let
z0, z1, . . . zp be the sequence of allocations after x in the constraint-traversing algorithm
under α and w0 → w1 → · · ·wq be the same sequence for α′. Now x = z0 = w0 and w1

Pareto-dominates z1 (because fewer agents had to compromise). However, by forward
consistency z1 (weakly) Pareto-dominates w2. Again applying forward consistency we
have that w2 Pareto-dominates z2. Continuing this logic forward we have

w1 ≥PD z1 ≥PD w2 ≥PD z2 ≥PD w3 · · ·

and whichever sequence stops first, the other one has to stop at the same time since
otherwise we would get a contradiction to forward consistency. Thus we have that the
constraint-traversing algorithm under α and α′ result in the same outcome at %. Hence
fα = fα

′
. Of course, for any α′′ such that ∅ ( α′′(x) ⊂ α(x) on C̄ we can iteratively

remove one agent at a time, to get that α′′ implements α.
Next, Let h be the marginal mechanism holding agent k at %k. We want to show

that h is constraint-traversing. To do so, for every x ∈ C̄ define

α′(x)

{
α(x) if k /∈ α(x)

k if k ∈ α(x)

by the result above, α′ implements α. For any suballocation z of the agents other than
k, define α∗(z) = α′(y) where y is the first allocation in the sequence (τn(%k), z) such
that α′(y) 6= {k}. We want to show that α∗ implements h. To do so, we will induct on
the number of steps required in the constraint-traversing algorithm under α′. If % is a
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preference profile such that the constraint-traversing algorithm under α′ takes just one
step, then τ(%−k,%k) is feasible, so h(%) = τ(%) which is the outcome of % under α∗.
Now assume that the statement holds for all preference profiles which take less than or
equal to n steps under α′. Let %−k be a preference profile such that the outcome of
(%,%k) takes n+ 1 steps under α′. Let z0 → · · · zn be these steps. If α′(z0) 6= {k} then
α∗(z0) = α′(z0). Let %′−k be the profile in which each agent from α′(z0) puts their top
choice to the bottom of their list, without changing anything else. Then, by design,
the sequence of allocations in the constraint-traversing algorithm under α′ is z1 → zn

which takes only n steps. Thus by the induction assumption, f(%′−k,%k) is the same
allocation as we get from running the constraint-traversing algorithm under α∗ at %−k.
However, we also have that f(%′−k,%k) = f(%−k,%k) by construction and the outcome
of α∗ under %−k is the same as under %′−k since the latter simply skips the first step.
This gives the desired result. Suppose now that α′(z1) = {k}. If the same holds for the
entire sequence, we again get f(%−k,%k) = τ1(%−k,%k) hence h(%−k) = τ(%−k) which
is the same as we get from α∗. Finally suppose that α′(z0) = {k} but that there is a
l ≥ 1 such that α′(zl) 6= {k}. Assume that l is the minimum index such that this holds.

Now for all m ≤ l we have a monotone sequence zm
k−→ zl. Let j ∈ α′(zl). By backward

consistency for all x ∈ O we have (x, zl−j) ∈ C̄ and k ∈ α(x, zl−j). In particular, we have

k ∈ α(zl+1
j , zl−j). But then we have a monotone path (zl+1

j , zl−j)
k−→ (zl+1

j , zl+1
k , zl−j,k).

Furthermore from forward consistency, α(xl)−{j} ⊂ α(zl+1
j , zl+1

k , zl−j,k). Hence we can

continue this way, replacing the object for each agent in α(zl) by the object they receive
in zl+1.This process is illustrated in the following diagram:

the idea is to remove the first step of the algorithm under α∗, which is not
the first step of the algorithm under α′. However, the first steps under α′ are just k
compromising. Thus, as shown in the figure, we can use backward consistency to show
that the we can one-at-a-time move the agents in α∗(τ1(%−k)) to their second best
choice. Having done this, if we let %′−k be the preference profile in which all agents in
α∗(τ1(%−k)) put their top choice to the bottom, without changing anything else. Then
by design the outcome at %′−k under α∗ is the same as %−k since again we just skip the
first step. But we also from the argument above that fα(%−k,%k) = fα(%′−k,%k) and,
for the agents other than k, the latter is the same as the outcome of α∗ at %−k. This
gives the desired result.

For step 3, we need to show that α∗ defined above satisfies forward and backward
consistency. We will start with the easier of the two: forward consistency. Suppose that
α∗(x) is multi-valued and ∅ ( A ( α(x) and y is such that yj = xj if j /∈ A. Let qk be
k’s object in the first allocation along the sequence (τn(%k), x) where α′((τn(%k), x)) is
not k, i.e we have α′(qk, x) = α∗(x). By forward consistency of α and since α(qk, x) =
α′(q, x), we have that α(qk, y) ⊃ α(qk, x)−A. Now we need to show that the same holds
for α∗(y). However, this follows from a similar process to the last step. If k /∈ α(qk, y),
then we can repeat exactly the process before to show that the first allocation in the
sequence (τn(%k), y) is exactly (qk, y). Then from the definition of α∗ we get the result.
Otherwise, k ∈ α(qk, y) ⊃ α(qk, x)− A so that α′(qk, y) = {k}. But in this case, we do
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z1 (zl+1
j , z1−j) (zl+1

i,jj , z
1
−i,j) · · ·

(
zl+1
α(xl)

, z1−α(xl)

)

z2 (zl+1
j , z2−j) (zl+1

i,jj , z
2
−i,j) · · ·

(
zl+1
α(x2), z

2
−α(x2)

)

...
...

...
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zl (zl+1
j , zl−j) (zl+1

i,jj , z
l
−i,j) · · ·

(
zl+1
α(xl)

, zl−α(xl)

)
j

ij

α(zl)

the same and continue forward and apply forward compatibility once more to find the
result. Next we need to show that α∗ satisfies forward consistency. First we will need

a definition. Given a monotone sequence z(n) = z0
i1−→ z1

i2−→ · · · ip−→ zp we let %z(n) be
the preference profile in which all agents put z0 as their top choice. i1 puts z1i1 as her
next best choice and so on. We will also need the following proposition:

Proposition 10. If η satisfies forward and backward consistency and z0
i1−→ z1

i2−→
· · · ip−→ zp is a monotone sequence for η and ip 6= il with l < p then there is a monotone
sequence w(n) starting at (z0−ip , z

p
ip

), ending at zp and such that %w(n) is the same as
%z(n) except that agent ip puts her top option to the bottom

Proof. We will proceed by induction on the length of the monotone sequence. If the
sequence has just one step, then the result is trivial since the new monotone sequence
is just a single element (namely z1). Suppose that for m ≤ n if the sequence has m

steps, the proposition holds. Let z0
i1−→ z1

i2−→ · · · in+1−−→ zn+1 be a monotone sequence
such that in+1 hasn’t compromised before. By backward consistency η(z0−in+1

, zn+1
−in+1

)

intersects {i1, . . . , in}. Suppose specifically that il ∈ η(z0−in+1
, zn+1
−in+1

). By the induction

hypothesis, there is a monotone sequence w(n) of length l − 1 which starts at (z0−il , z
l
il
)

and ends at zl. We can continue this monotone sequence so that it follows z(n) after
landing on zl. This gives a monotone sequence of length n so by the induction hypothesis
again we get a monotone sequence from (z0−il,in+1

, zlil , z
n+1
−in+1

to zn+1. However, this can

now just be the second step of a new monotone sequence that starts at (z0−in+1
, zn+1
−in+1

).
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This gives the desired result.

Now, we are ready to show that α∗ satisfies forward consistency. Given a mono-

tone sequence z0
i1−→ z1

i2−→ · · · ip−→ zp under α∗, we can extend this sequence to the
sequence of allocations traversed under alpha′ at the profile (%z(n) ,%k) to get wn. Now
this has only (potentially) added steps where k compromises. Assume that wn starts
with z0 since otherwise it starts with a number of allocations where k compromises
until we land at z0 and it will make no difference in the following analysis. Likewise,
we may assume that the last step of w(n) is zp. By backward consistency, we have that
(z0−ip , x) is in C̄ and that there is a local compromiser at this allocation from the set
{i1, . . . , in} ∪ {k}. If the local compromiser is not k, then a simple argument similar to
the one shown in the diagram above gives that α∗(z0−ip , x) also intersects {i1, . . . , in}.
Otherwise, it is k at which point we apply the proposition above to find that we eventu-
ally land on zl, but this means that at some point we landed at an allocation in which
an agent other than k must have compromised.

Finally, we may prove the result. To do so, we simply take margins until we
get to every 2-agent marginal mechanism. By the results above this will satisfy for-
ward and backward consistency. However, this immediately implies that they are local
dictatorships, which gives the result.

2.3.6 Proof of Proposition 9

Suppose that α is implementable and satisfies forward and backward consistency. Then
by Theorem 6, the induced mechanism is group strategy-proof. Suppose by way of

contradiction, there is a z0
i1−→ z1

i2−→ · · · ip−→ zp in which an agent k compromises |O|− 1
times. For each i, let %i top-rank z0i , put z1i next (if it’s different) and so on. Then by
Proposition 6 we can let α′(z0) = i1, α

′(z1) = i2 and so on and the induced mechanism
under α′ is the same as under α. However the constraint-traversing algorithm for α′

under % runs out of k’s possible allocations. Hence α′ is not implementable, α is not
implementable, a contradiction.

Now suppose that α satisfies forward and backward consistency and here is no

monotone path z0
i1−→ z1

i2−→ · · · ip−→ zp in which an agent i compromises |O| − 1 times.
Suppose by way of contradiction, that α is not implementable. Then there is an agent
k and a preference profile % such that the constraint-traversing algorithm runs out of
objects for k. We will construct a monotone path with the property we ruled out. Let
w0 → w1 · · · → wq be the sequence of allocations. At each step, a number of agents
compromise. However, by forward consistency, we can extend this to a monotone path
(in which a single agent compromises at each step) with the same properties. This gives
the desired violation.
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2.4   Supplemental Appendix 
 

2.4.1    3-Agent House Allocation 
 

In what follows, we show how to construct the set of 3 agent house allocation mechanisms 
which are constraint-traversing. We show how to identify the set of local compromiser 
assignments which satisfy both forward and backward consistency. We will heavily exploit 
the symmetry of the constraint to reduce the workload.  The three objects are labeled a,b 
and c. Each row corresponds to a different allocation for agent 1, with the top row being 
a, the second row b and the third row c. Each column corresponds to 2's allocation with 
the first column a and so on. The three panels correspond to 3's allocation with the first 
panel being object a and so on.  

 

         
 
 
 
 
 

          
 
 
 
 
 
 

          
 
 
 
 

1&2 1 1

2

2

1&2 1 1 1 or 2 2 1 or 2 2

2 1 or 2 1 1&2 1 1 or 2 2

2 1 or 2 2 1 or 2 1 1 1&2

1&2 1 1 2

2 1 1&2 1

2 2 2 2 3 3 2&3

1&2 1 1 2 2

2 1 1&2 1 2

2 2 2 2 3 3 2&3

1&2 1 1 2 2 2

2 1 1&2 1 2 2

2 2 2 2 3 3 2&3

(1) This is the constraint. The grey squares are infeasible 
and the white squares are feasible.  

(2) At the allocation (a,a,a), at least two agents will need 
to compromise. We don't need to list two agents at this 
square as we will see later. For now, however, we will and 
without loss, we'll choose agents 1 and 2. The other 
squares are filled out according to forward consistency. 

(3) The allocations (b,b,b) and (c,c,c) also need two 
compromisers. We'll start by assuming all three are the 
same: 1 and 2 are asked to compromise. Then the rest of 
the squares are filled out via forward consistency. This 
satisfies both forward and backward consistency, so gives 
a GSP, PE mechanism.  

