
UC Davis
UC Davis Electronic Theses and Dissertations

Title
End-to-End Joint Image Compression and Deep Learning under Bandwidth Constrained
Environments

Permalink
https://escholarship.org/uc/item/7m6415x9

Author
Hewa Gamage, Lahiru D Chamain

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7m6415x9
https://escholarship.org
http://www.cdlib.org/

End-to-End Joint Image Compression and Deep Learning under Bandwidth Constrained

Environments

By

LAHIRU DULANJANA CHAMAIN HEWA GAMAGE

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Electrical and Computer Engineering

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Zhi Ding, Chair

Soheil Ghiasi

Lifeng Lai

Committee in Charge

2022

i

Abstract
End-to-End Joint Image Compression and Deep Learning under Bandwidth Constrained

Environments

The past decade has witnessed the rising dominance of deep learning (DL) and artificial

intelligence (AI) in a wide range of applications. In particular, the ocean of wireless smart

phones and IoT devices continue to fuel the tremendous growth of edge/cloud-based machine

learning (ML) systems including image/video recognition and classification. To overcome the

infrastructural barrier of limited network bandwidth in cloud ML, existing solutions have

mainly relied on traditional compression codecs such as JPEG that were historically engineered

for human-end users instead of ML algorithms. Traditional codecs do not necessarily preserve

features important to ML algorithms under limited bandwidth, leading to potentially inferior

performance. This dissertation investigates application-driven optimization of programmable

commercial codec settings for networked learning tasks such as image classification.

In the first part of this dissertation, we focus on the efficient use and optimization of

existing off-the-shelf commercial image compression codecs in bandwidth constrained image

classification applications. We consider a cloud-based inference application where a power and

memory limited embedded source device transmits the collected images to a powerful cloud

server over bandlimited wireless channels. Our main contributions are two folds. Firstly, we

show that the reconstruction step of the existing image decoders is unnecessary for cloud-based

inference. Deep learning classifiers designed to take intermediate features as inputs, instead of

RGB images, can perform inference few times faster with the same or improved classification

accuracy. Secondly, we show that redesigning the entropy coders of commercial image codec

such as JPEG2000 and learning optimal parameter setting of the entropy coders for a given

task in end-to-end manner can significantly improve rate-accuracy performance of the codec.

In the second part, we investigate the methods of improving rate-distortion-accuracy

performance in cloud-based AI applications for DL-based image compression codecs. Exploring

ii

end-to-end optimization of the complete codec, we propose novel classifier architectures based

on variational auto-encoders (VAE) that outperform rate-classification accuracy of several

conventional codecs. Further investigating DL-based codecs, we discuss how to achieve better

rate-distortion-accuracy performance with end-to-end training revisiting the concept of region

of interest (ROI).

In the third part of this dissertation, we explore recent interpretable information theory

based concepts when modeling real world data and their applicability in data constrained deep

learning scenarios. In particular, we investigate the use of linear discriminative representations

(LDR) of images when designing cloud-based deep learning systems with improved rate-

accuracy performance. Further, considering challenging but practical data constrained tasks

such as zero-shot and few-shot learning, we investigate the generalization of such linear

feature representations learned with rate reduction concepts.

iii

Publications
The following publications are included as a whole or in parts in this dissertation:

• Chamain, L.D., Qi, S. and Ding, Z., 2022. End-to-End Image Classification and

Compression with variational autoencoders. IEEE Internet of Things Journal, 9(21),

pp. 21916-21931.

• Chamain, L.D., Qi, S. and Ding, Z., 2021, August. An End-to-End Learning Architecture

for Efficient Image Encoding and Deep Learning. In 2021 29th European Signal

Processing Conference (EUSIPCO) (pp. 691-695). IEEE.

• Chamain, L.D. and Ding, Z., 2020, May. Improving deep learning classification of

JPEG2000 images over bandlimited networks. In 2020 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP) (pp. 4062-4066). IEEE.

• Chamain, L.D., Cheung, S.C.S. and Ding, Z., 2019, July. Quannet: Joint image

compression and classification over channels with limited bandwidth. In 2019 IEEE

International Conference on Multimedia and Expo (ICME) (pp. 338-343). IEEE.

Further, the following articles were written during my PhD research period, but not included

in this dissertation:

• Chamain, L.D., Racapé, F., Bégaint, J., Pushparaja, A. and Feltman, S., 2021, March.

End-to-end optimized image compression for machines, a study. In 2021 Data Com-

pression Conference (DCC) (pp. 163-172). IEEE.

• Chamain, L.D., Racapé, F., Bégaint, J., Pushparaja, A. and Feltman, S., 2021.

End-to-end optimized image compression for multiple machine tasks. arXiv preprint

arXiv:2103.04178.

iv

Acknowledgments

I would like to thank my advisor Prof. Zhi Ding for giving me the freedom to choose the

research path that interests me and allowing me to follow that path for five years while being

financially supported. His invaluable guidance made me a better student, writer and the

researcher that I’m today. I’m truly grateful for his contribution in revising my manuscripts

and providing technical insights. I really appreciate his support through the past pandemic

which helped me immensely to continue my research work with sound body and mind.

I would like to thank the members of my qualifying examination committee for their

encouraging comments, kind advices and insightful questions. Thank you Prof. Samson

Cheung for the early discussions we had on our QuanNet paper. They helped me to continue

the project with confidence. I am also indebted to the members of my dissertation committee,

Prof. Soheil Ghiasi and Prof. Lifeng Lai, for the time they spent on reading my dissertation

and their encouraging comments. I have taken classes from both of them and enjoyed the

well spent hours.

I would also like to thank my research collaborator Siyu Qi for her help revising my

manuscripts, debugging the codes and great many hours we spent on discussions throughout

past years. I’m equally thankful to the members of BRAT lab at UC Davis for welcoming

me and making the lab a friendly place. Thank you Carlos for the cheerful conversations we

had over the years that helped me keep going. I’m grateful to all my friends in Davis for

supporting and encouraging me, specially for making myself feel at home.

None of my accomplishments would have been possible without the everlasting love

and support of my family. The caring and guidance of my beloved parents, Nalini and

Piyarathna, and my sisters, strengthened me to achieve my life goals. Special thanks to Dr.

Prathapasinghe Dhramawansa for encouraging me to pursue graduate studies in California.

The work invested into this dissertation was supported in part by the National Science

Foundation under Grants No. 2002927 and No. 2002937.

v

C O N T E N T S

Abstract . ii

Publications . iv

Acknowledgments . v

Abbreviations xviii

1 introduction 1

1.1 Image compression . 3

1.1.1 Optimization of conventional compression codecs 3

1.2 Learning-based Image Compression . 4

1.2.1 Learning-based codecs for improved rate-distortion-accuracy 5

1.3 Practical limitation of cloud-based inference systems 6

1.3.1 LDRs for joint compression and classification 8

2 background 10

2.1 Conventional image compression codecs: JPEG 2000 10

2.1.1 JPEG2000 Encoder . 10

2.1.2 JPEG2000 Decoder . 14

2.2 Learning-based codecs: Variational Autoencoders (VAE) 15

2.2.1 Variational Bound for Reconstruction 17

2.3 Linear Discriminative representation (LDR) 20

2.3.1 Maximal Coding-Rate-Reduction (MCR2) 21

i improving conventional codecs

3 faster and accurate deep learning for jpeg2000 images 24

3.1 Introduction . 24

vi

CONTENTS

3.1.1 Related works: Image classification on DWT coefficients 25

3.1.2 Is reconstruction necessary? . 26

3.2 Classification of JPEG2000 Compressed images 27

3.2.1 DWT-specific Image Augmentation 27

3.2.2 Computation Speed and Accuracy . 29

3.3 Experiments and Results . 30

3.3.1 Shallow models are faster! . 34

3.3.2 Experiments over Bandwidth Constrained Channels 35

3.4 Conclusions . 35

4 joint optimization of conventional j2k compression and deep

learning 37

4.1 Deep learning over bandwidth constrained channels 37

4.1.1 Related works . 40

4.2 QuanNet: Joint Quantization and deep learning 40

4.3 Experiment Results . 44

4.3.1 Truncation with DB1 wavelets . 45

4.3.2 Quantization with DB1 wavelets . 46

4.3.3 Quantization with CDF 9/7 wavelets 49

4.4 Discussion . 50

4.5 Conclusions . 52

ii learning-based codecs

5 end-to-end image classification and compression with varia-

tional autoencoders 54

5.1 Introduction . 55

5.2 Related Works: VAE-Based Classifier . 59

5.3 A New VAE Classification Framework . 61

5.3.1 Variational Bound and Loss for Classification 62

vii

CONTENTS

5.3.2 Learning Model . 64

5.3.3 Rate Loss . 65

5.3.4 Classification Loss . 66

5.4 Experiments and Results . 67

5.4.1 VAE-based Joint Compression and Classification models 68

5.4.2 CIFAR-10 Experiments . 70

5.4.3 CIFAR-100 Experiments . 71

5.4.4 ImageNet Experiments . 72

5.5 Complexity Comparison . 72

5.5.1 Model size comparison . 73

5.5.2 Inference speed comparison . 75

5.5.3 Power savings comparison . 76

5.5.4 Comparison to Torfason-2018 . 77

5.6 Discussion: Joint Compression and Classification with Reconstruction 78

5.6.1 Visualization of reconstructed images 81

5.7 Conclusions . 82

6 classification-guided roi-based end-to-end image compression 83

6.1 Introduction . 84

6.2 Related Works . 87

6.2.1 ROI Coding . 87

6.2.2 ROI Prediction . 89

6.2.3 Joint image compression and classification 90

6.3 Method . 91

6.3.1 ROI-based image encoding . 91

6.3.2 ROI prediction with Saliency maps 94

6.3.3 Classification-guided ROI compression 95

6.4 Experiments and Results . 96

viii

CONTENTS

6.4.1 Details on Training . 97

6.4.2 Results and Comparisons . 99

6.5 Complexity comparison . 106

6.5.1 Model complexity . 106

6.5.2 Inference speed . 108

6.5.3 FLOPS calculation . 108

6.6 Discussion: Learned masks from shared encoder backbone 109

6.7 Conclusions . 111

iii ldr-guided codecs

7 linear discriminative representation (ldr)-guided low-shot

learning 113

7.1 Introduction . 114

7.2 Background and Related Works . 116

7.2.1 ALE for Zero-Shot Learning . 116

7.2.2 ProtoNets for Few-Shot Learning . 117

7.3 Methods . 118

7.3.1 LDR-Guided Zero-Shot Learning . 118

7.3.2 LDR-Guided Few-Shot learning . 122

7.4 Experiments and Results . 123

7.4.1 LDR-Guided Zero-Shot Learning . 123

7.4.2 LDR-Guided Few-Shot Learning . 126

7.4.3 R-C Performance on JPEG-Compressed Images 129

7.5 Conclusions . 130

8 ldr-based hierarchical grouping for joint image compression

and classification 131

8.1 Introduction . 131

8.2 Background and Related works . 132

ix

CONTENTS

8.2.1 Non-asymptotic rate-distortion with multiple groups 133

8.2.2 Maximal coding for rate reduction (MCR2) 134

8.2.3 MCR2 and Latent Encoding . 134

8.2.4 Latent Compression in View of Grouping 135

8.3 Proposed End-to-End Framework . 136

8.3.1 Rate under Quantization Noise . 137

8.3.2 Learning to Group . 139

8.4 Experiments and Results . 140

8.4.1 DL Network Architectures . 141

8.4.2 Quantization Noise Emulation . 141

8.4.3 Ablation Experiment: Distortion Learning 142

8.4.4 Ablation Experiment: Learned Grouping 143

8.4.5 Gaussian noise . 143

8.5 Conclusions . 144

9 conclusions and future work 145

9.1 Summary of contributions . 145

9.1.1 Open source codes . 146

9.2 Limitations and future work . 146

9.2.1 Re-training/fine-tuning is necessary for each rate-accuracy point . . . 146

9.2.2 Universal encoders . 148

Appendix a data sets 149

a.1 Classification data sets . 149

a.1.1 ImageNet-1k . 149

a.1.2 Imagenette . 149

a.1.3 Tiny-ImageNet . 150

a.1.4 ModelNet-40 . 150

a.1.5 CIFAR-10 . 150

x

CONTENTS

a.1.6 CIFAR-100 . 150

a.1.7 AwA2 . 150

a.1.8 CUB . 151

a.1.9 SUN . 151

a.2 Compression data sets . 151

a.2.1 HKU-IS . 151

a.2.2 DAVIS-2016 . 151

a.2.3 CADDY . 152

a.2.4 ASL . 152

Appendix b faster and accurate deep learning for jpeg2000 images153

b.1 ResNet for classification . 153

b.2 Fine-tuning on pre-trained models . 155

b.3 3D model classification with multi-view CNNs 155

b.4 ResNet architectures used for DB1, DWT coefficients. 158

Appendix c vae-based classifiers 159

c.1 Robustness to visual corruptions . 159

c.2 Implementation details: Effect of β adjustment 160

c.3 Visualization of latent maps . 160

c.4 Further theoretical explanations . 162

c.4.1 Relationship to the Information Bottleneck 162

c.4.2 An alternative problem formulation 165

Appendix d classification-guided roi-based end-to-end image com-

pression 168

d.1 PoolNet generated ROI . 168

d.2 Complexity comparison . 168

d.3 Cai-2019 complexity estimation . 169

d.4 Classifier fine-tuning . 169

xi

CONTENTS

Appendix e ldr-guided low-shot learning 172

e.1 Classes versus Attributes: An ablation study 172

e.2 Robustness to Noise and common Perturbations 173

e.3 Robustness to number of unseen classes . 173

e.4 LDR-Guided FSL Training . 175

e.5 FSL Encoder Models . 176

xii

L I S T O F F I G U R E S

Figure 1.1 Cloud AI applications. 2

Figure 1.2 Overview of learning-based image compression codec 4

Figure 1.3 Edge computing for Deep learning. 7

Figure 2.1 JPEG2000 encoder. 10

Figure 2.2 Level-1 DWT of YCbCr channels . 12

Figure 2.3 Level-2 DWT coefficients with DB1 wavelet 13

Figure 2.4 JPEG2000 decoder for lossy compression. 15

Figure 2.5 General structure of a VAE . 16

Figure 2.6 Modeling complex nonlinear data with LDR 20

Figure 3.1 Conventional training and inference for cloud-based image classification 24

Figure 3.2 Extracting DWT coefficients from within the J2k decoder 26

Figure 3.3 Image augmentation in DWT domain 28

Figure 3.4 Test accuracy vs inference and training speed for CIFAR-10 31

Figure 3.5 Proposed modified ResNet for CDF 9/7 inputs 33

Figure 3.6 Shallow models are faster! . 34

Figure 3.7 Rate-accuracy and inference speed comparison for CIFAR-10 35

Figure 4.1 JPEG2000 lossy encoding process. 37

Figure 4.2 QuanNet . 41

Figure 4.3 Illustration of Quan block . 42

Figure 4.4 A differentiable dead zone quantization approximation 42

Figure 4.5 Proposed cloud-based training and inference with QuanNet 44

Figure 4.6 Classification accuracy for DB1 DWT degrades with limited BW . . 47

xiii

LIST OF FIGURES

Figure 4.7 Rate-accuracy performance of QuanNet with DB1 wavelet 48

Figure 4.8 Rate-accuracy performance of QuanNet with CDF 9/7 wavelet . . . 50

Figure 4.9 Visual quality of the reconstructed images 52

Figure 5.1 An illustration of a networked ML instance 55

Figure 5.2 Proposed VAE-based classification framework 57

Figure 5.3 Overview of the proposed VAE classifier during inference 62

Figure 5.4 Rate-accuracy results for CIFAR-10 and CIFAR-100 68

Figure 5.5 Encoders and classifiers designs the proposed VAE-based classifier . 69

Figure 5.6 Rate-accuracy performance on ImageNet-1k 71

Figure 5.7 Proposed joint classification and compression model with reconstruction 79

Figure 5.8 Proposed Decoder design for VAE-based classifiers 80

Figure 5.9 Examples of CIFAR-10 and ImageNet-1k reconstructed images . . . 81

Figure 6.1 Distortion artifacts depend on the loss function used during training 85

Figure 6.2 General architecture of existing ROI coding in learning based codecs 88

Figure 6.3 Proposed feature-sharing ROI prediction 90

Figure 6.4 Overview of the proposed classification-guided ROI image compression 92

Figure 6.5 Rate-distortion results for HKU-IS data set 99

Figure 6.6 R-D results for different mask sizes of DAVIS-2016 100

Figure 6.7 R-D-C results for Imagenette data set 101

Figure 6.8 R-D-C results for ImageNet-1k data set 102

Figure 6.9 R-D-C performance for CADDY data set 103

Figure 6.10 Visualization of generated masks for CADDY data set 104

Figure 6.11 Learned masks for ASL data set . 105

Figure 6.12 R-D-C performance for ASL data set 106

Figure 6.13 Classification-guided ROI masks . 110

Figure 7.1 An overview: LDR-guided Zero-Shot Learning 115

Figure 7.2 LDR-guided FSL model . 117

xiv

LIST OF FIGURES

Figure 7.3 LDR-guided ZSL model . 119

Figure 7.4 Examples of class vs attribute -based membership 120

Figure 7.5 Ablation study: ZSL and GZSL accuracy comparison on AwA2 . . . 124

Figure 7.6 Conventional cloud-based ZSL on JPEG compressed images 129

Figure 7.7 R-C performance for AwA2 under the LDR-guided framework 129

Figure 8.1 Proposed end-to-end framework . 136

Figure 8.2 Encoder and classifier architectures for CIFAR-100 and ImageNet-1k 137

Figure 8.3 R-C on CIFAR-100 and ImageNet-1k under quantization noise . . . 140

Figure 8.4 Ablation results on CIFAR-10 . 142

Figure 8.5 Rate-accuracy for ImageNet-1k data set under Gaussian noise 144

Figure 9.1 Rate-accuracy comparison between single and multiple models . . . 147

Figure B.1 Building blocks for ResNet . 153

Figure B.2 Fine-tuning on pre-trained models 155

Figure B.3 Multi View CNN model for 3D shape classification 156

Figure C.1 Robustness comparison for visual corruptions 159

Figure C.2 Rate-accuracy at different β values for CIFAR-10 161

Figure C.3 Visualization of latent maps . 161

Figure D.1 ROI mask comparison for samples of HKU-IS data set 168

Figure D.2 R-D-C when fine tuning the classifier for Imagenette dataset 171

Figure E.1 ZSL and GZSL accuracy comparison. 172

Figure E.2 Noise severity vs accuracy performance of LDR-guided ALE 174

Figure E.3 Illustration of common noise and perturbations 174

Figure E.4 ZSL accuracy comparison of the proposed LDR-guided ALE 175

xv

L I S T O F TA B L E S

Table 3.1 Reconstruction time savings for different image sizes. 30

Table 3.2 Parameters of ResNet models for RGB and CDF 9/7 inputs 32

Table 3.3 Results of CIFAR-10 . 33

Table 3.4 Results of Tiny ImageNet. 33

Table 4.1 Effects of truncation (% of zeros) on classification. 45

Table 4.2 Effects of quantization on classification accuracy 46

Table 4.3 Quantization weights learned from QuanNet for ResNet-8 48

Table 4.4 QuanNet learned sub bands of CDF 9/7 coefficients. 51

Table 5.1 Summary of notations . 61

Table 5.2 Complexity comparison of the models for CIFAR-10 and ImageNet . 73

Table 5.3 Inference speed comparison . 75

Table 5.4 Number of FLOPs (×109) comparison for the proposed models. . . . 76

Table 5.5 Number of FLOPs comparison for the proposed models 78

Table 5.6 Reconstruction quality for CIFAR-10 and ImageNet-1k 81

Table 6.1 Complexity comparison in no. of parameters 107

Table 6.2 Inference speed comparison . 108

Table 6.3 Computational power demand in terms of Flops in Billions (G). . . 109

Table 7.1 ZSL and GZSL accuracy comparison 125

Table 7.2 Ablation study: FSL accuracy comparison on mini-ImageNet data set 127

Table 7.3 LDR-guided FSL accuracy comparison with SOTA on mini-ImageNet 128

Table B.1 ResNet architecture for CIFAR-10 154

Table B.2 ResNet architecture for ImageNet 154

xvi

LIST OF TABLES

Table B.3 Results of ModelNet-40. 157

Table B.4 ResNet architecture for ModelNet-40. 157

Table B.5 ResNet architectures used for DB1, DWT coefficients. 158

Table D.1 Detailed complexity comparison in no. of parameters 169

Table D.2 Estimation of number of parameters of Cai-2019 170

Table E.1 LDR-guided FSL training details: learning rate and λ 175

Table E.2 LDR-guided FSL encoder architectures 176

xvii

A B B R E V I AT I O N S

R-C Rate-Accuracy.

R-D Rate-Distortion.

R-D-C Rate-Distortion-Accuracy.

AI Artificial Intelligence.

CE Cross Entropy.

CL Classifier.

CNN Convolutional Neural Networks.

D Decoder.

DL Deep Learning.

E Encoder.

EC Entropy Coder.

ED Entropy Decoder.

FSL Few Shot Learning.

LDR Linear Discriminative Representation.

MCR2 Maximal Coding Rate Reduction.

ML Machine Learning.

MS-SSIM Multi-Scale Similarity Index.

MSE Mean Square Error.

PE Probability Estimator.

PSNR Peak Signal-to-Noise Ratio.

RGB Red, Green and Blue.

ROI Region of Interest.

xviii

Abbreviations

VAE Variational AutoEncoder.

ZSL Zero Shot Learning.

xix

1
I N T R O D U C T I O N

With the availability of massive amounts of labeled and unlabeled data, computational power

with GPUs and parallel processing, and complex neural network (NN) models, the usage of

deep learning (DL) has heavily increased in the areas including computer vision [2,3], wireless

communication [4, 5], medicine [6, 7], economics [8, 9] and security [10, 11]. Deep learning

has benefited substantially from the tremendous success of convolutional neural networks

(CNNs) [12] in computer vision analysis applications such as image/video classification [13–16],

object detection [17–19] and segmentation [20–22]. CNNs have proven to be effective in

extracting low level features among adjacent pixels and formulating high level semantic

features. The discovery of residual network (ResNet) architecture in [15] further solidified

CNNs by overcoming the problem of classification/segmentation accuracy degradation with

more layers exhibited in earlier versions of deep neural networks.

In many practical artificial intelligence (AI)-based mobile and wireless applications, the

tasks of deep learning take place remotely from low cost embedded devices (source nodes)

[23–25]. In the era of IoT, many typical multi-media analysis applications require the source

node to transmit its acquired images/videos to a more powerful remote node as a part of

cloud computing to perform the necessary DL inference tasks [26]. See Fig 1.1. With the

growing use of Internet traffic for machine leaning purposes [27], networking industry has

initiated several cloud machine learning platforms dedicated for deep learning1.

Fig. 1.1 illustrates some of the common cloud-based learning and inference tasks: image

classification, object detection, traffic monitoring, and road segmentation etc. In addition

to inference tasks, visualization of the image/video data for human users is another major

application of the cloud.
1 https://www.networkworld.com/article/3305417/cisco-introduces-its-first-server-built-for-ai-and-ml-
workloads.html

1

introduction

Figure 1.1: Cloud AI applications.

For each inference task, we identify two main processes: transmission of data from

source to the server, and processing the received data at the server to perform the learning

task. Due to the limited bandwidth (data rate) of the wireless channels, transmission of

data, specially image and video that demand higher bandwidth in their raw format, needs

to be compressed to a lower bandwidth formats before transmission [28]. This process is

generally known as “image/video encoding”. Once the data is compressed to a bit stream with

manageable bandwidth, source device transmits it to either visualization devices for human

perception or to a computational server for learning/inference purposes. Visualization devices

“decode” the bit stream and reconstructs the image in visualizable formats such as RGB. The

process of image encoding and decoding is collectively known as “image compression” and

the combination of the encoding algorithm (encoder) and the decoding algorithm (decoder)

is known as “codec”. In this dissertation, we focus on the designing and joint optimization of

the above two processes: image compression and DL task.

2

1.1 image compression

1.1 image compression

Images captured by cameras contain Red, Green and Blue (RGB) pixel values corresponding

to each point location of a 2D array. Transmitting or storing these raw pixel values can take a

substantial amount of bandwidth/storage. For instance, an RGB image of size 256× 256 in its

raw pixel format assuming 8 bit color resolution takes at least 197 kB without any overhead.

But the same image can be reproduced with 80kB including overhead by compressing the

information contained in RGB values using image compression.

JPEG [28] is one of the most common lossy image compression standards that has been

used for nearly 30 years. JPEG2000 [29], after being introduced 1998, has gained more

popularity over the years due to its some of many fine qualities such as higher compression

ratios, ability to decompress a once compressed image in many ways and region of interest

compression. With this gaining popularity and usage, exploring ways to utilize these fine

features for deep learning tasks is of timely importance. In Part i of this dissertation, we focus

on how to utilize JPEG2000 compressed images and to optimize the compression parameters

for deep learning tasks.

1.1.1 Optimization of conventional compression codecs

As illustrated in Fig. 1.1, for cloud-based DL applications like image/video classification,

segmentation and object detection, a source device has to send the images/videos to the cloud

servers to get the inference results. Common cloud AI systems compress these image/video

data using the codecs like JPEG2000 or H264 before sending over the network. These image

and video codecs however are designed and optimized to produce better visual quality outputs

for human eyes at a given bandwidth, which is commonly known as “rate-distortion” (R-D)

trade-off. We show that these conventional compression parameters are not optimal for deep

learning tasks [30,31] in Chapter 3. We then introduce an end-to-end trainable joint image

3

1.2 learning-based image compression

compression and deep learning network called ‘QuanNet’ [25] in Chapter 4, that can save

significant amount of bandwidth by learning quantization step sizes for JPEG2000 codec. Our

proposed concept of learning optimal parameter settings for engineered blocks in conventional

codecs can be readily applied for more recent codecs such as BPG2 and VVC [32] as well.

1.2 learning-based image compression

Due to the design and optimization flexibility, learning-based codec designs [33, 34] have

gained recent popularity. In general, a leaning-based codec consists of an Encoder Analyzer

(E), an Entropy Coder (EC), an Entropy Decoder (ED) and a Decoder Synthesizer (D) [31].

Fig 1.2 shows the general overview of such learning-based codec.

Figure 1.2: Overview of learning-based image compression codec. Input images (x) are transformed
into latent z, then quantized (Q) and entropy coded (EC). The binary stream is then stored or
transmitted over a channel. On the receiver side, the decoder reconstructs the input images as x̂,
from the decoded latent tensors ẑ

.

In contrast to conventional codecs such as JPEG2000, each block of learning based codecs

are designed with DL-based elements which can be optimized to minimize a given loss

function. More importantly, all the blocks between the input image x and the reconstructed

image x̂ of the codec as shown in Fig. 1.2 can be optimized in an end-to-end manner for a

given objective such as rate-distortion. Such optimization of the complete codec towards a
2 https://bellard.org/bpg/

4

https://bellard.org/bpg/

1.2 learning-based image compression

common objective can naturally lead to higher rate-distortion performance as will be shown

in following chapters.

1.2.1 Learning-based codecs for improved rate-distortion-accuracy

To overcome the infrastructural barrier of limited network bandwidth in cloud ML however,

the existing solutions [33, 34], including the optimization of JPEG2000 discussed in Chap-

ter 3-4, have mainly relied on traditional compression that were historically engineered for

human-end users instead of ML algorithms. Traditional codecs do not necessarily preserve

features important to ML algorithms under limited bandwidth, leading to potentially inferior

performance [31].

Exploring the concept of learning-based compression, Part ii of this dissertation investigates

application-driven optimization of programmable commercial codec settings for networked

learning tasks such as image classification. Based on the foundation of variational autoencoders

(VAEs) [35], in Chapter 5, we develop an end-to-end networked learning framework by jointly

optimizing the codec and classifier for improved “rate-accuracy” (R-C) performance without

reconstructing images for given data rate (bandwidth). We further show that a simple decoder

can reconstruct images with sufficient quality without compromising classification accuracy.

As an extension of joint image compression and deep learning based on end-to-end

optimization, in Chapter 6, we focus our investigation on designing learning-based codecs

that achieve improved “rate-distortion-accuracy” (R-D-C) performance simultaneously. For

this purpose, we revisit the concept of region of interest (ROI) and its application in deep

learning-based codecs.

ROI-based image compression achieves better R-D performance for a given ROI region

by allocating more bits compared to the rest of the image. For such ROI-based image

compression applications without given ROI masks a priori, recent codecs based on deep

learning (DL) have proposed effective step of ROI prediction, followed by subsequent ROI

5

1.3 practical limitation of cloud-based inference systems

encoding [36–38]. For network-based learning over cloud, however, limited bandwidth between

sensor nodes and processing servers motivates the optimization of not only R-D involving ROI

prediction and image encoding, but also target DL task such as classification. Existing such

end-to-end ROI prediction and coding frameworks still demand heavy computation, power

and memory specially during feature extraction for ROI prediction [36,38]. This causes lower

inference speeds and shorter battery life of sensor nodes. Targeting practical applications, in

Chapter 6, we propose significantly lighter-weight feature extraction backbones and to guide

the feature extraction process with classification cross entropy loss. By doing so, we synergies

ROI compression and classification tasks demonstrating improved R-D-C performance.

1.3 practical limitation of cloud-based inference systems

Given the explosive growth and deployment of IoT devices [39] and massive data collected

by such devices [40], traditional cloud computing struggles to keep up with the demands of

large IoT networks. Typical IoT configuration features source devices only as data collectors

while cloud nodes are responsible for processing and analysis, hence, is limited by network

link capacity, delay and losses, leading to long latency, unreliable inference and scalability

issues [41–43]. Edge computing addresses these issues by deploying computing services in

proximity to IoT devices [44]. Many image and video sensing devices such as smart phones,

vehicular sensors and home/street cameras have sufficient resources to collect data and

perform preliminary pre-processing and feature extraction, but not enough to implement full

machine learning algorithms on-device [42]. With this new configuration of networked AI

coupled with edge computing, such source devices can share a part of the computational

burden by performing pre-processing and feature extraction, and deliver the extracted features

to more powerful and resource rich edge/fog nodes for complex machine learning tasks.

