
UCLA
UCLA Electronic Theses and Dissertations

Title
Efficient List Decoding for Short Blocklength Communication

Permalink
https://escholarship.org/uc/item/7m32t44f

Author
Towell, Brendan

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7m32t44f
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Efficient List Decoding for Short Blocklength Communication

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science in Electrical and Computer Engineering

by

Brendan Hisao Towell

2024

© Copyright by

Brendan Hisao Towell

2024

ABSTRACT OF THE THESIS

Efficient List Decoding for Short Blocklength Communication

by

Brendan Hisao Towell

Master of Science in Electrical and Computer Engineering

University of California, Los Angeles, 2024

Professor Richard D. Wesel, Chair

At short blocklengths, well designed zero-terminated (ZT) and tail-biting (TB) convolutional

codes (CCs) concatenated with cyclic redundancy check (CRC) codes have been shown to

closely approach the random coding union (RCU) bound for both low rate (rate-1/n) and

high rate (rate-(n− 1)/n) codes. The CRC acts as an outer error detection code, verifying

that he codeword has been successfully received and decoded, while the CC acts as an inner

error correction code, combating channel errors. Maximum likelihood (ML) decoding of such

a code can be performed by the serial list Viterbi algorithm (S-LVA), which checks codewords

of the inner CC in order of increasing distance from the received word, and returns the first

inner codeword that also passes the CRC. Implementation of the S-LVA for low rate CCs

can be done efficiently on the standard Viterbi trellis, while using the dual trellis for high

rate CCs can offer significant performance improvements.

For some rates, it may be the case that no CRC is available. In that case, we consider a

generalization called an expurgating linear function (ELF), which doesn’t enforce the cyclic

condition, but similarly serves the function of expurgating low weight codewords, improving

the performance of the concatenated code. Both ELFs and CRCs that offer a good distance

spectrum metric can be efficiently identified by the list decoding sieve method.

Sometimes, it may be desirable to sacrifice ML performance for improved decoding complex-

ity. In such cases, it is possible to leverage the linear nature of CC-CRCs, and in particular,

TBCC-CRCs, to reduce the decoding complexity with a small loss to frame error rate (FER)

performance. Much of the cost associated with S-LVA of TBCC-CRCs is due to tracebacks

ii

of paths that don’t end up meeting the TB condition. Due to the linear nature of the code,

we can precompute offsets from any trellis path with a particular ending state difference

(ESD), which we can use to quickly search nearby codewords that are guaranteed to meet

the TB condition. This has been shown empirically to significantly improve the expected

list size required for decoding.

iii

The thesis of Brendan Hisao Towell is approved.

Ian Roberts

Lara Dolecek

Richard D. Wesel, Committee Chair

University of California, Los Angeles

2024

iv

TABLE OF CONTENTS

1 Introduction . 1

1.1 Organization . 1

1.2 My Work . 1

1.3 Channel Coding . 2

1.4 Convolutional Codes . 3

1.4.1 Background and Encoding . 3

1.4.2 Decoding . 5

1.5 CRCs and Concatenation . 7

2 On CRC-Aided, Dual-Trellis, List Decoding for High-Rate Convolutional

Codes with Short Blocklengths . 9

2.1 Abstract . 9

2.2 Introduction . 9

2.2.1 Contributions . 12

2.2.2 My Work . 13

2.2.3 Organization . 14

2.3 Systematic Encoding and Dual Trellis . 14

2.3.1 Notation . 14

2.3.2 Systematic Encoding . 15

2.3.3 Dual Trellis . 15

2.3.4 Tree-Trellis Algorithm . 17

2.4 ZTCC with DSO CRC via Dual Trellis SLVD 18

2.4.1 Zero Termination of Dual Trellis . 18

v

2.4.2 Design of DSO CRCs for High-Rate ZTCCs 19

2.4.3 Results and Comparison with RCU Bound 20

2.5 TBCC with DSO CRC and Dual Trellis SLVD 21

2.5.1 Design of DSO CRCs for High-Rate TBCCs 22

2.5.2 Single Trellis List Decoding for CRC-TBCC 23

2.5.3 Multi-Trellis List Decoding for CRC-TBCC 25

2.5.4 List Decoding with WAVA . 25

2.5.5 Complexity Analysis . 27

2.5.6 Results, Analysis, and Expected List Rank of SLVD 32

2.6 Conclusion . 32

3 ELF Codes: Concatenated Codes with an Expurgating Linear Function as

the Outer Code . 34

3.1 Abstract . 34

3.2 Introduction . 35

3.2.1 Contributions . 36

3.2.2 My Work . 36

3.2.3 Organization . 36

3.3 Distance Spectrum Union Bounds . 37

3.3.1 DSU Bounds for Zero Termination and Tail Biting 37

3.3.2 DSU Bound for a Convolutional Code with an ELF 38

3.3.3 DSU Bound for Punctured Convolutional Code with ELF 40

3.4 A List Decoding Sieve to find the best ELF 42

3.5 A Puncturing Example: Rate-1/2 K = 64 45

3.6 Conclusions . 46

vi

4 Linearity-Enhanced Serial List Decoding of Linearly Expurgated Tail-Biting

Convolutional Codes . 47

4.1 Abstract . 47

4.2 Introduction . 47

4.2.1 Background . 47

4.2.2 Contributions . 48

4.2.3 My Work . 50

4.2.4 Organization . 50

4.3 Offset Sphere Decoding . 50

4.3.1 Generating Lists of Neighboring Tail-Biting Codewords 51

4.3.2 Searching the TB Sphere for the Closest ELF-TB Codeword 52

4.3.3 Simulation Results and Discussion . 53

4.4 List-of-Spheres Decoder . 53

4.4.1 Widening the Aperture of S-LVA with a List of Spheres 54

4.4.2 The Size of the Spheres . 55

4.4.3 A Threshold to Avoid Decoding Errors 56

4.4.4 Selecting the Sphere Size Nneighbor and the Threshold DT 57

4.4.5 Expected List Rank and Complexity 58

4.5 Conclusion . 60

5 Conclusion . 61

References . 62

vii

LIST OF FIGURES

1.1 Basic transmission system block diagram . 2

1.2 A basic convolutional encoder . 4

1.3 State machine view of the encoder in Fig. 1.2 4

1.4 Trellis diagram for the encoder in Fig. 1.2 6

1.5 Block diagram of a transmission system using a CC concatenated with a CRC 8

2.1 FER vs. SNR for various CRC-ZTCCs. The ZTCC is generated with the

(4, 3, 6) encoder H = (107, 135, 133, 141). The DSO CRC polynomials of

degrees 3, 6, and 10 are 0xB, 0x6F, and 0x59F, respectively. Values in paren-

thesis denote information length K and blocklength N , respectively. © 2022

IEEE . 20

2.2 FER vs. SNR for v = 5 CRC-ZTCCs designed under Karimzadeh et al.’s

scheme [1] and our scheme. Both CRC-ZTCCs have information length K =

81 and blocklength N = 128. © 2022 IEEE 21

2.3 Dual trellis diagram for rate-3/4 TBCC with a root node at the end for encoder

H = (2, 5, 7, 6) with v = 2. Solid lines represent 0 paths and dashed lines

represent 1 paths. © 2022 IEEE . 24

2.4 Multi-trellis construction for rate-3/4 TBCC dual trellis with encoder H =

(2, 5, 7, 6) with v = 2. The pictured trellis has starting and ending state of 0.

Three similar trellises are also constructed for this encoder with starting and

ending states of 1-3. © 2022 IEEE . 26

2.5 Cumulative distribution function (CDF) of list ranks for the single-trellis,

multi- trellis, and WAVA decoding approaches for the (33, 25, 37) TBCC with

blocklength of 128 at SNR = 2 dB. © 2022 IEEE 27

viii

2.6 The overall complexity comparison of the single-trellis, multi-trellis, andWAVA

decoders for the TBCC generated with the (4, 3, 4) encoder H = (33, 25, 37),

with blocklength of 128. The CRC polynomial of degree 3 is 0x9. All com-

plexity values are normalized with respect to the single-trellis CSSV at different

list sizes. © 2022 IEEE . 28

2.7 The SNR gap to the RCU bound vs. the average complexity of SLVD of

CRC-ZTCC codes in Table I and CRC-TBCC codes in Table II for target

FER of 10−4. For CRC-TBCCs, results for both single-trellis decoding and

WAVA decoding are demonstrated. Each color represents a specific CRC-

aided CC shown in the tables. Markers from top to bottom with the same

color correspond to DSO CRC polynomials with m = 3, . . . , 10 for TBCCs,

and m = 3, . . . , 11 for ZTCCs. © 2022 IEEE 30

2.8 FER vs. SNR for various CRC-TBCCs. The TBCC is generated with the

(4, 3, 6) encoder H = (107, 135, 133, 141). The DSO CRC polynomials of de-

grees 3, 6, and 10 are 0xB, 0x41, and 0x723, respectively. Values in parenthesis

denote information length K and blocklength N , respectively. © 2022 IEEE 31

3.1 Convolutional encoder G(x) with an ELF E(x) as an outer code. © 2023 IEEE 38

3.2 DSU bounds for the ν = 8 tail-biting convolutional code with K = 64 message

bits with no ELF (red) and with each possible m = 7 ELF (blue). Also shown

is a simulation of list Viterbi decoding of the best ELF 0xFF (green) and, for

reference, the (142,64) and (128,64) RCU bounds (dashed). © 2023 IEEE . 40

3.3 Average list size vs. Eb/N0 for the list Viterbi decoding simulation of a ν = 8

TBCC concatenated with ELF 0xFF shown in Fig.3.2. © 2023 IEEE 41

3.4 DSU and RCU bounds for ELF codes of Table 3.2. © 2023 IEEE 44

3.5 Gap at 10−6 between DSU and RCU bounds vs. m for Table 3.1 ELFs. ©

2023 IEEE . 45

ix

3.6 DSU bounds for two (128,64) codes and the (128,64) RCU bound. One code

is the standard ν = 14 tail-biting convolutional code (75063,56711) with no

ELF and no puncturing. The other is the ν = 8 tail-biting convolutional code

(561,753) with ELF 0x1565 from Tables 3.1 and 3.2 with 24 bits punctured.

© 2023 IEEE . 46

4.1 TFR vs. Eb/N0 simulation results for a Viterbi decoder, an offset sphere

decoder with a varying number of neighboring codewords LN = 128, 512

and 2048, as well as an S-LVA decoder with a restricted maximum list size

(Lmax = 2048) so we can compare across the two approaches. The RCU bound

for the K = 64, N = 142 code is shown as a dashed green line. The rate-1/2

ELF-TBCC used for simulation has generator polynomials (561, 753) in octal

and a degree-7 ELF of 0xFF, which adds seven ELF bits to the message. ©

2024 IEEE . 52

4.2 Illustration of the relationship between the received wordR, a trellis codeword

C identified by S-LVA, and two TB codewords Ĉ(1) and Ĉ(2) equidistant from

C found through a pre-computed list of offsets corresponding to the ESD of C.
The squared Euclidean distances D and D̂ are labeled, as well as the threshold

DT . Note that Ĉ(2) satisfies DT but the distance from Ĉ(1) to R is larger than

DT . © 2024 IEEE . 54

4.3 TFR vs. Eb/N0 simulation results for the same ELF-TBCC as Fig. 1 using

the list-of-spheres decoder for aperture parameters A = 10 with Nneighbor = 1

and A = 5 with Nneighbor ∈ {1, 2, 3}. The performance of a list-of-spheres

decoder without any threshold and an S-LVA decoder with a large maximum

list size (Lmax = 105) are also presented. The RCU bound for the code is

shown as a dashed green line. © 2024 IEEE 57

x

4.4 E[L] vs. Eb/N0 simulation results for the same ELF-TBCC as Fig. 1 us-

ing the list-of-spheres decoder for aperture parameters A = 10 and A = 5

and Nneighbor ∈ {1, 2, 3}. The E[L] of a list-of-spheres decoder without any

threshold and an S-LVA decoder with a sufficiently large maximum list size

(Lmax = 105) that ensures ML decoding are shown in solid yellow and orange,

respectively. © 2024 IEEE . 59

xi

LIST OF TABLES

2.1 DSO CRC polynomials for rate-3/4 ZTCC at blocklength N = 128 generated

by H = (33, 25, 37, 31) with v = 4, by H = (47, 73, 57, 75) With v = 5, and

by H = (107, 135, 133, 141) with v = 6. © 2022 IEEE 18

2.2 DSO CRC polynomials for rate-3/4 TBCC at blocklength N = 128 generated

by H = (33, 25, 37, 31) with v = 4, by H = (47, 73, 57, 75) with v = 5, and by

H = (107, 135, 133, 141) with v = 6. © 2022 IEEE 22

3.1 Best ELFs E(x) for m = 0 to m = 12 redundancy bits that maximize min-

imum distance for the ν = 8 TBCC (561,753) for K = 64 message bits,

N = 2 × (64 + m) transmitted bits and for N = 2 × 76 transmitted bits,

K = 76−m message bits. © 2023 IEEE . 42

3.2 Expurgated distance spectra for m = 0 (no expurgation) to m = 12 for

the ν = 8 (N=152,K=76) tail-biting convolutional mother code described by

polynomial (561,753). © 2023 IEEE . 43

xii

ACKNOWLEDGMENTS

I would like to thank Richard Wesel, for his continued guidance through my time at UCLA,

both as my professor and PI. I would also like to thank Beryl Sui, for being an excellent

collaborator along my research journey. This research was supported by National Science

Foundation (NSF) grant CCF-2008918. Any opinions, findings, and conclusions or recom-

mendations expressed in this material are those of the author and do not necessarily reflect

views of NSF.

xiii

CHAPTER 1

Introduction

1.1 Organization

We will begin this thesis with a brief overview of relevant background information, following

Error Control Coding by Lin and Costello [2]. We will draw primarily from chapters 1, 11,

and 12. Thesis chapters 2, 3, 4 are each drawn from a published work I’ve contributed to,

namely [3], [4], and [5], respectively. In chapter 2, we will look at list decoding for high

rate convolutional codes (CCs) concatenated with cyclic redundancy check codes (CRCs).

In chapter 3, we will look at extending the concept of using a CC concatenated with a CRC

to a more general expurgating linear function (ELF), which may not be cyclic. In chapter

4, we will look at how the linear property of such concatenated codes allow for a reduction

in decoding complexity with minimal loss of FER performance. Chapter 5 concludes this

thesis.

1.2 My Work

Much of my research work has been done in collaboration with other researchers from my lab,

including Beryl Sui and Professor Wesel. To ensure my contributions are fairly represented,

I will be including a short note at the beginning of each chapter outlining my personal

contributions.

1

Information Source Channel Encoder Modulator

Channel

DemodulatorChannel DecoderDestination

Noise
n

m x

rm̂

Figure 1.1: Basic transmission system block diagram

1.3 Channel Coding

Efficient and reliable data transmission over noisy channels has become increasingly impor-

tant in the digital age. The components of a basic transmission system can be represented

by a block diagram, as see in Fig. 1.1. The information source provides a binary message

m, which is transformed by the encoder into an encoded sequence x, called a codeword. In

our case, x will be binary. The modulator takes the codeword and converts it to a waveform

to be transmitted over the channel, where the demodulator converts it back to a received

codeword r = x+n, the sum of the original codeword and the noise introduced by the chan-

nel. Finally, the decoder resolves r to the estimated information sequence m̂, which ideally

is equivalent to the original m, and passes m̂ to the destination, completing the transmis-

sion. In the case that m̂ ̸= m, we say that a codeword error (equivalently, frame error) has

occurred. A common metric for performance, and the one primarily used in this thesis, is

the codeword error rate (CER) or equivalently, frame error rate (FER), the number of frame

errors divided by the total number of transmissions. Throughout this thesis, we consider

binary phase shift keying as the method of modulation, so the modulator takes xi ∈ {0, 1}
and transmits ±Eb, where Eb is the energy per bit. The noise is additive white Gaussian

noise (AWGN), and is normally distributed.

