
UC Berkeley
Controls and Information Technology

Title
Building operating systems services: An architecture for programmable buildings.

Permalink
https://escholarship.org/uc/item/7m31g4t4

Author
Dawson-Haggerty, Stephen

Publication Date
2014-04-01
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7m31g4t4
https://escholarship.org
http://www.cdlib.org/


Building Operating Systems Services:
An Architecture for Programmable Buildings

by

Stephen Dawson-Haggerty

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor David Culler, Chair
Professor Randy Katz

Professor Edward Arens

Spring 2014

PhD Dissertation, Dept. of Computer Science 
UC Berkeley 2014

https://escholarship.org/uc/item/7m31g4t4



The dissertation of Stephen Dawson-Haggerty, titled Building Operating Systems Services:
An Architecture for Programmable Buildings, is approved:

Chair Date

Date

Date

University of California, Berkeley

PhD Dissertation, Dept. of Computer Science 
UC Berkeley 2014

https://escholarship.org/uc/item/7m31g4t4



Building Operating Systems Services:
An Architecture for Programmable Buildings

Copyright 2014
by

Stephen Dawson-Haggerty

PhD Dissertation, Dept. of Computer Science 
UC Berkeley 2014

https://escholarship.org/uc/item/7m31g4t4



1

Abstract

Building Operating Systems Services:
An Architecture for Programmable Buildings

by

Stephen Dawson-Haggerty

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor David Culler, Chair

Commercial buildings use 73% of all electricity consumed in the United States [30], and
numerous studies suggest that there is a significant unrealized opportunity for savings [69,
72, 81]. One of the many reasons this problem persists in the face of financial incentives
is that owners and operators have very poor visibility into the operation of their buildings.
Making changes to operations often requires expensive consultants, and the technological
capacity for change is unnecessarily limited. Our thesis is that some of these issues are not
simply failures of incentives and organization but failures of technology and imagination:
with a better software framework, many aspects of building operation would be improved
by innovative software applications.

To evaluate this hypothesis, we develop an architecture for implementing building appli-
cations in a flexible and portable way, called the Building Operating System Services. BOSS
allows software to reliability and portably collect, process, and act on the large volumes of
data present in a large building. The minimal elements of this architecture are hardware
abstraction, data management and processing, and control design; in this thesis we present
a detailed design study for each of these components and consider various tradeoffs and
findings. Unlike previous systems, we directly tackle the challenges of opening the build-
ing control stack at each level, providing interfaces for programming and extensibility while
considering properties like scale and fault-tolerance.

Our contributions consist of a principled factoring of functionality onto an architecture
which permits the type of application we are interested in, and the implementation and eval-
uation of the three key components. This work has included significant real-world experience,
collecting over 45,000 streams of data from a large variety of instrumentation sources in mul-
tiple buildings, and taking direct control of several test buildings for a period of time. We
evaluate our approach using focused benchmarks and case studies on individual architectural
components, and holistically by looking at applications built using the framework.
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Chapter 1

Introduction and Motivation

According to a 2010 Energy Information Administration (EIA) report, the commercial sector
accounts for 19% of all energy consumption in the United States [30], much of which is spent
in buildings and much of which is thought to be wasted. Buildings are already some of the
largest and most prevalent deployments of “sensor networks” in the world, although they are
not typically recognized as such. Locked in proprietary stovepipe solutions or behind closed
interfaces, a modern commercial building contains thousands of sensors and actuators that
are more or less the same as those used in a typical sensor network deployment: temperature,
humidity, and power are the most common transducers. Many commercial buildings already
contain the dense instrumentation often posited as the goal of sensor network deployments,
but combine it with a relatively unsophisticated approach to applying those data to a host
of different problems and applications. Through better use of existing systems, we may be
able to make a dent in buildings’ energy usage.

The overarching goal of this thesis is to lay the groundwork for building applications:
a platform siting on top of the sensing and actuation already present in existing buildings,
providing interesting new functionality. Specifically, we are interested in enabling applica-
tions with a few key properties; applications which are portable, able to be easily moved
from one building to another so as to enable changes to building operation which scale like
software, rather than hardware on building renovation. These applications are often also
integrative, in the sense that they bring together sources of data and information which
are very diverse. They take advantage of efficiencies and new capabilities possible without
expensive hardware retrofits. Finally, these new applications must exhibit robustness in
the face of a variety of failure modes, some of which were introduced by extending the scope
of what is thought of as a “building application.”

1.1 Underlying Trends

Despite consuming 70% of U.S. electricity, the building sector exhibits surprisingly little
innovation for reducing its consumption. The reasons include low levels of investment in
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R&D and a general focus on performance metrics like comfort and reliability over energy
efficiency. Optimizing and maintaining the performance of a building requires initial com-
missioning to ensure design goals are met and continuous attention to operational issues to
ensure that efficiencies are not lost as the physical building evolves. Monitoring-based con-
tinuous commissioning only begins to address the challenges for maintaining peak building
performance.

Efficiency is not yet evaluated to the same standard as comfort and reliability, but with
better user input, control policies, and visibility into the buildings state, energy consump-
tion can be intelligently reduced. Computer systems can deliver wide-scale, robust, and
highly sophisticated management services at low marginal cost. However, applying software
techniques to millions of commercial buildings with hundreds of millions of occupants de-
mands a rethinking of how such software is procured, delivered, and used. Building Software
today is something of a misnomer, as it is typically embedded in a proprietary Building
Management System (BMS) or Building Automation System (BAS), providing rudimentary
plotting, alarming, and visualization tools with few capabilities for extensibility or continuous
innovation.

Due to increased efforts of combat climate change, it has become important to deploy
renewable energy assets, such as wind and solar, onto the electric electric grid. In fact, the
past few years have seen impressive growth in both categories [16, 58]. Because electricity
storage is relatively expensive and the schedule of when these new resources produce elec-
tricity depends on uncontrollable natural factors, a key challenge to increasing the use of
renewables is the development of zero-emission load balancing. This allows consumers of
electricity to respond to a shortfall in generation by reducing demand, rather than produc-
ers attempting to increase generation. Buildings are an important target for this approach
because they contain large thermal masses and thus have significant flexibility as to when
they consume electricity. For instance, a building could reduce cooling load for a certain
period, allowing it to “coast” on it’s existing thermal mass. Applications which perform this
service require both access to the operation of the buildings as well as communication with
the electric grid operator, and make up the second broad class of application we enable.

What is needed is a shift to Software-Defined Buildings: flexible, multi-service, and open
Building Operating System Services (BOSS) that allows third-party applications to run se-
curely and reliably in a sandboxed environment. A BOSS is not limited to a single building
but may be distributed among multi-building campuses. It provides the core functionality
of sensor and actuator access, access management, metadata, archiving, and discovery. The
runtime environment enables multiple simultaneously running programs. As in a computer
OS, these run with various privilege levels, with access to different resources, yet are multi-
plexed onto the same physical resources. It can extend to the Cloud or to other buildings,
outsourcing expensive or proprietary operations as well as load sharing, but does so safely
with fail-over to local systems when connectivity is disrupted. Building operators have su-
pervisory control over all programs, controlling the separation physically (access different
controls), temporally (change controls at different times), informationally (what information
leaves the building), and logically (what actions or sequences thereof are allowable).
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1.2 Motivating Applications

Broadly speaking, applications for buildings fall into three basic categories. First, some
applications involve analysis, optimization, or visualization of the operation of existing sys-
tems. Second, others involve the integration of the building into wider scale control loops
such as the electric grid. A third class connects occupants of buildings to the operation of
their buildings.

An example of the first class of application is a coordinated HVAC optimization applica-
tion. Ordinarily, the temperature within an HVAC zone is controlled to within a small range
using a PID controller. The drive to reach an exact set-point is actually quite inefficient,
because it means that nearly every zone is heating or cooling at all times. A more relaxed
strategy is one of floating: not attempting to effect the temperature of the room except
within a much wider band. However this is not one of the control policies available in typi-
cal commercial systems even though numerous studies indicate that occupants can tolerate
far more than the typical 6F variation allowed [5]. Furthermore, the minimum amount of
ventilation air provided to each zone is also configured statically as a function of expected
occupancy; however the actual requirement in building codes are often stated in terms of
fresh, outside air per occupant. Optimization applications might use occupancy information
derived from network activity, combined with information about the mix of fresh and return
air currently in use to dynamically adjust the volume of ventilation air to each zone.

A second class of application converts a commercial building from a static asset on the
electric grid passively consuming electricity to an active participant, making decisions about
when and how to consume energy so as to co-optimize both the services delivered within
the building but also its behavior as part of a wide-scale electric grid control system. Two
strategies which have become more commonplace in recent years are time-of-use pricing, and
demand response. In an electric grid with time-of-use pricing the tariffs electricity consumers
are charged vary based on a schedule; for instance, electricity during peak demand hours
could be significantly more expensive than the rate at night. In a demand response system,
utilities gain the ability to send a signal to electricity consumers commanding them to scale
back their demand. Buildings are prime targets for participating in both of these strategies,
because they consume most of the electricity but also can have significant flexibility about
when they choose to consume due to their large thermal mass and slow-changing nature of
many of their loads.

Finally, an example of a user responsive application is one that improves comfort by giving
occupants direct control of their spaces, inspired by [35]. Using a smart-phone interface, the
personalized control application gives occupants direct control of the lighting and HVAC
systems in their workspaces. The application requires the ability to command the lights
and thermostats in the space. The personalized climate control application highlights the
need for the ability to outsource control, at least, temporarily, to a mobile web interface in
a way that falls gracefully back to the local control. It also integrates control over multiple
subsystems which are frequently physically and logically separate in a building: HVAC and
lighting. This type of interface can improve occupant comfort, as well as save energy through
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better understanding of occupant preferences.

1.3 Contributions and Thesis Roadmap

In this thesis, we first present in Chapter 2 a tutorial on building design, looking especially
at common of mechanical systems and the computer systems controlling them, so as to give
a solid background in the existing state of buildings. We also develop a set of existing,
example applications in some detail so as to provide a set of running examples throughout
the thesis. Building on this in Chapter 3, we synthesize the essential patterns of application
design, and propose an architecture for creating building applications which addresses the
key challenges in this area while meeting our overall goals of integration, portability, and
robustness. Following this, we develop three key architectural components in details: in
Chapter 4 we develop the Simple Measurement and Actuation Profile (sMAP), a system
for collecting and organizing the heterogeneous set of devices present at the device layer
of buildings. Next, we develop in Chapters 5, 6, and 7 a system for collecting, storing,
and processing large volumes of time series data generated from building system. In doing
so, we build a system which can store and process tens of billions of data points with
millisecond latency within the archive. Finally in Chapter 8, we develop control transactions,
an abstraction for making changes to building operations with well-defined semantics around
failure.

Our approach at each of these layers is similar: a survey of requirements followed by
design, implementation, and evaluation of the layer as a single unit. Finally, we conduct a
holistic evaluation of the overall architecture by breaking down the implementation of several
representative applications.
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Chapter 2

Background and Related Work

Before launching into a discussion of how to redesign the control of building systems, we
first present background material on building systems to allow our presentation to be self-
contained. For the reader unfamiliar with how large buildings work, we provide a brief primer
on their mechanical systems, how their existing computing, communication, and control
resources are designed and used, and the few types of computer applications that existing
systems are equipped to perform. We conclude this chapter by synthesizing a motivation for
what we believe is possible and desirable for building systems: a case for Building Operating
System Services.

2.1 Building Physical Design

A large modern commercial building represents the work of thousands of individuals and tens
or hundreds of millions of dollars of investment. Most of these buildings contain extensive
internal systems to manufacture a comfortable indoor environment: to provide thermal
comfort (heating and cooling), good air quality (ventilation), and sufficient lighting; other
systems provide for life safety (fire alarms, security), connectivity (networking) and transport
(elevators). These systems are frequently provided by different vendors, function separately,
and have little interoperability or extensibility beyond the scope of the original system design.
As we explore the systems, we keep a close eye on their capabilities, limitations, and design
motivations. We also explore some alternative architectures.

Within a building, systems are often separated into separate vertical stovepipes; for in-
stance, those presented in Table 2.1. The logical separation of functions into vertical systems
pervades many facets their existence in a building; they are often specified, designed, pur-
chased, installed, and maintained separately from other systems in the building. For this
reason, we present a brief overview of a few relevant systems and design considerations,
describing the design of systems as they currently exist before launching into a more com-
prehensive discussion of how they could be more effectively integrated.
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Vertical Description Example equipment present

HVAC Responsible for manufacturing a com-
fortable indoor thermal environment.

Air handlers; fans; dampers; cooling
towers; chillers; boilers; heating coils;
radiant panels.

Lighting Provides illumination to indoor areas
needed for work, mobility, and emer-
gencies.

Incandescent, fluorescent, LED
lighting elements; ballasts; lighting
switches and controllers; daylight
detectors.

Security Guards against unauthorized physical
access to the space.

Cameras; motion detectors; door
locks; smart cards; alarm panels.

Transportation Moves individuals within the spaces. Elevators, escalators, automatic
doors.

Networking Moves data within the space. Cabling; switch gear; telephone PBX,
wireless access points.

Life safety Protects life and property from fire,
water, carbon monoxide, and other
eventualities.

Smoke detectors; alarm annunciators,
standpipes.

Table 2.1: Vertically integrated systems which may be present in a large building, along with
key equipment

2.1.1 Heating, Ventilation, and Air Conditioning

Heating, ventilation, and air condition systems (HVAC) are responsible for manufacturing
a comfortable thermal environment for occupants of the building. While heating systems
have been a common feature of construction for centuries, air conditioning only became
possible with the advent of refrigeration in the early 20th century, and only became common
in postwar construction. According to the DOE, HVAC accounts for around a third of the
energy consumed by an average commercial building [109]. These systems are relatively
diverse, with many different refrigeration technologies as well as an assortment of techniques
to improve their efficiency.

As an example of one common design point, Figure 2.1 shows a heating, ventilation, and
air conditioning (HVAC) system for a large building. Four process loops are evident.

• In the air loop, air is both chilled and blown through ducts within a unit called an air
handler, after which it passes through variable air-volume (VAV) boxes into internal
rooms and other spaces. The VAV box has a damper, allowing it to adjust the flow of air
into each space. After circulating through the rooms, the air returns through a return
air plenum where a portion is exhausted and the remaining portion is recirculated.
The recirculated air is also mixed with fresh outside air, before being heated or cooled
to an appropriate temperature, completing the loop.

• The hot water loop circulates hot water through heat exchangers present in most
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VAV boxes; supply air is reheated there before being discharged through diffusers into
different rooms. A valve controls the degree to which the air is reheated. The hot water
itself is typically heated in a centralized boiler or heating plant. In a slight variant of
this architecture, reheat is sometimes provided through the use of electrical (resistive)
heating elements, eliminating the hot water loop.

• The cold water loop circulates water from the chiller through a heat exchanger, which
chills the supply air and rejects it to the atmosphere using a cooling tower on the room.

• Finally, a secondary cold water loop rejects heat from the chiller to the atmosphere,
by circulating water through a cooling tower.

To provide dehumidification, it is common to chill the supply air to a relatively cool
temperature (e.g., 55F) before being reheated at the VAV boxes; this is a so-called “reheat”
system. There are many other designs for each part of the system, and designs evolve over
time to meet different requirements. As such, this system should be considered as an example
of a large class of different system designs.

Many different control loops are present; the predominant control type is PID controllers1,
used to meet set-point targets for air pressure, temperature, volume. A few of the most
important loops are:

VAV control: VAV control takes as input each zone’s temperature and set point, and
produces as output a position for the damper and heating coil. The most modern type
of VAV control is the so-called “dual max” zone, in which both airflow and heating
valve position are adjusted continuously whenever the zone temperature is outside of
the zone’s “dead band”. In such a system, there are actually two temperature set-
points: a heating set point and a cooling set point. The system is said to be “floating”
within the dead band whenever the temperature is between these two set points, and
thus is neither being heated nor cooled.

Duct static pressure: the air coming out of the air handler is pressurized so as to force it
through the duct network. Increasing pressure increases airflow to the zones, and thus
increases the capability of the system to provide cooling; however, it also increases the
energy expended by the fan2 and deposits more heat into the air from the fan motor.
Since the VAV dampers adjust independently of the central air handler, it is necessary
to have a control loop that maintains a constant static pressure of the supply air.

1Proportional-Integral-Derivative or PID control is a widely used form of process control very common
in building plants. A PID controller continuously computes an actuator position (the “loop output”) as a
function of some input variable and a set point; for instance, an airflow controller will compute the damper
position in a duct by observing the current airflow in order to achieve some desired airflow (the set point).
Each term in the controller (“P”, “I”, and “D”) refer to an error term computed based on the process’s past,
present, or future state.

2Fan affinity laws relate the flow through a fan to various other properties such as fan diameter and
power needed. An important outcome is that the relationship between flow and power for a particular fan
is cubic – doubling the volume of air moved requires eight times the power.
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Supply air temperature: The air coming out of the air handler is also chilled; the supply
air temperature loop adjusts the amount of cooling so as to maintain a constant supply
air temperature.

Economizer : the economizer is a damper controlling the mixing of outside air with return
air. This mixed air is blown through the air handler, cooled, and becomes the supply
air to zones. The economizer setting has a significant energy impact, because the
temperature of the air entering the cooling coil determines how much it needs to be
chilled. Weather conditions change the outside air temperature, but the return air
temperature is typically constant; generally a few degrees warmer than the supply air
temperature. This control loop often operates using a fixed mapping from outside air
temperature to economizer position.

Figure 2.1: A typical process diagram of an HVAC system loop in a commercial building.

2.1.2 Lighting Systems

Lighting system design was once a simple matter of providing the design amount of illumi-
nation to interior spaces, typically measured in lumens per square foot. The designer simply
computed the footprint of each lighting fixture and ensured that the resulting installation
provided sufficient light to each space. Some buildings have only one light switch per floor,
resulting in very simple control since the entire space must be lit if anyone requires lighting.
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Lighting today is considerably complicated by the overriding design goal of providing
sufficient illumination to spaces while minimizing energy costs. For this reason, modern ar-
chitectural designs emphasize increased use of daylighting, reducing the energy consumption
consumed by lighting figures when illumination can be provided by the sun or low-power task
lighting. A key challenge in lighting control is mediating the interaction between active light-
ing elements with passive architectural features. A building designed to take advantage of
daylight may have a range of passive features, ranging from exposures, window shades, sky-
lights, and reflective elements designed to bring light into the space as the sun moves across
the sky in different seasons while limiting the solar heat gain. Potential active features in-
clude, in addition to the obvious lighting elements, photochromic windows and mechanical
shading elements that allow the control system to adjust the amount of light brought in.
Energy codes have also increased the adoption of dimable ballasts, while technologies like
LED also allow for the adjustment of color in addition to brightness.

Figure 2.2: A building interior at the National Renewable Resources Laboratory exhibiting
many active and passive features designed for daylighting.

Managing all of this hardware to provide consistent illumination while also reducing
energy consumption and solar heat gain is another significant area where control loops play
a role in buildings. One vendor implements eight different strategies for managing the lighting
energy consumption [70]:

High-end tune and trim: reduce the maximum illumination ever provided in a space.

Occupancy sensing: dim or turn off lights when no one is present.

Daylight harvesting: reduce illumination when the space is lit by insolation.
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Personal dimming control: allow occupants to reduce lighting levels as desired.

Controllable window shades: limit solar heat gain during peak solar hours while allowing
additional illumination during the morning and evening.

Scheduling: automatically shut off lights according to a schedule.

Demand response: provide a temporary reduction in illumination in response to an ex-
ternal signal.

Overall, these strategies, while individually simple, speak to the range of considera-
tions and interactions present in something as seemingly-simple as adjusting the lights, and
how information from different systems (scheduling, occupancy, solar and weather data) are
brought together to optimize lighting.

2.1.3 Other Building Systems

Many of the other systems noted in Table 2.1 are just as or even more complex than lighting
and HVAC. The data are very diverse; network switches may be able to observe packet
flows in a wired network, or even localize clients in a wireless network; security systems
have detailed data about the entry and exit of building occupants at the whole-building
granularity. Functionality is often duplicated as integration costs are high; for instance,
multiple systems may attempt to monitor occupancy, a key control input, by installing
separate sensors.

2.2 Monitoring and Control

Knitting together all of the hardware embodied in each of these different systems are monitor-
ing and control systems. Here, we present a brief overview of the most common architecture
for these systems: Supervisory Control and Data Acquisition (SCADA), as well as a few
alternative paradigms which have been applied in other settings.

2.2.1 Direct and Supervisory Control

Control in existing building systems operates as two logical levels, shown in Figure 2.3. Direct
control is performed in open and closed control loops between sensors and actuators: a piece
of logic examines a set of input values, and computes a control decision which commands an
actuator. These direct control loops frequently have configuration parameters that govern
their operation known as set points; they are set by the building operator, installer, or engi-
neer. Adjusting set points and schedules forms an outer logical loop, known as supervisory
control. This logical distinction between types of control is typically reflected physically in
the components and networking elements making up the system: direct control is performed
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by embedded devices, called Programmable Logic Controllers (PLCs) wired directly to sen-
sors and actuators, while supervisory control and management of data for historical use is
performed by operator workstations over a shared bus between the PLCs. This architecture
is natural for implementing local control loops since it minimizes the number of pieces of
equipment and network links information must traverse to affect a particular control policy,
making the system more robust, but provides no coordinated control of distinct elements. It
imposes hard boundaries which are difficult to overcome.

direct!

supervisory!

device!

PLC!

head-end node!

Figure 2.3: The two-level architecture of many existing building separations, with a logical
and physical distinction between direct and physical control. This is shared with a typical
Supervisory Control and Data Acquisition (SCADA) system.

Existing control models in buildings are relatively simple, even in the best-performing
buildings. One characteristic of how existing buildings are architected is that each verti-
cal system has many decoupled or loosely coupled local control loops, which interact only
through the media they control, but not directly via signaling.

Each vertical system within the building uses specific algorithms to make the building
work. For instance, within the HVAC system, Proportional-Derivative-Integral (PID) con-
trollers are used at the VAV level to maintain temperature and airflow targets, and at the
central plant level to maintain constant temperatures and pressure in the ducts and water
loops. PID loops compute a control output from one or a several input variables. For the
purposes of our discussion here, it is simply necessary to know that PID control is a relatively
simple, robust, and widely-deployed way of performing direct control in many applications,
not just HVAC; they do however require parameter tuning, and there is a deep literature
exploring methods of doing so [15, 44, 56, 101, 118]

The cutting edge of building control attempts to replace the many decoupled control
loops throughout a building with a more integrated control strategy. For instance, Model-
Predictive Control (MPC) is popular in process industries and holds the potential of efficiency
improvements by coordinating control of many different elements within the system [3, 7, 8].
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2.2.2 Communications Protocols

Today’s typical building management system consists of front-end sensors, usually closely
associated with actuators, that periodically report their data to a back-end database over
one or more link technologies: RS-485, raw Ethernet frames, and IP networks are com-
mon. Several computers are typically also present, and provide an interface to users such
as facilities managers for adjusting set points and setting schedules; these are then enacted
by sending commands back to the front-end devices (Remote Terminal Units, in Modbus
terminology). This straightforward architecture is simple and attractive when computing
is expensive, because it minimizes the functionality placed at the actual sense points. As
processing gets ever cheaper, it makes sense to re-evaluate these design decisions, especially
as systems converge on IP as their network layer.

The design space for a web service for physical information consists of three interlocking
areas:

Metrology the study of measurement; what is necessary to represent a datum.

Syndication concerns how a data is propagated out from the sensor into a larger system.

Scalability relates to the range of devices and uses the service can support, from small
embedded systems to huge Internet data centers.

Each of these concerns presents a set of design issues, some of which have been previously
addressed in the academic literature or by industrial efforts. In this work, we examine these
previous solutions and build from them a single set of solutions which are designed to solve
a specific problem: representing and transmitting physical information.

BACnet

The most important existing protocol in buildings is known as BACnet, which was developed
beginning in 1987, and was released as Version 1 in 1995 [4]. “BACnet – A Data Communica-
tion Protocol for Building Automation and Control Networks,” is managed by a committee
of ASHRAE, the American Society of Heating, Refrigeration, and Air-Conditioning Engi-
neers and has been standardized as ISO 16484. The aim of BACnet is relatively simple: to
provide a common communication protocol for control-level networks within buildings, with
the goal of allowing components from different manufacturers to interoperate, and begin to
breaking open some of the stovepipes presents within existing vertical market segments.

As a protocol, BACnet can be best thought of as a protocol which specifies the physical,
link, and application layers of the OSI link model. At the physical and link layers, the
standard has five options; fully compliant implementations must use either an IP network,
Ethernet (without IP), ARCnet (a token-ring serial protocol), MS-TP (master-slave/token-
passing, another serial protocol), Echelon LonTalk, or any Point-to-Point link (such as an
RS-485 line or a phone line). This diversity of media leads to a certain confusion within the
protocol since adaptations must be made to account for some of these modes – for instance,
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BACnet device
Device ID: 26000

BACnet object type: 4 (Binary Output)
  Instance: 2
  Properties:
    PRESENT_VALUE
      =1
    PRIORITY_ARRAY
      =[null, ..., 1]
    NAME
      ="RELAY 2"
    DESCRIPTION
      ="Lighting output"

read(device_id=26000,
     object_type=4,
     object_instance=2,
     property_id=PRESENT_VALUE)
                  

     => 1

Figure 2.4: Key primitives in BACnet are “devices”, ”objects,” and ”properties.”. Devices
represent physical controllers, or logical network hosts. Objects are somewhat general, but
may represent individual points of instrumentation such as a relay switch or point of measure-
ment. Properties on objects are individual values; for instance reading PROP PRESENT VALUE

on a switch will yield the current switch position.

BACnet contains its own network model and addressing system to make up for shortcomings
in some of these links.

At an application metrology level, BACnet represents the world as a set of “objects,” that
have “properties” which the protocol manipulates. BACnet objects are not true objects (in
the Object-Oriented Programming sense) because they are not associated with any code or
executable elements. Instead, the BACnet standard defines a limited taxonomy of objects,
properties, and actions to be performed on properties; for instance, it defines a standard
“Analog Output” type of object, which represents a physical transducer that can take on a
floating point value on its output. BACnet specifies properties requiring the object to expose
the range of values it can take on, the present value, the engineering units of the value, as
well as optional name and description fields.

For scalability to larger networks, BACnet builds in scoped broadcast-based service dis-
covery via “Who-Is” and “Who-Has” messages which allow clients to discover the names of
devices on the network, and to ask them to filter the list of objects they contain using a
simple predicate. These services are built on top of link-layer broadcast functionality. It also
contains basic features for data syndication both in “pull” mode where objects are periodi-
cally polled for the latest data, and “push” where data are send to a receiver whenever the
value changes by more than a threshold (change-of-value triggering).

BACnet also provides rudimentary support for mediation between different processes or
clients within the system, through the use of a static prioritization scheme. For certain types
of objects such as Analog Outputs, changing the value of the point is accomplished not by
directly setting the present-value property, but by placing a value within a priority array.
This priority array, shown in Figure 2.5 contains 16 elements. The controller determines
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Figure 2.5: An example state of a BACnet priority array. In this case, the present value
for this controller would take on the value 0 since that is the highest-priority, non-null value
present.

the actual value of of the output by examining this array, and giving the output the value
of the highest priority (lowest non-null value) in the array. A separate relinquish-value

property determines the output value when no elements are present in the array.

Other Protocols

Many other communications protocols are in use within buildings as well. In fact, even
control systems using BACnet often contain gateways linking BACnet devices to other legacy
protocols such as LonTalk, Modbus, oBIX, [51, 76, 80] or one of many proprietary protocols
used by legacy equipment. These protocols span the gamut of sophistication; Modbus is a
popular serial protocol that provides only limited framing and a simple register-based data
model on top of RS-485 links, while oBIX (the Open Building Information eXchange) is a set
of XML schema managed by OASIS designed to promote building interoperability, at quite
a high level. Although much could be said about these protocols, BACnet serves as a useful
point in the design space. Proprietary protocols also see extensive, although diminishing
use. Protocols like Siemens N2, Johnson N1 and N2, and many others are prevalent in
buildings of a certain age; although the latest generation of system from large vendors have
migrated towards BACnet, legacy systems often require an adaptor or emulator in order to
communicate.

2.2.3 Component Modeling

Although protocols like BACnet begin to establish basic interoperability between building
controllers, the semantic content of these interactions is still low. Building control protocols
expose points which indicate analog or binary values, which may or may not be writable,
but they are not tied to a higher level equipment or systems model of the building; it can
be very difficult to tell what the point actually means and does. Within a BACnet system,
points are often still identified by convention – Figure 2.6 has an example of a BACnet point
name from Sutardja Dai Hall, a building on Berkeley’s campus. The name is accessed by
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reading the name property of a VAV controller. A lot is encoded in this string; however, it is
by convention and clients or users must understand the conventions in use in the particular
building they are in to correctly interpret the names.

!
!
!
!

!

legacy solution: encode everything in point name!

SDH.MEC-08.S5-01.AIR_VOLUME

8"

Figure 2.6: An example of a BACnet point name from Sutardja Dai Hall, on the Berkeley
campus. In this case, the point name includes both spatial (building, floor, and zone)
information, network information (the controllers’ address), and functional information (air
volume). Interpreting this requires knowing the convention in use.

Even knowing how to interpret these tags only begins to address the underlying issue here,
which is the need for software in the building to be able to interpret the relationship between
the components of the building. For instance, that tag name gives us no information about
which process loops that VAV is part of, or how it relates to other components in the building.
This problem of mapping a physical resources into separate views of the space begins to
shift us from a controls perspective, focused on the actuation of various building systems,
to Building Information Modeling, an offshoot of CAD focused on the digital representation
of assets within the building. The goal of BIM is to maintain a digital representation of the
entire building from construction through commissioning, allowing programatic inspection
of a digital representation of the physical instance. The main set of standards and schema
from the construction industry are the Industry Foundation Classes (IFC) and the related
Extended Environments Markup Language (EEML) [34, 65]. IFC and EEML files allow
architects and engineers to create features representing architectural elements, process loops,
equipment, and other assets present within a building.