Due to the layered architecture of the neural networks, we note three main properties of

the data, passed from one layer to another, that can support the use of edge computing. See

6

1.3 practical limitation of cloud-based inference systems

Figure 1.3: Edge computing for Deep learning.

Fig 1.3. 1). The redundancy of data is mostly reduced with layers by number of kernels, down

sampling with strides and pooling. This reduces the amount of data to be sent to the central

cloud for further computations. 2). The semantics between the output and the input to a

layer are mostly different. Due to this, even if a data transmission is intercepted, the chance

of interpreting the data can be low, preserving privacy of inputs [23]. 3) Low level features

are common for task groups like classification, segmentation and object detection [15]. So

the intermediate features computed by edge servers can be easily reused for multiple machine

learning tasks without any modification to the existing deep models and communication

networks.

Although edge computing has proven to be a powerful framework for tasks such as

source device offloading [45] and content delivery [46], its use for analysis tasks has remained

limited [27,47] due to non-generality of the features extracted or processed by the source devices

and intermediate servers. Training intermediate data representations (latent embeddings)

without careful supervision can lose essential features of input data resulting non-interpretable

and non-universal features that can only be used for a specific task. Such features are less

robust to common networked-AI related challenges such as missing or corrupted labels [48],

data imbalance [49] and low-shot learning [50,51]. Addressing such challenges, Part iii of this

dissertation explores efficient latent embeddings for modeling real world image data.

7

1.3 practical limitation of cloud-based inference systems

1.3.1 Linear discriminative representations for joint compression and classification

Learning-based image/video codecs typically utilize the well known auto-encoder structure

where the encoder transforms input data to a low-dimensional latent representation. Efficient

latent embeddings can reduce bandwidth needs during compression for transmission and

storage. However, finding such efficient latent embedding is quiet challenging considering the

complexity of real-world-inputs and multiple post applications that rely on the learned latent

embedding [52].

One natural approach to address this real-world-data transformation problem is to find

learned representations with standard models or distributions. Along this direction, Chapter 7

explores one such family of learned distributions called “linear discriminative representation”

(LDR) [53] where latent embeddings are distributed on linear, orthogonal group-wise subspaces.

In particular, based on LDR, Chapter 7 proposes a novel classification framework when

training with extreme data imbalance scenarios named “low-shot training”. Focusing cloud-

based networked classification applications, then we evaluate the proposed framework for

rate-accuracy performance.

In zero-shot learning (ZSL) [50,54,55] and few-shot learning (FSL) [56–58], where training

and inference are on disjoint classes, conventional cross-entropy (CE) based approaches tend

to exhibit model over-fitting to seen classes. Hence, directly relying on seen class labels

or attributes during training is disadvantageous. Recently proposed maximal coding-rate-

reduction (MCR2) principle [53] promotes LDRs with in-class compressive and inter-class

discriminative properties by utilizing class labels as side information. When guided with

LDR, encoders generate more universal features that are common to both seen and unseen

classes. Evaluating over several benchmark data sets we show that such LDR-guided models

achieve significant accuracy improvement over conventional ZSL and FSL baselines with zero

added memory or computational complexity during inference.

8

1.3 practical limitation of cloud-based inference systems

Further investigating the R-C performance of LDR-guided embeddings, Chapter 8 exam-

ines the effect of assigning high level coarse grouping labels to each learned latent subspace.

We show that such grouping can be learned via end-to-end optimization of the codec and

the DL model to optimize rate-accuracy for a given data set [59]. For cloud-based inference,

source encoder can select a coding profile based on its learned grouping and encode the data

features accordingly. Our test results on image classification show significant performance

improvements with learned grouping over its non-grouping counterpart.

9

2
B A C K G R O U N D

In this chapter, we provide background on topics such as JPEG2000 codec, variational

autoencoders and linear discriminative representations which are foundational concepts used

in following chapters of this dissertation.

2.1 conventional image compression codecs: jpeg 2000

JPEG2000 image compression codec mainly consists of an encoder and a decoder. Encoder

takes RGB image as the input and produces a bit stream (j2k stream) for transmission

or storage. Decoder takes the j2k stream as the input and reconstructs the RGB image.

JPEG2000 offers a lossless and a lossy compression options corresponding to reversible and

irreversible paths in Fig. 2.1.

2.1.1 JPEG2000 Encoder

Figure 2.1: JPEG2000 encoder.

In this dissertation, we focus on the irreversible compression path and following are the

main operations of the encoder.

10

2.1 conventional image compression codecs: jpeg 2000

Level offset

If the image sample values (unsigned) are B bits encoded, an offset of −2B−1 is added to

center the pixel values. Ex: RGB pixels [0,255], are given a -128 offset.

Reversible/Irreversible Color transformation (RCT/ICT)

Color domain is changed to facilitate compression. In the reversible path, RGB values are

transformed to YDbDr domain and in the irreversible path RGB values are transformed to

YCbCr domain [29]. RGB pixel (xR,xG,xB) can be converted to YCbCR value (xY ,xCb,xCr),

with the following linear transformation.

xY

xCb

xCr

 =

0.299 0.587 0.114

−0.168736 −0.3331264 0.5

0.5 −0.418688 −0.081312

×

xR

xG

xB

 (2.1)

xY which is a weighted average of R,G and B components, measures intensity (luminance).

xCb and xCr which are the weighted differences between luminance and blue and, luminance

and red respectively, measure chrominance. Since human eyes are known to be less sensitive to

distortions in chrominance, these channels can be more compressed with less added distortion.

Discrete wavelet transformation (DWT)

Spatial coefficients (YCbCr/YDbDr) are transformed to spectral domain using a DWT. DWT

can be described as a sequence of samples of the projection/convolution of a given signal x(t)

with a wavelet function h(t). By appropriately choosing h(t), different decompositions of the

signal x(t) can be obtained. For example in discrete domain, by choosing,

g[n] =
1√
2
[1, 1] and h[n] = 1√

2
[1,−1],

11

2.1 conventional image compression codecs: jpeg 2000

(a) (b) (c) (d)

Figure 2.2: (a) RGB image. ‘Brownie’ of size 64× 64. (b) YCbCr channels of (a). (c) Sub-band
structure of level-1 DWT transformed coefficients. Here LL1 is the level-1 approximation of the
original image and HH1 represents highest frequency components. (d) shows level 1, DWT coefficients
with DB1 wavelet of (b).

one can obtain sub sampled, bi-orthogonal low pass (L1) and high pass (H1) decompositions

of signal x[n] respectively. The above filters correspond to well-known ‘Harr’ or ‘DB1’ wavelet

decomposition. In the context of 2-Dimensional (2-D) images, these filters can be applied

in both horizontal and vertical directions resulting LL1, LH1, HL1 and HH1 decompositions

(aka sub-bands). Here LL1 is the level-1 approximation of the original image and HH1

represents highest frequency components. For DB1 wavelets, the sub-bands LH1, HL1 and

HH1 represent horizontal, vertical and diagonal edges of a 2-D image respectively. See (b)

and (d) of Fig. 2.2. Unlike Fourier transforms, DWT provides both frequency and spatial

information of an image. Level-2 decomposition of a 2-D image can be obtained by taking

the level-1 decomposition of the LL1 sub-band. This creates LL2, LH2, HL2 and HH2. See

Fig. 2.3.

Instead of DB1, JPEG2000 codec uses CDF 9/7 wavelets during lossy compression, which

is a more complex waveform compared to DB1. Since DWT is a projection of an spatial

domain input Xs, we can rewrite the 2-D DWT operation as follows.

12

2.1 conventional image compression codecs: jpeg 2000

(a) (b)

Figure 2.3: (a) Sub-band structure of level-2 DWT transformed coefficients. LL2 is the level-2
approximation of the original image and (b) shows level 2, DWT coefficients with DB1 wavelet of
Fig 2.2(b).

Let n be the image dimension. Define Xs ∈ Rn×n and XwA ∈ Rn×n where XwA is the

DWT of Xs and A is the DWT matrix of a wavelet a. We can write XwA as separable column

and row transformations (See [60] for more details).

XwA = ATXsA. (2.2)

For CDF 9/7 wavelets, we can formulate A by using its “fast lifting” decomposition

[61]. The lifting implementation of the 1-Dimensional DWT of CDF 9/7 wavelet consists

of two predictions (P1, P2), each followed by an update function (U1 and U2). Then, the

resulting matrix is de-interleaved (S) to form high and low frequency components. This

implementations consists of five “for” loops for each operation.

We note that the above DWT matrix operation can be implemented as a matrix multipli-

cation of three sub-functions: predictions, updates and de-interleaving. It can be denoted as

A = P1U1P2U2S. (2.3)

Matrix A and its inverse calculated as given in Eq. (2.3)1.
1 python code for this transformations is available at
https://github.com/chamain/Faster-and-accurate-classification-for-J2K

13

2.1 conventional image compression codecs: jpeg 2000

Dead zone quantization

The process of quantization, maps a range of values with floating point precision to an integer.

JPEG2000 uses the following definition of the uniform deadzone quantizer [29]

q(x) = sgn(x)
⌊ |x|
ds

⌋
.

Here, q(x) is the quantization index for sub-band coefficient x whereas ds is quantization

step for sub-band s.

Block encoder

Block encoder encodes the DWT coefficients of the input image. The encoding process in

JPEG2000 is performed in a block wise manner where the quantized DWT coefficients of an

input image is divided into several blocks and encoded independently. Typical block sizes are

64× 64 and 32× 32. Encoding and ordering the coefficients is done using Embedded Block

Coding with Optimal Truncation (EBCOT) algorithm [62] introduced by David Taubman in

2000. This algorithm allows the truncation of the encoded bit stream for a given block such

that images with different quality can be obtained depending on the truncated bit length

when decoding. These truncation lengths correspond to different points of the rate distortion

characteristics of JPEG2000 encoder.

2.1.2 JPEG2000 Decoder

JPEG2000 decoder consists of a block decoder, a dequantizer, inverse DWT transformation

(IDWT), YCbCr to RGB color mapping followed by a level offset of +128. See Fig. 2.4.

Dequantizer re-scales the decoded DWT coefficients by their corresponding step sizes as

explained in section 2.1. IDWT block transforms the dequantized DWT coefficients to spacial

domain. Decoder then reconstructs the image after mapping YCbCr coefficients to RGB

14

2.2 learning-based codecs: variational autoencoders (vae)

Figure 2.4: JPEG2000 decoder for lossy compression.

channels. In Chapter 3, we discuss how to skip some of these blocks when decoding leading

to faster deep learning applications for j2k compressed images.

2.2 learning-based codecs: variational autoencoders (vae)

When designing codecs for source compression to achieve optimized R-D performance,

accurate modeling of the data distribution is of vital importance. Depending on the underlying

input distribution, the process of “generative modeling” can be challenging. Often, the input

data (X) manifold is high-dimensional and is complex to characterize.

Several likelihood-based methods have been proposed in the literature for generative

modeling, such as auto-regressive models [63], flow-based methods [64, 65] and VAEs [35]. In

this dissertation, we leverage the concept of VAE for joint image classification and compression.

Without relying on strong assumptions, VAE exhibits fast training with back-propagation [66].

Such property is advantageous in comparison with model-based approaches relying on strong

assumptions or requiring high computation complexity such as the Markov Chain Monte

Carlo (MCMC) [35]. Further, VAE-based models are amenable to naturally interpretable

loss terms that are directly related to rate-distortion trade-off in lossy compression [67], as

shown later.

We can capture the general concept of VAE via Fig. 2.5. A VAE consists of an encoder for

mapping the high dimensional input x into a latent representation z, followed by a decoder in

15

2.2 learning-based codecs: variational autoencoders (vae)

charge of reconstructing the input that is denoted as input estimate x̂. The encoder’s output

z is a low-dimensional latent vector representing distinct features from the input data x. The

encoder functionality is to compress and to extract critical features by mapping input x into

z. The decoder can rely on z to reconstruct x for various remote applications. Thus, the

VAE encoder makes it possible to store and transmit z instead of x to preserve bandwidth

and storage.

Figure 2.5: General structure of a VAE. Encoder transforms the input image z to a low dimensional
latent vector z. Decoder reconstructs image x̂ based on z.

In the VAE formulation, the observable input data set X is assumed to consist of i.i.d.

samples of x which are generated by some random process that involves an unobserved

random variable z and generative model parameters θ via

px,θ(x) =
∫
pz,θ(z)px|z,θ(x|z)dz. (2.4)

Neither the true parameters θ̄ nor z are known.

Within this framework [35], the encoder can be viewed as to provide an efficient posterior

estimate of the latent vector z from an observed input x for a given parameter setting θ.

The decoder provides an approximate marginal inference of x upon reception of the latent

vector z from the encoding transmitter.

16

2.2 learning-based codecs: variational autoencoders (vae)

2.2.1 Variational Bound for Reconstruction

VAE considers the general case when the posterior pz|x,θ(z|x) is intractable for which an

approximation qz|x,φ(z|x) parameterized by φ is introduced to act as the encoder. For

an arbitrary distribution qz|x,φ(z|x), we can derive the “variational bound” that follows

the outlines of [35,66] with detailed proof below for image reconstruction. Throughout the

presentation, we denote an instance of the random variables x as x. Assume x ∈ X is a

random sample of the random variable x which follows a generative model parameterized by

θ from an unobserved random variable z. We can write

px,θ(x) =
∫
pz,θ(z)px|z,θ(x|z)dz. (2.5)

For an arbitrary distribution qz,φ(z), we can write,

px,θ(x) =
∫
pz,θ(z)px|z,θ(x|z)dz =

∫
px|z,θ(x|z)pz,θ(z)

qz,φ(z)

qz,φ(z)
dz = Eqz,φ

[
px|z,θ(x|z)

pz,θ(z)

qz,φ(z)

]
.

Taking − log of both sides leads to

− log px,θ(x) = − logEqz,φ

[
px|z,θ(x|z)

pz,θ(z)

qz,φ(z)

]
. (2.6)

Applying Jensen’s inequality to (2.6), we write,

− log px,θ(x) ≤ Eqz,φ − log
[
px|z,θ(x|z)

pz,θ(z)

qz,φ(z)

]
≤ −Eqz,φ log px|z,θ(x|z)−Eqz,φ log

[
pz,θ(z)

qz,φ(z)

]
.

Following the definition of KL divergence, we write,

− log px,θ(x) ≤ −Eqz,φ log px|z,θ(x|z) +KL(qz,φ|pz,θ) (2.7)

17

2.2 learning-based codecs: variational autoencoders (vae)

Since qz,φ(z) is arbitrary, we can replace qz,φ(z) with conditional density qz|x,φ(z|x) and

write [35,66],

− log px,θ(x) ≤ −Eqz|x,φ

[
log px|z,θ(x|z)

]
+KL(qz|x,φ|pz,θ) (2.8)

where KL denotes the Kullback Leibler divergence.

This variational bound can serve as an optimization surrogate when direct minimization

of − log px,θ(x) is intractable. Functionally, qz|x,φ models the probabilistic encoder and px|z,θ

models the reconstruction decoder as in Fig. 5.2(a). The first RHS term in Eq. (2.8) is the

conditional entropy of x given z which quantifies the reconstruction loss.

The second RHS term KL(qz|x,φ|pz,θ) is related to the coding cost of the latents as shown

later. Hence, the variational bound can be utilized to form the classical variational loss for

reconstruction [35].

Lθ,φ(x) = Eqz|x,φ

[
− log px|z,θ(x|z)

]
+KL(qz|x,φ|pz,θ) (2.9)

When minimizing the variational bound as the loss function given in Eq. (2.9) that consists

of two parts, a hard constraint can be imposed on the coding cost KL(qz|x,φ|pz,θ) while

minimizing the reconstruction loss. To this extent, the authors of [68] further suggested

adding a trade-off parameter β(≥ 1) to Eq. (2.9) to reformulate a β-VAE loss function also

adopted in [34,67] as

Lθ,φ(x) = Eqz|x,φ

[
− log px|z,θ(x|z)

]
+ βKL(qz|x,φ|pz,θ). (2.10)

Note that we can leverage the definition of cross entropy (CE) to rewrite

KL(qz|x,φ|pz,θ) = CE(qz|x,φ, pz,θ)−H(qz|x,φ).

18

2.2 learning-based codecs: variational autoencoders (vae)

The term CE(qz|x,φ, pz,θ) averages the entropy − log(pz,θ) over the encoder distribution qz|x,φ

and captures the average encoding “cost” of latent representation z. Following the approach

of [67], if we consider only the deterministic encoder z = φ(x) for which qz|x,φ(z|x) =

δ(z −φ(x)) and H(qz|x,φ) = 0, we have

KL(qz|x,φ|pz,θ) = CE(qz|x,φ, pz,θ) = CE(δ(z −φ(x)), pz,θ(z)) = − log pz,θ(φ(x)) (2.11)

From Eq. (2.11), the β-VAE loss function for a deterministic encoder can be expressed

as [67],

Lθ,φ(x) = Eqz|x,φ

[
− log px|z,θ(x|z)− β log pz,θ(z)

]
= − log px|z,θ(x|φ(x))− β log pz,θ(φ(x)). (2.12)

When β = 1, Eq. (2.12) corresponds to the VAE loss function in Eq (2.10). Setting β ≥ 1

can impose a hard constraint on the latent representation [68] to limit the coding cost. In

short, the approximated β-VAE loss is the sum of the reconstruction loss and the cost of

encoding z weighted by β. The weight β facilitates a rate-distortion trade-off parameter.

One extreme case would be to encode nothing, i.e., z = 0, in which case the encoding cost is

zero whereas the reconstruction loss from z = 0 would be gigantic. The other extreme case

would be to encode x directly, i.e., z = x, in which case the reconstruction loss is 0 whereas

coding cost would be high.

Based on the β-VAE concepts for image reconstruction, in Chapter 5, we develop a

VAE-based classifier for joint image compression and classification.

19

2.3 linear discriminative representation (ldr)

2.3 linear discriminative representation (ldr)

Modeling complex, non-linear real world data (X) such as image or video essentially finds a

deterministic function that transforms real world data into an intermediate (latent) represen-

tation. Such latent vectors corresponding to images of same class are expected to locate closer

while those of different classes are expected to locate further in the learned latent domain of

Z. Transformation functions are preferred to be a subset of standard modeling functions such

as Gaussian and transformed latent representations are to be linear and low dimensional [52].

Further, the latents needs to be sufficiently expressive to support the inverse transformation

(reconstruction) of input data, and essentially discriminative to support multiple DL tasks

such as classification, object detection etc. Recent “Linear Discriminative Representations”

concept [53] explores one such family of low dimensional, linear latents.

Figure 2.6: LDR maps images X in complex non-linear manifolds to latent representations Z
distributed in linear orthogonal subspaces [53]. Images X1 of the same class: “lady bug” are mapped
to the linear subspace S1.

Let the image set X = [x1,x2, · · ·xm] ∈ RD×m be m i.i.d. samples of dimension D.

An encoder f(·,φ) parameterized by φ transforms each image sample x to a d-dimensional

(d < D) learned representation z such that z = f(x,φ), which can be later used in image

analysis tasks such as to predict the class label of the image x or image synthesis objectives

to reconstruct the input image. We write the set of latent vectors mapped from set X as

Z = [z1, z2, · · · , zm] ∈ Rd×m.

x
Encoder−−−−−→
f(·,φ)

z(φ) (2.13)

20

2.3 linear discriminative representation (ldr)

2.3.1 Maximal Coding-Rate-Reduction (MCR2)

Recent work [53] has proposed the principle of MCR2, which finds learned LDR Z(φ)

distributed in linear, class-wise orthogonal (decoupled) subspaces as shown in Fig. 2.6. Note

that images in the same class are mapped to the same subspace and linearly distributed over

that subspace.

The objective of MCR2 principle [53] is to maximize the difference ∆R between the global

code length and the summation of class-wise code lengths of latent features Z, coded as

Gaussian sources with distortion ε:

∆R(Z|ε, Π) =
1
2 log2 det

[
I + αZZ>

]
︸ ︷︷ ︸

R(Z,ε)

−
k∑
j=1

γj
2 log2 det

[
I + αjZΠjZ

>
]

︸ ︷︷ ︸
Rc(Z|ε,Π)

, (2.14)

where, α = d/mε2,αj = d/tr(Πj)ε2 and γj = tr(Πj)/m. The first term R(Z|ε) in Eq. (2.14)

measures the expected code length (rate) in bits of a sample from Z. Given available class

label information, the second term Rc(Z|ε, Π) measures the average code length in bits

when latents Z are distributed in k disjoint class-wise subspaces: Z = Z1 ∪ · · · ∪Zk. The

membership set Π of binary diagonal matrices {Π1, · · · , Πk} ∈ Rm×m with ∑k
i=1 Πi = Im

denotes the above partitioning of Z into k classes. In this setting, each partition consists of

tr(Πj) samples [69].

Maximizing the first term of Eq. (2.14) induces latent vectors z in Fig. 2.6 to distribute as

further as possible, whereas minimizing the second term pushes latent vectors of the same class

closer. Jointly, maximizing Eq. 2.14 linearizes feature embedding z for each class to promote

in-class compressibility and inter-class discriminability. Recent works have demonstrated

promising benefits by exploiting the above characteristics of LDR for joint image classification

and compression in networked AI settings [59, 70]. In particular, [59] proposes to improve

rate-classification accuracy performance by transmitting LDR z with learned subspaces for

21

2.3 linear discriminative representation (ldr)

cloud inference. In Chapters 7-8 in this dissertation, we propose LDR-guided auto-encoders

for improved rate-accuracy performance that are robust to extreme class imbalance scenarios

during image classification.

22

Part I

I M P R O V I N G C O N V E N T I O N A L C O D E C S

23

3
FA S T E R A N D A C C U R AT E D E E P L E A R N I N G F O R J P E G 2 0 0 0

I M A G E S

Image/video classification in a networked environment is among the top AI applications

for years to come. Given its rapidly growing popularity and usage for visual applications,

JPEG2000 is playing an increasingly vital role in cyber intensive and autonomous systems.

In this chapter, we explore new and better ways to exploit the JPEG2000 (j2k) encoding in

critical AI tasks such as image and video classification.

3.1 introduction

In a wide variety of application scenarios involving low complexity IoT and networked sensors,

traditional AI functionalities often rely on cloud computing to handle high complexity

processing tasks such as image/video analysis. In cloud-based networked image analysis

applications, neural networks (NNs) are trained at the cloud servers on the images transmitted

by source devices. During inference of networked image classification task, the trained deep

CNN classifier at the cloud predicts the class label for received input image. In such networked-

AI setting, there is a clear trade-off among computation complexity, network payload, and

performance in terms of accuracy.

Figure 3.1: Conventional training and inference for cloud-based image classification. Pre/post
processing involve level offset and color transformations as discussed in 2.1

In order to conserve limited channel bandwidth and storage capacity at the cloud, source

devices often encode and compress the images before transmitting to the cloud by utilizing

24

3.1 introduction

standardized compression techniques such as JPEG2000. Since majority of NNs are designed

and optimized to classify images in the spatial (RBG) domain, the cloud currently receives

and decodes the compressed j2k images back into the RGB domain before forwarding them

to pre-trained NNs for further processing, as illustrated in figure 3.1. However, given that

such received images are analyzed by DL algorithms and not by human experts, a natural

question arises is to how to achieve faster training and inference with improved accuracy in a

cloud based image classification under bandwidth, storage and computation constraints.

3.1.1 Related works: Image classification on DWT coefficients

Image classification in spectral domain has been studied by the ML community over the

past few years. The compact representation of the images in spectral domains promises

faster classification [71–73]. As introduced in Chapter 2, JPEG2000 codec transforms spatial

domain RGB images to spectral domain CDF 9/7 wavelets during lossy compression. Despite

the considerable volume of works on the use of DWT coefficients for DL (e.g., [25,73–76]),

there is only a handful of published works that use CDF 9/7 wavelets for classification.

For instance, the authors of [73–76] uses DB1, mostly known as ‘Harr’ wavelet for DWT

calculation. The work [73] discusses the significance of each sub-band from DWT for image

classification, which suggested a framework for applying the inference results of each sub-band

for final classification decision to achieve lower misclassification rate. The authors of [74]

proposed a DWT based approach for texture classification and suggested to improve image

classification by stacking the sub-bands of DWT. By only using DB1 coefficients of the level-1

sub-band (LL1) , the authors of [75] report a convolutional neural network (CNN) is 10 times

faster for feature extraction and recognition of images.

25

3.1 introduction

3.1.2 Is reconstruction necessary?

The authors of [71] applied existing JPEG codec to directly extract the Discrete Cosine

transformed (DCT) coefficients for classifying ImageNet [77] data set. They claim faster

classification by reducing some blocks of the ResNet stack, together with the time saved from

not reconstructing RGB images before ResNet. Similarly, [78] has shown that reconstruction

of RGB images from custom compressed coefficients is unnecessary for classification purposes.

Inline with the approach of [71] on JPEG, we use the standard JPEG2000 codec to extract

DWT coefficients for classification and show that the conventional use of image reconstruction

is unnecessary for JPEG2000 encoded classification by constructing and training a deep CNN

model with the DWT coefficients transmitted in standard j2k stream. See figure 3.2. We

show not only faster but also more accurate classification results even before considering

the reconstruction savings based on the experiments on both CIFAR-10 [12] as well as Tiny

ImageNet (a subset of ImageNet) data sets.

Figure 3.2: At the cloud during inference, decoder can skip IDWT, color transformation and level
offset for faster classification. For illustration, we show a level-1 DWT compressed image. We
rearrange the CDF 9/7 coefficients as inputs to the deep CNN.

To the best of our knowledge, this is the first reported attempt that successfully applies

DWT coefficients extracted from within the JPEG2000 decoder for image classification. The

authors of [78] demonstrated a similar concept of skipping reconstruction in ResNet classifier

26

3.2 classification of jpeg2000 compressed images

for a less common convolution encoder/decoder instead of the widely popular JPEG2000

encoder/decoder in multimedia applications. On the other hand, none of the previous works

addressed the extension of regular augmentation techniques in transform domains such as

DCT or DWT. Furthermore in this chapter, we establish that more accurate classification is

also possible by deploying shallower models to benefit from faster training and inference in

comparison to models trained with spatial RGB image inputs.

The rest of this chapter is organized as the following. In Sec. 3.2, we introduce our proposal

of DWT-specific image augmentation and shallow classifier models targeting JPEG2000

compressed images. Sec. 3.3 explores the consistency of the proposed solution over band

limited channels at different compression ratios of the JPEG2000 codec. See Appendix B for

the details of the model architectures, fine-tuning and additional classification experiments.

3.2 classification of jpeg2000 compressed images

The proposed decoder, as shown in Figure 3.2, extracts the CDF 9/7 coefficients using the

dequantizing block which multiplies the received DWT coefficients with the same step size

used by the encoder during quantization. In our experiments, we modified the open source ‘C’

codes of the OpenJPEG project1 to extract DWT coefficients and to generate RGB images.

Similar to [25], three level-1 DWT channels corresponding to Y, Cb, and Cr are stacked into

a tensor of 12 sub bands each with the height and width of half of the RGB image.

3.2.1 DWT-specific Image Augmentation

Image augmentation is an essential step in deep CNN models to combat over fitting. By

training with augmented images one can generalize the CNN model to classify unseen images

during training. In each mini batch, augmentation can provide random transformations such
1 http://www.openjpeg.org/

27

http://www.openjpeg.org/

3.2 classification of jpeg2000 compressed images

as horizontal flipping, rotation, vertical and horizontal shifting. These transformations are

meaningful in the spatial domain like RGB or YCbCr. However, for inputs in DWT or other

transform domains, these conventional transformations do not have physical meaning and

have proven ineffective. Figure 3.3 shows a clear distortion in (c) as a result of incorrectly

flipped high frequency sub-bands.

(a) original (b) flipped in RGB (c) fillped in DWT (d) proposed

Figure 3.3: Image augmentation in DWT domain. (a) Original image. ‘Brownie’ of size 112× 112.
(b) shows the horizontally flipped image in RGB domain. During training, mini batches are in DWT
domain. (c) shows the result of using the same transformation in DWT domain and reconstructed
in RGB for visualization. (d) horizontally flipped in DWT domain with proposed augmentation
transform and reconstructed in RGB for visualization. (b) and (d) are exactly same proving the
effectiveness of the proposed method. (c) is distorted implying the ineffectiveness of the conventional
augmentation transforms.

We address this problem by proposing the following augmentation transforms. Let n be

the image dimension. Define Xs ∈ Rn×n and XwA ∈ Rn×n where XwA is the DWT of Xs

and A is the DWT matrix of a wavelet a. Now we can write XwA as separable column and

row transformations (See [60] for more details).

XwA = ATXsA. (3.1)

We define the regular spatial domain transformation H as

XsH = XsH (3.2)

28

3.2 classification of jpeg2000 compressed images

where XsH is the augmented Xs in the spatial domain. We suggest an alternative transfor-

mation H́ defined as

H́ = A−1HA (3.3)

which replaces H in augmentation in DWT domain. (See Section 2.1 for the formulation of

A).

3.2.2 Computation Speed and Accuracy

We achieve faster training and inference in two ways. First, we can save computation cost by

not reconstructing to achieve a “reconstruction gain”. Second, shallower CNN classification

models are sufficient for image classification in the transform domain, leading to efficient

forward/backward propagation to achieve a “shallow model gain”. By applying DWT-specific

augmentation, we further improve classification accuracy. The first two methods are consistent

with known results for JPEG as faster classification can be achieved with fewer convolution

blocks [71].

Reconstruction Gain

Deep CNNs such as ResNet [15] thrive on RGB inputs and have been shown effective with

augmentation transforms like flipping, random cropping and rotations etc. In cloud based

image classification, the receiver node receives j2k stream of each inference image. We

demonstrate that the JPEG decoder steps after the dequantizer as shown in Figure 3.2 are

unnecessary to achieve the same level accuracy as reconstructed RGB images. Hence the

computation required for IDWT, YCbCR to RGB conversion, and the level offset can be

omitted. We call this computation-time saving, “reconstruction gain” which is dominated by

the IDWT of CDF 9/7 wavelets in JPEG2000. The reconstruction gain amounts to around

20% decoding time of the OpenJPEG CPU implementation. See Table 3.1.