There are several useful parameters to define in relation to Fig. 1.1. One is the block

length n, which is the length of x, and another is the number of message bits k, which is

2

the length of m. These combine to give the code rate R = k/n. Since adding redundancy

requires adding additional information, we are concerned with the cases where k < n, so

R < 1. So, a code will consist of 2m possible messages, corresponding to the same number

of unique codewords, out of the 2n possible n bit long messages.

When decoding, it makes intuitive sense that we would want to choose m̂ such that P (m̂ =

m|r) is maximized. Making such a decision is known as maximum likelihood (ML) decoding.

While this is generally true, it may be the case that ML decoding is more computationally

intensive that desired, or even may be practically intractable. In such cases, sub-ML decoding

can be a practical solution to reduce complexity, and depending on the algorithm, may not

even substantially harm FER performance.

1.4 Convolutional Codes

1.4.1 Background and Encoding

Convolutional codes (CCs) are a class of codes that use memory elements in the encoding

process to add redundancy. Typically, the number of memory elements is represented as

v. A basic convolutional encoder can be seen in figure 1.2, where x1 and x2 are the output

bits. The boxes represent the memory elements, and act as shift registers, and the circles

are XORs. For the sake of example, consider we have a message string 10, and the memory

elements start in the 0 state. Then the first input bit is a 1, so both output bits are 1, and

the first shift register stores that 1. The second input bit is a 0, so considering the value of

the memory elements, x1 = 1 and x2 = 0, and the 1 shifts to the second memory element,

and the 0 is stored in the first memory element. Since we have two output bits for every

input bit, this is a rate-1/2 encoder, and since we have two memory elements, v = 2.

Convolutional encoders can be viewed as state machines, where the state is given by

the concatenation of the value stored in the memory elements, and edges corresponding to

pairs of inputs and outputs, as illustrated in Fig. 1.3. The labels of the edges correspond

to input/output pairs, and the states are the concatenation of the memory elements, with

3

m

+

+

+ x1

x2

Figure 1.2: A basic convolutional encoder

00

01

10

11

1/11 1/01

0/010/11

0/101/000/00 1/10

Figure 1.3: State machine view of the encoder in Fig. 1.2

the least significant bit corresponding to the first memory element. This view can be helpful

to understand the encoding process, but it is more relevant to the discussion of decoding,

which we will get to shortly.

Before we get to decoding, we’ll briefly discuss some general properties of CCs, and the

zero-terminating (ZT) and tail-biting (TB) conditions. First, it is worth noting that CCs

sometimes use k and n to refer to the number of input and output bits instead of the message

length and blocklength, so in this case, k would be 1 and n would be 2. The tuple (n, k, v)

is often used to describe CCs, and would be (2, 1, 2) in this case from 1.2. This definition

of n allows us to split CCs into two classes based on rate- high rate codes, which have rate-

(n−1)/n, and low rate codes, which have rate-1/n, which will be decoded slightly differently,

4

as will be shown in Ch. 2.

CCs generally offer strong performance at short blocklengths, since increasing the num-

ber of memory elements v improves performance, although it comes at the cost of decoding

complexity. Many other types of codes require longer blocklengths before they offer sub-

stantial protection. However, they tend to perform worse at longer blocklengths, since the

minimum distance dmin of convolutional codes doesn’t change with increasing blocklength.

This can be understood from the state machine view of CCs: any two paths through the

state machine that diverge at one point and later merge are both valid codewords, which

doesn’t change as the blocklength changes. Since detours could be relatively small, at longer

blocklengths this can significantly inhibit performance.

As our final note before we move onto decoding, we’ll discuss the ZT and TB conditions.

Naively encoding a message with a convolutional encoder with no termination condition

results in uneven protection, namely for the ending bits. Using the ZT condition, the encoder

starts in the all-zeros state, and after transmitting all the message bits, transmits additional

bits until the encoder returns to the all-zeros state, fully protecting the last bits, however, this

does incur a small rate penalty. Using the TB condition, the encoder chooses its starting state

such that the starting state and ending state are the same, similarly smoothing protection,

and without incurring a rate penalty, but at the cost of more complex decoding.

1.4.2 Decoding

As previously mentioned, decoding CCs is where the state machine view of CCs is most

useful, and is extended to the concept of a trellis, as is shown in Fig. 1.4. Edges corresponding

to a 0 input are shown as solid, and edges corresponding to a 1 input are dashed. In this

diagram, we assumed that we start in the zero state, as would be the case for ZTCCs, and

the trellis would eventually converge back to the zero state, but has been truncated for

compactness. We can see directly how a path around the state machine corresponds to a

path through the trellis.

While there are multiple decoding algorithms for CCs, we will be focusing on the Viterbi

5

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

Figure 1.4: Trellis diagram for the encoder in Fig. 1.2

algorithm, a popular ML decoding algorithm. The first step is to do a forward pass. In the

forward pass, we initialize the starting node to have a weight of zero. Then, we consider the

paths going forward, in this case to the 00 and 01 state, and save in each of those nodes

the weight associated with taking the branch plus the weight stored in the source node, and

the state from which the branch originated. We continue this way until we have multiple

incoming branches to a single node. At that point, we only have to save the best weight

and source node, and can discard the other. This is the key insight that allows the Viterbi

algorithm to decode CCs efficiently. It may not immediately be obvious why the other

node can be discarded, but consider that the rest of the trellis, from that point forward, is

identical, so both paths going forward will accrue the same additional weight. Thus, if one

has a higher weight at this point, it can never be the minimal weight path, and cannot be

the ML decision. This means we only ever have to keep track of a maximum of 2v paths at

any stage.

Once the forward pass it complete, decoding is simple. Since each node knows the source

node from whence it came, we can simply start at the end of the trellis, and perform a

traceback, taking the optimal source node at each turn, which will yield the optimal path

through the trellis. This has a one to one correspondance with the optimal codeword. For

TBCCs, ML decoding is slightly more complex, but the fundamental idea is the same, and

6

will be explored in Ch. 2. In the next section, we will consider cyclic redundancy check

codes (CRCs), and concatenating codes.

1.5 CRCs and Concatenation

CRCs are a type of error detecting code that is often used to verify that a transmission

has been received successfully. They do this by, on the encoding side, appending bits to

ensure that the CRC-augmented message is divisible by the CRC, and on the receiver side,

ensuring that the divisibility condition is still met. The degree of a CRC, which is the same

as the number of bits that are appended, is often denoted m. CRCs cannot correct errors

on their own in general, since receiving a codeword that is not divisible by the CRC offers

no information about where the error might have occurred.

The coding scheme we explore throughout this thesis involves CCs concatenated with

CRCs, as seen in Fig. 1.5. Unlike standard Viterbi decoding, since we’re dealing with a CC

that has many expurgated codewords, it is possible that the first codeword we find when

decoding the CC does not pass the CRC. Using the serial list Viterbi algorithm (SLVA),

we can explore CC codewords of increasing weight until we find one that passes the CRC,

or until we exceed the maximum number of allowed iterations, at which point we declare a

decoding failure. When concatenated with a CC, the the CRC expurgates codewords from

the outer CC, and by choosing a CRC that expurgates low weight codewords, we can increase

the minimum distance of the concatenated code, giving strong performance. The specifics

of SLVA will be explored through the rest of this thesis.

7

Information Source CRC Encoder Convolutional Encoder

Coding Channel

Convolutional DecoderCRC CheckDestination

Noise

≤ Max Iters?

n

m

x

r

r
pass
m̂

fail

truefalse

Figure 1.5: Block diagram of a transmission system using a CC concatenated with a CRC

8

CHAPTER 2

On CRC-Aided, Dual-Trellis, List Decoding for

High-Rate Convolutional Codes with Short

Blocklengths

2.1 Abstract

Recently, rate-1/n zero-terminated and tail-biting convolutional codes (ZTCCs and TBCCs)

with cyclic-redundancy-check (CRC)-aided list decoding have been shown to closely approach

the random-coding union (RCU) bound for short blocklengths. This chapter designs CRCs

for rate-(n− 1)/n CCs with short blocklengths, considering both the ZT and TB cases. The

CRC design seeks to optimize the frame error rate (FER) performance of the code resulting

from the concatenation of the CRC and the CC. Utilization of the dual trellis proposed by

Yamada et al. [6] lowers the complexity of CRC-aided serial list Viterbi decoding (SLVD) of

ZTCCs and TBCCs. CRC-aided SLVD of the TBCCs closely approaches the RCU bound

at a blocklength of 128. This chapter also explores the complexity-performance trade-off

for three decoders: a multi-trellis approach, a single-trellis approach, and a modified single

trellis approach with pre-processing using the Wrap Around Viterbi Algorithm (WAVA).

2.2 Introduction

The structure of concatenating a convolutional code (CC) with a CRC code has been a

popular paradigm since 1994 when it was proposed in the context of hybrid automatic repeat

request (ARQ) [7]. It was subsequently adopted in the cellular communication standards of

9

both 3G [8] and 4G LTE [9]. In general, the CRC code serves as an outer error-detecting

code that verifies if a codeword has been correctly received, whereas the CC serves as an

inner error-correcting code to combat channel errors.

Recently, there has been a renewed interest in designing powerful short blocklength codes.

This renewed interest is mainly driven by the development of finite blocklength information

theory by Polyanskiy et al., [10] and the stringent requirement of ultra-reliable low-latency

communication (URLLC) for mission-critical IoT (Internet of Things) service [11]. In [10],

Polyanskiy et al. developed a new achievability bound known as the RCU bound and a

new converse bound, known as the meta-converse (MC) bound. Together, these two bounds

characterize the error probability range for the best short blocklength code of length N

with M codewords. The URLLC for mission-critical IoT requires that the time-to-transmit

latency is within 500 µs while maintaining a block error rate no greater than 10−5.

Several short blocklength code designs have been proposed in the literature. Important

examples include the tail-biting (TB) convolutional codes decoded using the WAVA [12],

extended BCH codes under ordered statistics decoding [13,14], non-binary low-density parity-

check (LDPC) codes [15], non-binary turbo codes [16], and polar codes under CRC-aided

successive-cancellation list decoding [17]. Recent advances also include the polarization

adjusted convolutional codes by Arıkan [18]. As a comprehensive overview, Coşkun et al. [13]

surveyed most of the contemporary short blocklength code designs in the recent decade. We

refer the reader to [13] for additional information.

In [19], Yang et al. proposed the CRC-aided CCs as a powerful short blocklength code for

binary-input (BI) additive white Gaussian noise (AWGN) channels. In [19], the convolutional

encoder of interest has rate-1/n and is either zero-terminated (ZT) or TB. In order to

construct a good CRC-aided CC, Yang et al. selects a CC that maximizes its minimum

distance and designs a distance-spectrum optimal (DSO) CRC generator polynomial for the

given CC. The resulting concatenated code generated by the DSO CRC polynomial and the

convolutional encoder is a good CRC-aided CC.

The nature of the concatenation naturally permits the use of the serial list Viterbi decod-

10

ing (SLVD), an efficient algorithm originally proposed by Seshadri and Sundberg [20]. Yang

et al. showed that the expected list rank of SLVD of the CRC-aided CC is small at high SNR

where the target error probability is low, thus achieving a low average decoding complexity

at the operating point of interest. Yang et al. demonstrated that several concatenated codes

generated by the DSO CRC polynomial and the TBCC, or in short, CRC-TBCCs, approach

the RCU bound. In [21], Schiavone extended this line of work by looking at the parallel

list Viterbi decoding with a bounded list size. In our precursor conference paper [3], this

framework is extended to rate-(n− 1)/n CCs and the resulting concatenated code is able to

approach the RCU bound with a low decoding complexity as well.

In this chapter, we present designs of good CRC-aided CCs for rate-(n − 1)/n CCs

at short blocklengths for the BI-AWGN channel, where the CC is either ZT or TB. We

consider systematic, rate-(n − 1)/n convolutional encoders. The resulting concatenated

codes are respectively called a CRC-ZTCC and CRC-TBCC. We assume that SLVD has a

sufficiently large list size such that no negative acknowledgement is produced. Thus, SLVD

is an implementation of maximum-likelihood decoding. The frame error rate (FER) is in fact

the undetected error probability. Simulations show that in the short-blocklength regime, our

rate-(n− 1)/n CRC-TBCCs’ performance is close to the RCU bound.

A work related to this line of research is that of Karimzadeh & Vu [1]. They considered

designing the optimal CRC polynomial for multi-input CCs. In their framework, the infor-

mation sequence is first divided into (n−1) streams, one for each input rail, and they aim at

designing optimal CRC polynomial for each rail. Unlike their architecture, in this chapter,

the information sequence is first encoded with a single CRC polynomial and is then divided

into (n− 1) streams.

For rate-(n−1)/n CCs, SLVD on the primal trellis requires high decoding complexity due

to the 2n−1 outgoing branches at each node. SLVD implementation becomes exponentially

more complicated when there are more than two outgoing branches per state. In order to

simplify SLVD implementation and reduce complexity, we utilize the dual trellis pioneered

by Yamada et al. [6]. The dual trellis expands the length of the primal trellis by a factor of

n, while reducing the number of outgoing branches at each node from 2n−1 to at most two.

11

We consider two architectures to enforce the TB condition for CRC-TBCCs. One ap-

proach uses a single trellis with all initial states possible. At low SNR, SLVD on the single

trellis requires a large list size to identify the ML TB codeword, with a majority of trellis

paths not satisfying the TB condition. Since only one trellis is constructed in the forward

pass and all tracebacks are conducted on this single trellis, it’s impractical to enforce the

TB condition when finding a new path. Therefore, we propose a new multi-trellis approach,

where multiple copies of the dual trellis are initialized. Each trellis corresponds to a unique

starting and ending state pair, therefore it is guaranteed that all paths found will be TB

paths. This approach trades off the decoding time complexity of potentially exploring a large

list size against the upfront overhead and space complexity for creating and storing multiple

trellises. It can provide a benefit over the single-trellis approach when noise level is high.

Introduced in [22], WAVA is a near-maximum likelihood decoding algorithm for TBCCs.

To achieve the balance of decoding time and space complexities, we propose an approach

that combines the wrap-around behavior of WAVA with SLVD for TBCCs. The decoding

process is completed in two steps: the WAVA step with at most 2 trellis iterations, and the list

decoding step with a sufficiently large list size such that there is no negative acknowledgment

signals. Simulation results demonstrate that this decoding method reduces the average list

size as compared with the single-trellis decoder without WAVA, but this reduction comes at

a cost of degraded FER performance.

2.2.1 Contributions

As a primary contribution, this work extends our previous work on high-rate CRC-CC list

decoding with the dual trellis [3] to further reduce the list size and decoding complexity. The

original dual trellis approach, which uses the same tree-trellis algorithm to store the path

metrics, suffers from a high average list rank at low SNRs. The novelty and contributions in

this chapter are summarized as follows:

• Complexity comparison of three list decoders for TBCCs.

– An ML multi-trellis decoder that includes only TB codewords in the list of poten-

12

tial codewords by maintaining a distinct trellis for each starting state. We refer

to this decoding scheme as the multi-trellis approach.

– An ML decoder that avoids the complexity of having 2v distinct trellises by using

a single trellis but faces a potentially significant increase in list size by including

both TB and non-TB paths in the list of potential transmitted codewords.

