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Abstract
The Rescorla-Wagner model has seen widespread success in
modelling not only its original target of animal learning, but
also several areas of human learning. However, despite its
success, a number of studies with humans have found effects
that are not predicted by the model, thus inspiring propos-
als for modifications to the model. One such proposal, by
Van Hamme and Wasserman (1994, VHW), is that humans
not only learn from present cues to all (present and absent)
outcomes, as in the original model, but also learn from the
absence of cues. They found evidence for this hypothesis in
a causal rating experiment. However, behaviour in learning
studies may depend on the task. We propose that error-driven
learning should be considered to be a form of implicit learn-
ing and that the results of VHW’s contingency judgement task
might stem from explicit strategies involving logic and reason-
ing. The present study investigates this question by a) running
simulations with both the original and modified versions of the
model; b) replicating the VHW experiment (Experiment 1);
and c) extending the experiment with new stimuli and a post-
test of learned and unseen stimuli (Experiment 2). Simulations
show that the VHW modified model predicts that cues learnt at
the beginning will be unlearnt when absent over the following
blocks, so that they become negative predictors over time. In
contrast, the original RW predicts that the absent cues remain
steady (positive) predictors over the blocks. Results showed
no significant difference in cue assignment between training
and test, in line with the original RW model. Moreover, pre-
dictive cues in the training phase showed significantly higher
ratings than a new cue introduced in the test phase, at least
in some cases, also partially supporting the original RW. The
results suggest that when an overt response is required to ab-
sent cues, participants adjust ratings. But in later blocks when
no response was required, there did not appear to be learning
from the absent cues. We propose that in the development of
human learning theory, attention should be paid to whether the
behaviour (or other learning data) to be modelled results from
implicit learning or involves higher level cognitive processes.
We suggest that the RW may best capture implicit error-driven
learning.
Keywords: error-driven learning; discriminative learning; as-
sociative learning; Rescorla-Wagner model; delta rule; absent
cues; cue competition

Introduction
The Rescorla-Wagner learning equations (Rescorla & Wag-
ner, 1972, also independently developed by Widrow & Hoff,
1960) were initially developed to explain findings from sev-
eral decades of animal learning research. However, in the half
century since its publication, the model has had a vast influ-
ence, not only in animal learning, but also in several other
areas of psychology and human learning (see e.g. Siegel
& Allan, 1996; Miller, Barnet, & Grahame, 1995, for re-
views). While earlier models had assumed that learning

(‘conditioning’ in animal learning parlance, also ‘associative
learning’) resulted from contiguity or co-occurrence of stim-
uli, a number of findings demonstrated that contiguity was
neither necessary nor sufficient for learning (Kamin, 1968,
1969b; Rescorla, 1988). The Rescorla-Wagner model was
developed to capture the observation that rather than contigu-
ity, learning was instead driven by surprise / prediction error
and uncertainty (Kamin, 1969a; Rescorla, 1988), hence the
term ‘error-driven learning’. The Rescorla-Wagner model has
proven remarkably successful in predicting human category
learning (Gluck & Bower, 1988) and has recently been pro-
posed as an account of human language acquisition (Ramscar
& Yarlett, 2007; Ramscar, Yarlett, Dye, Denny, & Thorpe,
2010; Ramscar, Dye, & McCauley, 2013), predicting many
linguistic phenomena (Baayen, Shaoul, Willits, & Ramscar,
2016; Baayen, Milin, Durdević, Hendrix, & Marelli, 2011;
Ellis, 2006; Lentz, Nixon, & van Rij, 2022; Nixon, 2020;
Nixon & Tomaschek, 2020, 2021). In a study investigating
the learning mechanisms underlying second language speech
sound acquisition, Nixon (2020) demonstrated that a number
of key principles of error-driven learning also apply to hu-
man learning of speech, including Kamin’s ‘blocking effect’
(Kamin, 1968, 1969b), cue competition, prediction and un-
learning (Ramscar et al., 2010).