(4) Here, instead we have (2,3) compromise at (c,c,c). 

(5)  The highlighted squares can't be 1 by backward 
consistency, since in either case we'd have a monotone 
path from this square to (c,c,c) which has 2 as a label. 
This would violate backward consistency because in both 
cases we can move in 2's direction and encounter a feasible 
allocation. If they were labeled 3, we'd get a 3-step 
monotone path to a 2 in either case.  

(6) The highlighted squares can't be labeled 3 since we get 
an immediate violation of backward consistency. If either 
were labeled 1, we would also get a violation of backward 
consistency for the monotone path (a,c,c) --> (a,a,c) -- > 
(c,a,c) and the monotone path (b,c,c) --> (b,b,c) -- > 
(c,b,c) respectively. 
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1&2 1 1 1 or 2 2 2 2

2 1 or 2 1 1&2 1 2 2

2 2 2 2 3 3 2&3

1&2 1 1 3

2 1 1&3 1

2 2 3 2 3 3 2&3

1&2 1 1 1 3 2

2 1 1 1&3 1 3

2 2 3 2 3 3 2&3

1&2 1 1 1 3 2 2

2 1 1 1&3 3 1 3

2 2 3 2 3 3 2&3

1 1

2

3

1 1 1 1 1

2

3

1 1 1 1 1

2 2

3 3

(7)  Finally, the last two unfilled squares can’t be labeled 
with a 3 since both lead to immediate violations of 
backward consistency. However, both squares can be 
labeled 1 or 2 independently without any violation of the 
consistency conditions. This gives 4 mechanisms.  

(8)  Finally, we can have all three diagonal squares with 
different pairs of compromisers.  

(9)  If we label either square in the second panel 3 or 2 we 
get a 3 step monotone path to a "1" which can't satisfy 
backward consistency. The square (a,a,c) can’t be labeled 
3 because we get an immediate violation of backward 
consistency. It can’t be labeled 1 because we get a 3-step 
monotone path to a "2." The final square is similar.   

(10)  The square (b,c,b) clearly can’t have a 2 and it can’t 
have a 1 because of the monotone path (b,c,c) -- > (b,c,b) 
-- > (c,c,b). The top right square can’t have a 1 or a 3 
because both lead to immediate violations of backward 
consistency.  This gives a mechanism which is GSP and 
PE by the constraint-traversing theorem. 

(11)  Before we assumed that two agents were listed as 
compromisers at each of the squares (a,a,a), (b,b,b) and 
(c,c,c). Instead we assume here that at least one has only 
one agent listed. We will deduce the rest of the mechanism 
given this assumption. 

(12)  By completeness the two highlighted squares can’t 
have the same label. By symmetry we fill it out without 
loss as above.  

(13)  The highlighted squares follow from backward 
consistency. 

(14)  The highlighted square in the left panel can’t be 
labeled "3" because of the "1" above it. It can’t be labeled 
1 because backward consistency would require (a,a,a) also 
have 2 as a compromiser. The other square is symmetric.   
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1 1 1 1 1

2 2 1

3 1 3

1 1 1 1 1

2 2 1 2 or 1&2

3 1 3 3 or 1&3

1 1 1 1 2 1 3

2 2 1 2 3

3 1 2 3 3

1 1 1 1 2 1 3

2 2 1 2 3 3

3 1 2 2 3 3

1 1 1 1 2 1 3

2 2 1 2 3 2 3

3 1 2 2 3 3 3

1 1 1 1 2 1 3

2 2 1 2 3

3 1 2 1 3 1&3

1 1 1 1 2 1 3

2 2 1 2 3

3 1 2 1 3 1 1&3

1 1 1 1 2 1 3

2 2 1 2 1 3

3 1 2 1 3 1 1&3

(15)  The highlighted square in the second panel can’t be 
labeled "3" because it would lead to 3 step monotone path 
starting at (a,a,b) and ending at (b,a,a) which cant satisfy 
backward consistency. The other square is symmetric. 
 

(16)  Now we have four potential cases. The squares 
(b,b,b) and (c,c,c) can be labeled as shown above. (b,b,b) 
can’t have a 3 because backward consistency would 
require a 3 in the squares (b,x,b) which can’t be efficient, 
since 1 is already listed at (b,a,b). 

(17)  We'll start with a "2" at (b,b,b) and "3" at (c,c,c). 
Backward consistency leads to the immediate labels in the 
highlighted square.  
 

(18)  By completeness, the two highlighted squares have 
to be as shown. For example, if (c,c,b) were labeled "1" 
then we would have to label (c,c,c) 1&3 by completeness.  

(19)  The square (c,b,c) has to be labeled "3" by backward 
consistency. Then the other square can’t be labeled "1" 
because we would get a 3 step violation from the monotone 
path starting there and ending at (c,b,b). Since this local 
compromiser assignment satisfies the consistency 
conditions, the associated mechanism is GSP and PE 

(20)  Now we label (b,b,b) with a "2" and (c,c,c) with a 
"1&3." Then the highlighted squares follow from 
backward and forward consistency.  
 

(21)  The highlighted square can’t be 3 or 2 because either 
give a violation of backward consistency. The former 
because of the monotone sequence (c,b,c) --> (c,b,b) -- > 
(c,c,b). 

(22)  The highlighted square can’t have a 1 or a 2 because 
both lead to immediate violations of backward 
consistency. 
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1 1 1 1 2 1 3

2 2 1 2 3 1 3

3 1 2 1 3 1 1&3

1 1 1 1 2 1 3

2 2 1 1&2 1 3

3 1 2 1 3 1&3

1 1 1 1 2 1 3

2 2 1 1&2 1 1 3

3 1 2 1 3 1 1&3

(23)  By completeness the final square has to have a 3. 
However this leads to a violation of backward consistency 
by the monotone path (c,b,b) --> (c,c,b) -- > (b,c,b). So, 
this choice doesn’t work.  

(24)  Finally we have the case where the allocations 
(b,b,b) and (c,c,c) both have two local compromisers 
listed. The highlighted squares come from forward 
consistency. 

(25)  The final squares have to be filled out as follows. If 
either has a "3" we get a 3-step monotone path which 
can’t satisfy backward consistency. The same happens if 
either is labeled "2." This labeling satisfies both 
consistency conditions. Hence, we get a GSP, PE 
mechanism. 
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2.4.2  A Variation on the 3-agent House Allocation Constraint 
 
In what follows, we show how to construct the set of constraint-traversing mechanisms for 
the constraint shown below. This is a variation on the house allocation constraint. We show 
how to identify the set of local compromiser assignments which satisfy both forward and 
backward consistency. We will heavily exploit the symmetry of the constraint to reduce the 
workload. The three objects are labeled a,b and c. Each row corresponds to a different 
allocation for agent 1, with the top row being a, the second row b and the third row c. Each 
column corresponds to 2's allocation with the first column a and so on. The three panels 
correspond to 3's allocation with the first panel being object a and so on. This constraint 
differs from the house allocation because the allocation (a,a,a) is feasible.  
 

          
 
 
 
 
 
 

          
 
 
 
 
 

          
 
 
 
 

1 2 3

3

3

1 2 3 3 3

3

3

1 2 2 3 3 3

1 3

3

1 2 2 3 3 3

1 3 3

3

1 2 2 3 3 3

(1) This is the constraint. The difference between this and 
the house allocation constraint is that the allocation 
(a,a,a) is feasible. As in the house allocation constraint, we 
will start with the allocations (b,b,b) and (c,c,c). 

(2) In this case we will start by assuming that there is a 
single compromiser at(c,c,c). We will study later the 
implication of assuming more than a single compromiser 
here. By completeness, if (c,c,a) and (c,c,b) both had the 
label 1 or 2, the allocation (c,c,c) would have to list more 
than one agent. By symmetry we'll just choose this 
arrangement. 

(3) The highlighted squares are implied by backward 
consistency  

(4) The highlighted square needs to be labeled 2 or 3, but 
if 3, backward consistency would imply that 2 
compromises at (c,c,c). 

(5) The highlighted square can’t be labeled 2 or 3 because 
both give immediate violatins of backward consistency. 

(6) The highlighted square can’t have a 1 or a 2 since 
backward consistency would imply that (a,a,a) should 
have the same label in both cases.  
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1 3 3 3

3

1 2 2 3 3 3

1 3 3 3

3 3

1 2 2 3 3 3

1 3 3 3

3 3 3

1 2 2 3 3 3

1 3 3 3

3 2&3 3 3

1 2 2 3 3 3

1 3 3 3

2 3 2&3 3 2 3

1 2 2 3 3 3

1 3 3 3 3

2 3 2&3 3 2 3

1 2 2 3 3 3

3 1 3 3 3 3

2 3 2&3 3 2 3

1 2 2 3 3 3

3 1 3 3 3 3

2 3 2&3 3 2 3

3 1 2 2 3 3 3

(7) Given the 3 at (a,a,c) the highlighted square cannot 
have a 1 or a 2.  

(8) The highlighted square can’t have a 2 since eventually 
another agent will have to compromise leading to a 
violation of backward consistency. It can’t have a 1 
because this would lead to an immediate violation of 
backward consistency. 

(9) The highlighted square has to be labeled 1 or 3. 1 
requires that (b,a,b) be labeled 1 by backward consistency, 
but it is already labeled 3, and having both doesnt cant 
satisfy forward consistency. 

(10) This square can’t have a 1 because of the 3's around 
it. If it has a 2 by completeness it also has a 3. If it only 
had a 3 then by backward consistency we would have to 
have (c,b,b) labeled 3, which it is not.  

(11) Forward consistency implies the highlighted squares 
are labeled 2. 

(12) The highlighted square can’t have a 1 or a 2 since 
both lead to immediate violations of backward 
consistency. 

(13) The highlighted square can’t have a 1 or a 2 since 
both lead to immediate violations of backward 
consistency. 

(14) The highlighted square can’t have a 1 or a 2 since 
both lead to immediate violations of backward 
consistency. 
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3 1 3 3 3 3

2 or 3 2 3 2&3 3 2 3

3 1 2 2 3 3 3

1&3

1&2

3 2

1 1&3 1 2

3 1 1 1&2

3 1 or 2 2

1 1&3 1 2

3 1 1 1&2

1 3 1 or 2 2

1 1&3 1 2

3 1 1 1&2

1 3 1 or 2 2

1 1 1&3 1 2

3 1 1 1&2

1 3 1 or 2 2

1 1 1 1&3 1 2

3 1 1 1&2

1 3 1 or 2 2

1 1 1 1&3 1 2

1 3 1 1 1&2

(15) The final square can have a 2 or a 3, but not a 1. 
Both choices lead to local compromiser assignments which 
satisfy both consistency conditions. 

(16) We started before with a single compromiser at 
(c,c,c) and deduced the entire mechanism. Instead here we 
assume that both (b,b,b) and (c,c,c) have two 
compromisers, but in this case the pairs are different. 

(17) The implications of forward consistency. (18) The highlighted square can’t have a 3 since it gives 
two different violations of backward consistency. 

(19) The highlighted square can’t have a 3 because either 
way we fill out (a,a,c) we get a violation of backward 
consistency. It can’t have a 2 because of the immediate 
violation of backward consistency. 

(20) 2 and 3 lead to immediate violations of backward 
consistency. 

(21) 2 and 3 lead to immediate violations of backward 
consistency. 