– A sub-optimal (non-ML) decoder that lowers the list size of the single-trellis ap-

proach by using the wrap-around Viterbi algorithm (WAVA) to set the initial

state metrics of the traceback trellis.

• DSO CRC design for high-rate ZTCCs and TBCCs.

– This chapter presents DSO CRC polynomial designs of various degrees for opti-

mum rate-3/4 ZTCCs and TBCCs [2] in Table 2.1 and Table 2.2. Formulated

on the DSO CRC design algorithm for rate-1/n CCs [19], the design steps for

high-rate include collecting the irreducible error events (IEEs), reconstructing all

possible paths, and finally identifying the DSO CRC. These CRCs help reduce

the gap between simulated SNR and the RCU bound.

– This work compares the FER performance of a single DSO CRC and multiple

shorter CRCs [1] for the same rate-(n−1)/n ZTCCs, where the total CRC degrees

of the two approaches are equal. The multi-CRC scheme assigns a different CRC

for each of the (n − 1) input rails. Simulation results show that our framework

can yield better FER performance than that of Karimzadeh & Vu.

2.2.2 My Work

My contributions to this chapter included the development of the software we used for

running simulations, which was done in collaboration with Ava Asmani, and later Beryl Sui

as well. I was also involved in the development of the multiple decoding algorithms we were

experimenting with.

13

2.2.3 Organization

The remainder of this chapter is organized as follows. Sec. 2.3 reviews systematic encoding

for (n, n − 1, v) convolutional codes, describes the dual trellis construction, and explains

the tree-trellis algorithm for maintaining a list for trellis paths. Sec. 2.4 considers CRC-

ZTCCs for rate-(n− 1)/n CCs. It addresses the zero-termination issue, presents DSO CRC

design for high-rate ZTCCs, and shows CRC-ZTCC simulation results. Sec. 2.5 considers

CRC-TBCCs for rate-(n − 1)/n CCs. It addresses how to find the tail-biting initial state

over the dual trellis and describes DSO CRC design for TBCCs. Additionally, Sec. 2.5

introduces the multi-trellis decoder and WAVA decoder and analyzes the complexity and

decoding performance of all three decoding schemes. Sec. 2.6 concludes the chapter.

2.3 Systematic Encoding and Dual Trellis

This section describes systematic encoding for (n, n−1, v) convolutional codes and introduces

the dual trellis proposed by Yamada et al. [6] for high-rate CCs generated with an (n, n−1, v)

convolutional encoder, where v represents the overall constraint length. This section also

discusses the tree-trellis algorithm and its benefits.

2.3.1 Notation

Let K and N denote the information length and blocklength in bits. Let R = K/N denote

the rate of the CRC-aided CC. A degree-m CRC polynomial is of the form p(x) = 1+ p1x+

· · ·+ pm−1x
m−1 + xm, where pi ∈ {0, 1}, i = 1, 2, . . . ,m− 1. For brevity, a CRC polynomial

is represented in hexadecimal when its binary coefficients are written from the highest to

lowest order. For instance, 0xD represents x3+x2+1. The codewords are BPSK modulated.

The SNR is defined as γs ≜ 10 log10(A
2) (dB), where A represents the BPSK amplitude and

the noise is distributed as a standard normal.

14

2.3.2 Systematic Encoding

We briefly follow [2, Chapter 11] in describing a systematic (n, n−1, v) convolutional encoder.

A systematic (n, n−1, v) convolutional encoder can be represented by its parity check matrix

H(D) = [h(n−1)(D), h(n−2)(D), . . . , h(0)(D)], (2.1)

where each h(i)(D) is a polynomial of degree up to v in delay element D associated with the

i-th code stream, i.e.,

h(i)(D) = h(i)
v Dv + h

(i)
v−1D

v−1 + · · ·+ h
(i)
0 , (2.2)

where h
(i)
j ∈ {0, 1}. For convenience, we represent each h(i)(D) in octal form. For instance,

H(D) = [D3+D2+D+1, D3+D2+1, D3+D+1] can be concisely written asH = (17, 15, 13).

Let h(i) ≜ [h
(i)
v , h

(i)
v−1, . . . , h

(i)
0], i = 0, 1, . . . , n − 1. The systematic encoding matrix G(D)

associated with H(D) is given by

G(D) =

h(1)(D)

h(0)(D)
1 0 · · · 0

h(2)(D)

h(0)(D)
0 1 · · · 0

...
...

...
. . .

...

h(n−1)(D)

h(0)(D)
0 0 · · · 1

 . (2.3)

The first output bit is a coded bit and the remaining output bits are a direct copy of the

corresponding input bits.

2.3.3 Dual Trellis

The primal trellis associated with a rate-(n − 1)/n ZTCC has 2n−1 outgoing branches per

state. Performing SLVD over the primal trellis when n > 2 is highly complex. In [19], the low

decoding complexity of SLVD for rate-1/n convolutional codes relies on the fact that only 2

outgoing branches are associated with each state. In order to efficiently perform SLVD, we

consider the dual trellis proposed by Yamada et al. [6].

We briefly explain the dual trellis construction for parity check matrixH(D) = [h(n−1)(D),

15

h(n−2)(D), . . . , h(0)(D)]. First, we define the maximum instant response order λ as

λ ≜ max{j ∈ {0, 1, . . . , n− 1} : h
(j)
0 = 1}. (2.4)

The state of the dual trellis is represented by the partial sums of (v+1) adders in the observer

canonical form of H(D). At time index j, j = 0, 1, . . . , n− 1, the state is given by

s(j) = [s(j)v , s
(j)
v−1, . . . , s

(j)
0]. (2.5)

Next, we show how the state s(j) evolves in terms of the output bits yk = [y
(0)
k , y

(1)
k , . . . , y

(n−1)
k],

k = 1, 2, . . . , N/n, so that a dual trellis can be established.

Dual trellis construction for yk = [y
(0)
k , y

(1)
k , . . . , y

(n−1)
k]:

1) At time j = 0, s(0) = [0, s
(j)
v−1, s

(j)
v−2, . . . , s

(j)
0], where s

(0)
i ∈ {0, 1}. Namely, only 2v states

exist at j = 0.

2) At time j, j < n− 1, draw branches from each state s(j) to state s(j+1) by

s(j+1) = s(j) + y
(j)
k h(j), y

(j)
k ∈ {0, 1}. (2.6)

3) At time j = n− 1, draw branches from each state s(n−1) to state s(n) by

s(n) =
(
s(n−1) + y

(n−1)
k h(n−1)

)r
, y

(n−1)
k ∈ {0, 1}, (2.7)

where (av, av−1, . . . , a1, a0)
r = (0, av, av−1, . . . , a1).

4) For time j = λ, draw a branch from each state s(λ) according to (2.6) only for y
(λ)
k =

s
(λ)
0 .

After repeating the above construction for each yk, k = 1, 2, . . . , N/n, we obtain the dual

trellis associated with the (n, n−1, v) convolutional code. Since the primal trellis is of length

N/n, whereas the dual trellis is of length N , the dual trellis can be thought of as expanding

the primal trellis length by a factor of n, while reducing the number of outgoing branches

per state from 2n−1 to less than or equal to 2.

16

2.3.4 Tree-Trellis Algorithm

SLVD enumerates possible paths through the trellis, starting from the lowest weight path,

stopping once the first path that satisfies both the CRC and the TB condition is reached.

Thus recordings of previously investigated path metrics are required to find the next optimal

path. Inserting or accessing an element in an unsorted list of path metrics can substantially

increase the time complexity of an algorithm.

To efficiently perform SLVD on the dual trellis, we used the tree-trellis algorithm (TTA)

proposed by Soong and Huang in [23]. The TTA maintains a sorted list of nodes which are

indexed by path metric. These nodes either correspond to a previously unexplored ending

state in the trellis, or to a previously explored path and a detour. This approach allows the

efficient determination of the next path to be explored if the current one does not satisfy

both the CRC and TB condition.

This algorithm maintains a sorted list, which can become expensive if not implemented

with an efficient data structure. In [24], the authors used Red-Black tree [25] to maintain the

sorted list of nodes. In this chapter, we use a Min Heap [26], which is easier to implement

and has the same O(log ℓ) time complexity to maintain the properties of its structure. A

Min Heap is a complete binary tree that often underpins practical priority queue imple-

mentations. It requires no space overhead over a standard array. It provides constant-time

minimum element access and logarithmic-time deletion of the minimum element. Insertion of

a new element is logarithmic-time in the worst case, but constant-time on average. Constant

average insertion time helps control overall average time complexity because insertion is the

dominant operation performed by the decoder. Every path searched requires only accessing

and removing the minimum node, and all detours along that path are inserted into the heap

as nodes.

17

Table 2.1: DSO CRC polynomials for rate-3/4 ZTCC at blocklength N = 128 gener-

ated by H = (33, 25, 37, 31) with v = 4, by H = (47, 73, 57, 75) With v = 5, and by

H = (107, 135, 133, 141) with v = 6. © 2022 IEEE

K m R v = 4 CRC v = 5 CRC v = 6 CRC

87 3 0.680 0x9 0x9 0xB

86 4 0.672 0x1B 0x15 0x1D

85 5 0.664 0x25 0x25 0x25

84 6 0.656 0x4D 0x7B 0x6F

83 7 0.648 0xF3 0xED 0x97

82 8 0.641 0x1E9 0x1B7 0x1B5

81 9 0.633 0x31B 0x3F1 0x2F1

80 10 0.625 0x5C9 0x66F 0x59F

79 11 0.617 0xC2B 0xE8D 0xD2D

2.4 ZTCC with DSO CRC via Dual Trellis SLVD

This section considers CRC-ZTCCs for rate-(n − 1)/n CCs. Section 2.4.1 presents a zero

termination method over the dual trellis. Section 2.4.2 describes our DSO CRC polynomial

search procedure. Finally, Section 2.4.3 presents simulation results of the CRC-ZTCC com-

pared with the RCU bound. As a case study, this chapter mainly focuses on the rate-3/4

systematic feedback convolutional codes in [2, Table 12.1(e)].

2.4.1 Zero Termination of Dual Trellis

For an (n, n− 1, v) CC, zero termination over the dual trellis requires at most n⌈v/(n− 1)⌉
steps. In our implementation, a breadth-first search identifies the zero-termination input

and output bit patterns that provide a trajectory from each possible state s to the zero

state. The input and output bit patterns have lengths (n− 1)⌈v/(n− 1)⌉ and n⌈v/(n− 1)⌉
respectively.

18

2.4.2 Design of DSO CRCs for High-Rate ZTCCs

In general, a DSO CRC polynomial provides the optimal distance spectrum which minimizes

the union bound on the FER at a specified SNR [19]. In this chapter, we focus on the low

FER regime. Thus, the DSO CRC polynomials identified in this chapter simply maximize

the minimum distance of the concatenated code. Examples in [19] indicate that DSO CRC

polynomials designed in this way can provide optimal or near-optimal performance for a

wide range of SNRs.

The design procedure of the DSO CRC polynomial for high-rate ZTCCs essentially follows

from the DSO CRC design algorithm for low target error probability in [19]. The first step

is to collect the IEEs, which are ZT paths on the trellis that deviate from the zero state once

and rejoin it once. IEEs with a very large output Hamming weight do not affect the choice

of optimal CRCs. In order to reduce the runtime of the CRC optimization algorithm, IEEs

with output Hamming weight larger than a threshold d̃ − 1 are not considered. Dynamic

programming constructs all ZT paths of length equal to N/n and output weight less than d̃.

Finally, we use the resulting set of ZT paths to identify the degree-m DSO CRC polynomial

for the rate-(n− 1)/n CC.

Table 2.1 presents the DSO CRC polynomials for ZTCCs generated with H = (33, 25, 37,

31), H = (47, 73, 57, 75), and H = (107, 135, 133, 141). The design assumes a fixed block-

length N = 128 bits. Due to the overhead caused by the CRC bits and by zero termination,

the rates of CRC-ZTCCs are less than 3/4. Specifically, for a given information length K,

CRC degree m and an (n, n− 1, v) encoder, the blocklength N for a CRC-ZTCC is given by

N =

(
K +m+ (n− 1)

⌈
v

n− 1

⌉)
n

n− 1
, (2.8)

giving

R =
K

N
=

n− 1

n

K

K +m+ (n− 1)⌈ v
n−1

⌉ . (2.9)

We see from (2.8) that the (n, n − 1, v) convolutional encoder can accept any CRC degree

m as long as K +m is divisible by (n− 1).

19

Figure 2.1: FER vs. SNR for various CRC-ZTCCs. The ZTCC is generated with the (4, 3, 6)

encoder H = (107, 135, 133, 141). The DSO CRC polynomials of degrees 3, 6, and 10 are

0xB, 0x6F, and 0x59F, respectively. Values in parenthesis denote information length K and

blocklength N , respectively. © 2022 IEEE

2.4.3 Results and Comparison with RCU Bound

Fig. 2.1 shows the performance of CRC-ZTCCs with increasing CRC degrees 3, 6 and 10

and a fixed blocklength N = 128 bits. We see that at the target FER of 10−4, increasing the

CRC degree reduces the gap to the RCU bound. With m = 10 and v = 6, the CRC-ZTCC

approaches the RCU bound within 0.25 dB.

In [1], Karimzadeh et al. considered designing optimal CRC polynomials for each input

rail of a multi-input CC. In their setup, an information sequence for an (n, n− 1, v) encoder

needs to be split into (n − 1) subsequences before CRC encoding. In contrast, the entire

information sequence in our framework is encoded with a single CRC polynomial. Then

the resulting sequence is evenly divided into (n − 1) subsequences, one for each rail. To

compare the performance between these two schemes, we design three degree-3 optimal

CRC polynomials, one for each rail, for ZTCC with H = (47, 73, 57, 75). The three CRC

polynomials jointly maximize the minimum distance of the CRC-ZTCC. For the single-CRC

design, we use the single degree-9 DSO CRC polynomial for the same encoder from Table 2.1.

Both CRC-ZTCCs have an information length K = 81 and blocklength N = 128. Fig. 2.2

20

Figure 2.2: FER vs. SNR for v = 5 CRC-ZTCCs designed under Karimzadeh et al.’s scheme

[1] and our scheme. Both CRC-ZTCCs have information length K = 81 and blocklength

N = 128. © 2022 IEEE

shows the performance comparison between these two codes, showing that a single degree-9

DSO CRC polynomial outperforms three degree-3 DSO CRC polynomials, one for each rail.

This suggests that a single DSO CRC polynomial may suffice to provide superior protection

for each input rail. The decoding complexity is similar regardless of the CRC scheme.

2.5 TBCC with DSO CRC and Dual Trellis SLVD

The performance of CRC-aided list decoding of ZTCCs relative to the RCU bound is con-

strained by the termination bits appended to the end of the original message, which are

required to bring the trellis back to the all-zero state. TBCCs avoid this overhead by replac-

ing the zero termination condition with the TB condition, which states that the final state

of the trellis is the same as the initial state of the trellis [27].