But are responses in causal judgement tasks captured by
error-driven learning models? Van Hamme and Wasserman
(1994) noted that, in causal judgement tasks, previous work
had suggested that human participants are able to take into ac-
count both occurrence and non-occurrence of potential causal
factors (Arkes & Harkness, 1983; Levin, Wasserman, & Kao,
1993; Wasserman, Dorner, & Kao, 1990). They proposed that
human learning in causal judgement tasks not only involves
changes in judgement of the causal relation between cues and
outcomes for the particular cues that occur on a given trial,
but also for cues that do not occur on that trial. They set out
to test this hypothesis with a causal rating task. On each trial,
participants were presented with two out of three food types.
One food type occurred on every trial: that is, trials were ei-
ther AX or BX. Participants were told whether or not there
was an allergic reaction on that trial and were asked to give
a rating (on a scale of 0-8) how likely they thought each of
the three food types was the cause of the allergy. Importantly,
although only two foods occurred on each trial, participants
had to give a rating for all three foods – so in this sense, the
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third food type was not entirely absent from the trial. As de-
scribed in more detail below, Van Hamme and Wasserman
concluded from their results that, at least in causal judgement
tasks, humans learn from absent cues.

In language, on the other hand, error-driven learning has
been shown to be a predictive process, in which temporally
earlier cues predict temporally later outcomes (Hoppe, van
Rij, Hendriks, & Ramscar, 2020; Nixon, 2018, 2020; Ram-
scar et al., 2010). That is, earlier events may be used to pre-
dict later events, but not the other way around. This would
suggest that in this case, predictions would be unlikely to be
generated from absent cues.

Explaining what accounts for the differences in these ob-
served results is important for understanding human learning
mechanisms. The question of whether we learn only from
present cues or also from absent cues is of fundamental im-
portance to learning theory. It has been proposed that factors
other than error-driven learning may also play a role. For
example, Anderson (2009) proposes an effect of forgetting
over time. It may be that, rather than a predictive relationship
between absent cues and occurring vs. non-occurring out-
comes, the predictive value of cues instead simply gradually
decreases during periods where the cues are not encountered.

A point we believe important in this respect is that different
tasks recruit different cognitive processes. Perhaps the differ-
ent results between experiments stem from different strate-
gies participants use in these different tasks. In this paper, we
propose that implicit learning does not involve learning from
absent cues, due to its predictive, discriminative nature. On
the other hand, when instructed to respond to items labelled
as ‘not present’, this requires generating a mental representa-
tion of the absent cue and reasoning about its relation to the
outcome. For example, on a trial in which an allergy occurs,
if a participant believes Cue A (present) to be the culprit, it
is logical to suppose that Cue B (absent) was not cause. In
contrast, error-driven learning is driven not by logic but by
information (Ramscar, Dye, & Klein, 2013). We therefore
propose that the Van Hamme and Wasserman task invokes
higher-level cognitive processes, which participants can also
learn from, but which represent a different type of task to im-
plicit learning and may be outside the scope of phenomena
predicted by error-driven learning models.

In order to test this, below we first introduce the computa-
tional simulations with the Rescorla-Wagner (RW) model and
the adjusted version proposed by Van Hamme and Wasser-
man (VHW). We then present two experiments based on the
VHW study. Finally, we discuss implications of the results
for learning theory.

The specification of present cues and outcomes is straight-
forward; however, less obvious is what counts as an absent
cue. Taken literally, a potentially infinite number of cues are
absent in every learning event. VHW stated that relevant cues
are limited to those that have some existing association with
the outcome in question, due to previous learning. “A cue
would become relevant after acquiring some level of positive

or negative association. For animal subjecs, it would be nec-
essary to present the stimulus at least once in the experimen-
tal context followed by reinforcement or presented together
with a cue that had previously been reinforced. For human
subjects, the relevance of a cue as a potential cause could
be established with verbal instructions” (footnote, page 132).
Therefore, in our simulations, adjustments are only made to
cues that have occurred at least once; cues from later blocks
are not included as absent in earlier blocks.