29

3.3 experiments and results

Shallow Models

For JPEG2000 encoded images, deep CNN models with fewer number of residual blocks are

sufficient to achieve a given classification accuracy in DWT domain with CDF 9/7 wavelets

in comparison to classification in the RGB domain. On the other hand, the width of the

RGB inputs is 2 times larger than the CDF 9/7 inputs (for level-1 DWT), but DWT requires

more convolution filters for each layer to compensate the larger input depth (12 channels) in

CDF 9/7 compared to the 3 RGB channels. It can be shown that models with less number

of residual blocks compared to models with more residual blocks having the same number

of convolution operations perform faster training and inference. See section 3.3.1 for more

details.

3.3 experiments and results

In the initial experiments, we used CIFAR-10 data set which consists of 50,000 training

images and 10,000 testing images of size 32×32 belonging to 10 classes. We then repeated the

experiments on Tiny ImageNet, which is a subset of ImageNet data set [77]. Tiny ImageNet

consists of RGB images of size 64 × 64 belonging to 200 classes, each class with 1300 training

images and 50 validation images.

To compare the classification accuracy in RGB and DWT domains, we start by encoding

original (source) images in the training set using JPEG2000 encoder at compression ratio r

to generate j2k streams for each image. We then decode the j2k streams into RGB images

Table 3.1: Reconstruction time savings for different image sizes.

Image size decoding time (ms) recon. saving (ms) recon. saving (%)
32×32 3.57 1.37 38.4
64×64 7.26 2.45 33.5
224×224 23.50 4.13 17.6

30

3.3 experiments and results

for RGB domain inputs and, harvest their DWT values inside the codec for DWT domain

inputs as explained in Fig. 3.2.

Table 3.1 summarizes the reconstruction savings for processing different size images in

DWT domain. We can see that the time saved by skipping RGB image reconstructing for

inference and training accounts for around 20% of the total decoding time. The decoding

time is based on an INTEL 7th GEN CORE i7-7700HQ CPU.

Figure 3.4 compares the classification accuracy and the speed of inference and training

for uncompressed images (i.e., r = 0) of CIFAR-10 data set. Each point in Fig 3.4 represents

the test accuracy and the processing speed of a particular model. To generate the results

for a method, we changed the number of ResNet blocks to obtain better accuracy at the

cost of training and inference time. To calculate inference and training speed, we did not

include the reconstruction savings as explained in Section 3.2.2. Inclusion of this extra

gain would shift the DWT curves more favorably to the right. We gained approximately 2%

improvement in classification accuracy by applying our proposed augmentation techniques to

the CIFAR-10 data set.

(a) inference (b) training

Figure 3.4: (a). Test accuracy vs inference speed for the CIFAR-10 data set. Blue: using
reconstructed RGB images, solid red: using DWT coefficients extracted from JPEG2000 codec with
our proposed augmentation, dashed red: using DWT coefficients with regular augmentation. (b).
Test error vs training speed/epoch. Rate is the number of images that go through the model/second.

31

3.3 experiments and results

Table 3.2 and Fig. 3.5 describe the ResNet model settings corresponding to the result

points a, b, c, d, e and f in Fig. 3.4 and 3.7 for the CIFAR-10 data set. Note that the numbers

of convolution layers of the models used for DWT are lower than those used for RGB.

Although DWT models used more kernels requiring more parameters, the RGB input width

is 2 times larger and evens out the time spent by DWT models on more kernels. We used an

initial learning rate of 0.001 which is reduced progressively by 1/10 at 80, 120 and 160 over

200 epochs.

Table 3.2: Parameters for the ResNet models for RGB and CDF 9/7 inputs of CIFAR-10. w: input
width, nc: no of input channels, nb: no of ResNet blocks per layer and k: average pooling size. See
Fig. 3.5 for an illustration of model ‘d’.

Parameter/Domain RGB CDF 9/7
Model a b c d e f
w 32 32 32 16 16 16
nc 3 3 3 12 12 12
nb 4 3 2 3 2 1
nf0 16 16 16 64 64 64
nf1 16 16 16 64 64 64
nf2 32 32 32 96 96 96
nf3 64 64 64 144 144 144
k 8 8 8 4 4 4
no of CONV layers 27 21 15 21 15 9
no of parameters (M) 0.37 0.27 0.18 1.79 1.17 0.55

For ImageNet experiments, we used a ResNet with bottleneck architecture described in

[15] for both RGB and DWT domains. This resulted in 3% accuracy gain over basic ResNet

architecture for the DWT domain and 0.3% improvement for the RGB domain. The initial

learning rate is 0.001 which is reduced by 1/10 at 30, 60 and 90 over 95 epochs, respectively.

For both CIFAR-10 and Tiny ImageNet, we used ‘Adam’ as the optimizer.

We summarize the best classification models obtained for CIFAR-10 and Tiny ImageNet

data sets in Table 3.3 and Table 3.4, respectively. We repeated each experiment 3 times

to compute the average and standard deviation of accuracy rates. Both data sets validate

our claim of faster training and inference for JPEG2000 compressed images even without

32

3.3 experiments and results

Figure 3.5: Modified Resnet for model ‘d’. Same colored blocks are identical. Each block of ResLayeri

consists of nfi convolution filters.

considering the reconstruction saving which is around 20% of the total decoding time. Similarly,

both data sets demonstrate the effectiveness of our proposed augmentation techniques for

DWT domain images. CIFAR-10 shows over 2.5% and Tiny ImageNet achieves over 1% and

1.5% of top-5 and top-1 accuracy improvement, respectively.

Table 3.3: Results of CIFAR-10 based on models ‘a’ and ‘d’.

parameter RGB CDF 9/7Aug (ours) CDF 9/7
Test Acc. (%) 91.70(±0.07) 91.92(±0.11) 89.41(±0.07)
No of Conv. layers 27 21 21
Training rate/epoch (images/s) 862 1000 1000
Inference rate (images/s) 4108 4283 4259

Table 3.4: Results of Tiny ImageNet.

parameter RGB CDF 9/7Aug (ours) CDF 9/7
Top 5 test Acc. (%) 89.06(±0.03) 89.08(±0.02) 87.92(±0.07)
Top 1 test Acc. (%) 67.35(±0.11) 67.56(±0.09) 65.78(±0.36)
No of Conv. layers 40 31 31
Training rate/epoch (images/s) 670 694 694
Inference rate (images/s) 1865 1881 1881

When compared to classification accuracy in the RGB domain, Both CIFAR-10 and

Tiny Imagenet results show top-1 accuracy improvement of 0.2% on average. Overall, both

experiments suggest that RGB image reconstruction from j2k stream is not necessary for

CNN classification. Inclusion of the reconstruction saving, DWT domain models can perform

more than ×2 times faster over RBG domain. Although faster decoders implemented on

33

3.3 experiments and results

GPUs may help improve the computation speed, as shown in Table 3.1, this computation

gain amounts to around 1/5 of the decoding time.

3.3.1 Shallow models are faster!

We show that the models with less number of ResNet blocks are faster in training and

inference compared to the models with more number of blocks that uses similar number of

convolution operations. For instance, compare models layer-9 and layer-27 ResNets. See

Fig. 3.6. Both models take around 6.4M convolution operations. Model (a) has a 893

images/second training rate and model (b) has a 1250 images/second training rate. This is

because forward and backward propagation for same number of convolution operations is

efficient for shallow models. This helps shallow ResNet models with DWT inputs to perform

faster even with more parameters compared to RGB models.

(a) layer-27 ResNet

(b) layer-9 ResNet

Figure 3.6: Both models take around 6.4M convolution operations. Model (a) has a 893 im-
ages/second training rate and model (b) has a 1250 images/second training rate.

34

3.4 conclusions

3.3.2 Experiments over Bandwidth Constrained Channels

Figure 3.7 shows how the classification accuracy behaves under bandlimited channels. Results

in Fig. 3.7(a) confirm faster and accurate classification for DWT domain models for channels

with limited bandwidth. Results given by Fig. 3.7(b) show the change of accuracy for a

particular model for different bandwidth constraints (compression ratio r). These results for

JPEG2000 encoder that uses CDF 9/7 DWT coefficients are consistent with the tests results

from DB1 wavelets given in [25].

(a) (b)

Figure 3.7: (a). Models designed for CDF 9/7 DWT coefficients using the proposed augmentations
are faster and more accurate under limited bandwidth. Parameter ‘r’ in JPEG2000 codec adjusts
compression ratio and ‘BW’ is the bandwidth in terms of average image size. (b). Effect of channel
bandwidth. RGB uses model ‘a’ and CDF 9/7 uses model ’d’. This result is consistent with result
from DB1 wavelets in [25]

3.4 conclusions

This chapter investigated cloud-based deep CNN image classification in congested communi-

cation networks. We proposed to directly train deep CNN classifier for JPEG2000 encoded

images by using its DWT coefficients in j2k streams and achieved better accuracy and faster

35

3.4 conclusions

computation by using shallower CNNs in the DWT domain. We further introduced new

augmentation transforms to develop CNN models that are robust to common communication

bandwidth constraints in cloud based AI applications. Next chapter explores the optimiza-

tion of quantization of JPEG2000 codec based on deep learning for improved rate-accuracy

performance.

36

4
J O I N T O P T I M I Z AT I O N O F C O N V E N T I O N A L J 2 K

C O M P R E S S I O N A N D D E E P L E A R N I N G

In chapter 3, we discussed how to utilize JPEG2000 compressed images for faster and accurate

classification. In this chapter, we explore how to optimize image compression codecs like

JPEG2000 for deep learning in transformed domains such as DWT. We propose an end to end

joint compression and learning network to fulfill this task and show significant improvements

in bandwidth savings for a given classification accuracy and vise-versa.

4.1 deep learning over bandwidth constrained channels

In cloud-based DL scenarios, where model is trained at the cloud and accepts query images

for inference, network bandwidth is often limited and costly. Thus, it is important to encode

and compress images efficiently before transmitting to a high performance classifier node

aiming to achieve high inference accuracy without consuming excessive network bandwidth.

In lossy image codecs like JPEG/JPEG2000, losing information during compression primarily

happens in the quantization process. See figure 4.1.

Figure 4.1: JPEG2000 lossy encoding process. Losing information during compression primarily
happens at the “dead zone quantizer”.

Quantization maps a range of values with floating point precision to an integer. JPEG2000

follows the following definition of the uniform deadzone quantizer [29]

q(x) = sgn(x)
⌊ |x|
ds

⌋
. (4.1)

37

4.1 deep learning over bandwidth constrained channels

Here, q(x) is the quantization index for sub-band coefficient x whereas ds is quantization

step for sub-band s. b·c indicates the “floor” operation. By making ds larger, we can make

the required bandwidth smaller at the cost of precision of the reconstructed (dequantized)

values. In JPEG2000 [29], ds is defined as follows:

ds =

τ/2l if s = LLl (approximated image)

τ/2k−1 if s = LHk, HLk where k = 1, · · · , l

τ/2k−2 if s = HHk where k = 1, · · · , l.

(4.2)

with parameter τ is determined by

τ = 2R−c+l
(
1 + 2−11 · f

)
,

in which l is the number of levels of DWT, R is the number of bits to represent original pixel

values, while c and f denote the number of exponent bits and mantissa bits, respectively.

To examine the connection between image bandwidth and classification accuracy we

can incrementally set the compression ratio r of the JPEG2000 codec and train a deep

CNN for each set of images compressed at r. Under this setting, in the previous chapter,

we observed that the classification accuracy significantly decreases with low bandwidth.

Figure 3.7(b) shows the rate-accuracy (R-C) performance curve for CIFAR-10 data set. Data

rate (bandwidth) is calculated in kB.

The slope of the R-C curve depends on the quantization step sizes used in JPEG2000

codec. Image codecs like JPEG/JPEG2000 use manually defined quantization step sizes

for different compression ratios. See eqn (4.2). But these step sizes have been optimized to

generate best visual quality for a given data rate. In other words, these quantization step

sizes are optimized to deliver better rate-distortion (R-D) performance. So these pre-defined

values are not optimal for deep learning tasks that uses transformed domain inputs as DWT.

38

4.1 deep learning over bandwidth constrained channels

On the other hand, these optimal step sizes are task dependent. For instance, optimal ds for

image classification may not be optimal for image segmentation.

Thus, one important problem we wish to solve is to maintain a certain level of accuracy

while minimizing the bandwidth consumption by optimizing the quantization parameters

for transformed image sub-bands and coefficients for a given deep learning task. There is

only a handful of works that discuss the effects of image compression and the optimized

representation of transformed coefficients for bandwidth efficiency for deep learning. The

authors of [79] manually selected a quantization matrix for JPEG images that achieved similar

detection accuracy with reduced bandwidth. This result demonstrates that current image

encoding and quantization settings are not optimized for ML purposes. Furthermore authors

of [80] considered an alternative compression method called DeepN-JPEG. By analyzing

frequency components of images they suggested a manual quantization setting to control

bandwidth.

In this chapter, we investigate effective ways to improve R-C performance by reducing

bandwidth of JPEG2000 images, while preserving high classification accuracy. Towards this

goal, we identify the important image components and sub-bands for cloud based image

processing. More importantly, we solve problem of how to autonomously quantize DWT

coefficients for a target level of classification accuracy and propose a novel end to end, joint

learning framework to optimize the quantization parameters for JPGE2000 encoded images.

We organize this chapter as the following. In Sec. 4.1.1, we briefly discuss the related works

to the joint learning proposal. In Sec. 4.2, we present our proposed framework: “Quannet”

that learns quantization step sizes of a given compression codec for a given DL task. Sec. 4.3

shows the experiment results on CIFAR-10 data set. In Sec. 4.3, we further discuss the

operating principles of QuanNet. See Appendix B for details of the NN architectures used in

the experiments.

39

4.2 quannet: joint quantization and deep learning

4.1.1 Related works

The idea of joint learning has been presented for different objectives in the literature. For

instance, a joint learning model for visual denoising and hand written digits classification was

developed in [81]. For joint blurring, denoising and classification, a differentiable learning

architecture was proposed in [82]. The novel aspect of our framework is the joint optimization

of the deep learning network coupled with the optimization for image quantization to achieve

the dual objectives of bandwidth compression and accurate inference.

For image classification, the role and importance of each sub-band is different [73].

Furthermore, coefficients within each sub-band also have different importance. This presents

an opportunity to compress some information for transmission by allocating less bandwidth

to less important sub-bands/coefficients with little performance loss. Similar argument is

valid for image visualization purposes [29].

In communication networks serving cloud based machine learning tasks such as image

recognition and classification, the source data needs to be transmitted from sensing nodes

to more powerful network nodes with substantial computation and energy capacity. The

transmission of such data consume both power and bandwidth. For this reason, it is

important to develop efficient image compression for transmission over limited bandwidth

while preserving a high degree of accuracy for cloud based classification.

4.2 quannet: joint quantization and deep learning

We now propose an end-to-end joint learning architecture “QuanNet”, aimed at jointly

optimizing both the JPEG2000 encoder quantization and a given deep learning model to

achieve efficient image encoding and high accuracy inference. For instance deep learning

model can be a ResNet-18 for image classification in which case QuanNet jointly optimizes

quantization for image classification or a Fully Convolutional Network (FCN) [22] for image

40

4.2 quannet: joint quantization and deep learning

segmentation in which case QuanNet jointly optimizes quantization for image segmentation.

Let’s assume the given deep learning model is an image classifier in this case.

QuanNet shown in Fig. 4.2 consists of a quantization block, ’Quan’ followed by a deep

CNN typically trained for image classification. The Quan block (see Fig.4.3), parameterized

by a trainable weight vector w is to quantize the DWT coefficients X of an image. Its

output Xq
w is quantized according to the quantization parameters w before the deep CNN

for classification.

Figure 4.2: QuanNet consists of a quantization block followed by a deep CNN. yq
w is the predicted

label based on Xq
w.

In this architecture, we focus on finding a uniform quantization interval ds = 1/ws with

ws ∈ [0, 1] for sub band s. For the ease of understanding (4.1) can be rewritten as follows:

q(x) = sgn(x)
⌊
ws|x|

⌋
. (4.3)

To be able to learn quantization intervals parameterized by w, Quan block should

reproduce the functionality of (4.3). As illustrated in Fig. 4.3, the Quan block can be easily

implemented as a set of 12 element-wise multiplication filters which has only 12 parameters

followed by an approximated floor function. The floor function can be thought as an activation

function acts on each output from the element-wise multiplication filters.

Since the floor function has zero gradient almost everywhere, one apparent obstacle is

the possibility of slow convergence in training of QuanNet via back propagation. Similar to

[83], to overcome this problem, we propose an approximation for the floor function, fl̃r(·),

41

4.2 quannet: joint quantization and deep learning

Figure 4.3: Illustration of Quan block: DWT coefficients are scaled by ws before rounding down to
nearest integers.

which is differentiable and easy to implement. One simple candidate is a finite summation of

sigmoid functions with controllable parameters s:

fl̃r(x) =
N∑

i=−N ,i6=0
sigmoid [s(x− i)]−N . (4.4)

This function generates integer output almost everywhere except for exact integer inputs.

The number N depends on the range of the input x. A good approximation requires N to be

chosen such that all DWT coefficients fall within (−N ,N). For instance figure 4.4 shows a

dead zone quantization approximation for N = 5 and s = 100.

-5

-4

-3

-2

-1

0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 4.4: A differentiable dead zone quantization approximation for N = 5 and s = 100.

42

4.2 quannet: joint quantization and deep learning

We define the loss function of QuanNet,

L(w) = E[LCL(θ(X
q
w), ygt)] + λLquan(w), (4.5)

as a combination of traditional classification cross entropy loss LCL and a quantization loss

Lquan. The first term of (4.5) averages the LCL over the training set: DWT of image and

ground truth class label pairs {X, ygt}. The purpose of the second term Lquan is to reduce

the bandwidth required of the quantizer output. One simplest function for this job is a

regularizer such as,

`1-regularizer,

Lquan(w) = |w|1 (4.6)

`2-regularizer,

Lquan(w) = ‖w‖2 (4.7)

or a log regularizer in the form,

Lquan(w) =
12∑
s=1

log(1 +ws). (4.8)

A function in this form can induce smaller values of ws > 0, thereby leading to lower

bandwidth requirement for the quantized coefficients. By regulating λ, different emphasis on

bandwidth can be enforced.

The training objective is to find the optimum vector wo such that,

wo = arg minw L(w|λ). (4.9)

By training QuanNet, we can optimize a vector of quantization parameters w that can

quantize DWT coefficients while maintaining the awareness of classification accuracy. Smaller

values of ws favor Lquan but may lead to larger LCL at the same time. With training, the

network converges to a setting which gives a considerable classification accuracy under a

43

4.3 experiment results

desired bandwidth level controlled by λ. Hence, for a given set of training images, QuanNet

should generate an optimized set of quantization intervals wo such that the quantized DWT

coefficients can achieve higher R-C performance. As a result, QuanNet allows more effective

control of transmission bandwidth for cloud based image classification when compared with

the quantization method used in conventional JPEG2000.

After learning optimal wo, we can replace the corresponding quantization step sizes ds in

the commercially used JPEG2000 encoder and use the trained deep CNN (θo) as the classifier.

Figure 4.5 summarizes the proposed approach.

Figure 4.5: Proposed cloud-based training and inference with QuanNet

4.3 experiment results

In this section, we provide the details of experiments related to joint quantization and deep

learning. We experimented with CIFAR-10 data set with JPEG2000 encoded images at level

1 resolution using CDF 9/7 and DB1 wavelets. See section 2.1.1 for more details of how

to form DWT coefficients using DB1 wavelets. We focused the initial experiments on DB1

coefficients rather than CDF 9/7 coefficients since substantial amount of work related to

image classification with DWT coefficients has used DB1 wavelets compared to CDF 9/7

wavelets [73–76].

44

4.3 experiment results

For RGB/YCbCr inputs we used models explained in Table B.1 and for experiments

with DB1 wavelets, we used the ResNet models in Table B.5 as the deep CNN for joint

quantization and image classification. We applied real time augmentation on the training

images for both RGB and DB1 cases. During augmentation, we worked with batches of 32

training images. With ResNet-8, we used an initial learning rate of 0.001 which is reduced

each time by 1/10 at 30, 60 and 90 over 100 epochs for both RGB and DB1 inputs. And for

ResNet-20, we used the same initial learning rate with 1/10 reduction each time at 80, 120

and 160 over 200 epochs. We used the optimizer “Adam” both cases.

4.3.1 Truncation with DB1 wavelets

Exploring ways to reduce bandwidth for a given image, we experimented with DWT truncation.

Truncation simply removes insignificant coefficients from the image representation during

classification. One simple way is to replace a fraction of DWT coefficients or those below

a given threshold by zeros. The classification results with ResNet-20 on CIFAR 10 after

truncation of Level 1 - DB1 wavelets coefficients are given in Table 4.1. Based on our

experimental results of Table 4.1, 50% of the DWT inputs can be truncated with little loss of

classification accuracy.

Table 4.1: Effects of truncation (% of zeros) on classification.

Percentage of zeros Test accuracy
4% (no truncation) 91.44%

50% 91.5%
75% 88.92%

Note that despite the truncation of DWT coefficients by 50%, the bandwidth reduction

depends on how the remaining coefficients are encoded. For effective bandwidth reduction,

the remaining DWT coefficients must be efficiently encoded with fewer bits without loss of

performance.

45

4.3 experiment results

4.3.2 Quantization with DB1 wavelets

Since DB1 is not heavily used in commercially available image compression codecs like

JPEG2000, we started with the quantization equation given in eqn (4.2) and used parameters

R = 10, l = 1, c = 8 and f = 8, which lead to step sizes of dLL1 = 4.0156, dLH1 = dHL1 =

8.0313 and dHH1 = 16.0625. Starting with these step sizes we doubled the step sizes each time

and generated 4 points c1, c2, c3 and c4. Each of these points is equivalent to a compression

ratio r as we discussed in section 4.1.

After the above quantization, we reconstructed YCbCr and RGB images from DB1

coefficients generated from with and without YCbCr conversion during encoding, to observe

the compressibility of YCbCr color transformation. The test accuracy of image classification

with ResNet-20 on CIFAR-10 is given in Table 4.2. We used compression ratio c1 for

quantization and note the higher percentage of zeros of the quantized DB1 coefficients results

with YCbCr conversion and the accuracy loss is less than 0.5%. This observation is consistent

with image classification with YCbCr inputs on ImageNet given in [71].

Table 4.2: Effects of quantized wavelet coefficients: Higher percentage of zeros implies higher
compressibility of YCbCr

Representation Percentage of zeros Test accuracy
RGB w/o YCbCr 4% (no quantization) 91.44%
RGB w/o YCbCr 45% (c1) 91.49%

YCbCr 62% (c1) 91.01%

Figure 4.6 compares how the R-C performance of DB1 coefficients and reconstructed RGB

images change with limited bandwidth. We used arithmetic encoding to calculate the data

rate (bandwidth) of DB1 coefficients for each image and averaged them to get the bandwidth

for each compression ratio on CIFAR-10 data set. We observe that the classification accuracy

degrades with limited bandwidth similar to JPEG2000 compressed CDF 9/7 coefficients

shown in figure 3.7(b).

46

4.3 experiment results

Figure 4.6: Classification accuracy for DB1 DWT coefficients degrades with limited bandwidth.

Then we applied the proposed QuanBlock for the same deep CNN models ResNet-20

and ResNet-8 given in Appendix B.5 to find the optimal quantization step sizes for given

bandwidth requirements. For the experiments with DB1 coefficients we used `2 regularizer

given in eqn (4.7) as the quantization loss function. Before training, we initialized the

quntization weights vector w to ones. During training we used the same hyper parameters

and number of epochs as we used for RGB inputs. Figure 4.7 compares the accuracy using

QuanNet and RGB inputs that use pre-defined step sizes for quantization.

In figure 4.7, each point on the QuanNet (red) curves corresponds to a specific λ value in

Eq. (4.5). By increasing this value, we can constrain the Quan block to produce images with

lower bandwidth. This R-C plot can be interpreted as an inverse rate-distortion characteristic

curve drawn for a compression algorithm. But in this case instead of visual quality of the

resulting images, we are interested in the inference accuracy of the learning task.

A few interesting observations are worth discussing. The rate of the classification accuracy

drop of the QuanNet curve compared to RGB implies that jointly learning quantization

step sizes for a specific task is beneficial to preserve accuracy under limited bandwidth.

For instance, if we compare the points c3 and λ = 0.1 of ResNet-20 curves, we can see

47

4.3 experiment results

Figure 4.7: Accuracy and bandwidth comparison between QuanNet and baseline using ResNet-8
and ResNet-20. DB1 wavelet is used for DWT.

that accuracy of 88% can be achieved with 0.25kB less bandwidth which is about 40% of

bandwidth savings. On the other hand, we can gain over 4% accuracy at 0.47kB bandwidth

(point c4).

Further more, QuanNet learns to drop insignificant sub-bands completely from CNN inputs

instead of keeping sub-bands with very few nonzero DWT coefficients at lower bandwidths.

For the different values of λ tested, QuanNet learned autonomously that it should transmit

neither the HH sub-bands of all three channels, nor the HL and LH sub-bands of Cr and

Cb channels. We further observed that QuanNet can learn to drop less information from

important sub-bands. For example, consider the learned weight vector wo corresponding to

λ = 0.07 and λ = 0.2 for Resnet-8 case. The zero sub-bands are omitted in Table 4.3.

Table 4.3: Weights ws learned from QuanNet for ResNet-8.

Sub-band (s) ws (for λ = 0.07) ws (for λ = 0.2)
YLL 0.0746 0.0879
YHL 0.0519 0
CrLL 0.0500 0.0803
CbLL 0.0710 0.0334

48

4.3 experiment results

A few important results are clear from Table 4.3. First, the proposed QuanNet learning

can autonomously determine that the Y channel of the images has information more important

to classification instead of other 2 channels, a fact that is well known [71] from the visual

perception perspective. Thus, the DWT sub-band coefficients from the Y channel are given

larger weight (i.e., finer quantization). Secondly, as we change the learning emphasis by

changing λ from 0.07 to 0.2, the QuanNet learns to drop more high frequency sub-bands,

while at the same time it learns to transmit more information from YLL and CrLL by taking

advantage of the bandwidth savings by dropping the high frequency sub-bands.

4.3.3 Quantization with CDF 9/7 wavelets

Unlike DB1 DWT coefficients, CDF 9/7 coefficients are highly compressible and heavily used

in commercial compression codecs like JPEG2000. In this section we validate the performance

of the QuanNet by comparing to JPEG2000 compression performance. To observe how the

limited bandwidth affects the classification accuracy, we changed the compression ratio r of

the j2k encoder and extracted CDF 9/7 DWT coefficients and RGB inputs at the decoder.

Following the same pattern as DB1, the classification accuracy drops significantly at the

lower bandwidths. See figure 3.7(b).

To use as the inputs for QuanNet, we extracted the unquantized CDF 9/7 coefficients

before the quantization block of the encoder (see Fig. 4.1). For RGB inputs we used model

‘b’ and for experiments with CDF 9/7 coefficients, we used the model ‘d’ explained in

Table 3.2 as the deep CNN for joint quantization and image classification. We applied

real time augmentation on the training images for both RGB and CDF 9/7 cases. During

augmentation, we worked with batches of 32 training images. We used an initial learning

rate of 0.001 which is reduced each time by 1/10 at 80, 120 and 160 over 200 epochs for both

RGB and CDF 9/7 inputs for both models. We used the optimizer “Adam” both cases.

49

4.4 discussion

Figure 4.8: Accuracy and bandwidth comparison between QuanNet and baseline using model ‘b’
and ‘e’ respectively. CDF 9/7 wavelet is used for DWT.

We used log loss as in Eq. (4.8) as the quantization loss. Before training, we initialized

the quantization weights vector w to ones. After learning the quantization step sizes for

each λ value, we replaced the step sizes of the JPEG2000 codec with the learned values and

calculated the average bandwidth after encoding CIFAR-10 data set with the new encoder.

Fig. 4.8 illustrates the accuracy and bandwidth gains of QuanNet. These improvements are

consistent with DB1 coefficients given in Fig. 4.7. We can see an accuracy improvement of

over 6% at the bandwidth of 0.21 kB.

4.4 discussion

To further understand how QuanNet chooses to reduce bandwidth by completely dropping

some subbands we summarize the all non zero sub bands for both RGB and QuanNet cases

in Table 4.4.

There are more all zero sub bands learned from QuanNet compared to JPEG2000 for

lower compression ratios r = 5 and r = 10 implying higher compressibility gained from joint

50

4.4 discussion

Table 4.4: QuanNet learned sub bands of CDF 9/7 coefficients.

RGB QuanNet
comp. ratio (r) Sub bands λ Sub bands

5

 YLL,YHL,YLH,YHH
CbLL,CbHL,CbLH,−

CrLL,−,−,−

 0.01

YLL,YHL,YLH,−
CbLL,−,−,−
CrLL,−,−,−

10

YLL,YHL,YLH,−
CbLL,−,−,−
CrLL,−,−,−

 0.05

 YLL,−,−,−
CbLL,−,−,−
CrLL,−,−,−

15

 YLL,−,−,−
CbLL,−,−,−
−,−,−,−

 0.2

 YLL,−,−,−
CbLL,−,−,−
−,−,−,−

learning. For lower bandwidths at r = 5 and λ = 0.2 have same non zero bands and similar

bandwidth, but QuanNet learns to classify over 6% better under joint learning.

To validate the applicability of the proposed method, we saved both learned quantization

parameters wo and θo after training. Then we used exact floor function during quantization

using wo and observed same test accuracy with θo. This proves that the approximated floor

function we used during training served its purpose well. On the other hand, we observed

that training a new deep CNN with learned wo to quantize cannot converge to same test loss

as joint learning.

LCL:joint(θo(X
q
wo

), ygt) < Lc(θt(Xq
wf

), ygt) (4.10)

Here θt is the deep CNN model that converges by training with fixed wf . This observation

implies the effectiveness of the joint learning concept. By allowing a wiggle room for

quantization parameters during training, parameters of the classifier can also converge to a

better point compared to fixed quantization case.