In this section, we apply SLVD to CRC-TBCCs over the dual trellis. Section 2.5.1

demonstrates designs of DSO CRCs for rate (n − 1)/n TB codes. In section 2.5.2, we will

discuss how to determine the initial state for the TBCC to ensure that the TB condition is

met on a single dual trellis. Detailed discussion about the construction of the multi-trellis

21

Table 2.2: DSO CRC polynomials for rate-3/4 TBCC at blocklength N = 128 gener-

ated by H = (33, 25, 37, 31) with v = 4, by H = (47, 73, 57, 75) with v = 5, and by

H = (107, 135, 133, 141) with v = 6. © 2022 IEEE

K m R v = 4 CRC v = 5 CRC v = 6 CRC

93 3 0.727 0x9 0x9 0xB

92 4 0.719 0x1B 0x1D 0x17

91 5 0.711 0x25 0x3B 0x33

90 6 0.703 0x7D 0x4F 0x41

89 7 0.695 0xF9 0xD1 0xBD

88 8 0.688 0x1CF 0x173 0x111

87 9 0.680 0x38F 0x3BF 0x333

86 10 0.672 0x73F 0x697 0x723

decoder and WAVA decoder and their benefits are presented in sections 2.5.3 and 2.5.4,

respectively. Finally, the decoding complexity and performance are analyzed in sections

2.5.5 and 2.5.6.

2.5.1 Design of DSO CRCs for High-Rate TBCCs

The design of DSO CRCs for high-rate TBCCs follows the two-phase design algorithm shown

in [19]. This algorithm is briefly explained below.

Consider a TB trellis T = (V,E,A) of length N , where A denotes the set of output

alphabet, V denotes the set of states, and E denotes the set of edges described in an ordered

triple (s, a, s′) with s, s′ ∈ V and a ∈ A [28]. Assume |V | = 2v and let V0 = {0, 1, . . . , 2v−1}.
Define the set of IEEs at state σ ∈ V as

IEE(σ) ≜
⋃

l=1,2,...,N

IEE(σ, l), (2.10)

22

where

IEE(σ, l) ≜{(s,a) ∈ V l+1
0 ×Al : s0 = sl = σ;

∀j, 0 < j < l, sj /∈ {0, 1, . . . , σ}}. (2.11)

The IEEs at state σ can be thought of as “building blocks” for an arbitrarily long TB path

that starts and ends at the same state σ.

The first phase is called the collection phase, during which the algorithm collects IEE(σ)

with output Hamming weight less than the threshold d̃ over a sufficiently long TB trellis.

The second phase is called the search phase, during which the algorithm first reconstructs

all TB paths of length N/n and output weight less than d̃ via concatenation of the IEEs and

circular shifting of the resulting path. Then, using these TB paths, the algorithm searches for

the degree-m DSO CRC polynomial by maximizing the minimum distance of the undetected

TB path.

Table 2.2 presents the DSO CRC polynomials for TBCCs generated with H = (33, 25, 37,

31), H = (47, 73, 57, 75), and H = (107, 135, 133, 141). The design assumes a fixed block-

length N = 128. TB encoding avoids the rate loss caused by the overhead of the zero ter-

mination. Specifically, for a given information length K, CRC degree m and an (n, n− 1, v)

encoder, the blocklength N for a CRC-TBCC is given by

N = (K +m)
n

n− 1
, (2.12)

giving

R =
K

N
=

n− 1

n

K

K +m
. (2.13)

2.5.2 Single Trellis List Decoding for CRC-TBCC

There are two primary differences in the development and analysis of list decoding between

ZTCCs, as described in Section 2.4, and TBCCs. One difference is that since the ZT condi-

tion is replaced with the TB condition, the encoder must determine the initial trellis state

so that the TB condition is satisfied. The other difference is that SLVD on the dual trellis

must be adapted to handle the TB condition.

23

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

S0 S1 S2 S3 S4/S0

y0k y1k y2k y3k

000

001

010

011

100

101

110

111

root

S4

1

Figure 2.3: Dual trellis diagram for rate-3/4 TBCC with a root node at the end for encoder

H = (2, 5, 7, 6) with v = 2. Solid lines represent 0 paths and dashed lines represent 1 paths.

© 2022 IEEE

To satisfy the TB condition, encoding is attempted from every initial state to identify the

initial state that satisfies the TB condition. This is required because our recursive encoder

cannot simply achieve the TB condition by setting the initial encoder memory to be the final

bits of the information sequence.

To adapt SLVD on the dual trellis to handle the TB condition, we propose an efficient

way to keep track of the path metrics and find the next path with minimum metric through

an additional root node as shown in Fig. 2.3. The root node connects to all terminating

states after forward traversing the dual trellis. The Hamming distance of the branch metric

for the branch connecting any state to this root node is zero. This additional root node

allows the trellis to end in a single state, so that the basic SLVD approach for a ZTCC may

be applied. During SLVD, if the current path does not pass either the CRC or TB check,

the minimum value among all remaining path metrics will be selected as the next path to

check.

24

2.5.3 Multi-Trellis List Decoding for CRC-TBCC

Decoding on a single dual trellis (single-trellis approach) leads to complexity issues, since a

large sorted list is maintained to keep track of all possible traceback paths – but not all of

them will satisfy the TB condition. Thus the decoder will go through a number of paths

that pass neither the TB check nor CRC, resulting in high expected list ranks at low SNRs.

To decode more efficiently, we propose a multi-trellis approach in this section.

As its name indicated, the multi-trellis approach requires construction of 2v dual trellises,

since only half of the states in a dual trellis are valid starting and ending states. As shown

in Fig. 2.4, each multi-trellis follows the same structure as a dual trellis, but with only

one starting and ending state to enforce the TB condition. For example, for the encoder

H = (2, 5, 7, 6) with v = 2, there are 22 = 4 multi-trellises for this encoder. The final root

node is also removed.

An obvious advantage of using the multi-trellis approach is that all the paths found will be

tail-biting. This greatly reduces the expected list size compared to the single-trellis approach

at low SNRs. However, at high SNRs, the multi-trellis approach has a substantially higher

decoding complexity due to the additional upfront cost of constructing the dual trellises. In

this case, the extra resources taken to initialize the multi-trellis approach brings down the

overall decoder efficiency.

2.5.4 List Decoding with WAVA

As the constraint length of a TBCC increases, the number of states grows exponentially. The

multi-trellis approach becomes impractical due to both time and memory for constructing the

trellises. Thus, we adopt a non-ML decoder with WAVA to improve the decoding efficiency

while maintaining a reasonable decoding complexity. Proposed in [22], the WAVA decodes

TB trellises iteratively and is able to effectively reduce the expected list rank. An initial

examination of the list size distributions for the three decoding schemes at SNR = 2 dB is

presented in Fig. 2.5 on a v = 4 TBCC. While the multi-trellis approach outperforms the

other approaches with an extremely small list size at all times, the WAVA approach still has

25

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

S0 S1 S2 S3 S4/S0

y0k y1k y2k y3k

000

001

010

011

100

101

110

111

S4

1

Figure 2.4: Multi-trellis construction for rate-3/4 TBCC dual trellis with encoder

H = (2, 5, 7, 6) with v = 2. The pictured trellis has starting and ending state of 0. Three

similar trellises are also constructed for this encoder with starting and ending states of 1-3.

© 2022 IEEE

a substantially larger probability of a small list size compared to the single-trellis. Different

distributions lead to different E[I] and E[L] values when evaluating the decoding complexity.

The non-ML decoder with WAVA proceeds in two steps. In the first step, the algorithm

initializes each state of a single dual trellis with all zero metrics. It then performs two

iterations of add-compare-select (ACS) along the trellis; each time the end of the trellis is

encountered, the initial states of the trellis are initialized to the cumulative metrics in the

final states. At the end of the first iteration, if the optimal path satisfies TB and CRC

conditions, the algorithm outputs this path and stops decoding. In the second step, SLVD

runs on the ending metrics of the second trellis iteration. This decoding algorithm improves

the reliability of the final decision for the optimal traceback path and decreases the expected

list rank while keeping the complexity low. However, this algorithm is non-optimal, thus it

has a slightly worse decoding performance than the other two ML approaches.

26

0.8

� 0.6

V

�
-0.4

0.2

100

-- Multi-Trellis

-WAVA

-- Single-Trellis

200 300 400 500

List Rank L0

Figure 2.5: Cumulative distribution function (CDF) of list ranks for the single-trellis, multi-

trellis, and WAVA decoding approaches for the (33, 25, 37) TBCC with blocklength of 128

at SNR = 2 dB. © 2022 IEEE

2.5.5 Complexity Analysis

In [19], the authors provided the complexity expression for SLVD of CRC-ZTCCs and CRC-

TBCCs, where the convolutional encoder is of rate 1/n. Observe that the dual trellis has no

more than 2 outgoing branches per state, similar to the trellis of a rate-1/n CC. Thus, we

directly apply their complexity expression to SLVD over the dual trellis.

As noted in [19], the overall average complexity of SLVD can be decomposed into three

components:

CSLVD = CSSV + Ctrace + Clist, (2.14)

where CSSV denotes the complexity of a standard soft Viterbi (SSV), Ctrace denotes the

complexity of the additional traceback operations required by SLVD, and Clist denotes the

average complexity of inserting new elements to maintain an ordered list of path metric

differences.

CSSV is the complexity of ACS operations and the initial traceback operation. For CRC-

27

Figure 2.6: The overall complexity comparison of the single-trellis, multi-trellis, and WAVA

decoders for the TBCC generated with the (4, 3, 4) encoderH = (33, 25, 37), with blocklength

of 128. The CRC polynomial of degree 3 is 0x9. All complexity values are normalized with

respect to the single-trellis CSSV at different list sizes. © 2022 IEEE

ZTCCs,

CSSV = (2v+1 − 2) + 1.5(2v+1 − 2) + 1.5(K +m− v)2v+1

+ c1[2(K +m+ v) + 1.5(K +m)]. (2.15)

For CRC-TBCCs decoded using the single-trellis, this quantity is given by

CSSV = 1.5(K +m)2v+1 + 2v + 3.5c1(K +m). (2.16)

For CRC-TBCCs with the multi-trellis approach,

CSSV = 2v[1.5(K +m)2v+1] + 3.5c1(K +m). (2.17)

The second component Ctrace for CRC-ZTCC is given by

Ctrace = c1(E[L]− 1)[2(K +m+ ν) + 1.5(K +m)]. (2.18)

For CRC-TBCCs, Ctrace is given by

Ctrace = 3.5c1(E[L]− 1)(K +m), (2.19)

28

for both single-trellis and multi-trellis approaches.

The third component, which is identical for ZT and TB, is

Clist = c2E[I] log(E[I]), (2.20)

where E[I] is the expected number of insertions to maintain the sorted list of path metric

differences. For CRC-ZTCCs,

E[I] ≤ (K +m)E[L], (2.21)

and for CRC-TBCCs with either single-trellis or multi-trellis approach,

E[I] ≤ (K +m)E[L] + 2v − 1. (2.22)

In the above expressions, c1 and c2 are two computer-specific constants that character-

ize implementation-specific differences in the implemented complexity of traceback and list

insertion (respectively) as compared to the ACS operations of Viterbi decoding. In this chap-

ter, we assume that c1 = c2 = 1 and use (2.21) and (2.22) to estimate E[I] for CRC-ZTCCs

and CRC-TBCCs, respectively.

Note that E[I] and E[L] values vary depending on whether the single-trellis or multi-

trellis approach is used. Using the multi-trellis approach significantly reduces Ctrace and Clist

because only TB paths are included. On the other hand, as seen from (2.16) and (2.17), the

multi-trellis approach amplifies the first component CSSV by nearly 2v. The overall tradeoff

is depicted in Fig. 2.6, which shows the complexity comparison of the single-trellis and

multi-trellis approach on a v = 4 TBCC with a m = 3 CRC. Various random codewords

with blocklength N = 128 are generated and their single-trellis list sizes are measured by

passing through a single-trellis SLVD with TB checks and CRCs. The runtime of each

complexity component is normalized with respect to the value of single-trellis CSSV. When

the single-trellis list size is 1, the overall runtime of the multi-trellis approach is over 10 times

of that of the single-trellis approach, due to the overhead complexity of constructing multiple

trellises. At low noise level, the list size of a single trellis is 1 for the most time, resulting

in a substantially lower runtime compared to that of a multi-trellis. As SNR decreases, the

29

Figure 2.7: The SNR gap to the RCU bound vs. the average complexity of SLVD of CR-

C-ZTCC codes in Table I and CRC-TBCC codes in Table II for target FER of 10−4. For

CRC-TBCCs, results for both single-trellis decoding and WAVA decoding are demonstrated.

Each color represents a specific CRC-aided CC shown in the tables. Markers from top to

bottom with the same color correspond to DSO CRC polynomials with m = 3, . . . , 10 for

TBCCs, and m = 3, . . . , 11 for ZTCCs. © 2022 IEEE

list size of the single-trellis decoder grows larger, leading to an exponential growth in the

complexity terms Ctrace and Clist. Although the multi-trellis Clist term also has an increasing

trend, that value is small compared to the term Ctrace. Because the construction of the

trellis structure mainly contributes to the complexity of multi-trellis, at different SNR levels

the complexity maintains the same magnitude. At a list size of around 5 × 102, the overall

runtime CSLVD of both approaches become the same. This indicates that at high SNR level,

single-trellis is the optimal approach as the list size is low. But in cases where the noise level

is high, the multi-trellis approach is guaranteed to satisfy the TB condition, thus it provides

a reduced runtime regardless of its complex construction.

Upon applying WAVA, the overall average complexity for CRC-TBCC is incremented by

ACS operations during the additional forward pass, if needed. Let the probability that the

optimal path of the initial traceback does not satisfy either TB or CRC condition be PWAVA.

The list rank of the decoder is 1 with a probability of 1−PWAVA. Thus we have the updated

30

Figure 2.8: FER vs. SNR for various CRC-TBCCs. The TBCC is generated with the (4, 3, 6)

encoder H = (107, 135, 133, 141). The DSO CRC polynomials of degrees 3, 6, and 10 are

0xB, 0x41, and 0x723, respectively. Values in parenthesis denote information length K and

blocklength N , respectively. © 2022 IEEE

complexity:

CSLVD = CSSV + PWAVA × (CWAVA + Ctrace + Clist), (2.23)

where

CWAVA = 1.5(K +m)2v+1 + 2v. (2.24)

The yellow data points in Fig. 2.6 represent the overall complexity of the WAVA decoder

normalized with respect to the single-trellis CSSV at various list sizes. The complexity for

initializing the WAVA decoder is about 2 times of that for the single-trellis, giving it a

disadvantage at low noise levels. However, at a list size of exactly 1, due to the traceback after

the first iteration, the WAVA decoder matches the complexity of the single-trellis decoder.

At a list size of around 5×101, the overall complexity of the WAVA decoder reaches the same

level as the single-trellis decoder. In addition, the WAVA decoder operates at a complexity

lower than the multi-trellis decoder.

31

2.5.6 Results, Analysis, and Expected List Rank of SLVD

Fig. 2.7 shows the trade-off between the SNR gap to the RCU bound and the average

decoding complexity at the target FER 10−4 for CRC-ZTCCs designed in Table 2.1 and

CRC-TBCCs designed in Table 2.2. The average decoding complexity of SLVD is evaluated

according to the expressions in Sec. 2.5.5. We see that for a fixed v (ZT or TB), increasing

the CRC degree m significantly reduces the gap to the RCU bound, at the cost of a small

increase in complexity. The minimum gap of 0.08 dB is achieved by the CRC-TBCC with

v = 5 and m = 10. However, for the same CRC degree m, increasing the overall constraint

length v dramatically increases the complexity, while achieving a minimal reduction in the

SNR gap to the RCU bound. For CRC-TBCCs, the WAVA decoder has a slightly larger

gap to RCU bound than the single-trellis decoder due to the extra ACS operations during

the first traceback. However, the complexity of the WAVA decoder is smaller than that of

the single-trellis decoder, and the difference increases as the CRC degree increases. For all

constrain lengths v, the WAVA decoder at m = 10 has a similar complexity as the single-

trellis decoder at m = 7.