Alternative modeling languages are coming from the Green Building XML (gbXML) Con-
sortium, mainly consisting of BIM developers. A major goal of this enabling interoperability
between BIM packages and various energy modeling packages used to evaluate the energy
use of the space once constructed. The major shortfall we find with most of these efforts
is that they specify either too little or too much. Both IFC/EEML and gbXML specify
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physical representations of spaces and components, but it’s currently very difficult to link
that model back to a set of controls governing the operation of the space, or match up the
virtual model with actual data.

2.2.4 Interfaces for Programming

Programming these systems is a challenge, and how to do it parallels the two-tiered archi-
tecture. At the supervisory control level, it is possible to change set points and schedules
through the use of one of the existing controls protocols such as BACnet. An implementer
may make use of a wide range of BACnet (or other protocol-specific) features within a con-
troller, and issue network commands so as to implement some control strategy. Most systems
also have a way to change the logic present in the controllers themselves. Historically, these
programming systems have come from the electrical and mechanical engineering communi-
ties, and have been based on relay ladder logic, rather than other alternatives. A significant
problem with these systems is that they, for the most part do not make use of any of the
advances in programming language design. Even basic structured programming constructs
are often missing making it difficult to write reusable code, and making static analysis a very
difficult problem.

2.2.5 Alternatives to SCADA

Although dominant in buildings as well as in other process industries, the two-tiered SCADA
architecture is not the only attempt to provide coordinated management of distributed phys-
ical resources. One alternative is distributed object systems, as exemplified by implemen-
tations such as CORBA and Tridium Niagara [42, 108]. In a distributed object system,
objects performing tasks can be accessed (mostly) transparently over the network, and ap-
plications are written by injecting new objects into the system, which call methods on other
existing objects. These systems have had success in several domains; for instance, the U.S.
Navy AGIES system uses CORBA internally for communication between radars, command
and control elements, and weapons. In the building space, the most successful distributed
object-based system is the Tridium Niagra architecture. The Niagra system defines a Java
object model for many standard components in a building, and provides device integration
functionality for interfacing with external devices using protocols like this discussed in Sec-
tion 2.2.2. Applications access resources in the building through a global object namespace.
This architecture is attractive because it mitigates some of the inherent problems with lower-
level protocols, as objects must implement well-defined interfaces. Therefore, there is less
semantic information lost when application requests are translated into low-level actions –
for instance, an application may call a lights off method in a well defined interface to turn
the lights off, instead of writing a 0 to a vendor-specific register on a controller.

Another alternative architecture for distributed control systems are systems designed
around message buses. A message bus implements point-to-multipoint communication be-
tween groups of senders and receivers; receivers (sometimes known as subscribers) receive
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messages on a set of topics they subscribe to. This paradigm has seen some success in con-
trol systems, notable in CAN bus (Controller Area Network). Unlike a distributed-object
system, a message bus system has looser binding between parties – a client can subscribe to
a channel or send messages on a topic, without knowing exactly which or how many parties
will receive the message. In some ways, BACnet inherits more for these message-bus based
systems than from a true distributed object system.

Both of these systems are in some ways “flatter” than the SCADA architecture, with
it’s two-tier division of direct and supervisory control. This is in many ways liberating,
because it frees applications from direct physical constraints on where they must run; as in
the internet, they may theoretically run nearly anywhere. However, the separation of direct
and supervisory control has important implications for reliability, and it is not obvious how
the need to reason about which communication links and controllers are in the critical path
of different applications maps into either distributed object or message systems.

2.3 Management and Optimization Applications

Existing building do, in a real way, run applications. The programs for controlling the
HVAC and lighting systems described in Section 2.1 are one example; in many vendors’
systems, they are implemented as a logical flow diagram, which are then synthesized into
executable code and downloaded into the various controllers present in the system. Beyond
this narrow scope however, most “programs” which are run in the context of the building
either have hard separations between those meant for design-time analysis, optimization, or
additional functionality. For instance, design tools such as EnergyPlus which are used for
whole-building energy simulation require extensive model building and make assumptions
about how the building will be operated, but these assumptions are not programmatically
capture and transferred to the design of the control systems. Here, we briefly present a
description of several classes of applications currently in wide use within buildings; the first
class, energy analysis only makes use of stored data, while the second, demand response,
also contains an element of control.

2.3.1 Electricity Consumption Analysis

Electricity usage across a large building is difficult to analyze. One of our testbed buildings
on campus, Cory Hall, is typical: electricity enters in the basement through a 12.5kV main.
Once it is in the building, it is stepped down to 480V at the building substation, from where it
is distributed into 12 main circuits. These circuits are stepped down to 240V and 120V using
additional transformers located in electrical closets throughout the building, from where they
make their way to lighting, receptacles, computer server rooms, elevators, chillers, and other
loads within the building.

As part of a monitoring project, we installed over 120 3-phase electrical meters into the
building, and networked them together so as to enable centralized data collection. Figure
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Figure 2.7: The electrical distribution system within Cory Hall, UC Berkeley. To better
understand how electricity was used in the building, we installed around 120 three-phase
electric meters at various points in the system. Analyzing this data requires both the ability
to deal with larger quantities of data, and the metadata to allow automated interpretation.

2.7 shows where these meters were installed within the electrical distribution system in Cory
Hall; in fact, this does not include the entire picture since individual end-uses, which make
up around 40% of many buildings, are not individually monitored in this case. Making sense
of the data generated by all of the metering elements present in this application requires
multiple kinds of metadata, including information about the type of meter, where it sits
within the electrical load tree, and which loads that branch serves. We will use this project
as a running example throughout the thesis as we investigate the challenges of instrumenting,
processing, and acting upon this data.

2.3.2 Energy Modeling and Analysis

Energy analysis is potentially performed at all phases of a building’s lifecycle. Before con-
struction, engineers analyze the expected energy consumption in view of expected weather,
occupancy, and the building technologies in use. This type of analysis is used to optimize the
building envelope and employs open-source tools like EnergyPlus [25] for simulating over-
all energy use, as well as packages like Radiance [110] for lighting simulation. In the design
phase, the goal is normally to predict how the proposed design will perform once constructed,
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as well as to act in a decision-support role to answer hypotheticals around the performance
or economics of various architectural features, equipment sizing, and selection of compo-
nents. Tools at this phase are relatively well developed; furthermore, at this stage, designers
collaborate by sharing design files enumerating the geometry and physical properties of the
materials.

2.3.3 Demand Responsive Energy Consumption

Demand response is the only existing class of building application that extends a control
loop beyond the building itself. The underlying premise of demand response is to invert
the traditional relationship between electricity generators and consumers in the electric grid;
in the “legacy” electric grid, when loads begin consuming more power, generators must
compensate by generating additional power. This leads to certain capital inefficiencies, since
generation resources must be built to supply the the peak load experienced, even though
average load is significantly less than that.

Demand response allows utilities to respond to increases in demand by asking certain
loads to reduce their consumption, rather than simply continuing to produce more. The
most prominent effort to standardize and deploy these approaches is OpenADR, developed
at the Lawrence-Berkeley National Laboratory [89]. Fundamentally, the architecture and
communication pattern in use; a central operator notes the need for a “demand-response
event,” and computes how much load they would like to shed. They communicate the
need for the demand response event to an automation server, which then signals the loads
integrated into the OpenADR system.

2.4 The Case for BOSS

Looking forward, several clear underlying trends drive the case for a unified programming
environment for building applications. First, the sheer amount of sensing and actuation
present in buildings has been increasing and it is increasingly networked, driven by the
quest for both energy efficiency and increased quality of spaces, as well as the declining
cost of computation and communication. Even a few years ago, the case for local control of
systems was strong – networking was expensive, and Internet connections were unreliable or
untrusted. Furthermore, storing and processing the data when extracted would have been
difficult to imagine at scale. Secondly, many of the efficiency gains that building engineers
seek will be enabled through better analysis of data from existing systems, and the ultimate
integration of data from disparate systems. This trend is enabled by the ability to network
everything. Finally, the ultimate goal is implementing wide-scale feedback and control loops,
co-optimizing systems which today are nearly completely separate – allowing the building
to interact with the electric grid, external analysis service providers, and occupant-facing
applications in a way which is currently nearly impossible.
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The goal of BOSS is to provide an architecture which enables experimentation with these
new classes of applications, while taking building supervisory control to new places, where
data inputs and actuators are spread broadly over physical and network expanses. The most
significant design challenges involved in making this a reality are in rethinking fault tolerance
for a distributed world, and examining device naming and semantic modeling so that the
resulting applications are portable.
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Chapter 3

BOSS Design

Our goal in designing BOSS is to provide a unified programming environment enabling
coordinated control of many different resources within a building. We begin in this chapter
by examining our requirements in some detail using a top-down approach. We extract from
several applications common patterns used when writing applications for buildings. We then
develop an overall architecture which allows these pattens to be simply and meaningfully
implemented. Since an architecture is a decomposition of a large system into smaller pieces,
with a principled placement of functionally and interconnection, we develop the key building
blocks making up the BOSS architecture. This allows us to inspect the architecture at a
high level, without needing to consider the detailed implementation of each component from
the outset.

In succeeding chapters, we dive deeply into the design and implementation of three critical
components of the BOSS architecture, using a similar methodology of reviewing patterns and
use cases for that component alone, synthesizing from those uses a set of demands for our
design, implementing, and then taking a step back to evaluate the result. In this way,
we are able to consider both lower-level performance questions (“Is it fast enough?”), as
well as address high-level architectural questions (“Does the composite system allow the
implementation of the applications we were interested in?”).

3.1 Design Patterns for Building Applications

When creating applications which relate to physical infrastructure in some way, there is
typically a progression along the lines of “monitor-model-mitigate.” This pipeline refers to
an organization and operational paradigm supporting the goal of ultimate energy reduction
and improved programability. Of course, this is not a single stage pipeline, but a cycle,
with the results of the last mitigation effort ideally feeding into the next set of analyses and
operation so that changes are made continuously based on an improved understanding of
the system.

This three-phase pipeline has implications for how to design computer systems to support
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monitor' model' mi+gate'

collect' process' control'

Figure 3.1: Organizations often follow a three-phase pipeline for the implementation energy
efficiency strategies. In the first phase, they monitor systems to gain a better understanding
of their operation and dynamics. Second, they create models to support decision making
around which measures are most effective. Finally, they implement mitigating measures to
reduce the energy spend.

this flow. Because the steps taken to understand and change building operation is staged
and incremental, systems can be designed to parallel this workflow; as we gain a better
understanding of the system through monitoring, we are then better equipped to build
systems to support the modeling and control aspects of the process. The lower set of arrows
in Figure 3.1 represent the active analogs to the monitor-model-mitigate paradigm: collect-
process-control.

3.1.1 The Collect Pattern

The first phase of analysis of any large system is simply to gain visibility into its operation,
though the collection of volumes of data. Although only limited changes are typically made
to the system in this phase, it is not an entirely passive process. For instance, it may be
necessary to install additional instrumentation, gain access to existing systems, reconfig-
ure existing data collection infrastructure to collect or transmit more data, or to estimate
unmonitored or unobservable values from collections of monitored through modeling.

Unless data collection is accomplished with an entirely new system, collecting data from
an existing system typically requires a significant integration effort. In all cases, it is key
to have a good understanding of what is to be monitored to inform the analysis process.
Generally the first step is to decide on an initial list of points to collect data from. For
instance, an energy usage study might require electrical meters to be installed at a circuit
level granularity reporting kWh; a power-quality study might require additional data on
power factor or harmonic content of the electricity.

Once the data required is known, we can decide how to obtain the data. Controls
systems often offer multiple locations at which one can integrate. For instance, field-level
devices might communicate over Modbus to a data concentrator, which then exposes that
data using, say, OPC to an OSISoft PI historian. Many different architectures are possible
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and different sets of points may be available through different systems, requiring multiple
integrations. Practically, we need to consider overlapping considerations, including:

1. The availability of existing interfaces to the controls protocol,

2. The rate of data to be collected: existing upstream systems may collect data at a fixed
rate, which may or may not be acceptable based on the integration requirements,

3. Whether actuation will be required: actuation may be only possible by integrating
directly with field-level controllers rather than upstream data concentrators,

4. Number of integration points: it may be possible to get all required data from a single
integration with a concentrator, as compared to integration with hundreds of field
controllers. In general, fewer devices will be simpler,

5. Reliability: integration through a data concentrator which is not considered to be a
critical piece of equipment will probably be less reliable than integration directly with
the PLCs, as it introduces additional points of failure. Furthermore, high volume data
collection may drive the concentrator out of its designed operating regime, and

6. Network access: the availability of a location to install software which can access both
the controls system and the data collector.

Collecting data also requires a repository, or historian, to manage the data. Operational
data is often in the form of time series, and specialized databases exist to support the
collection of large volumes of data. Because the data is often repetitive or has low entropy,
it compresses well allowing large amounts of it to be saved at relatively low cost. As part
of the data collection process, the data as extracted from the system is transmitted either
within the site or over a WAN to the ultimate data repository, where it can be analyzed and
visualized.

3.1.2 The Process Pattern

The next step after collecting monitoring data is to begin to extract higher-level, meaningful
events from the raw signal. The raw data in many cases will be of relatively high volume,
but with a low information content. For instance, examining a raw feed of room temperature
by hand may not reveal much about the dynamics of the system, but by correlating it with
things known about the space a savvy investigator could uncover an HVAC system which
is unable to meet demand during peak times: a malfunctioning chiller, opportunities for
savings due to overcooling, or many other common problems or opportunities.

We have found three key requirements for working with building time series data at a
large scale and that these are not well-served by existing systems. These requirements were
developed from a study of existing and potential application for buildings: automated fault
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detection and diagnosis [87, 94], personalized feedback and control for building occupants
about their energy footprint [31, 62], demand response [88], and energy optimization [47, 74].

The first task of applications is simply locating the time series data in question using
the time series metadata. Today, we have hundreds of thousands of streams in our system;
this scale is relatively common-place in medium to large process control environments. In
the future, the number of streams will only increase. To efficiently locate streams, one
must make reference to an underlying schema or ontology which organizes the streams with
reference to a model of the world. The issue is that no one schema is appropriate for all
time series; data being extracted from a building management system (BMS) may reference
a vendor-specific schema, while other time series may be organized by machine, system, or
many other schema.

Time series data is array- or matrix-valued; sequences of scalar or vector valued readings.
These readings contain a timestamp along with the raw data; they are often converted to
sequences where the readings occur notionally at a fixed period for further processing through
the use of interpolation or windowing operators. Because cleaning starts with the raw data
series and produces (generally smaller) derivative series, a pipeline of processing operators
(without any real branching) is appropriate.

3.1.3 The Control Pattern

In the final stage of the monitor-model-mitigate pipeline, the results of the data collection
and modeling are put to use to inform changes to the operation of the building system. Tra-
ditionally in buildings, changing the control strategy is a relatively costly operation. There
are several root causes; control sequences are hand-coded for each piece of each building,
requiring significant manual effort to change. Underlying mechanical, regulatory, and human
constraints on system operation are only implicit within the system, rather then made ex-
plicit; therefore, someone who attempts to change the operation has difficulty understanding
the reasoning behind the current state of the system. Because no one is sure if a partic-
ular mode of operation was done intentionally to meet some requirement or accidentally,
based on an oversight, justifying changes is difficult. Furthermore, because systems operate
unattended for long periods of time, managers are hesitant to introduce changes which have
uncertain effect on operations.

Altering or replacing control strategies can occur in differing levels of complexity. For
instance, significant energy savings can often be obtained through supervisory changes: trim-
ming operating hours, adjusting set-points within different control loops, or adjusting pa-
rameters underlying control loops’ operation. More involved changes require replacing direct
control loops with new logic: replacing a PID controller with a model-predictive controller,
coupling the operation of previously decoupled loops, or accounting for additional variables
in system operation. The two types of modifications have different requirements on the
underlying system, in terms of how close to real-time they operate and the volume of data
required, and have different implications in terms of system reliability.
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Therefore, the two most important requirements for implementing control broadly are
that of reliability and portability. Reliability is driven by considerations around meeting all
of the constraints which have been engineered into the system, without imposing additional
constraints due to poor management. Portability refers to the ability to repeat pieces of code
and control sequences in many places, gaining from the economy of scale and eliminating
the need for custom programming in what are fundamentally highly parallel systems.

3.2 BOSS Design: a Functional Decomposition

Based on experience with proceeding through the three stages of monitoring, modeling, and
mitigation, we concluded that better abstractions and shared services would admit faster,
easier, and richer application development, as well as a more fault tolerant system. Moreover,
one needs to consider issues of privacy and controlled access to data and actuators, and more
broadly provide mechanisms that provide isolation and fault tolerance in an environment
where there may be many applications running on the same physical resources.

Control Process Container
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Figure 3.2: A schematic of important pieces in the system. BOSS consists of (1) the hardware
presentation layer, the (2) time series service, and the (3) control transaction component.
Finally, (4) control processes consume these services in order make changes to building
operator.
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The BOSS architecture has been developed to meet the needs of an organization as it
proceeds through the stages of monitoring, modeling, and mitigation. It consists of six main
subsystems: (1) hardware presentation; (2) real-time time series processing and archiving;
(3) a control-transaction system; and (4) containers for running applications. Additionally,
authorization, and naming and semantic modeling are present in the design. A high-level is
shown in Figure 3.2 and described in detail below. The hardware presentation layer elevates
underlying sensors and actuators to a shared, RESTful service and places all data within
a shared global namespace, while the semantic modeling system allows for the description
of relationships between the underlying sensors, actuators, and equipment. The time series
processing system provides real-time access to all underlying sensor data, stored historical
data, and common analytical operators for cleaning and processing the data. The control-
transaction layer defines a robust interface for external processes wishing to control the
system which is tolerant of failure and applies security policies. Lastly, “user processes”
make up the application layer.

Execution in this architecture is distributed across three conceptual domains: the lowest,
the sensor and actuator plane, building-level controllers, and Internet services. One purpose
of distinguishing these domains is not because of a difference in capability (although there are
surely huge differences), but rather because we wish to allow these to be reasoned about in
terms of the implications of a failure; we call them “failure domains.” For instance, a failure
of the network connecting a floor-level panel to other building controls does not compromise
that panel’s ability to actuate based on the directly-connected inputs and outputs, but it
does prevent it from contacting an Internet service for instructions on what to do. The
tolerance of a particular control loop to failures can be determined by examining which data
are needed as inputs, and from which fault boundaries they cross.

3.2.1 Hardware Presentation

At the lowest level of the hardware interface stack is a Hardware Presentation Layer (HPL).
The HPL hides the complexity and diversity of the underlying devices and communications
protocols and presents hardware capabilities through a uniform, self-describing interface.
Building systems contain a huge number of specialized sensors, actuators, communications
links, and controller architectures. A significant challenge is overcoming this heterogeneity
and providing uniform access to these resources and mapping them into corresponding virtual
representations of underlying physical hardware. It abstracts all sensing and actuation by
mapping each individual sensor or actuator into a point: for instance, the temperature
readings from a thermostat would be one sense point, while the damper position in a duct
would be represented by an actuation point. These points produce time series, or streams,
consisting of a timestamped sequence of readings of the current value of that point. The HPL
provides a small set of common services for each sense and actuation point: the ability to
read and write the point; the ability to subscribe to changes or receive periodic notifications
about the point’s value, and the ability to include simple key-value structured metadata
describing the point.
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Providing the right level of abstraction (for efficiency) while representing many different
types of legacy devices is the key tradeoff. Systems we integrate with are constrained in many
different ways; Modbus [76] provides only extremely simple master/slave polling, while some
6lowpan wireless systems are heavily bandwidth-constrained. Some systems provide highly-
functional interfaces (for instance, OPC [85] or BACnet [4]), but implement it incompletely
or utilize proprietary extensions. Although nothing in our design prevents devices from
implementing our HPL natively, in most cases today it is implemented as a proxy service.
This provides a place for dealing with the idiosyncrasies of legacy devices while also providing
a clean path forward.

To provide the right building blocks for higher level functionality, it’s important to include
specific functionality in this layer:

Naming: each sense or actuation point is named with a single, globally unique identifier.
This provides canonical names for all data generated by that point for higher layers to
use.

Metadata: most traditional protocols have limited or no metadata included about them-
selves, or their installation; however metadata, is important for the interpretation of
data. The HPL allows us to include metadata describing the data being collected to
consumers.

Buffering: many sources of data have the capability to buffer data for a period of time in
case of the failure of the consumer; the HPL uses this to guard against missing data
wherever possible.

Discovery and Aggregation: sensors and their associated computing resources are often
physically distributed with low-powered hardware. To support scalability, the HPL
provides a mechanism to discover and aggregate many sensors into a single source on
a platform with more resources.

This functionality is distributed across the computing resources closest to each sensor
and actuator; ideally it is implemented natively by each device.

3.2.2 Hardware Abstraction

The hardware abstraction layer is responsible for mapping low-level points from the HPL
into objects with higher-level semantics and functionality, and providing a way to discover
and reference these objects. Unlike computer systems, buildings are nearly always custom-
designed with unique architecture, layout, mechanical and electrical systems, and control
logic adapted to occupancy and local weather expectations. This introduces challenges for
writing portable software, because the operation of the system depends not only on the exact
piece of equipment being controlled, but its relationship to numbers site- and installation-
specific factors. The current state-of-the-practice is for software to be manually configured
for each piece of equipment. For instance, every zone temperature controller may use a
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standard control algorithm, which is manually “wired” to the sense and actuation points in
this zone. Changing this requires manual intervention in every zone, and the replacement of
the standard control algorithm would require even more significant and costly modifications.

(a) spatial view
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Figure 3.3: Multiple different views of the relationships between system components exist
and interact in physical space. The HAL allows applications to be written in terms of these
relationships rather than low-level point names.

The solution is to allow applications to inspect these relationships between components
and alter their operation accordingly. An important concept in the HAL is the idea that
there are multiple, separate “views” of the underlying building systems: a spatial view deals
with where objects are located in three-dimensional space, while a systems view records
the relationship between elements of a common system. An operational view deals with
issues like class schedules and room utilizations, while an electrical view deals the electrical
distribution tree; more views are possible to define. Furthermore, these views overlap through
the physical world: for instance, a chilled-water pump’s relationship to other components is
part of the systems view, while its location in space is part of the physical view and in the
electrical distribution tree the electrical view as shown in Figure 3.3.

The HAL maintains representations of these views, and provides an approximate query
language, allowing authors to describe the particular sensor or actuator that the application
requires based on that component’s relationship to other items in the building, rather than
hardcoding a name or tag. Applications can be written in terms of high level queries such as
“lights in room 410,” rather than needing the exact network address of that point. The query
language allows authors to search through multiple views of underlying building systems,
including spatial, where objects are located in three-dimensional space; electrical, describing
the electrical distribution tree; HVAC, describing how the mechanical systems interact; and
lighting.

A second problem is that building components often do not provide standardized methods
for controlling them. Different pieces of equipment require different control sequences to
achieve essentially the same result. To abstract these differences, the HAL also allows us to
create higher-level objects on top of the low-level HPL points and the relationships between

PhD Dissertation, Dept. of Computer Science 
UC Berkeley 2014

https://escholarship.org/uc/item/7m31g4t4



29

them. The HAL consists of a set of drivers with standard interfaces for controlling common
building components, such as pumps, fans, dampers, chillers, etc. Drivers provide high-level
methods such as set speed and set temperature which are implemented using command
sequences and control loops on the relevant HPL points. These drivers provide a place to
implement device-specific logic that is needed present a shared upper abstraction on top of
eclectic hardware systems.

Drivers and applications also use the view functionality to determine locking sets, nec-
essary for coexisting with other applications. For instance, an application which is charac-
terizing the air handler behavior might want to ensure that the default control policy is in
use, while varying a single input. It would use the approximate query language to find all
points on the air handler and lock them in the transaction manager. Since different models
of the same piece of equipment may have different points even though they perform the
same function, it is essential that applications can control sharing at the level of functional
component rather than raw point name.

3.2.3 Time Series Data

Most sensors and embedded devices do not have the ability to store large quantities of
historical data nor the processing resources to make use of them; such data are extremely
important for historical analyses, model training, fault detection, and visualization. The
challenge is storing large quantities of this data efficiently, while allowing applications to
make the best use of it; most historical data currently is usually unused because it is difficult
to extract value from. Typical access patterns for historical data are also different than
those that traditional relational databases are optimized for: data are mostly accessed either
by performing range-queries over timestamps and streams or finding the latest values; for
instance a typical query might extract all room light-level readings for a period of one month,
touching millions of values. Even a modest-sized installation will easily have tens of billions
of readings stored and even simple queries have the potential to touch millions of readings.
New data are mostly appended to the end of the time series, because the data come from
individual measurements taken by the sensors and published by the HPL. Finally, the data
are usually dirty, often having desynchronized timestamps requiring outlier detection and
recalibration before use.

The time series service (TSS) provides the application interface for accessing stored data,
specifically designed to address these concerns. It consists of two parts: a stream selection
language and a data transformation language. Using the stream selection language, applica-
tions can inspect and retrieve metadata about time series; the data-transformation language
allows clients to apply a pipeline of operators to the retrieved data to perform common
data-cleaning operations. This both moves common yet complex processing logic out of the
applications, allowing them to focus on making the best use of the data, and also enables
the possibility of optimizing common access patterns.

This service moves two important shared capabilities into a service, which are shared by
application at each stage of the monitor-model-mitigate cycle:
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Cleaning: data often contains errors and holes, causing analysts and applications to painstak-
ingly clean the data; removing outliers, fixing timestamps, and filling missing data.
Although many well-known techniques exists to perform these techniques, they are of-
ten employed manually, limiting sharing between applications. We define data cleaning
as the task of applying appropriate, sensor- and application-specific operations to the
raw data so as to produce the normalized, corrected dataset needed for higher-level
analysis.

Streaming: although Stonebraker clearly identifies the need to treat streaming and histor-
ical data uniformly [100], this idea is not present in most building data systems. Not
doing so creates significant friction when moving from evaluation on stored data to
production. Streaming computation fed into an actuator can also be thought of as
forming a control loop, forming a CPS.

3.2.4 Transaction Manager

The final stage of improving a facilities’ operation is making changes to the control strategies
in use. This active part of the cycle is performed by applications. BOSS applications
typically take the form of either coordinating control between multiple resources, which
would otherwise operate independently as in the HVAC optimization, or extending control
beyond the building to incorporate other systems or data, as in the personalized control
application. The challenge is doing so in a way that is expressive enough to implement
innovative new control algorithms, while also is robust in the face of the failure of network
elements and controllers; existing building control systems are not designed to be extended
in this way. Control algorithms that involve users or Internet-based data feeds should survive
the failure of the parts of the control loop that run outside of the building without leaving any
building equipment in an uncertain state. It is desirable that control policies be extended or
modified across multiple failure domains; Internet-based services may have more processing
and storage than is available in the building or may wish to implement proprietary logic.
However there are real problems with performing automatic direct or supervisory control
over the Internet or the building network. For direct control, latency may be an issue.
There can be concurrency issues when changes are made by multiple parties. Furthermore, a
failure of one domain can leave the system in an uncertain state. To resolve these issues, we
use a transaction metaphor for effecting changes to control state. Transactions in database
systems are a way of reasoning about the guarantees made when modifying complex objects.
In this control system, we use transactions as a way of reasoning about what happens when
collections of control inputs are made.

Control transactions operate conceptually at the supervisory level, but expose signifi-
cantly richer semantics than simple set-point adjustment. A control transaction consists of a
set of actions to be taken at a particular time; for instance, a coordinated write to multiple
set points. In addition to the action to be performed, a control transaction also requires a
lease time during which the control action is to be valid, and a revert sequence specifying how
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to undo the action. When the lease expires either because it is not renewed or some failure
occurs, the transaction manager will execute the revert sequence, which restores control of
the system to the next scheduled direct controller. The ability to revert transactions provides
the fundamental building block for allowing us to turn control of the building over to less-
trusted applications. These segments of revert actions are implemented for each action and
can be thought of as the “inverse action” which undoes the control input. We require there
to be a “lowest common denominator” control loop present which is able to run the building
in default (although potentially inefficient) way. In this way, applications can always simply
release control and move the building back into default control regime.

To support multiple applications, each operation also is associated with a priority level
and a locking strategy. These allow multiple higher-level processes or drivers to access the
underlying points, while providing a mechanism for implicit coordination. Using a concept
borrowed from BACnet, writes are performed into a “priority array” – a set of values which
have been written to the point at each priority level. The actual output value is determined
by taking the highest priority write. Although it provides for basic multiprocessing, the
BACnet scheme has several problems. Because there are no leases, a crashing application
can leave the system locked in an uncertain state until its writes are manually cleared.
There are also no notifications, making it difficult to determine if a particular write has been
preempted by another process at a higher priority without periodically polling the array. The
transaction manager augments the basic prioritization scheme, adding leases, notifications,
and locks. Leased writes cause the transaction manager to undo writes once the lease has
expired, protecting against the case of network or application failure. Notifications provide
applications information about when changes they are made have been overridden by other
applications, while locking allows higher-priority actions to receive exclusive access.

3.2.5 Authorization and Safety

In addition to providing high-level, expressive access to building systems, BOSS seeks to
limit the ability of applications to manipulate the physical plant in order to ensure safety.
Most building operators will not turn over control to just anyone, and even for a trusted
application developer, safeguards against runaway behavior are needed. The authorization
service provides a means of authorizing principals to perform actions; they may be restricted
by location (only lights on the fourth floor), value (cannot dim the lights below 50%), or
schedule (access is only provided at night). Because it is also difficult to foresee all possible
interactions between control strategies, BOSS also provides for run-time safety checks. By
observing the real-time data from the system maintaining models of system state, it can
attempt to determine if the system is being pushed in an unsafe or impermissible direction.

Authorization

The authorization system proactively enforces access constants on control input to the sys-
tem. We provide access controls at the same semantic level as the operations to be performed.
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Therefore, access may be restricted both at the driver interfaces which are part of BOSS, as
well as at the level of bare HPL points. Before an application begins to run on the system,
it must submit a manifest to the authorization server, which lists which points or classes of
points it wishes to access. As with other parts of the system like the driver interface, these
points may be specified either explicitly by unique name, or implicitly through the use of
a HAL query. Attached to each resource request is an associated contract the application
agrees to follow; generally, lists of points that the application will read, and input range
limits and schedules for points it will write.