Moreover, the reconstructed images from DWT coefficients at R-C points corresponding

to λ = 0.07 and λ = 0, 2 in Fig. 4.9 show that by applying a bandwidth saving of 35% as λ

is changed from 0.07 to 0.2, not only the classification accuracy suffers little, but the visual

quality of the reconstructed images also remains good.

51

4.5 conclusions

(a) λ = 0 (b) λ = 0.07 (c) λ = 0.2

Figure 4.9: (a) Original image. ‘Brownie’ of size 64× 64. (b) and (c) show reconstructed images
after quantization and they look visually similar with SSIM [84] of 92.6% even though there is a
35% of bandwidth saving in (c) compared to (b).

4.5 conclusions

In this chapter, we discussed methods to preserve higher accuracy in deep learning tasks

while compressing data for bandwidth efficient transmission using conventional codecs such

as JPEG2000. We proposed QuanNet as a novel end-to-end joint learning architecture for

achieving this difficult constrained optimization problem. The QuanNet can be trained to

optimize the quantization intervals of multiple sub-bands and multiple color channels to

satisfy the bandwidth constraints without loss of accuracy. We proved the applicability

of QuanNet by using deep learning task as image classification and observed significant

rate-accuracy performance improvements.

52

Part II

L E A R N I N G - B A S E D C O D E C S

53

5
E N D - T O - E N D I M A G E C L A S S I F I C AT I O N A N D

C O M P R E S S I O N W I T H VA R I AT I O N A L A U T O E N C O D E R S

So far, we discussed methods of efficiently using conventional image compression codecs such as

JPEG2000 and proposed learning-based approaches to optimize the rate-accuracy performance

of the codec for a given deep learning tasks. However, to overcome the infrastructural barrier

of limited network bandwidth in cloud ML, existing solutions, including the proposed methods

in chapters 3-4, have mainly relied on traditional compression that was historically engineered

for human-end users instead of ML algorithms. Traditional codecs do not necessarily preserve

features important to ML algorithms under limited bandwidth, leading to potentially inferior

performance [31]. Hence, codecs must be end-to-end optimized for rate-accuracy performance

based on a given task. While the non-differentiable design of traditional codecs constrain the

end-to-end optimization, learning-based codecs can be end-to-end trained to minimize a given

loss function. Chapters 5-6 explore such end-to-end optimization of learning-based codecs.

One way to design an R-C optimal system for a given task is to end-to-end optimize

system (codec and the task model) with task performed on the latent representation without

relying on the reconstructed images [25,85]. The other option is to jointly optimize system

with task performed on reconstructed images [31]. In this case, the reconstructed images are

not optimized for R-D. Hence a more meaningful way to extend this direction is to end-to-end

optimized the system for rate-accuracy and distortion concurrently. Following the first avenue,

this chapter investigates application-driven optimization of programmable commercial codec

settings for networked learning tasks such as image classification. Based on the foundation of

variational autoencoders (VAEs), we develop an end-to-end networked learning framework by

jointly optimizing the codec and classifier without reconstructing images for given data rate

(bandwidth). Compared with standard codecs including JPEG, JPEG2000 and BPG, the

proposed VAE joint compression and classification framework achieves significant classification

54

5.1 introduction

accuracy improvements.. Following the second avenue, Chapter 6 explores leaning-based

codec designs for improved rate-distortion-accuracy (R-D-C) performance.

5.1 introduction

The concept “Internet of Everything (IoE)” generalizes the idea of IoT to a broader paradigm.

IoE nodes are connected by networks capable of communicating data generated from sensing

and processing [86]. The power of IoE has already bolstered learning-intensive technologies

such as self-driving cars, surveillance cameras, smart cities and smart transportation where DL

applications are increasingly integrated with network services. As part of networked learning

paradigm, these DL applications together with network services facilitate machine-to-machine

and machine-to-edge/cloud server communications [87–91].

Figure 5.1: A networked ML instance: video/image frames from a camera are sent to a server for
vehicle detection, traffic monitoring, and used by vehicles with an obstructed view for assisted/self-
driving-related visualizations/decision-making. E: Encoder, D: Decoder.

One such example of networked learning is illustrated in Fig. 5.1. In automated inference

systems such as pedestrian detection or object tracking for applications like self-driving,

media data (image or video) collected by a source node is transported to network edge nodes

and/or remote nodes to carry out more complex inference processes. The data transmission

can be for multiple inference tasks (such as vehicle detection, traffic monitoring, or risk

55

5.1 introduction

warning) at the edge servers or visualization purposes at cloud servers or end devices. For

instance, video/image frames captured by a street camera are sent to a server for vehicular

detection, crowd activity monitoring, etc., and used by smart vehicles with an obstructed

view for assisted/self-driving-related visualizations/decision-making.

Given the explosive growth and deployment of IoT devices [39] and massive data collected

by such devices [40], traditional cloud computing struggles to keep up with the demands of

large IoT networks. Typical IoT configuration features source devices only as data collectors

while cloud nodes are responsible for processing and analysis, hence, is limited by network

link capacity, delay and losses, leading to long latency, unreliable inference and scalability

issues [41–43]. Edge computing addresses these issues by deploying computing services in

proximity to IoT devices [44]. Many image and video sensing devices such as smart phones,

vehicular sensors and home/street cameras have sufficient resources to collect data and

perform preliminary pre-processing and feature extraction, but not enough to implement full

machine learning algorithms on-device [42]. With this new configuration of networked AI

coupled with edge computing, such source devices can share a part of the computational

burden by performing pre-processing and feature extraction, and deliver the extracted features

to more powerful and resource rich edge/fog nodes for complex machine learning tasks.

When designing communication networks specifically targeting networked AI over edge/cloud

for above such time-sensitive tasks, source data transmitted to the edge/cloud may fulfill

two main requirements. On one hand, the data transport must achieve high coding efficiency

ensuring low power usage and low latency. On the other hand, source data compression for

transport must maintain high learning (task) accuracy. Since high learning accuracy demands

high quality data with high coding rates [25, 31], there is a clear design trade-off between

source coding rate and learning accuracy. This work designs a variational autoencoder

(VAE)-based compression and learning framework to achieve a better coding rate and learning

accuracy trade-off ensuring low power usage, low latency and low memory usage.

56

5.1 introduction

(a) VAE-based reconstruction, then classification

(b) Proposed: VAE-based classification

Figure 5.2: (a). VAE-based reconstruction before classification: Encoder transforms source image x
to low dimensional z. Decoder reconstructs image x̂ based on z. (b). Proposed joint compression
and classification: Without image reconstruction, classifier directly generates class label y based on
z.

Our focused investigation in this work is on an efficient image codec for classification

applications. Conventional classification applications begin by reconstructing images of

interest at the decoder before inference [92–94]. See Fig 5.2(a). We note the following

two observations where the reconstruction can introduce inefficiency in cloud-based AI

applications. First, when performing classification inference on the images compressed

with image codecs that are originally optimized for rate-distortion performance targeting

visualization applications, the classification accuracy suffers at high compression ratios

under limited data rate [25, 30, 31, 85, 95]. Second, inference on images compressed with

standard compression codecs such as JPEG2000 demonstrates non-negligible inference speed

and accuracy degradation compared to with end-to-end-optimized joint classification and

compression frameworks [30,85] that bypass image reconstruction at decoders. Motivated

by these observations, the proposed VAE-based classifier bypasses the reconstruction and is

designed to naturally support end-to-end optimization for rate-accuracy performance. See

Fig. 5.2(b).

In terms of device complexity, conventional video/image compression codecs such as

VVC [32], HEVC [96] and JPEG [97] featuring a more complex encoder and a simpler decoder

could be less desirable on low cost source devices. Instead, a more desirable data compression

57

5.1 introduction

and learning model for massive deployment in a network-AI edge/cloud should feature a

simple encoder with low power and memory usage and a relatively more complex decoding

and learning edge/cloud node. The trained encoder can reside in source devices with low

computational power and memory to encode and compress data collections. Further, they

can selectively compress and transmit task-important underlying features (e.g., latent) of the

raw source data to other edge/cloud servers dedicated for decoding and learning ensuring

R-C performance.

The approaches in [25, 30, 85] are likely sub-optimal in terms of coding efficiency by

optimizing only a part of pre-engineered JPEG2000 encoding-decoding pipeline. Addressing

this, as part of end-to-end optimization of the codec, some recent DL-based image/video

compression codecs showcase a learning-based encoder (autoencoder) that can be optimized to

minimize a given loss function [31,34,98–101]. They demonstrated the importance of learning

code word distribution for efficient compression instead of using fixed code word tables as

in JPEG. However, the image encoders used in above works are still high in complexity,

demanding high memory and power and resulting in lower inference speeds. Hence, they are

not suitable for broad IoT deployment. Thus, we propose to use light-weight encoders and to

model code word distributions for VAE-based classifier achieving high coding efficiency.

To achieve the aforementioned objectives in a networked AI environment, we propose a

VAE-based joint compression and classification model (shown in Fig. 5.2(b)) that enables

learning on the latent feature space to efficiently encode/compress and effectively classify

images through end-to-end training. We aim to achieve high accuracy, fast inference, low

bandwidth usage, and low latency over network links. Furthermore, our proposed framework

features simple encoders while ensuring re-usability of the transmitted features. As main

contributions of this work, we design a new information theoretical formulation of a VAE-

based end-to-end, joint compression and classification framework. Towards this, we develop a

power saving, low-complexity-encoder and a faster-inference-classifier for edge/cloud-based

networked image classification applications.

58

5.2 related works: vae-based classifier

We organize the rest of this chapter as follows. Sec. 5.2 reviews the related works

on concept of autoencoder-based classifiers. Sec. 5.3 introduces our new proposal of a

VAE-based end-to-end solution for classification by describing the basic learning model and

the rate-accuracy function for joint classification-compression. In Sec. 5.4 we describe our

experiment setup and present our test results. Additionally, Sec. 5.5 presents benchmark

comparison of model complexity, inference speed, and power consumption for our proposed

model. In Sec. 5.6, we discuss how to modify the proposed VAE-classifiers for simultaneous

classification and reconstruction. See Appendix C for theoretical basis that connects the

proposed VAE-based approached to frameworks such as information bottleneck [102,103].

5.2 related works: vae-based classifier

When reviewing the VAE framework in Sec. 2.2, data reconstruction from z was typically

the learning objective. We note, however, that for automated learning tasks such as image

classification, reconstruction of x may not always be the end goal [31, 104] and may be

unnecessary in many cases. For example, a practical security-related automated object

detection system would rely on AI or deep learning algorithm trained on the latent vector

z for object detection and/or recognition. Hence, the reconstruction of image frame x̂ is

unnecessary for inference. Only at rare occasions such as evidence collection or inspection,

the system may have to recover RGB frames for human visualization. Thus, the image

reconstruction step can be performed only when required from the stored latent vectors.

Considering these practical AI/learning applications, we propose a VAE-based classifier

by removing the VAE decoder in Fig. 5.2(a) to directly connect the latent code z with a data

classifier to perform the learning task, as shown in Fig. 5.2(b). In this framework, variable y

denotes the label of the output class based on z. Our framework aims to jointly optimize the

encoder and the classifier with end-to-end training.

59

5.2 related works: vae-based classifier

Before presenting details of our proposed VAE framework, we first examine some related

recent works on the joint learning of compression and classification based on autoencoders.

Among others, one approach constructs a loss function by combining the latent entropy H(z)

with the classification cross entropy loss LCE resulting from classification ν0(x̂) according to

the reconstructed x̂(z) from z (as shown in Fig. 5.2(a)).

L(x, ygt) = LCE(ygt, ν0(x̂(z)) + βH(z|x) (5.1)

Here ygt denoted the ground truth class of image sample x. Clearly, this approach requires a

reconstruction step prior to classification [105,106].

Another approach is to construct the loss function by combining the latent entropy H(z)

with the classification CE loss based directly on the latent representation z. Hence, the loss

considering the classification ν1(z) directly based on encoded z(x) is,

L(x, ygt) = LCE(ygt, ν1(z(x))) + βH(z|x). (5.2)

Compared with the first approach, this formulation can potentially generate faster and more

efficient training/inference models by skipping the reconstruction step [71]. For example, the

authors of [25,30] introduced an image classification model by jointly training to optimize both

the JPEG2000 encoder and the CNN classifier without image reconstruction. While achieving

faster inference and higher accuracy, there is limited improvement since the proposed end-to-

end framework only optimizes the quantization block of the encoder. Further, the majority

of existing VAE-based image classification frameworks either still perform this unnecessary

reconstruction step [92–94] or neglect the bandwidth aspect of the latent representation [107]

making them impractical for wide IoT deployment in cloud-based image classification.

60

5.3 a new vae classification framework

Table 5.1: Summary of notations

Notation Meaning
X set of input images
x input image
x̂ reconstructed image
ygt ground truth label of image x
y estimated label of image x
z latent vector representation of x
ẑ quantized z
d` quantization level
D set of quantization levels d`
px,θ probability distribution of x parameterized by θ
pz|x,θ conditional distribution of z parameterized by θ
qz|x,φ approximated distribution of pz|x,θ parameterized by φ
ρ̂θ(y|x) estimated class label distribution with a model

parameterized by θ given the latent x
ηθ(y|z) estimated class label distribution with a model

parameterized by θ given the latent z
Pi,`i(ẑ|x) conditional probability of the latent value ẑi that takes the

value of the quantization level d`i
Qi,`i(ygt|ẑ) class label probability for each ẑi that takes the value of d`i
KL(p, q) KL divergence between distributions p and q
CE(ygt, y) cross entropy between distribution of ygt and y
H(px,θ) entropy of variable x with distribution px,θ
β, γ trade-off coefficients for rate, distortion.

5.3 a new vae classification framework

In this work, we focus on the second approach described in Eq. (5.2) and develop a novel

VAE model for joint compression and classification encoding. Specifically, we design a

VAE-based classifier for direct image classification based on the latent vectors without image

reconstruction, as seen from Fig. 5.2(b). Targeting cloud-based classification over bandwidth-

limited network data links, we implement adaptive entropy coders with context modeling

aimed at improving overall R-C performance trade-off. Further, we demonstrate that spatial

61

5.3 a new vae classification framework

Figure 5.3: Overview of the proposed VAE classifier during inference: Quantized latent vector ẑ
is encoded into bit stream by a context-adaptive arithmetic encoder (AE) assisted by probability
estimator (PE). At receiver, probability of each symbol ẑi (shown in cyan) is estimated by using a
learned PE based on previously decoded latents ẑi−1, · · · , ẑ1 (shown in gray). Without groundtruth
distribution of the latent elements qφ(ẑ|x) at the receiver, PE learns to approximate pθ ≈ qφ during
training.

domain RGB images can also be reconstructed for practical applications by fine-tuning a

separate decoder under the proposed classification setting. In Table. 5.1, we summarize the

notations used in the this chapter.

5.3.1 Variational Bound and Loss for Classification

The performance of a classifier can be measured by cross entropy loss from labeling. Consider

an i.i.d. data sample x and corresponding label y that belongs to a set Y of unique labels,

with {(x, y)|x ∈ D, y ∈ Y}. We can denote ηθ(y|z) as the estimated label distribution with

a model parameterized by θ given the latent z. For a latent z mapped from given x, the

estimated label distribution is simply

ρ̂θ(y|x) =
∫
ηθ(y|z)pθ(z|x)dz (5.3)

Similar to 2.2, we introduce an arbitrary function qφ(z|x) parameterized by φ.

ρ̂θ(y|x) =
∫
ηθ(y|z)pθ(z|x)dz = Eqz|x,φ

[
ηθ(y|z)

pθ(z|x)
qφ(z|x)

]
.

62

5.3 a new vae classification framework

Taking − log on both sides leads to

− log ρ̂θ(y|x) = − logEqz|x,φ

[
ηθ(y|z)

pθ(z|x)
qφ(z|x)

]
. (5.4)

Applying Jensen’s inequality, we write,

− log ρ̂θ(y|x) ≤ −Eqz|x,φ log
[
ηθ(y|z)

pθ(z|x)
qφ(z|x)

]
≤ −Eqz|x,φ log ηθ(y|z)−Eqz|x,φ log

[
pθ(z|x)
qφ(z|x)

]
.

Following the definition of KL divergence, we write,

− log ρ̂θ(y|x) ≤ −Eqz|x,φ log ηθ(y|z) +KL(qz|x,φ|pz|x,θ). (5.5)

We denote the ground truth class of sample x as ygt. The true distribution ρ of y given

x can be written as following by using the Kronecker delta function δ[·]

ρ(y|x) = δ[y− ygt] =

1, y = ygt

0, y 6= ygt

(5.6)

With the above notion, we write the cross entropy between the true and the estimated

label distributions as

CEy|x(ρ, ρ̂θ) = −
∑
c∈Y

ρ(y = c|x) log ρ̂θ(y = c|x). (5.7)

From (5.5) and (5.7), we can derive the variational bound for classification.

CEy|x(ρ, ρ̂θ) = −
∑
c∈Y

ρ(y = c|x) log ρ̂θ(y = c|x)

≤ −
∑
c∈Y

ρ(y = c|x){Eqz|x,φ log ηθ(y = c|z)}+
∑
c∈Y

ρ(y = c|x){KL(qz|x,φ|pz|x,θ)}

63

5.3 a new vae classification framework

The bound can be further simplified into

CEy|x(ρ, ρ̂θ) ≤ −
∑
c∈Y

ρ(y = c|x){Eqz|x,φ log ηθ(y = c|z)}+KL(qz|x,φ|pz|x,θ).

Using (5.6), we obtain the variational bound for classification:

CEy|x(ρ, ρ̂θ) ≤ −Eqz|x,φ log ηθ(ygt|z) +KL(qz|x,φ|pz|x,θ) (5.8)

Following the approach [67] discussed in Sec. 2.2.1, we can define the β-VAE loss function for

a single sample x as

Lθ,φ(x, ygt) = Eqz|x,φ [− log ηθ(ygt|z)] + βEqz|x,φ [− log pθ(z|x)] . (5.9)

with a control parameter β. We can interpret the first term as the conditional classification

loss and the second term as the coding cost or rate.

5.3.2 Learning Model

Our end-to-end compression-classification learning model consists of an encoder (E), a

probability estimator (PE) and a classifier (CL) as shown in Fig. 5.3. Following the approach

in [34], we use a context model to estimate the conditional probabilities in PE. Consider the

following setting.

x E−→
φ

z Q−→ ẑ CL−−→
θ

y (5.10)

x is the input image to the model with dimensions (w× h× 3). The encoder, parameterized

by φ, maps x to the latent representation z of dimension (ws ×
w
s ×K = m). A quantizer (Q)

further maps z to ẑ by assigning each element zi (i = 1, · · · ,m) to the closest quantization

64

5.3 a new vae classification framework

levels D = {d`, ` = 1, · · · , L}. For instance, multiple zi values can be mapped to the same

d` such that,

ẑi = Q(zi) = arg min
d∈D
‖zi − d‖2. (5.11)

The quantization centers {d`} are learned through training. The CL, parameterized by θ,

takes the ẑ as the input and predicts the class label y for the given image sample x. Taking

quantization into account for practical applications, Eq. (5.9) can be rewritten as follows.

Lθ,φ(x, ygt) = Eqz|x,φ [− log ηθ(ygt|ẑ)] + βEqẑ|x,φ [− log pθ(ẑ|x)] (5.12)

We now examine how to obtain each term for the loss function in Eq. (5.12).

5.3.3 Rate Loss

The second RHS term of Eq. (5.12) represents the cross entropy between two conditional

distributions of z: pθ(ẑ|x) and qφ(ẑ|x). The distribution qφ(ẑ|x) is deterministic and

readily available after the deterministic encoding step (E). During training, we estimate the

distribution pθ(ẑ|x) with a PE using a conditional context model following [34, 67]. The

latent representation ẑ as discussed in Sec. 5.3.2 is a 3D tensor containing m number of latent

elements. We can index this 3D tensor ẑ given x as a vector in raster-scan order and write

pθ(ẑ|x) as

pθ(ẑ|x) =
m∏
i=1

pθ(ẑi|ẑi−1, · · · , ẑ1,x). (5.13)

With PE, we can efficiently estimate the conditional probability of the latent value ẑi that

takes the value of the quantization center d`i which can be defined as Pi,`i(ẑ|x) = pθ(ẑi =

65

5.3 a new vae classification framework

d`i|ẑi−1, · · · , ẑ1,x) for notional simplicity. With this notation, can write the approximate

coding rate (LR) as follows:

LR(θ,φ)(ẑ|x) = CEẑ|x(qφ, pθ) = Eqẑ|x,φ [− log pθ(ẑ|x)] = −
m∑
i=1

L∑
`i=1

qφ(ẑi,`i|x) logPi,`i(ẑ|x).

(5.14)

Here qφ(ẑi,`i|x) is the probability of Pr(ẑi = d`i|x). Any ẑi can take only one particular

quantization value d`i .

Similar to [34], through end-to-end training, we learn the distribution pθ(ẑ|x) in order to

optimally approximate pθ ≈ qφ. Through context-based adaptive arithmetic encoding process

(CABAC) [108], qφ(ẑ|x) is available for the probability estimation, only at the encoder.

Once the encoded bit-stream is received at the context-based adaptive arithmetic decoder,

the learned conditional probability pθ(ẑ|x) is used for probability estimation to recover ẑ

whereas qφ(ẑ|x) is not available [109]. For this reason, we learn the distribution pθ(ẑ|x)

to approximate pθ ≈ qφ which makes pθ the “context modeler” as commonly referred in

the literature [108, 109]. Refer to Fig. 5.3. When the learning succeeds by training, with

Eq. (5.14), we observe that the coding rate LR(θ,φ)(ẑ|x) reduces to the entropy H(ẑ|x).

5.3.4 Classification Loss

We interpret the first RHS term of Eq. (5.12) as the classification loss LCL(θ,φ)(ẑ|x, ygt).

Following the rate approach as given in Sec. 5.3.3, we can rewrite the classification loss term

as follows.

LCL(θ,φ)(ẑ|x, ygt) = Eqẑ|x,φ [− log ηθ(ygt|ẑ)] = −
m∑
i=1

L∑
`i=1

qφ(ẑi,`i|x) logQi,`i(ygt|ẑ)

66

5.4 experiments and results

Here we have to estimate the class label probability for each ẑi,`i which is defined as

Qi,`i(ygt|ẑ) = ηθ(ygt|ẑi = d`i). We note that estimating the conditional label probability

given each individual ẑi can be challenging. On the other hand, given ẑ, we can efficiently

predict the class label using a trained CNN classifier such as ResNet [15]. Hence, we can

easily estimate log ηθ(ygt|ẑ) given the entire sequence of ẑ rather than for one individual

element ẑi therein. In standard stochastic gradient optimizers, we have only one sequence

sample ẑ at a time. Hence, the stochastic expectation of Eqẑ|x,φ [− log ηθ(ygt|ẑ)] can be

approximated simply by − logηθ(ygt|ẑ) [66]. We can reduce this approximation error by

iterating sufficiently over same x. This simple approximation leads to general classification

loss,

LCL(θ,φ)(ẑ|x, ygt) = Eqẑ|x,φ [− log ηθ(ygt|ẑ)] ≈ − log ηθ(ygt|ẑ). (5.15)

With this formulation, we express the total loss Lθ,φ(x, ygt) of the joint classification and

compression model for image sample x as,

Lθ,φ(x, ygt) = LCL(θ,φ)(ẑ|x, ygt) + βLR(θ,φ)(ẑ|x)

≈ − log ηθ(ygt|ẑ)− β
m∑
i=1

L∑
`i=1

qφ(ẑi,`i|x) logPi,`i(ẑ|x) (5.16)

Similar to the rate-distortion loss in reconstruction [34,67,110], β controls the rate versus

mis-classification trade-off.

5.4 experiments and results

This section presents several experiment results of classification using the proposed VAE

approach of Sec. 5.3. We tested the accuracy of classification on three well-known data sets:

CIFAR-10 [111], CIFAR-100 [112] and ImageNet-1k [77]. CIFAR-10 consists of 10 classes

67

5.4 experiments and results

(a) CIFAR-10 (b) CIFAR-100

Figure 5.4: Classification accuracy vs rate results for end-to-end compression and classification on
(a) CIFAR-10 and (b) CIFAR-100 data sets. The proposed VAE-based classification framework
outperforms popular commercial image compression codecs in terms of rate-accuracy, at lower
bandwidths.

with 5000 images for training and 1000 images for testing per class. CIFAR-10 images are in

RGB format of size 32×32. Similar to CIFAR-10, CIFAR-100 data set contains 50k training

and 10k test RGB images of size 32×32 in 100 classes. ImageNet-1k consists of 1000 classes,

each of which consists of up to 1300 training images and 50 validation images of mostly

256×256 RGB.

Our experiments used the same quantizer and the context model as [34] to estimate

probabilities. Instead of separately training the encoder-decoder and the context model (PE)

as in [34], the training of PE takes place simultaneously with encoder and classifier training.

5.4.1 VAE-based Joint Compression and Classification models

When designing the joint model, we began with a ResNet and split into 2 parts as Encoder

(E) and classifier (CL). Next, we added a batch normalization layer and a quantizer block

to the encoder and further modified the number of filters and strides. For each CIFAR-

10, CIFAR-100 and ImageNet-1k data sets, we considered 2 different E-CL combinations.

Figs. 5.5(a)-(g) depict the structural details of 4 proposed VAE models labeled as AE-V1,

68

5.4 experiments and results

(a) AE-V1
Encoder

(b) AE-V1
Classifier

(c) AE-V2
Encoder

(d) AE-V2
Classifier

(e) AE-V3
Encoder

(f) AE-V3/V4
Classifier

(g) AE-V4
Encoder

Figure 5.5: Encoders and classifiers for the proposed end-to-end compression and classification
models AE-V1, AE-V2, AE-V3 and AE-V4. “Conv 16 (3x3-2)” represents a 2D convolution block
with 32 filters of size 3×3 and stride of 2. “Res 16 (3x3-2)” represents a basic ResNet block [15]
with down-sampling factor 2.

AE-V2, AE-V3 and AE-V4. We use typical notations in DL to denote their components. For

example, “Conv 16 (3×3-2)” represents a 2D convolution block with 32 filters of size 3 × 3

and a stride of 2. “Res 16 (3×3-2)” denotes a basic ResNet block [15] with a down-sampling

factor of 2.

To compare the performance gains of the proposed approach, we mainly used JPEG

(4:2:0)1 as the benchmark technique to compress images within the data sets at different

quality (Q) values. One can vary the quality value Q ∈ [1, 100] during compression to set

image quality. We then trained a ResNet classifier based on these compressed images for

each Q value. To calculate the required channel bandwidth (i.e., image size), we averaged

the bits-per-pixel (bpp) for each coded image over the data set. For fair comparison, we

only consider the data bits of the images according to bpp without counting packet headers.

Following similar steps, we generated rate-accuracy performance for popular standard codecs:

JPEG20002, WebP3 and BPG4, to be used as baselines.
1 http://www.openjpeg.org/
2 https://kakadusoftware.com/
3 https://developers.google.com/speed/webp/download
4 https://bellard.org/bpg/

69

http://www.openjpeg.org/
https://kakadusoftware.com/
https://developers.google.com/speed/webp/download
https://bellard.org/bpg/

5.4 experiments and results

In the joint compression and classification model, we vary the number of quantization

centers (L) to compress images at different bpp values without changing the E and CL model

architectures. As proposed in [34], one can alter the encoder-decoder/classifier architecture

to generate latent of different dimensions to obtain the requisite bpp as well.

We selected β = 2 for all experiments. During model training, we used a ‘Momentum’

Optimizer for the E-CL part of the network and an ‘Adam’ optimizer for the PE with a

learning rate of 0.0005 and reduced the learning rate by ×0.1 at 0.25 and 0.75 of total epochs

over 90 epochs. In contrast to [34], we concurrently train both E-CL and PE to also enable

back-propagation from PE to E. This configuration facilitates model convergence at lower

bpp.

5.4.2 CIFAR-10 Experiments

For CIFAR-10, we used the models AE-V1 and AE-V2 of different complexities. Figs. 5.5(a)-

(d) provide the structural details of both VAE models. As the baseline classification model,

we used a ResNet-18. Fig. 5.4(a) shows the result for CIFAR-10 data set with different

combinations of E-CL in comparison with popular standard codecs: JPEG, JPEG2000,

WebP and BPG. Both AE-V1 and AE-V2 achieve substantial performance improvement

over the traditional JPEG (4:2:0) in terms of rate (bpp) and accuracy trade-off. At 0.8

bits/pixel, our joint compression-classification accuracy improves from 77% to 87%. More

importantly, this performance improvement is achieved with significantly lighter-weight

models, resulting impressive inference speed improvements and power savings compared to

the baseline classifiers as will be discussed in Sec. 5.5. Further, compared to JPEG2000,

WebP and BPG, the proposed VAE-based codecs maintain the R-C performance specially at

lower bandwidth end. In particular, both VAE-based models demonstrate over 5% accuracy

improvement at 0.9 bpp compared to BPG.

70

5.4 experiments and results

5.4.3 CIFAR-100 Experiments

As the baseline classification model, we used a ResNet-18 model with a fully connected layer

of 100 neurons instead of 10 in the original model designed for CIFAR-10. For the VAE

models for classification, we used AE-V1 and AE-V2, each with same Encoder (shown in

Figs. 5.5(a), (c)) and the Classifier (Figs. 5.5(b), (d)) with a fully connected layer of 100

neurons (Fc 100) instead of Fc 10. For training, we follow the same settings as in CIFAR-

10. Fig. 5.4(b) compared the rate-accuracy performance of AE-V1 and AE-V2 models for

CIFAR-100 validation set. The proposed method achieves similar improvement as observed

in CIFAR-10.

Figure 5.6: Classification accuracy vs rate on ImageNet-1k for end-to-end compression and classifi-
cation. The proposed VAE based compression and classification framework (AE-V4) significantly
outperforms JPEG commercial image compression codecs in terms of rate-accuracy.