Additionally, the performance of CRC-ZTCC can be improved drastically by applying

CRCs of higher degrees. Fig. 2.7 demonstrates that for all three cases of constraint lengths

v, one additional bit in the CRC benefits the decoding performance by moving closer to the

RCU gap with a minimal cost in complexity. Thus at a gap to RCU bound for around 0.4

dB, CRC-ZTCC outperforms CRC-TBCC by a substantially reduced decoding complexity.

Fig. 2.8 shows the FER vs. SNR for three CRC-TBCCs at blocklength N = 128. At the

target FER of 10−4, the SNR gap to the RCU bound is reduced to 0.1 dB for the CRC-TBCC

with m = 10 and v = 6.

2.6 Conclusion

This chapter shows that high-rate CRC-aided CCs are able to approach the RCU bound for

the BI-AWGN channel. The best CRC-TBCCs with the single-trellis ML decoder approach

32

the RCU bound within 0.1 dB for a target FER of 10−4 at a blocklength of N = 128 bits.

This chapter considers three decoding algorithms for rate-(n − 1)/n CCs concatenated

with DSO CRC polynomials: a multi-trellis approach, a single-trellis approach, and a mod-

ified single trellis approach with pre-processing using the Wrap Around Viterbi Algorithm

(WAVA). All three algorithms use the dual trellis to reduce complexity. The multi-trellis

approach achieves the smallest expected list rank, but it suffers from a significantly larger

overall complexity than the single-trellis approach. For the single trellis approach, we con-

sidered both an ML decoder and a non-ML decoder that uses WAVA pre-processing. WAVA

pre-processing achieves a significantly smaller expected list size than the ML single-trellis

decoder, but the non-ML decoder achieves a slightly worse FER performance. In addition,

adding one bit to the CRC can improve the FER far more than adding an additional mem-

ory element to the CC does for all three approaches. In the future, it will be interesting to

investigate and compare the performance and complexity of a parallel list Viterbi decoder

(PLVD) on high-rate CC-CRC codes.

33

CHAPTER 3

ELF Codes: Concatenated Codes with an Expurgating

Linear Function as the Outer Code

3.1 Abstract

An expurgating linear function (ELF) is an outer code that disallows low-weight codewords

of the inner code. ELFs can be designed either to maximize the minimum distance or to

minimize the codeword error rate (CER) of the expurgated code. A list-decoding sieve can

efficiently identify ELFs that maximize the minimum distance of the expurgated code. For

convolutional inner codes, this paper provides analytical distance spectrum union (DSU)

bounds on the CER of the concatenated code.

For short codeword lengths, ELFs transform a good inner code into a great concatenated

code. For a constant message size of K = 64 bits or constant codeword blocklength of

N = 152 bits, an ELF can reduce the gap at CER 10−6 between the DSU and the random-

coding union (RCU) bounds from over 1 dB for the inner code alone to 0.23 dB for the

concatenated code. The DSU bounds can also characterize puncturing that mitigates the

rate overhead of the ELF while maintaining the DSU-to-RCU gap. List Viterbi decoding

guided by the ELF achieves maximum likelihood (ML) decoding of the concatenated code

with a sufficiently large list size. The rate-K/(K +m) ELF outer code reduces rate and list

decoding increases decoder complexity. As SNR increases, the average list size converges to

1 and average complexity is similar to Viterbi decoding on the trellis of the inner code. For

rare large-magnitude noise events, which occur less often than the FER of the inner code, a

deep search in the list finds the ML codeword.

34

3.2 Introduction

Expurgating a code decreases the number of message symbols without changing the length

[29]. Expurgation strengthens a code by removing weaker codewords at the expense of a

slight reduction in rate. For example, in his proof of channel capacity, Gallager [30] removes

the half of the randomly selected codewords for which error probability is largest to bound

maximum rather than average probability of error. For a linear code, where the minimum

distance dmin is the minimum weight of a nonzero codeword [29], expurgation that removes

the lowest-weight codewords will increase dmin and thus reduce the probability of a codeword

error.

Practical expurgation requires a function, i.e. an outer code, that selects which code-

words to remove. This paper develops the paradigm of using an expurgating linear func-

tion (ELF) to remove the lowest weight codewords of a linear code or, more generally, to

remove codewords so as to minimize a union bound on codeword error rate (CER). The

improved performance comes at the expense of a reduction in rate by the rate-K/(K +m)

ELF outer code, but well-designed ELFs move CER performance closer to an appropriately

rate-adjusted random coding union (RCU) bound [10,31].

Lou et al. in [32] significantly improved error detection performance over traditional cyclic

redundancy codes (CRCs) used with zero-terminated convolutional codes by specifically

designing CRCs that remove low-weight codewords and thus reduce the undetected error

rate. Subsequent papers [3, 19, 33–42] used this approach to improve the minimum distance

or CER performance of the overall concatenated code, which is decoded using list decoding.

These subsequent papers characterized the new designs as CRCs, but we call them ELFs

since they are not constrained to be a cyclic code of any particular length and their primary

function is expurgation rather than error detection.

For a convolutional inner code with an ELF as the outer code, ML decoding is achieved

by serial or parallel list Viterbi decoding with a sufficiently large list size [20]. As observed

in [19], as SNR increases, the expected list size converges to one. The average list size is

often small at the desired CER.

35

BCH codes [34] and legacy codes that include CRCs can be reconsidered as ELF codes

and decoded using list decoding to decrease CER. Schiavone et al. [43] provide a compelling

example. The ELF paradigm applies to any inner code. Building on [44], ELFs designed

to maximize the minimum distance of the expurgated polar code are described in [37, 45].

An ELF for a trellis code appears in [42]. This paper focuses on ELFs concatenated with

tail-biting convolutional codes (TBCCs) [27] as an example.

3.2.1 Contributions

This paper presents generating function techniques for distance spectrum union (DSU) upper

bounds on the CER of TBCCs concatenated with ELFs under maximum-likelihood (ML)

decoding. These bounds are extended to include puncturing for rate compatibility. Such

bounds can characterize the CER of every ELF for a given redundancy m and can be used to

select the ELF (and the puncturing) that minimizes CER. Alternatively, this paper provides

a sieve approach that uses list decoding from the zero-message codeword to identify the ELF

that maximizes the minimum distance of the expurgated code. The DSU bounds show that

an ELF can improve the gap between the DSU and RCU bounds from over 1 dB for the

inner code alone to 0.23 dB for the concatenated code.

3.2.2 My Work

My contributions to this chapter included work on the list decoding sieve approach, and the

related work on expurgated distance spectra.

3.2.3 Organization

Sec. 3.3 presents (DSU) upper bounds on the CER of convolutional inner codes concatenated

with ELF outer codes with or without puncturing. Sec. 3.4 presents a sieve approach to

identify the ELF that maximizes the minimum distance of the expurgated code. As an

example, the best ELFs for expurgating a (152, 76) block code created from a ν = 8 tail-

biting convolutional code are identified for ELF redundancies of 0 ≤ m ≤ 12. Sec. 3.5 uses

36

the tools of Sec. 3.3 and Sec. 3.4 to design an example punctured concatenation of an ELF

and a tail-biting convolutional code. Sec. 3.6 concludes the paper.

3.3 Distance Spectrum Union Bounds

Generating functions provide upper bounds on the bit error rate [46] and the CER [32, 39]

of convolutional codes. This section reviews the generating function approach to comput-

ing distance spectrum union (DSU) bounds on the CER of block codes constructed using

convolutional codes and describes how such bounds may be applied to zero-terminated and

tail-biting convolutional codes with ELFs and with puncturing.

3.3.1 DSU Bounds for Zero Termination and Tail Biting

Consider an (N,K) binary block code transmitted over the binary input AWGN channel

where +
√
Es is transmitted for binary 0 and −√

Es is transmitted for binary 1. Let Aw be

the number of codewords with Hamming weight w. A DSU bound on codeword error rate

Pcw is shown below:

Pcw ≤
N∑

w=dmin

AwQ

(√
wEs

σ2

)
. (3.1)

Define the weight enumerator polynomial as

A(w) =
N∑

w=dmin

AwW
w. (3.2)

Using the bound Q(
√
x+ y) ≤ Q(

√
xe−y/2) [46], a slightly looser bound than (3.1) may be

computed from the weight enumerator polynomial as follows:

Pcw ≤ Q

(√
dminEs

σ2

)
e

dminEs

2σ2 A
(
e−

Es
2σ2

)
. (3.3)

A transition matrix T (W) facilitates computation of A(W) for either a zero-terminated

or tail-biting convolutional code. For the example of a rate 1/n convolutional code with ν

memory elements, T (W) is an s× s matrix, where s = 2ν .

37

1

ELF encoder 𝐸(𝑥)
state 𝑠!

Convolutional encoder 𝐺(𝑥)
state 𝑠"

𝑏# 𝑏$

Figure 3.1: Convolutional encoder G(x) with an ELF E(x) as an outer code. © 2023 IEEE

The entry of T (W) at row j and column i represents the transition from state i to state j

in the convolutional encoder. If there is no transition from state i to state j, then the entry

is zero. Otherwise, the entry is Wwi,j where wi,j is the Hamming weight of the n-bit symbol

transmitted for that state transition.

Define the ith basic row vector ei as a length-s vector of all-zeros except a one in position

i. We will index the entries in both T (W) and ei from zero to s − 1. For example, with

ν = 2 and thus s = 4, e1 =
[
0 1 0 0

]
.

For an (N = n(K+ν), K) block code implemented by sendingK information bits through

a ν-state, rate-1/n, zero-terminated convolutional code,

A(W) = e0T (W)K+νeT0 − 1. (3.4)

Similarly, for an (N = nK,K) block code implemented by sending K information bits

through a 2ν-state tail-biting convolutional code,

A(W) =
2ν−1∑
i=0

eiT (W)KeTi − 1. (3.5)

3.3.2 DSU Bound for a Convolutional Code with an ELF

A degree-m ELF E(x) can be concatenated with a zero-terminated rate-1/n convolutional

code with encoder polynomial matrix G(x). The m ELF redundancy bits reduce the rate

from K
(K+ν)n

to K
(K+ν+m)n

. Eq. (3.4) can be applied to the T (W) with s = 2(ν+m) for the

zero-terminated convolutional code E(x)G(x) so that

A(W) = e0T (W)K+ν+meT0 − 1. (3.6)

For the case of an ELF E(x) concatenated with a rate-1/n tail-biting convolutional code,

the rate reduction is from K
Kn

to K
(K+m)n

. To derive the DSU bound, separately consider the

38

state sE of the ELF encoder in Fig. 3.1 and the state sC of the tail-biting convolutional

encoder in Fig. 3.1. Note that

0 ≤sE ≤ 2m − 1 (3.7)

0 ≤sC ≤ 2ν − 1 (3.8)

Define the overall encoder state of the concatenated code as s = sC+2ν×sE. To compute

an entry in T (W), the following computations are performed (referencing Fig. 3.1):

1) The message input bit bm is processed by the ELF encoder with the origin ELF state s
(o)
E

to compute the destination ELF state s
(d)
E and ELF output bit be. 2) The ELF output bit be

is the input to the convolutional encoder which updates its origin state s
(o)
C to the destination

state s
(d)
C and produces an n-bit output with Hamming weight wi,j. 3) The weight term Wwi,j

is written to T (W) at row j and column i where j = s
(d)
C + 2ν × s

(d)
E and i = s

(o)
C + 2ν × s

(o)
E .

Using this T (W), the weight enumerator polynomial for an (N = 2 × (K + m), K) block

code implemented by sending K information bits through an outer ELF code with 2m states

and encoding the ELF output with a 2ν-state tail-biting convolutional code is

A(W) =
2ν−1∑
i=0

eiT (W)K+meTi − 1. (3.9)

In (3.9), T (W) is an 2m+ν × 2m+ν matrix, but the only paths that contribute to A(W) are

the 2ν paths that start and end at the same value of sC and that start and end with sE = 0.

Fig. 3.2 shows the DSU bounds computed according to (3.9) and (3.3) for all of the 64

possible (142, 64) codes resulting from an m = 7 ELF concatenated with the ν = 8 tail-

biting convolutional code (561,753), where 561 is octal for 1 + x4 + x5 + x6 + x8. The RCU

bound for (142,64) codes is shown for comparison. For reference, the DSU bound for the

(128,64) code that results from using the tail-biting convolutional code without an ELF and

its corresponding RCU bound are also shown. The CER curve from simulating list decoding

of the tail-biting code used with the best ELF 0xFF shows that this DSU bound is tight for

CER ≤ 10−6.

Fig. 3.2 shows how the DSU bound on CER varies with the choice of ELF. The best

ELF is 0xFF whose DSU bound is 0.35 dB from the (142,64) RCU bound at CER=10−6.

39

1 2 3 4 5 6

Eb=N0(dB)

10!10

10!9

10!8

10!7

10!6

10!5

10!4

10!3

10!2

10!1

C
o
d
ew

o
rd

E
rr
or

R
a
te

DSU No ELF dmin = 12
DSU ELF 0xB5 dmin = 12
DSU m = 7 ELFs
DSU ELF 0xFF dmin = 16
Simulation 0xFF dmin = 16
RCU (128; 64)
RCU (142; 64)

Figure 3.2: DSU bounds for the ν = 8 tail-biting convolutional code with K = 64 message

bits with no ELF (red) and with each possible m = 7 ELF (blue). Also shown is a simulation

of list Viterbi decoding of the best ELF 0xFF (green) and, for reference, the (142,64) and

(128,64) RCU bounds (dashed). © 2023 IEEE

The worst ELF is 0xB5 which is 1.10 dB from the RCU bound at CER=10−6. The original

(128,64) TBCC is 1.05 dB from the (128,64) RCU bound. Thus, in this case a well-designed

7-bit ELF reduced the gap from the RCU bound by 0.65 dB while the poorest choice had a

slightly larger gap.

Fig 3.3 shows average list size as a function of Eb/N0 for the list decoding simulation

shown in Fig. 3.2. The maximum list size was set at 220, but the average list size is 1.26

at Eb/N0=3.7 dB, where the CER is 1.1 × 10−6. Thus the average complexity is similar to

regular Viterbi decoding on a 256-state trellis but the gap to the RCU bound is only 0.35

dB.

3.3.3 DSU Bound for Punctured Convolutional Code with ELF

This section extends the DSU bounding technique to handle puncturing. The techniques

below can be applied to any puncturing scheme. For simplicity of exposition, our description

only considers puncturing at most one of the n bits in each convolutional encoder symbol.

40

Figure 3.3: Average list size vs. Eb/N0 for the list Viterbi decoding simulation of a ν = 8

TBCC concatenated with ELF 0xFF shown in Fig.3.2. © 2023 IEEE

Let p be the puncturing index with range 0 ≤ p ≤ n, which indicates either that no bit is

punctured (p = 0) or which bit is punctured 1 ≤ p ≤ n.