These application manifests may either be automatically approved, or presented to a
building manager for approval. As part of a manual review, the building manager may further
restrict the access granted to the application; restricting the range of input the building might
accept, or the scale of the rollout. Once the manifest is approved, the application is free
to use the access granted to it as specified in the manifest. Security and safety checks are
performed at time-of-use on each BOSS method call; although clients may cache permissions
granted by the authorization server for short periods in order avoid excessive round-trips.

Verifying access permissions at time-of-use using an online server rather than at time-
of-issue using signed capabilities has implications for availability and scalability, as it places
the authorization service on the critical path of all application actions. However, we found
the ability to provide definitive revocation a critical functionality necessary to convince
building managers that our system is safe. This is one place where practical considerations
of the domain won over our bias against adding more complexity to the command pathway.
Because we only cache application permissions for a (configurable) short time, we are able
to guarantee that certain permissions can be revoked at run-time.

Safety

Another compelling difference between computer systems and physical systems is that in a
physical system, different inputs may interact in a way which is difficult or impossible to
foresee, but drives the system into an undesired state. This is because the inputs interact in
physical space, beyond the control and visibility of the management system. For instance, a
lighting controller may reduce lighting because it is a sunny day, but if it doesn’t coordinate
its lighting control with the behavior of shades the result may be darkness. Therefore, it is
also important to have the ability to identify when the system is moving towards an undesired
state and correct. The reversion system provided by the transaction manager, as well as the
real-time data access from the time series service provide the functionality needed to build
in active safety.

To provide this “active” safety, we provide for special, privileged watcher processes that
have the ability to override applications’ control of the system, and return control to default,
assumed-good control strategies. Because the system is governed by physical laws, it is
possible to maintain a model of the system state, and abort offending applications when
they exceed limits or push the system outside of safe limits. Watcher processes observe
real-time data from system operation, and use it to inform their model, which they compare
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against various constraints. When the system is in danger of violating a constraint and
behaving in an unforeseen way, the watcher must choose what action to take; essentially,
which transactions to abort to return the system to a safe state. Aborting the transaction
returns control to the next-lower-priority controller and ultimately back to the building’s
default control scheme.

As a simple example, a HVAC zone watcher maintains a model of the thermal flows into
and out of a heating and cooling zone. The heating or cooling inputs to the zone are caused by
one controllable source (the building’s HVAC system), and multiple uncontrollable sources
(occupants, equipments, weather). Based on historical data, the watcher can also infer
models for the system’s capacity to heat or cool the system, and the maximum expected
change in heating load as a function of occupants and weather. Using these models, the
watcher can calculate in real-time if the zone is on a trajectory to violate a manager-provided
temperature constraint, and abort any transactions which are controlling that zone if it is.

3.2.6 Building Applications

Updates to the building control state are made atomically using control transactions; how-
ever, these are often part of larger, more complicated and long-lived blocks of logic. This
is known as a “control process” (CP) and is analogous to a user process. CPs connect to
services they require, such as the time series service, HAL, and transaction managers, and
manage the input of a new control action. Because of the careful design of transactions and
the archiver, there are few restraints on where CPs can be placed in the computing infras-
tructure; if they fail or become partitioned from the actuator they control, the transaction
manager will simply “roll back” their changes and revert to a different CP which has not
experienced partition or failure.

A control process also offers the point at which authentication and authorization is per-
formed in the system. To receive authorization, a CP is required to provide a manifest file
describing the types of changes it will make to the system – what points will be controlled,
within which values, and when. For some users, we then require administrative approval of
these manifests before granting them; once granted we provide a signed version of the man-
ifest to the CP. This serves as a capability which can be provided to other parties proving
that the CP has been authorized to make a control action.

Control processes run application-provided logic within a container managed by the BOSS
runtime. The application container manages the control process lifecycle, instantiating new
processes when needed, and tracking resources utilized by the code. The process container
also mediates the application’s access the outside world, allowing external parties to com-
municate with a running application through message-passing, as well as for the application
to externalize state about its operation through key-value pairs published to an application
namespace. This design allows application writers to encapsulate long-lived control logic into
a concise, isolated piece of logic with well-defined failure semantics and a narrow interface
to the outside world.
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3.3 Perspectives

Having developed the architecture in detail, we now briefly consider the overall service com-
position from a few different perspectives.

3.3.1 Runtime Service Partitioning and Scaling

At runtime, all of the services developed in Section 3.2 must be mapped to physical computing
resources, either within the building or remotely, accessed via a network connection. The
assignment of these services has important implications for the availability of the system as
a whole; Table 3.1 begins to summarize placement restrictions on these services.

Architectural component Functional requirements Placement

Hardware presentation layer Expose the primitive low-level
operations of hardware using a
common set of interfaces.

Positioned as close to the phys-
ical sensors and actuators as
possible (ideally, co-locate with
transducers).

Control transaction manager Provide “all or nothing” se-
mantics when applying control
inputs; provide rollback of ac-
tions on failure, cancellation,
or expiration.

In the same failure domain as
the HAL used to affect the
changes.

Hardware abstraction layer Map the low-level functions
of the physical hardware to
higher level abstractions.

Anywhere; should be persis-
tent.

Time series service Maintain a history of readings
from the sensors and actuators.

Replicated; may be offsite.

Authorization service Approve application requests
for access to building resources.

Anywhere

Control processes “User processes” implementing
custom control logic.

Anywhere

Table 3.1: Architectural components of a Building Operating System

The HPL and control transaction manager are the most constrained; they must remain
in communication with the sensors and actuators to which they are proving access. If
partitioned from the underlying hardware, the system could be left in an uncertain state,
where a transactional command was aborted by the transition manager but lost before
reaching the actual actuator resulting in partial execution of the transaction. The servers
making up the HPL therefore must be distributed to be as close to the underlying points
they expose as possible. The transaction manger communicates with these resources, and
therefore sits within the same fault domain; if its connectivity to the underlying resources is
severed, it will be forced to abort transactions and recover.
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Other components have significantly more flexibility as to their placement; their failure or
partition will affect the availability of the system, but will not impact correctness. They may
be replicated so as to increase availability, or provide additional scalability. For instance, the
time series service may be required by various applications for model building or visualization,
but may have multiple instantiations, with one service on-site collecting a smaller amount
of data, used for simple model building and a large, more scalable service placed offsite and
used for data aggregation and wide-scale analysis.

Control processes in particular are designed to have the most flexibility as to placement;
while partition from any of the services they use may cause them to fail, the underlying
system is prepared to deal with this eventuality. Because they will depend on external
data in many cases; for instance, a connection to a user-feedback web site, or access to a
satellite data feed for additional data, we are unable to make strong assumptions about their
availability.

3.3.2 Reliability

Multiple different layers contain mechanisms to deal with network partition and intermittent
failure. The hardware presentation layer is designed to allow other components of the system
to reliably collect data from the underling sensor and actuators by providing a reliable
buffer for outgoing data. It also forms the basis for the leases provided by the transaction
manager by implementing simple timeouts on writes. Control processes can submit batched
actions or participate in control loops through the transaction manager, while maintaining
the guarantee that their actions will be undone in the case of application failure, network
partition, or other eventuality.

3.3.3 Portability

Application portability from system to system is aided by a few different features of the
design. By mapping low-level control points to a uniform namespace at the presentation
layer, applications which refer to points by referring to an underlying set of tags rather
than a controller’s network address can be moved from building to building, provided that a
consistent schema has been applied. The hardware presentation layer also makes the appli-
cations agnostic to the peculiarities of any underlying protocols, since they are elevated to a
uniform service type. Finally, the transaction manager reliability model relaxes constraints
on where applications need to be hosted, making it potentially practical to host controllers
in the Internet or on mobile devices.

3.4 Next Steps

Having developed the BOSS architecture, we now proceed with a detailed discussion of three
key components: the hardware presentation layer, the system for time series processing,
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and the transaction manager. We are able to extensively evaluate tradeoffs in each of these
components because our systems have seen extensive deployment both by us and by external
users. Each component is useful on its own without the rest of the architecture, which allows
us to evaluate each somewhat independently before bringing them back together and showing
the composite system performance; we also feel that this is good evidence of a well-factored
design.

Specifically, we do not present several of the other key elements of a BOSS: in particular,
we leave treatment of the hardware abstraction layer, known as the Building Application
Stack to other work[63], and limit the implementation and evaluation of the security and
authorization service to future work.
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Chapter 4

Hardware Presentation

The hardware presentation system is responsible for elevating the many arcane industrial
protocols to a common point, which allows rapid application development despite the huge
heterogeneity which exists at lower layers. It fits neatly into the “measure” part of the
three-stage model of system analysis. In order to ground this system’s design in concrete
applications and use cases, we first review some of our deployments with an eye towards ex-
tracting the underlying systems requirements. The result of this design and implementation
work has been a protocol called sMAP: the Simple Measurement and Actuation Profile.

In its final form, sMAP has become a useful system on its own, allowing implementors
to quickly and easily write data sources that obtain data from instruments and reliably and
efficiently publish that data over the Internet. In various incarnations, it has been scaled up
to publish hundreds of readings per second, while other implementations have been squeezed
to fit on embedded devices. sMAP is designed with these use cases in mind as a result of
a careful design process which considered a broad range of uses from the beginning, and
constant iteration on the design starting in 2010. The result is a mature system which has
seen external adoption, including by other groups at Berkeley, several companies, and the
national laboratories.

We use several different deployments of sMAP as our motivation, and as a basis for
evaluation. They include:

Residential plug-load deployment: we deployed 455 plug-load meters across four floors
of an office building at the Lawrence Berkeley National Laboratory, and around 50
meters to each of four different residences to account for usage by plug-in appliances.

Personal Comfort Tool: the Center for the Built Environment developed a portable sens-
ing cart collecting many different pieces of data relating to personal comfort.

Sutardja Dai Hall: using BACnet, we imported around 2500 different time series from the
Center for Information Technology Research the Interest of Society (CITRIS) building.

Cory Hall Monitoring: we installed sub-metering elements on around 120 circuits inside
of the Electrical Engineering building at Berkeley.
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Berkeley Campus: we imported whole-building energy consumption information from a
preexisting project collecting energy usage data from across the campus.

4.1 Design Motivation

4.1.1 Residential Deployment

As part of the Miscellaneous Electrical Loads (MELS) monitoring project collaboration with
LBNL between 2009 and 2011 we conducted a number of residential and commercial pilot
studies using the ACme plug-load metering system. A significant challenge in this environ-
ment is the fact that home Internet connections can be very unreliable; As Figure 4.1 shows,
in one deployment, external connectivity was available for only a few hours a day, on aver-
age. This implies that, despite a need for real-time data in many cases, sMAP should also
support disconnected and intermittent operation. Since at the time, sMAP did not support
any sort of reliability beyond standard network-layer retries from TCP, we were forced to
build around this limitation in the application. This is both redundant and error-prone.
This is particularly relevant for IP-based sensors; even though they may be globally routable
allowing for a direct connection between the sensor and collector, it is likely that frequent
outages will be experienced on that path.
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Figure 4.1: The results of five-minute external connectivity tests over a period of weeks for
two residential deployments. A connection with no problems would be shown as a straight
line.

In another application, the Center for the Built Environment (CBE) developed a set of
tools for characterizing indoor environment. This includes a cart which collects data on
room air temperature stratification and reports it to a backend. In order to avoid requiring
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on-site infrastructure support the cart uses a cellular modem to connect to the Internet.
Cellular internet connections are also notoriously unreliable, as well as exhibiting dynamic
behavior in terms of both throughput and latency [48, 113]. Therefore, in addition to being
tolerant to interruptionss it should additionally support efficient publication of data over
links with limited bandwidth; even a residential DSL line can be saturated relatively easily
as the number of sensors increases without some attention to efficiency.

Takeaway: both local buffering of data as well as transport efficiency should be priorities
in order to account for intermittent, slow links.

4.1.2 Building Management System Integration

Much building data and actuation is currently locked up inside of existing building man-
agement systems. These systems often are silos, with the vendor providing all equipment
and software as a single integrated solution. The problem with such a solution is that the
existing architecture imposes constraints on the ways the system can be accessed or pro-
grammed: very often, data from sensors and actuators enter the system at the bottom, and
emerge at the top as the final products which the manufacturer foresaw would be required;
intermediate layers are often either arcane or completely inaccessible. The HPL must break
open these closed systems, and provide a uniform interface for upper layers to build on.

Figure 4.2: The system architecture of an Automated Logic building management system.
[24]
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Figure 4.2 shows the architecture of one common vendor’s BMS product. Much as in
our schematic representation in Figure 2.3, the system has a field-level bus with specialized
physical and link layers over which controllers communicate, as well as head-end nodes which
perform management functions. In this case, the controllers communicate using an open
standard, the BACnet protocol over an ARCnet (a token-ring serial protocol) link-layer.

Location Vendor Controls protocol Number of points Data rate
Sutardja Dai Hall Siemens BACnet 1400 Up to every 2s
Bancroft Library Automated Logic BACnet 300 20s
David Brower Center Schneider Electric BACnet 2000 1 minute
U.C. Davis Campus Schneider Electric OPC 20 1 minute
New York Times Building Unknown CSV import 400 15 minute

Table 4.1: Building management system and data concentrator integrations performed.

When integrating such systems, there are essentially two challenges. The first is simply
data rate; to an extent greater than many other existing systems, BMS systems have the
capacity to generate data at thousands of points per second. Moreover, the systems are in
some cases themselves bandwidth limited, depending on the communication technology used
for the controller bus. While some newer buildings use Ethernet, many older building com-
municate using a serial protocol, such as RS-485, that imposes bandwidth constraints. sMAP
must be able to efficiently collect and transmit this volume of data to external collectors,
while being sensitive to the limitations of the underlying system.

The second challenge is incorporating actuation. Existing controls protocols like BAC-
net or OPC have specific functionality to allow them to perform actuation, and expose a
somewhat richer interface than just reads and writes of individual actuation positions. Since
we are designing a protocol translation layer, we should be able to expose the underlying
functionality when appropriate, so that the system composed of the original BMS and the
protocol translation is still reliable.

Takeaways: Data publishing at high aggregate rates in the range of thousands of points
a second should be possible. When actuation is present, the capability should be exposed
in a way that preserves the overall system reliability.

4.1.3 Building Retrofit

As part of the California Electric Commission (CEC) project to develop a testbed for
building-to-grid integration, we conducted an in-depth instrumentation retrofit of an ex-
isting building: Cory Hall. Cory Hall, first opened in 1955 is the home of the electrical
engineering department and contained a mix of laboratory, classroom, and micro fabrication
spaces at the time of the retrofit. To better understand the building operation, we added a
signification amount of instrumentation to the building, shown in Table 4.2.
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Meter type Communication Number installed
3-phase electric Modbus 65
Whole-building electric XML/HTTP 1
ACme plug-load 6loWPAN/IPv6 20
Steam Modbus 1
Condensate Modbus 1
Weather SDI-12 (serial) 1
Thermostats HTTP 1

Table 4.2: Instrumentation added to Cory Hall as part of the Building-to-Grid testbed
project.

Dealing with this type of data stresses the system in several ways. Clearly one challenge
is simply integrating data using a large number of separate protocols. Even though several
of the devices used in this project communicate using Modbus, it is a very low-level protocol
and provides no data model. It not self-describing and therefore requires separate mapping
layers to be written for each device, converting register-level representations into a more
useful high level format. Therefore, providing an extremely simple framework for integrating
new instrumentation sources is desirable.

Secondly, this deployment contains a large number of three-phase electric meters. Electric
sub metering is a good example how placing measurements in context requires multiple
different views of the infrastructure. These meters are all related to each other through
the electrical load tree, pictured in Figure 2.7. Electricity flows into the building from the
12.5kV grid feed into a large step-down transformer, which reduces the voltage to 480V and
distributes that through 12 sub-circuits to loads within the building. The electric meters
are installed at different points within this distribution tree in order to disaggreate the
total energy consumed by the building into smaller chunks. Capturing the point in the
tree at which these meters are installed is essential for most analyses of the data, and some
information is available at the HAL layer which can aid in interpretations of the data.

Takeaways: As with the building management system case, high aggregate data rates
are often possible. Furthermore, metadata should be represented in a way which allows
consumers to make sense of the multiple different views of the building.

4.1.4 External Data

Another common use case has been integration or importing pre-existing databases. For
instance, the obvius.com site contains whole-building energy data from much of the UC
campus from the past several years; wunderground.com provides access to many years’
worth of historical weather data. It is typical for implementors to first acquire real-time
access to the data, and then obtain access to a database which contains historical readings.
Many existing databases contain relatively large volumes of stored readings, and so efficient
import of these data is an important use case.
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Takeaways: Some data will be bulk loaded and therefore should not require an on-line
server; furthermore, this bulk-load case should be efficient and differs from the other
cases where data is trickled out as it is generated.

4.2 The Simple Measurement and Actuation Profile

The presentation layer allows higher layers to retrieve data and command actuators in a
uniform way. The realization of the hardware presentation layer is called the Simple Mea-
surement and Actuation Profile (sMAP), which has included two major versions and many
minor revisions starting in 2009. It provides resource-oriented access to data sources and
actuators, includes support for many different device types, and has seen adoption in many
other groups.

sMAP’s design is the result of multiple iterations and significant field experience, includ-
ing that detailed in Section 4.1 and as a result includes features needed to satisfy various
deployment requirements; however, we have also made it simple for novice programmers to
produce high-quality, reusable code. Some of its key features are

Metrology : support for large number of relatively high-rate time series, with structured
metadata.

Syndication: simple integration into a larger system of time series processing and archiving,
with built-in compression and local buffering of data when connection quality is poor.

Breadth: a library of existing drivers for many different types of existing devices, and built-
in support for integrating with new ones by providing pre-built packages for important
lower-level controls protocols like Modbus and BACnet.

Actuation: support for exposing actuation of underlying devices in a consistent, safe way.

Programmer’s interface: significant time went into making it convenient for program-
mers including a driver package format, logging features, clean APIs, configuration and
deployment management, and the other niceties of a real software package.

sMAP’s original design comprises two underlying aspects: the metrology deals with what
abstract quantities should be represented and how they should be organized; the architecture
has to do with how the metrology is implemented in a real system. At its core, sMAP is a
method of making available streams of discrete, scalar data and control points. Although
other data sources such as imagery and acoustic data are also common, we do not include
them in the the design; they are addressed by existing work on multimodal sensor data
repositories.

Although scalar measurements consist of a single number, their interpretation depends
on knowing how to convert that number into engineering units as well as a host of other

PhD Dissertation, Dept. of Computer Science 
UC Berkeley 2014

https://escholarship.org/uc/item/7m31g4t4



43

information. The value is normally a digitized signal from an instrument, measuring a
property of the physical world. By providing an indication about what that property is and
what units were used, a client can tell the basic type of instrument present. A timestamp
and sequence number place the value within a stream of discrete values.

4.2.1 sMAP Time Series

The organizing principle behind sMAP is to represent each instrument channel as a single
Timeseries object. Time series consist of sequences of readings from a single channel of an
instrument and associated metadata. They may be organized by the sMAP implementer into
Collections, representing logical organizations of the instrumentation; this organization is
reflected in the resource hierarchy exposed by the sMAP HTTP server. Timeseries objects
are durably identified by uuids, which place all streams into a single, global namespace.

sMAP supports adding metadata to timeseries and collections to better support inte-
grating existing data sources where the metadata should be captured along with the data.
sMAP also requires a minimum amount of metadata, required for the interpretation of the
data. These include engineering units, data type and time zone. Using HTTP, sMAP ex-
poses all time series as resources at standardized URLs with respect to a sMAP root and
follow the paradigm of Representational State Transfer (REST) [33]. Haphazard use of this
design pattern is much maligned, but a resource-oriented approach to web services design
is characterized by a systematic use of its conventions. Because the abstractions and data
model we developed map neatly onto resources, we hold that this is a good fit for physical
information. By locating them consistently we make it easy for clients to automatically
discover use sMAP resources.

The top-level resources in the sMAP profile are:

/data contains all of the time series from the source. These are typically organized by
the driver implementor into a sensible hierarchy of collections and time series objects,
representing the underlying instrumentation. Each time series or collection may be
tagged with key-value metadata.

/reporting allows control of periodic reports for syndication, discussed in Section 4.2.3.
Each reporting destination is configured either statically in a configuration file, or
dynamically using a resource-oriented interface.

/jobs allows clients to submit multiple requests for actuation simultaneously, with more
control over temporal semantics.

Underneath the /data/ resource, individual sMAP time series are organized into col-
lections, with the time series as leaf resources; and example time series object is shown in
Figure 4.4, taken from the Cory Hall monitoring project. Each time series is an object
which contains both data and metadata allowing for the data’s interpretation. When re-
trieved using HTTP, each of these objects is represented using a JSON structure following
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Figure 4.3: Canonical sMAP URL for the “total power” meter of a three-phase electric
meter.

the sMAP specification; this also allows for combining multiple sMAP objects into a single
larger object.

Description a string description of the channel.

Properties information about the channel required to store or display the data. This is
made up of the data type, engineering units, and time zone.

Metadata additional information about the channel which is not necessary to archive or
properly display readings. This is provided to facilitate the integration of existing
sources. The full set of metadata for a time series also includes all the metadata for
Collections in its recursive parent set.

Actuator if present, the channel includes an actuation component. The object describes
what actuation is possible.

Readings a vector made up of the latest readings from the instrument.

uuid a globally unique identifier.

Each reading must include a timestamp, the reading, and an optional sequence number.
The timestamp must be in units of Unix milliseconds.1

4.2.2 Metadata

Originally, sMAP supported very limited metadata. We extended the metadata model in
order to better support integrating existing systems, as well as building systems where the

1Unix timestamps aren’t actually unambiguous, due to complications arising from leap seconds. It
seems like the alternative to using this time representation would be to use the ISO 8601:2004 time format
as suggested by RFC3339. However, these string values are rather large when transfering a large number of
readings so it’s unclear whether the resulting object would be compact enough to satisfy our needs. If it is
required, it additionally imposes higher burden on embedded devices who must maintain a calendar instead
of simply a RTC since 1970.
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1 {
2 "Description": "Real power",
3 "Metadata": {
4 "Location": {
5 "Building": "Cory Hall",
6 "Campus": "UCB"
7 },
8 "SourceName": "Cory Hall Dent Meters",
9 "Instrument": {

10 "Manufacturer": "Dent Industries",
11 "Model": "PowerScout 18",
12 "SamplingPeriod": "20"
13 },
14 "Extra": {
15 "Driver": "smap.drivers.dent.Dent18",
16 "MeterName": "basement-1",
17 "SystemType": "Electrical",
18 "Service": "PNL1"
19 },
20 },
21 "Properties": {
22 "ReadingType": "double",
23 "Timezone": "America/Los_Angeles",
24 "UnitofMeasure": "kW"
25 },
26 "Readings": [
27 [1397344709000, 72.3]
28 ],
29 "uuid": "dc7a9fde-9ea4-5bc4-b97c-fd7fc1de5d85"
30 }

Figure 4.4: An example time series object exported by sMAP. Sensors and actuators are
mapped to time series resources identified by UUIDs. Meta-data from underlying systems
are added as key-value tags associated with time series or collections of time series.

Metadata Use

Value The quantity
Units Interpretation
Measured Quantity Type of measurement: water, electric, etc
Global timestamp Interpretation and alignment
Sequence number Missing data detection; computing actual sampling period
Time zone Interpretation in local time
Instrument range (min-max) Establish dynamic range
Instrument identifier Establish traceability

Table 4.3: Example metadata required to interpret a scalar data stream.

implementors have significant metadata. We make several simplifying assumptions.
Because metadata changes are rare relative to the data changes, we can both efficiently

compress the metadata when transmitted over the network and also resolve many issues
dealing with what happens when resources move: we do not need to track the move since
instead all timeseries which were moved simply receive new metadata. Since the metadata
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applies to time series which are identified by UUID, there is never an ambiguity about which
piece of metadata applies to a point, and it is always safe to re-send all metadata.

Both Timeseries and Collections objects support the inclusion of metadata to pro-
vide additional information about measurements. Ideally this metadata is programmatically
obtained from an existing system, or entered by the implementor; it is not intended that
this metadata will change frequently. This metadata is structured as a set of hierarchical
key-value pairs within a sMAP object. This allows qualifying pieces of metadata with their
source; for instance, the Location/ namespace defines a common set of location metadata
such as city, building, postal code, etc. For convenience, sMAP defines types of metadata to
facilitate information exchange: Instrument and Location metadata. Additionally, other
information must be placed into the Extra fields, and may encapsulate any other metadata
description in use.

This application of metadata is illustrated in Figure 4.4, where the time series object
contains metadata point about the series being collected. The metadata keys, contained
under the top-level Metadata key, contain information about the point. In this example, the
metadata keys are used to relate the point back into one of the underlying views of Cory
Hall. For instance, the Metadata/Location/Building tag allows us to include this feed in
rollups of data from that building, while the Metadata/Instrument/Model tag would allow
us to apply any instrument-specific corrections needed. The Metadata/Extra/Service tag
begins to relate the data feed to the electrical distribution tree from Figure 2.7 – where in
the electrical distribution tree the feed fits in.

4.2.3 Syndication

The purpose of reporting is to allow consumers to receive timely, reliable notifications of
changes to the sMAP tree. These allow for a sMAP source to function both as an event source
for control applications, providing notifications of changes, and also as a source for archival
data. Because of these design goals, there are two aspects to the design of syndication: first,
avoiding polling due to the need for timeliness, and second, the need for local buffering to
provide reliability in the face of outages. To meet these needs, sMAP uses a webhook-style
callback mechanism, combined with a local buffer for outgoing data. In this pattern, there
are at a minimum two parties involved – the sMAP source and the data consumer. To start a
syndication session, the data consumer registers a web hook URI along with other parameters
with the sMAP source. Because the registration requires the allocation of local resources
on the sMAP source for buffering data, this process gives the source the opportunity to
reject the request if it is fully subscribed. Later, when new data are available, the sMAP
source sends the data to the web hook URI using a POST request, where the body contains
collections of time series objects.

This pattern has a few advantages compared to other approaches to syndication, specifi-
cally message bus approaches. First, because the data are buffered at the source, it respects
the end-to-end principle and is tolerant of many different networking failures that can occur –
link failures at the edge, name resolution errors, misbehaving routers, and man-in-the-middle
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attacks (if using SSL). Furthermore, although message brokers often provide a “reliable trans-
port” function, it still must include local buffering at the source since failures in the edge
network are possible – indeed, in our residential deployments discussed in Section 4.1.1, the
majority of failures were at the edge link.

Registration

Clients wishing to receive notifications of new data or metadata changes do so by creating
a reporting instance. To get started, they post a reporting object to the /reports resource
on the server; an example request body is shown in Figure 4.5.

1 {
2 "MaxPeriod": 2147483647,
3 "MinPeriod": null,
4 "ExpireTime": null,
5 "ReportDeliveryLocation": [
6 "http://db1:8079/add/3gSL2xtZqbHPKr3ATybkxigwPpfTMp2JNQGm",
7 "http://db2:8079/add/3gSL2xtZqbHPKr3ATybkxigwPpfTMp2JNQGm"
8 ],
9 "ReportResource": "/+",

10 "Format": "gzip-avro",
11 "uuid": "72c2fc09-cece-5e9b-9b98-1ebf60d375ff"
12 }

Figure 4.5: An example reporting endpoint installed in a sMAP source. The reporting object
allows multiple destination for failover, as well has various options controlling how and when
data are published; gzip-avro specifies that the outbound data are to be compressed with
a gzip codec after first being compressed using Apache Avro.

A copy of one of these objects installed in a server is known as a reporting instance.
When a reporting instance is installed, a sMAP server will periodically deliver updates to
time series objects to one of the delivery location URIs specified in the instance, according to
what resources the source has requested. The reporting instance on the server also allocates
a buffer on the source where pending data are placed if the source is unable to communicate
with the delivery location.

The most common use case is that a sMAP client subscribes to a resource like /+ to
receive all new data from the source. sMAP implementations may choose not to deliver the
entire timeseries object but instead only include keys that have changed – typically only
Readings. The fields each address a consideration discussed in Section 4.1:

ReportResource identifies the set of resource on the server which the client is interested in
receiving, relative to the /data resource. In the example, “/+” refers to the recursive
child set, therefore subscribing to all time series on the source. It is also possible to
use wildcards (e.g., /*/voltage), to subscribe to a subset of time series on the source.
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ReportDeliveryLocation is a list of URIs specifying where report data should be delivered.
The sMAP server will continue attempting to deliver data until it receives an HTTP
success response from one of these servers. In the example, we keep attempting to
send data until either db1 or db2 is successfully contacted; the long random string
component is used by this endpoint to demultiplex incoming data.

MinPeriod specifies the minimum interval between reports. A sMAP server should not
deliver reports more frequently than this. If the minimum period is so long as to
prevent the sMAP server from buffering all the data accumulated in the period, it
prefers deliver the latest data. If not included, the default is 0.

MaxPeriod specifies the maximum period between reports. After this much time elapses, the
sMAP server should deliver a report regardless of whether there is new data to indicate
liveness. If not included, the default is infinite; this can provide a keep alive message in
the case sMAP is being used in an event-triggered mode rather than periodic reporting.

ExpireTime time in UTC milliseconds after which reports should be stopped, undelivered
data dropped, and the report removed. Default is “never.”

New reports are created by submitting the object as in Figure 4.5 to the /reports

resource using an HTTP POST request. The sMAP server supports the range of create,
update, modify, and delete operations on this resource using the appropriate HTTP verbs;
furthermore, if authentication and authorization are used, the sMAP source may require
the same authentication and authorization to modify or delete the report. sMAP servers
implement a number of policies to deal with reporting instances where the delivery location
is not accessible. They may keep trying for a fixed period of time before removing or
deactivating the report instance, or buffer data while the recipient is down and retry with
all of the accumulated data periodically.

Static Report Configuration

sMAP is mostly used in an “online” setting, where sources are automatically discovered
and subscribed to by data consumers or other sMAP proxies. However, there are certain
use cases where it is desirable for reporting to be configured manually on the sMAP server,
rather than using the online system. For instance, if the sMAP server is behind a NAT, or if
the data is actually not online but rather an import of an existing database. In these cases,
a sMAP server may provide a provision for configuring report instances via a configuration
file; for instance, our implementation of sMAP supports an INI file-like syntax specification
of the server, including reporting instance like the one in Figure 4.6.