(22) 2 and 3 lead to immediate violations of backward 
consistency. 
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1 3 1 or 2 2

1 1 1 1&3 1 2

1 1 3 1 1 1&2

1 3 1 or 2 2

1 1 1 1&3 1 2

1 1 3 1 1 1 1&2

1 3 1 or 2 2

1 1 1 1&3 1 1 2

1 1 3 1 1 1 1&2

1 1 3 1 or 2 2

1 1 1 1&3 1 1 2

1 1 3 1 1 1 1&2

1 or 3 1 1 3 1 or 2 2

1 1 1 1&3 1 1 2

1 1 3 1 1 1 1&2

2 2

1 1&2 1 2

2 1 1 1&2

2 2

1 1&2 1 2

2 1 1 1&2

1 1 1 or 2 2 1 or 2 2

1 1 1 1&2 1 1 or 2 2

1 1 2 1 or 2 1 1 1&2

(23) 2 and 3 lead to immediate violations of backward 
consistency. 

(24) 2 and 3 lead to immediate violations of backward 
consistency. 

(25) 2 and 3 lead to immediate violations of backward 
consistency. The latter because we would need to label (b,a,b) 3 
which already is labeled 1 and multiple labels cannot satisfy 
forward consistency. 

(26) 2 and 3 lead to immediate violations of backward 
consistency. 

(27) Either way we fill out this last square does not lead to any 
violations.  

(28) Finally we have the same pair compromise at both (b,b,b) 
and (c,c,c) 

(29) None of the highlighted squares can be filled with a 3 since 
each would lead to a violation of backward consistency. 

(30) The allocation in the second two panels can be 
independently assigned 1 or 2, while the first panel has a single 
equivalence class of T so all need to have the same label. By 
symmetry we simply choose 1  
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Chapter 3

Preface

Finally, I explore constrained allocation in the context of two-sided matching. Instead
of pursuing mechanisms which are efficient and incentive compatible, I focus on mecha-
nisms which produce a stable match. Again, the mechanism is limited to only producing
outcomes which conform to an exogenous constraint. I introduce a mechanism, similar
to deferred acceptance, except that agents choices are limited throughout the algorithm.
While I focus on stability, I am still able to generate incentive compatibility with some
additional restrictions.
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Stable Matching Under General
Constraints

Joseph Root1

Along with the increase in scope of applications for market design has come a
need to develop greater context-specific flexibility. Whereas deferred acceptance, as
introduced in Gale and Shapley (1962), is only concerned with the preferences of the
agents to be matched, in practice, school districts, local governments, judges and others
care about not only the outcome of any individual agent but about the structure of the
outcome as a whole. As Roth (2002) points out, market designers don’t have the luxury
of ignoring these details. Consequently, market designers have introduced a number of
diffuse solutions in the literature. This paper seeks to unify those solutions, both to
provide an analytical framework for matching with general constraints, and to provide
a simple model capable of providing flexibility to market designers facing real-world
problems.

In school choice, diversity considerations are often mandated by law, but the
precise requirement varies by city. In Boston, diversity requirements have been a part
of the match process since 1974 when a judge ordered the city to achieve racial balance
(Abdulkadiroglu 2013). In Jefferson County, the school district requires that schools
maintain diversity by mandating schools admit students from low-income census tracts
(Ehlers, Hafalir, Yenmez, and Yildirim 2013). New York requires schools to main-
tain balance of their student body by test score (Abdulkadiroglu 2013). However, the
standard deferred acceptance algorithm from Gale and Shapley (1962) gives little guid-
ance for how to implement DA in the presence of these constraints. Indeed, in the
standard model, schools are assumed to have responsive 2 preferences which precludes
non-trivial preferences over diversity. A series of solutions have emerged in the liter-
ature. Abdulkadiroglu and Sönmez (2003) introduced “controlled choice” as a means
to achieve diversity. Controlled choice imposes upper bounds on the number of stu-
dents at each school from a finite number of mutually exclusive groups (e.g. race,
income quartiles, etc). For example, the school district might impose upper bounds on
the number of students from a number of different neighborhoods. They showed that a

1Department of Economics, University of California, Berkeley, 530 Evans Hall, Berkeley, CA 94720-
3880. Email: jroot@econ.berkeley.edu

2See Roth (1985) for a definition.
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simple modification to deferred acceptance is compatible with these types of constraints
(Abdulkadiroğlu 2005). More recently, Kojima (2012) showed that hard bounds can
create inefficiency, even for students they intend to help. Ehlers, Hafalir, Yenmez, and
Yildirim (2013) propose an alternative which treats bounds flexibly and they show the
resulting matches Pareto dominate those from imposing hard bounds.

In residency matching, the geographic distribution of doctors has long been a
central concern of governments and hospitals (Roth 1986). Residents compose a large
proportion of many hospitals’ labor force. Therefore, ensuring that a sufficient number
of doctors are available to treat patients in each region is essential. However, the rural-
hospitals theorem from Roth (1986) and Hatfield and Milgrom (2005) roughly states
that the number of doctors matched with each hospital (and therefore each region)
is the same for each stable match. This suggests a fundamental trade-off between
stability and control over geographic diversity: if the matchmaker insists on stability
of the match, they are stuck with the geographic distribution that results from DA,
if instead they insist on control, there can be no guarantee of stability. Despite this
apparent difficulty, the Japanese government decided to impose regional caps on the
number of doctors assigned to any region. This gives rise to an immediate concern:
how to distribute assign seats to hospitals within any one region. Kamada and Kojima
(2015) propose a solution which they call flexible deferred acceptance. Specifically,
they use an algorithm which imposes constraints for each hospital which depend on the
number of applications each hospital has received. They then seek a limited form of
stability in which the only blocking pairs are those which would lead to a violation of
the regional capacity.3 Kamada and Kojima (2019) provide a more general result which
enables a rich hierarchy structure to the “regions” capable of modeling a wide class of
constraints.

Motivated by the growing literature on application-specific constraints, this pa-
per proposes a unified framework for studying matching problems with constraints. To
do so, I introduce the notion of a constraint correspondence–a mapping which dynami-
cally manages the choice of hospitals. For every subset of contracts, the correspondence
offers each hospital a menu of choices, each of which is itself a subset of contracts sat-
isfying the constraints. I then propose an algorithm called the constrained cumulative
deferred acceptance algorithm which mimics traditional DA with the exception that
hospital choices are constrained by the correspondence. The matching with contracts
model of Hatfield and Milgrom (2005) corresponds to the special case in which the
constraint correspondence is fully-flexible (in the sense that it imposes no restrictions).
I show that so long as the constraint correspondence satisfies a condition I call “gen-
eralized substitutes,” the constrained cumulative deferred acceptance algorithm will
return a constrained stable outcome (a matching in which the only remaining blocking
coalitions are those which would lead to a violation of the constraint). Generalized sub-
stitutes provides a set-valued generalization of the “substitutes condition” from Hatfield
and Milgrom (2005).

3See Kamada and Kojima (2017b) for a discussion of the precise stability notion they use.
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Strategy-proofness has proved to be an important desideratum in practical match-
ing problems (Pathak and Sönmez 2008). In addition to the stability result, I provide
two additional conditions on the constraint correspondence – aggregate monotonicity
and constraint IIA – which ensure the existence of strategy-proof constrained stable
mechanisms. Furthermore, I show that the constrained cumulative deferred acceptance
algorithm is such a mechanism. Aggregate monotonicity is similar to the “law of aggre-
gate demand” of Hatfield and Milgrom (2005) and ensures that as the set of available
contracts expands, the constraints enable a weakly larger match. Constraint IIA places
limits on the effect of an agent’s reported preferences on the constraints of other agents.
It ensures that no agent can costlessly announce a preference which does not affect her
outcome directly, but that restricts the alternatives available to other agents.

Having developed this framework for matching with constraints, I then explore
the relative efficiency of different constraint correspondences. Specifically, I provide a
comparative statics result which enables comparison between mechanisms. Intuitively,
I show that if one constraint correspondence is more permissive than another – in that
hospitals choices from the first mechanism are always a subset of the choices from
the second – then the latter makes all individuals on the proposing side better-off. I
illustrate this result with an application to the flexible quotas of Ehlers, Hafalir, Yenmez,
and Yildirim (2013) and show flexible quotas Pareto dominate inflexible quotas.4

The rest of the paper proceeds as follows: In the first section, I introduce no-
tation and the basic definitions needed for the rest of the paper, develop the notion
of constrained stability, and show that under the generalized substitutes condition a
DA-type algorithm will yield a constrained stable outcome; in section 2, I prove a
comparative statics result and demonstrate an application; in section 3, I provide con-
ditions under which a constraint correspondence yields a strategy-proof mechanism. In
the appendix I detail the connection between this model and the those of Kamada and
Kojima (2019) and Ehlers, Hafalir, Yenmez, and Yildirim (2013).

3.1 Stability

Let D,H and X be disjoint finite sets which I will refer to as doctors, hospitals and con-
tracts respectively. The use of the labels “doctors” and“hospitals” is simply convention.
“Doctors” refers to the side of the market that will be matched with at most one con-
tract, and “hospitals” to the side that may sign multiple contracts. In many settings it
will be more appropriate to think of the two sides as “schools” and “students” or “firms”
and “workers.” The collection of contracts is equipped with functions h : X → H and
d : X → D which specify that each contract x ∈ X names one doctor d(x) and one
hospital h(x). For example the set of contracts may be D × H so that each contract
simply lists a doctor and hospital to be matched. In this case, d(·) and h(·) are the first
and second coordinate maps, respectively. Alternatively, contracts might list the wage

4See theorem 8 in Ehlers, Hafalir, Yenmez, and Yildirim (2013) for their treatment of the Pareto
comparison.
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and other pertinent contractual details relevant to the participants. Given a subset of
contracts X ′ ⊂ X and z in D or H, write X ′z = {x ∈ X ′ : d(x) = z or h(x) = z} so
that X ′z is the collection of contracts in X ′ which name z.

3.1.1 Preferences

Each doctor d is assumed to have strict preferences over contracts that name them,
as well as an outside option which, by convention, I will denote ∅. That is, each d
is associated with a linear order �d over Xd ∪ {∅}. If ∅ �d x I will say that x is
unacceptable to d. Hospital preferences are somewhat more complicated since they will
be considering outcomes involving subsets of contracts. Each hospital h is assumed to
have a physical capacity qh ≥ 0. This capacity is interpreted as the maximum number
of contracts a hospital can sign 5. For example, in the school choice setting, the capacity
refers to the number of seats at each school. Not all subsets of contracts are possible
for a hospital to sign. For example, no doctor may sign more than one contract. It will
therefore be convenient to have an easy way to restrict attention to subsets of contracts
to which hospitals could be matched. For each h ∈ H, and X ′ ⊂ X let

σh(X
′) = {Y ⊂ X ′h : |Y | ≤ qh and x, y ∈ Y such that x 6= y =⇒ d(x) 6= d(y)}

Thus, fixing a hospital h, σh(X
′) is simply the collection of subsets of contracts naming

hospital h which do not exceed its capacity qh and which do not include multiple
contracts for the same doctor. Each hospital h is assumed to have a linear order on
σh(X) which I will denote �h.

An outcome Y is a subset of contracts. Let O = 2X denote the set of outcomes.
Given hospitals and doctors preferences, it will sometimes be convenient to refer to the
corresponding choice functions. For each h ∈ H, hospital h’s choice function is the
mapping Ch : O → O given by Ch(X

′) = max%h
σh(X

′). For each d ∈ D, doctor
d’s choice function is the mapping Cd : O → X given by Cd(X

′) = max%d
[X ′d ∪ {∅}].6

Equipped with these definitions, let Rh(X
′) = X ′h−Ch(X ′) and Rd(X

′) = X ′d−Cd(X ′).
Note that Rh and Rd list only the doctors and hospitals, respectively which were rejected
from the possible matches for each. That is, if X ′ contains a contract naming hospital
h′ 6= h, Rh(X

′) does not include h′, despite the fact that it was not chosen from X ′.
Like the extant literature on two-sided matching, I will need to restrict hospital

preferences to ensure limited complementarity between different contracts. In particu-
lar, I will assume the following condition on �h for each h.

