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Abstract
The ability to learn temporal relationships and use that knowl-
edge to simulate future events is among the most remark-
able aspects of cognition. Recently introduced behavioral task
called Judgment of Imminence (JOI) combined with a well-
known Judgment of Recency (JOR) task pointed to a remark-
able symmetry between the temporal organization of memory
and prediction. The data were consistent with the hypothesis
that both memory and prediction can be organized as a com-
pressed mental timeline. This means that the past and future
can be remembered or simulated sequentially relative to the
present. The compression implies that events closer to the
present, regardless of whether they are in the past or in the fu-
ture, were represented more accurately than those further from
the present. Here we used the existing JOR model based on
a compressed memory timeline to build an associative repre-
sentation that can learn the temporal relationships and create a
timeline of the future, which mirrors the timeline of the past.
We show that this approach can simultaneously account for
response times and accuracy in both JOR and JOI. This work
provides a time-local neural-level mechanistic account for how
the temporal organization of the memory can be used to learn
the temporal structure of the world and simulate the future in
an efficient manner as a compressed mental timeline.
Keywords: Associative memory, Timeline, Scale-invariance,
Prediction, Sequence learning.

Introduction
The brain’s remarkable ability to learn temporal relationships
and use them to predict the future has been in the focus of
many cognitive scientists. Here we evaluate a computational
hypothesis that proposes using associative memory to learn
temporal relationships and construct an estimate of the fu-
ture (Howard, Shankar, Aue, & Criss, 2015; Shankar, Singh,
& Howard, 2016; Tiganj, Gershman, Sederberg, & Howard,
2019). In a nutshell, this hypothesis makes two major as-
sumptions: 1) Memory of the recent past is maintained as
a compressed neural timeline: the memory about what hap-
pened when is carried in a population of sequentially acti-
vated, stimulus-specific neurons. Importantly, the more re-
cent past is represented with more neurons. Those neurons
have narrower firing fields, resulting in a gradual decay of
temporal resolution from more recent to more distant past.
This memory representation was used to account for differ-
ent behavioral experiments, including time estimation and re-
cency judgments (Howard et al., 2015; Tiganj, Cruzado, &
Howard, 2019). Sequentially activated neurons, called time
cells, were observed in different parts of the brain, especially
in the hippocampus (MacDonald, Lepage, Eden, & Eichen-
baum, 2011; Pastalkova, Itskov, Amarasingham, & Buzsaki,

2008; Tiganj, Kim, Jung, & Howard, 2015). Neural record-
ings also suggest that time cells are stimulus-specific (differ-
ent stimuli activate different time cells) (Tiganj, Cromer, Roy,
Miller, & Howard, 2017; Cruzado, Tiganj, Brincat, Miller, &
Howard, 2020), supporting the existence of a memory time-
line. 2) Input stimuli are associated with the memory timeline
through Hebbian learning. The associations store the average
temporal history for every stimulus. The temporal history of
a stimulus contains information about which stimuli preceded
that stimulus and when. The average history is then used to
compute the average future (Tiganj, Gershman, et al., 2019).

To evaluate the proposed hypothesis here we focus on the
data published in a recent behavioral study that examined
the similarity between memory and prediction (Tiganj, Singh,
Esfahani, & Howard, 2020). In this study, participants com-
pleted two tasks, a well-established relative judgment of re-
cency (JOR) and a new task, called judgment of imminence
(JOI). In JOR participants are presented with a sequence of
stimuli followed by a probe consisting of two letters from the
sequence. The participants have to select the letter that was
presented more recently (Figure 1a). The study confirmed the
classic finding that in JOR response time (RT) in correct tri-
als depends on the lag to the more recent probe but not on the
lag to the less recent probe (Hacker, 1980; Hockley, 1984).
This finding is consistent with a self-terminating backward
scan along a temporally-organized memory representation
(Hacker, 1980; Hockley, 1984; McElree & Dosher, 1993). In
addition, Tiganj et al. (2020) found that in correct trials, the
RT scales sublinearly with the lag of the more recent probe.
This is consistent with the hypothesis that memory is orga-
nized as a compressed neural timeline, as demonstrated in a
computational model (Howard et al., 2015; Tiganj, Cruzado,
& Howard, 2019).