Differential Transmission

When a report instance is created, a sMAP source must send the entire resource which the
report instance refers to, with all metadata. However, frequently only a small portion of the
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1 ; send data to the database
2 [report 0]
3 ReportDeliveryLocation = ’http://db1:8079/add/3gSL2xtZqbHPKr3ATybkxigwPpfTMp2JNQGm’

Figure 4.6: A configuration file snippet configuring a reporting destination.

resource changes; for instance, the metadata is often static and only the Readings part of a
timeseries changes with each reading. For a particular report instance, a source may only
send changes once it has successfully delivered the entire object. As an example, consider
the object in Figure 4.4. When a new report instance is created, the sMAP source must
send the entire object, including the full set of keys under Metadata since it cannot assume
that the receiver has any information about the object. However, once that metadata has
been sent, it can send a much smaller object containing only the changes; for instance, the
one shown in Figure 4.7 where a new datum has been generated, but all other properties are
unchanged.

1 {
2 "Readings": [
3 [1397344719000, 72.7]
4 ],
5 "uuid": "dc7a9fde-9ea4-5bc4-b97c-fd7fc1de5d85"
6 }

Figure 4.7: A differential version of the object in Figure 4.4 where a new datum has been
generated. Only the new reading needs to be included, along with the UUID for identification
of the series.

4.2.4 Actuation

Adding actuation support to sMAP is important, because closing the monitor-model-mitigate
loop ultimately requires changing the way systems are operated; this generally means making
real changes to the operation of equipment. Actuators are well-modeled as time series in
many ways, since they generally have a state which it is meaningfully tracked over time.
In order to represent an actuator as a sMAP object, we allow for inclusion of an actuator
model, which defines which states the actuator can take on. In addition to recording the
state over time and allowing clients to discover the type of actuation present, there are two
other primitives useful for building higher-level controllers on top of sMAP sources. The
first is coordinated control of several actuators at the same time, with well-defined semantics
around when the underlying actions occur to help applications reason about when actions
which require making multiple changes at once will occur. The second is a concept of the
write lease, where a value is changed for a period of time, after which the write is undone in
some way.
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sMAP provides several default types of actuators: binary, N-state, and continuous. Bi-
nary actuators have two positions corresponding to logically “on” and “off”; N-state ac-
tuators have a number of discrete positions, while continuous actuators can be set to any
position within a fixed interval. Aside from the minor detail that the state can be written
in addition to read, actuators have much in common with other channels; such as units and
a current value. Because they are extended time series, commands sent to the actuator are
naturally logged through the same reporting framework used for all other time series data.

1 {
2 "Actuator": {
3 "Model": "binary",
4 "States": [
5 [ "0", "off"],
6 [ "1", "on"]
7 ]
8 },
9 "Properties": {

10 "ReadingType": "long",
11 "Timezone": "America/Los_Angeles",
12 "UnitofMeasure": "Relay Position"
13 },
14 "Readings": [
15 [ 1397412776000, 0]
16 ],
17 "uuid": "95fd532e-0356-5dc5-8fa5-07a9aab1b396"
18 }

Figure 4.8: An example Timeseries object representing a binary discrete actuator.

When actuation is present, the Timeseries object corresponding to the actuator must
include a Actuator key. Figure 4.8 shows an example object representing a simple binary
relay. For this actuator type, the States present contain aliases for different states the
actuator can take on – in this case, we can refer to state “0” as “off.” For the case of discrete
actuators, being able to create aliases for states is useful when dealing with, for instance,
the case when a switch position is inverted and switch state “0” (open) corresponds to the
equipment being on.

When a Timeseries is used to represent an actuator, the Readings field is used to
communicate the current actuator position. The sMAP implementor may choose to only
generate a new reading when a control input is received, periodically, or when the state of
the actuator changes.

Clients wishing to affect actuator position do so using the POST verb on the Timeseries

representing the actuator. For instance, suppose the actuator time series in the example was
available on the sMAP source at /data/relay/1; a client could send a simple state change
request directly to that URL.

sMAP servers providing actuation may also provide the /jobs resource. This resource
allows clients to control multiple actuators at the same time, by providing a Job object.
When using the jobs interface, clients are able to submit multiple actions at the same time,
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and gain additional control over what happens in the face of multiple writers. Figure 4.9
shows an example of a simple job, in which we command two actuators on the sMAP source
for 900 seconds – 15 minutes. The effect of this job is somewhat different than what would
be accomplished by writing to the two actuators separately; first, the writer receives a lock
on the output value for the duration of the jobs. This is important since it allows the writer
to receive exclusive access to those time series for some duration. Second, the actions occur
concurrently, and are subject to the error policy specified by the Error key. This may be
either abort, in which case an error performing any of the actions will cause the source
to stop processing, undo any completed writes, and return an error, or ignore, which will
ignore errors and continue processing.

1 {
2 "jobid": "340f10fa-c340-11e3-8bd4-b8e856313136",
3 "StartTime": 1397416647000,
4 "Duration": 900,
5 "Errors": "abort",
6 "Actions": [
7 {
8 "uuid": "53d0ac14-c340-11e3-bbea-b8e856313136",
9 "State": 1

10 }, {
11 "uuid": "615e80c2-c340-11e3-9e15-b8e856313136",
12 "State": 1
13 }
14 ]
15 }

Figure 4.9: An example Job object, writing to two actuators at the same time. Because a
duration is provided, the underlying actuators will be locked until the job completes or is
canceled; additional writes will fail. The uuids reference the underlying time series objects.

4.3 Implementation

A key contribution of sMAP is not just a description of a few simple objects which can be
used to describe time series, but a set of software abstractions which can be used to quickly
interface with new data sources, and promote code reuse. Figure 4.10 shows the general
structure of the sMAP runtime, which implements the features discussed in Section 4.2.
The system, implemented in Python, is structured so that most device-specific code (code
interfacing with an underlying system providing the data) is structured as a driver class. The
runtime provides hooks for starting, stopping, and configuring these drivers, and provides
services for publishing their data to any number of consumers; generally it is a container
for running small pieces of device-specific code while managing the rest of the application
lifetime.
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Figure 4.10: Our implementation of sMAP provides a clean runtime interface against which
to write reusable “driver” components, which contain logic specific to the underlying system.
The runtime is responsible for formatting sMAP objects, implementing the resource-oriented
interface over HTTP, and managing on-disk buffering of outgoing data. It also provides
configuration-management and logging facilities to users.

4.3.1 Drivers

Drivers provide encapsulation of device-specific code into a package that encourages reuse of
code for interfacing with specific devices. The example driver shown in Figure 4.11 illustrates
the core programmer’s abstraction when using sMAP: the SmapDriver. Even this simple
example makes use of many of the runtime’s services. The setup method receives a parsed
representation of the driver configuration, which is managed by the supporting runtime and
allows operators to pass parameters such as network address and credentials to the driver.
The method creates one time series with the path /sensor0; this time series implicitly
receives a UUID. The driver adds a small amount of metadata; this is typical for drivers
since they often can determine a make and model number either as a static value or by
probing the underlying instrument. Finally, the start method results in period polling of
the device for new data; in this case, calling an external library examplelib.example read

to retrieve data from the underlying device.
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1 from smap.driver import SmapDriver
2 from smap.util import periodicSequentialCall
3 from smap.contrib import dtutil
4
5 # read a value from an example sensor
6 from examplelib import example_read
7
8 class ExampleDriver(SmapDriver):
9 """Driver which creates a monotonic time series that increments every second."""

10 def setup(self, opts):
11 """Create time series and read configuration parameters"""
12 self.add_timeseries(’/temperature’, ’V’)
13 self.set_metadata(’/temperature’, {
14 ’Instrument/ModelName’ : ’ExampleInstrument’
15 })
16 self.rate = float(opts.get(’Rate’, 1))
17

18 def start(self):
19 # Call read every ’self.rate’ seconds
20 periodicSequentialCall(self.read).start(self.rate)
21
22 def read(self):
23 val = example_read()
24 self.add(’/sensor0’, val)

Figure 4.11: An example sMAP driver. The setup method receives configuration param-
eters from the configuration file; start is called once all runtime services are available
and the driver should begin publishing data. In this example, we call an external library,
examplelib.example read to retrieve data from a temperature sensor and publish the data
every few seconds. The opts argument to setup, provided by sMAP, contains configuration
information from the runtime container.

4.3.2 Configuration and namespaces

1 [/]
2 uuid = 90480f4f-d938-11e3-9f56-b8e856313136
3
4 [/example]
5 type= example.ExampleDriver
6 Metadata/Location/Building = "Soda Hall"
7 Metadata/Locaion/Campus = "UC Berkeley"

Figure 4.12: A configuration file setting up the example driver. Importantly, this contains a
base UUID defining the namespace for all time series run within this container, and one or
more sections loading drivers. In this case, only the ExampleDriver is loaded.

The sMAP runtime provides a number of conveniences to the implementor in addition
to buffering data. Figure 4.12 shows an example of an INI-like configuration file read by
the runtime and used to instantiate one or more drivers within a container. The runtime
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reads this file at startup, and loads the drivers listed into the container’s process, passing in
any configuration options from the file; this is commonly used for parameters like network
addresses of the underlying device, login credentials, and any other information needed to
connect and retrieve data.

When creating new time series using the add timeseries method, the runtime qualifies
the name of any time series added by the driver to the name in the configuration file – for
instance, this source would have a single time series named /example/temperature. This
namespace qualification allows the same driver to be loaded multiple times, for instance
when there are multiple copies of the same instrument type. The configuration also contains
a uuid namespace, present in the [/] section; this is used to avoid the need to have large
numbers of uuids present in either the configuration or code. When time series are added, as
in line 12 of the example driver, its path on the local server is combined with the namespace
uuid to produce the identifier of the relevant time series2. This method allows most users to
only generate a single new unique uuid, place it inside of the driver config file, and have the
runtime consistently generate a unique set of identifiers for all of their time series.

4.3.3 Utilities

The library also contains a robust set of utilities for taking a simple piece of driver code like
the example and placing it into production. smap-tool provides a command-line interface to
sMAP sources, making it easy to inspect a running source, install new report destinations and
retrieve the latest data. smap-reporting and smap-monitize are utilities for demonizing a
sMAP source on a server, configuring logging, process monitoring, and liveness checking to
make sure the source reliably survives reboots and other system events. smap-load allows
for running drivers in offline mode, for instance when performing an import of existing data,
which simply requires delivering it to a set of reporting destinations. Finally smap-load-csv

has a number of tools for converting data stored in comma-separated value files into a set of
sMAP time series and publishing the result.

4.4 Evaluation

The three major considerations of this work are metrology, syndication, and scalability. In
order to evaluate the success of our design, we use these to provide a set of questions we can
use to evaluate sMAP.

Metrology → Completeness and Generality. To show that our design for metrology is
simple yet effective, we show that a large variety of common data sources from electric,
environmental, process control, and meteorological systems can be presented within
the system. We also examine a set of deployed systems from the literature.

2In this example, we can generate the UUID of the temperature stream using python,
e.g., uuid.uuid5(uuid.UUID("90480f4f-d938-11e3-9f56-b8e856313136"), "/example/temperature")

=> ’be57f975-d039-5c67-8cc5-9a6df575f993’
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Syndication → Application Use. sMAP is being used as the data plane of a host of
higher-level applications. By having a common interchange format, these applications
are “portable” from one collection of sensors to another.

Scalability → Practical Implementations. We show that sMAP can be practically im-
plemented on devices ranging from powerful web farms to minuscule embedded devices
without losing the essential benefits of the approach.

Google&PowerMeter&

Cell&phone&

openbms.org&

Database&

IPv6&/&6LowPAN&
Wireless&Mesh&Network&

sMAP&

sMAP&

sMAP&

sMAP&

Panel 1 Panel 2

A

B

A

B

Panel 1 Panel 2

A

B

A

B

1
5
9
13

17
21
25

29
33
37

41

3
7
11
15

19
23
27

31
35
39

A
1
5
9
13

17
21
25

29
33
37

41

3
7
11
15

19
23
27

31
35
39

1
5
9
13

17
21
25

29
33
37

41

3
7
11
15

19
23
27

31
35
39

A
2
6
10
14

18
22
26

30
34
38

42

4
8
12
16

20
24
28

32
36
40

B
2
6
10
14

18
22
26

30
34
38

42

4
8
12
16

20
24
28

32
36
40

2
6
10
14

18
22
26

30
34
38

42

4
8
12
16

20
24
28

32
36
40

B
1
5
9
13

17
21
25

29
33
37

41

3
7
11
15

19
23
27

31
35
39

A
1
5
9
13

17
21
25

29
33
37

41

3
7
11
15

19
23
27

31
35
39

1
5
9
13

17
21
25

29
33
37

41

3
7
11
15

19
23
27

31
35
39

A
2
6
10
14

18
22
26

30
34
38

42

4
8
12
16

20
24
28

32
36
40

B
2
6
10
14

18
22
26

30
34
38

42

4
8
12
16

20
24
28

32
36
40

2
6
10
14

18
22
26

30
34
38

42

4
8
12
16

20
24
28

32
36
40

B

sM
AP

&

Modbus'

RS*485' sM
AP

&

Internet&

Figure 4.13: Part of the sMAP ecosystem. Many different sources of data send data through
the Internet to a variety of recipients, including dashboards, repositories, and controllers.

4.4.1 Complete and General

The first question we examine is how general sMAP is: what is the diversity of data it can
represent. sMAP was developed during a process to create a building-to-grid testbed, for
experimenting with novel interfaces and feedback mechanisms between a commercial build-
ing and the electric grid. The building in question is Cory Hall, the electrical engineering
building at Berkeley. First commissioned in 1955, Cory Hall consumes approximately 1MW
of electricity in addition to steam and chilled water used for heating and cooling. Our
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Name Sensor Type Access Method Channels

ISO Data CAISO, NYISO, PJM,
MISO, ERCOT, ISO-NE

Web scrape 13849

ACme devices Plug-load electric meter Wireless 6lowpan mesh 344

EECS submetering
project

Dent Instruments Power-
Scout 18 electric meters

Modbus 4644

EECS steam and conden-
sate

Cadillac condensate; Cen-
tral Station steam meter

Modbus/TCP 13

UC Berkeley submetering
feeds

ION 6200, Obvius
Aquisuite; PSL pQube,
Veris Industries E30

Modbus/Ethernet, HTTP 4269

Sutardja Dai, Brower Hall
BMS

Siemens Apogee BMS,
Legrand WattStopper,
Johnson Control BMS

BACnet/IP 4064

UC Davis submetering
feeds

Misc., Schneider Electric
ION

OPC-DA 34

Weather feeds Vaisala WXT520 rooftop
weather station; Wunder-
ground

SDI-12, LabJack/Mod-
bus, web scrape

33

CBE Performance Man-
agement Package

Dust motes; New York
Times BMS

CSV import; serial 874

Table 4.4: Hardware Presentation Layer adaptors currently feeding time series data into
BOSS. Adaptors convert everything from simple Modbus device to complex controls proto-
cols like OPC-DA and BACnet/IP to a uniform plane of presentation, naming, discovery,
and publishing.

testbed construction commenced with the instrumentation of several hundred sense points
with thousands of channels, capturing much of the energy spend in addition to environmental
characteristics. Some of the feeds of sMAP data in Table 4.4 were developed as part of this
project. Since that project, many others have provided drivers to the sMAP project which
provide interfaces using BACnet (during a study on Sutardja Dai Hall), OPC (during a col-
laboration with UC Davis), several different types of wireless sensors (during a collaboration
with the Center for the Built Environment and Lawrence Berkeley National Laboratory), as
well as improved tools for accessing data stored in existing MySQL databases and CSV files.
In this section, we review how sMAP applied to a few of these projects.

Building AC Power

Commercial buildings typically distribute power in a tree from a few feeds into the building
substation, which are split into multiple three-phase branches and finally broken down to
single-phase circuits at panels. We have instrumented each of these levels in our Electrical
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Engineering building, and made the data available via sMAP. Figure 4.14 outlines the hier-
archical nature of electricity distribution and locates the various meters used to instrument
the building.
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Figure 4.14: A Sankey diagram of the electrical distribution within a typical building, with
monitoring solutions for each level broken out. All of these sources are presented as sMAP
feeds.

At the top two levels, the substation and branch level, electricity is distributed in three
phases through several transformers where it is stepped down from the the 12.5kV feed into
the building. The instrumentation at these points consists of a large number of Current
Transformers (CTs) and Rogowski Coils, which are present on the feed into the building
and on individual phases of each branch. The building in question has two primary feeds
from the grid, which are then split into 12 branches; this translates into 42 separate phase
measurements (three per branch).

To distribute this data using sMAP, each branch or feed presents a sMAP interface
to the world. Since each of these branches contains three phases, each sMAP instance
presents several measurement points corresponding to each phase. In addition to these single-
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phase measurements, there are several “virtual” measurement points which corresponds to
measurements from different combinations of CTs like phase-to-phase measurements and
total system data. Using the flexibility of sMAP to name measurement points by any valid
URL resource, each branch or feed exports a total of seven measurement points: A, B,
C, ABC, AB, BC, and AC. Furthermore, the driver for these instruments also applies a
consistent set of tags to identify properties of the measurement – for instance, adding a
Metadata/Extra/Phase tag indicating which leg of the three-phase circuit the measurement
is from, and a Metadata/Extra/ServiveDescription tag relating the measurement to a
point in the electrical tree.
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Figure 4.15: A detailed breakdown of electrical usage inside the Electrical Engineering build-
ing over two days. Data is pushed to a client database by a sMAP gateway connected to three
Dent circuit meters, each with six channels. Power is used primarily by lighting, HVAC, and
a micro-fabrication lab, as expected. Interestingly, the total power consumed on Sunday is
440kW while on Monday is 462kW , an increase of less than 5% between a weekend and a
weekday, indicative of an inefficient building. The difference between day and night is small
as well. The only load with an obvious spike in power is lighting at around 7am on Monday,
whereas most loads stay the same throughout the day and night.

Each of these points also contains multiple sensors and meters: for branch-level meters,
there are seven sensors and three meters. These correspond to measurements like real,
reactive, and apparent power, current, phase-to-phase voltages, power factor, and several
other quantities.

Once electricity has been distributed through a branch, it is further stepped down to
120V for circuit-level distribution. These circuits split off from wiring panels located on
each floor. To instrument this level of the distribution hierarchy, we used a device with
40 single-phase meters which is designed to be installed inside a breaker box. To map this
arrangement onto sMAP, each circuit is treated as a single measurement point with several
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Modality Channel

meter true energy
meter reactive energy
meter apparent energy
sensor true power
sensor reactive power
sensor apparent power
sensor current
sensor displacement power

factor
sensor apparent power factor
sensor line frequency

Table 4.5: Channels for each phase and total system measurement on a three-phase electric
meter.

channels. Since this meter is much simpler, it only provides per-circuit energy consumption
information (kWh).

Figure 4.16: An example Modbus-ethernet bridge. Modbus is run over a twisted pair serial
cable (RS-485); converting it to Ethernet means removing any need to run new cable.

The meters in use are typical of modern electrical monitoring: they provide a Modbus
interface running over RS485. In order to make them available over the Internet using
sMAP, we use a Modbus – Ethernet adaptor (shown in Figure 4.16) to bridge to an IP
subnet, and then run a gateway service on a server which periodically polls the devices and
caches their last reading for use in sMAP. Since each manufacturer typically has their own
map of Modbus registers, the gateway must be customized for each new brand of meter; of
course, this effort is all transparent to clients who receive normally-formatted sMAP data.
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Plug-load Power

The final level of electrical distribution is plug-level, where individual appliances are con-
nected to the circuit. To monitor at this resolution, we used a custom device called the
ACme. ACme’s [53, 54] are single-phase plug-load meters that measure power and energy
of typical AC appliances in households and offices. In addition, they are capable of control-
ling connected devices using an internal relay. ACme is a typical mote-class device based
on a msp430 micro-controller and a cc2420 802.15.4 radio, shown in Figure 4.17. ACme is
representative of a large class of sensors and meters found in commercial environments that
measure physical phenomenons at a single point in some process. Examples of devices in
this class include flow meters, temperature sensors, light sensors, and motion sensors.

ACmes use blip, our open-source IPv6 stack to form an ad-hoc network [105]. Since blip
supports both TCP and UDP, there are multiple ways a protocol like sMAP can be scaled
down to this device. We compare the options for this in Section 4.4.2.

From a metrological point of view, a single ACme is a device with a single measurement
point – the plug – and multiple modalities – it senses power, meters energy, and actuates
a relay. The actuation present on an ACme is particularly simple: a relay can switch the
attached device. Since this fits into the library of sMAP actuators as a binary actuator,
nothing new needed to be developed to enable this form of control.

External Data: CA ISO and WUnderground

sMAP can integrate existing, external data sources to help define the context in which
our study building operates. Two forms of data relevant to our work were data from the
California Independent System Operator (Cal ISO) concerning the total state-wide electricity
demand, and weather data from various locations.

Weather data typically has multiple sensors and meters, instrumenting precipitation,
wind, temperature, and pressure. These are easily translated to the appropriate abstrac-
tions as sMAP modalities; furthermore sMAP preserves some important metadata about
the weather meter such as its station identifier, and make and model of the physical hard-
ware. Numerous mote-class sensors would typically be incorporated to monitor interior
environments. Because sMAP is relatively prescriptive – the hierarchy and object definition
does not leave much freedom – the amount of non-shared code is very small; around 100 lines
of Python each case. In fact, the amount of non-boilerplate code is even smaller; integrating
the weather feed required only 43 new lines of code.

Other Deployments

To cast a wider net, we examined several years of SenSys and IPSN proceedings for papers
describing the deployment of whole systems, or the development of new sensors; this listing
is present in Table 4.6.

We found that although the system design typically addressed novel issues, the actual
data retrieved tended to be very simple: typically, slow time series of a few parameters.

PhD Dissertation, Dept. of Computer Science 
UC Berkeley 2014

https://escholarship.org/uc/item/7m31g4t4



61

Figure 4.17: ACme wireless plug-load meters (bottom right) are used to monitor power
consumption of various appliances, including a laptop and a LCD display in the top left, a
refrigerator and a water dispenser in the top right, and aggregate consumptions in bottom
left.

Since mote-class devices were the most common, the measurement point/channel abstraction
appears to work well (as for the ACme). In fact, none of the deployments appeared to have
a more complicated data model than a three-phase electric meter.

An important exception to this paradigm was best demonstrated by Lance (volcano
monitoring) and the Heritage Building project: sMAP does not address high-frequency data
like seismometer or accelerometer data. Although these are in principle time series of sensor
data, it appears to us that sMAP is a sub-optimal design point for representing data from
these applications; this is not a surprise since it was not an original design goal. We may
need to address this with future protocol modifications. Another observation is that none
of these deployments involved a significant actuation component. While there have been
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Deployment Modality Sensed Quantities

RACNet [67] Datacenter temperature

ACme [53] Electricity true power, apparent power

Lance [112] Geophysical/Volcano seismometer

MEDiSN [61] Healthcare ECG, blood oxygenation level, pulse rate, etc

GreenOrbs [75] Environmental/Trees illuminance

Flood Warning [10] Water river level

NAWMS [60] Water flow rate

PermaDAQ [13] Alpine environmental temperature, conductivity, crack motion, ice
stress, water pressure

Heritage Buildings [17] Structural health temperature, deformation, acceleration

HydroWatch [103] Water cycle temperature, light, humidity

Table 4.6: Deployments from SenSys and IPSN in the past several years.

deployments involving actuation reported in the literature, this has not been a dominant
research focus. It is, of course, common in building environmental conditioning system.

4.4.2 Scalable

sMAP must be scalable in both directions: “up” to millions of connected clients or sub-
scribers, and “down” to tiny embedded devices.

Scaling Up

Scaling sMAP up is, if not simple, a well-understood problem given that it runs over HTTP.
Using the HTTP caching model, sensors can and do define how long their readings will be
valid for using the “Expires” header – presumably, until the next sample is taken. Interme-
diate caching proxies then offload queries onto multiple servers. The syndication design we
have built is also scalable, since in the futur, a single sMAP source may be republished other
places on the Internet. For instance, a sMAP instance running on an embedded device may
communicate only with a caching proxy that also offloads most syndication duties.

Another element of making sMAP scale to large data volumes is ensuring that publishing
larger volumes of data is efficient. This is of special concern since since we are encoding
much of our state using JSON which is somewhat verbose. Fortunately, multiple different
content encodings can be used with HTTP; Table 4.7 shows some of the tradeoffs. For this
example, we use the data published by the Cory Hall Sub-metering project – its 130 Dent
meters together export 3870 individual time series. The raw size of the data, including only
timestamp, value, and UUID is around 108kB. When packed with JSON, it is 4.5x larger.
However, sMAP objects definitions are all made using an Apache Avro [6] schema. Using
the Avro toolkit, much of the repetitive nature of JSON can be elided – integers and floats
are packed as binary data, and common strings are moved to a strings table. By applying
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Compression Scheme Resulting Size Percentage of Raw

Raw 108kB 100%
JSON 487kB 450%
JSON + gzip 134kB 124%
Avro 296kB 273%
Avro + gzip 117kB 109%
Avro + bzip2 96kB 88.5%
Raw + gzip 83kB 77%
Raw + bzip2 79kB 73%

Table 4.7: Comparison of data size from a meter producing 3870 time series. “Raw” consists
of packed data containing a 16-octet UUID, 4-octet time stamp, and 8-octet value but no
other framing or metadata. Avro + gzip and Avro + bzip2 are both available methods of
publishing data from sMAP sources.

this to a large sMAP object, and applying a standard compression algorithm like gzip or
bzip2, we can recover all of the overhead added by using JSON, and in fact be competitive
with the compressed raw data as well.

Scaling Down

A more challenging test is whether sMAP can scale down to fit on embedded devices. While it
is possible to expose embedded devices’ functionality via web services by using an application-
layer gateway, this is a limiting architecture because it requires the gateway to be aware of
the functionality of each connected device. In the sMAP architecture, a gateway or proxy
may still be present for caching, but it is a transparent component between the client and
the server.

As a proof of concept, we implemented a prototype embedded version of sMAP, using
an architecture shown in Figure 4.18. For our prototype implementation of sMAP on con-

IEEE#802.3,11#

IPv6/OSPF#

TCP#

HTTP#

Avro/JSON#

IEEE#802.15.4#

IPv6/RPL#

UDP#

EBHTTP#

Avro/JSON#Encoded#

6lowpan#

Full$

#
Adapted$

#

Figure 4.18: Layers in the protocol stack, and the protocols in use in the full version of
sMAP, next to the version adapted for embedded devices.

strained devices, we used draft versions of the 6lowpan standards, and a predecessor to
RPL known as HYDRO [77, 105]. These are used in the blip package which provides UDP
and TCP interfaces on devices running TinyOS [66]. Within constrained networks, we can
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also run sMAP over Embedded Binary HTTP (EBHTTP). EBHTTP is a binary-formatted,
space-efficient, stateless encoding of the standard HTTP protocol, intended for transport of
small named data items (such as sensor readings) between resource-constrained nodes [107].
By using EBHTTP, we reduce the number of message bytes needed to transport sMAP data,
while maintaining the URL structure and HTTP method semantics of sMAP. EBHTTP is
very similar to later efforts at an HTTP targeted at embedded devices in the IETF, notably
the Constrained Application Protocol (CoAP) [14]. We have implemented all the compo-
nents of the stack presented in Table 4.18; it is used to make sMAP data from AC plug load
meters available.

Component Size

Application Code 936
HTTP 542
TCP 3534

Routing (HYDRO) 2890
IP + ICMP 4382

6lowpan 2262
Link 4926
Total 19472

Table 4.8: Code size of key elements of a sMAP implementation using Avro/JSON, HTTP,
and TCP.

In addition to the message size reduction, we reduce the size of the embedded code
needed to implement this service by replacing the TCP stack with a UDP stack, replacing
the text-based HTTP parser with a small EBHTTP parser, and replacing the text-based
JSON encoder with a simpler packed JSON encoder. This compression is not without cost.
By switching to UDP, we lose the segmentation and flow control provided by TCP, and
switch to a simpler stop-and-wait reliability model. But, this is often an acceptable tradeoff
when using sMAP to communicate with constrained devices.

4.5 Takeaways

We cast a wide net with sMAP, attempting to sweep a great variety of existing instrumen-
tation into a common framework. We directly incorporated many of the needs identified in
the design motivation (Section 4.1) into the design of the system. This was the result of an
iterative design process that unfolded across several years and the deployment experience
gained at the Berkeley and LBNL campuses. For instance, the work with ACme nodes in
homes and commercial buildings, which were generally highly reliable, led us to conclud
that no matter how reliable wireless protocols become, there will always be a need for local
buffering and retransmission when possible, since not all failures are network failures. This
directly informed the design of our reporting subsystem. Our work with the relatively high
data rates observed with building management systems led us to ensure that the underlying
protocol was efficient both for a trickle and a flood of data, both of which benefit from the
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types of compression needed to scale down to embedded devices. The sheer number of device
types represented in Table 4.4 – more than 30 individual data sources – led us to appreciate
the good tooling and robust runtime support provided by the library.

The various data sources noted here provide the basis of the next several chapters – first,
addressing the issues surrounding capturing and querying this volume of data, and then
completing the loop and finally actuating the underlying hardware.
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Chapter 5

Time Series Data Storage

Most modern buildings contain thousands or tens of thousands of sensors and actuators;
these large sensor and actuator networks are widespread. Collecting and making use of
data from these devices is currently hard. Unlike other types of time series data such as
financial, logistics, or clickstream data, making sense of building data requires relatively
detailed understanding of the context the data was generated in. Buildings are also large
cyber-physical systems, since the result of computing on the data is often used as the input
to actuators, forming control loops. It is also primarily generated by machines rather than
people, yielding the potential for significantly higher data volumes than other primarily
human-driven systems. The raw data consists of time series, not high-level events, suggesting
that an initial level of processing is needed before it is ready for further analysis. This
suggests using a special purpose storage engine to maintain the historical record. A typical
control system such as those described in Chapter 2 has the capacity to produce a significant
amount of data; thousands of points sampled as much as once a second, if the system has a
fast enough instrumentation bus. A challenge is that it is that this data stream is essentially
unending – as long as the control system is operating the data will be produced and must
be either stored for later analysis, processed in near-real-time, or discarded. The first step
of our monitor – model – mitigate loops is to simply collect all of that data centrally. In this
chapter, we discuss some of the properties of time series data which can be leveraged for an
extremely efficient storage engine.