Definition 7. The preference relation �h is responsive7 on σh(X) if

1. For all X ′ ∈ σh(X) and x, y ∈ X \X ′ such that X ′∪{x} ∈ σh(X) and X ′∪{y} ∈
σh(X)

X ′ ∪ {x} �h X ′ ∪ {y} ⇐⇒ {x} �h {y}
5Since each doctor will sign at most one contract, this can also be interpreted as the upper limit

on the number of doctors with whom a hospital can contract.
6Note that this definition implies that doctors choice functions have unit demand.
7This definition is motivated by the definition given in Roth (1985).
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2. Whenever X ′, X ′′ are in σh(X) and X ′ ⊂ X ′′ then X ′ ≺h X ′′

The first condition requires that hospitals’ preferences over singletons are context-
free; if a hospital likes one contract more than another in isolation, it will still like the
same contract when considering the same marginal tradeoff. The second condition says
that all contracts are preferred to the outside option for hospitals: whenever a hospital
can fill all its slots, it will do so. It is not difficult to weaken this condition by intro-
ducing an outside option for each hospital – much like I do for doctors – and assuming
hospitals like sets of contracts only when all contracts are individually preferred to the
outside option, but I choose not to do this to keep notation simple.

Readers familiar with the matching-with-contracts model of two-sided matching
may wonder why I require that hospital preferences are responsive and have a capacity
rather than the more familiar rejection monotonicity condition of Hatfield and Milgrom
(2005):

X ′ ⊂ X ′′ =⇒ Rh(X
′) ⊂ Rh(X

′′) for all h

The reason for the additional requirements is that rejection monotonicity is not enough
to ensure substitutability over all choice problems a hospital might face. Rejection
monotonicity only requires that the hospitals’ choices does not exhibit complementarity
over increasing sets. This is sufficient when the only choices hospitals need to make
is over such sets (such as in the process of Deferred Acceptance). However, when
constraining hospitals, one forces them to make choices over a larger collection of menus
thereby increasing the space over which hospitals must have substitutable choices. The
next example makes this point clear.

Example 1. Suppose that there are three contracts {x, y, z} (all naming different
doctors) and one hospital h with capacity 3. Let h’s preferences be given by

{x, y, z} �h {x, z} �h {x, y} �h {y, z} �h {x} �h {y} �h {z} �h ∅
Note then that

Rh(A) = ∅ for all A ∈ P(X)

so �h satisfies the substitutes condition of Hatfield Milgrom (2005). These preferences
(and their associated choice function), however, still exhibit a clear form of complemen-
tarity. Specifically

{x, z} �h {x, y} and {y} �h {z}
so the presence of x flips the relative ranking of y and z. The intuition for why this will
cause difficulties is the same as in Hatfield and Milgrom (2005) and will be discussed
in more detail below.

3.1.2 The Constraints

Definition 8. Given a hospital h ∈ H, a constraint correspondence for h is a
mapping Bh : O → 2O such that Bh(X

′) ⊂ σh(X
′) for all X ′. A constraint corre-

spondence is then a function B = (Bh)h∈H : O →
(
2O
)|H|

such that each Bh is a
constraint correspondence for h.
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Intuitively, a constraint correspondence is a mapping that, for each subset of
contracts, offers a menu of choices for each hospital. X ′ is informally thought of as
the option set from which those choices may be drawn. The only restriction on B at
this stage is that for each hospital and each option set, the menu consist of alternatives
which satisfy the basic requirements that no hospital accept more than their quota and
no hospital sign a single doctor more than once. The following examples are intended
to illustrate this and later definitions. I will return to these examples throughout the
paper and will discuss them more thoroughly in the applications section.

Running Examples.

• Consider B where Bh(X
′) = σh(X

′) for all h ∈ H and X ′ ⊂ X. I will call this the
fully-flexible constraint correspondence. Notwithstanding the basic restrictions
entailed by σh, it does not restrict hospital choices at all.

• On the other side of the spectrum, I can consider the class of constraint corre-
spondences in which Bh(X

′) is a singleton for each h and X ′ ⊂ X. That is, there
is only one possible choice for each hospital for each collection of contracts. I will
call this type of constraint correspondence autocratic.

• For a more substantive example, suppose that contracts are just doctor-hospital
pairs so X = D×H and that the doctors can be partitioned into two types L and
R. I think of L as“low-income” doctors and R as “rich” doctors. The government
then wants to impose upper bounds on the number of rich doctors to whom a
hospital can match. Formally, each h is given a quota qRh ≤ qh and the constraint
correspondence is given by Bh(X

′) = {Y ∈ σh(X ′) : |d(Y )∩R| ≤ qRh }.8 Therefore
at X ′ each hospital h is given its choice of any subset of contracts from σh(X

′)
which don’t violate the cap.

• Now suppose that I are in the same situation as in the last example, but now the
government lets hospitals exceed their quota of rich doctors only if there aren’t
enough low-income doctors in X ′ to fill the other seats. Formally, Bh(X

′) = {Y ∈
σh(X

′) : |Y ∩ L| ≥ min{qh − qRh , |X ′h ∩ L|}}.

• Let X = D × H × {0, 1} where the 0-1 entry indicates whether the doctor gets
a bonus. Assume that all doctors d like the bonus so that (d, h, 1) �h (d, h, 0)
for all h. The central authority wants to use the bonus to incentivize doctors to
match with under-demanded hospitals, so it only wants to offer the bonus if the
hospital cannot fill its seats without it. To this end, let

Bh(X
′) = {Y ∈ σh(X ′) : if there is a y ∈ Y s.t. τ3(y) = 1, τ3(X

′
h \ Y ) = {1}}

where τ3 : X → {0, 1} is the third coordinate projection (i.e. it returns 1 for a
bonus contract and 0 otherwise). In words, Bh(X

′) is all subsets in which h does
not reject a bonus contract over a non-bonus contract.

8Notice that since Y ∈ σh(X ′) each contract in Y names a distinct doctor, so |d(Y )| = |Y |.
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Henceforth, I will fix a constraint correspondence B in order to avoid repeating that
the definitions depend on the choice of B. I can define the hospitals’ choices from B is
a similar way to the definition of choice functions above.

Definition 9. For each h ∈ H, hospital h’s constrained choice function is the
mapping C̃h : O → O given by C̃h(X

′) = max%h
Bh(X

′). Similarly, for each h ∈ H,

hospital h’s constrained rejection function is the mapping R̃h : O → O given by
R̃h(X

′) = X ′h − C̃h(X ′) = X ′h −max%h
Bh(X

′).

It will also be convenient to be able to easily refer to “hospital-wide” and “doctor-
wide” choices from a given subset. This motivates the following definition.

Definition 10. Define 9

C̃H(X ′) =
⋃
h∈H

C̃h(X
′) and CD(X ′) =

⋃
d∈D

Cd(X
′)

and
R̃H(X ′) = X ′ − C̃H(X ′) and RD(X ′) = X ′ − CD(X ′)

With the assumption that hospitals’ preferences are responsive (as defined above),
for any menu of choices, I can restrict attention to those that are not contained in an-
other alternative choice.

Definition 11. A collection of contracts, A ⊂ X, is maximal at Bh(X
′) if A ∈ Bh(X

′)
and there is no A′ ∈ Bh(X

′) such that A is a proper subset of A′. A is maximal at
B(X ′) if A is maximal at Bh(X

′) for some h.

3.1.3 Constrained Stability

To motivate our notion of constrained stability, suppose that X = D × H, there are
four doctors and four hospitals with the following preferences:

d1
h1
h2
...

d2
h3
h4
...

︸ ︷︷ ︸
Low-income

d3
h1
...

d4
h1
h4
h3
...︸ ︷︷ ︸

rich

h1
{d3, d4}
{d1, d3}

...

︸ ︷︷ ︸
Capacity 2

h2
{d1}

...

h3
{d4}
{d2}

...

h4
{d4}
{d2}

...

︸ ︷︷ ︸
Capacity 1

9We could equivalently define

R̃H(X ′) =
⋃
h∈H

R̃h(X ′) and R̃D(X ′) =
⋃
d∈D

Rd(X ′)
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so that h1 is d1’s favorite hospital, h2 is her second favorite and so on. Doctors 1 and
2 are “low-income” and doctors 3 and 4 are “rich.”

The principle desideratum of mechanisms in the two-sided matching literature
is “stability” – the mechanism should find a match such that no coalition can leave
the market to form a match amongst themselves which makes everyone involved better
off. This goal is motivated by the empirical observation that unstable matches tend
to perform badly in practice Roth and Sotomayor (1992). The two-sided matching
literature since Gale and Shapley (1962) has furthermore shown that finding stable
matches is always possible and there are efficient practical algorithms which can be
used to find them.

In this particular setup, the matching

S1 = {(d1, h2) , (d2, h3) , (d3, h1) , (d4, h1)}

is stable – i.e. there are no blocking coalitions. In particular, everyone except d1 is
matched with their favorite partner(s). Note, however, that this match has h1 accepting
two rich doctors and rejecting a low-income applicant. In many settings, institutional
and legal requirements enforce diversity constraints. For example, suppose I impose the
requirement that h1 can fill at most half of its seats with rich doctors. The matching

S2 = {(d1, h1) , (d2, h3) , (d3, h1) , (d4, h4)}

meets these requirements. Furthermore, in S2 the low-income doctor d1 is now matched
with her top choice. However, in contrast to S1, S2 is not immune to coalitional
deviations. In particular, d3, d4 and h1 could deviate from S2 and each be weakly
better off – with h1 and d4 strictly better off. Note, however, that since d3 and d4 both
prefer h1 to all other hospitals and since h1 similarly prefers {d3, d4} to any other pair,
unless they are matched together there will always be a coalitional deviation. Therefore,
no match can simultaneously satisfy the legal requirements and be immune to deviation.
It is easy to see, however, that S2 does not have any additional coalitional deviations.
Furthermore, the aforementioned deviation would lead to a violation of the constraints.
This motivates a weaker notion of stability, related to the condition introduced in
(Kamada and Kojima 2015): a match S ′ is constrained stable if it satisfies the
constraints and if every blocking coalition would lead to a violation of the constraints.
The idea is that a central authority – a school district or government, for example – has
the ability to announce and reinforce restrictions. However, notwithstanding violations
of their restrictions, the authority does not want to interfere. Therefore a constrained
stable match is one in which for every possible coalitional deviation, the agents involved
in the deviation know that they will be unable to maintain the block.

Unfortunately, policies aimed at helping low-income doctors can backfire. Sup-
pose that instead of simply constraining hospital 1 to reserve seats for low-income
doctors, I also constrain hospital 4 to not accept any rich doctors at all. Since S2 has
h4 matched with d4, it does not satisfy this requirement. However, the match

S3 = {(d1, h1) , (d2, h4) , (d3, h1) , (d4, h3)}
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does. Like S2, S3 is subject to coalitional blocks. h1, d3 and d4 could leave the match
and make themselves better off. Furthermore, d4 and h4 could leave the match and
make themselves better off. However, both would lead to violations of the diversity
constraint so S3 is constrained stable. One can quickly check that no other constrained
stable match could make the doctors better off while respecting the constraints. Note
that in S3 both low-income doctors are weakly worse-off than in S2, and d2 is strictly
worse-off. The attempt to strengthen the diversity constraints have backfired: both
low-income doctors and rich doctors would have preferred a weaker policy.

There are ostensibly two culprits for this inefficiency:

1. The second set of constraints were poorly designed

2. Our notion of stability is too strict – I should only impose the bounds on rich
students if loosening the bounds would help low-income students.

While the first source is indeed an issue, proper design would require substantial ex-
ante knowledge about doctor preferences. An alternative profile of doctor preferences
could have rendered the second set of constraints useful to the low-income doctors. For
example, had it been that h4 �d2 h3, the constraint would have ensured d2 a spot at h4
over d4.