Let Tp(W) be the transition matrix of a trellis stage with puncturing according to punc-

turing index p. The matrix T0(W) is the same as the T (W) discussed above. The matrices

Tp(W) for 1 ≤ p ≤ n have the power of W reduced by one for the entries where the pth

output bit, i.e. the punctured bit, is a 1. With this description of punctured transition ma-

trices Tp(W), let pi be the puncturing index that describes the puncturing of the ith trellis

stage. The weight enumerator polynomial for the block code implemented by sending K

information bits through an outer ELF code with 2m states and then a 2ν-state tail-biting

convolutional code and then puncturing some number of bits is expressed as follows:

A(W) =
2ν−1∑
i=0

ei

K+m∏
j=1

Tpj(W)eTi − 1. (3.10)

Often, puncturing is designed according to a periodic pattern. If the period includes q

trellis stages, then we can define a transition matrix Tπ(W) for the puncturing period as

follows:

Tπ(W) =

q∏
i=1

Tpi(W) . (3.11)

If theK+m trellis stages are an integer number of puncturing periods, the weight enumerator

41

Table 3.1: Best ELFs E(x) for m = 0 to m = 12 redundancy bits that maximize minimum

distance for the ν = 8 TBCC (561,753) for K = 64 message bits, N = 2 × (64 + m)

transmitted bits and for N = 2 × 76 transmitted bits, K = 76 −m message bits. © 2023

IEEE

K = 64, N = 2× (64 +m) N = 2× 76, K = 76−m

m E(x) dmin Admin
E(x) dmin Admin

0 0x1 12 704 0x1 12 836

1 0x3 12 260 0x3 12 304

2 0x5 12 66 0x5 12 76

3 0xF 12 4 0xF 14 380

4 0x11 14 68 0x11 14 76

5 0x33 14 11 0x33 14 4

6 0x7F 16 210 0x55 14 2

7 0xFF 16 86 0x81 16 24

8 0x1AB 18 360 0x195 16 6

9 0x301 18 146 0x325 18 297

10 0x4F5 18 17 0x53D 18 21

11 0x9AF 20 300 0xE0D 18 2

12 0x1565 20 47 0x1565 20 47

of the punctured tail-biting convolutional code with an ELF can be expressed as

A(W) =
2ν−1∑
i=0

eiTπ(W)(K+m)/qeTi − 1. (3.12)

3.4 A List Decoding Sieve to find the best ELF

This section provides a list decoding sieve method to find the ELFs that maximize the dmin

of the concatenated code. This approach is computationally more efficient than the error

event construction method of Yang [36]. The sieve performs serial list Viterbi decoding [20]

with the (noiseless) all-zeros codeword as the received word. Codewords join the list in order

42

Table 3.2: Expurgated distance spectra for m = 0 (no expurgation) to m = 12 for the ν = 8

(N=152,K=76) tail-biting convolutional mother code described by polynomial (561,753). ©

2023 IEEE

Expurgated Distance Spectrum for w ≤ 20

m E(x) A12 A14 A16 A18 A20

0 0x1 836 3800 21736 123880 732564

1 0x3 304 1900 11324 61788 367764

2 0x5 76 988 5776 32300 177840

3 0xF 0 380 3344 15656 90060

4 0x11 0 76 1824 8056 43320

5 0x33 0 4 752 4040 22854

6 0x55 0 2 214 2210 11569

7 0x81 0 0 24 1341 5910

8 0x195 0 0 6 461 2932

9 0x325 0 0 0 297 1449

10 0x53D 0 0 0 21 742

11 0xE0D 0 0 0 2 393

12 0x1565 0 0 0 0 47

of increasing Hamming weight.

To find the best ELF polynomial E(x) of degree m, codewords are grouped into sets Swi

according to their Hamming weight wi. The first set has weight w1 equal to the dmin of the

inner code, and for each i, wi > wi−1. For each set Swi
, the sieve method removes from

contention all polynomials E(x) that divide any message polynomial m(x) that produces a

codeword in Swi
. The remaining ELF polynomials correspond to concatenated codes with

dmin > wi. This continues until a weight w∗ is reached that would cause all the remaining

ELF polynomials to be removed from contention. From among the remaining polynomials

E(x) at weight w∗, select the E(x) that achieves w∗ with the smallest number of neighbors.

Table 3.1 shows ELFs found by the list decoding sieve for TBCCs, e.g., ELF 0x301

43

1 2 3 4 5 6

Eb=N0(dB)

10!10

10!9

10!8

10!7

10!6

10!5

10!4

10!3

10!2

10!1

C
o
d
ew

o
rd

E
rr

or
R

a
te

A m=0

 m=12 !

A m=0

 m=12 !

DSU
RCU
m = 0
m = 1
m = 2
m = 3
m = 4
m = 5

m = 6
m = 7
m = 8
m = 9
m = 10
m = 11
m = 12

Figure 3.4: DSU and RCU bounds for ELF codes of Table 3.2. © 2023 IEEE

indicates E(x) = 1 + x8 + x9. The left half of the table holds K constant at 64 bits while

the right half holds N constant at 152 bits. ELFs for 0 ≤ m ≤ 12 are designed using the

sieve approach. The K = 64 results for 3 ≤ m ≤ 10 match the ELFs reported in [19]. When

codeword length is held constant, all the ELFs are expurgating the same mother code. Table

3.2 shows how the the low-weight distance spectrum of the (152,76) mother code thins out

as m increases.

Fig. 3.4 uses (3.9) and (3.3) to compute the DSU bounds for the expurgated tail-biting

convolutional codes of Table 3.2. The corresponding RCU bounds are shown for reference.

Asm increases the DSU bound on CER performance steadily improves. Meanwhile the slight

rate reduction does not significantly improve the CER performance of the RCU bound. As

a result, the gap between the DSU and RCU bounds decreases as m increases. Fig. 3.5

further explores how ELFs reduce the gap between DSU and RCU bounds by showing the

gap between DSU and RCU bounds at CER = 10−6 vs. m for all the ELFs in Table 3.1. We

can see that in both cases the gap decreases as m increases culminating in a gap of 0.227

dB for the m = 12 ELF. For the m = 12 case, the two codes are actually identical (152, 64)

codes. Recall from Fig. 3.3 that this increase in performance requires a minimal increase in

average complexity as described in, e.g, [19,35].

44

0 1 2 3 4 5 6 7 8 9 10 11 12

ELF Redundancy m

0:0

0:1

0:2

0:3

0:4

0:5

0:6

0:7

0:8

0:9

1:0

1:1

1:2

1:3

1:4

G
a
p
to
R
C
U
(d
B
)

(N = 128 + 2m;K = 64)
(N = 152; K = 76!m)

Figure 3.5: Gap at 10−6 between DSU and RCU bounds vs. m for Table 3.1 ELFs. © 2023

IEEE

3.5 A Puncturing Example: Rate-1/2 K = 64

This section applies Sec. 3.3.3 to explore a (128, 64) code created by puncturing 24 bits

from the (152,64) block code formed by concatenating the m = 12 ELF 0x1565 from Tables

3.1 and 3.2 with the ν = 8 tail-biting convolutional code. This example uses a periodic

puncturing pattern with period q = 19, where six bits are punctured from each of the four

periods that comprise the K + m = 76 trellis stages. The 19 puncturing indices for this

periodic puncturing pattern are as follows:

[0 0 1 0 0 1 0 0 0 0 2 0 1 0 0 2 0 0 2]

where puncturing index pi = 0 indicates no puncturing, pi = 1 indicates puncturing the

output of the convolutional encoder polynomial 561 and pi = 2 indicates puncturing the

output of the convolutional encoder polynomial 753. We did not perform a fully exhaustive

search even of puncturing patterns with period q = 19, but this pattern gives reasonable

performance.

Fig. 3.6 shows the DSU bound for the ν = 8 tail-biting convolutional code (561,753) with

ELF 0x1565 and 24 bits punctured as described above. Also shown for comparison are the

45

1 2 3 4 5 6

Eb=N0(dB)

10!10

10!9

10!8

10!7

10!6

10!5

10!4

10!3

10!2

10!1

C
o
d
ew
o
rd
E
rr
or
R
a
te

DSU 8 = 8, m = 12, dmin = 15
DSU 8 = 14, No ELF, dmin = 16
RCU (128; 64)

Figure 3.6: DSU bounds for two (128,64) codes and the (128,64) RCU bound. One code

is the standard ν = 14 tail-biting convolutional code (75063,56711) with no ELF and no

puncturing. The other is the ν = 8 tail-biting convolutional code (561,753) with ELF

0x1565 from Tables 3.1 and 3.2 with 24 bits punctured. © 2023 IEEE

(128,64) RCU bound and the DSU bound for the standard ν = 14 tail-biting convolutional

code (75063,56711) with no ELF and no puncturing. The ν = 14 code has DSU to RCU

gap of 0.15 dB at CER 10−6. The ν = 8 solution has a gap of 0.18 dB at CER 10−6. At an

operating point of CER = 10−6 the ν = 8 solution requires less average decoder complexity.

3.6 Conclusions

For short block lengths, expurgating linear functions (ELFs) transform a good inner code

into a great concatenated code with a minimal increase in average complexity. This paper

presented DSU bounding techniques that allow tight bounds on codeword error rate for ELF

codes with and without puncturing and a sieve method for finding good ELFs efficiently.

46

CHAPTER 4

Linearity-Enhanced Serial List Decoding of Linearly

Expurgated Tail-Biting Convolutional Codes

4.1 Abstract

With a sufficiently large list size, the serial list Viterbi algorithm (S-LVA) provides maximum

likelihood (ML) decoding of a concatenated convolutional code (CC) and an expurgating

linear function (ELF), which is similar in function to a cyclic redundancy check (CRC),

but doesn’t enforce that the code be cyclic. However, S-LVA with a large list size requires

considerable complexity. This chapter exploits linearity to reduce decoding complexity for

tail-biting CCs (TBCCs) concatenated with ELFs.

4.2 Introduction

4.2.1 Background

For a feedforward encoder with ν memory elements implementing a tail-biting convolutional

code (TBCC) [27], the tail-biting condition can be enforced by setting the initial encoder

state with the final ν message bits. By avoiding the ν overhead zero-termination (ZT) bits,

TBCCs can achieve higher coding rates and show improvement in frame error rate (FER) vs.

Eb/N0 performance compared to the corresponding ZTCCs. Designing efficient decoders for

TBCCs has been a popular research topic [12,19,22,47,48] and the construction of minimal

trellises for TBCCs has also been extensively researched [28,49–51].

In addition to tail-biting, the paradigm of concatenating a convolutional code with a cyclic

47

redundancy check (CRC) code further improves the decoding performance and has been

applied widely since its proposal in 1994 [7]. Classically, the CRC code functions as an outer

error-detecting code and verifies if a codeword has been correctly received. However, when

used in conjunction with list decoding [20], the CRC acts as an outer code that expurgates

low-weight codewords of the inner code [19, 32]. These expurgating linear functions (ELFs)

need not be cyclic, and we will follow [4] and refer to them as ELFs. Recent works using the

perspective of a CC concatenated with an ELF include [52], [5], [53], and [54].

Compared to zero-terminated codes, TBCCs require a higher decoding complexity to

find the maximum likelihood (ML) trellis path that also satisfies the tail-biting condition.

The exhaustive approach of performing a separate Viterbi decoding for each possible begin-

ning/ending state finds the maximum-likelihood TB codeword but requires high complexity.

A preferred ML decoder is proposed in Shankar et al., where the ML codeword is found

through a Viterbi step followed by an A* search [47]. In contrast, the wrap-around Viterbi

algorithm (WAVA) [12] has a complexity that is only three to five times that of standard

Viterbi decoding and is often only slightly suboptimal. Parallel and serial list decoding are

two additional approaches [19, 20, 48] that provide ML decoding of a TBCC with less com-

plexity than the exhaustive approach or the A* search, but more complexity than WAVA.

When decoding a TBCC that is concatenated with an ELF, the serial list Viterbi decoding

algorithm (S-LVA) is a natural approach [4, 5, 19], where the terminating conditions require

that the trellis path under consideration is both a TB codeword and a codeword of the

expurgated code produced by the ELF.

4.2.2 Contributions

This chapter exploits the linear nature of convolutional codes [2] to reduce the complexity

required to decode a TBCC concatenated with an ELF. For linear codes, the relative position

of all neighboring codewords to a reference codeword is the same regardless of the reference

codeword. Once a single trellis path has been found through Viterbi search, the neighborhood

around that codeword can be easily accessed by simple XOR operations using a pre-computed

48

list of offsets. This chapter presents two low-complexity decoders that utilize pre-computed

lists to quickly explore nearby TB codewords of a codeword found by either the Viterbi

algorithm or S-LVA.

The first decoder is the offset sphere decoder, which considers a large sphere of tail-

biting codewords centered around the trellis path nearest to the received word. For this

decoder, once the standard Viterbi algorithm finds the nearest (probably non-tail-biting)

trellis path, the list of tail-biting codewords nearest to that trellis path is enumerated using

a list of pre-computed offsets associated with the ending state difference (ESD) of the trellis

path, which is the difference between the initial and final states of the trellis path. While

the complexity is similar to standard Viterbi decoding, the FER benefits significantly from

the TB and ELF constraints. However, for the sphere sizes we considered, the performance

falls short of what can be achieved by S-LVA.

Our second decoder is the list-of-spheres decoder, which can achieve a near-ML total

failure rate (TFR) while maintaining a low average list rank E[L] for ELF-TBCCs. TFR

includes erasures as well as undetected errors. However, with a sufficiently large list size, the

erasure probability approaches zero and TFR becomes the same as the undetected error rate.

This decoder performs S-LVA and searches a small sphere of tail-biting codewords around

each trellis path found by the S-LVA. For decoding to terminate, the squared Euclidean

metric of the codeword of the expurgated TB code must be within a threshold value. It is

shown that the proposed decoder performs within 0.125 dB of the standard S-LVA decoder

while maintaining a significantly smaller list size. At low Eb/N0, the list-of-spheres decoder

achieves the random coding union (RCU) bound developed by Polyanskiy et al. [10], which is

an upper bound on the error probability of the best code given the blocklength and codeword

length.

We follow [2, Chapter 11] to describe the generator matrix G(D) = [g(0)(D), g(1)(D), . . .

g(n−1)(D)], where each g(i)(D) is a polynomial of degree up to ν in delay elementD associated

with the i-th code stream, i.e.,

g(i)(D) = g(i)v Dv + g
(i)
v−1D

v−1 + · · ·+ g
(i)
0 , (4.1)

49

where g
(i)
j ∈ {0, 1}. Each g(i)(D) is represented in octal form. For instance, G(D) =

[D3+D+1, D3+D2+D+1] can be concisely written as G = (13, 17). The ELF polynomial

is represented in hexadecimal, where its binary coefficients are written from the highest to

lowest order. For instance, 0xD represents the polynomial x3 + x2 + 1. As an example

in this chapter, we use the ELF-TBCC where a rate-1/2 TBCC with generator matrix

G = (561, 753) is concatenated with the degree-7 optimal ELF of 0xFF. The information

length for this code is K = 64 bits and the codeword length is N = 142 bits. The codewords

are BPSK modulated. The SNR is defined as γs ≜ 10 log10(A
2) (dB), where A represents

the BPSK amplitude and the noise is distributed as a standard normal.

4.2.3 My Work

My contributions to this chapter were mainly to the development of the novel decoding

algorithms, alongside Beryl Sui.

4.2.4 Organization

Sec. 4.3 describes the offset sphere decoding algorithm and the construction of pre-computed

neighboring codeword lists. The performance of the offset sphere decoder for various sphere

sizes is explored for an example rate-1/2 ELF-TBCC. Sec. 4.4 introduces the list-of-spheres

decoding algorithm for ELF-TBCCs. This section explores how varying termination require-

ments and the size of the spheres of TB codewords around each trellis path can affect the

decoder’s performance. We show simulation and complexity results comparing TFR per-

formance and expected list rank E[L] for the proposed near-ML decoder and the standard

S-LVA decoder for our example rate-1/2 ELF-TBCC. Finally, Sec. 4.5 concludes the chapter.