5.1 Challenges and Opportunities

Because the underlying data are predominately time series of scalar valued readings, the
access patterns are not at all random; read access is nearly always structured around the
time dimension of the data. When data are inserted, they are typically either part of a
bulk load of data from an existing data base, or appended as a single (or small number) of
readings which were just produced by a sensing system. In aggregate, this “trickle load”
pattern is common, where data from a large number of sensors trickles in, with the overall
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CREATE TABLE t i m e s e r i e s {
s t r eam id INT;
timestamp DATETIME;
value DOUBLE PRECISION;

} ;
CREATE INDEX s t ream t ime index

ON t i m e s e r i e s ( stream id , timestamp ) ;

Figure 5.1: A typical representation of time series data in a relational schema. The

rate becoming large only in aggregate. Data retrieval almost always also is ordered around
time: retrieving the latest data from a time series for real-time uses, or else retrieving all
data from a few streams, within a time range for block analysis.

These access patterns challenge many relational databases, while providing many oppor-
tunities for time series-specific optimization. Using a conventional relational schema with a
product like MySQL or PostgreSQL leads to significant inefficiencies; consider the schema
in Figure 5.1. This schema represents the essential pattern for time series – the first field,
stream id identifies what time series the data is part of, and the other two fields contain
actual data values. A typical implementation would represent each of these fields using 8
octets, and so the bare record size is 24 octets.

In a monitoring system, this table will grow very large; tens of billions of rows are to be
expected even from modest installations. This leads to poor performance in conventional
RDBMS’s for several reasons. Firstly, per-row overheads are often large relative to the record
size, leading to significantly more IO than is truly required; table compression can help
alleviate this problem. A more significant issues is the index necessary to avoid sequentially
scanning billions of rows; since essentially every datum is being inserted twice, once as a raw
data row, and secondly into a B+-tree leaf, appending data becomes incrementally slower
as the database size increases, due to rebalancing the extremely deep B+-trees.

The ordering of access along the time dimension also suggests processing optimizations
which can significantly improve performance through better batching. In a classical database
system, data tuples are read off disk or from cache and processed by either pushing or pulling
each record through an operator graph. This model introduces a certain amount of per-tuple
dispatching overhead per tuple; by batching operations along the time access, we can achieve
significant performance gains by processing time chunks together.
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5.2 A Time Series Storage Engine

To take advantage of the unique properties of time series data, we have designed and im-
plemented the readingdb storage engine1 – a key-value store for time series data, efficiently
representing the map:

(stream id, timestamp)⇒ value

readingdb identifies each datum by 32-bit integer stream ID and 32-bit timestamp with
second-level resolution; all other semantics are left to other layers. Internally, individual
values are placed into dynamically-sized buckets containing up to a day’s worth of data
from a single stream, reducing the size and frequency of index updates while preserving the
ability to quickly seek to an arbitrary timestamp in a stream. Each bucket is compressed
by first packing deltas between neighboring timestamps and readings into a Google protocol
buffer [38], and then applying a Huffman-tree code to the result; this process is illustrated in
Figure 5.2. Since many feeds report only slowly-changing or discrete values – for instance,
light switch position – this algorithm gives excellent compression with little or no penalty
for highly entropic data. It is built on top of Berkeley DB [82], an embedded key-value
store, which provides on-disk page management, transactional updates and simple (B+-tree)
indexing. Each bucket is stored in the BDB volume using a key which is the concatenation
of the stream ID and the starting timestamp of the bucket. Because BDB orders data on
disk by primary key, this provides excellent locality when performing range queries in time
from a single stream – the request will often correspond to a sequential read off disk.

!"#$%&''(

)*)($+,&(

---(

.(

Figure 5.2: The readingdb historian first buckets data along the time axis to reduce the index
size, storing values near other values with neighboring timestamps from the same stream.
It then applies a run-length code followed by a Huffman tree to each bucket, resulting in
excellent compression for for many commonly-seen patterns.

1https://github.com/stevedh/readingdb
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5.2.1 Bucket sizes

Choosing proper bucket sizes is a design decision with several considerations. Within a
bucket, the query engine must perform a linear scan to locate a particular reading; therefore,
buckets should not be so large so that this scan becomes a bottleneck. Furthermore, the
entire bucket must be decompressed to access any readings in it, putting more pressure on the
designer to keep buckets relatively small. The main reason to increase bucket size is to limit
the number of entries in the B+ tree index of all keys. This is an important optimization,
since we often store tens of billions of readings within a time series archive. If each individual
datum is placed into the index, the resulting B+ tree is very large; therefore, we should ensure
that we reduce the number of tree entries significantly. A final consideration specific to BDB
is that keys and values are stored, concatenated, within pages on disk; these pages are the
unit the BDB I/O scheduler submits to the operating system. If a key or value is larger than
a page, it is stored within a separate “overflow” segment on disk; the documentation notes
that this tends to be inefficient because it destroys the I/O locality achieved by ordering keys
on disk. The BDB page size is configurable up to 64K, and the documentation notes that
the ideal loading is to have two key/value pairs per disk; additionally, since keys and values
are not split across pages, it is also possible for there to be significant external fragmentation
under certain usage patterns.

Based on these considerations, we chose a 16K page size, and buckets containing not
more than 300 individual readings. 300 readings means that our smallest buckets store five
minutes of data. A full bucket with 300 entries which cannot be compressed corresponds to
around 5K of data, smaller than the page size and ensuring we achieve good utilization of
most pages. This assumes that the finest level of time resolution is one second; for higher-
frequency data, more levels of buckets are necessary.

5.2.2 Client Interface

Clients access stored readings using a client library; we have developed Python (implemented
in C) and Java versions, which make parallel requests on the data store in order to maximize
throughput when accessing a large number of streams. The client interface provides methods
optimized for common workloads: retrieving data from a time range, or data before or after
an “anchor” timestamp. Each of these operations can be performed using the index, since
in a B+ tree locating neighboring keys is efficient. The Python bindings return data using a
NumPy matrix data structure, in which both timestamps and values are represented using
floating point values. Despite the fact that using a floating point number for timestamps is
somewhat undesirable, keeping the data in a matrix is very desirable – each datum is simply a
bit vector similar to a c array in memory instead of a native python object. This is important
because an alternative strategy where each datum is represented using a Python object
creates significant pressure on the garbage collector, as millions of small objects are quickly
allocated and freed. Furthermore, this implementation technique makes all of NumPy’s
efficient vectorized operators applicable to our data.
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1 # add/delete interface -- insert data into a stream

2 db_add(int stream_id, list data)

3 db_del(int stream_id, int starttime, int endtime)

4

5 # query interface

6 db_query(list stream_ids, int starttime, int endtime, int limit=None)

7 db_prev(list stream_ids, int reftime, int limit=None)

8 db_next(list stream_ids, int retime, int limit=None)

Figure 5.3: The complete readingdb interface.

readingdb provides a simple interface to client applications; as a result this piece is easily
decoupled and used independently. It is designed with the common use cases of range and
anchor queries in mind, shown in Figure 5.3. The interface avoids several common pitfalls of
other time series systems which make them inappropriate for sensor data – all timestamps
are preserved exactly, and data are not required to be sampled at a pre-defined periodic
rate. Data can be added with any time stamp; either appended to the “end” of a series,
inserted before any current data, or overlapping existing data; in the case of overlapping
timestamps, the last write will win. We have found that violating any of these principles
makes a system much less attractive to practitioners, since it forces them to make decisions
about the sampling rate of sensors and import order of existing databases which then cannot
easily be revisited. We have found that implementing a system with good performance which
respects these constraints to be possible.

5.2.3 Compression

Many algorithms have been published for compressing time series data; it has frequently
been thought necessary to discard the actual readings and keep only approximations of old
data. Implementors or system administrators may apply policies which either down-sample
or construct approximations with some known error bound of older data. We feel that
these lossy compression techniques make increasingly less sense, as storage costs continue
to plummet and the cost of maintaining even large volumes of old data becomes negligible.
However, compression is still desirable for other reasons; the increasing cost of IO relative
to processing means that it is often faster to read a compressed block off disk and then
uncompress it than reading the raw and avoiding the subsequent processing.

Therefore, readingdb implements lossless bucket-level compression of sequential read-
ings; this allows the compressor to take advantage of locality in both time and the reading
values. Entropy is extracted from stored data in two phases: first, deltas between successive
readings and timestamps are encoded with a variable-length “zig-zag” integer code, with
repeated values elided; this is placed within a Google protocol buffer, which performs this
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compression efficiently. Secondly, we apply a fast Huffman-tree based code to the result
using libz, which further compresses common byte-sequences.

5.3 Evaluation

We evaluate our solution on a few metrics, including how well the our compression perfor-
mance on real-world data (from the sources listed in Table 4.4); how our solution performs
on the common use case of retrieving the latest data point (e.g., queries needed to populate a
dashboard); how we perform relative to SQL database products on a standardized workload
consisting of trickle inserts and batch reads; and how well our store scales to a reasonably
large volume of data. The basis of our evaluation is an installation of readingdb at Berke-
ley running over the last four years, continuously collecting real-world sensor data from a
heterogeneous selection of sensors. The input data are trickled in from sMAP sources, and
queried by a variety of dashboards, analysis jobs, and researchers. Since we capture metrics
about the system’s performance within the system, we are easily able to extract a variety of
performance metrics.

5.3.1 Scale
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Figure 5.4: Statistics about the sampling rate and time spanned by 51,000 streams stored
in a large readingdb installation.

Figure 5.4 has an overview of the characteristics of the data stored in our Berkeley
readingdb installation. In Figure 5.4a, we show a CDF of median sampling periods of all
streams in our data set. We see that around 45% of streams are sampled more than once
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a minute, with the remainder sampled at 5 and 15 minute intervals; these are generally
imported from other data sources. Figure 5.4b shows a histogram of the amount of time
spanned by different streams – the interval between the first and last data point. Many of
the streams have been sampled for around the lifetime of the research project (several years),
with a small number extending for as many as thirty years; for instance, historical records
of campus energy billings.

Overall, the installation in question was storing 25,812,054,414 distinct readings, with
an on-disk of around 90GB when we extracted these statistics, for an average per-record
cost of approximately 3.5B – note that this figure includes some unallocated space due to
external fragmentation, all B+-tree indexes, and other internal BDB data structures. Since
the time of this snapshot in August 2013, the on-disk size has increased to 164GB, based on
an average insert rate of 365 readings/second for April 2014.

5.3.2 Compression

We next examine how effective our compression technique is on our real-world data streams.
Shown in Figure 5.5, we extract all of the buckets from our readingdb instance, and exam-
ine the compression ratio achieved by comparing the raw data structure size with the size
actually written to disk; this figure displays a histogram of these values. We can clearly see
a significant number of streams which compress to nearly zero bytes – these are primarily
discrete or constant-valued streams such as switch position, or control-system set points that
rarely change. We also see a significant number of streams with around a 25% compression
ratio – these are primarily from the Cory Hall monitoring project, which consists of a large
number of similar streams.
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Figure 5.5: Compression achieved across all streams in the time series store at a point in
time. A significant number of streams are either constant or slowly changing, which result
in 95% or greater compression ratios. The spike in streams which are compressed to about
25% are plug-load meters which noise making them difficult to compress.
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5.3.3 Latency

An important use of readingdb within BOSS is driving dashboards and system optimiza-
tions, while running both monitoring and controlling applications. These applications are
typically interested in recent data from the set of time series they are interested in; for
instance, retrieving all of the “current” temperatures in a space. Because of the index on
time, retrieving data relative to a particular time stamp is very efficient; furthermore, con-
stant trickled inserts ensure that the database pages with the latest data are kept in the
buffer cache. Figure 5.6 shows the latency histogram for sequentially retrieving the latest
point from a random set of streams on our archive, concurrently with the normal production
read and write load. The 95th percentile latency is under 3ms, and the median is around
1.4ms. This clearly shows the latest data being in memory, since that is less than the disk
seek time; furthermore, the store exhibits very predictable latency under this access pattern.
Finally, it mitigates some concerns around the store not being optimized for fast access for
queries which span the time series dimensions; for instance, this implies retrieving the latest
data from 1000 streams would take around 1.4 second; this leaves open room for additional
optimizations.
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Figure 5.6: Latency histogram in milliseconds querying the latest piece of data from a random
set of streams in the store. Because the cache is kept warm by inserts, the latest data is
always in memory in this snapshot.

5.3.4 Relational Systems

Finally, we compare readingdb’s performance with several popular open-source relational
databases. Our micro benchmark compares readingdb to two popular relational database
products – MySQL (using both InnoDB and MyISAM storage engines) and PostgreSQL. For
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this experiment, we start each storage engine and trickle load an empty database with syn-
thetic data, simulating writing a new data points incrementally to 10,000 different streams.
While loading this data, we periodically stop and examine the size of the on-disk files, the in-
sertion rate achieved, and the query rate achievable when loading a fixed-size set of data. We
attempt to normalize settings across the databases as much as possible, giving them equal
cache sizes and matching the default readingdb durability setting, that data are committed
to disk before returning to the client.

In the first result, Figure 5.7a, we look at the size on disk of the four different solutions.
For the relational databases, there are essentially two sources of space overhead: per-row
overhead added for internal database bookkeeping structures, and overhead implied by the
index (normally a B+ tree), since the database engine must maintain additional references to
each row within the B+-tree structure. When used to store time series data, these overheads
become significant since it is not uncommon to have billions of readings in a data repository.
We estimate the per-row overheads for MySQL to be 18 octets and PostgreSQL 23 octets.
The value of time series specific compression is clearly visible here – uncompressed, Postgres
and InnoDB are over 700MB, compared to only 50MB for readingdb. This has salutary
effects for query-time performance, since readingdb must read significantly fewer bytes off
disk; it also can make more effective use of cache, since data are compressed in memory
until accessed. One potential improvement we did not explore was running the relational
databases on a compressed filesystem; we expect this would narrow the distance some, but
not all of the way since there are still high per-row overheads, and the compression will not
take advantage of the time series’ unique structure.

We next compare insert performance between the four systems, in Figure 5.7b. Here, the
MySQL with MyISAM is the clear winner. To explain, we must understand the ways Post-
gres and InnoDB differer from MyISAM. The first two managers store data essentially sorted
on disk by primary key, which in this case is the (stream id, timestamp) tuple. There-
fore, inserts may require reordering existing data; readingdb has a fundamentally similar
approach. We see these three engines clustered together at the bottom, with readingdb

outperforming the other two by a constant factor of 1.5-3x – this is due to the bucketing ap-
proach limiting the amount of index rebalancing required. In contrast, the MyISAM storage
manager simply appends new data at the end of a log file on disk, without attempting to
order it in any way; this makes inserts extremely inexpensive, at the expense of query-time
performance as we can see in Figure 5.7c. In query performance, readingdb is the clear
winner, helped by its ability to minimize IO through compression, and the high degree of
locality achieved through bucketing. InnoDB pays for its fast inserts here, coming in at less
than 25% of readingdb’s performance; retrieving a range of data requires scanning much of
the log, because data from different streams has been interleaved as it was appended.

Overall, the 1.5-4x performance improvement, along with the significant disk savings
make readingdb a performant system for storing time series. Furthermore, we believe that
the results achieved in a relatively general time series storage framework validate an approach
of developing special-case solutions for systems dealing with streams of scalar data; we have
many ideas of how to further improve performance for this workload, and believe several
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other performance multiples are possible with the proper engineering approach.

5.4 Related Work

There is a rich history of related work in storing and accessing time series, originating from
a variety of communities. Control systems have long needed to maintain records of the evo-
lution of various process variables; sometimes called “trend logs.” Known as the historian,
there are the most similar in spirit to our efforts here. Developed by industrial systems
producers such as GE, WonderWare, or OSISoft, these systems use a variety of techniques
to efficiently store and query time series data; for instance wavelet compression [18], di-
mensionality reduction [59], and approximation [36]. These are often used to store a large
amount of data, decreasing resolution of data as it moves further into the past. Although
an important technique in certain domains, they are not necessary in the building controls
space where data rates are relatively low given the declining cost of storage. Based on our
results, we believe an inflection point has been reached, where it is not longer necessary to
degrade old data from monitoring systems, and the data can be saved essentially “forever.”
These systems are often accessed using a protocol like OPC-HDA – OLE for Process Con-
trol/Historical Data Access. HDA is a distributed API providing integration support for
a variety of applications making use of historical data at approximately the same level of
abstraction as the readingdb interface. Given no open alternative to these products, we
developed readingdb to show the performance left on the table when using conventional
systems, and to form the foundation for what comes next in our ultimate contribution – a
significantly richer and more useful interface to time series.

Another family of tools originates from the computer systems monitoring work. Early
solutions such as Ganglia [71] and more recent tools such as Graphite, RRDTool, and Nagios
[40, 95] all contain tools for monitoring system performance and other application metrics
over time. Several of these tools make decisions which make them poor fits for monitoring
applications; for instance RRDTool requires users to pre-allocate space for time series, and
then stores data in a circular buffer with a fixed sampling rate without recording exact
timestamps. Given that real-world data is lossy and intermittent, these design decisions are
limiting for monitoring data.

Recent tools have also been built on top of large-scale data storage platforms like HBase
and HDFS [96]; in particular OpenTSDB, as well as Bolt [43], which is built on a Microsoft
stack. OpenTSDB uses similar bucketing techniques as readingdb in order to store time se-
ries data within HBase, a popular distributed column store. These tools enable massive scale
– metrics can span multiple computers, with few limits since the workload is embarrassingly
parallel. We developed readingdb before these tools existed, or at least were mature and
believe it still has several advantages; although a single-node solution, it can be installed
even on relatively underpowered hardware; because it is very efficient, it will still perform
well.

Gray et al. review the requirements of scientific data management and processing [41],
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expanding on the NASA taxonomy of data into Level 0 data, which is raw, Level 1 data sets,
which have been calibrated and rectified, and Level 2, where the data has been combined
with other information. They identify the metadata problem of tracking the provenance,
manipulation, and anything else necessary to understand the data. Many domain-specific
systems, schema, and ontologies have been built up to meet this need, such as NetCDF [52] for
array-oriented scientific data, OpenGIS for for geospatial data [11], and UCD for astronomy.
Unsurprisingly, the authors are proponents of using relational database technology in order to
meet the challenge of growing data volumes, arguing for the importance of data independence
and views in maintaining software compatibility and enabling parallelism. readingdb is a
good fit for storing Level 0 and Level 1 datasets, and as we have discussed has several
performance advantages over relational systems. However, these other pieces of work do
make evident that it is not a general solution but a specifically tailored one; although some
data such as a GPS trace could be encoded into time series within readingdb, other forms
of data such as GIS or imagery data benefit from their own specialized solutions.

The Calder system [68] examines the same style of computing as Stonebraker [100] in
the context of a dynamic weather forecasting application. They construct a list of “unique”
requirements for data-driven scientific workloads: heterogeneous data formats, asynchronous
streams, variable event size, relative timeliness, compatibility with a large system, changing
computations over time, and domain specific processing. The event rates they consider are
as fast as 1Hz, but are predominantly slower. Queries use the Globus OSGI framework,
and a pub-sub layer for event routing. Their system supports monotonic time-sequenced
SQL statements, with a subset of full SQL supported (no group-by); there is also support
for custom functions. Many of the workload requirements analyzed overlap with the design
goals of readingdb, in that we explicitly build for low-latency access, support different
resolutions between streams since multi-level bucketing will perform well at a range of data
frequencies. In the next chapters we build up a framework for domain-specific processing to
address nearly their entire use case.
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Figure 5.7: readingdb time series performance compared to two relational databases. Com-
pression keeps disk I/O to a minimum, while bucketing prevents updating the B+-tree
indexes on the time dimension from becoming a bottleneck. Keeping data sorted by stream
ID and timestamp preserves locality for range queries.
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Chapter 6

Time Series Data Processing Model

In this chapter, we develop an abstracted processing model for time series data. This model
helps users of BOSS develop the modeling and mitigation stages of their system analysis,
both of which make extensive use of data. We build on several pieces of previous work,
including array databases [99] and processing models [1, 117]. We take a top-down approach
to this section, first identifying what it is to clean time series data, and then developing a
simple type model for expressing operators which compute derivative streams.

6.1 Data Cleaning

Rather than attempting to build a completely general processing framework for time series
data, we focus here on designing an approach for specifying transformations which are ap-
plied to produce “clean” data. Using a declarative approach, the implementation is free to
materialize cleaned versions of the underlying data, or generate them on the fly using the
functional specification; whatever is determined to be most efficient. In this section, we
provide an overview of the types of operations commonly applied to clean time series data
and develop a computational model allowing these operations to be concisely expressed.

6.1.1 Dealing with Time: Subsampling and Interpolation

A ubiquitous characteristic of physical data is that the timestamps and associated data
require some degree of processing before the data can be combined with other data sources.
The primary cause for this need is that sensors often sample asynchronously at ostensibly
(but not truly) fixed rates, generating time series where time stamps contain jitter and skew,
and therefore do not line up with other sources of data. For the purposes of analysis, the
time stamps from multiple streams must be rectified so that it appears that the instruments
were sampling synchronously (even if this is not the case). Additionally, it’s common to wish
to combine data from multiple sources, sampled at multiple frequencies.
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The ultimate goal is to place all data within a common time base for correlating events
between different streams – for instance, creating the appearance that all data were sampled
synchronously every minute. To adjust the timestamps, the data must be manipulated
appropriately; this necessitates a model of the data. Two standard techniques for creating
this appearance are windowing and interpolation.

Data windowing involves compressing all readings within a window down to a single
point using a compressive aggregation function. For instance, a temperature sensor might
be sampled every 30 seconds; to down-sample to five-minute resolution, an analyst might
wish to use the average (mean) value in each five-minute period. On the other hand, if the
underlying process is discrete, such as a light-switch position, it would be more reasonable
to perform aggregation by counting the number of transitions or the final state inside of the
window. If the underlying sensor is accumulative, for instance a water meter reporting the
cumulative number of gallons, simply taking the first or last value in the window might be
most appropriate.

Data interpolation instead revolves around constructing a local functional model of the
underlying process using measured data or a priori models, and then evaluating it at a
new set of points. For instance, simple linear interpolation assumes that the process moves
in a straight line between measured values; higher-dimensional interpolation methods use
polynomials or splines in order to attempt to estimate the value of the function between
measurements. Whether and how a particular time series should be interpolated is a decision
which depends on knowledge underlying process. This model is local ; for instance, a linear
model only requires two neighboring data points to make a prediction; higher order models
may require additional (but still fundamentally local) state, making these tasks amenable to
“once through” processing with bounded local state.

6.1.2 Data Filling

A related problem to time adjustment is determining values during periods when the un-
derlying data source was unavailable – interpolation and windowing are in fact versions of
this, simply operating on short time scales. Over longer periods, analysts use a variety of
techniques to provide predictions of values during periods of missing data. For instance, if
producing monthly consumption totals, analysts might wish to use a comparable month’s
value to approximate a period of missing data. Alternatively, if consumption is known to be
a function of some other variable (i.e., temperature), for which data is available, it might
be more appropriate to build a functional model of that relationship using available data,
and use that model to predict values for periods during which data is not available, perhaps
fitting to the endpoints.

Data filling has a somewhat more complicated computation framework than time ad-
justment, since it may require access to non-local data, or perform significant computation
on the data in order to optimize the model; for instance, an ARIMA operator may perform
parameter optimization on the entire time series in order to discover an appropriate paramet-
ric model. Whenever significant computational effort is expended in deriving a functional
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representation of the data, it may be desirable to save the output of the model; either as a
materialized set of computations on input data, or as a functional representation which can
be queried in the future to generate new predicted values using the existing model.

6.1.3 Calibration and Normalization

Raw data sampled by instruments typically cannot be used directly, requiring various trans-
formations for conversion into accurate engineering units for use in subsequent analysis. The
type of calibration and normalization necessary is instrument specific, but typically follows
one of several patterns. In a simple example, a data stream may represent the output of an
analog sensor; if the sensor is sampled with 12 bits of resolution, the output value will be in
[0, 4096). It is common to apply constant factors or linear models applied to this reading to
convert the raw ADC value into an engineering units.

There are several ways in which this simple procedure may become more complicated.
For one, the calibration coefficients may themselves become time series; for instance, if the
instrument is periodically re-calibrated with new parameters. Second, the conversion to
engineering units may depend upon other time series values present, as in a temperature
calibration applied to the raw data. In this case, converting raw values to engineering
units requires applying a function to multiple inputs; for instance, applying a quadratic
temperature correction to raw count data; of course, further complicating matters is that
the coefficients within the polynomial may themselves change over time.

6.1.4 Outlier Removal

Another area of interest when processing raw data is the removal or interpretation of spurious
or otherwise exceptional values. Outliers come from many sources: instruments may become
disconnected and continue produce readings of zero or some other constant value; transient
effects such as a glint of sun or other physical phenomena may lead to transient readings
which should be discarded; devices may have internal glitches; or many other sources. Prop-
agating these errors further into the analysis pipeline is problematic, since once rolled up
within an aggregate or otherwise condensed, it becomes impossible to determine that the
actual result was influenced by such a transient.

Outlier detection and removal strategies may vary from the very simple to very complex,
but involve applying additional domain knowledge about what is a reasonable value within
the system to the problem. For instance, only certain values or transitions may be physically
meaningful.

6.1.5 Analysis Operations and Rollups

Not all analyses can be easily expressed within our data cleaning model; in particular,
algorithms which require large amounts of working memory or perform iterative computation
on the entire data set are better served by a fully general analysis system designed for
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high level computation. We use an optimized data cleaning service to perform perform the
initial rectification steps on data, using its simpler operations to efficiently transform raw
sensors to usable data. None the less, it is useful to provide a certain amount of simple
analysis functionality which can be efficiently located within the access system to provide
simplified, quick roll-ups of the data present in the system. Furthermore, simple analyses
often provide the basis for implementing other important data cleaning functionality such
as outlier detection; consider rejecting 99th percentile data.

6.1.6 Processing Issues in Data Cleaning

From these varied use cases, we can identify a few issues which any solution performing data
cleaning must address. First, we note that many, although not all algorithms which are used
for data cleaning are incremental ; that is, they can be evaluated without examining the en-
tire data series. For instance, windowing and interpolation, unit conversion, calibration and
normalization, and computing certain derived products can all be computed using stream-
ing algorithms with limited buffers. Not all cleaning tasks fit this model; outlier rejection
and data filling often require multiple passes over the data; e.g. to first build the model
and then to compute over it; although there are sometimes streaming analogs, some tasks
like computing a percentile cannot be achieved without first examining the entire data set.
Secondly, much of the functionality requires queries over the metadata as well as the data
– for instance, applying a temperature correction to raw data will require joining the raw
stream with an asynchronously-sampled set of data from a temperature monitor.

In the next section, we design a framework in which we can place our time series data,
allowing for the implementation of these operations within two popular models of streaming
computation.

6.2 A Model of Data Cleaning

In order to inform the design of a computer system which will clean data, we first briefly
review an abstracted version of the problem. What do the data look like, and how are they
modified as processing advances? In traditional databases, each row is modeled as a tuple,
who’s elements are determined by the relation. However, the ordering of tuples within a
relation is normally unspecified (although of course, an ordering may be imposed). In these
databases at query time, these tuples are pushed or pulled through an operator graph using
an iterator interface.

The key difference when dealing with time series is that data are nearly always generated,
indexed, and accessed by the time dimension. Furthermore, individual tuples are small
and many time series operations can be implemented much more efficiently when data are
batched, with a block of data passed through an operator. These simple realities suggest that
the time dimension of these relations should be treated specially – that we can leverage these
additional semantics to develop both a simpler and more efficient processing framework.
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6.2.1 Data model

We can think of a time series generated by an instrument as a special kind of matrix – one
which is of infinite height, and where one column represents time; for we’ll call this dimension
(the height of the matrix) T . Because time is infinite, we can only ever examine a portion
of the matrix between two reference points; for instance data within “the last hour.” The
other dimension of the matrix represents the dimension of the measurement being taken. A
scalar sensor such as a thermometer would only produce a single value; more complicated
measurements are vector valued (e.g., GPS position, 3-axis acceleration, an image). In fact,
the shared relationship between the columns of this sort of time series relationship is that
they were sampled synchronously (or at least, it is made to appear that they were); all
measurements within a row of this time series matrix have the same time stamp. We will
call this dimension C , for the number of “channels” present.

c1 c2 c|S|
t v

T

|S|

Figure 6.1: Each time series being processed is a matrix with a notionally-infinite height
(each row shares a time stamp), and a width of ci, representing the number of instrument
channels present in that series. Sets of these may be processed together, forming the set S
of streams.

Most sensors in the world do not sample synchronously; dealing with this fact was the
subject of Section 6.1.1. In order to allow for this use where individual series are not already
aligned, we allow for a third dimension: S , or the series dimension. This dimension consists
of an unordered set of separate time series which have not yet been aligned or coerced into a
single synchronous matrix. The elements of this set may be bound to any time series within
the system – for instance, we might query “all outside temperature series within Berkeley,
CA.” The result would be a set of series, each with its own independent sampling rate,
engineering units, data source, and other distinct attributes.

These three dimensions are illustrated in Figure 6.1; in this example, |S| = 3, since there
are three series present, and C = [2, 4, 2], corresponding to the number of channels in each
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of these three series. Nearly all physical data generated from sensors can be placed into this
model, as well as the results of processing operations; particular operations of the style we
are concerned with, that is, data cleaning operations. All of the cleaning operations we are
concerned with can be expressed in operators which operate along these three dimensions
in different ways. Because the output of processing data in this model is more data in this
model, it is simple to create a pipeline of processing elements which examine a set of input
data and produce a mutated set of output data. More generally, this structure could take
the form of a directed acyclic graph (DAG) of processing elements; this is essentially the
same principle in which many data processing systems ranging from relational databases to
stream and complex event-processing systems operate with.