Instead, suppose that I alter our notion of constrained stability to require (1)
either all hospitals respect their upper bound on rich doctors, or every hospital which
violates its cap is not desired by any of the low-income doctors and (2) every blocking
coalition would lead to a violation of the constraints. Using this definition, S2, which
was not constrained stable given the stronger constraints is now stable. To see why,
notice that in S2 both low-income doctors are matched with their favorite hospital.
Hence, despite the fact that h4 violates its cap of rich doctors, doing so does not
preclude any low-income doctors from matching with h4. Allowing the constraints to
be flexible has led to an improvement for all doctors – rich and low-income.

Definition 12. Given d ∈ D and X ′ ⊂ X, let Ud(X
′) denote doctor d’s upper contour

set at X ′ 10 so that

Ud(X
′) =

{
{x ∈ X : x %d y for some y ∈ X ′d} if X ′d 6= ∅
Xd if X ′d = ∅

Then define U : O → O by U(X ′) =
⋃
d∈D Ud(X

′).

If X ′ names each doctor at most once, then U(X ′) is the set of contracts that
doctors prefer to the outcome X ′. Otherwise, it takes the upper contour set with respect
to the worst contract in X ′ for each doctor. I may think of this as the “option set”
available to hospitals when the proposed match is X ′.

10That is, the set of contracts that d weakly prefers to her contract in X ′. If X ′ contains, multiple
contracts that name d, Ud(X ′) will be the upper contour set for d with respect to d’s least-favorite
contract in X ′.
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Definition 13. An outcome X ′ is feasible if X ′h ∈ BhU(X ′) for all h ∈ H and if
X ′ names at most one contract for each doctor and if Xd is acceptable for each d. A
collection of contracts X ′′ is said to block the outcome X ′ if X ′′ ⊂ CD(X ′∪X ′′) and for
some h, X ′′ �h X ′h 11. A collection of contracts X ′′ which blocks X ′ is said to violate
B at X ′ if X ′′ /∈ BhU(X ′).

A block is simply a hospital and collection of doctors which could profitably
break away from the match and sign the blocking contracts to make everyone better
off. The block violates the constraint if this set of contracts is not available to the
associated hospital.

Definition 14. Given the constraint correspondence B, an outcome X ′ ⊂ X is con-
strained stable if

(a) X ′ is feasible

(b) All blocking collections violate B at X ′

Running Examples.

• In the case of the fully-flexible constraint correspondence, it is not difficult to
verify that constrained stability reduces to the standard notion of stability from
Hatfield and Milgrom (2005). Therefore for an outcome X ′ to be stable, there
must be no blocking coalitions.

• Suppose B is autocratic and that X ′ is constrained stable. Then X ′h = BhU(X ′)
for each h. Note that all blocking coalitions violate the constraint since there is
only one choice for each hospital. Hence stability reduces to individual rationality.

• If B is given by Bh(X
′) = {Y ∈ σh(X ′) : |d(Y ) ∩ R| ≤ qRh } for all h, feasibility

simply requires that X ′h does not exceed h’s cap on rich doctors. A blocking
coalition violates the constraint if it entails such a violation.

• If B is defined by Bh(X
′) = {Y ∈ σh(X ′) : |Y ∩ L| ≥ min{qh − qRh , |X ′h ∩ L|}},

feasibility is more subtle. In particular, X ′h ∈ BhU(X ′) implies that X ′h exceeds
h’s capacity for rich doctors only if there are no low income doctors in X ′h\U(X ′)h.
That is, if there are no low-income doctors who desire to matched with h at X ′

(i.e. they are either unmatched at X ′ or prefer h to their match in X ′). A blocking
coalition violates the constraint if it entails a violation of the cap.

• If X = D ×H × {0, 1} and

Bh(X
′) = {Y ∈ σh(X ′) : if there is a y ∈ Y s.t. τ3(y) = 1, τ3(X

′
h \ Y ) = 1}

then feasibility implies that no hospital rejects a non-bonus contract in favor of
a bonus contract. Then X ′ is constrained stable if the only possible deviations
include subsets of contracts which entail a rejection of a non-bonus contract in
favor of a bonus contract.

11Note that this implicitly requires that X ′′ only include contracts which name h.
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The following lemma gives a simple alternative characterization of constrained
stability. In particular, it says that an outcome X ′ is constrained stable if and only
if X ′ is such that all hospitals would like to choose X ′h from their menu BhU(X ′), all
contracts are acceptable to doctors, and at most one contract is named for each doctor.

Lemma 8. The outcome X ′ ⊂ X is constrained stable if and only if

C̃HU(X ′) = X ′ = CD(X ′)

Equipped with this definition of stability, I might ask if one can guarantee the
existence of a stable outcome for any constraint correspondence B. The following
example gives a negative answer.

Example 2. Suppose that there are two doctors, d1 and d2, and two hospitals, h1 and
h2, and that the set of contracts X is simply D × H. Suppose doctors and hospitals
have the following preferences:

h1 �d1 h2
h2 �d2 h1

{d1, d2} �h1 {d1} �h1 {d2} �h1 ∅
{d1} �h2 {d2} �h2 ∅

So h1 and h2 have physical capacities of 2 and 1, respectively. Suppose B = (Bh1 , Bh2)
where

Bh1U(X ′) = {Y ⊂ σh1U(X ′) : Y 6= {d1}}
Bh2U(X ′) = {Y ⊂ σh2U(X ′)}

In words, B constrains h1 to not match with d1 unless it can also match with d2, in which
case B requires that h1 match with both. The following exhaustively demonstrates that
no constrained stable matching exists.
The matches {(d1, h1)}, {(d1, h2), (d2, h2)} and {(d1, h1), (d2, h2)} are not feasible. The
match {(d2, h1)} is blocked by (d1, h2). {(d1, h2), (d2, h1)} is blocked by (d1, h1).
{(d1, h1), (d2, h1)} is blocked by (d2, h2). {(d2, h2)} is blocked by (d1, h2). {(d1, h2)} is
blocked by (d2, h1) (See figure 1).

This example works by imposing a complementarity in the constrained choices
of hospital 1, despite no such complementarity in the underlying unconstrained choice
function. The next two definitions will be helpful in guaranteeing that the constraint
does not impose these types of complementarities.

Definition 15. A monotone choice pair for h is 4-tuple (A′, X ′, A′′, X ′′) ∈ O4 such
that X ′ ⊂ X ′′ and A′ is maximal at Bh(X

′) and A′′ is maximal at Bh(X
′′).

Therefore a monotone choice pair is itself a pair of possible maximal choices from
two subsets of contracts ordered by set inclusion. When A ⊂ X, y ∈ A and y′ ∈ X \A
I will write Ay→y′ as a shorthand for [A \ {y}] ∪ {y′}.
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{(d2, h1)}

{(d1, h2), (d2, h1)}

{(d1, h2)} {(d1, h1), (d2, h1)}

{(d2, h2)}

(d1, h2)

(d1, h1)

(d2, h2)(d1, h2)

(d2, h1)

Figure 1. An Example with No Constrained Stable Outcome

Definition 16. The constraint correspondence B satisfies generalized substitutes
12 if for every h and every monotone choice pair for h, (A′, X ′, A′′, X ′′) such that there
is a y ∈ A′′ \ A′ with y ∈ X ′, there is a y′ ∈ A′ \ A′′ such that

A′y′→y ∈ Bh(X
′) and A′′y→y′ ∈ Bh(X

′′)

Figure 2 demonstrates this property schematically. X ′ and X ′′ are in black, A′ is
in blue and A′′ is in red. y is a contract available in X ′ which is not in A′ (so if A′ were
chosen from Bh(X

′), y would be rejected) but is in A′′. The generalized substitutes
condition then guarantees if such a point exists, there is another point y′, also in X ′

which can be swapped for y′ in both A′ and A′′.

Running Examples.

• It is not difficult to see that the fully-flexible constraint correspondence satisfies
generalized substitutes.13

• The autocratic constraint correspondence gives motivation to the name of this
condition. If Bh(X

′) is a singleton for each h and X ′ ⊂ X, Bh satisfies generalized
substitutes if and only if whenever X ′ ⊂ X ′′, X ′h−Bh(X

′) ⊂ X ′′h−Bh(X
′′).14 That

is, if I think of Bh(X
′) as a choice function, then it must satisfy the substitutes

condition of Hatfield and Milgrom (2005).

12A weaker condition dubbed a “substitutability with ties” is introduced in Erdil and Kumano
(2019), for matching with priority structures in school choice.

13Any time a contract y ∈ X ′ is not in A ∈ Bh(X ′) it is because |A′| = qh (since A′ is maximal).
If A′′ does contain y, however, then there is a doctor with a contract in A′ with no contract in A′′.
Letting y′ be any contract naming that doctor such that y′ ∈ X ′ gives the desired result.

14Note that there is a slight abuse of notation here since Bh(X ′) is an element of PP(X ′). I ignore
this issue when there is little likelihood of confusion.
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Figure 2. Generalized Substitutes

• The fact that the other two conditions satisfy the generalized substitutes condition
is proved in the appendix.

• Let X = D ×H × {0, 1} and

Bh(X
′) = {Y ∈ σh(X ′) : if there is a y ∈ Y s.t. τ3(y) = 1, τ3(X

′
h \ Y ) = 1}

and suppose (A′, X ′, A′′, X ′′) is a monotone choice pair. Suppose there is a y ∈ X ′
with y ∈ A′′ \A′. If y is a bonus contract (so τ3(y) = 1), then τ3(X

′′ \A′′). Hence
A′′ includes all non-bonus contracts inX ′′ so there are at most qh−1 such contracts
in X ′′h and therefore in X ′h. By responsiveness, and since A′ is maximal and y /∈ A′,
|A′| = qh. Hence there is at least one contract y′ with τ3(y

′) = 1 in A′ but not
in A′′ and the result follows. If instead τ3(y) = 0, A′ and A′′ both contain only
non-bonus contracts and both have cardinality qh. Since they aren’t identical, the
result is immediate.

The following lemma immediately demonstrates the benefit of this condition. It
says that the constrained rejection function is monotone.

Lemma 9. If the constraint correspondence B satisfies the generalized substitutes con-
dition, whenever X ′ ⊂ X ′′ ⊂ X, R̃h(X

′) ⊂ R̃h(X
′′) for all h ∈ H. 15

15This condition is referred to as the “substitutes” condition in Hatfield Milgrom (2005). It is also
commonly referred to as “rejection monotonicity”
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We are now ready to introduce a DA-type algorithm. This algorithm is intended
to construct a constrained stable match.

Definition 17 (Constrained Cumulative Deferred Acceptance).

Step 1 All doctors propose their favorite contract from X. Denote this set of
contracts by X1. Let each hospital h then choose their favorite subset from among
Bh(X1), namely C̃h(X1), and reject R̃h(X1).

Step k Each doctor d proposes to her favorite contract not rejected in step k−1
as well as all contracts she weakly prefers to this contract. Denote this set of
contracts by Xk. If Xk = Xk−1, terminate the algorithm and let C̃H(Xk) be the
outcome. Otherwise, reject all contracts in R̃H(Xk) =

⋃
h∈H R̃h(Xk) and proceed

to step k + 1.

The following theorem establishes a positive result for any constraint correspon-
dence satisfying the generalized substitutes condition. The proof closely follows Hatfield
and Milgrom (2005).

Theorem 7. If B satisfies generalized substitutability, the constrained cumulative de-
ferred acceptance algorithm terminates in a finite number of steps and results in an out-
come which is constrained stable. Furthermore, all doctors weakly prefer the outcome of
the constrained cumulative differed acceptance algorithm to any other constrained stable
outcome.