4.3 Offset Sphere Decoding

This section considers an offset sphere decoder where the decoder examines a single large

sphere of TB codewords centered on the trellis path found by the Viterbi decoder. Section

50

4.3.1 explains the process of generating lists of pre-computed offsets associated with the ESD

of the trellis path. Section 4.3.2 shows how these pre-computed offset lists are used to find

nearby TB codewords in the offset sphere decoding algorithm. Section 4.3.3 shows simulation

results for offset sphere decoding on the rate-1/2 (561, 753) ELF-TBCC with blocklength of

N = 142 bits, and compares performance to a Viterbi decoder as well as a standard S-LVA

decoder.

4.3.1 Generating Lists of Neighboring Tail-Biting Codewords

Throughout this chapter, we use “trellis codewords” to refer to trellis paths identified by

the Viterbi algorithm. A TB codeword is a trellis codeword that also satisfies the tail-

biting constraint. An “ELF-TB codeword” is a TB codeword that is also a codeword of the

expurgated code, i.e. it satisfies the ELF or CRC constraint. This subsection explains how

we can identify the sphere of nearby TB codewords for any trellis codeword. We can then

search that sphere of TB codewords to find the ELF-TB codeword closest to the received

word.

Consider our example ELF-TBCC with rate-1/2 TBCC generator polynomials (561, 753)

and ELF 0xFF. Using the list decoding sieve described in [4], we can perform S-LVA on

the rate-1/2 trellis allowing any starting state and any ending state and using the noiseless

all-zeroes ELF-TB codeword as the received word. The list decoder will enumerate trellis

codewords in order of increasing Hamming distance from the all-zeros codeword. For each

trellis codeword identified by the list decoder, we compute the ESD of that trellis codeword

and append it to the list of neighboring trellis codewords associated with that ESD. The list

decoding sieve continues until each list associated with an ESD has LN neighbors.

Since the all-zeros codeword is used as the received word, the list of neighboring codewords

with a particular ESD also represent the list of offsets that can be added to any trellis

codeword with the same ESD to find the list of LN closest TB codewords. As a result, the

list of neighboring TB codewords can be quickly found with bit-wise XOR operations. The

multi-trellis approach described in [5] to perform S-LVA would be preferred when the desired

51

Figure 4.1: TFR vs. Eb/N0 simulation results for a Viterbi decoder, an offset sphere decoder

with a varying number of neighboring codewords LN = 128, 512 and 2048, as well as an

S-LVA decoder with a restricted maximum list size (Lmax = 2048) so we can compare across

the two approaches. The RCU bound for the K = 64, N = 142 code is shown as a dashed

green line. The rate-1/2 ELF-TBCC used for simulation has generator polynomials (561, 753)

in octal and a degree-7 ELF of 0xFF, which adds seven ELF bits to the message. © 2024

IEEE

LN is large.

4.3.2 Searching the TB Sphere for the Closest ELF-TB Codeword

The offset sphere decoder first uses the standard Viterbi algorithm to find the closest trellis

codeword and calculates its ESD. Then, each codeword on the associated ESD list is indi-

vidually combined with the trellis codeword using the bit-wise XOR operation to produce

one of the neighboring TB codewords. The sphere of neighboring TB codewords is searched

to identify any ELF-TB codewords. If none are found, an erasure is declared. If one or more

ELF-TB codewords are found, the ELF-TB codeword with the smallest squared Euclidean

distance to the received codeword is returned as the selected codeword.

52

4.3.3 Simulation Results and Discussion

Fig. 4.1 shows simulation results comparing a standard Viterbi decoder, the proposed offset

sphere decoder with varying sizes of LN , and an S-LVA decoder with a maximum list size

of Lmax = 2048 for our example rate-1/2 ELF-TBCC. Compared to the standard Viterbi

decoder, the offset sphere decoder has a significant improvement on the TFR. The decoding

performance of the offset sphere decoder improves as LN increases. For a sufficiently large

LN , performance should approach ML and therefore approach that of S-LVA with a large list

size. However, the memory required to support extremely large values of LN may make the

offset sphere decoder unattractive for some applications. Fig. 4.1 shows that TFR for the

offset sphere decoder is not comparable to S-LVA even when LN is as large as the maximum

list size of the S-LVA.

4.4 List-of-Spheres Decoder

To avoid the large LN required for the offset sphere decoder to have comparable performance

to S-LVA, this section proposes a second decoder, called the list-of-spheres decoder. This

decoder searches a sequence of small spheres of neighboring TB codewords centered around

the corresponding sequence of trellis codewords identified by S-LVA. Section 4.4.1 reviews

S-LVA and introduces the list-of-spheres decoding algorithm. In Section 4.4.2, we define the

parameter that controls the size of offset lists used in the list-of-spheres decoder. Section

4.4.3 presents termination conditions to reduce the likelihood of selecting a non-ML choice

of ELF-TB codeword. Section 4.4.4 explores how different sphere sizes and thresholds affect

the decoder’s performance. TFR vs. Eb/N0 simulation results of list-of-spheres decoders

on the rate-1/2 (561, 753) ELF-TBCC with varying termination conditions and sphere sizes

are presented in Section 4.4.4. Section 4.4.5 demonstrates the improvement on the average

list rank E[L] using a list-of-spheres decoder and discusses the decoding complexity, which

is closely related to E[L] for list decoders.

53

R

C

Ĉ(2) Ĉ(1)

D

D̂

DT

1

Figure 4.2: Illustration of the relationship between the received wordR, a trellis codeword C
identified by S-LVA, and two TB codewords Ĉ(1) and Ĉ(2) equidistant from C found through a

pre-computed list of offsets corresponding to the ESD of C. The squared Euclidean distances

D and D̂ are labeled, as well as the thresholdDT . Note that Ĉ(2) satisfies DT but the distance

from Ĉ(1) to R is larger than DT . © 2024 IEEE

4.4.1 Widening the Aperture of S-LVA with a List of Spheres

This section explains how the list-of-spheres decoder decreases complexity by widening the

search aperture of S-LVA. Fig. 4.2 illustrates notation that will be useful in our discussion.

The noisy received word is denoted by R and the trellis codeword most recently found by

S-LVA is C. As described in Sec. 4.3.1, a list of offsets is pre-computed for each possible

ESD. For each trellis codeword identified by S-LVA, the list of offsets corresponding to its

ESD is used to find neighboring TB codewords.

Define the i-th offset in the list of offsets for ESD e to be N (i)
e , where e ∈ {0, 1, . . . , 2v−1}

is the ESD index of that list of neighboring offsets, and the union of all N (i)
e for the pre-

computed list for a given e to be Ne. Let Ĉ denote the list of neighboring TB codewords

computed using the list of offsets. Then, a list of neighboring TB codewords (in binary

representation) can be obtained by the equation

Ĉ(i) = C ⊗ N (i)
e , (4.2)

where Ĉ(i) represents the i-th neighboring TB codeword in the sphere centered on trellis

codeword C, which has an ESD of e. The operator ⊗ represents the bit-wise XOR operation.

The binary codewords are transmitted using BPSK; for each codeword bit b the level

54

(−Eb)
b is transmitted. Fig. 4.2 illustrates (in Euclidean space of BPSK transmission) the

two TB codewords Ĉ(1) and Ĉ(2) closest to C, which happen to be equidistant from C.

Define D ≜ ||R − C||2 to be the Euclidean distance between the received word R and

the BPSK representation of the trellis codeword C found by S-LVA. Similarly, define D̂ ≜

||R − Ĉ||2 to be the Euclidean distance between R and the BPSK representation of TB

codeword Ĉ ∈ Ĉ.

In [20], Seshadri and Sundberg proposed the S-LVA, where at most Lmax most likely

codewords are found in order of increasing distance from R. As each codeword on the list is

found, it is checked to see if it meets the terminating condition, which in [20] was passing a

CRC.

When S-LVA is applied to an ELF-TBCC, many of the trellis codewords on the list are

not even TB codewords. The list-of-spheres decoder presented in Algorithm 1 implements

S-LVA but expands the aperture of consideration at each step to include the TB codewords

closest to the trellis codeword identified by S-LVA. If the trellis codeword C found by S-LVA

is an ELF-TB codeword, it is selected as the decoding result. If not, the decoder computes

the list of neighboring TB codewords Ĉ for the corresponding ESD and searches that list of

Ĉ for ELF-TB codewords.

4.4.2 The Size of the Spheres

The size of the spheres of nearby TB codewords is controlled by the parameter Nneighbor,

which specifies the number of distances of TB codewords permitted in the sphere. If

Nneighbor = 1, only the nearest neighbors, the TB codewords with the smallest distance

from the trellis codeword C, are included in the sphere. If Nneighbor = 2, then the nearest

neighbors and the next-nearest neighbors are included. Unlike the offset sphere decoder,

where lists corresponding to different ESDs all include the same number of TB codewords,

the number of TB codewords in the sphere can be different for different ESD values that

induce different numbers of nearest neighbors.

55

Algorithm 1 List-of-Spheres Decoding Algorithm
Input: R, Nneighbor, A, Lmax

Output: Decoded codeword C∗

while L < Lmax do

Identify C by S-LVA

if C is an ELF-TB codeword then

Return C∗ = C
else

Calculate ESD e of C
Compute Ĉ using Ne

if ∃ Ĉ(i) ∈ Ĉ that is an ELF-TB codeword then

Compute D̂(i) ≜ ||R − Ĉ(i)||2
if D̂(i) ≤ DT and D̂(i) < D̂(j)∀j ̸= i then

Return C∗ = Ĉ(i)

end if

end if

end if

end while

4.4.3 A Threshold to Avoid Decoding Errors

Just as with the offset sphere decoder, there is a danger that the list-of-spheres decoder

can find an ELF-TB codeword that is not the ML choice. To reduce the probability of

terminating with the selection of a non-ML ELF-TB codeword, a threshold DT is placed

on ELF-TB codewords that are found when searching the sphere. Fig. 4.2 illustrates how

this threshold is applied. When the search of the sphere identifies an ELF-TB codeword,

we compute D̂ ≜ ||R − Ĉ||2. We define a threshold distance DT which can be a function

of both the distance D ≜ ||R − C||2 and an “aperture” parameter A that controls how

much further from R than C an identified ELF-TB codeword can be and still be admissible.

The relationship between A and DT is defined as DT =
√
D2 + A. Equivalently, A is the

56

Figure 4.3: TFR vs. Eb/N0 simulation results for the same ELF-TBCC as Fig. 1 using the

list-of-spheres decoder for aperture parameters A = 10 with Nneighbor = 1 and A = 5 with

Nneighbor ∈ {1, 2, 3}. The performance of a list-of-spheres decoder without any threshold and

an S-LVA decoder with a large maximum list size (Lmax = 105) are also presented. The RCU

bound for the code is shown as a dashed green line. © 2024 IEEE

difference between the squared Euclidean distances D2 and D̂2. If the ELF-TB codeword

Ĉ satisfies the condition D̂ ≤ DT , it is admissible as a decoder result, and the algorithm

terminates. If multiple admissible ELF-TB codewords are found while searching a sphere,

the decoder returns the one closest to R.

4.4.4 Selecting the Sphere Size Nneighbor and the Threshold DT

This section explores how the choices of the sphere size Nneighbor and the threshold DT affect

the list-of-spheres decoder’s performance. To explore performance empirically, simulations

were performed using this example rate-1/2 ELF-TBCC, which has generator polynomials

(561, 753) in octal and a degree-7 ELF of 0xFF.

The aperture parameter A prevents the decoder from selecting neighboring TB codewords

that are too far away from the received word R. This restriction reduces the probability of

selecting a non-ML decoding result. When A = 0, the list-of-spheres decoder is equivalent to

57

a regular S-LVA decoder. As A is increased and the “aperture” of our decoder opens, more

TB codewords in the sphere become admissible. Thus, the expected list rank and decoding

complexity are reduced because decoding terminates sooner, but non-ML codewords are

more likely to be selected.

Fig. 4.3 shows simulated TFR vs. Eb/N0 result for a list-of-spheres decoder without a

threshold requirement, which is far off the RCU bound. The TFR performance improves

considerably when the threshold requirement is added with an aperture parameter of A = 10.

Even better TFR performance, within 0.125 dB of S-LVA, is achieved with an aperture

parameter of A = 5 at a target TFR of 10−5. At low Eb/N0, the performance of a list-of-

spheres decoder with A = 5 achieves the RCU bound.

To consider possible choices for Nneighbor, Fig. 4.3 shows simulation results for a list-of-

spheres decoder with a fixed aperture parameter A = 5 and varying Nneighbor values of 1,

2, and 3, as well as an S-LVA decoder with a sufficiently large list size (Lmax = 105) that

ensures ML decoding. With the aperture parameter preventing most selections of non-ML

codewords, increasing Nneighbor does not degrade TFR performance. However, as shown

in Fig. 4.4, increasing Nneighbor significantly reduces the expected list rank. For A = 5,

increasing to Nneighbor = 3 reduces the expected list rank to become close to that of A = 10

with Nneighbor = 1.

4.4.5 Expected List Rank and Complexity

In [19], the authors provided the complexity expression for S-LVA of rate-1/ω ELF-TBCCs,

where the overall average complexity of S-LVA can be decomposed into three components:

CSLVA = CSSV + Ctrace + Clist. (4.3)

CSSV denotes the complexity of a standard soft Viterbi (SSV), Ctrace denotes the complexity

of the additional traceback operations required by S-LVA, and Clist denotes the average

complexity of inserting new elements to maintain an ordered list of path metric differences.

For ELF-TBCCs, these metrics are evaluated by Eq. 4.4 through Eq. 4.7, where E[I] is

58

Figure 4.4: E[L] vs. Eb/N0 simulation results for the same ELF-TBCC as Fig. 1 using the

list-of-spheres decoder for aperture parameters A = 10 and A = 5 and Nneighbor ∈ {1, 2, 3}.
The E[L] of a list-of-spheres decoder without any threshold and an S-LVA decoder with a

sufficiently large maximum list size (Lmax = 105) that ensures ML decoding are shown in

solid yellow and orange, respectively. © 2024 IEEE

the expected number of insertions to maintain the sorted list of path metric differences.

CSSV = 1.5(K +m)2v+1 + 2v + 3.5(K +m) (4.4)

Ctrace = 3.5(E[L]− 1)(K +m) (4.5)

Clist = E[I] log(E[I]) (4.6)

E[I] ≤ (K +m)E[L] + 2v − 1 (4.7)

Since forming the neighbor lists can be done exclusively through XOR operations, and the

list-of-spheres decoder uses relatively small neighbor lists, it has low complexity compared to

the traceback and insertion components of S-LVA. Thus, CSLVA of the list-of-spheres decoder

is approximately the same as that of a regular S-LVA decoder, and lowering E[L] will result

in a lower overall complexity.

59

In Fig. 4.4, the expected list ranks of a list-of-spheres decoder with varying Nneighbor and

aperture values are compared to that of a standard S-LVA decoder that achieves ML decod-

ing. At low Eb/N0, as the threshold increases, E[L] of the list-of-spheres decoder decreases

substantially. The expected list rank of a list-of-spheres decoder without a threshold is

around 1
10

of those with thresholds, but this complexity reduction comes at the price of poor

decoding performance. While A = 10 achieves the second lowest E[L], the list-of-spheres

decoder with A = 5 still shows a much lower complexity than the S-LVA decoder, providing

a considerable reduction in decoding complexity.

Fig. 4.4 also compares the expected list rank of list-of-spheres decoders with varying

Nneighbor and a fixed aperture A = 5. Despite their similar TFR performance, the decoders

show how E[L] decreases with increasing values of Nneighbor, especially at low Eb/N0. Includ-

ing more neighboring codewords reduces E[L] because the decoder is able to find an ELF-TB

codeword earlier by searching a larger sphere around a trellis codeword.