Within this model, each time series is also referenced by a unique identifier, and a set
of metadata linked to that identifier. This allows us to identify a particular data product
globally, and to look them up by querying the metadata relations. Metadata is generally
much smaller than the data, and changes infrequently relative to the data. In this processing
model, we cary forward our simplifying assumption from the hardware presentation section,
treating metadata for a particular time series as constant over time – that is

6.2.2 Operators

Functional Operators

Many operations can be expressed in a functional form – it is common to want to apply a
windowing operator, filter, or other operation to all or some of the input set S. A subset of
the operators which we have found to be important is present in Table 6.1

Operator Description

window(op) apply inner operator to windows in time

sum(axis=0,1) compute the sum across time or streams

units() convert input data to a canonical set of engineering units

workday() filter data to return only data within a workday

ewma(alpha=1.0) smooth data using an EWMA

meter(period=”day”) compute usage during a time period from a sequence of meter readings

missing() filter timestamps and values where data are missing, indicated by the
missing data marker

Table 6.1: A subset of operators well expressed using functional form. They allow for
resampling onto a common time base, smoothing, units normalization, and many other
common data cleaning operations.

There are several common patters for functional operators governing how they modify
the data they are processing; generally, we can thinking about how the operators mutate the
three dimensions – |S|, ci, and T . Some operators, the universal functions do not change any
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dimension, and operate element-wise on all input data; examples of these operators are func-
tions like multiply, add, log, floor, and may others. Those are common transformations
which are basic mathematical primitives for constructing more complex processing.

Another common class of operators are vector operators which operate on one dimension
of each input series, but do not modify the overall set of streams S. For instance sum can
be considered a vector operator, which either produces sums across rows, in which case it
produces an aggregate value for each timestamp, or across columns, in which case it produces
a rollup across time for each column. In the first case of aggregation across time, the operator
would have the following dimensionality transformation:

sum(axis = 0) : (|S|, C, T )⇒ (|S|, C, [1])

In other words, the operator compresses the time dimension of all streams to a single value,
but doesn’t change either the number of streams or channels. Alternatively, if compressing
data across channels, the operator has the transformation type

sum(axis = 1) : (|S|, C, T )⇒ (|S|, [1], T )

Whenever an operator is applied which reduces the time dimension, there is an important
question of how much data the operator must be presented with in order to produce a
meaningful output. For instance, a sum across time in general will depend on how much
and which data are present in the input to that operator. In order to address this concern,
operators are first-class – they can be provided to other operators as arguments. Therefore,
we can control which time periods are provided to sum in this example by specifying an outer
window operator, which guarantees that sufficient input data has been accumulated before
evaluating the sum.

Finally, some operators also mutate the set of streams; for instance paste, which performs
the cross-stream join on the time column. This operator, explained in more detail later on,
has the transformation type type

paste : (|S|, C, T )⇒ (1,
∑

ci − |S|, | ∪ tij|)

We have not found there to be many operators beyond paste which mutate the set of streams;
generally preprocessing is performed in parallel on the input streams, which are subsequently
pasted together (potentially in groups) for further processing. However, nothing in the
language restricts adding more of these operators as the need for them is found.

Information Metadata and Provenance

The process of cleaning raw data is often accompanied by an ad-hoc process for storing
metadata, describing changes made along the processing pipeline. However, this is subject
to error and makes it difficult to automatically make use of pre-computed distillates and
cleaned versions of the raw data. Within our processing model, we attach metadata to
all time series in the form of key-value pairs. Whereas the time series data has specific
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usage patterns we can leverage as well as a large volume making it desirable to exploit
these patterns for efficient, the metadata has much more in common with the use cases of
traditional (relational) databases. Within BOSS, these data (known as tags) often come from
the hardware presentation layer – for instance, if processing the time series from Figure 4.4,
the operator would have access to all of the metadata tags; Metadata/Location/Building,
etc.

t v11 v21t

unit: kW unit: W

units()

t v11 v'21t

unit: kW unit: kW
v'21 =1000 v21

Figure 6.2: An example application of a unit conversion operator. The operator contains a
database mapping input engineering units to a canonical set and uses the input metadata
to determine which mapping to apply. The result is a new set of streams where the data
and metadata have been mutated to reflect the conversions made. This is an example of a
“universal function”-style operator which does not alter the dimensionality of the input.

In Figure 6.2 we show a unit conversion operator being applied to two input time series.
Each input data stream has a tag named unit, who’s value is kW (kilowatts) for the first
stream, and W (watts) for the second. The operator being applied here, unit : (|S|, C, T )⇒
(|S|, C, T ) is a universal function-style operator, in that it simply converts scalar values to a
new set of scalar values without altering the overall dimensionality. However, this operator
also examines the input metadata, looking up the unit tag in a directory to discover if the
corresponding series requires conversion; in this case, the operator results in two output time
series where the second stream has been mutated – it’s values have been divided by 1000, to
convert into kilowatts, and the unit tag has been updated to reflect the change.

6.3 Related work

There are a few key pieces of related work we have been influenced by in designing our
processing model. The array model of SciDB [99] is particularly interesting, since time series
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can easily be represented as two-dimensional arrays or matrices. SciDB also has the concepts
of views which are created through the application of a functional operator, producing new
matrices which can themselves be materialized and queried. In SciDB, these are implemented
as c++ functions; this concept is extremely important for producing cleaned distillates, the
first step towards producing higher-level events from raw time series data. SciDB itself
is currently a poor choice for streaming workloads, since it explicitly targets analysis of
complete datasets and the documentation makes clear that it is difficult to append to an
existing array.

Provenance tracking has been established as an important design goal for data processing
systems, especially those for scientific domains [73], where practitioners deal with a large
number of uneven-quality data sets. Provenance tracking is possible on a number of different
of different levels of abstractions. For instance, the Provenance Aware Storage System [78]
tracks provenance at a low level, by interposing on kernel-level filesystem calls to observe all
scripts and transformations being made on data, and recording a log of analysis actions taken.
Similar in many regards to taint tracking [32], it suffers from similar problems with a low level
of semantic content of the operations, and state-space explosion. At a slightly higher level
of abstraction, Spark [116] introduces the concept of Reliable Distributed Datasets (RDDs).
These primitives are immutable sets of data which are generated either by loading raw data,
or computed deterministically from other RDDs using a language closure. By tracking the
dependency graph, Spark gains significant flexibility as to which products are materialized;
however this dependency-tracking data also serves as a valuable record of which operations
have been applied.

There are also a wide variety of techniques used for data cleaning, some very general
and some domain specific. Generally, many features of SQL:99 are relevant – specifically
user-defined functions (UDFs) either implemented in an external language or PL/SQL, and
views. Analysts create specific UDFs which clean a particular attribute of a raw dataset,
and use it to create a view on the underlying table which contains the cleaned version.
In particular, Hellerstein advocates using SQL as a generic interchange language between
different components [46], allowing each component the full power of a declarative approach.
This technique has the prospect of preserving much more provenance than the fallback,
would would typically involve writing a custom program which is used inside of an Extract-
Transform-Load (ETL) paradigm. Our approach of having operators which track provenance
is most similar to creation

Our time series operators provides a time series specific functionally for data cleaning,
based on these general techniques for provenance capture and storage. They are able to
generate concise, deterministic descriptions of common data cleaning operations which can
then be used as in Spark for materialization, or as in an SQL view to provide a higher-level,
cleaned data set for users to work with.

PhD Dissertation, Dept. of Computer Science 
UC Berkeley 2014

https://escholarship.org/uc/item/7m31g4t4



87

Chapter 7

Implementation of a Time Series
System

To build on the ideas for time series storage and processing discussed in Chapters 5 and
6, we have implemented a small domain-specific language embodying these principles. The
system, whose architecture is shown in Figure 7.1 uses separate storage engines for time
series data and metadata, and consists of an application worker that implements a query
processor for our Time Series Cleaning Language. The structure of the language is high-level
enough to admit several different styles of compilation; in particular, many of the operators
would be trivially parallelized and pushed down closer to the data. Our focus with this
implementation has been to provide sufficient performance to build real applications and
not close off our ability to apply many different database optimization in the future, without
getting lost in the thicket of standard database optimizations which clearly are applicable.

In this section, we evaluate our the language for a few characteristics, with the main
ones being expressiveness and performance. To examine the language’s expressiveness, we
look back at several applications developed in the course of various monitoring and control
applications, and look at the how the application tasks can be expressed in the language’s
idiom. For performance, we examine some of the implementation techniques needed for good
performance in our prototype implementation.

7.1 A Domain Language Approach to Data Cleaning

The language and its supporting runtime environment support efficiently acquiring data from
the hardware presentation layer, storing this data, and implementing a processing pipeline
of operators which operation on the data model described in Section 6.2.1. The language
allows applications and users to select the data they are interested in on the basis of the
metadata relations, and transform this data using a sequence of operators. Our language,
called the Time Series Cleaning Language (TSCL), combines relational access to metadata
with a declarative, pipelined sequence of operators used to perform cleaning operations and
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Archiver 

RDBMS 
PostgeSQL 

TSDB 
readingdb 

HTTP$client$api$

internal$TCP/protocol$$
$buffer$interface$

Figure 7.1: The archiver service implements the time series query language processor, as well
as several other services on top of two storage engines; metadata is stored in PostgreSQL,
while time series data uses readingdb.

allows users and programs to easily download filtered, cleaned versions of the data. Due to
the language’s structure, it allows many opportunities for optimizing common data access
patterns.

We have implemented the language design described within the sMAP archiver; a soft-
ware component which forms one of three components of BOSS evaluated in this thesis. The
archiver uses the language in several places to present an API to applications over HTTP.
Internally, the archiver relies on several components; a LALR parser generator uses a lan-
guage grammar to compile user-generated queries to executable versions. Three compilation
strategies are used: metadata queries on the entity-attribute-value tag schema are compiled
into raw SQL queries which can be executed against a standard relational database. Queries
referencing data are complied into closures which can be executed against the readingdb

API, which is discussed below. Finally, operator expressions are compiled into an abstract
syntax tree which can be evaluated against the data returned by the time series database.

7.1.1 Select

The first task applications face is simply locating the time series data in question using the
time series metadata. Today, we have hundreds of thousands of streams in BOSS; this scale
is relatively common-place in medium to large environments. In the future, the number
of streams will only increase. To efficiently locate streams, one must make reference to an
underlying schema or ontology which organizes the streams with reference to a model of the
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world. The issue is that no one schema is appropriate for all time series; data being extracted
from a building management system (BMS) may reference a vendor-specific schema, while
other time series may be organized by machine, system, or many other schema. As a result,
a system which requires a rigid schema is a currently a bad fit for a general building data
system, because there are many different schema and it is difficult to automatically convert
from one to another. Therefore, we choose to use a simple entity-attribute-value (EAV) data
model, in which individual time series are the entities and are tagged with key-value pairs
including metadata from sMAP.

TSCL queries specifying metadata queries follow a general grammar including a where-
clause:

select select-clause where where-clause

The where-clause is a set of constraints matching the time series tags available in the
metadata store; within our system. Therefore, it is common for the time series to be already
tagged with basic information about their source; instrument model names, locations, units,
and network location data such as BACnet point names and description fields. The where-
clause supports basic boolean and filtering operations on tag values, enumerated in Table
7.1.

The use of this schema type allows users to pose queries such as

select * where Properties/UnitofMeasure = "kW"

or

select * Metadata/Instrument/Manufacturer ~ "^Dent.*"

In the first example, we select the metadata for all streams in units of kilowatts, while in the
second we use a regular expression to search for all data where the instrument manufacturer
begins with “Dent” – the maker of some of our three-phase electric meters.

Selection operator Description

= compare tag values; tagname = tagval

like string matching with SQL LIKE; tagname like pattern

~ regular expression matching; tagname ~ pattern

has assert the stream has a tag; has tagname

and logical and of two queries
or logical or of two queries
not invert a match

Table 7.1: Selection operators supported by the query language. The selection syntax is
essentially borrowed from SQL.

PhD Dissertation, Dept. of Computer Science 
UC Berkeley 2014

https://escholarship.org/uc/item/7m31g4t4



90

We have implemented this lookup system on top of the PostgreSQL hstore column type,
which stores metadata for time series within a single column value representing a bag of key-
value pairs. This approach builds on the metadata provided by the hardware presentation
layer, and allows applications to locate any time series which is being stored by the service.
In the future, it maybe be desirable to provide more relational-schema checking to this
system once widely accepted information models are available for the specific problems we
are solving. Internally, each metadata selection is compiled to a raw SQL statement, which is
executed against this database. For instance, the first example query is into a more verbose
query making use of the postgres-specific hstore query operators:

SELECT s . metadata | | hs to r e ( ’ uuid ’ , s . uuid )
FROM stream s
WHERE ( ( s . metadata ? ’ P r op e r t i e s / UnitofMeasure ’ )

AND ( ( s . metadata −> ’ P ro p e r t i e s / UnitofMeasure ’ ) = ’kW’ )
AND ( ( sub . pub l i c ) ) AND sub . id = s . s u b s c r i p t i o n i d

At the same time, the query may reference underlying data through the use of a data
selection clause. For instance, in the first example, the query could instead return the last
reading from all matching streams using a modified query:

select data before now where Properties/UnitofMeasure = "kW"

Instead of returning the set of tags for the matching time series, this query instead returns
the latest reading from each of them; it is implemented efficiently using readingdb’s db prev
method. When loading data, querying is a two-stage process – the worker must first evaluate
the where-clause to identify the set of time series referenced, and then load the data using
readingdb’s client API.

7.1.2 Transform

To support the use cases examined in Section 6.1, it is clear that users need robust support for
interpolation, windowing, and filtering operators. However, some uses, such as temperature
normalization and recalibration require more complicated support for algebraic operations;
for instance, computing a polynomial to remove a quadratic temperature dependency or
evaluating a weighted sum of vectors. The key to designing a language for this purpose is
allowing users to concisely specify both types of operation, using familiar notation.

Applications may submit requests for transformations on data through the use of the
apply statement:

apply operator-clause to data data-clause where where-clause

For instance, consider the units operator discussed in Figure 6.2; we could apply this oper-
ator to data with units of either kilowatts or watts with the query:

apply units to data in now -1d, now where units = ’kW’ or units = ’W’
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This query introduces several new features of the language:

• The apply units operator clause will instantiate an instance of the unit conversion
operator, and pass data through it before returning it to the user;

• the data in now -1d, now data clause uses a range query instead of an anchor query
to load data from the previous day; and

• the where clauses introduces a boolean operator (or) for metadata selection.

This example is also a use of functional operator notation, instantiating operators using
a familiar functional notation – “units()” returns the operator which performs unit con-
version. Functional operators may also take arguments, including other operators; consider
instead

apply window(mean, field="minutes", width=10)

to data in now -1d, now

where units = ’kW’ or units = ’W’

where we use the windowing operator to generates an operator which returns the mean of
each 10-minute window of data.

TSCL also supports algebraic notation, which allows the use of infix notation and instan-
tiates multiple operators from an algebraic formula. For instance, the “* 10” operator clause
generates an operator which multiples all input data by 10. Algebraic notation introduces
several complexities when evaluating the operators, which we discuss in detail in Section
7.1.2.

Multiple operators may also be piped together in order to process data sequentially. For
instance, consider the combination of the window and units operator:

apply window(mean, field="minutes", width=10) < units

to data in now -1d, now

where units = ’kW’ or units = ’W’

where we process right-to-left, first convert the input data to normalized units, before com-
puting a 10-minute windowed mean over the processed data. The input to each stage of
processing is an ordered set of time series, following the data model discussed in Section
6.2.1. Each operator can inspect both the operator data as well as the operator metadata;
this is crucial for implementing operators such as unit transformations and other metadata-
dependent computations common in data-cleaning. Additionally, each stage in the pipeline
appends a description of the computation it performed – essentially, what arguments it was
called with as well as any additional arguments which effect the output. This metadata pro-
vides the critical provenance chain of computation, connecting processed data to the original
raw results. Finally, output time series from each stage are named within the same global
UUID namespace as the inputs, by deterministically mapping the input stream identifiers
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to new ones, based on the computation performed. This provides an efficient and scalable
mechanism for locating shared computation within the processing graph.

uuid:%abd021ef-...
units:%"kW"
streamid:%1

units='kW' or units='W' PostgreSQL

uuid:%abd021ef-...
units:%"kW"
streamid:%1

uuid:%932dsaff-...
units:%"W"
streamid:%2

data%in%now%-1d,%now

select%*%from%streams%where...%

readingdb

db_query([1,%2],%now%-1d,%now)

units

uuid:%932dsaff-...
units:%"W"
streamid:%2

uuid:%abd021ef-...
units:%"kW"
streamid:%1
operator:%units

uuid:%2913eadf-...
units:%"kW"
streamid:%2
operator:%units

window(mean)

uuid:%aafe1213-...
units:%"kW"
streamid:%1
operator:
%window%<%units

uuid:%172130ae-...
units:%"kW"
streamid:%2
operator:%
%window%<%units

Figure 7.2: The complete pipeline needed to
execute our example query. The language run-
time first looks up the relevant time series us-
ing the where-clause, and uses the result to
load the underlying data from readingdb, us-
ing the data-clause. It then instantiates the
operator pipeline, which first converts units to
a consistent base and then applies a window-
ing operator.

Figure 7.2 illustrates this complete pro-
cess for our example query. In the first stage,
the worker extracts the where-clause of the
query, and uses it to generate an SQL state-
ment which returns the metadata of the rel-
evant streams – in this case, two of them.
This metadata is used to synthesize a call to
the readingdb API, which returns the cor-
responding time series data according to the
data clause. The data is placed into a set
of arrays corresponding to the time series,
which are then pushed through the operator
graph. At the first stage, the units operator
notes that stream 2 requires a unit conver-
sion, and so computes the converted data. It
also updates the uuid of this stream to reflect
that the data has change, and changes the
units tag associated with the stream. In the
second stage, the windowing operator com-
putes the appropriate compressive window
of the data, reducing the time dimension. It
alters both uuid’s to reflect the new derivate
stream’s provenance.

Pasting data

One key transformation of the data model
explained in Figure 6.1 is known as pasting
data. Pasting is essential a merge-join on the
time dimension; to explain the need for it,
consider the problem of adding two different
time series to produce an aggregated value.
Shown in Figure 7.3, initially these time se-
ries are separate vectors; perhaps originating
from different electrical meters or generated
by some other process. Since the time series
are generated by different processes, there is
no reason to believe that they will sample at
the same rate, or in the same phase. There-
fore, some position must be taken on how
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to combine readings into before the addi-
tion is performed.The result of pasting these
streams is a single matrix containing one row for each time value in the input data, with the
columns corresponding to the input series. Missing values are represented using a missing
data marker within each row of the merged matrix.

t v
1
2
4
6

1
0
1
3

t v
1
2
3
4

2
1.1
1.7
1.9

paste

1
2
3
4

2
1.1
1.7
1.9

6 NaN

1
0

1
3

NaN

t v1 v2

Figure 7.3: The paste operator.
Paste performs a join of input time
series of the input streams, merging
on the time column. The result is
a single series which contains all of
the input timestamps. The transfor-
mation dimension in this example is
paste : (2, [2, 2], T )⇒ (1, [3], T ).

Within the processing system paste is defined as
the operation which merges a set S of streams, each
with width ci into a single stream with a width of∑

ci − |S| + 1. In the time dimension, a row is pro-
duced for each unique timestamp in any of the in-
put streams; values from input streams with match-
ing timestamps are placed in the same output row.
As a result, the output in the time dimension has a
size which is the size of the union of all input times-
tamps. Once data have been coerced into this format,
various additional computations are relatively trivial
– aggregations and rollups correspond to operations
on the rows and columns of this matrix.

Algebraic Operators

Functional notation is quite cumbersome for some op-
erators; in particular, operations which are naturally
expressed as formulas. For instance, consider apply-
ing a quadratic temperature correction to a stream
of raw sensor data. One might wish to compute the
calibrated sensor output as a function, for instance,

ci = ri + k1 ∗ ti + k2 ∗ t2i

In this case, ri is the raw sensor reading at time step
i, and ti is the temperature at the same time step;
k1 and k2 are polynomial coefficients. Therefore, our
query language also supports the use of binary infix
notation to concisely represent this formula.

Constructing formulas builds on the ability to ad-
dress time series by their metadata; in this case, we will use it to construct the formula in
this example. For instance, suppose the two streams in question have already been tagged
with a tag name Type; the raw data stream has type raw, while the temperature stream
has type temp. We can then construct a query referencing these elements, shown in Figure
7.4. In this case, we have included the constants (2.68 and −27.16) directly in the formula,
although these could also reference other time series.
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[Type = "raw"] + 2.68 * [Type = "temp"] + [-27.16 * [[Type = "temp"] ^ 2]

Figure 7.4: An algebraic operator expression which computes a quadratic temperature cali-
bration from two time series: a raw sensor data feed, and a temperature data feed.

This special syntax allows for idiomatic construction of simple formulas, referencing data
by their metadata. For instance, consider the inner part of this expression:

[Type = "temp"] ^ 2

The brackets operator acts as a selector on the set of input streams, applying the inner
operator only to time series in the input which match the metadata query – in this case,
having the Type tag equal to "temp". In fact, this operator can also be expressed using
functional notation, with the help of the where operator:

where("Type", "temp", pow(2))

The where operator applies an inner operator only to time series containing a particular
key-value pair; it is clear how cumbersome this becomes for even modestly complicated
formulas.

Provenance Transmission

Along with computing on the data as it is processed, the operators also have an opportunity
to read and edit the metadata provided to the next operator in the system. As a result,
the final result contains not only the modified data elements but also mutated metadata.
The most important piece of information an operator attaches as part of the its operation
is a concise, executable description of the operator. Typically, the operator will also mutate
any other relevant metadata as part of its operator – for instance, the units operator which
performs unit conversions would edit the output to reflect the conversions made as in Figure
7.2.

Because metadata is carried along with the data in the processing pipeline, it is relatively
trivial to accomplish provide this functionality, yet very powerful. Each operator constructs
a normalized, executable version of itself, and attaches itself to its output streams as a new or
modified tag. In this way, the final computed product has the entire sequence of operations
performed on it in a form which can be reproduced simply by executing the description.

The output of these programs can be made use of in many different ways. It may simply
be streamed to consumers and never stored; alternatively, it may be materialized for future
querying within the system. Choosing which subexpressions are materialized versus transient
is a decision made either by the user or by the runtime; similar to the materialized-view
problem within relational databases. Since many of the operations are functional and don’t
have side effects, the output may be materialized if space is available to accelerate future
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queries, or dropped if the system is overloaded and recomputed at a later date. Furthermore,
users often have good intuition about which subexpressions will be useful to precompute; for
instance, many users are perfectly happy computing statistics on decimated or subsampled
versions of high-frequency series to provide fast, approximate answers; it is nearly always a
good idea to precompute these streams to avoid the need to load the raw data.

7.2 A DSL Processor

We have implemented the language processor described in Section 7.1 as a web service, within
a software component known as the archiver. The archiver compiles user- and application-
submitted queries, and executes them against stored and streaming data. The archiver
evaluates queries by fetching metadata from the relational database and then loading time
series data from readingdb. The returned time series are passed through an operator DAG
generated by the query complier before the data are streamed out to the client. Because
the operators are built to allow for incremental processing of input data, it is possible to
process very large datasets incrementally by loading chunks of data while pushing them
through the operator graph; this has the advantage of limiting the size of the working set
which must be kept in memory. The archiver uses twisted, an asynchronous programming
framework for Python to support respectable performance and concurrency; nonetheless, we
believe significant performance improvements would be possible through the use of a systems
programming language.

7.2.1 Compilation to SQL

The first stage in query execution is extracting a true SQL query from the submitted TSCL
string which can be executed in the relational database. We have implemented two versions of
this SQL compiler – the first compiles the where-clause (the metadata selection component)
to a standard SQL99 query which can be executed on any relational database, while the
second complies these where-clauses using PostgreSQL’s hstore column type. Especially
when hstore is used, the compilation is a relatively straightforward exercise; each type of
operator in Table 7.1 maps directly onto an hstore operator or expression.

apply [Path="/versa_flame/inlet"] - [Path="/versa_flame/outlet"]

to data in (now -10m, now)

where Path like ’/versa_%’

Figure 7.5: Example query with an algebraic expression, which benefits from extracting
additional where-clause constraints from an operator expression.

The main complication involved in compiling to SQL actually results from algebraic ex-
pressions. Although it might appear from an examination of Figure 7.5 that only examining
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the where-clause would be necessary to generate the SQL, support for algebraic operators
is made significantly more efficient when the operator expression is also considered. Con-
sider Figure 7.5; in this simple example, we are subtracting the inlet temperature from the
outlet temperature of a water tank, producing the temperature delta as a new stream. In
this example, only two time series from the device will be used in the operator expression
(/versa flame/inlet and /versa flame/outlet.) However, there could be a large number
of time series produced by the device – the where-clause restricts to only streams who’s
Path tag begins with /versa. If we execute the query sequentially by first evaluating the
where-clause, then loading the data based on the data selector, and finally pushing that data
through the operator graph, we will in this case load far too much data.

The solution, at least in this example, is to allow the operator expression to push ad-
ditional constraints upwards and conjoin them with the constraints from the where-clause.
In this case, for instance, the query ultimately evaluated in the metadata store should ac-
tually be something like Path like ’/versa %’ AND (Path = "/versa flame/inlet" OR

Path = "/versa flame/outlet"). Making this work for all operators requires additional
bookkeeping due to the fact that the metadata may be altered within the operator pipeline.
Therefore, we take a conservative approach to adding these additional restrictions to the
SQL given that we could produce incorrect results if we apply incorrect restrictions. In
our current implementation, we only apply restrictions which refer to tags which have been
unmodified throughout the entire query pipeline, or have been renamed using the rename

builtin operator.

SELECT s . metadata | | hs to r e ( ’ uuid ’ , s . uuid )
FROM stream s , s u b s c r i p t i o n sub
WHERE ( ( s . metadata ? ’ Path ’ ) AND ( ( s . metadata −> ’ Path ’ ) LIKE ’ / v e r s a %’ )

AND ( ( ( s . metadata −> ’ Path ’ ) ˜ ’ / ve r sa f l ame / o u t l e t ’ )
OR ( ( s . metadata −> ’ Path ’ ) ˜ ’ / ve r sa f l ame / i n l e t ’ ) ) )

AND ( ( sub . pub l i c ) ) AND sub . id = s . s u b s c r i p t i o n i d

Figure 7.6: Compiled version of the query in Figure 7.5, using the hstore backend. We
can clearly see the additional constraints imposed by the operator expression, as well as the
security check being imposed. The query selects rows from the stream table, which can be
used to load the raw time series from readingdb, as well as initialize the operator graph.

A final step in query execution is the application of security checks. Although the archiver
has8 a relatively simple security model in which time series may be marked “private” so that
only their owner may query data from those series, the query parser provides a natural
point at which to impose additional access restrictions. Because the complier is a trusted
component and has access to the request context, many different authentication systems can
provide for identifying the principal, with authorization compiled directly into the query. In

PhD Dissertation, Dept. of Computer Science 
UC Berkeley 2014

https://escholarship.org/uc/item/7m31g4t4



97

1 from smap.operators import Operator

2

3 class UnitsOperator(Operator):

4 """Make some unit conversions"""

5 operator_name = ’units’

6 operator_constructors = [(),

7 (lambda x: x, str, str)]

8 required_tags = set([’uuid’, ’Properties/UnitofMeasure’])

9 def __init__(self, inputs):

10 # inputs is a list of stream metadata

11 # return a list of mutated metadata

12

13 def process(self, data):

14 # convert units as appropriate based on the input metadata

Figure 7.7: A part of the operator which standardizes units of

this case, we perform a join with the subscriptions table so as to check if the time series
is associated with a public subscription and thus available to unauthenticated users.

7.2.2 Operator Evaluation

The compilation to SQL allows the query engine to resolve which time series are mentioned
within a particular query, retrieving the set of stream UUIDs for which we must load data
or subscribe to streaming updates. The next step is constructing an implementation of the
operator pipeline specification which can be used in evaluate the query against the data. This
proceeds in two phases, and results in an executable version of the operator specification.

When evaluating the operators, the archiver first looks up the name of each operator, and
binds that operator to its implementation in Python. Operators are represented as classes in
Python, and the query parser is able to automatically discover available operators. Operator
evaluation proceeds in two stages – in the first, the operator is instantiated and bound to
the set of input streams, by creating an instance of the class implementing that operator.
Figure 7.7 has a shortened implementation of our units operator. At the bind state, the
init method receives the metadata of the input streams, inspects it and mutates it as

necessary, and produces the output set of metadata. At this point, the dimensionality type
of the operator is fixed, allowing a degree of type checking.

To allow for streaming, basic operators implement a process method, which is called
with an array of data arguments during the second processing phase of operators. Each
array element contains a matrix data structure with data from a single time series; essen-
tially, directly implementing the model from Figure 6.1. When processing, data are pushed
through the operator graph by placing them within the data structure and then executing
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absolute† add† around† catcol

ceil† clip† copy count

datetime dayofweek diff equal

ewma exp first floor

greater† greater equal† hist hstack

index interpolate isnan† less†
less equal† log† log10† max†
mean† median† meter min†
missing movingavg multiply† nanmean†
nansum† nl nonzero† not equal†
null paste power† print

prod† product reflow rename

rint† set key snap sqrt†
std† strip metadata subsample sum†
swindow tgroup trunc† units

var† vectorize w window

Table 7.2: Operators implemented in the application interface. † operators automatically
imported from NumPy.

the operators. The runtime guarantees operators that processing is monotonic – data are
pushed through an operator graph from oldest to newest. This significantly simplifies the
implementation of operators, and with limited consequence; if data are later backloaded or
revised, we must recompute any results from the beginning of time, unless we have more
information about the operators.

Within the archiver, we make good use of existing libraries, in particular numpy and
scipy, popular numerical and scientific computing resources for Python. These libraries
provide a wide variety of functions which are efficiently implemented (often with compiled
versions) and includes an excellent array implementation, arithmetic operations, windowing
and resampling operators, interfaces to the BLAS and LAPACK solvers, and much more.
Therefor the key challenge in implementing operator is not functionality, so much as adapting
what exists to operate in a streaming context. To that end, we provide a framework for
operator implementation which takes advantage of what these libraries have to offer.