3.2 Comparative Statics

Thus far I have introduced a family of constraint correspondences and have defined a
DA-type algorithm for each. I have identified a subclass of constraint correspondences
which can be guaranteed to yield a constrained stable outcome. However, the applied
matchmaker might wonder how to find a constraint correspondence that is suitable
to their problem. Furthermore, they may wonder if there is a way to compare two a
priori acceptable constraint correspondences. This section provides an answer to this
question. I develop a theorem which enables the matchmaker to compare constraint
correspondences according to doctor preferences. In particular, I place a partial order
> on the class of constraint correspondences and show that if B > B′ then all doctors
prefer the outcome of the constraint correspondence for B to that of B′. This is a
partial order since not all constraint correspondences can be ordered in this way – some
doctors may be made better off while others are made worse.

Theorem 8. Suppose B and B′ are constraint correspondences which satisfy the gen-
eralized substitutes condition. Suppose furthermore that for all X ′ ⊂ X and h ∈ H
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whenever A and A′ are maximal in Bh(X
′) and B′h(X

′) respectively, if y ∈ A \A′ then
there is a y′ ∈ A′ \ A such that

A′y′→y ∈ B′h(X ′) and Ay→y′ ∈ Bh(X
′)

then the outcome of constrained cumulative deferred acceptance for B′ is weakly pre-
ferred by all doctors to the outcome of the constrained cumulative deferred acceptance
algorithm for B.

To see a practical example of the usefulness of this result, consider the two
constraint correspondences introduced in the running examples which correspond to
limits on the number of “rich” doctors a hospital can hire. Recall they are defined
by Bh(X

′) = {Y ∈ σh(X ′) : |Y ∩ R| ≤ qRh } and B′h(X
′) = {Y ∈ σh(X ′) : |Y ∩ L| ≥

min{qRh , |X ′h ∩ L|}}, respectively. The first imposes hard caps on the number of rich
doctors a hospital can enroll, and the second imposes the same caps, but allows hospitals
to violate the caps when they can’t find enough low-income doctors to fill the remaining
seats. The following corollary shows that the latter will not only make rich doctors
better off (since they can now fill seats they were previously prohibited from filling), it
will also make low-income doctors better off.

Corollary 2. Suppose that for each h ∈ H, 0 ≤ qRh ≤ qh and define B by Bh(X
′) =

{Y ∈ σh(X ′) : |Y ∩R| ≤ qRh } and B′ by B′h(X
′) = {Y ∈ σh(X ′) : |Y ∩L| ≥ min{qRh , |X ′h∩

L|}}. Then, by theorem 2, the outcome of the constrained deferred acceptance algorithm
for B′ is weakly preferred by all doctors to the outcome of B.

The following example furthermore shows that the soft constraints can, in fact,
make the low-income doctors strictly better off.

Example 3. Suppose that there are two doctors and two hospitals, each with a capacity
of one, with the following preferences:

d1
h1
h2

d2
h2
h1

h1
{d1}
{d2}
∅

h2
{d1}
{d2}
∅

and suppose that d2 is low-income and d1 is rich. Furthermore, suppose qRh1 = 0 and
qRh2 = 1, so hospital 1 cannot enroll any rich doctors, whereas hospital 2 can admit
either student. It’s straightforward to see that the only constrained stable matching
with respect to B is given by S1 = {(d1, h2), (d2, h1)}. However, if instead I set qRh2 = 0
(or equivalently applied the fully-flexible constraint correspondence) the match S∗ =
{(d1, h1), (d2, h2)} would be stable. This is clearly makes both doctors better off.
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3.3 Incentives and Rural Hospitals

In this section I discuss two important results in the two-sided matching theory: the
rural hospitals theorem and the strategy-proofness of deferred acceptance on the pro-
posers’ side. Both hold in our setting under suitable conditions.

Definition 18. We say that B satisfies aggregate monotonicity if whenever X ′ ⊂
X ′′ ⊂ X, for any maximal (Ah)h∈H in B(X ′) and any maximal (A′h)h∈H in B(X ′′)∑

h∈H

|Ah| ≤
∑
h∈H

|A′h|

Theorem 9 (Rural Hospitals). If B satisfies aggregate monotonicity and generalized
substitutability and if S and S ′ are two constrained stable matchings with respect to B
then all doctors are either matched in both S and S ′ or are unmatched at both S and S ′

Thus to change the distribution of doctors, I will need to modify the constraint.
In practice, it is important that mechanisms don’t incentivize agents to strategi-

cally misreport their preferences. The next condition is sufficient to guarantee that I can
implement a constrained stable match as the outcome of a strategy-proof mechanism.

Definition 19. The constraint correspondence B satisfies constraint IIA if:
For any X ′ ⊂ X and (Ah)h∈H such that for each h ∈ H, Ah ∈ Bh(X

′) and Ah is
maximal in Bh(X

′), if Y ⊂ X ′ −
⋃
h∈H Ah, then 16

(Ah)h∈H ∈ B(X ′ − Y ) ⊂ B(X ′)

Theorem 10. If B satisfies generalized substitutability, aggregate monotonicity and
constraint IIA, the mechanism associated with the constrained cumulative deferred ac-
ceptance algorithm for B is strategyproof.

3.4 Appendix

3.4.1 Proof of Lemma 8

Suppose that the outcome X ′ is constrained stable. By definition, CD(X ′) = X ′, so
it sufficient to show that X ′h = C̃hU(X ′) for each h. For any X ′′ ∈ BhU(X ′), X ′′ ⊂
CD(X ′∪X ′′) since X ′′ ⊂ U(X ′) and X ′′ names each doctor at most once. However, since
X ′ is constrained stable, it must be that X ′h %h X

′′, since otherwise X ′′ would block X ′

and would not violate the constraint. This shows that X ′h = maxhBhU(X ′) = C̃hU(X ′)
which was the desired result. Conversely, suppose that C̃HU(X ′) = X ′ = CD(X ′).
Clearly, X ′ is feasible. Now suppose that X ′′ blocks X ′ so that X ′′ � X ′h for some h and
X ′′ ⊂ CD(X ′∪X ′′). Then since X ′h = maxhBhU(X ′) it cannot be that X ′′ ∈ BhU(X ′).
Hence X ′′ violates B at X ′. Since X ′′ was chosen arbitrarily, all blocking collections
violate B at X ′.

16Set inclusion refers to set inclusion of each element of the product.

77



3.4.2 Proof of Lemma 9

Suppose y ∈ R̃h(X
′) and y ∈ A′′ ∈ Bh(X

′′). I will show that A′′ 6= C̃h(X
′′). First, if A′′

is not maximal, I are done. If instead, A′′ is maximal, the 4-tuple (C̃h(X
′), X ′, A′′, X ′′) is

a monotone choice pair. If B satisfies generalized substitutes, there is a y′ ∈ C̃h(X ′)\A′′
such that [

C̃h(X
′) \ {y′}

]
∪ {y} ∈ Bh(X

′) and [A′′ \ {y}] ∪ {y′} ∈ Bh(X
′′)

Then by definition, C̃h(X
′) �h

[
C̃h(X

′) \ {y′}
]
∪ {y}. However, since hospital prefer-

ences are responsive,

C̃h(X
′) �h

[
C̃h(X

′) \ {y′}
]
∪ {y} ⇐⇒ {y′} �h {y} ⇐⇒ [A′′ \ {y}] ∪ {y′} �h A′′

Hence A′′ 6= C̃h(X
′′). Therefore, C̃h(X

′′) and R̃h(X
′) are disjoint and R̃h(X

′′) ⊃ R̃h(X
′)

as desired.

3.4.3 Proof of Theorem 7

Let F1 : O → O be defined by F1(X
′) = X − R̃H(X ′) and F2 : O → O be defined by

F2(X
′) = X −RD(X ′) and let F : O ×O → O ×O by

F (X1, X2) = [F1(X2), F2F1(X2)]

Define the partial order ≥ on O ×O by

(X1, X2) ≥ (X ′1, X
′
2) ⇐⇒ X1 ⊃ X ′1 and X2 ⊂ X ′2

Now, if X2 ⊂ X ′2, by lemma 9, R̃h(X2) ⊂ R̃h(X
′
2) hence R̃H(X2) ⊂ R̃H(X ′2) and

F1(X2) = X − R̃H(X2) ⊃ X − R̃H(X ′2) = F1(X
′
2)

Since doctors have unit-demand, if X ′ ⊂ X ′′ ⊂ X, RD(X ′) ⊂ RD(X ′′). Hence F1(X2) ⊃
F1(X

′
2) implies that RD [F1(X2)] ⊃ RD [F1(X

′
2)] Thus

F2F1(X2) = X −RD [F1(X2)] ⊂ X −RD [F1(X
′
2)] = F2F1(X

′
2)

Together, this shows that (X1, X2) ≥ (X ′1, X
′
2) implies F (X1, X2) ≥ F (X ′1, X

′
2). There-

fore, F is order-preserving on the complete lattice (O ×O,≥). By the Knaster-Tarski
fixed-point theorem, the set of fixed points of F is a complete nonempty lattice. Fur-
thermore, iteratively applying F to (X, ∅) gives the largest fixed point.

Now suppose that S is a constrained stable outcome and consider

(S ∪ [X \ U(S)] , U(S))
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By lemma 8, X − R̃H(U(S)) = X − (U(S)− S) = S ∪ [X \ U(S)] Next, observe
that S ∪ [X \ U(S)] is the union of doctors weak lower contour set at S. Hence
RD (S ∪ [X \ U(S)]) = X \ U(S) and X − RD (S ∪ [X \ U(S)]) = U(S). This shows
that (S ∪ [X \ U(S)] , U(S)) is a fixed point of F .

Finally, it remains to show that the largest fixed point of F corresponds to the
outcome of the constrained cumulative deferred acceptance algorithm and that it is
constrained stable. Starting with (X, ∅) and iteratively applying F corresponds exactly
to the steps outlined in words in the constrained cumulative deferred acceptance algo-
rithm. At each step, doctors propose all previously proposed contracts and potentially
a new contract 17 Hospitals, consider this collection and choose from their constrained
choice set, rejecting all other contracts proposed to them. Let

(
X̄1, X̄2

)
be the largest

fixed point of F . Then the constrained cumulative deferred acceptance algorithm pro-
duces C̃H(X̄2) as the proposed outcome. For notational convenience, let S̄ = C̃H(X̄2).
Then by the above argument, X̄2 = U(S̄). Furthermore, since

[
X̄1, X̄2

]
is a fixed point

of F , X̄1 = X − (U(S̄)− S̄) and U(S̄) = X − R̃H(X̄1), so by lemma 8, S̄ is constrained
stable.

If the outcome S is constrained stable,

(S ∪ [X \ U(S)] , U(S)) ≤
(
S̄ ∪

[
X \ U(S̄)

]
, U(S̄)

)
In particular, U(S) ⊃ U(S̄), so all doctors are weakly better of at S̄.

3.4.4 Proof of Theorem 8

Part 1: max%h
Bh(X

′) ⊂ max%h
B′h(X

′) for all h ∈ H and X ′ ⊂ X 18

Fix X ′ ⊂ X and h ∈ H. Suppose that y ∈ X ′ \ max%h
B′h(X

′). Then for
any maximal A in Bh(X

′), if y ∈ A, by the hypothesis, there is a y′ such that y′ ∈
max%h

B′h(X
′) and such that[

max
%h

B′h(X
′) \ {y′}

]
∪ {y} ∈ B′h(X ′)

However, by definition max%h
B′h(X

′) �h [max%h
B′h(X

′) \ {y′}] ∪ {y}. Since hospital
preferences are responsive, this implies that {y′} �h {y} and [A \ {y}] ∪ {y′} �h A.
Furthermore, [A \ {y}] ∪ {y′} is in Bh(X

′), so A 6= max%h
Bh(X

′). This shows, more
generally, that if A ∈ Bh(X

′) and if A \ max%h
B′h(X

′) 6= ∅ then A 6= max%h
Bh(X

′).
Hence max%h

Bh(X
′) ⊂ max%h

B′h(X
′).