Computational modelling
Original Rescorla-Wagner learning equations
We will first describe the learning equations as proposed in-
dependently by both Widrow and Hoff (1960) and Rescorla
and Wagner (1972) and then the adaptation proposed by
Van Hamme and Wasserman (1994). The Rescorla-Wagner
equations estimate the connection weights W , between the
model inputs, or cues C and a set of outcomes O. The train-
ing produces a network that consists of a matrix of connection
weights; k cues and n outcomes produces a k × n matrix. Dur-
ing each trial of the training, weights are adjusted between all
cues present on that trial and all outcomes present or encoun-
tered previously. No adjustment is made to cues not present
on a given trial. Adjustments made to the connection weight
between cues ci and outcome o j on a given trial t, is given by
the Rescorla-Wagner equations:

w(t)
i j = w(t−1)

i j +∆wt
i j. (1)

The connection weight at the end of trial t is equal to the
weight at the end of the previous trial, t −1, plus any change
during the current trial.

The change in weights during the current trial, ∆wt
i j, is

given by the Rescorla-Wagner equations:

∆wt
i j =



a) αiβ j
(
λ−∑[Present(ck,t)] wk j

)
if Present(ci, t)
and Present(oi, t),

b) αiβ j
(
0−∑[Present(ck,t)] wk j

)
if Present(ci, t)
and Absent(oi, t),

c) 0 if Absent(ci, t).
(2)

in which λ is the maximum learnability of the outcome;
and αi and β j refer to cue and outcome salience, respectively.

The above equation can be summarised as a) if a cue and an
outcome are both present, the cue-outcome weight increases;
b) if a cue is present and an outcome is not present, cue-
outcome weight decreases; and most crucially for the present
study, c) for any cues not present on that trial, there is no
change. This is the aspect challenged by VHW.

Due to the theoretical importance of learning from nega-
tive evidence (Nixon, 2020; Ramscar et al., 2010), β j is the
same in a) and b), meaning that learning is potentially equiv-
alent on positive and negative trials. However, the amount of
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adjustment (in a and b) depends on connection strengths de-
veloped during previous learning. The non-occurrence of a
fully expected outcome is as surprising as the occurrence of a
fully unexpected outcome.

Adaptation proposed by Van Hamme & Wasserman

∆wt
i j =



a) αiβ j
(
λ−∑[Present(ck,t)] wk j

)
if Present(ci, t)
and Present(oi, t),

b) αiβ j
(
0−∑[Present(ck,t)] wk j

)
if Present(ci, t)
and Absent(oi, t),

c) αiβ j
(
0−∑[Present(ck,t)] wk j

)
if Absent(ci, t),
and Present(oi, t),

d) αiβ j
(
λ−∑[Present(ck,t)] wk j

)
if Absent(ci, t),
and Absent(oi, t).

(3)
The first two rows of Eq. 3 (greyed out) are the same as the

original Rescorla-Wagner equations (Eq. 2). The third and
fourth rows differ. In the original Rescorla-Wagner equations
(Eq. 2), when a cue is absent on a trial, no weight adjustments
are made to that cue (expression c). Van Hamme and Wasser-
man (1994) suggest that this part of the equation should be
changed as shown in Eq. 3: when a cue is absent and the
outcome occurs, weights are reduced (expression c); when a
cue is absent and the outcome does not occur, weights are
increased (expression d).

Simulations
Simulations and visualisations were run using the edl pack-
age (van Rij & Hoppe, 2020) in R (R Core Team, 2020). The
combined alpha and beta parameter (the learning rate) was set
to 0.001 and lambda (the maximum connection strength to the
outcome) was set to 1 (both the default parameters). Note that
in the simulation descriptions and figures presented here, we
use the stimuli from the original VHW experiment and our
Experiment 1, namely foods and allergic reaction; however,
since Experiment 2 used an identical experiment design, the
simulation also applies to Experiment 2 (replacing cues such
as ‘bran’ with ‘footprint’ and the outcome ‘allergy’ (or not)
with ‘diamond’ (or not)). Cues were created for each of the
nine foods that occurred during the experiment - three food
types for each of three blocks (see Table 1). Note that VHW
had six food conditions per block, rather than three: condi-
tions 4-6 were repetitions of 1-3, but with different foods.
This was to account for any pre-existing biases with respect
to the likelihood of allergies to various foods. As this is not
applicable in the simulations, the simulations had only three
conditions. On each trial of the simulation, two cues (foods)
were presented, as well as a background cue that was present
on all trials to model the experiment environment, as specified
in the Rescorla-Wagner model (Rescorla & Wagner, 1972).
There were two outcomes, allergic reaction and no allergic
reaction, one of which occurred on every trial. The order of