7.3 Evaluation

To demonstrate how we can use operator pipelines to extract cleaned summaries of data, we
explain the execution of two queries in detail, and also present a set of additional queries
from real applications making use of the processing system. Within the query language, we
construct an operator pipeline using the apply keyword.
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7.3.1 Weather Data

Our first query, shown in Figure 7.8, loads data from all streams labeled as “outside air
temperature” and windows it using a 15-minute period. The first argument to window,
“first” is the windowing operator to be applied; this operator takes the first reading inside
of the window. We could specify any compressive operator here to obtain the mean, median,
or other statistic of the window. The two large integers in the data clause are the the UTC
milliseconds specifying the time range of the query.

apply window(first, field=’minute’, width=15)

to data in (1379478283262, 1379564683262) limit -1

where Type = ’outside air temperature’

Figure 7.8: Our first attempt at obtaining 15-minute resampled outside air temperature
data.

Visualizing this data is trivial using, e.g., matplotlib as shown in Figure 7.9; here we
elide some additional commands for setting up the axis labels and legend using the series
metadata coming from the processing engine. Examining the output, shown in Figure 7.11a,
we notice a common problem with weather data – most of the time series are in units of
Farenheit, and additionally one is apparently in units of double. That series is actually
in Fahrenheit. Figure 7.10 shows that we can quickly apply a correction to that stream,
transforming the data to Celsius and correcting the metadata. The units operator contains
a default Farenheit to Celsius conversion, but we also create a custom conversion from double

to C; the resulting correct plot is shown in Figure 7.11b

c = TSClient()
data = c.query(””” a p p l y window ( f i r s t , f i e l d =’minute ’ , w i d t h =15)

t o da t a i n (1379478283262 , 1379564683262) l i m i t −1
where Type = ’ oa t ’ ) ”””)

for d in data:
pyplot.plot date(dates.epoch2num(dat[:, 0] / 1000), dat[:, 1], ’−’,

tz=d[’Properties’][’Timezone’])

pyplot.show()

Figure 7.9: Interactively plotting time series data re-windowed using our cleaning language.
Because metadata is passed through the processing pipeline, all of the streams will be plotted
in the correct timezone, even though the underlying sensors were in different locations.
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apply units( [ - 32 ] * .5555 , ’double’, ’C’)

< window(first, field=’minute’, width=15)

to data in (1379478283262, 1379564683262) limit -1

where Type = ’oat’

Figure 7.10: Dealing with mislabeled data in inconsistent units is trivial; we can quickly
convert the streams into Celsius with a correct units label using a custom units conversion
expression (the first argument to units)
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(a) Initial outside air data with inconsistent units
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(b) Final normalized, resampled data

Figure 7.11: The application interface lets us quickly resample and normalize raw data series.

7.3.2 Building Performance Analysis

Much more complicated queries can be expressed using the application interface, expressing
significant amounts of data parallelism and running over large volumes of data very concisely.
As an example of this, consider Figure 7.12. In this example, we compute a few statistics
about how well all of the thermal zones on the fourth floor of a building are meeting their
set point. This requires several steps – for each location (represented by unique values of the
“Location” tag) we first down-sample to once-a minute data; following that, we compute the
room set point error in each of those minutes (the difference between the temperature and
set point). Following that, we exclude any missing data, removing any times at which we
were unable to compute the delta due to lack of a reading for either sensor. The vectorize

operator runs each of the internal operators on all input data, producing an expansion in
the stream dimension; in this case, it produces three output streams for each input stream
corresponding to min, max, and percentile. Finally, we join these three streams together
using paste; the result of this operator is a single vector for each location with the maximum,
minimum, and 90th percentile set point error over the day requested.

The operator graph for this query, shown in Figure 7.13 makes more of the potential
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apply paste

< vectorize(max, min, percentile(90))

< missing

< [Type = ’room temperature’] - [Type = ’room setpoint’]

< window(mean, field=’minute’)

to data in "4/8/2013", "4/9/2013" limit -1

where Location like ’S4-%’

group by Location

Figure 7.12: A complicated, data-parallel query. This query computes the minimum, max-
imum, and 90th percentile temperature deviation across a floor over the time window (one
day).

parallelism clear; the entire group-by can be executed independently for each location, and
within the pipeline the vectorized operations can also occur concurrently. Furthermore the
query executes efficiently even on very large datasets because all of the operators in use have
efficient streaming versions – although min, max, and percentile need to see all of the data
in order to output a result, efficient streaming versions exist in the literature.

paste

Vectorize

min

max

percentile(.90)

missing

temperature - setpoint

diffpaste

window

mean

group by Metadata/Extra/Vav

Figure 7.13: The execution pipeline for the query shown in Figure 7.12. The group-by
clause exposes the fundamental parallelism of this query since the pipeline is executed once
per distinct location.

7.4 Related work

Stream processing is not a new field; Stonebraker et al.provide a useful overview of the
requirements of such as system [100]. They include:
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1. “In-stream” processing with no required storage.

2. Support for a high-level “StreamSQL” language.

3. Resilience agains stream imperfections like missing and out-of-order data.

4. Guarantee of predictable and repeatable outcomes.

5. Provide uniform access to real-time and stored data.

6. Guarantee of availability and integrity despite failures.

7. Capable of distributing processing across machines and cores.

8. An optimized mechanism for high-volume, real-time applications.

The authors identify three technologies which are positioned to provide these capabil-
ities. These are databases (DBMSs), rule engines, and stream processing engines (SPEs).
According to their analysis, SPEs come closest to meeting all requirements, since the other
systems (DBMSs, and rule engines e.g.prolog) must shoehorn the processing requirements
into their processing models. When comparing these requirements with what is important
for time series and monitoring data, we note that many of these are important, but note
that a provenance and metadata tracking, as well as a specific processing support for the
types of time series operations are two key design aspects of TSCL not mentioned at all.
This oversight is actually fundamental to the distinction between event streams and time
series. Stream processing engines are mostly designed with event streams in mind – a flow
of discrete events which are themselves meaningful. For instance, “the stock price is now
$20.47,” or “the user clicked the button.” These are meaningful on their own. However,
time series data is often meaningful only relative to other values in the stream – is the trend
up or down? We have drawn out the ways in which this distinction informs several different
aspects of system design.

7.4.1 Stream Processing Engines

TelegraphCQ [19] reflects on challenges involved with building a scalable stream-processing
engine over high-volume and bursty data streams. Built on top of PostgreSQL, they identify
a need for graceful load shedding and shared processing between common subexpressions.
The system consists of a dataflow graph where processing nodes share data using either push
or pull. Queries are executed by routing tuples through non-blocking versions of standard
relational operators. The system dynamically routes incoming queries through modules to
respond to failure and dynamically repartition computation. They also include an ugly
mechanism for defining the windows over which queries operate in a query body using an
imperative syntax; the data in a window can be flushed to disk if necessary due to memory
pressure. Data is pulled using special “input” modules which interface with different data
sources. This builds on previous work like NiagaraCQ [21] which was a database for streaming
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XML documents which explored issues with evaluating a large number of constantly changing
queries.

The other streaming system in CIDR ’03 published the results of the Aurora* (“Aurora-
star”) and Medusa systems [22]. Their vision is of multiple sites cooperatively processing
streamed data to support load balancing/sharing, high-availability, and the shared protocols
necessary to federate. The processing model is also that of a dataflow graph, where tuples
flow between boxes, and are schedule by a schedule and query planner; they can access stored
data. Aurora* is the system for distributed processing within an administrative domain,
while Medusa is used for distribution across administrative boundaries. Medusa uses an
economic system to exchange virtual currency in exchange for stream data in the wide area;
they also construct a global namespace and registry for stream products using a DHT. They
investigate sharing and load shedding at the transport and node levels. Aurora* uses pairwise
load-shifting to redistributed load between nodes at the same site. The work on which
Aurora* is based, Aurora [1] presents the motivation for this style of stream processing as
essentially, approximate answers based on incomplete or inconsistent data based on triggers
which execute on data arrival.

On the subject of windowed processing, [37] presents two forms of rollups typically com-
puted one, landmark-based windows are computed from the previous landmark to the present
point in time; for instance, daily averages. Sliding windows continually advance the start
marker and are of a fixed with; for instance, hourly averages. These two forms of rollups
have been the study of considerable work and are the basis of the Aurora* intuition that it
is the windowing of streaming data that makes it challenging to compute queries without
large buffers.

The IBM System S is a large-scale effort to develop a distributed, multi-site stream-
processing engine which processes many times of time series data [29]. Example queries
include geographical ones like “find all bottled water in the disaster area”, and they men-
tion as goals the integration of video data. Like other stream processing frameworks, they
envision extensive cross-site collaboration; in their system, it is mediated through Common
Information Policies (CIPs) which define the types of data a particular site will share with
other partners, and what actions they will take on behalf of other sites. Processing may
encompass historical data, derivatives and to operate under continuous overload, shedding
lower-priority queries.

7.4.2 Bulk Processing

There has been significant work at enabling massively scalable processing of distributed data
sets, particularly using the map-reduce paradigm exemplified by its popular open-source
implementation Hadoop [27]. These large systems consist of a storage system providing a
file-like abstraction and a job execution service. Jobs consist of mappers, which read input
key-value pairs and maps them to new pairs, and a reducers which combine output keys with
the same value. Jobs are frequently pipelined into multiple stages to compute complicated

PhD Dissertation, Dept. of Computer Science 
UC Berkeley 2014

https://escholarship.org/uc/item/7m31g4t4



104

functions of the input data. The model has been widely adopted, perhaps because it allows
massive parallelism without need for explicit locking or synchronization.

Several attempts have been made to layer higher-level languages on top of the map-reduce
paradigm to improve analyst productivity. Pig [84] compiles an imperative, data-flow style
language into a series of map-reduce jobs which run on Apache Hadoop [96]. Later work
optimizes pig programs through the sharing both of concurrent executions of overlapping
computation, as well as caching of popular intermediate results [83]. Sazwall is a similar
effort [91]; Spark reuses the storage infrastructure underlying Hadoop, but keeps data in
memory to reduce execution times by as much as an order of magnitude [116]. Tenzing [20]
is a recent effort to develop a compliant SQL92 query engine on top of the Google MapReduce
implementation. They overcome real and perceived problems such as slow execution time
and a lack of applicability of traditional database techniques and report that the base query
execution time is about 10s. Tenzing is in some sense a database-of-databases, since it can
compile a query to run against files, traditional relational databases, stored protocol buffers,
and several other internal stores.

More generalized data-flow processing systems such as Dryad build a data processing
framework with more expressive potential than map-reduce [50]. Programmers have control
over the structure of the graph, which is then scheduled onto physical hardware by the
Dryad runtime. They apply various optimizations to the data-flow graph, and implement
pipelining between operators. DryadLINQ is their high-level query language which compiles
LINQ (Language INtegrated Query) programs into a Dryad call graph [114].

The TSCL is very much in the tradition of domain-specific languages for specific process-
ing tasks. Mapping the operators as defined here onto several of these processing frameworks
is an interesting exercise, since the high-level, declarative nature of TSCL would provide sig-
nificant ability to parallelize the underlying computation which we currently do not exploit.
However, many operations are “embarrassingly parallel” and would be greatly accelerated
using standard techniques.

Adding incremental processing

A problem with bulk processing systems is that processing incremental updates can require
the rebuilding of the entire computation, a potentially very expensive operation. The Per-
colator system [86] allows users to incrementally update the results of a previous batch
(map-reduce) computation through the use of notifications and transactions. First, the sys-
tem allows chains triggers to be installed which cause custom handlers to run when a piece
of data in the underlying repository is changed. These handlers can atomically update the
state of the repository through the use of a distributed locking service which can provide
ACID semantics to provide snapshot isolation.

Another attempt to avoid needing to wait for batch jobs to complete to retrieve current
results is the MapReduce Online system [23]. MRO preserves the structure of a map-reduce
job within Apache Hadoop, but pipelines data from map tasks to reduce tasks; it is custom-
arily committed to disk before running the reduce stage for fault tolerance; as a result the
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system can produce partial results as jobs approach completion. Using this ability, applica-
tion writers can build systems which allow analysts to iteratively drill down, following the
CONTROL methodology of allow iterative, interactive data exploration [45]. The prototype
also allows for continuous queries, where the mappers and reducers run forever. The reducers
are periodically run on data accumulated from the mappers – the period can be determined
from wall clock time, or features of the input data.

The TSCL runtime currently only supports running queries on-demand, which requires
loading the source data. However, much of the computations are predictable – for instance,
querying windowed subsamples of data which could be maintained incrementally as new data
arrives.

7.5 Takeaways for Physical Data Processing

Time series processing in monitoring and control applications is not the same as relational
data processing, nor is it the same as streaming event processing although it has important
overlaps with both of these models. It differs in how the data should be stored, access, and
the kinds of operations users wish to perform on it. To date, it has often been treated as an
additional application of these tools, or argued that it varies in only minor ways. In devel-
oping the workloads, use cases, and ultimately a domain specific language embodying these
uses. In this design, we can clearly draw parallels to previous work and begin to see how one
could implement a time series-specific framework while leveraging parallelization to enable
additional scale. Our prototype implementation demonstrates how a concise language can
significantly shorten application code by dealing with the first few processing stages before
the application ever sees the data; essentially, it is the interface through which applications
can access the data. This has the benefit of simplifying application code, and exposing
significant potential down the road for optimization of the underlying computation.
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Chapter 8

Controllers

Given a distributed set of actuators such as those presented by the sMAP drivers in the
hardware presentation layer, the final stage of the monitor – model – mitigate paradigm
requires us to put in place new controllers and sequences which alter the operation of existing
physical resources to improve efficiency or alter operations. Because we assume that the
control logic which is assuming control of these resources may be located in a different fault
domain from the controllers themselves, subject to network partition or poor availability, we
must redesign the interface between the control logic and controllers themselves to provide
well defined semantics to the application. In designing this interface, we aim to provide an
interface which is robust to non-malicious applications operating in an environment subject
to a variety of common errors; in conclusion, we do discuss some initial approaches for
extending this approach to untrusted applications.

Unlike the hardware presentation layer, which exposes a relatively simple, predominantly
stateless interface upon which more complicated applications can be build without the pain
of extensive system integration, the control tier aims to begin to provide a more full-featured
runtime in which application may run. At the control tier, we which to enable simple,
straight-line code which runs with well-defined failure semantics. We are particularly in-
terested protecting building systems from misbehaving applications – applications which
crash, become partitioned, or experience losses in resources or access to data which renders
them unable to proceed. We are explicitly not interested in protecting the system from ac-
tively malicious applications; except in relatively simple examples, protecting from malicious
applications will be very difficult.

8.1 Control Architecture

The overriding metaphor we use to inform the design of our controllers is the transaction.
Although imperfect, it is a useful comparison; in databases, transactions provide a way of
encapsulating a piece of logic within a structure which provides well-defined semantics around
the behavior of the logic and its effect on data in the presence of failure and concurrency.
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We are interested in a similar idea for control systems – small pieces of logic which run with
a certain amount of isolation and fault tolerance from other code in the system.

Transaction manager

Native
sMAP

Emulated 
sMAP

BACnet

Application fault domain

Application Process

Transaction interface

Figure 8.1: A high-level view of transactional control. Control processes, containing
application-specific logic interact with sensors and actuators through a transaction manager,
which is responsible for implementing their commands using the underlying actuators. The
interface presented to control processes allows relatively fine-grained control of prioritization
and scheduling.

Control processes containing the program logic connect to a centralized transaction man-
ager as shown in Figure 8.1, as well as other services such as the time series service and web
services, as required. The transaction manager is responsible for implementing the actions
requested by the process, as well as undoing them or mediating between different demands
from other processes. In the future, it may be possible to distribute this management logic
or move it into a library within the control process. The transaction manager is a small
piece of code which can reliably take actions as requested by control processes, and undo
them upon various failures; because network partition may occur between the transaction
manager and the control process. The major design goals of transaction manager are:

Network partition: control processes may become partitioned from the underlying sMAP
servers; the transaction manager provides predictable semantics in the case of partition
so that the control processes do not need to be physically collocated with the actuators,
as is common practice today.

Coordinated control: a common pattern for application writers is to affect synchronized
changes across a building. If any of them fail or would be masked by higher-priority
writes, none of the other actions should occur; in some sense, all the writes should
become visible at once.
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Application prioritization: mediating conflicting application requests is challenging; the
transaction manager provides primitives for ensuring relative priorities between differ-
ent applications.

8.1.1 Failure Models

Introducing control external to this picture changes the failure modes the composite system
may experience, because the shared bus and outbound connection now are now placed in the
critical path of operations which heretofore they were only needed for supervisory purposes,
and for which a lower level of availability could be appreciated. Once the control loops are
extended, the system may now experience partition between the new controller and the low-
level actuators being controlled. The main risk which this introduces is that the low-level
controllers may be left in an inconstant state; most controllers which are elevated by the
HPL into sMAP drivers have simple “last write wins” semantics, so a failure or partition will
leave the output or set point holding the last value which was written by the application.

Because the applications we are introducing override the default control logic imple-
mented by the original controllers, our overriding assumption is that if we release our control
of the system, the lower-level controllers will revert to a sensible default; for instance, for
a room temperature controller, if we stop providing control inputs with new set points, the
room will revert to whatever set point was preprogramed.

8.1.2 Coordinated Control

In observing a large set of applications being built to control buildings, we observed two
distinct classes of applications being built; we document these here and return to them after
introducing the detailed transaction design. These three classes we introduce briefly are
archetypes; in actuality, applications will employ more than one of these patterns.

Direct and Supervisory Control

Direct, and to some extent, supervisory control applications are in some sense the least
radical modifications of existing systems, and are made up of applications which attempt
to operate the system in a new and better way, but fundamentally within the same regime
in which it currently operates. For instance, an improved VAV controller might attempt
to emulate a newer, dual-maximum control sequence on top of an existing controller with
only simpler single-max or other less-efficient control sequence; or trim-and-respond might be
implemented as a chilled water reset strategy on an older building with simple setpoint-based
water loop control strategy. Both of these are examples of bringing modern best practices
to older systems which had less sophisticated control logic.

Although these simple examples are illustrative, more complicated applications are also
possible; for instance, whole-building model-predictive control, which attempts to manipulate
nearly all of the control loops in the building in a coordinated fashion so as to achieve a fully
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optimal mode of operation, instead of the simpler, decoupled control loops which are typically
present.

External Responsive

Another significant class of applications consists of logic which is often event-triggered, where
the trigger is initiated by an external event; or at least by an external control signal. One
example of this type of application is demand response, where a utility generated signal
requires a building to take an action such as relaxing set-points, reducing lighting levels, or
other load-shed action so as to reduce their electricity consumption during periods of peak
load. Another, occupant responsive, results from interaction with building occupants – they
make a request via smart phone, web page, or other Internet-connected device; in response to
the request, the building responds in some way, perhaps adjusting the lights, HVAC settings
or other functionality. There are myriad potential applications in this category, and building
become part of much larger loops, and many of them require making multiple coordinated
adjustments to the building’s operation.

8.2 Control Transaction Design

The HPL provides the level of access typically available in supervisory control systems: the
ability to read and write individual points. However, these actions are typically taken as
part of a larger sequence of actions which occur concurrently with other actions, and re-
quire cleanup following a failure. Control transactions provide the primitive for constructing
reliable applications. A transaction is composed of several parts:

1. A set of actions, which are the underlying changes to affect; for instance, to read or
write a set of points and when to do so,

2. a transaction id, uniquely identifying the transaction;

3. a callback, triggered when the action is complete (or fails),

4. a lifetime, determining when the transaction will be reverted,

5. a priority level, which specifies how important the transaction is within the system
and is used for scheduling between multiple concurrent transactions,

6. an error policy, determining what happens if the actions fails, and

7. a reversion method specifying how to roll back the action.

Transactions are submitted by control processes to a transaction manager running in the
same fault domain as the HPL; the transaction manager is responsible for scheduling actions,
sending callbacks, and reverting actions when necessary. Actions taken by a transaction are
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TXID: txn-eco-setback
START: 12-25-2012T0:12:15
PRIO: DEFAULT
LIFETIME: 15m
ON_ERROR: ABORT
ON_PREEMPT: CONTINUE

  t = 0 read(OAT)
  t = 5 write(ECO_DMPR, 30%)
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Figure 8.2: A transaction manager (TM) communicating with a remote Control Process.
The TM prioritizes requests from multiple processes, alerting the appropriate control process
when necessary. The TM also manages the concurrency of the underlying physical resources,
and provides all-or-nothing semantics for distributed actions. It provides the ability to roll
back a running transaction.

always transient; when the lifetime expires, all actions taken by the transaction will be
reverted. Running transactions may be renewed to lengthen their lifetime. As a result, in
the absence of control input from applications the state of the control system will revert
to the hard-coded, least-common-denominator control strategy; i.e., how the building would
operate in the absence of a sophisticated application infrastructure. Transactions also provide
a mechanism to ensure “all or nothing” semantics when applying actions affecting a number
of points. The error policy specifies whether or not a transaction should continue if one or
more of its component actions fails; failures can occur for a number of reasons.

A transaction proceeds through three states during is lifetime, as it is prepared, executed,
and finally reverted.
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8.2.1 Prepare

The prepare phase of the transaction involves only the client (the control process), and
consists of constructing a static representation of actions to be taken when the transaction
is executed. This may include querying other services such as the time series service to
obtain information about the building and the names of control points to be manipulated;
scheduling actions for when the transaction runs, for instance a periodic reads of a certain
point, and attaching callbacks to the various schedule actions. The client will also configure
other details of the transaction such as the default lifetime (after which all actions will be
reverted), the default error policy (what to do if any actions fail), and the default reversion
policy (any special steps that are needed when undoing actions).

As a result of this process, the client constructs a prepared transaction containing a
schedule of actions which are to be taken. Because this part of the schedule is constructed
without the involvement of the transaction manger, it is possible to execute a prepared
transaction in a “fire and forget” mode – the client can submit the prepared transaction
to the manager and then disconnect, leaving the manager to run and finally revert the
actions without further client interaction. Once the transaction is prepared, it can be run
by submitting it to the transaction manager.

8.2.2 Running

When run, the transaction is sent to the transaction manger, which adds it to the list
of runnable transactions. All actions in the prepared transaction are added to the global
transaction schedule, to be run at the appropriate time; the client receives a handle to the
running transaction instance that allows them to return later to alter actions, add new
ones, or abort the transaction before its lifetime expires. Once actions are runable, actual
execution is passed off to controller components which perform the action by communicating
with the appropriate sMAP devices and proxies. While running, the transaction manager is
responsible for executing the actions and dispatching callbacks to the client with the results;
for instance, if the action schedule contains reads of various points, the callback will include
the value that was read. The manager allows clients to mutate the transaction schedule
at this point by inserting or deleting actions; for instance, applications which have data
dependencies can use this functionality to implement feedback control loops by periodically
reading the loop inputs and then scheduling new actions with the output result.

8.2.3 Reversion

When a transaction’s lifetime expires, it is canceled, or it encounters an error that requires
aborting, the transaction enters the reversion stage, during which the transaction enqueues
new commands to undo the previous control inputs. The goal of the reversion stage is to
release whatever control the application was exerting over the system. This generally means
“undoing” any writes to actuators, and stopping access to any sensors which were being
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used for reading. Depending on the underlying control system, it may be possible to simply
“clear” the write; for instance, when writing to a BACnet point with a priority array such as
those shown in Figure 2.5. With such systems, a clear has the advantage of being idempotent
and stateless. Simpler systems such as an actuator without a priority array may require a
“writeback” strategy for reversion, where the transaction manager tracks the actuator value
before a write, and the writes that value back when the transaction reverts.

Various problems may be encountered when reverting a transaction – the command to
undo the previous write may fail, or the system may be in a new state which makes it
undesirable to immediately jump back to previous values.

8.3 Implementation

We have implemented the transaction design as a service within a sMAP driver, available in
Python. We made several implementation decisions when doing so that vary from approaches
we have taken elsewhere – in particular, we do not provide an HTTP-based API for control
processes, but instead use a more traditional asynchronous remote procedure-call style. The
main reasoning for this particular choice is that the client-server model of HTTP does not
naturally lend itself towards client callbacks, while the twisted.spread package allows us
to easily marshal and sent references to callbacks to the transaction manager that appear
as idiomatic Python, yet run remotely. The use of this package is not fundamental to our
design, but does result in significantly cleaner code than would be otherwise possible.

8.3.1 Example Transaction

To illustrate how a transaction proceeds through the three states, we will utilize one of our
example applications: the user responsive application. In this application, a user request
on a web page generates an immediate response from the HVAC system which immediately
heats or cools their space. In our test building, Sutardja Dai Hall, the response is generated
by commanding the heating coil in the VAV to either open or close, and then opening the
damper to allow more air than is normally provided to to the room.

The source for a simplified version of this transaction, shown in Figure 8.3, illustrates
many salient features of transactions – the code is short, concise, and portable, since it
relies on the metadata stored in the time series service to identify the points needed for
control, rather than being hard-coded. The result is a prepared transaction, which includes
a schedule of actions to be take, shown in Table 8.1.

Figure 8.4 shows a slightly modified version of this transaction is executed on a building.
In this figure we observe both the airflow set point and the actual measured airflow, as the
zone runs through the transaction schedule. The simple example demonstrates all three
key aspects of transaction design. First, the control of the airflow and temperature are
coordinated ; because the transaction was initialized with error cancel=True, if any of the
write actions fail the entire transaction will be reverted. Secondly, the transaction will run at
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class Blast(ControlApp):
def success(self, result):

print "Transaction started"

# vav ( s t r ) : t h e name o f t h e vav u n i t
def cool(self, vav):

txn = RemoteTransaction(timeout=timedelta(minutes=10)),
error cancel=True,
cmd priority=BLAST COMMAND PRIORITY ,
priority=BLAST PRIORITY)

# g e t a i r f l o w c o n t r o l p o i n t names
airflow = self.client.query("select distinct uuid where "

"Metadata/Extra/Type = ’airflow setpoint’ and "
"Metadata/Extra/Vav = ’%s’" % vav)

# and s e t p o i n t s
valve = self.client.query("select distinct uuid where "

"Metadata/Extra/Type = ’valve command’ and "
"Metadata/Extra/Vav = ’%s’" % vav)

# open t h e a i r f l o w damper
d = txn.add write(0, airflow, 750)
txn.add write(120, airflow, 600)
# c l o s e t h e h e a t i n g v a l v e
txn.add write(0, valve, 0)

# no t e t h a t we s u c c e e d e d
d.addCallback(self.success)

# s e t t h e r i g h t t x i d
txn.txid = ’blast−’ + vav

return txn

Figure 8.3: Example code setting up a “cool blast” of air in a building. The code first finds
the needed control points using TSCL metadata query; it then prepares a transaction which
consists of fully opening the damper, and closing the heating valve to deliver a cool stream.
It can note when the transaction has started by attaching a callback to the first write.

a high priority level relative to other transactions, based on the priority and cmd priority

levels; we discuss some of the implications of these on the behavior of write actions in Section
8.3.3. Finally, the revision strategy (which runs at the expiration time, 10:38) ensures that
the blast will complete successfully even if the control process crashes or is partitioned.

8.3.2 Reversion Strategies

Once actions are scheduled, actual execution is passed off to controller components that
perform the action by communicating with the appropriate sMAP devices and proxies. As
controllers take actions, they also append to a per-transaction revert log: a list of actions or
pieces of logic that are needed to undo the control inputs which are being made. When the
lifetime of a transaction expires, it is canceled, or it encounters an error, the revert method
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time point value reason

0 heating valve command 0 close valve to make sure we cool the room
0 airflow set point 750 fully open the damper to deliver cooled air
2 minutes damper command 600 reduce the airflow somewhat
10 minutes all points n/a transaction reverts due to timeout; writes

cleared

Table 8.1: The resulting action schedule contained in the prepared blast transaction created
in Figure 8.3.
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Figure 8.4: The result of running a real command sequence in Sutardja Dai Hall; the real
sequence has more steps than the simpler sequence used as an example. We clearly see the
airflow in the system in response to our control input.

is used to enqueue new commands to undo the previous control inputs.
The näıve reversion policy would simply clear any writes made; however, Figure 8.5a

illustrates one problem with this method. Here, the setpoint is reduced at around 12:31,
causing air volume to increase and room temperature to fall. However, when this change is
reverted at 12:41, the default commercial controller which takes over becomes confused by
the unexpected deviation from setpoint, causing the damper position (and thus air volume)
to oscillate several times before finally stabilizing. Understanding and dealing with this
issue is properly the concern of a higher-level component such as a VAV driver; to allow this,
some drivers provide a custom revert action along with their inputs. These actions consist
of restricted control sequences requiring no communication, replacing the default reversion
policy. In Figure 8.5b, the VAV driver uses a custom revert sequence to gradually release
control back towards a known steady-state position.
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(b) Specialized reversion sequences can deal with
this problem

Figure 8.5: Drivers may implement specialized reversion sequences to preserve system sta-
bility when changing control regimes.

8.3.3 Multi-transaction Behavior

Because a design goal is to have well-defined behavior in the case of multiple applications, our
transaction design contains several features to make it easier to reason about system behavior
in the case of multiple writes. The basic strategy in use is simple prioritization, which appears
in two ways: execution prioritization and command prioritization. We augment these simple
priorities with notifications, so that applications can receive timely information about the
state of the actions they have taken.

The first strategy, execution prioritization, determines the ordering between actions
from different transactions when they are runnable at the same time when an underlying
resource must be acquired in order to complete the action. For instance, suppose two trans-
action both contain actions writing a particular point on controller accessed using a shared
serial bus. Because executing the two actions requires bus access, they cannot occur con-
currently; the transaction priority level (in the example, determined by the cmd priority=

argument) will determine which action executes first. This priority level is analogous to the
I/O prioritization present in many modern operating systems; for instance the Linux I/O
scheduler contains extensive functionality for merging operations and enforcing quality of
service. Due to our application domain, we implement strict prioritization between prior-
ity levels, with a FIFO policy within each level. This provides predictable behavior, with
well-known drawbacks.