Part 2: All doctors weakly prefer the outcome of the constrained cumulative
deferred acceptance algorithm for B′ to the outcome of the constrained cumulative
deferred acceptance algorithm for B.

17If they were rejected in the previous step and still have contracts they have not yet proposed.
18We are using the cumbersome notation max%h

Bh(X ′) instead of C̃h(X ′) since the latter is defined
with respect to a fixed constraint correspondence. In this theorem, I are explicitly considering two
different constraint correspondences, so I use the more difficult notation to maintain clarity.
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As in the proof of theorem 7,

F1(X
′) = X −

[
X ′ −

⋃
h∈H

max
%h

Bh(X
′)

]
and F2(X

′) = X − [X ′ − CD(X ′)]

and

F ′1(X
′) = X −

[
X ′ −

⋃
h∈H

max
%h

B′h(X
′)

]
and F ′2(X

′) = F2(X
′)

Then let F (XD, XH) = [F1(XH), F2F1(XH)] and F ′(XD, XH) = [F ′1(XH), F ′2F
′
1(XH)].

By the proof of the main theorem, if S is the outcome of constrained cumulative deferred
acceptance for B, then [S ∪ [X − U(S)], U(S)] is a fixed point for F . By part 1,
max%h

Bh(U(S)) ⊂ max%h
B′h(U(S)) for all h so

F ′1(U(S)) = X −

[
U(S)−

⋃
h∈H

max
%h

B′h(U(S))

]
⊃ X −

[
U(S)−

⋃
h∈H

max
%h

Bh(U(S))

]

and

X −

[
U(S)−

⋃
h∈H

max
%h

Bh(U(S))

]
= F1(U(S)) = S ∪ [X − U(S)]

together this gives that F ′1(U(S)) ⊃ F1(U(S)) = S ∪ [X − U(S)] but then

F ′2F
′
1(U(S)) ⊂ F ′2F1(U(S)) = F2F1(U(S)) = U(S)

Finally, this shows that F ′[S ∪ [X−U(S)], U(S)] ≥ [S ∪ [X−U(S)], U(S)] where “ ≥ ”
is the partial order on P(X)2 introduced in the proof of theorem 7. Furthermore, as
established in the proof of theorem 7, F ′ is order-preserving, so F ′ converges to a fixed
point weakly larger than [S ∪ [X − U(S)], U(S)]. Since the constrained cumulative
deferred acceptance algorithm for B′ produces the largest fixed point, I get the desired
result.

3.4.5 Proof of Theorem 9

Suppose S∗ is the constrained stable outcome of the constrained cumulative deferred
acceptance algorithm for B. Then all doctors are weakly worse off at S and S ′ by the
proof of theorem 7 above. Thus it must be that |Sd| ≤ |S∗d | and that |S ′d| ≤ |S∗d | for all
d. Summing these up, I get

|S| = | ∪d∈D Sd| =
∑
d∈D

|Sd| ≤
∑
d∈D

|S∗d | = |S∗|

and
|S ′| = | ∪d∈D S ′d| =

∑
d∈D

|S ′d| ≤
∑
d∈D

|S∗d | = |S∗|
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Furthermore, U(S) ⊃ U(S∗) and U(S ′) ⊃ U(S∗). Hence by aggregate monotonicity
|S| ≥ |S∗| and |S ′| ≥ |S∗|. Together with the above inequalities, I then have that
|S| = |S∗| = |S ′|. Therefore, |Sd| = |S∗d | and |S ′d| = |S∗d |, since if any of these inequalities
were strict, I would violate the above.

3.4.6 Proof of Theorem 10

Fix B and the preferences of hospitals and consider some d and preference profile
%= (%d)d∈D where

x1 �d · · · �d xm
Let S be the outcome of the constrained cumulative deferred acceptance algorithm for
% and let Sd = xj. Consider %′d given by

xj �′d x1 �′d · · · �′d xj−1 �′d xj+1 �′d · · · �′d xm

and let U(S) be defined with respect to % and Û(S) be defined with respect to (%′d
,%−d) so that Û(S) = U(S) \ {x1, x2, . . . xj−1}. By lemma 8, S is constrained stable
under (%′d,%−d). Hence d is matched with xj at the constrained cumulative deferred
acceptance outcome for (%′d,%−d).

Now consider %∗d given by

y1 �∗d y2 �∗d · · · �∗d xj �∗d . . . ym−1

and let S∗ be the outcome of the constrained cumulative deferred acceptance algo-
rithm given the preference profile (%∗d,%−d). Let U(S∗) be defined with respect to
(%′d,%−d) and Û(S∗) be defined with respect to (%∗d,%−d). Suppose that S∗d = ∅. Then
U(S∗) = Û(S∗), so S∗ is constrained stable under (%′d,%−d) by lemma 8. However this
contradicts theorem 9, so it must be that S∗d 6= ∅. Suppose that xj �∗d S∗d then by
constraint IIA, if d were to submit

xj �∗d S∗d �d . . .

she would still be assigned S∗d . However, this contradicts the conclusion above that if
xj were at the top of d’s list, she would achieve it. Therefore, S∗d �∗d xj which gives the
result.

3.5 School Choice Constraints With Multiple Types

3.5.1 Controlled Choice with Hard Upper Bounds

For this example, let X = D ×H, so each contract simply specifies a single doctor to
be matched with a single hospital. Suppose that doctors are partitioned into a finite
number of types T1, T2, . . . , Tn which specify characteristics over which the matchmaker
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(e.g. the school district or local government) would like to achieve diversity. For
example, in the school choice setting, types might be socioeconomic indicators or racial
categories. In order to achieve diversity, the matchmaker imposes hard upper bounds19

on the number of doctors from each type a hospital can enroll. Formally, for each h ∈ H
there is a vector q̄h = (qih)

n
i=1 ≥ 0. Each hospital can admit at most qih doctors from

type Ti. Consider the constraint correspondence for h

Bh(X
′) = {Y ∈ σh(X ′) : |d(Y ) ∩ Ti| ≤ qih for i = 1, . . . , n}

and the associated constraint correspondence B = (Bh)h∈H . This constraint attempts
satisfy the bounds in a straightforward way: hospitals are never allowed to exceed their
upper bound from each type. Notwithstanding this limitation, B enables h to choose
freely from among the all subsets of doctors which satisfy the basic requirements of σ.

Proposition 11. The constraint correspondence

Bh(X
′) = {Y ∈ σh(X ′) : |d(Y ) ∩ Ti| ≤ qih for i = 1, . . . , n}

satisfies generalized substitutes, aggregate monotonicity and constraint IIA.

Proof.

1. Generalized Substitutes

Suppose that (A′, X ′, A′′, X ′′) is a monotone choice pair and that y ∈ A′′ \A′ and
y ∈ X ′. Let i be the index such that d(y) ∈ Ti. Since y /∈ A′, and A′ is maximal,
either |A′| = qh or |A′∩Ti| = qih (otherwise, I would be able to add y to A without
violating the upper bounds). I will first consider case 1. If |A′| = qh, |A′′| must
also be qh since |A′′| < |A′| implies that for some j, |A′′∩Tj| < |A′∩Tj|. In which
case, for any z ∈ [A′ \ A′′] ∩ Tj the collection A′′ ∪ {z} ∈ Bh(X

′′) so A′′ is not
maximal. Hence |A′′| = qh. It will be useful to break case 1 into two additional
cases. First, if [A′ \ A′′] ∩ Ti 6= ∅ then for any y′ ∈ [A′ \ A′′] ∩ Ti I the desired
statements

[A′ \ {y′}] ∪ {y} ∈ Bh(X
′) and [A′′ \ {y}] ∪ {y′} ∈ Bh(X

′′)

Second, if [A′ \ A′′] ∩ Ti = ∅ then there is a j 6= i such that |A′ ∩ Tj| > |A′′ ∩ Tj|
and for any y′ ∈ [A′ \ A′′]∩Tj I get the same statements. Next, consider case 2 in
which |A′∩Ti| = qih. Then [A′ \ A′′]∩Ti is nonempty and for any y ∈ [A′ \ A′′]∩Ti
I get the desired result.

2. Aggregate Monotonicity

Suppose that X ′ ⊂ X ′′ and fix h ∈ H. Let A′ be a maximal element of Bh(X
′)

and let A′′ ∈ Bh(X
′′). If |A′′| < |A′| then for some i, |A′′ ∩ Ti| < |A′ ∩ Ti| ≤ qih

in which case there is a y ∈ [A′ \ A′′] ∩ Ti. Hence A′′ ∪ {y} ∈ Bh(X
′′) so A′′ is

not maximal. This establishes that if A′′ is maximal in Bh(X
′′) then |A′| ≤ |A′′|.

Summing over hospitals, I get the desired result.

19See Abdulkadiroğlu (2005) for a more thorough discussion on this topic.
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3. Constraint IIA

Suppose that X ′ ⊂ X and (Ah)h∈H is a vector of maximal choices from Bh(X
′)

Suppose that Y ⊂ X ′ −
⋃
h∈H Ah and consider B(X ′ − Y ). First, the upper

bounds haven’t changed so Ah ∈ Bh(X
′ − Y ) for each h. Second, any element of

the Bh(X
′) still respects the upper bounds when Y is removed from X ′.

Corollary 3. The constrained deferred acceptance algorithm for B yields a constrained
stable outcome which is weakly preferred by all doctors to any other constrained stable
outcome. Furthermore, the mechanism associated to B is strategy-proof for doctors.

Proof. This is an immediate consequence of proposition 11 and theorems 7 and 10.

3.5.2 Controlled Choice with Soft Bounds

As discussed in Ehlers, Hafalir, Yenmez, and Yildirim (2013) and Kojima (2012), the
imposition of hard bounds can come with a cost. This inefficiency can be remedied
by treating bounds as soft. That is, the bounds only bite when a hospital has reached
their capacity – at which point the bounds dictate which tradeoffs hospitals can make by
type. Following Ehlers, Hafalir, Yenmez, and Yildirim (2013), I can impose both upper
and lower bounds. As detailed in the last section, upper bounds place a maximum on
the number of doctors from each type hospitals can admit. By contrast, lower bounds
place a limitation on the minimum number of doctors that each hospital can admit
from a given type. In order to accomodate this type of constraint, B will ensure a
dynamic priority of doctors. First, when possible, B will ensure that the lower bounds
will be met. When not possible say for type Ti, B will ensure that hospitals admit all
doctors from type Ti who desire to match with it. Second, hospitals will be required
to admit all doctors from types which have met their floors but not yet exceeded their
ceilings. Only after satisfying these two requirements can hospitals exceed their upper
bound for a given type.

Let X = D × H. Again suppose that doctors can be partitioned into types
T1, . . . , Tn. I will abuse notation slightly and write y ∈ Ti for y ∈ X to mean that
d(y) ∈ Ti. The matchmaker imposes upper and lower bounds on the number of doctors
from each type for each hospital. That is, there are vectors q

h
= (qi

h
)ni=1 ≥ 0 and

q̄h = (q̄ih)
n
i=1 ≥ 0 for each h such that q

h
≤ q̄h . I will assume that

∑n
i=1 q

i
h
≤ qh for

each h.
In order to find the right statement of the constraint correspondence, it will be

useful to first establish a bit of notation. For h ∈ H and X ′ ⊂ X, let

P 1
h (X ′) = {Y ⊂ σh(X

′) : |Y ∩ Ti| ≥ min{qi
h
, |X ′h ∩ Ti|} for i = 1, 2, . . . , n}

therefore, P 1
h (X ′) is the collection of subsets of contracts which either meet each of the

lower bounds for each type or, if not possible, then include all doctors. Note that this
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is only part of the way to the constraints that I would like to impose: conditional on
meeting the lower bounds, this allows hospitals to exceed the upper bounds, even when
they could allocate more seats to types that have not yet met the upper bound.