71

5.5 complexity comparison

5.4.4 ImageNet Experiments

For ImageNet experiments, we followed the same process as used for CIFAR-10 to generate

the JPEG (4:2:0) baseline. As a part of data augmentation, we resized the images to 256×256

and cropped them down to 160×160 in training and testing to obtain the desired dimensions

of the latent ẑ. We propose modified VAE models AE-V3 and AE-V4 for ImageNet. See

Figs. 5.5(e)-(g) for model architectures.

For fairness in performance comparison, we fine-tuned the baseline ResNet models with

the JPEG encoded images at each quality (Q) to record the best accuracy achievable at given

quality levels when obtaining baseline performance results. For the same reason, we do not

include packet header in bpp calculation.

Testing the E-CL combinations AE-V3 and AE-V4 on ImageNet generates the results of

Fig. 5.6. The performance of the two shallower VAEs is compared against the benchmark

ResNet-18 and ResNet-34 operated on JPEG encoding. Our results demonstrate clear

performance improvement in terms of rate-accuracy trade-off, without increasing complexity

as discussed in Sec. 5.5. In fact, the proposed VAE delivers comparable performance as

conventional ResNet-34 that requires 21.8M parameters which is twice as many compared to

AE-V3 and AE-V4 models.

5.5 complexity comparison

Simpler encoder models are practically more favorable for wide deployment on low cost

devices, which are severely constrained in memory, power, and computation capacity. In this

section, we compare the complexity of the proposed models in terms of model size (number

of parameters), inference speed and power consumption to the baseline models.

72

5.5 complexity comparison

5.5.1 Model size comparison

Considering practical constraints in low cost sensors, our encoder design has significantly fewer

number of parameters in comparison with the typical cloud-based classifier. See Table 5.2

for a complexity comparison in terms of number of parameters for the VAE models used in

CIFAR-10 and ImageNet-1k experiments. Percentages provided in the table indicates the

reduction of the number of parameters compared to the baseline classifier.

Table 5.2: Complexity comparison of the models for CIFAR-10 and ImageNet. All parameters are
in millions (M). The percentage reduction is calculated compared to the baseline.

Model Encoder Decoder Classifier Baseline
CIFAR-10:

AE-V1 0.245 (65%↓) − 0.372 (47%↓) 0.704
AE-V2 0.025 (96%↓) − 0.687 (2%↓) ResNet-18

ImageNet-1k:
AE-V3 0.100 (99%↓) − 11.35 (3%↓)

11.7AE-V4 1.550 (87%↓) − 11.35 (3%↓)
Theis-2017 [83] 1.403 (88%↓) 1.630 (86%↓) 11.7 ResNet-18
Factorized priors [113] 3.506 (70%↓) 3.505 (70%↓) 11.7
Scale hyper-priors [100] 5.903 (50%↓) 5.902 (50%↓) 11.7

ImageNet-1k:
AE-V3 0.100 (99%↓) − 11.35 (48%↓) 21.8
AE-V4 1.550 (99%↓) − 11.35 (48%↓) ResNet-34

All the proposed encoder and classifier models show parameters savings compared to

their corresponding baseline models. The achieved parameter savings range from 65%−99%

for encoders and 2%−48% for classifiers. Such balance of complexity reductions are highly

practical for wide IoT deployment since classifiers at the server side are equipped with more

resources compared to the source encoders at the embedded devices.

Further in Table. 5.2 we compare the model size of the proposed VAE-based classifiers to

popular image compression codecs: Scale hyper-priors [100] and Factorized priors [113]. Our

73

5.5 complexity comparison

proposed encoder models of VAE-based image classifiers are significantly simple compared to

encoders of learning-based image compression codecs. For instance, AE-V3 encoder is only

1.7% compared to Scale hyper-priors encoder. This is highly favorable for wide deployment

of embedded devices that are limited in on-device memory. On the other hand, since our

proposed VAE-based models do not perform image reconstruction, no of parameters of the

models residing at the server is also highly reduced.

Task vs Model size

When comparing the model complexity versus task difficulty, more challenging classification

tasks often require more complex encoders. Note that both models AE-V3 and AE-V4 use

the same network architecture as the classifier for ImageNet data set. Furthermore, from

Table 5.2, it is clear that the proposed VAE classifiers of AE-V3 and AE-V4 have the same

complexity in terms of the number of parameters while AE-V4 model uses a relatively more

complex encoder than AE-V3. Since complex encoders with more parameters are capable of

extracting more discriminate features, Fig. 5.6 shows AE-V4 with higher rate-classification

performance than AE-V3, especially when handling more challenging tasks such as ImageNet

classification with 1000 classes.

We observe similar trend in rate-classification in Fig. 5.4(b) for CIFAR-100 data set with

100 classes: A relatively increase of encoder complexity may achieve better performance than

a simple encoder through feature extraction for classification. Note in Table 5.2 that the

model complexity in number of parameters is ×10 smaller for AE-V2 when compared to

AE-V1. However, for relatively simple classification task such as CIFAR-10 with only 10

classes, a simpler encoder used in AE-V2 is stronger to preserve enough features to generate

the latent vector. In fact, even in such case, having a relatively complex classifier with

more parameters to process the extracted features has some benefit, although the resulting

rate-classification performance improvement is rather modest.

74

5.5 complexity comparison

5.5.2 Inference speed comparison

Table 5.3: Speed comparison in terms of “ips”. The inference results are based on a NVIDIA Titan-V
GPU. The proposed VAE-based classifier is ×1.5 and ×2.25 faster compared to ResNet-18 and
ResNet-34 baselines.

Model Encode (E) Classifier (CL) E-CL Baseline CL

AE-V1 1702 20283 (×13.1↑) 1570(↑) 1547
AE-V2 2114 6524 (×4.2↑) 1596(↑) ResNet-18
AE-V3 4691 5122 (×1.5↑) 2448(↓) 3330
AE-V4 2417 1642(↓) ResNet-18
AE-V3 4691 5122 (×2.25↑) 2448(↑) 2268
AE-V4 2417 1642(↓) ResNet-34

We also observe considerable reduction in inference time by directly classifying on the

latent/feature maps without reconstruction. In Table 5.3 we list the inference speed in terms

of average images per second (ips) for CIFAR-10 test set and ImageNet-1k validation set.

The proposed end-to-end-trained AE-V1 and AE-V2 classifiers record ×13.1 and ×4.2

speed gains on CIFAR-10 data set, respectively, compared to the ResNet-18 classifier. Image

patches used at inference have the size of 32×32. Similarly, our proposed classifier is ×1.5

faster in comparison with the ResNet-18 baseline and ×2.25 faster in comparison with

ResNet-34 baseline, on ImageNet-1k data set where image patches have the size of 160×160.

Since the inference speed of the encoder for the baseline can vary based on the codec (JPEG,

BPG etc.), we only highlight the inference speed gains of the classifiers (CL) for fairness.

Moreover, due to the simplicity of the proposed AE-V1 and AE-V2 encoders, the inference

speed including the encoding time (E-CL column) surpasses the baseline CL speed calculated

even without the encoding time.

75

5.5 complexity comparison

5.5.3 Power savings comparison

When measured on the same device (GPU), the number of floating point operations per

second (FLOPS) is directly proportional to the power consumption. The proposed encoders

are not only less complex in terms of number of parameters, but also demand significantly

lower number of arithmetic operations which is an essential feature for IoT, mobile and

wireless applications [114]. In Table 5.4, we list the required computational operations in

floating point operations per second (FLOPs) for the proposed encoders. We indicate the

power savings as a percentage compared to the baseline.

Table 5.4: Number of FLOPs (×109) comparison for the proposed models.

Model Encoder Decoder Classifier Baseline
Input: 32×32×3

0.557AE-V1 0.037 (93%↓) − 0.005 (99%↓)
AE-V2 0.013 (97%↓) − 0.013 (97%↓) ResNet-18

Input: 160×160×3

0.928
AE-V3 0.107 (88%↓) − 1.229 (32%↑)
AE-V4 1.399 (50%↑) − 1.229 (32%↑)
Theis-2017 [83] 2.102 (127%↑) 2.551 (175%↑) ResNet-18
Factorized priors [113] 6.140 (561%↑) 6.140 (561%↑) 0.928
Scale hyper-priors [100] 6.355 (584%↑) 6.355 (584%↑) 0.928

Input: 160×160×3
1.873AE-V3 0.107 (94%↓) − 1.229 (34%↓)

AE-V4 1.399 (25%↓) − 1.229 (34%↓) ResNet-34

The proposed encoders and classifiers of AE-V1 and AE-V2 models achieve power savings

in the range of 93%−97% compared to ResNet-18 classifier. AE-V3 and AE-V4 models with

larger input image sizes show less power savings in the classifier compared to the encoder due

to the high number of parameters. However, this low power savings are compensated by the

resource rich servers at the cloud. More importantly, the proposed encoders display significant

power savings that enable wide deployment of power constrained low-end source embedded

devices. Modern smart phones are capable of providing over 10×109 FLOPs [114,115].

76

5.5 complexity comparison

Similar to model size, our proposed VAE-based classifier models demands significantly

less computational power compared to other learning-based compression codecs as shown in

Table 5.4. For instance, AE-V3 and AE-V4 encoders consumes only 1.7% and 22% respectively

compared to Scale hyper-priors encoder.

5.5.4 Comparison to Torfason-2018 [78]

In this section, we further compare the proposed VAE-based classifiers against Torfason-

2018 [78] in terms of no of FLOPs required during inference for image classification task.

The work [78] proposed to remove the expensive decoders during deep learning tasks such as

image classification and segmentation and showed that same rate-accuracy performance can

be achieved without image reconstruction. They further showed that for image classification

task, initial convolution and ResNet layers can be removed from traditional ResNet [15]

classifiers. By introducing such changes, the authors achieved ×1.5−×2 FLOP reductions

compared to baseline encoder-decoder-classifier work flow.

During the experiments, the authors of [78], used the same encoder architecture in [83]

without any modification and obtained FLOP reductions by skipping image decoding and

with complexity reduced classifiers. We note two main benefits of our proposed method

over [78]. First, to support the cloud-based image classification setting with low-resource

embedded sources, the encoders of the proposed VAE-based models are significantly low

in power demand compared to those of [78] and [83] as shown in Table 5.4. Second, when

comparing the total FLOP requirement for both encoder and the classifier, our proposed

VAE-based models show further notable power savings compared to [78]. Furthermore, since

the classifiers are generally located at resource-rich server nodes during cloud-based inference,

we argue that complexity reduction of the classifier sacrificing rate-accuracy performance is

less meaningful.

77

5.6 discussion: joint compression and classification with reconstruction

In Table 5.5, we compare the FLOPs required by the encoder, decoder and the classifier

of the considered models for image sizes 160×160 and 224×224. Compared to AE-V3 model,

the encoder-classifier model proposed in [78] demands ×2.68 and ×1.89 more FLOPs for

image sizes 160×160 and 224×224 respectively.

Table 5.5: Number of FLOPs (×109) comparison for the proposed models. Power savings compared
to the encoder of [78] are given as a percentage. In last column, the increase of FLOPs are calculated
compared to the total FLOPS required by AE-V3.

Model Encoder Decoder Classifier Total
Input: 160×160×3
AE-V3 0.107 (95%↓) − 1.229 (42%↓) 1.336
AE-V4 1.399 (33%↓) − 1.229 (42%↓) 2.628 (× 1.97)
Theis-2017 [83] 2.102 2.551 (↑) 0.928 (Res-18) 5.581 (× 4.18)
Theis-2017 [83] 2.102 2.551 (↑) 1.873 (Res-34) 6.526 (× 4.88)
Torfason-2018 [78] 2.102 − 1.475 (cRes-39) 3.577 (× 2.68)

Input: 224×224×3
AE-V3 0.215 (95%↓) − 3.453 (14%↓) 3.668
AE-V4 2.746 (31%↓) − 3.453 (14%↓) 6.199 (× 1.69)
Theis-2017 [83] 4.003 4.744 (↑) 1.817 (Res-18) 10.56 (× 2.88)
Theis-2017 [83] 4.003 4.744 (↑) 3.667 (Res-34) 12.41 (× 3.38)
Torfason-2018 [78] 4.003 − 2.95 (cRes-39) 6.953 (× 1.89)

5.6 discussion: joint compression and classification with simulta-

neous reconstruction

Since encoded images may serve the dual-use of human visual perception and machine learning

in certain practical applications, we investigate the feasibility of adapting the VAE-based

classifier as a dual-use codec for efficiently encoding image features delivered to the cloud

for both accurate image classification and image reconstruction of sufficiently high quality

(PSNR).

Thus far, our proposed joint compression and classification model allows the classifier

to operate directly in latent space. We bypass the image reconstruction step unlike the

78

5.6 discussion: joint compression and classification with reconstruction

Figure 5.7: Proposed joint classification and compression model with reconstruction. Encoder
transforms input x to a latent vector z that is optimized for rate-classification-distortion performance.

image/video systems [105] that perform classification on reconstructed data. In practical

systems, however, there also exist several application scenarios which may require both

autonomous image classification and image reconstruction for users. For example, RGB

images may need to be stored on the cloud to be retrieved later after successful classification.

These reconstructed and stored RGB images may be required for other subsequent learning

tasks such as object detection and segmentation trained on RGB images. To accommodate

such potential dual compression objectives of simultaneous classification and reconstruction,

we further modify the current VAE to incorporate a parallel decoder at the remote node (or

cloud).

As shown in Fig. 5.7, we include a basic DL-based image decoder (D) to the proposed joint

compression and classification model. This framework of joint compression and classification

model with reconstruction (E-CL-D) can be trained similarly to the proposed VAE. In

consideration of the reconstruction accuracy, we construct a modified loss function of

L = LCL + βLR + γLD. (5.17)

We use MSE between x and x̂ as the distortion loss LD and empirically choose a control

parameter γ smaller than β to favor high classification accuracy over rate-distortion.

We fine-tuned the proposed joint architecture in Fig. 5.7 with the above modified loss

on CIFAR-10 data set. Fig. 5.8(a) shows the classification accuracy for E-CL-D model for

79

5.6 discussion: joint compression and classification with reconstruction

(a) Rate-accuracy (b) AE-V2 Decoder (c) AE-V3 Decoder

Figure 5.8: (a) Classification accuracy vs rate on CIFAR-10 for joint compression-classification
with reconstruction: AE-V2-Recon. Note that rate-accuracy performance of AE-V2-Recon is still
sufficiently good compared to popular commercial codecs, at lower rates. (b)-(c) Decoder design for
AE-V2 and AE-V3. ‘up’ indicates up-sampling with transposed convolutions.

CIFAR-10. Note that the classification accuracy loss due to reconstruction is smaller compared

to the R-C gain from standard JPEG, JPEG2000, WebP and BPG codecs. We repeated the

joint classification and reconstruction experiments on ImageNet-1k with a slight modification

to the training strategy to further preserve R-C performance. We freeze the Encoder-Classifier

(E-CL) and PE parameters optimized for joint compression and classification as described in

Eq. (5.16) for AE-V3 model, and re-trained only the decoder to minimize the MSE between

x and x̂. A frozen E-CL and PE guarantees the same R-C performance as in Fig. 5.6 with

reconstruct-ability. Table 5.6 lists reconstruction PSNR and MS-SSIM values for the two test

data sets at three bpp settings. The observed lower image quality, observed for the images

reconstructed from the rate-accuracy optimized latents, is consistent with the reconstruction

quality recorded in [31] for COCO-2017 [116] data set when the codec is optimized for joint

compression and object detection.

80

5.6 discussion: joint compression and classification with reconstruction

Table 5.6: Reconstruction quality for CIFAR-10 and ImageNet-1k. L is the number of quantization
centers.

Data set L=2 L=3 L=6
PSNR (dB)

CIFAR-10 19.24 21.42 22.84
ImageNet-1k 20.18 21.68 22.22

MS-SSIM
ImageNet-1k 81.04 86.73 88.35

5.6.1 Visualization of reconstructed images

In our experiment, we applied a deep learning decoders similar to the architecture of [34] with

modified numbers of convolution kernels to reduce the number of parameters. For CIFAR-10

reconstruction, the decoder has 0.308 M parameters which is only 44% of the ResNet-18

baseline model.

Original L=6 L=3 L=2

(a) CIFAR-10

Original Q=25 Q=10 L=6 L=3 L=2

(b) ImageNet-1k

Figure 5.9: Examples of (a) CIFAR-10 and (b) ImageNet-1k reconstructed images from the latent
space at L =6, 3 and 2. In (b), Q=25 and Q=10 show JPEG compressed images. We observe
significantly higher distortion when only 2 quantization levels are used during compression.

In Fig. 5.8(b)-(c), we provide the decoder architectures we used for CIFAR-10 and

ImageNet-1k data sets. ‘up’ indicated the up-sampling with transposed convolution. Fig. 5.9(a)

and Fig. 5.9(b) show some of the reconstructed images from ‘airplane’ class of CIFAR-10 [111]

81

5.7 conclusions

and ImageNet-1k [77]. The reconstructed results look blurry compared to the original images

since the MSE loss is minimized by the average of the image. We observe significantly higher

distortion when only 2 quantization levels are used during compression even though the

classification accuracy is less compromised (in Fig. 5.8(a)) as required.

5.7 conclusions

In this chapter, we propose a VAE-based end-to-end framework for joint compression and

classification that autonomously learns on the latent features to efficiently compress and

classify images in a networked AI edge/cloud environment. Starting from the classification

cross entropy loss, we present the theoretical foundation of the solution from information theory

perspective to define a rate-accuracy loss similar to rate-distortion in image reconstruction.

Test results of our VAE learning networks on CIFAR-10, CIFAR-100, and ImageNet-1k data

sets demonstrate significant improvement of image classification accuracy at the same bit

rate. We observed that a simple decoder can be trained on rate-accuracy optimized latents to

synthesize visual reconstructions of the input images. However, reconstructed images displayed

significant distortion at low data rates while preserving the classification accuracy. Next

chapter focuses on designing learning-based codecs with improved rate-distortion-accuracy

performance.

82

6
C L A S S I F I C AT I O N - G U I D E D R O I - B A S E D E N D - T O - E N D

I M A G E C O M P R E S S I O N

As an extension of end-to-end optimization of learning-based codecs for joint image compres-

sion and classification discussed in chapter 5, this chapter focuses on designing learning-based

codecs that achieve improved rate-distortion-classification (R-D-C) performance simultane-

ously. For this purpose, we revisit the concept of region of interest (ROI) and its application

in DL-based image compression1.

In image compression applications without given ROI masks a priori, recent codecs based

on deep learning have proposed effective step of ROI prediction, followed by subsequent ROI

encoding [36–38]. For network-based learning over cloud, however, limited bandwidth between

sensor nodes and processing servers motivates the optimization of not only R-D involving ROI

prediction and image encoding, but also target DL task such as classification. Existing such

end-to-end ROI prediction and coding frameworks still demand heavy computation, power and

memory specially during feature extraction for ROI prediction [36,38, 117,118]. This causes

lower inference speeds and shorter battery life of sensor nodes. Targeting practical applications,

in this chapter, we propose significantly lighter-weight feature extraction backbones and

to guide the feature extraction process with classification cross entropy loss. By doing

so, we synergies ROI compression and classification tasks demonstrating improved R-D-C

performance. Our proposed joint image compression and classification framework achieves

superior ROI rate-distortion and classification accuracy trade-off while maintaining good

perceptual image quality. Further, our proposed classification-guided ROI codec demonstrates

×3.26 faster inference, 74% memory reduction and 41% power savings compared to baseline

models.
1 A part of the content of this chapter has been submitted to IEEE Transactions of Image Processing and is
currently under review.

83

6.1 introduction

6.1 introduction

In many practical image applications, a well-defined ROI is formed by pixels important to

application specific objectives whereas the remaining pixels of less importance form “non

region of interest” (NROI) for an image. For instance, the airplane in the center of Fig. 6.1

can be the ROI with the background as the NROI. Whenever possible, such applications may

predefine an “ROI mask”: a binary map indicating ROI areas. When such application specific

ROI mask is known, commercial image compression codecs such as JPEG2000 allocate bits

based on the given ROI mask [29] through a process known as “ROI coding”. By allocating

more encoding bits (i.e. higher rate) to ROI region over NROI, recovered images exhibit

better perceptual quality with lower distortion for their ROI.

In practical IoT applications, since images collected by embedded devices are often

analyzed by algorithms rather than human end users, ROI mask is not available at the

image compression step. Therefore, before ROI coding, compression codec would predict

potential candidates for ROI masks when they are not given. This process is known as “ROI

prediction”. For optimal R-D performance in visualization applications, it is essential to

optimize ROI prediction and ROI coding in unison [36,38,119], in contrast to conventional

ROI applications where the optimization of ROI prediction is followed by that of ROI coding

in a sequential manner [120,121].

When training a DL-based image codec for visualization with the loss function to optimize

R-D, existing methods lack the ability to control distortion level over regions of an image [33,

110]. Fig. 6.1 shows a clear difference of distorted areas between images reproduced by

scale-hyperprior [33] codec trained with loss functions based on PSNR versus MS-SSIM.

One intuitive way to overcome the ROI distortion problem is to enable image codec to

learn regions/contents of higher importance. The works [36, 38] implemented such idea

named “content-aware image compression” by training an auto-encoder-based codec with

a learnable ROI. However, existing methods of ROI mask learning are still prohibitively

84

6.1 introduction

Figure 6.1: A sample of Kodak data set generated by scale-hyperprior codec optimized for MS-SSIM
(left: 0.1864 bpp, PSNR=27.99, MS-SSIM=0.9803) and PSNR (right: 0.1932 bpp, PSNR=32.26,
MS-SSIM=0.9713). Enlarged patches 1 and 3 indicate that MS-SSIM optimized codec adds less
distortion to grass background and more distortion to the printed letters on the airplane body
compared to PSNR optimized codec. The introduced distortion artifacts by the codec depend on
the loss function used during training.

demanding in terms of model complexity [36,117], memory requirement [38,118] and power

consumption [117], making them impractical to be deployed on edge devices with limited

battery life.

The majority of existing ROI object detection approaches have relied on image classifier

backbones for feature extraction that distinguish important and attractive objects from the

image background [117,118,122]. In contrast to image classifier backbones, encoder backbones,

while being lighter in model complexity, however weigh each pixel and their related features

equally due to the nature of the distortion loss function such as PSNR or MS-SSIM. Hence,

image encoder backbones in their original form, as used in [38], are less suitable for ROI

prediction [31,33].

On the other hand, the existing DL-based ROI prediction approaches are still dominated

by human-vision-oriented designs [36, 38] without considering the end target applications.

A vast volume of image and video content generated by the widely deployed IoT devices,

85

6.1 introduction

however, are commonly used for sensing and detection in data analysis by machine algorithms

rather than only for human end users in visual applications. For this reason, image codec at

the source device must efficiently encode features that mutually benefit data analysis and

visualization applications before transmission to the resource-rich cloud for data analysis and

media distribution to end users. In view of these two predominant applications, ROI mask

learning should aim to improve the analytic task accuracy as well as to control rate-distortion

to meet the general visualization need.

Considering image classification as the target analytical task, this paper addresses both

the above issues by introducing an image-classification-guided ROI compression framework

that synergies ROI compression and classification towards improved R-D-C performance. In

particular, we design a faster, light-weight and power-efficient joint ROI prediction, encoding

and classification framework based on recent scale-hyperprior image codec. Our contributions

include 1) a novel R-D-optimized ROI encoding module for predefined ROI masks, 2) a

light-weight saliency-map-based ROI prediction module reusing the features extracted from

the shared encoder backbone, when predefined ROI masks are unavailable and, 3) an R-D-

C-optimized joint ROI mask prediction and image encoding module that complements the

specific learning task of image classification.

While achieving comparable ROI R-D performance to existing DL-based ROI compression

codecs [38], our proposed image codec demonstrates improved R-D-C performance compared

to the state-of-the-art R-D optimized codecs at significantly lower computational complexity.

Further, the proposed ROI prediction module based on saliency map and feature-reuse

generates fuller and more accurate ROI masks compared to ROI masks generated using deep

classifier backbones [117].

We organize the rest of this chapter as follows. In Sec. 6.2, we summarize the recent

approaches of ROI encoding and ROI prediction for learning-based codecs. In Sec. 6.3,

we propose a novel classification-guided, end-to-end ROI prediction and coding framework,

followed by an extensive experiment setup and results in Sec. 6.4. In Sec.6.5, we provide a

86

6.2 related works

comparison of the model complexity, inference speed and power consumption of the proposed

models. Finally, we discuss the performance benefits of the proposed feature-reusing ROI

prediction module and further R-D-C in Sec. 6.6. See Appendix D for additional results and

implementation details.

6.2 related works

Recent progresses in ROI-based image compression and processing have expanded from

direct ROI-based coding [123,124] followed by cascaded optimization of ROI prediction and

coding [120,121,125] to joint optimization of ROI prediction and coding [36–38].

6.2.1 ROI Coding

Conventional codecs

For a known ROI mask, JPEG2000 offers ROI coding by shifting bits that encode wavelet

coefficients of ROI to higher bit plane levels while downgrading encoded NROI bits to

lower levels. One can prioritize ROI bits in decoding with embedded block coding through

optimized truncation (EBCOT) [62]. As an alternative ROI coding method, the HEVC [96]

codec changes the quantization step sizes on Discrete Cosine Transformed (DCT) coefficients

of ROI. Directly utilizing the conventional JPEG2000 codec, recent works [120] and [126]

proposed ROI coding under limited bandwidth for medical and communication applications.

However, the non-differentiability of certain engineered blocks within the conventional codecs

hinders the end-to-end adaptation of the full codec processing flow resulting sub optimal

R-D performance of above works [25].

87

6.2 related works

Learning-based codecs

Unlike conventional codecs, most learning-based codecs are differentiable and are hence

amenable to end-to-end parameter optimization based on a given loss function. Via gradient-

based back-propagation of the DL network, such image codecs can optimize its encoder,

decoder, and entropy coder blocks in an end-to-end manner to optimize the R-D performance.

Figure 6.2: General architecture of existing ROI coding in learning based codecs. Q: Quantizer.
“Mask processing” block transforms ROI mask c to b which is then element-wise multiplied by the
latent representation y.

Fig. 6.2 illustrates one such DL-based ROI coding approach. From the input image x,

important elements of latent representation y are selected according to a given ROI mask

c before quantization [36,38,119]. This step uses element-wise product between y and the

transformed ROI mask b of the same dimension as y. The “mask processing” block typically

consists of 2D convolution, down-sampling, and activation functions. Starting from the binary

ROI mask c, during the forward pass of the network, element-wise product of the transformed

mask b whose elements are within [0,1], and the latent representation y allows the network

to quantify the importance of elements in y by b. Such element-wise product of the latent y

and latent mask b weakly correlates to the element-wise product of image x and the binary

mask c in spatial domain. Compared to directly stacking up the binary ROI mask c with

88

6.2 related works

the input image x before the encoder [37,125] without using explicit mask processing path,

element-wise product as used in [38,119] is more natural and interpretable. Different from

recent work [119], in this chapter, we propose “multi-level mask processing”: to use multiple

levels of information from the mask processing path, to further quantify the importance of

latent elements corresponding to ROI region.

6.2.2 ROI Prediction

For application scenarios without known ROI masks, codec may rely on ROI prediction to

generate mask candidates [36–38,120,121,125]. Conventional signal processing approaches to

ROI prediction include region growing [120], edge detection, and active contour segmenta-

tion [121]. These approaches are harder to integrate into an end-to-end joint optimization

process and tend to yield less compelling R-D performance [38].

In contrast to the such sequential ROI prediction and coding approaches, joint optimization

of learning-based ROI prediction together with ROI coding can lead to more accurate ROI

prediction and more efficient encoding. In this direction, the recent work of [36] has successfully

utilized “saliency maps” generated from the features extracted from a VGG [13] classifier

backbone for ROI prediction followed by a GAN-based image compression.

Saliency Object Detection

Saliency object detection remains a popular problem in computer vision for which recent

deep learning solutions have significantly improved detection accuracy [117, 127–129]. It

aims to detect a few ‘important and attractive’ objects on a given image [129]. For example,

PoolNet [117] extracts features from different convolution layers of a deep classifier backbone

before combining them to generate binary saliency maps. By aggregating lower level features

from initial convolution layers for higher layer processing, PoolNet exploits multi-scale

representations of objects to generate detailed masks.

89

6.2 related works

For cloud-based learning applications over a network, however, it is impractical to

incorporate a deep classifier backbone with large memory and computation footprint on

low-cost IoT devices. Without using a dedicated classifier backbone for feature extraction

during ROI prediction, the work of Cai-2019 [38] employed an implicit ROI prediction network

consisting of CNN operated on multi-scale features shared with the image encoder. Such ROI

prediction that shares and reuses features with the encoder is desirable to extend battery life

of IoT devices. With light-weight feature sharing designs, in this chapter, we design an ROI

prediction module based on saliency maps that shares the computational burden with the

encoder to further simplify ROI compression. See Figure 6.3.

(a) Resource hungry ROI prediction (b) Feature-sharing ROI prediction

Figure 6.3: (a) Majority of existing ROI predictions use a deep classifier backbone for ROI prediction.
(b) Proposed feature-sharing ROI prediction reuses features extracted from the encoder backbone
during ROI coding.

6.2.3 Joint image compression and classification

Achieving R-D performance in conjunction with commercial state-of-the-art codecs such as

VVC [130], recent development of DL-based codes for image compression has proposed the

optimization of processing flow from encoder, decoder, to entropy coding in an end-to-end

manner. Furthermore, exploiting deep learning-based processing flow, recent works optimized

media codec to achieve better R-C performance for tasks beyond visualization by selecting

appropriate optimization loss functions [25,31,87]. For instance, authors of [31] fine-tuned the

90

6.3 method

scale-hyperprior codec [33] for object detection and achieved better rate-detection accuracy

by replacing image distortion loss with a detection loss function. Further, the work [87]

concluded that by replacing the distortion loss by a combined distortion and classification

loss function, conventional JPEG codec can be optimized for both tasks of visualization and

image classification, leading to better R-D-C performance.

Both approaches summarized above highlight the importance of the loss function determi-

nation and the performance improvement provided by end-to-end optimization of the entire

processing flow. In this chapter, we design a feature-sharing unified framework where ROI

compression and image classification tasks complement each other, achieving better R-D-C

performance at lower computational cost.