The second strategy, command prioritization, refers to how different transactions
which access the same point interact in the presence of multiple writers. The building blocks
of this strategy are priority levels, notifications, and locking. Each write action is associated
with a priority level, relative to all other write actions to that point; in the example, the
priority= argument applies to all writes within that transaction. The write with the highest
priority level “wins,” and the point takes on that value. However, writers with both high
and low priorities may wish to receive guarantees about their writes when other transactions
are present. For instance, a low priority writer might wish to be sure that their writes take
effect and are not masked, whereas a high priority writer might want to prevent any writes
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by lower priority. Therefore, write actions may specify a locking precedence using the xabove
and xbelow flags.

time

T1
prio=low

T2
prio=high

Point

1low

high

1present
value

write(1, xabove=True)

2

low

high

2present
value

write(2)

write_error("preempted")

Figure 8.6: Illustration of preemption. In this example, two transactions, one with low
priority and another with high priority submit write actions to the same point. The low-
priority action occurs first, and is made with the xabove flag. When the second write by
T2 occurs, the point takes on the new value because T2’s write action has higher priority.
Additionally, T1 receives a notification that its write action has been preempted and cleared.
Depending upon T1’s error policy, this may result in aborting that transaction, or executing
a special handler.

When a write is made with xabove=True, the write is said to be “exclusive above” – that
is, any higher-priority writes should result in an error. Because the transaction itself will be
lower priority than the transaction submitting those higher priority writes, the runtime will
abort the submitting transaction if a higher priority write is made to that point any time
that the original write is submitted. This process is illustrated in the timeline in Figure
8.6. Analogously, making a write with xbelow, or exclusive below, indicates that no lower
priority transactions should be permitted to make writes; although normally those writes
would be masked by the higher-priority write, this functionally along with a null write is
useful as a way of “locking” a point – preventing lower priority transactions from accessing
it.

8.4 Related Work

Although we have not seen a similar transactional approach to changing control state before,
there are a number of approaches which have been investigated either industrially or aca-
demically which address some of the same concerns as those we are interested in. These fall,
to some extent, into categories of controller programming, robust control and temporal logic.
Much work known as “control theory” is actually quite different, although complementary,
to our goals in this section. Control theory, the science of building transfer functions from
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inputs to outputs so as to maintain some overarching control goal is not as much concerned
with how those transfer functions are actually implemented.

Controller programming frameworks are widely used for programming programmable
logic controllers (PLC) in the manufacturing, process control, and building industries. PLC
controllers are hardware devices with a range of digital and analog input and output points,
and can be programmed in many different ways. Historically, these controllers were de-
signed as digital replacement for relay panels programmed in ladder logic – a sort of boolean
programming logic. More modern PLC’s support programming in graphical logical-flow lan-
guages, or in versions of basic. Those programming paradigms have been standardized in
IEC 61131 [49], although the major building controls systems vendors implement proprietary
variants of these ideas. To illustrate how PLC’s are programmed in practice, we have in-
cluded a small portion of a PPCL program [97] (the native language of that control system)
in Figure 8.7 from Sutardja Dai Hall. This particular system uses a BASIC-like structure,
with control flow determined primarily by line number. The controllers interpret this code
by sequentially evaluating lines from the program once programmed. Other controllers are
programming using a graphical logical-flow language similar to LabView [79]; in such a
framework, the programmer wires together input and output lines from pre-defined function
blocks; for instance an airflow controller. The runtime system then synthesizes from this
graphical program a firmware image for each controller in the system. These systems have
the advantage of being (somewhat) intuitive, but fall short in several ways. Most of them do
not encourage even use of basic software engineering principles like structured programming,
much less the device abstraction that would encourage portability between systems. Their
assumptions about the underlying control fabric also encourage the view that the network el-
ements connecting different components is reliable which, while potentially reasonable within
a building or factory, will cease to hold once control loops are extended to the wide area.

Within these systems, actual control logic is often encapsulated within blocks of precom-
piled code, which can be accessed by the interpreter or appear graphically as a visible block.
The workhorse of control theorists for actually implementing these transfer functions on real
hardware are tools like Matlab Simulink [106]. Once a transfer function has been mathe-
matically constructed, these tools provided sophisticated code synthesis tools for generating
a program implementing the transfer function, which can then be compiled and burned di-
rectly onto a microcontroller. These tools provide an important bridge between high-level
control theoretic language and the details of implementing such logic in hardware.

There have been a number of recent academic efforts to improve the controls programing
situation, which provide interesting design points and new capabilities. One key thread of
work has been an effort to integrate model-based control into legacy systems, in an effort to
increase building performance. The MLE+ toolkit [12] integrates building and environmental
energy modeling from EnergyPlus [25] with a Matlab-based control framework which allows
users to construct building control kernels using Matlab. Another system called BuildingDe-
pot [2, 111] imposes well-defined patterns onto common building systems, so as to simplify
writing code which mutates the buildings state, although does not seem to deal with the
low-level semantics of control in the face of failure. A popular system for homes, HomeOS
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00030 C #####################################################
00040 C ### UCB DAVIS HALL ###
00050 C ### BERKELEY, CA ###
00060 C ### MBC03 ###
00070 C ### CHILLED WATER SYSTEM PPCL ###
00080 C ### ###
00090 C #####################################################
00100 C
00110 C
00120 C $LOC1 = BOTH CHILLERS RUNNING EVAPORATOR BUNDLE DELTA T LOAD CALCULATION

00130 C $LOC2 = CONDENSER WATER PUMP 1/2 PROOF OF RUNNING TRIGGER
00380 C ********************************************************************************
00390 C
00400 C *** POWER FAILURE AND DEFINE STATEMENT CONTROL ***
00410 C
01000 ONPWRT(1020)
01010 GOTO 1040
01020 SET(0.0,SECNDS)
01030 LOCAL(LOC16)
01040 DEFINE(A,"SDH.CHW1.")
01045 $LOC16 = "SDH.CH1.CHW.FLOW"
01050 IF("SDH.CH1.CHW.FLOW" .OR. "SDH.CH2.CHW.FLOW")

THEN ON("SDH.CHX.CHW.FLOW") ELSE OFF("SDH.CHX.CHW.FLOW")
01052 "SDH.CHW_BYPASS_VLV_LOOPOUT" = $LOC13
01270 C *** CHILLER SEASONAL SEQUENCE CHANGE CONTROL ***
01280 IF(MONTH .GE. 4.0 .AND. MONTH .LE. 9.0)

THEN ON("%A%CH_SEASON") ELSE OFF("%A%CH_SEASON")
01290 IF(("%A%CH_SEASON" .EQ. ON .OR. "%A%CH2_FAIL" .EQ. ON) .AND. "%A%CH1_FAIL" .EQ. OFF)

THEN "%A%CH_SEQ" = 12.0
01300 IF(("%A%CH_SEASON" .EQ. OFF .OR. "%A%CH1_FAIL" .EQ. ON) .AND. "%A%CH2_FAIL" .EQ. OFF)

THEN "%A%CH_SEQ" = 21.0

Figure 8.7: A small portion of the programming of chiller sequences in Sutardja Dai Hall on
UC Berkeley’s campus. This portion of the control program is responsible for adjusting the
chiller sequence in order to respond to seasonal changes.

[28] is an interesting, if monolithic approach to programming a distributed set of resources
with in a home. It includes a language based on Datalog for controlling sharing (including a
temporal clauses), which might become even more compelling in the large environment of a
commercial building. The ubiquitous computing community has also proposed frameworks
for overlay control on top of distributed physical resources such as ICrafter [92]; conceptually
similar to our design point, this work represented control as a set of services, atop which the
challenge was building a unified user interface.

8.5 Takeaways

The control transaction metaphor allows for creating applications which, while trusted to
be non-malicious, may also not be perfectly behaved. By packaging all of the changes made
on the building by an application into a single package, administrators can easily remove a
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misbehaving application by manually terminating it. The abstraction also provides for good
behavior in the case where the application crashes or becomes partitioned from the building
it is controlling – the transaction manager will simply revert the actions it has taken, allowing
the building to return to it’s default operating regime. By keeping lease times short, we can
ensure that the building does not move too far in the wrong direction in the case of failures.

PhD Dissertation, Dept. of Computer Science 
UC Berkeley 2014

https://escholarship.org/uc/item/7m31g4t4



120

Chapter 9

Conclusions

We began this thesis by posing the problem of building a system for building control and
optimization that would admit a broader range of applications than is normally considered
under the “control systems” banner. Roughly speaking, we divided the solution space into
thirds – device access, data storage, and control semantics; our approach to building a system
which solved our overarching problem was to investigate requirements in each of these thirds
and then implement to gain real-world experience with each of these components.

9.1 Contributions

The major contribution of this thesis is to design and evaluate an architecture for implemen-
tation of overlay control onto existing systems – that is, systems which begin with traditional
control systems as an underlay, and builds atop them new functionality which incorporates
these systems into new, larger control systems. Because the types of applications one wishes
to build in such a system are often integrative, in the sense that they coordinate control over
a variety of underlying systems, we first addressed consistently exposing sensing and actu-
ation from a heterogeneous underlying systems in a principled and efficient way. Although
certainly not the first to address the problem of collecting telemetry, our solution, sMAP
is based on significant, deep real-world experience in collecting data in a wide variety of
settings, and provides a compact, simple solution which meets a diverse set of requirements
not met by other protocols.

When we first began collecting large volumes of time series data and encountering the
limitations of relational databases, we looked for the “MySQL for time series” – the easy-to-
install package that would satisfy 90% of use cases without a fuss. It now seems that such
a package does not exist, at least in the free software world; commercial database support
is somewhat better. Beyond this rather glaring hole, however, it seemed difficult to express
the common operations one wishes to perform on time series using SQL. Looking at what
is needed led us to our initial solution to the problem, a system for naming, storing, and
processing time series which overlaps with the relational model with special treatment for
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time series, enabling concise, declarative specifications of data cleaning operations so as to
represent distillates.

Finally, much experience in changing buildings’ operations using overlay control on top
of their existing control systems, especially using the BACnet protocol, let us to a better
appreciation for those protocols and also their deficiencies. In particular, the challenge of
reliably undoing changes which have been put in place by a higher-level control led us to
the design of the control transaction as a package of logic and timing, with clearly defined
behavior in the case of a variety of failure conditions.

We have found that the package of these three elements is more powerful than than the
state of the art in control systems for a few reasons. For one, extensive integration effort
is often needed just to expose relatively simplistic functionally to applications; this is a
direct result of the monolithic, siloed architecture of many legacy systems. Breaking this
apart and making the underlying functionally available as a service natural admits a more
factored implementation and greater flexibility. Secondly, although many legacy systems
contain a historian, it is often separate and used only for offline analysis. By building a time
series system which supports real-time analysis and with sufficient performance to be place
inline with certain control decisions, controllers are able to make use of historical data.

9.2 Broader Impacts

The work described here, while still young, has already had a certain amount of impact
beyond our research group. Both sMAP and the time series service (which in our software
distribution are packaged together) have seen adoption by several different communities –
evidence, we believe, that our design has been on the right track. Building scientists and
architects at the Center for the Built Environment have adapted sMAP as a platform for
building data analysis, for both energy and comfort analyst. Scientists at the Lawrence
Berkeley National Lab have built several interesting, new tools around it, and have used
it for collecting data about residential water consumption and lighting usage. Researchers
at the Pacific Northwest National Laboratory have adopted sMAP as the data integration
and historian for their Voltron platform [64], a system for agent-based electric grid con-
trol. Danish researchers have used it as a platform for collecting telemetry from a variety
of smart-grid connected appliances. Last but not least, a number of companies have used
components of sMAP to build new products and services, including cloud-connected refrig-
erators, personal comfort systems, and energy analyses. We have also enabled a significant
amount of research at Berkeley by exposing data and control which was heretofore difficult to
access. Researchers have developed numerous applications on top of our platform, including
demand controlled ventilation [104], model-predictive control for HVAC systems [7], demand
response, as well as supporting a variety of undergraduate projects and hack-a-thons.
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9.3 Future Work

There is of course much work to be done. Some of the work revolves around continuing
extend the platform to meet address important considerations which we were not able to
tackle in this initial work. Other work involves moving some of the key findings of our work
from an academic setting into the wider world of industry and standards bodies. Finally,
we believe some of our results are applicable to other neighboring domains, and that both
would be well-served by closer collaboration.

Within the platform architecture, we presented three key pieces which are minimally suf-
ficient for implementing interesting new services. However, we provided a relatively cursory
treatment some important issues in this work: most importantly security, access control,
safety, and abstraction. Specifically, we did not address the challenge of allowing less-than-
trustworthy applications in this context; applications within BOSS are assumed to “know
what they’re doing.” We believe that BOSS provides a good framework for a through ex-
ploration of issues; potentially using a declarative approach for expressing constraints, or
a model-driven approach for identifying safe regimes of system operation and then taking
action to prevent applications from entering unsafe regimes. Another area which requires
elaboration is the issue of driver composition – our control framework allows single appli-
cations to make changes to building operations, but it is not entirely clear how to compose
those applications into (for instance) a hierarchal structure in order to allow additional
factoring. Finally, the time series service provides a useful amount of metadata about un-
derlying control elements, but it is not appropriate for certain types of queries. For instance,
it is difficult to encode information about relationships relating different domains – spatial,
system, electrical, etc. The Building Application Stack [63] work provides a starting point
for several of these issues; properly integrated into BOSS, it could be a compelling solution.

While designing and implementing our concept of transactions on top of existing con-
trollers, we constantly encountered problems with reliably implementing reversion sequences
and notifications, especially on top of BACnet. Although redesigning BACnet is probably too
ambitious, we feel strongly that a few small modifications to the protocol would significantly
simplify the task of implementing overlay control on top of it. First, allowing writes into
the BACnet priority to array to be associated with a write lease time would allow stronger
guarantees that actions taken will actually revert; at the present, a transaction manager
crash or partition from the controllers may result in orphaned writes unless the implementor
is extremely carefully and provides both write-ahead logging and log shipping of actions so
that they can be reliably undone. Secondly, providing for notifications to writers when their
writes are masked or unmasked by a higher-priority writer would eliminate the priority-array
polling now required to properly implement notifications in case of being overridden.

Finally, there is significant overlap between the time series processing work we have
accomplished and the Internet community’s work on streaming event processing. Reading the
literature (for instance Aurora, and more recently Spark Streaming [1, 117]) suggests much
overlap with some differences; Internet systems tend to be much more focused on extracting
meaning from discrete events, while time series rely more on batches of records in order to
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look for trends. Nonetheless, taking some of our insights about time series and expressing
them within a framework designed for massive parallelism and high data rates would be
extremely interesting and could help bridge the gap between two separate communities; we
believe we have much to offer regarding the semantics of time series data processing that
would also be applicable to processing telemetry from server farms, clickstreams, and many
other common Internet workloads.

9.4 Final Remarks

One underlying tension we feel constantly when designing overlay control systems is the
tension between between centralized control and distributed decision making. This debate
is felt broadly across many communities; generally centralize systems are simpler, more
straightforward to reason about, and often preferable if feasible for the domain. Distributed
systems are complicated, but with greater local autonomy can come greater tolerance to
certain classes of faults and the ability to function in the face of partition or partial fail-
ure. The existing building control regime is probably too decentralized – there is too little
coordination imposed on all of the various independent pieces of control going on.

An issue which unfortunately goes unexplored in this thesis are the practical economic,
organization, and regulatory challenges of actually moving technology like that which we
have developed into the marketplace, and ultimately into buildings. The building industry
is by its nature conservative, given that it deals with expensive assets over long periods of
time. We believe however that there is hope, coming from a number of directions. First, the
overriding imperative of climate change and ideally, a concomitant increase in energy costs
will increase the value placed on the advanced optimization capabilities we can achieve at
relative low cost. Secondly, we believe that a platform like BOSS is capable of delivering not
just the old building services better, but enabling new ones which will be desirable enough
to drive the adoption of improved technologies.

PhD Dissertation, Dept. of Computer Science 
UC Berkeley 2014

https://escholarship.org/uc/item/7m31g4t4



124

Bibliography

[1] Daniel J. Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack, Christian Convey,
Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. Aurora: a new
model and architecture for data stream management. The VLDB Journal, 12:120–139,
August 2003.

[2] Yuvraj Agarwal, Rajesh Gupta, Daisuke Komaki, and Thomas Weng. BuildingDepot:
An extensible and distributed architecture for building data storage, access and shar-
ing. In Proceedings of the Fourth ACM Workshop on Embedded Sensing Systems for
Energy-Efficiency in Buildings, BuildSys ’12, pages 64–71, New York, NY, USA, 2012.
ACM.

[3] J.D. Alvarez, J.L. Redondo, E. Camponogara, J. Normey-Rico, M. Berenguel, and P.M.
Ortigosa. Optimizing building comfort temperature regulation via model predictive
control. Energy and Buildings, 2013.

[4] American Society of Heating, Refrigerating and Air-Conditioning Engineers. ASHRAE
Standard 135-1995: BACnet. ASHRAE, Inc., 1995.

[5] American Society of Heating, Refrigerating and Air-Conditioning Engineers. ASHRAE
Standard 55-2010: Thermal Environmental Conditions for Human Occupancy.
ASHRAE, Inc., 2010.

[6] Apache Software Foundation. Avro: A Data Serialization System. http://avro.

apache.org/, 2009–2014.

[7] Anil Aswani, Neal Master, Jay Taneja, Andrew Krioukov, David Culler, and Claire
Tomlin. Energy-efficient Building HVAC Control Using Hybrid System LBMPC. In
Proceedings of the IFAC Conference on Nonlinear Model Predictive Control, 2012.

[8] Mesut Avci, Murat Erkoc, Amir Rahmani, and Shihab Asfour. Model predictive HVAC
load control in buildings using real-time electricity pricing. Energy and Buildings, 2013.

[9] Ron Avnur and Joseph M. Hellerstein. Eddies: continuously adaptive query processing.
In Proceedings of the 2000 ACM SIGMOD international conference on Management
of data, SIGMOD ’00, pages 261–272, New York, NY, USA, 2000. ACM.

PhD Dissertation, Dept. of Computer Science 
UC Berkeley 2014

https://escholarship.org/uc/item/7m31g4t4

http://avro.apache.org/
http://avro.apache.org/


125

[10] Elizabeth A. Basha, Sai Ravela, and Daniela Rus. Model-based monitoring for early
warning flood detection. In SenSys ’08: Proceedings of the 6th ACM conference on
Embedded network sensor systems, pages 295–308, New York, NY, USA, 2008. ACM.

[11] D. Beddoe, P. Cotton, R. Uleman, S. Johnson, and J. R. Herring. OpenGIS: Simple
features specification for SQL. Technical report, OGC, May 1999.

[12] Willy Bernal, Madhur Behl, Truong Nghiem, and Rahul Mangharam. MLE+: Design
and deployment integration for energy-efficient building controls. In Proceedings of
the Fourth ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in
Buildings, BuildSys ’12, pages 215–216, New York, NY, USA, 2012. ACM.

[13] Jan Beutel, Stephan Gruber, Andreas Hasler, Roman Lim, Andreas Meier, Christian
Plessl, Igor Talzi, Lothar Thiele, Christian Tschudin, Matthias Woehrle, and Mustafa
Yuecel. Permadaq: A scientific instrument for precision sensing and data recovery in
environmental extremes. In IPSN ’09: Proceedings of the 2009 International Confer-
ence on Information Processing in Sensor Networks, pages 265–276, Washington, DC,
USA, 2009. IEEE Computer Society.

[14] Carsten Bormann, Angelo Paolo Castellani, and Zach Shelby. CoAP: An Application
Protocol for Billions of Tiny Internet Nodes. IEEE Internet Computing, 16(2):62–67,
2012.

[15] Randy Burch. Monitoring and optimizing pid loop performance. 2004.

[16] California Solar Initiative. California Solar Statistics. http://www.

californiasolarstatistics.ca.gov.

[17] Matteo Ceriotti, Luca Mottola, Gian Pietro Picco, Amy L. Murphy, Stefan Guna,
Michele Corra, Matteo Pozzi, Daniele Zonta, and Paolo Zanon. Monitoring heritage
buildings with wireless sensor networks: The torre aquila deployment. In IPSN ’09:
Proceedings of the 2009 International Conference on Information Processing in Sensor
Networks, pages 277–288, Washington, DC, USA, 2009. IEEE Computer Society.

[18] Kaushik Chakrabarti, Minos N. Garofalakis, Rajeev Rastogi, and Kyuseok Shim. Ap-
proximate query processing using wavelets. In Proceedings of the 26th International
Conference on Very Large Data Bases, VLDB ’00, pages 111–122, San Francisco, CA,
USA, 2000. Morgan Kaufmann Publishers Inc.

[19] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin,
Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel Madden, Vi-
jayshankar Raman, Frederick Reiss, and Mehul A. Shah. TelegraphCQ: Continuous
dataflow processing for an uncertain world. In CIDR – First Biennial Conference on
Innovative Data Systems Research, Asilomar, CA, January 2003.

PhD Dissertation, Dept. of Computer Science 
UC Berkeley 2014

https://escholarship.org/uc/item/7m31g4t4

http://www.californiasolarstatistics.ca.gov
http://www.californiasolarstatistics.ca.gov


126

[20] Biswapesh Chattopadhyay, Liang Lin, Weiran Liu, Sagar Mittal, Prathyusha
Aragonda, Vera Lychagina, Younghee Kwon, and Michael Wong. Tenzing: A SQL
implementation on the mapreduce framework. PVLDB, 4(12):1318–1327, 2011.

[21] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. NiagaraCQ: a scalable
continuous query system for internet databases. In Proceedings of the 2000 ACM
SIGMOD international conference on Management of data, SIGMOD ’00, pages 379–
390, New York, NY, USA, 2000. ACM.

[22] Mitch Cherniack, Hari Balakrishnan, Magdalena Balazinska, Donald Carney, Ugur
Cetintemel, Ying Xing, and Stan Zdonik. Scalable distributed stream processing. In
CIDR – First Biennial Conference on Innovative Data Systems Research, Asilomar,
CA, January 2003.

[23] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein, Khaled Elmeleegy,
and Russell Sears. Mapreduce online. In Proceedings of the 7th USENIX conference on
Networked systems design and implementation, NSDI’10, pages 21–21, Berkeley, CA,
USA, 2010. USENIX Association.

[24] Automated Logic Corporation. ALC system architecture. http://www.

automatedlogic.com/files/documents/products/csconnrev7.pdf/, 2007.

[25] Drury B. Crawley, Frederick C. Winkelmann, Linda K. Lawrie, and Curtis O Pedersen.
EnergyPlus: New capabilities in a whole-building energy simulation program. In Sev-
enth International Conference of the International Building Performance Simulation
Associateion, pages 51–58, 2001.

[26] P. Cudre-Mauroux, H. Kimura, K.-T. Lim, J. Rogers, R. Simakov, E. Soroush, P. Ve-
likhov, D. L. Wang, M. Balazinska, J. Becla, D. DeWitt, B. Heath, D. Maier, S. Mad-
den, J. Patel, M. Stonebraker, and S. Zdonik. A demonstration of scidb: a science-
oriented dbms. Proc. VLDB Endow., 2(2):1534–1537, August 2009.

[27] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on large
clusters. Commun. ACM, 51:107–113, January 2008.

[28] Colin Dixon, Ratul Mahajan, Sharad Agarwal, A. J. Brush, Bongshin Lee, Stefan
Saroiu, and Paramvir Bahl. An operating system for the home. In Proceedings of the
9th USENIX Conference on Networked Systems Design and Implementation, NSDI’12,
pages 25–25, Berkeley, CA, USA, 2012. USENIX Association.

[29] Fred Douglis, Michael Branson, Kirsten Hildrum, Bin Rong, and Fan Ye. Multi-site
cooperative data stream analysis. SIGOPS Oper. Syst. Rev., 40:31–37, July 2006.

[30] Energy Outlook 2010. Energy Information Administration, http://www.eia.doe.gov/
oiaf/ieo/index.html, 2010.

PhD Dissertation, Dept. of Computer Science 
UC Berkeley 2014

https://escholarship.org/uc/item/7m31g4t4

http://www.automatedlogic.com/files/documents/products/csconnrev7.pdf/
http://www.automatedlogic.com/files/documents/products/csconnrev7.pdf/
http://www.eia.doe.gov/oiaf/ieo/index.html
http://www.eia.doe.gov/oiaf/ieo/index.html


127

[31] Varick Erickson, Miguel A. Carreira-Perpinan, and Alberto E. Cerpa. OBSERVE:
Occupancy-Based System for Efficient Reduction of HVAC Energy. In The 10th
ACM/IEEE Int’l Conference on Information Processing in Sensor Networks (IP-
SN/SPOTS), 2011.

[32] Andrey Ermolinskiy, Sachin Katti, Scott Shenker, Lisa L Fowler, and Murphy Mc-
Cauley. Towards practical taint tracking. Technical Report UCB/EECS-2010-92,
EECS Department, University of California, Berkeley, Jun 2010.

[33] Roy Thomas Fielding. REST: Architectural Styles and the Design of Network-based
Software Architectures. Doctoral dissertation, University of California, Irvine, 2000.

[34] International Alliance for Interoperability. End user guide to industry foundation
classes, enabling interoperability. Technical report, 1996.

[35] Marc Fountain, Gail Brager, Edward Arens, Fred Bauman, and Charles Benton. Com-
port control for short-term occupancy. Energy and Buildings, 21(1):1 – 13, 1994.

[36] Sorabh Gandhi, Luca Foschini, and Subhash Suri. Space-efficient online approximation
of time series data: Streams, amnesia, and out-of-order. 2013 IEEE 29th International
Conference on Data Engineering (ICDE), 0:924–935, 2010.

[37] Johannes Gehrke, Flip Korn, and Divesh Srivastava. On computing correlated aggre-
gates over continual data streams. In Proceedings of the 2001 ACM SIGMOD interna-
tional conference on Management of data, SIGMOD ’01, pages 13–24, New York, NY,
USA, 2001. ACM.

[38] Google, Inc. Protocol Buffers. https://developers.google.com/

protocol-buffers/, 2010.

[39] Google powermeter. http://www.google.org/powermeter/.

[40] Graphite – Scalable Realtime Graphing. http://graphite.wikidot.com/, 2012.

[41] Jim Gray, David T. Liu, Maria Nieto-Santisteban, Alex Szalay, David J. DeWitt, and
Gerd Heber. Scientific data management in the coming decade. SIGMOD Rec., 34:34–
41, December 2005.

[42] Object Management Group. Corba component model 4.0 specification. Specification
Version 4.0, Object Management Group, April 2006.

[43] Trinabh Gupta, Rayman Preet Singh, Amar Phanishayee, Jaeyeon Jung, and Ratul
Mahajan. Bolt: Data management for connected homes. In 11th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 14), pages 243–256, Seattle,
WA, April 2014. USENIX Association.

PhD Dissertation, Dept. of Computer Science 
UC Berkeley 2014

https://escholarship.org/uc/item/7m31g4t4

https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
http://www.google.org/powermeter/
http://graphite.wikidot.com/


128

[44] Thomas J. Harris. Assessment of control loop performance. The Canadian Journal of
Chemical Engineering, 67(5):856–861, 1989.

[45] Joseph M. Hellerstein, Ron Avnur, Andy Chou, Christian Hidber, Chris Olston, Vi-
jayshankar Raman, Tali Roth, and Peter J. Haas. Interactive data analysis: The
control project. Computer, 32:51–59, August 1999.

[46] Joseph M. Hellerstein, Michael Stonebraker, and Rick Caccia. Independent, open
enterprise data integration. IEEE Data Eng. Bull., 22(1):43–49, 1999.

[47] C Huizenga, S Abbaszadeh, L Zagreus, and E Arens. Air quality and thermal comfort
in office buildings. In Healthy Buildings, 2006.

[48] Bret Hull, Vladimir Bychkovsky, Yang Zhang, Kevin Chen, Michel Goraczko, Allen
Miu, Eugene Shih, Hari Balakrishnan, and Samuel Madden. Cartel: a distributed
mobile sensor computing system. In Proceedings of the 4th international conference on
Embedded networked sensor systems, 2006.

[49] International Electrotechnical Commission. IEC61131: Programmable Controllers,
1992–2013.

[50] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad:
distributed data-parallel programs from sequential building blocks. In Proceedings of
the 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems 2007,
EuroSys ’07, pages 59–72, New York, NY, USA, 2007. ACM.

[51] Information technology – Control network protocol – Part 1: Protocol stack, 2012.

[52] Harry L. Jenter and Richard P. Signell. Netcdf: A public-domain-software solution to
data-access problems for numerical modelers, 1992.

[53] Xiaofan Jiang, Stephen Dawson-Haggerty, Prabal Dutta, and David Culler. Design
and implementation of a high-fidelity ac metering network. In IPSN’09, 2009.

[54] Xiaofan Jiang, Minh Van Ly, Jay Taneja, Prabal Dutta, and David Culler. Experi-
ences with a high-fidelity wireless building energy auditing network. In SenSys ’09:
Proceedings of the 7th ACM conference on Embedded network sensor systems, 2009.

[55] David Josephsen. Building a Monitoring Infrastructure with Nagios. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 2007.

[56] Alan Watton Jr. and Russell K. Marcks. Tuning control loops nonlinearities and
anomalies. ASHRAE Journal, 21(1):46 – 52, 2009.

[57] Aman Kansal, Suman Nath, Jie Liu, and Feng Zhao. Senseweb: An infrastructure for
shared sensing. IEEE MultiMedia, 14(4):8–13, October 2007.

PhD Dissertation, Dept. of Computer Science 
UC Berkeley 2014

https://escholarship.org/uc/item/7m31g4t4



129

[58] KEMA, Inc. Research Evaluation of Wind Generation, Solar Generation, and Storage
Impact on the California Grid, 2010.

[59] EamonnJ. Keogh and MichaelJ. Pazzani. A simple dimensionality reduction technique
for fast similarity search in large time series databases. In Takao Terano, Huan Liu, and
ArbeeL.P. Chen, editors, Knowledge Discovery and Data Mining. Current Issues and
New Applications, volume 1805 of Lecture Notes in Computer Science, pages 122–133.
Springer Berlin Heidelberg, 2000.

[60] Younghun Kim, Thomas Schmid, Zainul M. Charbiwala, Jonathan Friedman, and
Mani B. Srivastava. Nawms: nonintrusive autonomous water monitoring system. In
SenSys ’08: Proceedings of the 6th ACM conference on Embedded network sensor sys-
tems, pages 309–322, New York, NY, USA, 2008. ACM.
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