4.5 Conclusion

This chapter proposes two decoders based on the linearity of convolutional codes: an offset

sphere decoder and a list-of-spheres decoder. The offset sphere decoder improves performance

over the standard Viterbi decoder by around 1.5 dB, while maintaining a similar level of

decoding complexity. The list-of-spheres decoder can closely approach ML performance

while substantially reducing the expected list rank of the S-LVA. The list-of-spheres decoder

with a smaller aperture of A = 5 and larger sphere size Nneighbor = 3 achieves the best

tradeoff of decoding complexity and TFR performance. Future research directions include

further exploration of how the distribution of codewords can be applied to determine optimal

termination conditions and sphere sizing. Additionally, it may be possible to design a truly

ML decoder with reduced complexity compared to S-LVA based on the linearity property

of ELF-TBCCs. There are many aspects of the linearity approach that can be applied to

enhance decoders of ELF-TBCCs.

60

CHAPTER 5

Conclusion

As has been shown in this thesis, the coding scheme of CCs concatenated with ELFs offers

strong performance, closely approaching the RCU bound at practical operating points with

low average decoder complexity. Further directions for research include further improvements

of bounding techniques to analyze codes without the need for computationally intensive

simulation, and further exploration of increasingly efficient decoding algorithms.

61

REFERENCES

[1] M. Karimzadeh and M. Vu, “Optimal CRC design and serial list Viterbi decoding for
multi-input convolutional codes,” in 2020 IEEE Global Commun. Conf., 2020, pp. 1–6.

[2] S. Lin and D. J. Costello, Error Control Coding, 2nd ed. Pearson, 2004.

[3] W. Sui, H. Yang, B. Towell, A. Asmani, and R. D. Wesel, “High-rate convolutional
codes with CRC-aided list decoding for short blocklengths,” in ICC 2022 - IEEE Int.
Conf. on Comm., 2022, pp. 98–103, © 2022 IEEE. Reprinted, with permission.

[4] R. D. Wesel, A. Antonini, L. Wang, W. Sui, B. Towell, and H. Grissett, “ELF codes:
Concatenated codes with an expurgating linear function as the outer code,” pp. 287–291,
2023, © 2023 IEEE. Reprinted, with permission.

[5] W. Sui, B. Towell, A. Asmani, H. Yang, H. Grissett, and R. D. Wesel, “CRC-aided high-
rate convolutional codes with short blocklengths for list decoding,” IEEE Transactions
on Communications, vol. 72, no. 1, pp. 63–74, 2024, © 2024 IEEE. Reprinted, with
permission.

[6] T. Yamada, H. Harashima, and H. Miyakawa, “A new maximum likelihood decoding
of high rate convolutional codes using a trellis,” Elec. and Commun. in Japan Part
I-commun., vol. 66, pp. 11–16, 1983.

[7] M. Rice, “Comparative analysis of two realizations for hybrid-ARQ error control,” in
1994 IEEE Global Commun. Conf., 1994, pp. 115–119.

[8] “Universal mobile telecommunications system (UMTS); multiplexing and channel cod-
ing (FDD); 3GPP TS 25.212 version 7.0.0 release 7,” European Telecommunications
Standards Institute, Tech. Rep., 2006.

[9] “LTE; evolved universal terrestrial radio access (E-UTRA); multiplexing and channel
coding; 3GPP TS 36.212 version 15.2.1 release 15,” European Telecommunications Stan-
dards Institute, Tech. Rep., 2018.

[10] Y. Polyanskiy, H. V. Poor, and S. Verdú, “Channel coding rate in the finite blocklength
regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5, pp. 2307–2359, May 2010.

[11] H. Ji, S. Park, J. Yeo, Y. Kim, J. Lee, and B. Shim, “Ultra-reliable and low-latency
communications in 5G downlink: Physical layer aspects,” IEEE Wireless Commun.
Mag., vol. 25, no. 3, pp. 124–130, 2018.

[12] L. Gaudio, T. Ninacs, T. Jerkovits, and G. Liva, “On the performance of short tail-
biting convolutional codes for ultra-reliable communications,” in SCC 2017; 11th Int.
ITG Conf. Syst., Commun., and Coding, Feb. 2017, pp. 1–6.

[13] M. C. Coşkun, G. Durisi, T. Jerkovits, G. Liva, W. Ryan, B. Stein, and F. Steiner,
“Efficient error-correcting codes in the short blocklength regime,” Physical Commun.,
vol. 34, pp. 66 – 79, 2019.

62

[14] C. Yue, M. Shirvanimoghaddam, B. Vucetic, and Y. Li, “A revisit to ordered statistics
decoding: Distance distribution and decoding rules,” IEEE Trans. Inf. Theory, vol. 67,
no. 7, pp. 4288–4337, 2021.

[15] L. Dolecek, D. Divsalar, Y. Sun, and B. Amiri, “Non-binary protograph-based LDPC
codes: Enumerators, analysis, and designs,” IEEE Trans. Inf. Theory, vol. 60, no. 7,
pp. 3913–3941, 2014.

[16] G. Liva, E. Paolini, B. Matuz, S. Scalise, and M. Chiani, “Short turbo codes over high
order fields,” IEEE Trans. Commun., vol. 61, no. 6, pp. 2201–2211, 2013.

[17] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Trans. Inf. Theory, vol. 61,
no. 5, pp. 2213–2226, 2015.

[18] E. Arıkan, “From sequential decoding to channel polarization and back again.”
[Online]. Available: http://arxiv.org/abs/1908.09594

[19] H. Yang, E. Liang, M. Pan, and R. D. Wesel, “CRC-aided list decoding of convolutional
codes in the short blocklength regime,” IEEE Trans. on Information Theory, vol. 68,
no. 6, pp. 3744–3766, 2022.

[20] N. Seshadri and C. E. W. Sundberg, “List Viterbi decoding algorithms with applica-
tions,” IEEE Trans. Commun., vol. 42, no. 234, pp. 313–323, Feb. 1994.

[21] R. Schiavone, “Channel coding for massive IoT satellite systems,” Master’s thesis, Po-
litechnic University of Turin (Polito), 2021.

[22] R. Shao, S. Lin, and M. Fossorier, “Two decoding algorithms for tailbiting codes,” IEEE
Transactions on Communications, vol. 51, no. 10, pp. 1658–1665, 2003.

[23] F. Soong and E.-F. Huang, “A tree-trellis based fast search for finding the n-best sen-
tence hypotheses in continuous speech recognition,” in ICASSP 91: 1991 International
Conference on Acoustics, Speech, and Signal Processing, 1991, pp. 705–708 vol.1.

[24] M. Roder and R. Hamzaoui, “Fast tree-trellis list Viterbi decoding,” IEEE Trans. Com-
mun., vol. 54, no. 3, pp. 453–461, Mar. 2006.

[25] R. Hinze, “Constructing red-black trees,” 10 1999.

[26] A. Hasham, “A new class of priority queue organizations,” Master’s thesis, 1986,
aAI0662089.

[27] H. Ma and J. Wolf, “On tail biting convolutional codes,” IEEE Trans. Commun., vol. 34,
no. 2, pp. 104–111, Feb. 1986.

[28] R. Koetter and A. Vardy, “The structure of tail-biting trellises: minimality and basic
principles,” IEEE Trans. Inf. Theory, vol. 49, no. 9, pp. 2081–2105, Sep. 2003.

[29] R. E. Blahut, Algebraic Codes for Data Transmission. Cambridge University Press,
2003.

63

http://arxiv.org/abs/1908.09594

[30] R. Gallager, “A simple derivation of the coding theorem and some applications,” IEEE
Trans. on Information Theory, vol. 11, no. 1, pp. 3–18, 1965.

[31] J. Font-Segura, G. Vazquez-Vilar, A. Martinez, A. Guillén i Fàbregas, and A. Lancho,
“Saddlepoint approximations of lower and upper bounds to the error probability in
channel coding,” in 2018 52nd Annual Conf. on Information Sciences and Systems
(CISS), 2018, pp. 1–6.

[32] C. Y. Lou, B. Daneshrad, and R. D. Wesel, “Convolutional-code-specific CRC code
design,” IEEE Trans. Commun., vol. 63, no. 10, pp. 3459–3470, Oct. 2015.

[33] H. Yang, S. V. S. Ranganathan, and R. D. Wesel, “Serial list Viterbi decoding with
CRC: Managing errors, erasures, and complexity,” in 2018 IEEE Global Comm. Conf.
(GLOBECOM), 2018, pp. 1–6.

[34] H. Yang, E. Liang, H. Yao, A. Vardy, D. Divsalar, and R. D. Wesel, “A list-decoding
approach to low-complexity soft maximum-likelihood decoding of cyclic codes,” in 2019
IEEE Global Comm. Conf. (GLOBECOM), 2019, pp. 1–6.

[35] E. Liang, H. Yang, D. Divsalar, and R. D. Wesel, “List-decoded tail-biting convolutional
codes with distance-spectrum optimal CRCs for 5G,” in 2019 IEEE Global Comm. Conf.
(GLOBECOM), 2019, pp. 1–6.

[36] H. Yang, L. Wang, V. Lao, and R. D. Wesel, “An efficient algorithm for designing
optimal CRCs for tail-biting convolutional codes,” in 2020 IEEE Int. Sym. Inf. Theory
(ISIT), June 2020, pp. 1–6.

[37] J. King, A. Kwon, H. Yang, W. Ryan, and R. D. Wesel, “CRC-aided list decoding of
convolutional and polar codes for short messages in 5G,” in ICC 2022 - IEEE Int. Conf.
on Comm., 2022, pp. 92–97.

[38] J. King, W. Ryan, and R. D. Wesel, “CRC-aided short convolutional codes and RCU
bounds for orthogonal signaling,” in GLOBECOM 2022 - 2022 IEEE Global Comm.
Conf., 2022, pp. 4256–4261.

[39] D. Song, F. Areces, L. Wang, and R. Wesel, “Shaped TCM with list decoding that
exceeds the RCU bound by optimizing a union bound on fer,” in GLOBECOM 2022 -
2022 IEEE Global Comm. Conf., 2022, pp. 4262–4267.

[40] J. King, “CRC-aided list decoding of short convolutional and polar codes for binary and
nonbinary signaling,” Master’s thesis, University of California, Los Angeles (UCLA),
2022.

[41] L. Wang, D. Song, F. Areces, and R. D. Wesel, “Achieving short-blocklength RCU
bound via CRC list decoding of TCM with probabilistic shaping,” in ICC 2022 - IEEE
Int. Conf. on Comm., 2022, pp. 2906–2911.

[42] L. Wang, D. Song, F. Areces, T. Wiegart, and R. D. Wesel, “Probabilistic shaping for
trellis-coded modulation with CRC-aided list decoding,” IEEE Trans. on Communica-
tions, vol. 71, no. 3, pp. 1271–1283, 2023.

64

[43] R. Schiavone, R. Garello, and G. Liva, “Application of list Viterbi algorithms to improve
the performance in space missions using convolutional codes,” in 2022 9th Int. Workshop
on Tracking, Telemetry and Command Systems for Space Applications (TTC), 2022, pp.
1–8.

[44] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Transactions on Information
Theory, vol. 61, no. 5, pp. 2213–2226, 2015.

[45] J. King, H. Yao, W. Ryan, and R. D. Wesel, “Design, performance, and complexity of
CRC-aided list decoding of convolutional and polar codes for short messages.” [Online].
Available: https://arxiv.org/abs/2302.07513

[46] A. Viterbi, “Convolutional codes and their performance in communication systems,”
IEEE Trans. on Communication Technology, vol. 19, no. 5, pp. 751–772, 1971.

[47] P. Shankar, P. Kumar, K. Sasidharan, B. S. Rajan, and A. Madhu, “Efficient convergent
maximum likelihood decoding on tail-biting trellises,” CoRR, vol. abs/cs/0601023, 01
2006.

[48] J. King, W. Ryan, C. Hulse, and R. D. Wesel, “Efficient maximum-likelihood decoding
for TBCC and CRC-TBCC codes via parallel list viterbi,” pp. 141–145, 2023.

[49] A. Calderbank, G. Forney, and A. Vardy, “Minimal tail-biting trellises: the golay code
and more,” IEEE Transactions on Information Theory, vol. 45, no. 5, pp. 1435–1455,
1999.

[50] S. Lin and R. Shao, “General structure and construction of tail biting trellises for linear
block codes,” in 2000 IEEE International Symposium on Information Theory (Cat.
No.00CH37060), 2000, pp. 117–.

[51] D. Conti and N. Boston, “On the algebraic structure of linear tail-biting trellises,” IEEE
Transactions on Information Theory, vol. 61, no. 5, pp. 2283–2299, 2015.

[52] A. Antonini, W. Sui, B. Towell, D. Divsalar, J. Hamkins, and R. D. Wesel, “Suppressing
error floors in SCPPM via an efficient CRC-aided list viterbi decoding algorithm,” pp.
221–225, 2023.

[53] B. Feng, Y. Yang, J. Jiao, and Q. Zhang, “On tail-biting polarization-adjusted convolu-
tional (TB-PAC) codes and small-sizes list decoding,” IEEE Communications Letters,
vol. 27, no. 2, pp. 433–437, 2023.

[54] R. Schiavone, R. Garello, and G. Liva, “Performance improvement of space missions
using convolutional codes by CRC-aided list viterbi algorithms,” IEEE Access, vol. 11,
pp. 55 925–55 937, 2023.

65

https://arxiv.org/abs/2302.07513

	Introduction
	Organization
	My Work
	Channel Coding
	Convolutional Codes
	Background and Encoding
	Decoding

	CRCs and Concatenation

	On CRC-Aided, Dual-Trellis, List Decoding for High-Rate Convolutional Codes with Short Blocklengths
	Abstract
	Introduction
	Contributions
	My Work
	Organization

	Systematic Encoding and Dual Trellis
	Notation
	Systematic Encoding
	Dual Trellis
	Tree-Trellis Algorithm

	ZTCC with DSO CRC via Dual Trellis SLVD
	Zero Termination of Dual Trellis
	Design of DSO CRCs for High-Rate ZTCCs
	Results and Comparison with RCU Bound

	TBCC with DSO CRC and Dual Trellis SLVD
	Design of DSO CRCs for High-Rate TBCCs
	Single Trellis List Decoding for CRC-TBCC
	Multi-Trellis List Decoding for CRC-TBCC
	List Decoding with WAVA
	Complexity Analysis
	Results, Analysis, and Expected List Rank of SLVD

	Conclusion

	ELF Codes: Concatenated Codes with an Expurgating Linear Function as the Outer Code
	Abstract
	Introduction
	Contributions
	My Work
	Organization

	Distance Spectrum Union Bounds
	DSU Bounds for Zero Termination and Tail Biting
	DSU Bound for a Convolutional Code with an ELF
	DSU Bound for Punctured Convolutional Code with ELF

	A List Decoding Sieve to find the best ELF
	A Puncturing Example: Rate-1/2 K=64
	Conclusions

	Linearity-Enhanced Serial List Decoding of Linearly Expurgated Tail-Biting Convolutional Codes
	Abstract
	Introduction
	Background
	Contributions
	My Work
	Organization

	Offset Sphere Decoding
	Generating Lists of Neighboring Tail-Biting Codewords
	Searching the TB Sphere for the Closest ELF-TB Codeword
	Simulation Results and Discussion

	List-of-Spheres Decoder
	Widening the Aperture of S-LVA with a List of Spheres
	The Size of the Spheres
	A Threshold to Avoid Decoding Errors
	Selecting the Sphere Size N_neighbor and the Threshold D_T
	Expected List Rank and Complexity

	Conclusion

	Conclusion
	References