6.3 method

6.3.1 ROI-based image encoding

Consider a learning-based codec that compresses image x ∈ RD into a bit stream of Ry(x)

bits. The Encoder ga(.,θg) parametrized by θg transforms an image x into a latent vector

y ∈ Rd. The latent y is quantized into ŷ which is encoded by the arithmetic encoder (AE)

based on entropy into a bit stream of average length Ry(x) = Eŷ[− log2 pŷ(ŷ)]. The decoder

gs(.,φg) parametrized by φg reconstructs the image x̂ from the coded bit stream.

The use of scale-hyperpriors [33] further extended the above framework by encoding the

variance (scale) of the latent y via another hyper encoder ha(.,θh). See the blue-highlighted

area in Fig. 6.4(c). A second entropy coder encodes this extra scale information (priors) z to

form a separate bit stream of length Rz(x) = Eẑ[− log2 pẑ(ẑ)]. The total number of encoded

bits equals to the sum of two bit streams: R(x) = Ry(x) +Rz(x). At the reconstruction

stage, after decoding the bit stream of z with a hyper-decoder hs(.,φh), “Entropy Coder-1”

of Fig. 6.4(c) leverages the decoded priors to further decode the bit steam of y.

91

6.3 method

(a) Mask processing path: we propose to use multi-level mask processing.

(b) ROI prediction reuses feature from the en-
coder.

(c) ROI coding and prediction for scale-hyperprior codec

Figure 6.4: (a). Mask processing path for predefined (c) or estimated (č) ROI predictions. (b).
Saliency map generation for pre-trained scale-hyperprior encoder backbone. We use a modified
PoolNet [117] architecture with pyramid pooling, feature aggregation and combining. (c). Overview
of the proposed task driven approach for joint ROI image compression and classification. Saliency
generation reuses the features extracted from the encoder backbone to produce the binary ROI
mask. Classifier network performs classification on the reconstructed image x̂ to predict the class
label q̂.

For the distortion D = Ex[||x− x̂||22] measured in MSE, and average rate R = Ex[R(x)]

in bits, the lossy image compression in scale-hyperprior codec optimizes the regularized R-D

objective with trade-off parameter λ for controlling the R-D trade-off:

θ∗g ,φ∗g,θ∗h,φ∗h = arg min
θg,φg,θh,φh

R+ λD. (6.1)

Training based on this objective function leads to optimized encoder parameters (θ∗g ,θ∗h) and

decoder parameters (φ∗g,φ∗h).

We can apply a mask encoder gm(.,ψg) to transform either the actual ROI mask c or

the estimated ROI mask ĉ to a latent mask b ∈ Rd to match the size of y. Following the

92

6.3 method

recent works [36,38], we element-wise multiply the latent mask b by y before quantization.

Further, we apply a Sigmoid function τ (.) to limit the range of by to [0,1]. See Fig. 6.4(a).

Hence, we write the quantized (Q) latent representation ỹc as follows:

ỹc = Q (y · τ (b)) . (6.2)

Utilizing multiple levels of information obtained from the scale-hyperprior codec, we

generate multi-level mask processing by reusing the latent mask b to match the dimension of

hyperprior z. As shown in Fig, 6.4(a), hyper mask encoder hm(.,ψh) followed by Sigmoid

function τ (.) transforms the latent mask to bz. Similar to (6.2), we generate new priors ẑc as

follows:

z̃c = Q (z · τ (hm(b,ψh))) . (6.3)

We denote the sum rate of new bit stream given ROI mask c asRc(x) = Ryc(x)+Rzc(x).

For a given image x and ROI mask c, we apply an approach similar to those from [36, 38] to

define the loss function of R-D objective for ROI based image compression as

L(x, c) = Rc(x) + λD(x, x̂) + λroiDroi(x · c, x̂ · c) (6.4)

D and Droi measure the perceptual quality loss of the full image and the ROI region,

respectively, and are weighted by regularizers λ and λroi. Similar to [36–38, 125], we let

1−MS-SSIM be loss for D, and MSE be loss for Droi. Through end-to-end optimization to

minimize the cumulative loss function of (6.4), the parameters of encoder (θg,θh), decoder

(φg,φh), and the mask encoder (ψg,ψh) can be jointly optimized as

codec params.︷ ︸︸ ︷
θ∗g ,θ∗h,φ∗g,φ∗h,

mask processing params.︷ ︸︸ ︷
ψ∗g ,ψ∗h = arg min

θg,φg,θg,φh,ψg,ψh

Rc + λD+ λroiDroi. (6.5)

93

6.3 method

Here, Rc, D and Droi denote the data rate, overall image distortion, and ROI distortion

averaged over the samples x, respectively, for an ROI mask c.

6.3.2 ROI prediction with Saliency maps

In most cloud-based image applications, ROI masks are not available to ROI coding [36,38].

Inspired by the success reported in [36], we apply CNN-based saliency maps to derive ROI

mask candidates directly from input images. The distinct feature of our design lies in the

removal of a separate feature extraction network to generate saliency map as in [36]. Instead,

for efficiency and complexity reduction, we propose to reuse the multi-scale features already

acquired by the encoder backbone, as conceptually shown in Fig. 6.4(b).

When designing a novel saliency map generation module on top of the scale-hyperprior

encoder backbone, we incorporate a PoolNet [117] which was originally designed for classifi-

cation backbones such as ResNet [15]. For a given RGB image x ∈ Rw×h×3 of width w and

height h, our proposed saliency map generator uses 4 levels of features extracted by the

encoder backbone as inputs, as seen from Fig. 6.4(b). Starting from latent y, the “pyramid

pooling module” (P) interpolates y to match the spatial dimension of the remaining 3

feature levels. Before combining, “feature aggregation module” (A) uses 2D convolution to

further process and to aggregate features from the previous level. We then apply a “feature

combining module” (F) to combine features after extraction, interpolation, and aggregation

at each level. Finally, saliency generator sa(.,ηs) produces the score map č ∈ Rw×h as output

vector whose elements are in [0,1]. Refer [129] for the detailed implementations of P , A and

F . As shown in Fig. 6.4(a), we send the generated saliency map without rounding (č) to the

mask generator to facilitate gradient back propagation. We only apply rounding to generate

the binary ROI map ĉ from č when evaluating the distortion of the ROI region Droi.

94

6.3 method

6.3.3 Classification-guided ROI compression

In end-to-end optimization of any learning-based work flow, loss function plays a vital role.

For joint ROI prediction and ROI coding frameworks without a given ROI mask c, ROI

prediction network can generate ĉ through an end-to-end training and optimization [38].

In contrast to image classifier backbones, encoder backbones weigh each pixel and their

related features equally due to the nature of the distortion loss function such as PSNR or

1−MS-SSIM. Hence, image encoder backbones in their original form are less suitable for

saliency object detection [31,33]. We proposes to replace the computationally-heavy classifier

backbone with a light-weight encoder backbone during ROI, and make the encoder learn the

features that aid in saliency object detection. Our idea is to guide ROI prediction based on

image classification outcomes, while optimizing the entire ROI prediction and coding network

for R-D-C performance. To this end, we adopt a pre-trained, off-the-shelf classifier r(.,κr)

on reconstructed images x̂ to generate image label q̂ as shown in Fig. 6.4(c). Not relying on

a customized classifier enables easy and practical use of our proposed codec with existing

applications without having to redesign/retrain classifier models at the cloud-end [30].

We formulate the loss function of joint ROI compression and classification task for training

on each pair of data {input image x, ground truth class label qgt} as follows. Similar to

Eq. (6.4), R-D loss of ROI compression for the predicted mask ĉ is:

LRD(x) = Rĉ(x) + λssim · D(x, x̂) + λroi · Droi(x · ĉ, x̂ · ĉ). (6.6)

Here, the first element Rĉ(x) is the sum bit rate that includes the quantized ỹĉ and z̃ĉ

as discussed with respect to Eqs. (6.2) and (6.3). We also define image classification loss

95

6.4 experiments and results

according to the cross entropy between the estimated class label q̂ and ground truth class

label qgt.

LCL(x) = CE(qgt, q̂) (6.7)

As proposed in [129], we further include a cross entropy loss to measure the accuracy of the

predicted saliency mask ĉ in comparison with the true mask c.

LS(x) = CE(c, ĉ) (6.8)

Incorporating the above task losses, we directly formulate a joint end-to-end loss LJ through

regularizing control parameters α and β:

LJ(x) = LRD(x) + α · LCL(x) + β · LS(x) (6.9)

to optimize the proposed joint image compression and classification framework by minimizing

the mean joint loss via

{ codec︷ ︸︸ ︷
θ∗g ,θ∗h,φ∗g,φ∗h,

mask processing︷ ︸︸ ︷
ψ∗g ,ψ∗h ,

saliency︷︸︸︷
η∗s

}
= min
θg,φg,θg,φh,ψg,ψh,ηs

Ex[LJ(x)]. (6.10)

6.4 experiments and results

We first introduce the training setup of our experiments before presenting the results.

96

6.4 experiments and results

6.4.1 Details on Training

ROI coding

We train the proposed ROI coding module on HKU-IS data set based on known ROI mask.

In this setting, we train to optimize parameters of the “Mask Processing” path of Fig. 6.4(a)

and the scale-hyperprior codec shown as blue region of Fig. 6.4(c) according to Eq. (6.5). We

initialize scale-hyperprior codec parameters (θg,φg,θh,φh) with off-the-shelf, pre-trained

model available at [131]. Starting from the learning rates of 5e-5 for the codec and 1e-3 for

the mask processing path, we train the entire network with an “Adam” optimizer for 20

epochs while reducing learning rates to 1/10 at epochs 10 and 15.

In order to obtain different rate-distortion points, we start with an expected rate rT in

bits per pixel (bpp). We then constrain the rate R by applying a ReLU() function in

min ReLU(R− rT) + λ · D+ λroi · Droi (6.11)

and vary the trade-off parameters λ and λroi accordingly.

Classification-guided ROI compression

In this framework, we optimize the full processing flow shown in Fig. 6.4(c), according to

Eq. (6.10) in an end-to-end manner. For the classifier, we adopted an available ResNet-18

model which has been pre-trained for ImageNet-1k. We freeze the classifier at all time and

and use it to compute the classification cross entropy loss LCL in Eq. (6.7).

Once the ROI coding module was trained for given ROI masks as explained in Sec. 6.4.1,

we initialize the scale-hyperprior codec (θg,φg,θh,φh) and the mask processing path (ψg,ψh)

using the results learned in Sec. 6.4.1. Starting from initial learning rates of 5e-5 for the

scale-hyperprior codec, 1e-3 for the mask processing path, and 5e-5 for the saliency map

generation unit, we apply “Adam” optimizer for 20 epochs by reducing the learning rate to

97

6.4 experiments and results

1/10 of the original at the epochs 10 and 15. Further, we controlled the data rate using

the same strategy in Sec. 6.4.1 and changed the trade-off parameters λssim, λroi, α and β

accordingly.

Since the ground truth (GT) ROI masks c in Eq. (6.8) are not available for classification

data sets in general, we adopt a PoolNet [117] with ResNet-50 backbone trained on HKU-IS

data set to generate binary masks. We found the PoolNet model to generate accurate ROI

masks very close to ground truth with a mean absolute error (MAE) of only 0.0362, which is

comparable to the test accuracy reported in [129]. Please refer to Appendix D for a visual

comparison of PoolNet-generated masks for HKU-IS test set. Recall that the objective of

Eq. (6.8) is to guide ROI mask generation and not to strictly learn to generate exact ROI

masks as ground truths. Hence, we apply a smaller value β for saliency loss during training.

This light control of mask learning led to more complete and accurate ROI masks, as will be

shown in Sec. 6.4.2.

Performance evaluation

We evaluated performance of the proposed ROI coding module in terms of PSNR (dB) of

the ROI region and the overall image perceptual quality measured in MS-SSIM. Similar

to [38], we convert MS-SSIM into dB via 10 log10(1−MS-SSIM). When calculating the

ROI PSNR for HKU-IS and DAVIS-2016 data sets, we used available ground truth masks

and compared the performance against two benchmarks: the end-to-end ROI compression

framework (Cai-2019) [38] and standard JPEG2000 ROI compression.

In order to further establish the robust performance of the proposed ROI compression

over different mask sizes, we tested the proposed ROI coding module trained on the HKU-IS

data set in Sec. 6.4.1, on the DAVIS-16 data set.

To evaluate the proposed framework of joint ROI compression and classification, we further

record image classification accuracy in-addition to the rate-distortion (R-D) metrics. Since

the learned ROI predictions within our proposed method are better than PoolNet-generated

98

6.4 experiments and results

saliency masks, we provide the ROI PSNR for the proposed methods based on the learned

predictions.

6.4.2 Results and Comparisons

ROI coding with predefined ROI regions

Fig. 6.5 provides the R-D performance of the proposed ROI coding module over HKU-IS test

data. Fig. 6.5(a) presents the resulting PSNR for ground truth (GT) ROI by comparing scale-

hyperprior (SHP) codec without the ROI feature, JPEG2000, Cai-2019 [38], and our proposed

method. When evaluating the SHP codec, we used the off-the-shelf MSE optimized models

available at [131]. For JPEG2000 evaluation, we used “scaling”-based ROI compression [29]

available in Kakadu2 implementation of JPEG2000. In addition, we included the ROI

PSNR performance of the proposed codec when evaluating under PoolNet-generated saliency

masks (See Fig. D.1). Note that the proposed method matches the performance of Cai-2019,

while our proposed classification-guided ROI codec showcases a 73% lighter ROI prediction
2 https://kakadusoftware.com

(a) ROI PSNR (b) Overall MS-SSIM

Figure 6.5: Rate-distortion results for HKU-IS data set. (a) PSRN comparisons of the ground
truth (GT) ROI region for: scale-hyperprior codec (SHP) without the ROI feature, JPEG2000,
Cai-2019 [38] and our proposed method: ROI coding (new). (b) comparison of full image quality
measured in MS-SSIM.

99

6.4 experiments and results

backbone resulting an overall 18% lighter model in terms of number of parameters compared

to Cai-2019 as shown in Sec. 6.5. Further, the proposed codec outperforms both JPEG2000

and SHP codec.

In order to show the effect on overall image quality while achieving better ROI performance,

we provide MS-SSIM for the HKU-IS test set in Fig. 6.5(b). We see that the proposed method

outperforms JPEG2000 codec by a significant margin.

Fig. 6.6 illustrates the performance of the proposed codec on DAVIS-2016 data set for

various mask sizes. Our proposed solution achieves better R-D performance than SHP in

terms of ROI PSNR, as Fig. 6.6(a) shows. We also note larger gains for smaller ROI mask

sizes because the codec allocates fewer additional bits to encode features of ROI regions in

such cases. Fig. 6.6(b) compares MS-SSIM of the full image. The results show that, the

improved ROI PSNR for various test mask sizes is accompanied by a small marginal loss of

MS-SSIM for the full image in comparison with SHP codec.

Figure 6.6: R-D results for different mask sizes of DAVIS-2016 data set. (a) compares ROI PSNR
values and (b) compares the overall image quality measured in MS-SSIM with scale-hyperprior
(SHP) off-the-shelf models. We observe better ROI R-D performance in terms of PSNR and larger
gains for smaller ROI mask compared to bigger mask sizes while maintaining comparable overall
image quality.

100

6.4 experiments and results

Joint ROI compression and classification

We evaluated the performance of proposed joint ROI compression and classification framework

of Fig. 6.4 that utilizes pretrained off-the-shelf image classifiers on four data sets: Imagenette,

CADDY, ASL and ImageNet-1k.

Fig. 6.7 shows R-D-C performance for Imagenette. To obtain an off-the-shelf classier for

Imagenette with 10 classes, we started with a ResNet-18 classifier pre-trained for ImageNet-1k

but altered the fully connected layer to classify 10 classes. We then fine-tuned the modified

ResNet-18 classifier on Imagenette training set. In Fig. 6.7(a), we compared the ROI PSNR

performance of our proposed framework against the SHP codec as baseline. To ensure fairness,

we also fine-tuned the SHP codec to optimize R-D-C on Imagenette data set by applying the

optimization step similar to the proposal of [31]:

min
θg,φg,θh,φh

R+ λ · D+ α · LCL (6.12)

By minimizing the above loss function for the training set, we fine-tune the SHP codec to

reproduce images with higher visual quality and better classification accuracy.

In addition to the proposed joint compression and classification framework with learned

masks, we further trained the proposed ROI coding module given the PoolNet-generated

masks as ground truth (marked blue in Fig. 6.7(a)). Similarly for fairness, we also fine-tuned

(a) ROI PSNR (b) Overall MS-SSIM (c) Classification accuracy

Figure 6.7: R-D-C results for Imagenette data set. The proposed joint ROI prediction, coding and
classification framework (red) achieves better ROI PSNR, overall image quality and classification
accuracy.

101

6.4 experiments and results

the ROI coding module by excluding the saliency loss term in Eq. (6.9), since ROI masks

learning is not required.

LJ(x) = LRD(x) + α · LCL(x) (6.13)

When calculating the ROI PSNR for the baseline SHP codec and the ROI coding module,

we applied PoolNet saliency masks. We observe that our proposed classification-guided

mask-learning delivers significant gains in ROI PSNR in these two cases. Equally noteworthy,

the proposed method achieves higher overall image quality and classification accuracy. These

results establish that classification-guided ROI mask learning, and end-to-end optimization

of ROI compression are both valuable design principles for performance enhancement.

Evaluation on ImageNet-1k data set

We further evaluate the performance of the proposed codec trained on Imagenette data

set described in Sec. 6.4.2 on the much larger classification data set of ImageNet-1k. To

do so, we simply replace the classifier used for Imagenette with the original off-the-shelf

ResNet-18 classifier for 1000 classes. We directly test this model on ImageNet-1k without

any fine-tuning. Similarly, we also obtained the performance of the baseline SHP codec and

the ROI compression module by directly using the models trained for Imagenette data in

(a) ROI PSNR (b) Overall MS-SSIM (c) Classification accuracy

Figure 6.8: R-D-C results for ImageNet-1k data set. We pre-trained the codecs on Imagenette data
set and evaluated on ImageNet-1k test set. An off-the-shelf ResNet-18 classifier was used to evaluate
the classification accuracy.

102

6.4 experiments and results

Sec. 6.4.2 on ImageNet-1k. We recorded top-5 accuracy as the classification accuracy. Fig. 6.8

presents the results.

Despite the mismatch of training data versus testing data, the proposed codec outperforms

the baselines in terms of ROI PSNR, overall MS-SSIM, and classification accuracy. This

experiment setup further suggests that once the codec has been optimized for classification on

one data set, similar performance gains can be achieved on similar data sets. Such benefit is

derived from the use of cross entropy loss and off-the-shelf classifiers to guide ROI prediction

and ROI coding modules without retraining the classifier. As such, the proposed codec learns

to extract necessary features for ROI prediction, coding, and classification without being

overly reliant on the classification data set.

Underwater gesture recognition

Using the CADDY data set, we test the proposed codec by evaluating on a less well known

but practical application of underwater gesture recognition. The task is to classify underwater

gesture signals for communication into one of 16 classes: “end comm, up, mosaic, five, here,

backwards, two, boat, four, start comm, down, photo, one, num delimiter, carry, three”. Such

images mostly consist of a diver gesturing a signal with the ROI region being the diver.

Similar to our Imagenette and ImageNet-1k experiments, we use PoolNet-generated masks

as ground truth. To train and evaluate the proposed method over the CADDY data, we

(a) ROI PSNR (b) Overall MS-SSIM (c) Classification accuracy

Figure 6.9: R-D-C performance of the proposed joint image compression and classification framework
for CADDY data set. The proposed joint ROI prediction, coding and classification framework (red)
achieves better ROI PSNR, classification accuracy and sufficient overall image quality.

103

6.4 experiments and results

Original PoolNet mask 0.1781 Bpp 0.1204 Bpp 0.1021 Bpp 0.0763 Bpp Recon 0.1781 Bpp

Figure 6.10: Generated masks (columns: 3-6) at different data rates for CADDY data set where
ground truth masks are incomplete and less accurate. Note that we demonstrate the samples with
worst ground truth masks generated by PoolNet [117]. Reconstructed images x̂ are shown in the
last column.

followed the same training and fine-tuning steps performed for Imagenette classification of

Sec. 6.4.2. Fig 6.9 provides the R-D-C performance. The proposed end-to-end ROI prediction

and coding method delivers superior ROI PSNR and full image quality over a range of viable

data rate. It outperforms the baseline SHP codec and ROI compression at modestly higher

data rate (bpp). In addition, we further tested ROI R-D performance for JPEG2000 codec

for comparison. When generating this JPEG2000 benchmark, we followed the same steps

described in Sec. 6.4.2 for HKU-IS data set.

We show the learned ROI masks generated by the proposed framework at different bit

rates in Fig. 6.10. Compared to the ground truth masks generated by PoolNet (pre-trained

on HKU-IS data set), our leaned masks are more accurate. Note that for this illustration, we

compare the worst ROI masks generated by PoolNet. Further, in column 7 of Fig. 6.10, we

show the reconstructed images based on the learned masks at an average Bpp of 0.1781. Note

104

6.4 experiments and results

Original PoolNet mask 0.2764 Bpp 0.1870 Bpp 0.1283 Bpp 0.0992 Bpp Recon 0.2764 Bpp

Figure 6.11: Learned masks for ASL data set. Note that the learned masks are more detailed and
accurate compared to the ground truth masks generated by PoolNet [117]. Reconstructed images x̂
are shown in the last column.

that the proposed method tends to segment the masks following color gradient differences

specially at higher bit rates as opposed to lower Bpps.

American Sign Language character recognition

We further tested the proposed joint ROI compression codec with a more common and

practical classification application. A sample image of the data set depicts a person gesturing

a hand signal in a moderately clear background. Hence, the ROI region is the person gesturing

the sign. The task is to classify each hand sign to one of 24 English characters.

During training, we followed the exact same steps implemented for CADDY underwater

gesture recognition task and similarly, Fig. 6.12 shows R-D-C performance for the test

set. In consistence with Imagenette, ImageNet-1k and CADDY experiments, the proposed

classification guided ROI compression codec achieves higher ROI PSNR and classification

105

6.5 complexity comparison

(a) ROI PSNR (b) Overall MS-SSIM (c) Classification accuracy

Figure 6.12: R-D-C performance of the proposed joint image compression and classification framework
for ASL data set. The proposed joint ROI compression and classification framework (red) achieves
better ROI PSNR, classification accuracy and sufficient overall image quality.

accuracy while maintaining sufficient overall image quality. Further, in Fig. 6.11, we compare

the learned ROI predictions at different bit rates. Note that the learned masks via the

proposed method in column 3 are more detailed and accurate compared to PoolNet generated

ground truths (column 2). This further solidifies the observations we noted for CADDY data

set.

6.5 complexity comparison

In this section, we compare the model complexity, inference speed and power consumption of

the proposed classification-guided ROI codec against recent learning-based ROI codecs.

6.5.1 Model complexity

Recall that we proposed to learn ROI masks by using the features extracted from the shared

encoder backbone on resource-limited embedded devices, when predefined ROI predictions

are not available for networked learning applications. This solution overcomes the need for

more memory to store a deep classifier backbone (e.g. ResNet-50) and computation power

106

6.5 complexity comparison

required to estimate features by the conventional saliency based ROI prediction approach

consisting of a separate path for mask estimation [36,119].

Table 6.1: Complexity comparison: No. of parameters are given in millions (M). Our proposed
classification-guided approach shows 74% (3 times) of parameter reduction compared to the baseline.
Parameters are categorized in to feature extraction backbone (B.bone) and saliency mask generation
(Mask) under ROI prediction, and main codec backbone (Codec) and mask processing (Mask) under
ROI coding.

ROI prediction ROI coding

Method B.bone Mask Codec Mask Total

PoolNet + SHP (a) 25.51 42.75 5.08 - 73.34
Cai-2019[38] (estimated) 5.45 12.30 5.45 - 23.21

PoolNet + ROI coding (b) 25.51 42.75 5.08 2.48 75.82
Classification-guided ROI 1.49 11.41 3.59 2.48 18.97

Complexity reduction
− compared to (a) 94% 73% 29% - 74%
− compared to (b) 94% 73% 29% 0% 75%
− compared to Cai-2019 73% 7% 34% - 18%

In Table. 6.1, we calculate the network complexity in terms of number of parameters. Note

that the proposed feature-sharing classification-guided ROI codec uses a significantly simple

ROI prediction (feature extraction) backbone with 94% of reduced complexity compared

to PoolNet while achiving superior ROI compression performance shown in Figures 6.7,

6.8, 6.9 and 6.12. Overall, with 73% reduction in saliency mask generation, 29% in ROI

coding, classification-guided ROI codec records 74% total complexity reduction compared to

PoolNet-based ROI codecs in terms of no. of parameters. Detailed complexity comparisons

can be found in the supplement material.

Compared to Cai-2019, our proposed ROI prediction backbone is 73% lower in number of

parameters resulting an overal complexity reduction of 18%. When calculating number of

parameters for Cai-2019 [38], we relied on the implementation details provided in their paper

since implementation code is unavailable. See Appendix D for the details of our parameter

estimation of Cai-2019.

107

6.5 complexity comparison

6.5.2 Inference speed

We tested the inference speed of the proposed and the baseline codecs in terms of images per

second (ips) on an Nvidia Titan V GPU based on CADDY test set. See Table. 6.2 for results.

Speed gains were calculated compared to the baseline (PoolNet + SHP) which uses PoolNet

for ROI prediction and SHP codec for image coding. For fairness, images were resized to

256×256 before inference.

Combining our ROI coding module with SHP codec (PoolNet + ROI coding (b) in

Table. 6.2) introduces only 23% reduction of inference speed from SHP codec. On the other

hand, our classification-guided ROI codec shows 3.36 times inference speed compared to the

baseline PoolNet + SHP, benefiting from the reduced complexity as shown in Sec. 6.5.1.

Table 6.2: Inference speed comparison: Speed is given in number of images per second (ips). Our
proposed feature-sharing, classification-guided ROI prediction shows 5.38 times faster inference
compared to PoolNet.

Method ROI prediction ROI coding Total

PoolNet + SHP (a) 32.73 264.00 29.10

PoolNet + ROI coding (b) 32.73 205.33 28.21
Classification-guided ROI 176.00 205.33 94.76

Speed gain
− compared to (a) ×5.38 ×0.77 ×3.26
− compared to (b) ×5.38 ×1 ×3.36

6.5.3 FLOPS calculation

When measured on the same device (GPU) the number of floating point operations per

second (FLOPS) is directly proportional to the power consumption. In Table. 6.3, we

compare the number of FLOPS required for the baselines and the proposed ROI codec on

an Nvidia Titan V GPU. Demonstrating similar trends to complexity savings, the proposed

classification-guided ROI codec records 47% power savings during ROI prediction and 41%

overall compared to PoolNet + SHP baseline.

108

6.6 discussion: learned masks from shared encoder backbone

Table 6.3: Computational power demand in terms of Flops in Billions (G).

ROI prediction ROI coding

Method B.bone Mask Codec Mask Total

PoolNet + SHP (a) 8.77 41.90 5.71 - 55.38

PoolNet + ROI coding (b) 8.77 41.90 5.71 2.50 57.88
Classification-guided ROI 2.76 24.32 2.94 2.50 32.52

Power savings
− compared to (a) 69% 42% 49% - 41%
− compared to (b) 69% 42% 49% 0% 44%

6.6 discussion: learned masks from shared encoder backbone

In order to visualize the benefits of classification-guided saliency predictions, we perform the

following ablation test. We train the proposed saliency generation module sa(.,ηs) on the

SHP encoder which has been pre-trained with (SHP-Q8 optimized) and without (SHP-Q8) a

classification loss function. For both settings, we used SHP codec with the saliency generation

path as given in Fig 6.4(c) without the mask processing path and the classifier. Our goal is

to assess the performance of the proposed saliency generator.

SHP-Q8

For this setting, we initialize SHP codec with highest available quality (Q=8) mode and froze

the codec during training. We optimize parameters ηs of sa through training on HKU-IS to

minimize the saliency loss of Eq (6.8). During training, we applied Adam optimizer for 40

epochs starting from initial learning rate of 1e-4 which is reduced by ×10 at 10, 20 and 30

epochs, respectively.

SHP-Q8 optimized

We further optimize the previous model by incorporating classification loss. Leveraging the

insight that deep learning classifiers extract features of different scales at different depths,

109

6.6 discussion: learned masks from shared encoder backbone

Image

GT mask

SHP
0.1362 MAE

SHP-optimized
0.1196 MAE

Figure 6.13: ROI masks generated by reusing the features extracted from the shared encoder
backbone of SHP codec at Q = 8. When guided by classification, the proposed ROI prediction (row
4) improves by 12% in terms of Mean Absolute error (MAE) compared to the case without guiding
(row 3).

we fine-tune the off-the-shelf SHP codec for R-D-C performance using the loss of Eq. (6.12)

before training the saliency generator. By doing so, we anticipate that the encoder learns to

acquire features important to both reconstruction and classification. During the early phase

of fine-tuning SHP codec without saliency generation, we train the codec on ImageNet-1k

data using Adam optimizer of learning rate 1e-3 for 1 epoch. Then we use the resulting

model to initialize the SHP codec and continue the same steps used in SHP-Q8 to minimize

saliency loss.

In Fig. 6.13, we compare the ROI predictions from these two settings against ground truths

for HKU-IS data set. The ROI mask predictions from “SHP-Q8” and “SHP-Q8 optimized”

are shown in row 3 and row 4. Note that both settings can generate ROI masks at sufficient

accuracy. We observe 12% MAE reduction by optimizing SHP-Q8 with classification loss

confirming the benefits of classification-guided saliency prediction.

110

6.7 conclusions

6.7 conclusions

This chapter presented a joint image compression and classification framework and its end-

to-end optimization targeting ROI-driven applications. Our framework is consistent and

amendable to R-D-C performance trade-off in resource constrained deployment. Targeting

widespread deployment on low cost devices, we replaced the computationally-heavy feature

extraction backbone for ROI prediction with a light-weight, feature-reusing encoder backbone

guided by classification loss achieving faster, memory and power efficient inference. Based

on extensive experiments on R-D-C performance over multiple data sets, our proposed joint

image compression and classification framework demonstrates superior ROI rate-distortion

and classification accuracy trade-off while maintaining sufficient overall image quality.