cues and outcomes followed the order set out in Van Hamme
and Wasserman (1994): the order of cues was the same for all
participants and all blocks, namely AX, BX, BX, AX, AX,
BX, AX, BX, BX, AX, BX, AX, AX, BX, AX, BX. The or-
der of outcomes depended on the contingency condition. All
three blocks were first run separately to model the results pre-
sented in Van Hamme and Wasserman (1994) and then also
run as a single simulation to model the learning of one par-
ticipant over the experiment. This was done for each of the
contingency condition orders.

Simulation results

Figure 2.3: Weights to: Top: allergic, Bottom: not allergic, with test phase, block 1 is condition
75-25. The arrows indicate the novel cue that is only introduced in the test phase. Left: Rescorla-
Wagner model. Right: Van Hamme-Wasserman model.

9

Figure 1: Simulations of the predicted response to ‘aller-
gic’ in Experiment 1 (or ’diamond’ in Experiment 2, if
food cues are replaced with forest cues) using the original
Rescorla-Wagner equations and the adaptation proposed by
Van Hamme & Wasserman. Left column: simulations us-
ing Rescorla-Wagner equations. Right column: simulations
using Van Hamme & Wasserman’s adaptation. The RW pre-
dicts that cue-outcome connections that developed in the first
block (e.g. ‘bran’) will be retained over the course of the later
experiment blocks. The VHW adaptation predicts that these
cues will reduce substantially and develop negative connec-
tion weights to the allergic reaction. In order to test these
predictions, we can introduce a new cue after training (blue
arrow). The RW model predicts that ‘bran’ will have a higher
rating than this new cue; the VHW model predicts that ‘bran’
will have a lower rating than this new cue. (Note that in order
to maximise space in the figure, the scales are shifted relative
to the vertical axis in these plots – zero is higher in VHW).

Figure 1 shows the simulation results for the original
Rescorla-Wagner model (left) and the adjusted Van Hamme
and Wasserman version (right). The simulations indicate the
relative strength and the pattern of change of the various cues,
as an estimate of the rating responses.

The Rescorla-Wagner model (left panel) predicts that cue-
outcome connections that developed in the first block (e.g.
‘bran’) will be retained over the course of the later experi-
ment blocks. The Van Hamme-Wasserman adaptation (right
panel), on the other hand, predicts that these cues will reduce
substantially and develop negative connection weights to the
allergic reaction. (Note that in order to maximise space in
the figure, the scales are shifted relative to the vertical axis in
these plots – zero is higher in VHW).
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In order to test these predictions, we compare the ratings
during the training block to the responses in the test phase at
the end of the experiment. In addition, we also introduce a
new cue after training (indicated in the figure with an arrow).
The RW model predicts that ‘bran’ will have a higher rating
than this new cue; the VHW model predicts that ‘bran’ will
have a lower rating than this new cue. We will conduct these
comparisons in Experiment 2. However, we will first run a
direct replication of the VHW experiment to ensure that our
online testing environment is able to replicate the conditions
of the original in-lab, pen-and-paper experiment. We do this
in Experiment 1.

Experiment 1
Experiment 1 was a direct replication of the VHW study, ex-
cept that it was run online. The purpose of this experiment
was to replicate the VHW results and test our online experi-
mental paradigm.

Participants
Twenty participants aged 19-25 were paid for their participa-
tion. Participants were recruited on Prolific.

Stimuli
The cues consisted of food items and the outcomes were
whether the allergic reaction occurred that day (i.e. experi-
mental trial) or not. A complete list of the cues and contin-
gency conditions is presented in Table 1.