JOI task was designed as a future-time analog of JOR. By
analogy to the way the JOR evaluates participants’ ability to
judge the relative time at which past events occurred, this new
paradigm tested participants’ ability to judge the imminence
of future events over a scale of a few seconds. The relative
JOR task requires the participant to select the probe item from
the previous list that was presented closer to the present. In
contrast, the JOI paradigm asks participants to select the fu-
ture probe item that is anticipated closer to the present (Fig-
ure 1b). Here we review the computational model for JOR de-
scribed in Howard et al. (2015); Tiganj, Cruzado, and Howard
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Figure 1: Judgment of recency (JOR) and judgment of imminence (JOI) behavioral tasks. a. Schematic of the JOR task.
Participants are shown a list of letters (such as RYT. . . ) followed by a probe containing two letters from the list (here, G and
T). Participants choose the probe item that was experienced more recently. In this example, probe G is the correct answer. Lag
of each probe is defined as the number of steps backward in the list necessary to find the probe. b. Schematic of the JOI task.
In JOI, participants learn a probabilistic sequence. The sequence usually follows a predictable sequence (clockwise movement
along the circle) with occasional random jumps (light-grey arrow). After learning these transition probabilities, the sequence is
interrupted by a probe containing two letters (here, G and T). Participants choose the letter that is likely to occur sooner. In this
example, the letter T is the correct answer. Lag for each probe is defined as the number of steps forward at which one would
expect to find the probe if the sequence continued along its most likely path. From (Tiganj et al., 2020).

(2019) and develop a computational model for JOI that drives
inspiration from previous theoretical work (Tiganj, Gersh-
man, et al., 2019). We will show that the same computational
framework can model the results from both tasks.

Description of the model
We model JOR and JOI using the same computational
framework. First, for JOR we construct a logarithmically-
compressed memory timeline. Then for JOI we use that time-
line to form associations between past and present.

Compressed memory timeline
The approach we used to construct the memory timeline is
equivalent to the previous work (Shankar & Howard, 2012;
Howard et al., 2015; Tiganj, Cruzado, & Howard, 2019) so
here we will only provide a brief review. We encode each
stimulus as a one-hot vector f. For instance, for a list of 7
letters, the length of f is equal to 7. Each element in f is
then fed into a two-layer recurrent network with analytically
computed weights. The first layer is recurrent and for the i-th
element of the input, vector f has the following dynamics:

dF(i)
s (t)
dt

=−sF(i)
s (t)+ f(i)(t). (1)

Here s is an N long vector, where N is the number of neu-
rons in F(i)

s . The impulse response of the neurons in the re-
current layer decays exponentially with rate constants s (Fig-
ure 2, middle row). This layer encodes an approximation of
the Laplace transform (see Shankar and Howard (2012) for
more details). To obtain a timeline that estimates f(i)(t ′ < t)
we invert the Laplace transfrom using the Post approxima-
tion:

f̃(i)∗
τ
(t) =

(−1)k

k!
sk+1 dk

dsk F(i)
s (t), (2)

where
∗
τ = k/s is a vector of logarithmically spaced values.

This results in a bell-shaped impulse response that activates
sequentially across units in f̃(i)∗

τ
with peaks at

∗
τ (Figure 2, bot-

tom row). For a sample trial of JOR task, the activity of the
nodes in f and f̃ is shown in Figure 3a.

Associative memory
To create the associative memory we use the approach de-
scribed in (Shankar & Howard, 2012; Tiganj, Cruzado, &
Howard, 2019). At each time t, associative memory tensor
M is updated with the outer product of the current input state
f and f̃. Hence M is a three-tensor. At each moment, M is
updated with the simple Hebbian learning rule:

M∗
τ
(t) = M∗

τ
(t−1)+ f(t)f̃∗

τ
(t), (3)

where f is a column vector and f̃∗
τ

is a row vector, both of
length N and M∗

τ
is N by N matrix. Formation of the associa-

tive memory is illustrated in Figure 3b, where the thickness
of the green arrows represents the strength of the associations
stored in M.

Compressed timeline of the future
The associative memory is used to construct prediction of the
future. To achieve this, we followed the approach described
in Tiganj, Cruzado, and Howard (2019). M stores the pair-
wise temporal relationships between all stimuli subject to log-
arithmic compression. For instance, if we had two stimuli A
and B presented with spacing ∆, M will store that temporal
relationship. Note that the knowledge that A was presented
∆ time before B implies that B was presented ∆ time after A.
In other words, M stores the average history, but we can use
that information to compute the average future. Specifically,
multiplying M from the left with f(i) will extract the average
history of the i-th stimulus (average f̃(i)). On the other hand
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multiplying M from the right with f(i) will extract the average
future of the i-th stimulus, which we label as p(i):

p∗
τ
= M∗

τ
f (4)

Analogous to f̃, p is as a 2-D matrix indexed by stimulus iden-
tity and

∗
τ. Note also that instead of learning the average his-

tory we could have directly learned the average future via the
successor representation (Momennejad & Howard, 2018).