111

Part III

L D R - G U I D E D C O D E C S

112

7
L I N E A R D I S C R I M I N AT I V E R E P R E S E N TAT I O N

(L D R) - G U I D E D L O W - S H O T L E A R N I N G

As discussed in chapters 5-6, learning-based image/video codecs typically utilize the well known

auto-encoder structure where the encoder transforms input data to a low-dimensional latent

representation. “Efficient latent embedding” can improve DL task accuracy by preserving

important features essential to the task and reduce bandwidth needs during compression

for transmission/storage by removing redundancy of learned features. Finding such efficient

latent embedding however is quite challenging considering the complexity of real-world-inputs

and multiple post DL applications that rely on the learned latent embedding.

One natural approach to address this real-world data transformation problem is to learn

latent representations that can be expressed using standard models or distributions. Along this

direction, we explore the generalization of features of one such family of learned distributions

called linear discriminative representation (LDR) [53] where latent embeddings are distributed

in linear and class-wise orthogonal subspaces as introduced in Sec. 2.3. In particular, this

chapter proposes a novel classification framework when training with extreme data imbalance

scenarios named “low-shot training”. We then evaluate the proposed framework for rate-

accuracy performance focusing practical cloud-based networked classification applications.

we limit our discussion in this chapter to two popular low-shot-learning instances, zero-shot

learning (ZSL) and few-shot learning (FSL).

In ZSL and FSL, where training and inference are on disjoint classes, conventional

cross-entropy (CE) based approaches tend to exhibit model over-fitting seen classes [132].

Hence, directly relying on seen class labels or attributes during training is disadvantageous.

Recently proposed maximal coding-rate-reduction (MCR2) principle finds LDRs with in-

class compressive and inter-class discriminative properties by utilizing class labels as side

information [53]. LDRs represent more universal features that are common to both seen and

113

7.1 introduction

unseen classes. This chapter proposes LDR-guided training to tackle challenging ZSL and

FSL problems by introducing an extra feature embedding path. Tests over several benchmark

data sets show that this LDR-guided models achieve significant accuracy improvement over

conventional ZSL and FSL baselines with zero added memory or computational complexity

during inference.

7.1 introduction

In Zero-shot learning (ZSL), training data belong to a certain set of (seen) classes but the

inference process needs to predict class labels of data (e.g., images) belonging to another set

of (unseen) classes with no overlapping between seen and unseen class sets [50,51,133,134].

A more practical setting, generalized zeros-shot learning (GZSL), aims at recognizing images

from either seen or unseen classes during inference [54,132]. Initial studies of ZSL have relied

on abstract descriptions of image classes called “attributes” to handle classification problem

of unseen classes [50,54,55]. Recent studies [132,135,136] have further expanded the use of

“attributes” by learning better visual-semantic embeddings leading to state-of-the-art ZSL

classification performance.

As a generalization of ZSL, few-shot learning (FSL) deals with cases when a few (N)

labeled sample images are available for each class during inference [56–58]. The goal is to

classify each sample image into one of the K classes. The set of N given labeled images

for each class is the “support” set while the sample image for classification is the “query”

image. This setup is commonly known as N -shot, K-way classification. In the same notation,

ZSL with K unseen classes can be described as 0-shot, K-way classification. Similar to ZSL,

learning universal (i.e., agnostic) feature embeddings that are essential in discriminating

among classes, not limited to the seen set, remains as the core objective in FSL [137,138].

When training and testing on disjoint classes, learning of visual-semantic embeddings

in ZSL or feature embeddings in FSL with deep learning (DL) models relying directly on

114

7.1 introduction

Figure 7.1: LDR-guided Zero-Shot Learning: we propose to use MCR2-based loss during training to
reduce over-fitting to seen classes by learning general features common in both seen and unseen
classes. Zero extra computational cost is incurred during inference since MCR2 classifier is removed
after training. AP: average pooling.

conventional CE-based approaches can lead to severe over-fitting to the seen classes [132],

because of practically unavoidable model over-parameterization. This leads to degradation of

classification accuracy on unseen classes with more epochs trained on seen class images [139].

To alleviate this problem, recent works suggest an unseen validation set to select the least

over-fitting model [136, 138]. Further, generative methods [140–142] that synthesize new

unseen data during training have also found successes in ZSL. These approaches address the

crucial need of learning visual-semantic or feature embeddings that are common for both seen

and unseen classes towards better ZSL and FSL performance. Nevertheless, the practical

utility of these approaches are limited by either the requirement for sufficient data or the

complexity of data generation.

The authors of recent work [53] suggested the principle of maximal coding-rate-reduction

(MCR2) to promote linear representations Z of images X which are in-class compressive

and inter-class discriminative by utilizing class labels as side information (See Fig. 2.6).

Owing to the decoupled subspace structure of the learned representations Z, the recent

works [52, 59, 143] have further reported the success of MCR2 in robust classification and

reconstruction from learned features. In particular, the authors of [53] demonstrated model

robustness to corrupted training labels. These works suggest the capacity of such learned

LDRs to discriminate images to be less dependent on class labels. We advocate such feature

to be favourable for low-shot learning tasks with highly imbalanced training data. Note that

115

7.2 background and related works

optimization of MCR2 objective introduces no extra parameters during inference and, hence,

no complexity increase.

In this chapter, we address the challenging ZSL and FSL problems by introducing the

use of LDR guidance. Our specific learning architecture, shown in Fig. 7.1, provides a

new feature-embedding path for LDR-guided training. By promoting LDRs that are more

general and less reliant on seen training classes, our LDR-guided models can learn features

common to both seen and unseen classes and achieve significant accuracy improvement over

conventional ZSL and FSL baselines. Furthermore, our LDR-guided ALE model achieves a

new performance benchmark for ZSL on AwA2 data set, to the best of the authors’ knowledge.

Analytically, by considering cloud-based networked-AI application cases, we evaluate the

rate-distortion and noise-robustness performance of the proposed LDR-guided ZSL models.

We organize the rest of the chapter as follows. In Section 7.2, we discuss common ZSL

and FSL frameworks that serve as baselines in this analysis. Section 7.3 provides details of

our proposed LDR-guided ZSL and FSL classification models, followed by experiments and

test results in Sec. 7.4.

7.2 background and related works

7.2.1 ALE for Zero-Shot Learning

In general, ZSL models showcase two disjoint transformations: from image domain to attribute

domain and from attribute domain to class labels [50]. Since the training process only involves

seen classes, learning a compatibility transformation between images and attributes becomes

the core task [55]. The top part of Fig. 7.1 showcases the attribute-label-embedding (ALE)

classifier [136,144]. For each input image x, the encoder fφ(·) generates a low-dimensional

latent vector y ∈ Rd, known as image embedding. Assuming k-dimensional ground truth

116

7.2 background and related works

attributes, “attribute classifier” transforms y into attribute domain via a linear transformation

V ∈ Rd×k: âbase = y>V .

In this case, encoder and the attribute classifier jointly construct the compatibility function

between images and attributes. During inference, corresponding class label cj of K unseen

classes is obtained by finding the ground truth class attribute agt ∈ {aj}K1 that is closest to

âbase via inner-product.

cj = arg max
i∈[1,K]

âbase · ai (7.1)

In Fig. 7.1, we denote the similarity score by si = âbase · ai.

7.2.2 ProtoNets for Few-Shot Learning

Fig. 7.2 illustrates the basic work flow of Prototypical Networks (ProtoNets) [137]. The encoder

fφ(·) transforms each image x in support set S to latent vectors ZS = {z; z = fφ(x),x ∈ S}.

For each class j in the support set, the average of latent vectors in that class cj also lie in

the same latent space. During inference, ProtoNet reuses the same encoder to obtain the

Figure 7.2: LDR-guided FSL model. We propose to map the images in support set S into linear
discriminative representations ZS by minimizing rate reduction loss LMCR2 .

117

7.3 methods

latent representation zQ of the query image x ∈ Q. Class label of zQ is obtained by finding

the class average c ∈ {cj}K1 with the minimum distance d(·, ·) to zQ:

ĉ = arg min
j∈[1,2,··· ,K]

d(cj , zQ) (7.2)

`2-norm has been the tested to be the best candidate to evaluate the distance in ProtoNet

compared to other measures such as cosine-distance [137].

7.3 methods

We propose to guide the training of existing ZSL and FSL models with MCR2 loss introduced

in Sec. 2.3, to mitigate over-fitting to seen classes by learning general features that are

universal among both seen and unseen classes.

7.3.1 LDR-Guided Zero-Shot Learning

Fig. 7.3 illustrates the proposed LDR-guided ZSL model. In addition to the attribute

prediction abase in the baseline, we introduce an additional attribute prediction amcr2 from

an LDR z.

Specifically, Fig. 7.3 shows a feature extraction backbone, in which each of ResNet [15]

layers L1:L4 contains extracted features of different abstraction levels relevant to input image

x. Our proposed method reuses such extracted features to yield an LDR z by optimizing

MCR2 objective introduced in Sec. 2.3.1. The learned LDR z exhibits in-class compressive

and inter-class discriminative characteristics based on attributes. In the following section, we

describe our proposed approach of learning an attribute-based LDR z.

118

7.3 methods

Figure 7.3: LDR-guided ZSL model. The proposed attribute based MCR2 classifier generates an
additional attribute prediction vector amcr2 based on LDR z. AP: average pooling.

Attribute-Based Membership for MCR2

Denote the set of latent vectors mapped from input image set X of a mini-batch X =

[x1,x2, · · ·xm], with batch size m, as Z = [z1, z2, · · · , zm] ∈ Rd×m. We now formulate the

corresponding attribute-based membership Π(A) based on ground truth attributes, instead

of class labels proposed in [69]. In this case, membership set Π(A) consists of continuous

diagonal matrices {Π1(A1), · · · , Πk(Ak)} ∈ Rm×m with ∑k
i=1 Πi(Ai) = Im. Each Πi(Ai)

encodes the magnitude of attribute i for all samples in the mini-batch. We illustrate the

proposed membership set construction in Fig. 7.4.

For instance, let there be two classes: polar bear and zebra, with a polar bear sample

x1 and zebra sample x2. The given binary values for attributes {water, stripes, white}

are {1, 0, 1} and {0, 1, 1} for polar bear and zebra classes, respectively; “1” indicates the

presence of the corresponding attribute. We formulate the attribute-based membership

using `1-normalized attribute vectors to ensure ∑k
i=1 Πi(Ai) = Im. With this, we write the

attribute-based MCR2 loss per mini-batch for a fixed distortion ε as

LMCR2(Z|ε, Π(A)) = −R(Z|ε) +Rc(Z|ε, Π(A)). (7.3)

119

7.3 methods

End-to-End Loss

As shown in the lower half of Fig. 7.3, a ResNet layer (L4) and two fully connected layers

(FC-1 and FC-2) are used to transform the intermediate features, extracted by the encoder,

to the latent representation z. Similar to the ALE classifier, the proposed model projects z

into the attribute domain by using a linear transformation W ∈ Rd×k: âmcr2 = z>W .

During training, we linearly combine the attribute embeddings abase and âmcr2 using a

trainable vector β to generate a new attribute:

aβ = âbase + β⊗ âmcr2 (7.4)

where ⊗ denotes the element-wise product. Similar to [136], we evaluate the classification

loss of the proposed ALE classifier using the CE loss for image, ground truth attribute pair

{x,agt}:

LCL(x,agt) = − log exp(aβ · agt)∑K
1 exp(aβ · ai)

(7.5)

Figure 7.4: Examples of class vs attribute -based membership. We propose to encode the membership
Π in MCR2-based on normalized attributes to reduce over-fitting to seen classes.

120

7.3 methods

We formulate the end-to-end loss function of the proposed LDR-guided model by combining

Eqs. (7.3) and (7.5):

L(x,agt) = LCL(x,agt) + λLMCR2(Z|ε, Π(A)), (7.6)

in which the hyper-parameter λ controls the trade-off between the classification loss and

MCR2 objective.

Disjoint Training

By minimizing Eq. (7.6), the end-to-end training finds the optimized parameter configurations

of the encoder (φ∗), MCR2 path (θ∗), linear transformations V ∗, W ∗ and β∗,

{φ∗,V ∗,β∗,θ∗,W ∗} = arg min
φ,θ,V ,W ,β

∑
{x,agt}

L(x,agt) (7.7)

In order to ensure that ALE-based embedding âbase and MCR2-based embedding âmcr2

are mutually beneficial with exclusive features, we propose the following disjoint training

strategy. We only update the parameters φ,V ,β (marked in blue) in Fig. 7.3 based on Lcls

and only update θ and W (marked in green) based on LMCR2 . This disjoint process further

facilitates the standalone operation of the encoder and the attribute classifier during inference

without the MCR2 path. Furthermore, it helps guide ZSL to find more universal features

that are common to both seen and unseen classes. Such process is less likely to converge to

over-fit models. Once training is complete, we remove the MCR2 path in yellow dashed block

in Fig. 7.3 and bring back the model to its former computational complexity.

121

7.3 methods

7.3.2 LDR-Guided Few-Shot learning

We illustrate the proposed LDR-guided FSL model in Fig. 7.2. Similar to LDR-guided ZSL,

we promote latent feature embedding z of the FSL encoder to be in-class compressive and

inter-class discriminative with MCR2 loss. By doing so, we expect to introduce two benefits

to improve FSL classification. In-class compressiveness helps each latent embedding of class

j of the support set to be closer to their class mean cj . Inter-class discirminability pushes

the class averages cj further apart from each other. We note that recent works [138,145,146]

have proposed “embedding adaptation” functions to induce similar effects.

In this work, we only use the support set XS = {x ∈ S} during training to minimize

the MCR2 loss although, support images with class labels are available during inference in

contrast to ZSL. For a given encoder instance f(·,φ) and latent vectors of the support set

ZS(φ) and query zQ(φ), we write the MCR2 loss function for fixed ε similar to Eq. (7.3):

LMCR2(ZS |ε, Π) = −R(ZS |ε) +Rc(ZS |ε, Π). (7.8)

Since the ground truth class labels are available for the support set, we rely on class-

based membership when formulating Π. Classification loss Lcls in the proposed LDR-

guided FSL model measures the softmax over distance between zQ and its corresponding

class center cgt in the feature embedding space [137]. For a training image-label instance

{xQ, cgt|zQ = fφ(xQ),xQ ∈ Q}, we write:

LCL(xQ, cgt|XS) = − log exp(−d(zQ, cgt))∑K
j=1 exp(−d(zQ, cj))

. (7.9)

122

7.4 experiments and results

Similar to LDR-guided ZSL case, we formulate the end-to-end loss function for the FSL

case as a weighted sum of classification and MCR2 loss.

L(xQ, cgt|XS) = LCL(xQ, cgt|XS) + λLMCR2(ZS |ε, Π). (7.10)

Again, the hyper-parameter λ leverages trade-off between the classification loss and MCR2

loss. Since no additional parameters are dedicated for the MCR2 branch, we optimize the

encoder parameters based on both above loss terms to find the encoder configuration φ∗:

φ∗ = arg min
φ

∑
{xQ,cgt,XS}

L(xQ, cgt|XS) (7.11)

7.4 experiments and results

We now provide the details of the experiment setup and the results of MCR2-guided models

in comparison to state-of-the-art (SOTA) benchmarks and models.

7.4.1 LDR-Guided Zero-Shot Learning

We conducted ZSL experiments on three common ZSL benchmark data sets: AwA2, CUB,

and SUN. AwA2 [147] contains 37,322 images of 50 animal classes with 85 attributes per class.

We used the standard training and test (40 seen/10 unseen) split proposed in [54]. CUB [148]

contains 11,788 bird images from 150 seen and 50 unseen classes with 312 attributes per class.

Similarly, SUN [149] contains 14,340 scene images from 645 seen and 72 unseen classes, with

102 attributes per class.

123

7.4 experiments and results

(a) Results (b) LDR-guided ALE-b model

Figure 7.5: Ablation study: ZSL and GZSL accuracy comparison on AwA2 data set with ResNet-34
feature extraction backbone

Baseline ALE Classifier

We used the ALE classifier described in Sec. 7.2.1 as the baseline for ZSL. Applying the

implementation for the “base mode classifier” given in [136], we used ResNet-101, pre-trained

on ImageNet-1k [77], as feature extraction backbone. We pre-train the classifier parameters

V on seen class images for 2 epochs to minimize LCL followed by optimizing the full network

end-to-end for another 28 epochs at reduced learning rate that is ×0.001 smaller.

We evaluate the baseline ZSL and GZSL task accuracy using the same model trained

as described above. For GZSL evaluation, we used the calibrated stacking [139] parameter

values recommended in [136].

LDR-Guided ALE Classifier

We initialized the encoder backbone with the same pre-trained ResNet-101 as in baseline

case. Further, we initialized the green L4 layer of MCR2 path, as shown in Fig. 7.3, using

the same pre-trained parameter values of the blue L4 layer in the encoder backbone.

We pre-train the classifier parameters V , linear transformations W and β on seen class

images for 2 epochs. Then during each subsequent epoch, we apply the disjoint training

approach proposed in Sec. 7.3.1 as follows. First, we update parameters φ, V and β to

minimize the CE loss. We then optimize the MCR2 path parameters θ on MCR2 loss. We

124

7.4 experiments and results

Table 7.1: ZSL and GZSL accuracy comparison. ‘LFGAA+H’ indicates LFGAA+Hybrid [1] method.

Zero Shot Generalized Zero Shot
AwA2 CUB SUN AwA2 CUB SUN

Method T1 T1 T1 u s H u s H u s H

AREN [150] 67.9 71.8 60.6 15.6 92.9 26.7 38.9 78.7 52.1 19.0 38.8 25.5
LFGAA+H 68.1 67.6 61.5 27.0 93.4 41.9 36.2 80.9 50.0 18.5 40.4 25.3
APN [136] 68.4 72.0 61.6 56.5 78.0 65.5 65.3 69.3 67.2 41.9 34.0 37.6

ALE (baseline) 66.8 69.9 60.6 55.3 81.2 65.8 64.6 66.4 65.5 37.9 34.9 36.3
LDR-guided ALE 67.7 70.4 60.8 58.5 78.7 67.2 65.5 67.1 66.3 38.1 35.2 36.6

repeat the two alternating steps for 58 more epochs and record the final ZSL and GZSL test

accuracy. Same calibrated stacking parameter values in [136] are used for GZSL.

Ablation Study

In this experiment, we study the effect of feature sharing for the MCR2 path. We use a

ResNet-34 backbone for both the baseline and LDR-guided models and follow the same

training process in Sec. 7.4.1.

LDR-guided ALE-a model has the same architecture as Fig. 7.3 but with a ResNet-34

backbone. LDR-guided ALE-b model as shown in Fig. 7.5(b) learns features from raw

RGB pixel values, enabling higher flexibility for MCR2 path to generate exclusive features.

Although this introduces additional computationally cost during training, the benefit is the

significant improvement of both ZSL and GZSL accuracy. See Table. 7.5(a). Furthermore, in

the inference phase, there is no increase in computational complexity when compared with

the baseline ALE since the MCR2 path will be removed.

SOTA Comparison

Table. 7.1 provides the comparative ZSL and GZSL accuracy of the proposed LDR-guided

ALE approach with existing ZSL methods on AwA2, CUB, and SUN data sets. We observe

that the LDR-guided ALE exhibit consistently superior performance in terms of top-1 ZSL

accuracy (T1), unseen (u) accuracy, and H-mean (H) accuracy values of GZSL. In particular,

125

7.4 experiments and results

our proposed method reports 3.2% of unseen accuracy and 1.4% total accuracy gains over

ALE baseline for AwA2 data set. In comparison with the GZSL accuracy reported in [136],

Table. 7.1 shows accuracy gains of 2% in unseen and 1.7% in terms of H-mean for our proposed

LDR-guided ALE. To the best of our knowledge, these results record a new state-of-the-art

benchmark for AwA2 data set under GZSL category.

It is noteworthy that LDR-guided training exhibits clearer improvements for GZSL

category compared to ZSL. This result further suggests that the MCR2 principle tends to

induce more universal features that are common to both seen and unseen classes. Please refer

to Appendix E for detailed explanations of model architectures, additional ablation tests and

robustness comparisons of the proposed LDR-guided models.

7.4.2 LDR-Guided Few-Shot Learning

For FSL experiments, we relied on standard FSL benchmark data set: mini-ImageNet [58],

including a total number of 100 classes and 600 images per class. We adopted the same setup

of [151], and used 64 classes as seen, 16 and 20 as two sets of unseen categories for model

validation and testing, respectively.

FSL Classifiers

We experimented with four different encoder models : Conv-4 [137], ConvNet, ResNet-10 [15]

and ResNet-12. Using ProtoNets [137] as the main baseline model, we trained and tested

the classifier with the aforementioned encoder backbones for 1-shot and 5-shot classification.

For each encoder-shot combination, we trained a corresponding LDR-guided model for

comparison.

We train both baseline and LDR-guided models for 200 epochs and select the best model

parameters based on the standard validation set as the final model. Following [138], the final

model was evaluated on 10,000 random FSL test cases.

126

7.4 experiments and results

Ablation Study

This experimental setup aims to examine the capability of LDR-guided models to extract

common features for classes seen during training and the few shots seen during inference.

For this purpose, we combine standard training and validation sets of mini-ImageNet to

generate a new training set. We test this hypothesis by training the baseline and LDR-guided

models for 200 epochs without using a validation set to select the best model intentionally

to highlight the impact of over-fitting. After training, we evaluate the final model on the

standard mini-ImageNet test set. Models capable of extracting universal features are expected

to record high test accuracy without apparent over-fitting to the classes seen during training.

We experimented on two encoder backbones: Conv-4 and ResNet-10. To check the

generalization of the models, we trained the models with and without image augmentation.

‘ProtoNet-a’ and ‘LDR-guided ProtoNet-a’ use the common FSL image augmentations of

random horizontal flips and color jitters following [137]. Table. 7.2 records the 5-way and

10-way results on mini-ImageNet test set.

Table 7.2: Ablation study: FSL accuracy comparison on mini-ImageNet data set

5-way 10-way

Method Encoder 1-shot 5-shot 1-shot 5-shot

ProtoNet [137] Conv-4 42.6 63.2 33.0 48.2
LDR-guided ProtoNet Conv-4 46.8 64.4 33.5 49.6

ProtoNet ResNet-10 47.4 64.4 32.7 48.6
LDR-guided ProtoNet ResNet-10 53.8 69.8 38.0 54.1

ProtoNet-a ResNet-10 53.0 71.4 36.8 55.5
LDR-guided ProtoNet-a ResNet-10 56.4 74.4 38.0 58.4

We observe that the LDR-guided models demonstrate consistent accuracy improvement

over corresponding baseline models for each of these considered cases. In particular, with

ResNet-10 encoder backbones, the proposed LDR-guided ProtoNet exhibits absolute accuracy

improvement of 5.3%-6.4% under no-augmentation case in comparison to the baseline. Similar

to baseline models, LDR-guided models also significantly benefit from image augmentation

127

7.4 experiments and results

during training. Interestingly, the improved accuracy of the baseline models owing to image

augmentation closely match the accuracy of LDR-guided models without augmentation. This

observation further suggests the strength of the proposed models in mitigating the problem

of over-fitting on classes seen during training.

Comparison with Recent FSL Methods

In this study, we follow the implementation in [138] to retrain the recent FSL embedding

adaptation approaches such as FEAT, GCN, Bi-LSTM, and DeepSet by integrating the

LDR-guided training approach. This integration leads to LDR-guided FEAT, LDR-guided

GCN, LDR-guided Bi-LSTM, and LDR-guided DeepSet, respectively. Table. 7.3 shows

the 5-way accuracy. Similar to LDR-guided ProtoNets, we minimized the MCR2 loss on

the support set in other LDR-guided models. Both baseline and LDR-guided models used

pre-trained encoder initialization provided in [138].

Table 7.3: LDR-guided FSL 5-way classification accuracy comparison with SOTA methods on
mini-ImageNet data set. For each existing method compared, we provide the performance its of
LDR-guided version

ConvNet ResNet-12

Method 1-shot 5-shot 1-shot 5-shot

MatchNet [58] 48.14 - 62.63 -
LDR-guided MatchNet 48.89 - 62.82 -

ProtoNet [137] 51.61 69.56 62.39 78.17
LDR-guided ProtoNet 51.63 69.75 63.89 78.49

GCN [138] 52.13 69.48 62.07 77.38
LDR-guided GCN 52.31 69.67 63.28 77.58

Bi-LSTM [138] 48.64 69.70 62.81 77.30
LDR-guided Bi-LSTM 48.75 69.78 63.72 78.05

DeepSet [138] 50.88 68.41 62.02 78.00
LDR-guided DeepSet 51.20 68.45 62.34 78.01

FEAT [138] 53.38 70.21 65.31 80.84
LDR-guided FEAT 53.47 70.28 65.74 80.94

128

7.4 experiments and results

Figure 7.6: Conventional cloud-based ZSL on JPEG compressed images. Embedded source device
encodes image x into a bit-steam using JPEG encoder and transmits to a remote server to infer the
class label ĉ.

7.4.3 R-C Performance on JPEG-Compressed Images

Considering future deployment of edge and cloud networked learning under limited channel

bandwidth, we aim to evaluate the rate-classification performance of ZSL tasks in a networked

inference setting of Fig. 7.6. A source device with limited computational power compresses

input image x to a bit stream with a standard JPEG [62] encoder with quality parameter

q ∈ [1, 100]. During cloud inference, the resource-rich server reconstructs the image x̂ from

encoded data bits transmitted by the source device using a standard JPEG decoder.

We benchmark the rate-accuracy performance of the considered baseline ALE classifier

and the proposed LDR-guided ALE classifier on JPEG compressed images of AwA2 data set.

For each quality value q, we retrain the models with training images compressed at q and

(a) ZSL (b) GZSL

Figure 7.7: Rate-accuracy performance for AwA2 data set under the proposed LDR-guided framework.
Rate is recorded in bits per pixel (BPP). All considered models consist of a ResNet-34 feature
extraction backbone.

129

7.5 conclusions

evaluate the performance on the test set compressed at the same q. Rate was measured in

bits per pixel (bpp). Fig. 7.7 shows the natural classification accuracy loss in every considered

case when the data rate of the network link drops, following the general rate-classification

characteristics [152,153]. Importantly, the LDR-guided classifier outperforms the baseline

ALE classifier over the entire tested data rate range. For instance, we observe 3.5% and 2.9%

accuracy gains for ZSL and GZSL, respectively, at 0.324 bpp. Furthermore, the accuracy

gain of the LDR-guided approach over the baseline consistently improves at lower data rates

under both ZSL and GZSL scenarios.

Interestingly, Fig. 7.7(b) shows that the accuracy gain of LDR-guided models for the seen

class gradually dissipates with increasing accuracy gains for the unseen class at low bpp. This

observation suggests that more priority is given to learning the universal features at lower

bandwidths by the LDR-guided models to benefit unseen classes.

7.5 conclusions

In this chapter, we introduced a new classification framework for ZSL and FSL tasks.

Specifically for ZSL and FSL, we leverage the MCR2 principle to mitigate the possibility

of over-fitting to seen classes observed in conventional CE-based approaches when training

and testing on disjoint classes. Relying on the ground truth class labels/attributes only as

side information, the proposed LDR-guided classifiers learn more universal features for both

seen and unseen classes. Tested over several standard data sets, our LDR-guided models

exhibit significant accuracy improvement over conventional ZSL and FSL baselines without

additional memory or computational complexity during inference. Maintaining computational

competitiveness with SOTA methods, our LDR-guided classifier model achieves a new

benchmark for GZSL on AwA2 data set. Next chapter discusses a joint compression and

classification framework based on LDRs.

130

8
L D R - B A S E D H I E R A R C H I C A L G R O U P I N G F O R J O I N T

I M A G E C O M P R E S S I O N A N D C L A S S I F I C AT I O N

Previous chapter investigated the applications of LDR in data imbalanced scenarios and briefly

demonstrated rate-accuracy performance of JPEG compressed images on LDR-guided models.

However, the proposed LDR-guided classification in Chapter 7 is most likely suboptimal since

it does not harvest the compressibility of the learned LDR and its end-to-end optimization

for the joint compression and classification. Considering cloud-based image classification

similar to Sec. 7.4.3, we explore the compression of learned LDR for improved rate-accuracy

performance.

In particular, this chapter examines the effect of assigning high level coarse grouping

labels to each learned latent subspace. Designing coding profiles for each latent group can

achieve high compression during encoding. We show that such grouping can be learned via

end-to-end optimization of the codec and DL model to optimize rate-accuracy for a given

data set. For cloud-based inference, source encoder can select a coding profile based on

its learned grouping and encode the data features accordingly. Our test results on image

classification show that significant performance improvement can be achieved with learned

grouping over its non-grouping counterpart.

8.1 introduction

Deep learning applications on images and video data generated by distributed low end

devices are continuously expanding at a staggering pace. In such networked AI scenarios,

low end devices such as roadside cameras, vehicle sensors, and IoT devices are in charge

of data capturing before transporting them to cloud/edge servers with high memory and

131

8.2 background and related works

computational capacity required for executing machine tasks. Under limited (wireless)

network bandwidth, image/video data must be compressively encoded for transport channels

without sacrificing ML task accuracy or visualization quality at the remote end [31,78,104].

Another important consideration in cloud/edge-based deep learning is the reliability of

training data. Inference performance of supervised learning tasks such as image classification,

object recognition, and segmentation, depends critically on the accuracy of labeled data

available for training [154]. Training samples can be mislabelled due to human errors and

occasional corruptions during transmission and storage. Hence, an equally important problem

in distributed ML is to learning algorithms, robust to training mislabels [155].

Recently developed image/video codecs based on deep learning often feature an auto-

encoder structure [33, 34, 67]. The encoder maps the high dimensional (RD) input mani-

fold/space of high complexity to a low dimensional (Rd) latent representation. Key features

of the latent representation are acquired from end-to-end optimization including the codec

and media processing model. In this chapter, we aim to addresses both aforementioned

problems and optimizes the latent representation for efficient encoding and effective ML.