Table 1: Experimental stimuli. The second column shows the
probability of the allergy occurring on AX and BX trials, re-
spectively. For example, in the 75-25 condition the allergy
occurs on 75% of the AX trials and 25% of the BX trials.
Note that food conditions 1-3 are identical to 4-6; only the
specific items differ. Therefore, in the simulations, only three
conditions apply.

prob. of cues (food types)
food allergy X A Bcond AX-BX

1 50-50 shrimp strawberries peanuts
2 75-25 yoghurt bran cabbage
3 100-0 bananas chicken mustard
4 50-50 wheat walnuts peaches
5 75-25 corn horseradish lobster
6 100-0 blueberries cheese pork

Experiment design and procedure
Each participant was presented with three different foods in
each block (see Table 1). Two foods and one outcome (al-
lergic reaction or no allergic reaction) were presented on a
computer screen for up to 15 seconds (as in VHW) or until
participant response. Participants were asked to give a rating
(0-8) how likely each of all three of the foods caused the al-
lergy, not just the two foods presented on screen. VHW did

not provide anchors for the response scale, but pre-test ratings
suggest the mid-point (rather than 0) was taken as the neutral
point (i.e. ‘maybe’; maximum uncertainty).

VHW Experiment Experiment 1 Experiment 2

YNYNNYYNYNNYNYYN

YNYYNNYNYYNYNNYN

YNNYYNYNNYNYYNYN

Trial order for all conditions: ABBAABABBABAABAB

Figure 2: Results of VHW experiment (left), Experiment 1
(centre) and Experiment 2 (right) for the three different con-
tingency conditions: AX and BX both leading to allergy on
50% of trials (top); AX 75% allergy, BX 25% (middle row);
and AX 100% allergy, BX 0% (bottom). Trial is on the x-axis;
rating score (how likely [CUE] leads to allergy/diamond) is
on the y-axis. The Xs and Ys show the order of outcomes,
whether the allergy occurred/diamond was found (Y) or not
(N) for all experiments.

One of the foods occurred on every trial in the block, so that
each trial was either AX (e.g. strawberries and shrimp) or BX
(e.g. peanuts and shrimp). All foods differed between blocks.
The order of the cues was always AX, BX, BX, AX, AX,
BX, AX, BX, BX, AX, BX, AX, AX, BX, AX, BX. The or-
der of the outcomes depended on the food-allergy probability
condition (second column, Table 1). Three within-participant
probability conditions were used, one per block. The order of
conditions varied between participants. The three conditions
were: AX and BX both predicted the allergy on 50% of the
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trials (50-50 condition); AX predicted the allergy on 75% of
trials and BX on 25% of trials (75-25 condition) and AX pre-
dicted the allergy on 100% of trials and BX on 0% of trials
(100-0 condition).

Results
Results are shown in Figure 2 (centre column). The results
of VHW are also given for comparison (left column). The
pattern of responses is similar between experiments. The
average responses are a bit more variable in Experiment 1,
probably due to the smaller number of participants. How-
ever, overall, the results show that are online experimental set
up is sound.

Discussion
The main purpose of Experiment 1 was to replicate the find-
ings of VHW in an online setting. Results replicated the orig-
inal study, thus verifying our procedure. We now turn to a
different set of stimuli and include a test phase to investigate
long term changes over time to absent cues when no response
to is required from the participants to the absent cues.

Experiment 2
Experiment 2 investigated the effect of task by using a differ-
ent set of stimuli. Additional post-tests were also included to
investigate the conditions required for learning from absent
cues. Above, we noted that, during a block, participants were
required to respond to the ‘absent cue’. Requiring partici-
pants to make a judgment on the cue might lead to changes
in their representation of the cue. Including a post-test of the
same cues allows us to test for learning of the absent cue over
time during a period when no overt response to the given cue
was required. We do this by a) comparing the cue during
Block 1 to the same cue in the post-test and b) comparing the
learned stimuli to new unseen stimuli in the post-test.

Participants
Sixty participants aged 19-25 were paid for participation.

Stimuli
The cues consisted of objects found in a forest, such as acorn,
footprint, flower. The participants were asked to use the items
as clues to finding treasure in an alien world. On each trial,
they dug for treasure. The outcomes were whether they found
a diamond or not. The probability conditions were the same
as Experiment 1 (now probability of finding treasure).