*
*
*

*

Figure 2: Schematic of the memory model. Left panel:
The input stimulus f i feeds into a layer of leaky integrators
F(i)

s that implement a discrete approximation of the Laplace
transform. Each neuron in the first layer has a characteristic
rate constant si. F(i)

s projects onto f̃(i)∗
τ

through a set of weights

defined with the operator L−1
k which approximates the inverse

Laplace transform. Neurons in the second layer each have
their characteristic peak time relative to the input onset

∗
τi.

Right panel: A response of the network to a delta-function
input. Activity of only three neurons in each layer is shown.
Neurons in F(i)

s decay exponentially with rate constants si and
neurons f̃(i)∗

τ
activate sequentially following the stimulus pre-

sentation. The width of the activation of each neuron scales
with the peak time determined by the corresponding

∗
τ, mak-

ing the memory scale-invariant.

Implementation of the JOR model
To model JOR we used the memory timeline stored in f̃, as
illustrated in Figure 3a. We ran the model for 5000 trials
with each trial consisting of 7 letters. We represented let-
ters as delta pulses spaced by 100 time steps, followed by
a probe composed of two randomly selected letters. Param-
eters of the memory representation were as follows: k = 8,
the number of sequentially activated units for each letter was
100, the peak time of the first unit in the sequence was at 50,
and the peak time of the last unit was 2000. After the probes
were presented, the model scanned sequentially (from more
recent towards more distant past) the memory representation
f̃ and integrated the activation of units for each probe. Once
the threshold of 0.005 was reached for one of the probes, the
scanning stopped and that probe was given as a response. The
model was run in a noise-free case and with added noise. In

the latter case, the readout from f̃ for each probe at every step
of the scanning process was multiplied by a random amount
of noise. The random amount was chosen from a uniform
distribution with the lower limit of 0.15 and the upper limit
of 1.85.

Implementation of the JOI model
In the JOI model, we presented a sequence of 12 letters 24
times in order to learn the associative representation stored in
M, as illustrated in Figure 3b. While we could have presented
the sequence only once and learn the temporal associations,
presenting the sequence multiple times helped with minimiz-
ing the edge effects. Parameters of the memory representation
were the same as in the JOR model. After the sequence was
learned, 5000 probe trials were presented, each containing a
stop position for the sequence (e.g. letter R in Figure 1b) and
two randomly selected letters from the sequence that were
used as probes (e.g. letters T and G in Figure 1b). Similar
to the behavioral experiment from Tiganj et al. (2020), the
probe letters had a lag between 2 and 7. The scanning proce-
dure was analogous to JOR, except that instead of integrating
the activation of units in the timeline of the past f̃ we inte-
grated the activation of the units in the timeline of the future
p (which is equivalent to integrating corresponding weights
stored M). Similar to the JOR model, for JOI we also used a
noise-free and noise case, with the same type of noise as in
JOR.1

Results
We quantified the results from the model in terms of RT and
accuracy. We compared the results with the behavioral data
from Tiganj et al. (2020). All of the results resembled those
obtained in the behavioral versions of JOR and JOI. For cor-
rect trials, RT depended only on the lag to the more recent
(JOR) / imminent (JOI) probe and not on the lag to the less
recent/imminent probe as evidenced by the flat lines in Fig-
ure 4. This was a direct consequence of the fact that we used a
serial self-terminating search type of model for both memory
and prediction. Furthermore, for correct trials, the RT grew
sublinearly with the lag (Figure 5). This was a result of the
log-compression in the model timeline for both past and fu-
ture. Finally, the accuracy generated by the model resembles
the accuracy observed in the behavioral data (Figure 6). For
the noise-free cases, the accuracy was 1 by construction.

Discussion
We showed that an associative model based on a compressed
timeline can account for major properties of RT and accu-
racy in both JOR and JOI. The noise-free results of the model
shown in Figure 4 and Figure 5 illustrate the theoretical
property of the model to provide mathematically exact log-
arithmic compression of the memory representation. Adding
noise to the representation increased the variability of the re-
sponses and introduced some incorrect responses, but it did