Now, let

P 2
h (X ′) = {Y ⊂ σh(X

′) : ∃i, j s.t. |Y ∩ Ti| > q̄ih and |Y ∩ Tj| < min{|X ′h ∩ Ti|, q̄ih}}

these are the types of subsets of doctors which entail h admitting more than its upper
cap of some type i, while admitting fewer than its upper cap of another type j, despite
the fact that X ′h contains doctors of type j sufficient to reach j’s cap. These are the
types of subsets I would like B to rule out. Our goal is to first prioritize all doctors
up to the lower bound, then to prioritize those who are above the lower bound, but
below the upper bound, and only last to prioritize doctors who exceed the upper bound.
collections of doctors in P 2

h (X ′) violate this hierarchy.
Having done this notational work, I can now easily define B as follows:

Bh(X
′) = P 1

h (X ′)− P 2
h (X ′)

Let us now examine constrained stability given B. Recall that the three require-
ments for an outcome X ′ to be stable are (1) X ′ is feasible (2) CD(X ′) = X ′ and (3)
all blocking coalitions violate the constraint. I will examine the implications of each.
First, if X ′h ∈ BhU(X ′) then |X ′h ∩ Ti| ≥ min{qi

h
, |U(X ′)h ∩ Ti|} for each i. Hence, for

i such that |U(X ′)h ∩ Ti| ≥ qi
h
, X ′h entails enrollment of at least qi

h
doctors from type

i. For i such that |U(X ′)h ∩ Ti| < qi
h
, X ′h includes all doctors from type i in the upper

contour set at X ′. Furthermore, X ′h ∈ BhU(X ′) implies that if there is any i such that
|X ′h∩Ti| > q̄ih, it must be that there is no j such that |X ′h∩Tj| < min{|U(X ′)h∩Ti|, q̄ih}.
In words, this states that B only allows j to exceed its upper bound for any type if not
doing so for all types would lead to vacant seats. Next, the condition that CD(X ′) = X ′

is simply a regularity condition enforcing that X ′ does not specify that a single doctor
be matched to multiple hospitals. Finally, suppose that the first two conditions for
constrained stability are satisfied by X ′. Now, suppose that X ′′ is a blocking coalition
(so that X ′′ ⊂ CD(X ′ ∪ X ′′) and there is a h such that X ′′ �h X ′h. This blocking
coalition violates the constraint if X ′′ /∈ BhU(X ′). Again, note that X ′′inU(X ′) by
definition. Therefore X ′′ /∈ BhU(X ′) implies that either X ′′ is not in P 1

hU(X ′) or X ′′ is
in P 2

hU(X ′). The former implies that X ′′ would entail that h enroll fewer than the lower
bound for some type i, despite |U(X ′) ∩ Ti| > qi

h
. The latter implies that h admitting

X ′′ would exceed its upper bound for some type of doctor while there are still doctors
who would like to enroll with h from other types that have not yet reached their bound.

The following proposition establishes that our theory is compatible with soft
bounds.

Proposition 12. The constraint correspondence Bh(X
′) = P 1

h (X ′) − P 2
h (X ′) satisfies

generalized substitutes.
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Proof. Suppose that (A′, X ′, A′′, X ′′) is a monotone choice pair and that y ∈ A′′\A′ and
y ∈ X ′. Let i be the index such that d(y) ∈ Ti. First, I will show that |A′| = qh. Since
A′ is maximal, A′ ∪ {y} /∈ Bh(X

′). Suppose that |A′ ∪ {y}| ≤ qh so A′ ∪ {y} ∈ P 1
h (X ′)

since A′ is in P 1
h (X ′). Hence it must be that A′ ∪ {y} ∈ P 2

h (X ′), despite the fact that
A′ ∈ P 2

h (X ′). Clearly then there is a j such that |A′ ∪ {y} ∩ Tj| < min{|X ′h ∩ Ti|, q̄ih}
however since |A′∪{y}| ≤ qh by assumption, |A′| < qh. Thus for any z ∈ [X ′h \ A′]∩Ti,
A′ ∪ {z} is in Bh(X

′). This contradicts the fact that A′ is maximal. hence it must
be that |A′ ∪ {y}| > qh, so |A′| ≥ qh. Together with the fact that A′ ∈ σh(X ′) I get
|A′| = qh. Next, I will establish that |A′′| = qh. However, since |A′′| ≤ qh, A

′ \ A′′ is
nonempty. Following the same argument above with A′′ and any element of A′ \A′′ will
establish the desired result. Hence |A′| = qh = |A′′|.

Having established the number of contracts in A′ and A′′, it will be useful to
break the problem down into three cases. First, suppose that |A′∩Ti| = |A′′∩Ti|. Then
clearly there is a y′ ∈ A′ ∩ Ti such that y′ /∈ A′′. However swapping out two contracts
from the same type will not change the constraints from B. Therefore,

[A′ \ {y′}] ∪ {y} ∈ Bh(X
′) and [A′′ \ {y}] ∪ {y′} ∈ Bh(X

′′)

Next, suppose that |A′ ∩ Ti| < |A′′ ∩ Ti| then there is a j 6= i such that |A′ ∩ Tj| >
|A′′ ∩ Tj|. Let y′ be a contract in [A′ \ A′′] ∩ Tj. Consider swapping y′ for y in A′.
Since |A′ ∩ Tj| > |A′′ ∩ Tj| and y′ ∈ X ′′, |A′ ∩ Tj| > qj

h
, so the swap will not cause

issues with the lower bound, so [A′ \ {y′}] ∪ {y} ∈ P 1
h (X ′). It remains to show that

[A′ \ {y′}]∪{y} /∈ P 2
h (X ′). Since A′ ∈ P 2

h (X ′) either there is a k such that |A′∩Tk| > q̄kh|
in which case for all l 6= k A′ ∩ Tl ≥ min{|X ′h ∩ Tl|, q̄lh} or there is no such k.

Proof. This is an immediate consequence of proposition 11 and theorems 7 and 10.

3.6 Distributional Constraints in Residency Match-

ing

Residency matching is among the most important success stories of deferred acceptance.
Prior to its implementation, the market for medical residents was badly unraveled Roth
(2008). It was not uncommon for medical students to be hired almost two years before
they graduated. Furthermore, the employment offers sometimes came in the form of
“exploding offers” in which the resident had to respond immediately in the affirmative
to assure a spot. Without such an immediate commitment, the offer would disappear.
These were ostensibly designed to limit the information available to residents about
other offers they might receive. In response to these issues, the National Residency
Matching Program (NRMP) was developed to facilitate the match using a centralized
clearinghouse. Through experimentation, they independently discovered the DA algo-
rithm.

85



However, despite the success of DA in residency matching, it was observed that
rural hospitals are often left with unfilled slots after the match Roth (1986). As residents
make up a substantial share of the hospital labor force, this presents a problem for
rural regions in treating their patients effectively. Applied matchmakers suggested that
alterations to the algorithm might be helpful in ameliorating this problem. However,
Roth (1986) showed that, in fact, if any hospital has vacant seats at the end of the
deferred acceptance algorithm, they will have the same number of vacant seats at any
stable match. Furthermore, the doctors matched to any such hospital will be the same
at any stable match.

Motivated by this problem, the Japanese government developed a new mecha-
nism for matching doctors. They imposed ”regional caps” on each prefecture of Japan.
The regional cap is an upper limit on the number of doctors that can be matched with
each prefecture20 (Kamada and Kojima 2015). Hospitals within each region were then
assigned quotas such that the sum of hospital quotas within each region did not exceed
the cap. The idea was to cap the enrollment of urban prefectures, thereby increasing
the number of new residents to be matched with rural prefectures. Kamada and Ko-
jima (2015) convincingly demonstrate the drawbacks of this mechanism and develop an
alternative mechanism. They allow the hospital caps to be assigned flexibly throughout
the mechanism.

The model here is motivated by Kamada and Kojima (2019) which generalizes
the that presented in Kamada and Kojima (2015).

Suppose X = D ×H and there is a finite set R of regions which partitions the
hospitals. Let Hr denote the set of hospitals in region r and let nr = |Hr| for each region.
For each region, there is assumed to be a regional cap qr given by the matchmaker. I
will assume that each region is associated with a linear order �r over Znr

+ which specifies
the regional preference over possible distributions of doctors to each hospital within the
region. Given an element ω of Znr

+ , let Cr(ω) = max�r{ω′ ∈ Znr
+ : ω′ ≤ ω}. In words,

Cr(·) treats the discrete polytope {ω′ ∈ Znr
+ : ω′ ≤ ω} as the choice set and chooses

a distribution of doctors which maximizes its preferences in that set. The idea here
is that, over the course of the standard deferred acceptance algorithm, the cumulative
proposals of doctors serves as an opportunity set of the regions. They can choose
any distribution of doctors which does not exceed the number of applications to any
hospital. I will assume that �r has the following properties for each region21:

1. ω′ �r ω if ωh > qh ≥ ω′h for some h ∈ Hr and ω′h′ = ωh′ if h 6= h′

2. ω′ �r ω if
∑

h∈Hr
ωh > qr ≥

∑
h∈Hr

ωh

In words, the first condition requires that the regional preferences never prefer to exceed
the physical capacity of any hospital. The second condition requires that the regional
preferences respect the regional quotas.

20There are 47 prefectures which partition the country.
21These are conditions (1) and (2) from Kamada and Kojima (2019), page 11
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If X ′ ⊂ X, let ωr(X
′) = (|X ′h|)h∈Hr so the function ωr simply counts the number

of doctors for each hospital in region r as specified by X ′ and arranges those counts
into a vector. Consider the constraint correspondence given by

Bh(X
′) = {Y ∈ σh(X ′) : |Y | ≤ τhCr(ωr(X

′))}

where τh is the coordinate projection corresponding to h. This can be understood as
follows: given a collection of contracts X ′, the constraint correspondence first counts
the number of doctors assigned to each hospital, then uses the preferences of regions
to determine the constrained optimal distribution of doctors within each region and
finally allows each hospital to choose a collection of contracts which replicates that
distribution.

Kamada and Kojima (2019) assume furthermore that for all regions r, the choice
rule Cr satisfies the condition that for all ω, ω′ ∈ Znr

+ :

ω ≤ ω′ =⇒ Cr(ω) ≥ Cr(ω
′) ∧ ω

which intuitively states that as ω increases to ω′, the choice to increase the seats avail-
able to h should only increase if h is already being assigned ωh.

22 I will call this the
KK-substitutes condition. The following proposition shows that this condition is suffi-
cient to ensure that B, as defined above, satisfies the generalized substitutes condition.

Proposition 13. If �r satisfies the KK-substitutes condition, B, as defined above
satisfies generalized substitutes.

Proof. Let (A′, X ′, A′′, X ′′) be a monotone choice pair for h with y ∈ A′′\A′ and y ∈ X ′.
Since h’s option set is only limited in terms of the number of contracts that h can sign,
it is sufficient to show that Bh(X

′) is nonempty. Since in this case, either d(y) ∈ d(A),
and the associated contract in A can be swapped out for y or d(y) /∈ A and y can be
swapped out for any contract in A. However, since y ∈ A′′, Bh(X

′′) is nonempty. Hence
τhCr(ωr(X

′′))} is greater than or equal to one. Either τhCr(ωr(X
′)) = τhCr(ωr(X

′′)) or
τhCr(ωr(X

′)) < τhCr(ωr(X
′′)) and in the first case, I get the result immediately. In the

second, it follows by KK-substitutes.

22See Kamada and Kojima (2019) for a detailed discussion on this condition.
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