Experiment design and procedure
The experiment design and procedure were the same as Ex-
periment 1, except that the participants were given a cover
story that they were in an alien world, searching for trea-
sure. In addition, there was also a test phase at the end of
the experiment that tested participant responses to cues en-
countered in the first block. Because these cues had not oc-
curred in blocks 2 and 3, the VHW model predicts that the

cue weight becomes negative over time (see Figure 1). How-
ever, the RW model predicts the cue weight remains positive.
In addition, a new unseen cue was tested. The VHW model
predicts these cue weights would be higher than the cues from
the first block; the RW model predicts the weights to unseen
cues would be lower than previously learned cues.

Results

Training phase Figure 2 (right column) shows the results
of the Training Phase in Experiment 2. A roughly similar
pattern emerges in the two experiments, although there is
less separation of the cues in Experiment 2. One question is
whether participants changed their responses on every trial, as
found by Van Hamme and Wasserman (1994). Visual inspec-
tion of Figure 2 shows that this does occur on some trials. For
example in the 75-25 condition, trial 4 is an AX trial with a
diamond found; the rating of A rises and the rating of B falls.
On the other hand, this was not always the case. Trial 5 is
an AX trial with no diamond found; the rating of A falls, but
the rating of B does not rise. Nevertheless, we can say that
responses to the absent cues change in at least some cases.

We compared the scores on the no diamond trials to those
on the diamond trials with paired t-tests. As we did multi-
ple t-tests over the same data-set, we adjusted the p-values
according to the Bonferroni-Holm method (Holm, 1979). In
the 50-50 Condition, there was no significant difference be-
tween ‘Diamond’ and ‘No diamond’ trials: A (t(59) = 2.49,
p = .08), B (t(59) = 1.73, p = .27, X (t(59) = 2.28, p = .10).
In contrast, there was a significant difference between ‘Dia-
mond’ and ‘No diamond’ trials for the 75-25 condition (A:
t(59) = 5.16, p < .001; X: t(59) = 4.31, p < .001) and the
100-0 condition (A: t(59) = 4.87, p < .001; X: t(59) = 3.05,
p = .02). Cue B did not differ (cue B (t(59) = 0.81, p = .84;
t(59) = 0.25, p = .84). These results suggest that when there
appears to be random variation, participants do not change
their responses on every trial. However, when there is a pat-
tern of some cues providing information about the (treasure)
outcome, participants adjust cue weights.

Post-test Of most interest in the present study is whether
participants also adjust their representations of the cues when
they are not required to make an overt response. Here we
compared the ratings of cues in Block 1 to the same cue in
the post-test. Predictions are shown in Figure 1 as the pre-
dicted rating score of ‘bran’ to ‘allergic reaction’. (As ex-
plained above, the figues show the simulations for food cues
and allergy outcomes as in VHW and Experiment 1; how-
ever, since the experiment design is identical, the simulation
predictions apply to both experiments.) The RW model pre-
dicts no difference between Block 1 and post-test. The VHW
model predicts a lower rating in the post-test.

We tested the rating scores between Block 1 and the post-
test using Bonferroni-Holm corrected Wilcoxon tests. There
was no significant difference between Block 1 and the post-
test (50-50 Condition v=79, p=1; 75-25 Condition, v=31,
p=.28, 100-0 Condition, v=43, p=.32). Neither was there any
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significant difference between Block 3 and the Test phase (50-
50 Condition v=90, p=1; 75-25 Condition, v=145, p=1, 100-0
Condition, v=82, p=1).

We also introduced a new cue after the training phase (see
Figure 1, blue arrow). We used Wilcoxon tests to test differ-
ences in scores between Cue A from the Training phase and
this new cue introduced in the post-test. Results showed no
differences between Block 1 and the new cue (50-50 Con-
dition v=914, p=.37; 75-25 Condition, v=891, p=.73, 100-0
Condition, v=939, p=.32). However, the difference between
Block 3 and the new cue was significant (50-50 Condition
v=320, p=.001; 75-25 Condition, v=608, p=.002, 100-0 Con-
dition, v=772, p=.005).