1Both JOR and JOI models were implemented using Python and
the code is available on https://github.com/zorant/JOIR-model.
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Figure 3: Schematic of the model for JOR and JOI tasks. a. Schematic of the memory timeline in JOR. An input sequence
of 7 letters is presented sequentially. Letter presentation is marked with the white color of the letter box. Each letter has
a corresponding working memory representation, which consists of sequentially activated neurons. Each box under a letter
symbol represents an individual neuron in f̃(i) where i is the index of the letter. The level of activation is coded with shades
of gray such that brighter shades represent higher activation. After all 7 letters are presented, two randomly selected letters
are presented as probes (in this example T and G). At that time, the memory nodes contain a compressed timeline that stores
what happened when. To appreciate the compression of the timeline, notice that the white trace of activity in the memory
representation is curved and gradually spreads from letters that were presented more recently to letters that were presented less
recently. To provide a response, the model sequentially scans the memory representation from top to bottom and integrates
the amount of activation until a threshold is reached. In the provided example, when integrating from the top to the bottom,
activation for letter G will reach the threshold before the activation for T. b. Schematic of the associations formed between the
memory timeline and the input. These associations are used to model JOI. When letter R (the first letter in the sequence) is
presented, no associations are formed since the memory representation is empty. When letter Y is presented, the memory units
corresponding to R that are active early in the sequence are now firing, and the associations are formed between those units
and letter Y. The associations are represented with the green arrows, and the thickness of the arrows represents the strength of
the associations (the weight). When letter T is presented, associations are formed with the memory units corresponding to R
that activate later in the sequence and the memory units corresponding to Y that activate early in the sequence. Note that after
each letter is presented, the memory weights are updated without erasing previous weights. Therefore the associations formed
between Y and the early activated units of R are preserved after T is presented. After all of the letters in the sequence are
presented, a wide range of associations is formed (not shown). When the probes are displayed, the memory representations of
the last active letter is scanned from top to bottom. Instead of integrating activation of the memory nodes as in JOR, in JOI we
integrate the strength of the associative weights. The sum of associative weights will reach the threshold for probe letter that
is more imminent faster than for the probe letter that is less imminent. For instance, if after R was presented, letters Y and T
appeared as probes, scanning from top to bottom through the associations formed between f̃(R) and neurons representing f(Y )
and f(T ) would results in reaching the threshold for Y faster than the threshold for T.
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Figure 4: RT depends on the lag of the more re-
cent/imminent probe but not on the lag of the less re-
cent/imminent probe for both data and the model. This re-
sult is consistent with the hypothesis of serial self-terminating
search over a timeline of the past and a timeline of the future.

not change the qualitative properties of the model. This ro-
bustness suggests that the model characterization of the data
does not depend on the specific choice of the parameters. In-
deed, the parameters of the model, namely k, the span of the
memory representation and the number of neurons, do not af-
fect the qualitative form of the results: the analytical result
giving rise to the log-compressed timeline does not depend
on the choice of these parameters.

The symmetry between the past and the future is remark-
able for both the behavioral data and the results of the model.
However, note that participants were slower in JOI than in
JOR. This could be due to methodological differences be-
tween the two tasks: 1) JOI required learning of a repeated
sequence, while JOR used lists presented only once, 2) the
presentation rate in JOR was faster than the presentation rate
in JOI. To examine the origin of this difference, future behav-
ioral studies could explore JOR and JOI in a more matched
setting. In this study, we did not try to model the impact of
the presentation rate. Note that the units of time in the model
do not have an interpretable meaning: the model had 100 se-
quentially activated units and therefore possible RTs were in
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Figure 5: The model captures the sub-linear dependence
of the median RT on the lag of the more recent item in-
dicating the compression of the memory representation.
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Figure 6: The model resembles the accuracy observed in
the data.
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the range from 1 to 100.
The accuracy observed with the model was higher than the

accuracy in the behavioral data. While this could be compen-
sated by increasing the amount of noise in the integrator, it is
worth noting that other sources of noise likely also contribute
to the behavioral results. For instance, participants may oc-
casionally press the wrong button by a mistake. Adding such
noise to the model would decrease the accuracy and it would
not change the profile of responses (e.g., the functional form
of relationship between RT and lag). While we did conduct
the analysis for incorrect trials, the results are not shown since
the amount of the behavioral data was not sufficient for a
strong evidence. In incorrect trials, the model predicts that
the RT will depend on the less recent/imminent item.

The proposed model is constructed on a neural-level, gen-
erating not only behavioral but also neural predictions. Ex-
isting neural data supports some of the predictions, such as
sequentially activated stimulus-selective time cells (Tiganj et
al., 2017; Cruzado et al., 2020) as well as exponentially de-
caying cells (Tsao et al., 2018; Bright et al., 2019). The JOI
model also predicts the existence of sequentially activated
future-time cells: neurons that activate at a characteristic time
before a particular stimulus is expected to occur. Such cells
have not yet been observed, and their existence would be an
important neural validation of the model.

This data is rather challenging for alternative modeling
approaches. In model-free learning approaches (Sutton &
Barto, 1998), an agent could learn a correct answer, but there
is no reason for RT to depend only on the lag of a more re-
cent/imminent probe. On the other hand, model-based ap-
proaches (e.g. (Daw, Niv, & Dayan, 2005; Russek, Momen-
nejad, Botvinick, Gershman, & Daw, 2017)) could learn state
transitions and reapply the transition matrix until the more re-
cent/imminent probe is reached. However, such an operation
would predict a linear increase of RT with the lag, which is in
contradiction with the observed behavioral data (Figure 5).
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