Discussion
Experiment 2 investigated whether participants learn from ab-
sent cues when learning what clues in the environment could
help them find treasure. We introduced a test phase to com-
pare the long term changes to cues that were absent for two
blocks of the experiment. If participants learn from absent
cues, the weights to these cues should drop off substantially,
as shown in the simulation for the VHW model. In contrast,
the RW model predicts that participants make predictions
based on cues available in the environment, so no changes in
cue weights are predicted over the blocks. Results supported
the RW model, as no significant difference was found in the
ratings between Block 1 and test.

Experiment 2 also tested whether a new cue would receive
a higher rating than previously learned cues, as predicted by
VHW, or a lower rating, as predicted by RW. Results here
were less conclusive. Comparison of Block 1 cue to the new
cue was not significant in either direction. This supported
neither the RW model, nor the VHW adaptation. However,
comparison of Block 3 cue to the new cue showed a lower
rating for the new cue, as predicted by RW.

General Discussion
This study tested the predictions of the Rescorla-Wagner
equations and the adaptation of the equations proposed by
Van Hamme and Wasserman (1994) for predicting partici-
pant responses in two experiments based on the design of
Van Hamme and Wasserman (1994). Experiment 1 aimed
to replicate Van Hamme and Wasserman (1994) in an online
environment. Results showed that the main results were repli-
cated and our testing paradigm was sound.

Experiment 2 extended the study to a new task, using clues
in the environment to help ‘find buried treasure in an alien
world’. Van Hamme and Wasserman observed that on spe-
cific trials in which a particular cue did not occur and the re-
action occurred, the rating went down on average, and when
the reaction occurred, the rating went up on average. From
this they concluded that humans learn from absent cues in
causal attribution. Experiment 2 also added a test phase to
test whether there were long term changes to the absent cues
over two blocks of the experiment. Figure 1 shows the predic-
tions of the two models. The test phase showed that there was

no difference in response to cues between Block 1 and the test
phase, as predicted by the RW model. This is counter to the
predictions of the VHW adaptation, which suggests the ab-
sent cues should develop negative weights. The second com-
parison was between learned cues and new cues (purple arrow
in Figure 1). These results were not entirely consistent, as
there was no significant effect in either direction for Block 1,
i.e. neither model was supported. However, the Block 3 cues
did show support for the RW model, as the already learned
cue had a higher rating than the new cue.

The present results raise the question of how it is that al-
though participants at least sometimes change their responses
on individual trials during the training phase, as reported by
Van Hamme and Wasserman (1994), we did not find long-
term effects of these responses. We suggest that the within-
trial adjustments reported by Van Hamme and Wasserman
stem from the process of consciously processing the absent
cue in order to give a rating for all three outcomes. Recall that
during each block, participants were required to give a rating
for all cues, even the ‘absent’ cue. In contrast, in Blocks 2
and 3, no reponse was required to the Block 1 cues. In this
case, the participants did not learn from these absent cues.

We suggest that error-driven learning is best understood as
an implicit learning process and that this involves predictions
based on present cues. On the other hand, when a response
is required to any ’absent’ information, this affects learning
through an additional reasoning process. Weights are ad-
justed up or down for the absent cue during the rating pro-
cess when required to make responses to the absent cue. In
object label learning, children learn through error-driven in-
formativity of cues; however, when a small number of items
is presented, adults tend to adopt a logical exclusion strategy
(Ramscar, Dye, & Klein, 2013). Given that the rating task in-
cluded the absent cue as well as the present cues, perhaps an
exclusion strategy may have affected participants’ responses
in this task.

In summary, the present results shed new light on the ques-
tion of learning from absent cues. When participants are
asked to give ratings to both present and absent cues, as in
the training phase, then they make adjustments to the absent
cues. However, results from the test phase suggest that when
participants are no longer asked to explicitly give ratings to
the absent cues, it appears that they no longer learn from these
absent cues. This suggests the possibility that people use dif-
ferent learning mechanisms – explicit logical reasoning ver-
sus implicit learning – depending on the task.
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