We organize this chapter as follows. In Section 8.2, we revisit the Maximal Coding Rate

Reduction (MCR2) principle of finding an LDR in view of data compression. We build a

direct connection of MCR2 with efficient latent encoding for transmission in the distributed

deep learning paradigm. We then propose an end-to-end optimization of networked image

classification system by leveraging the concept of data grouping in MCR2 in Sec. 8.3. Finally,

we present test results on CIFAR-100 and ImageNet-1k (size 32) data sets in Sec. 8.4.

8.2 background and related works

Following the same notation used in the previous chapter, let X = [x1,x1, · · ·xm] ∈ RD×m

be m i.i.d. samples of dimension D. An encoder f(·,θ) parameterized by θ maps each

132

8.2 background and related works

sample x to a d-dimensional (d < D) learned representation z such that z = f(x,θ). We

write the set of latent vectors mapped from set X as Z = [z1, z2, · · · , zm] ∈ Rd×m.

x
Encoder−−−−−→
f(·,θ)

z(θ)
Channel−−−−−→ ẑ(θ)

Classifier−−−−−→
g(.,φ)

y (8.1)

Source device uses entropy coding to encode z for transmission. The receiver decodes

the code words to obtain reconstructed ẑ. An ML task model g(·,φ) with parameters φ

generates the output label y = g(ẑ,φ) based on ẑ.

8.2.1 Non-asymptotic rate-distortion with multiple groups

The authors of [69] provided a tight upper bound on the number of bits required to encode

X in a subspace. For a Gaussian channel with distortion ε2, defined as the `2-norm of

reconstruction error, the mean code length per sample (for large m) is [69]:

R(Z|ε) = 1
2 log2 det

[
I +

d

mε2
ZZ>

]
bits. (8.2)

This result requires Z to be within the same d-dim subspace. Partition Z into k disjoint

subsets (groups) based on features: Z = Z1 ∪ · · · ∪Zk. The grouping of Z can be denoted by

a membership set Π of binary diagonal matrices {Π1, · · · , Πk} ∈ Rm×m with ∑k
i=1 Πi = Im.

Each group has size tr(Πj). For this case, [69] similarly provided a tight upper bound of

average rate (bits per sample) when m� d:

Rc(Z|ε, Π) =
k∑
j=1

tr(Πj)

2m log2 det
[
I +

d ·ZΠjZ
>

tr(Πj)ε2

]
(8.3)

133

8.2 background and related works

8.2.2 Maximal coding for rate reduction (MCR2)

To find an LDR Z(θ) = f(X,θ), the MCR2 principle of [53] maximizes the loss function of

∆R(Z(θ)|ε, Π) = R(Z(θ)|ε)−Rc(Z(θ)|ε, Π). (8.4)

As shown in [53], the first term of (8.4) measures the code length for all features in Z whereas

the second term is the sum code length of features in each of the k groups. Treating z as the

output of the final feature layer in a ResNet [15] classifier, the authors of [53] used a simple

subspace classifier after applying true class labels to generate the membership set Π. This

classifier on the learned LDR is robust against mislabeled images during training.

8.2.3 MCR2 and Latent Encoding

Cloud-based deep learning (DL) applications involve low-end devices to capture images

and videos for encoding and transmitting to powerful computing nodes to carry out learn-

ing. To reduce power and bandwidth consumption, it is vital to efficiently encode the

latent representation Z by minimizing Rc(Z(θ)|ε, Π) for transmission. Instead of only

minimizing ∆R(Z(θ)|ε, Π) as in MCR2, the need to improve code efficiency by constraining

Rc(Z(θ)|ε, Π) is practically significant. In fact, maximizing the MCR2 objective in Eq. (8.4)

does not necessarily guarantee to reduce Rc(Z(θ)|ε, Π). In this chapter, we propose a

framework with the dual objective of achieving robustness against mislabeling and reducing

the rate Rc(Z(θ)|ε, Π) of efficient latent encoding by leveraging the grouping information.

134

8.3 proposed end-to-end framework

8.2.4 Latent Compression in View of Grouping

Several previous works utilized grouping for better rate-distortion performance in image/video

compression [156–158]. The authors of [156] proposed dividing videos into clusters, each with

distinct encoding profile in video compression for transmission. For image compression, the

authors of [158] proposed to encode highly correlated images together to improve overall

compression ratio. Similarly, we explore the benefits of the grouping to extract compressive

features for a given DL task under bandwidth constraint.

Optimizing image/video compression codecs for a given task is an active area of research.

Some recent works [31, 78, 104] showed promises by jointly optimizing the codec and DL

model including the entropy coding parameters. Since the learned representation Z is not

unique, the encoder θ and task model φ can be end-to-end optimized for a learning objective

such as classification or segmentation.

Grouping information helps generate membership set Π. Candidates for grouping in-

formation include ground truth labels, coarse labels and tags (metadata), depending often

on the learning task. For instance, in hierarchical classification, coarse labels have shown

benefits for improving classification accuracy [159,160]. Similarly, Metadata is less prone to

error compared to ground truth labels since accurate manual labelling is not needed.

In practice, initial grouping information may not be available at acquisition or may not

be a good candidate for a given task. To be broadly accommodating, we propose that the

grouping be learned through unsupervised learning for end-to-end optimization to achieve

better R-C trade-off. In real time applications, source device can then select a pre-trained

coding profile per group based on the R-C trade-off.

135

8.3 proposed end-to-end framework

Figure 8.1: Proposed framework. During inference, for input image x, the encoder generates a
profile index j and the feature vector z. Then, the encoder profile of Cj encodes z to a bit stream
with entropy H(z|j).

8.3 proposed end-to-end framework

Our proposed framework in Fig. 8.1 consists of an encoder, a set of coding profiles, and a

task model (e.g. an image classifier). Encoder maps image x to a low-order latent vector

z and generates a group label j ∈ {1, 2, · · · , k}, referred to as the “profile index”. This

profile set has k different encoding-decoding profiles {Cj}k1, each of which is optimized to

compress latents with profile index j. For image encoding, a profile may typically consist of

a quantizer, an entropy coder, an entropy decoder and an optional de-quantizer. Classifier

uses the decoded latent ẑ as input for classification into c classes with c ≥ k.

During training of the end-to-end architecture, parameters of the encoder, coding profile,

and the classifier are jointly optimized. The optimized encoder and decoder profiles are stored

at the source and the cloud nodes, respectively. During inference phase, the source encoder

determines the profile index j for the input image x and generates the feature vector z. Next,

the encoder uses profile Cj to encode z into bit stream for transmission to the classifier node

on cloud/edge. The classifier decodes the received bit stream based on profile Cj to recover

the feature vector ẑ for subsequent classification.

136

8.3 proposed end-to-end framework

(a) Encoder (b) Classifier

Figure 8.2: Encoder and classifier architectures used for CIFAR-100 (c = 100) and ImageNet-1k
(c = 1000). Number of filters of the last ResNet block of the encoder are h = 16, 12 for hidden sizes
d = 1024, 768, respectively. “Conv 16 (3x3-2)” represents a 2D convolution block with 16 filters of
size 3×3 and stride of 2. “Res 16 (3x3-2)” represents a basic ResNet block [15] with down-sampling
factor 2.

8.3.1 Rate under Quantization Noise

Quantization is the primary source of rate reduction in both commercial [97] and recent DL

based image/video codes [33,67]. Hence, we model the wireless channel with quantization

noise n ∈ Rd as follows. Let z ∈ Rd be the recovered vector from the quantized vector

ẑ ∈ Rd. Then it is clear that ẑ = z−n. Following previous works [33,104], for quantization

step s, elements of n can be modeled as independent, zero mean, and uniformly distributed

in [−s/
√
d, s/

√
d]. Hence, the distortion ε from quantization noise forms an upper bound of

reconstruction error:

E[||z − ẑ||2] ≤ ε2 =
(2s)2

12 (8.5)

137

8.3 proposed end-to-end framework

Following [69], we can derive an upper bound for the rate at a given distortion ε using the

“sphere packing” principle [161] in information theory. To begin, estimate covariance matrix

Σ̂ = E[
1
m

m∑
i=1
ẑiẑ
>
i] =

1
m
ZZ> +

ε2

d
Id. (8.6)

The volume spanned by the vectors ẑ is upper-bounded by the volume of vectors with

Gaussian density of same covariance.

vol(Ẑ) ≤
√
(2πe)d det Σ̂ (8.7)

Similarly, the volume spanned by the uniform noise is

vol(N) =

(
2s√
d

)d
=

√
det (2s)

2

d
Id. (8.8)

The number of bits to represent each vector z satisfying the `2-error bound ε2 can be found

as the number of bits to represent the index of a sphere spanned by uniform noise, packed in

the region spanned by Σ̂. Therefore, we express an upper bound for average rate of a sample

z in bits at a distortion ε under uniform quantization noise as

R(Z|ε) = 1
2 log2 det

[
I +

d

mε2
ZZ>

]
+
d

2 log2

[2πe
12

]
. (8.9)

Note that the rate depends only on singular values of Z. Compared to the rate under

Gaussian noise given in Eq. (8.2), the upper bound for the rate under quantization noise only

has an additional linear term of d.

138

8.3 proposed end-to-end framework

8.3.2 Learning to Group

Similar to Sec. 8.2.1, the set Z can be partitioned to k subsets Z1 · · ·Zk according to a

membership set Π of diagonal matrices {Π1, · · · , Πk} ∈ Rm×m. Each diagonal element of

Πj(i, i) denotes the probability of sample i belonging to group j. Note that each sample can

only belong to one group [69]:

Πj(i, i) = πij ∈ [0, 1], ∑k
j=1πij = 1.

Group j contains mj = tr(Πj) samples. Similar to Eq. (8.3), for m� d, an upper bound

for average rate for the given grouping Π can be written as

Rc(Z|ε, Π) =
k∑
j=1

tr(Πj)

2m log2 det
[
I +

d

tr(Πj)ε2
ZΠjZ

>
]
+
d

2 log2

[2πe
12

]
. (8.10)

From (8.10), an optimal grouping Π∗ can be learned to minimize the average rate-

distortion for each sample z. Thus, we formulate a rate minimization problem for given

distortion ε:

Π∗ = arg min
Π

Rc(Z|ε, Π) (8.11)

We extend this rate minimization to an end-to-end optimization problem in conjunction with

a learning task. Consider image classification using model g(·,φ) that takes the reconstructed

vector ẑ as the input and generates output label y = g(ẑ,φ) as shown in Eq. (8.1). We

propose to learn Π∗ via end-to-end optimization of encoder f and learning model g. For this

purpose, we minimize the following loss function.

Π∗,θ∗,φ∗ = arg min
Π,θ,φ,ε

E[LCL(y, ygt)] + λ ·Rc(Z|ε, Π) (8.12)

139

8.4 experiments and results

(a) CIFAR-100 (b) ImageNet-1k (size 32)

Figure 8.3: Rate-accuracy performance for CIFAR-100 (d = 768) and ImageNet-1k (d = 1024) data
sets under quantization noise.

LCL(y, ygt) denotes the classification cross entropy loss between the inferred class label

y and the ground truth label ygt. Here, the first RHS term of Eq. (8.12) is the average

classification loss. λ is the Lagrangian to manage the trade-off between the rate and task

accuracy [78, 104, 153]. θ∗ and φ∗ denote the learned encoder and classifier parameters,

respectively.

We also propose to make the distortion variable ε trainable. This relaxation enables

encoder more degree of freedom to adjust rate and shifts the role of controlling rate of latent

vectors to parameter λ. On the other hand, since ε is related to the quantization parameter

s, this allows the network to optimize the quantization interval as well.

8.4 experiments and results

In this section, we describe the experimental setup and present test results from CIFAR-

10 [111], CIFAR-100 [112] and ImageNet-1k [77] data sets. See supplement material in

Appendix A for details on data sets. ImageNet-1k (size 32) consists of 1000 classes, each

containing up to 1300 training images and 50 validation images resized to 32×32.

140

8.4 experiments and results

8.4.1 DL Network Architectures

Fig. 8.2 describes the encoder and classifier architectures in use. To generate the profile index

j, we used a simple fully-connected layer with k nodes and assigned the index of the largest

node as j.

For experiments that include a bandwidth/rate constraint, we initialized the training of

end-to-end encoder-classifier framework shown in Fig. 8.1 by using pre-trained models, trained

without a rate constraint, i.e., pre-trained models that were optimized for classification only.

In CIFAR-10 and CIFAR-100 training, we fine-tuned the model using a “stochastic gradient

decent” optimizer with a initial learning rate of 0.05. We reduced the learning rate each time

by ×0.1 at 10, 20, and 30 epochs until termination at 40 epochs. Similarly for ImageNet-1k

(size 32), we used the same optimizer starting from a learning rate of 0.05, reduced each time

by ×0.1 at 5 and 10 epochs, respectively, until termination at 15 epochs1.

8.4.2 Quantization Noise Emulation

We added random uniform noise to the vector z to generate ẑ as the input to the classifier

according to Sec. 8.3.1. Following the work [104], we applied rounding function during the

forward pass of the training and no quantization during the backward pass to approximate the

loss function gradient. Consider an element z of the vector z. We can write the differentiable

quantization operation that maps z to quantized ẑ in Pytorch as

ẑ = torch.round(z
S
)× S − z.detach() + z, (8.13)

where S = 2s/
√
d is the stepsize in this implementation.

1 Source code is given at https://github.com/chamain/Learning-to-group.

141

https://github.com/chamain/Learning-to-group

8.4 experiments and results

Fig. 8.3 provides the results under quantization noise for CIFAR-100 and ImageNet-1k

(size 32) data sets respectively for 10 and 20 coding profiles. We record the rate in bits

per pixel (Bpp). With 20 learned coding profiles CIFAR-100 shows over 3.5% classification

accuracy improvements over no grouping at 0.295 Bpp. Similarly, ImageNet-1k shows over

1% top-5 accuracy improvements at 0.525 bpp with 20 coding profiles over no grouping. We

further note that increasing the number of coding profiles improves rate-accuracy tradeoff for

both data sets particularly at lower data rates.

8.4.3 Ablation Experiment: Distortion Learning

In this study, we test trainable distortion parameter ε. By making ε trainable, we allow the

network to optimize quantization stepsize s. To observe the benefit of trainable distortion

ε, we also generate rate-accuracy points by optimizing the proposed framework for fixed ε

values, as baselines. From the results in Fig. 8.4(a), we see that trainable ε makes it easier to

change rate without having to set ε manually for each rate. Further, trainable ε produces

comparably good results to fixed ε case.

(a) Learned distortion (b) Learned grouping

Figure 8.4: (a) Ablation results using CIFAR-10 (d = 1024) data set without grouping (k=1) (b).
Ablation results using CIFAR-10 (d = 1024) data set. Grouping can be learned to produce close
R-C performance to the fixed given groupings.

142

8.4 experiments and results

8.4.4 Ablation Experiment: Learned Grouping

To see how close the learned grouping is to ground truth, we set up two experiments to

generate two baselines. For fixed grouping with fine labels (k = 10), during training and

inference, we assumed that fine labels are available as grouping information. For instance all

dog images of CIFAR-10 are assigned the same group index. For fixed grouping with coarse

labels, during training and inference, we assumed that the coarse labels “Natural/Man-made”‘

for CIFAR-10 samples are available. This coarse labeling has been used in [159] and was

shown to be helpful in classification. Here to compare the performance with the above

baselines, we implement the proposed model with trainable Π for k = 10 and k = 2. See

Fig. 8.4(b).

8.4.5 Gaussian noise

The performance gains achieved with the proposed grouping and end-to-end optimization

are consistent under Gaussian noise. In this experiment, we added random Gaussian noise

to z to generate noisy ẑ as the input to classifier. To train the network, we used the

same function of Eq. (8.12) and updated the rate term Rc(Z|ε, Π) for Gaussian noise as

in Eq. (8.3). Considering practical applications, we fixed ε at 0.5 during the training. For

the encoder-classifier model, we used the same optimizer, learning rates and scheduling as

described in Sec. 8.4.1.

For ImageNet-1k (size 32) data set, results from Fig. 8.5 confirms the rate-accuracy

performance gains with the latent dimensions d = 1024 for coding profiles of 10 and 20,

respectively. With 20 learned coding profiles, the proposed method achieves over 2% top-5

classification accuracy improvement at 0.330 Bpp. We further note that these results of

rate-accuracy performance improvement are consistent with results from quantization noise

tests.

143

8.5 conclusions

Figure 8.5: Rate-accuracy performance for ImageNet-1k (d = 1024) data set under Gaussian noise.

8.5 conclusions

In this chapter, we propose a grouping-based end-to-end compression and classification

framework for distributed learning involving low cost sensing devices. Based on CIFAR

and ImageNet data sets, we observed considerable rate-classification accuracy improvements

with learned grouping compared to no grouping case under quantization and Gaussian noise

cases. The achieved rate-accuracy gains with learned grouping increase with number of

grouping profiles at the cost of higher encoder complexity. We further note that the proposed

architecture is computationally simple and easily trainable. We observe the importance

of exploring more effective methods to accurately generate coding profile index. Equally

important is the work to define discriminative group labels that are also simultaneously

compressive.

144

9
C O N C L U S I O N S A N D F U T U R E W O R K

In this chapter, we summarize the contributions of this dissertation and discuss possible

future research directions.

9.1 summary of contributions

In this dissertation, focusing on image classification as the deep learning task of interest,

we discussed our proposed approaches to improve rate-accuracy (R-C) and rate-distortion-

accuracy (R-D-C) performance of image compression codecs under bandwidth limited cloud

inference scenarios. In Chapters 1-2, we laid the foundation for the importance of cloud-based

image compression targeting deep learning tasks and its challenges. As the first part of the

dissertation, in Chapters 3-4, we utilized JPEG2000 compressed images for faster and more

accurate deep learning and discussed how to optimize JPEG2000 codec for rate-accuracy

performance under limited bandwidth. As the second part of this dissertation, exploring

end-to-end optimization of learning-based codecs, in Chapters 5, we proposed a novel classifier

architecture based on variational auto-encoders (VAE) that outperforms several popular

conventional image codecs in R-C performance. Further investigating learning-based codecs,

Chapters 6 discussed how to achieve better R-D-C performance based on ROI concept

with end-to-end training. As the last part of this dissertation, Chapters 8-7 focused on

leaning interpretable, efficient and low dimensional intermediate representation of images

that improve R-C performance of cloud-based networked AI applications. Exploring this

direction, we developed Linear Discriminative Representation (LDR)-based image classifiers

targeting zero-shot and few-shot learning problems.

145

9.2 limitations and future work

9.1.1 Open source codes

The deep learning models presented throughout this dissertation are lighter-weight, faster

and power efficient. We provide the GitHub repositories with python implementations of the

proposed models in this dissertation below.

• Chapter 3 is available at chamain/Faster-JPEG2000-classification

• Chapter 4 is available at chamain/QuanNet

• Chapter 5 is available at chamain/VAE-classifier

• Chapter 6 is available at chamain/Classification-guided-ROI

• Chapter 7 is available at chamain/LDR-guided-Low-Shot-Learning

• Chapter 8 is available at chamain/Learning-to-group

9.2 limitations and future work

9.2.1 Re-training/fine-tuning is necessary for each rate-accuracy point

When achieving each rate-accuracy performance point of QuanNet in Chapter 4 and VAE-

based classifier in Chapter 5, one has to save the deep learning model for each classification

accuracy and compression ratio combination imposed by the trade-off parameter λ. Hence, in

practical cloud inference scenarios, source device should be aware of the accuracy requirement

of the application and send the bit stream of the image quantized with the matching step

sizes learned from QuanNet in order to obtain the required accuracy. At the cloud end, the

classifier model trained with corresponding step sizes should be used to achieve the proposed

accuracy improvements. Similarly, in the case of VAE-based classifier, both the classifier

model and the probability estimation need to be stored at the receiving end.

146

https://github.com/chamain/Faster-JPEG2000-classification
https://github.com/chamain/QuanNet
https://github.com/chamain/VAE-classifier
https://github.com/chamain/Classification-guided-ROI
https://github.com/chamain/LDR-guided-Low-Shot-Learning
https://github.com/chamain/Learning-to-group

9.2 limitations and future work

This requires storing several deep CNN models for each λ value, which can be memory

consuming. This is valid for models trained on RGB images as well. For instance, to obtain

the classification accuracies for different compression ratios in RGB domain, we trained a

separate deep CNN for each compression ratio to obtain the RGB curve in Fig. 4.8. Using

a single model training with high quality RGB images to perform inference for different

compression ratios causes worse performance in test accuracy. See Fig. 9.1.

Figure 9.1: Accuracy comparison between single and multiple models. Red: uses model ‘b’ in
Table 3.2 trained with high quality images compressed at r = 0 and tested for images compressed
at r = 5, 10, 15. Blue: trained at tested at r = 5, 10, 15 separately.

Ideally, we prefer to have a single model trained that can give the proposed accuracies for

different optimal parameter settings corresponding to different rates. In this direction, the

authors of [106] propose a recurrent NN (RNN) that compresses images for classification with

off-the shelf classifiers. In this case, classification network is not trained and their model is

expected to learn important features for machine perception and compress accordingly. This

may not give the best classification-compression characteristics possible, but uses the same

classifier for inference for different image distortion levels. Therefore, exploring how to adapt

model parameters, that are pre-trained for a given rate-accuracy, to a different rate-accuracy

performance point during inference is an important future research direction.

147

9.2 limitations and future work

9.2.2 Universal encoders

The bandwidth constraints and latency requirements of practical networked AI applications

demand the data collected and transmitted by source devices to a cloud/edge node to be used

for multiple DL inference applications such as visualization, classification, segmentation etc.

In conventional cloud-based inference, since image data is compressed using rate-distortion

optimized codecs, transmitted images can be reconstructed in RGB format at the cloud nodes

before the inference. Since the majority of DL models are trained on RGB images, multiple

DL applications can be performed on these RGB data using off-the-shelf DL models. However,

as we showed in Chapters 3, 4, 5 and 6, such reconstruction of RGB images is unnecessary

hence high latency, and off-the-shelf models are not rate-accuracy optimal demanding high

bandwidth at a given accuracy.

When a model is trained end-to-end with a given rate and task loss for one DL application,

the latent features learned from that model (at the encoder) poorly supports a second

DL application [162]. Ideally, an encoder that transforms image data to a latent feature

representations that support multiple DL applications can address this issue while enjoying

the low latency, low bandwidth and high accuracy benefits of the proposed end-to-end models.

We propose that features learned in self-supervised manner without directly depending on

the end DL task can potentially become a universal encoder for multiple tasks. As future

work, self-supervised feature learning based on linear discriminative representations [52,53]

will be a worthy pursuit.

148

A
D ATA S E T S

In this chapter, we provide details on the data sets we used during experiments related to

this dissertation.

a.1 classification data sets

a.1.1 ImageNet-1k

The well-known ImageNet-1k [163] in classification consists of RGB images of size over

256×256 belonging to 1000 classes, each of which contains nearly 1300 training and 50

validation samples. We center-cropped images to size 256×256 during validation. We assess

the performance of classification using top-5 accuracy.

a.1.2 Imagenette

It is a smaller subset of ImageNet-1K [77] data set consisting of the same image size belong

to only 10 classes1: tench, English springer, cassette player, chain saw, church, French horn,

garbage truck, gas pump, golf ball, parachute. Each class contains about 1300 training and

50 validation samples. We also center-cropped images to size 256×256.
1 Imagenette can be found at: https://github.com/fastai/imagenette

149

https://github.com/fastai/imagenette

A.1 classification data sets

a.1.3 Tiny-ImageNet

Tiny ImageNet is a subset of ImageNet data set [77]. It consists of RGB images of size 64 ×

64 belonging to 200 classes, each class with 1300 training images and 50 validation images.

a.1.4 ModelNet-40

ModelNet-40 [164] is a well known data set for 3D object classification that contains 12,311

3D CAD models belonging to 40 classes. We can use these models to sample point clouds

and multi views for each object. Further, ModelMet-40 provides 2D images of 12 view points

per object in each class.

a.1.5 CIFAR-10

CIFAR-10 [111] consists of 10 classes:. Each class has 5000 images for training and 1000

images for testing per class. CIFAR-10 images are in RGB format of size 32×32.

a.1.6 CIFAR-100

Similar to CIFAR-10, CIFAR-100 [112] data set contains 50k training and 10k test RGB

images of size 32×32 in 100 classes.

a.1.7 AwA2

AwA2 [147] contains 37,322 images of 50 animal classes with 85 attributes per class. We used

the standard training and test (40 seen/10 unseen) split proposed in [54].

150

A.2 compression data sets

a.1.8 CUB

CUB [148] contains 11,788 bird images from 150 seen and 50 unseen classes with 312 attributes

per class.

a.1.9 SUN

SUN [149] contains 14,340 scene images from 645 seen and 72 unseen classes, with 102

attributes per class.

a.2 compression data sets

a.2.1 HKU-IS

This visual saliency prediction data set [165] consists of larger training and test images (above

256×256 in size). Most of these images contain multiple saliency objects. We used HKU-IS

data to evaluate the ROI prediction accuracy of the proposed ROI coding module.

a.2.2 DAVIS-2016

Densely Annotated Video Instance Segmentation (DAVIS)-2016 [166] is a popular video

object segmentation data set of 30 training and 20 test videos available in RGB image frames

of size 640×480 along with annotated masks for single object segmentation. We categorized

frames of test set into 3 groups according to the ratio of ROI mask area to the full image

area: 5%, 24% and 36%.

151

A.2 compression data sets

a.2.3 CADDY

Cognitive autonomous diving buddy (CADDY) data set [167] is an underwater gesture data

set of RGB images collected in open sea, indoor, and outdoor pools. Its image samples

are of size 640×480 belonging to 16 gesture classes. Following the approach in [168], we

pseudo-randomly split the data into training set (70%) and test set (30%) based on a selected

seed. For faster batch training, we resized the images to 341×256 without changing the

aspect ratio.

a.2.4 ASL

American Sign Language (ASL) data we used in this work is a manually collected RGB

image data set available online2. It consists of 8442 raw RGB images of size over 640×480

belonging to 24 character classes: English alphabet except “J” and “Z” (characters with

motion). Similar to CADDY data set, we pseudo-randomly spilt ASL data set into 70%

training and 30% test sets based on a fixed random seed (30). For faster batch training, we

resized the images to have a minimum dimension of 256 without changing the aspect ratio.

2 ASL data set can be found at
https://www.kaggle.com/signnteam/asl-sign-language-pictures-minus-j-z

152

https://www.kaggle.com/signnteam/asl-sign-language-pictures-minus-j-z

B
FA S T E R A N D A C C U R AT E D E E P L E A R N I N G F O R J P E G 2 0 0 0

I M A G E S

b.1 resnet for classification

In this dissertation, we mainly use ResNet and some variations of ResNet as the deep CNN

for image classification tasks. There are two building blocks of ResNet: a ‘Basic’ building

block for shallow models like ResNet 18, 34 and a ‘Bottleneck’ block for deeper models like

ResNet 50, 101 and 152 [15]. Figure B.1 illustrates these building blocks.

(a) Basic (b) Bottleneck

Figure B.1: Building blocks for ResNet. nf is the number of filters. Both blocks have the same
time complexity. (a) is used in ResNet 18, 34. (b) is used in ResNet 50, 101 and 152.

For the experiments in Part i, we used CIFAR-10 [111] and ImageNet [77] data sets for

2D image classification. Table B.1 and Table B.2 summarizes the baseline architectures for

CIFAR-10 and ImageNet.

153

B.1 resnet for classification

Table B.1: ResNet architecture for CIFAR-10. Basic blocks with different nf are used as the
building blocks.

layer name output size 8-layer 20-layer
conv1 32× 32 3×3, 16 stride 1

conv2x 32× 32
[
3× 3, 16
3× 3, 16

]
× 1

[
3× 3, 16
3× 3, 16

]
× 3

conv3x 16× 16
[
3× 3, 32
3× 3, 32

]
× 1

[
3× 3, 32
3× 3, 32

]
× 3

conv4x 8× 8
[
3× 3, 64
3× 3, 64

]
× 1

[
3× 3, 64
3× 3, 64

]
× 3

1× 1 avg pool 10-d fc softmax

Table B.2: ResNet architecture for ImageNet. Basic and bottleneck blocks with different nf are
used as the building blocks for 18-layer and 50-layer ResNets.

layer name output size layer-8 layer-20
conv1 112×112 7×7, 64 stride 2

3×3, max pool stride 2

conv2x 56×56
[
3× 3, 64
3× 3, 64

]
× 2

 1× 1, 64
3× 3, 64
1× 1, 256

× 3

conv3x 28×28
[
3× 3, 128
3× 3, 128

]
× 2

1× 1, 128
3× 3, 128
1× 1, 512

× 4

conv4x 14×14
[
3× 3, 256
3× 3, 256

]
× 2

 1× 1, 256
3× 3, 256
1× 1, 1024

× 6

conv5x 7×7
[
3× 3, 512
3× 3, 512

]
× 2

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3

1× 1 avg pool 1000-d fc softmax

154

B.2 fine-tuning on pre-trained models

b.2 fine-tuning on pre-trained models

Fine tuning a base model for limited bandwidth can reduce training time. Figure B.2 shows

that the pre-training is feasible and achieves a modest accuracy gain for both RGB and CDF

9/7 DWT coefficients of the CIFAR-10 images.

Figure B.2: Fine tuning for r = 5, 10, 15 using the pretrained DWT model for r = 0 reduces training
time by 75% and improves accuracy. This observation is consistent with pre-training in RGB domain.
CDF and RGB inputs use model ‘b’ and ‘e’ respectively.

b.3 3d model classification with multi-view cnns

In order to further validate our claims, we experimented with 3D model classification with

JPEG2000 compressed images. 3D object classification has gained popularity in parallel to 2D

image classification with deep neural networks over the past few years. We can identify several

popular approaches for 3D object classification based on the input format. For instance, a

3D object can be represented as a point cloud, a volumetric object or using multi-view 2D

155

B.3 3d model classification with multi-view cnns

images. ModelNet-40 [164] is a well known data set for 3D object classification that contains

12,311 3D CAD models belonging to 40 classes. We can use these models to sample point

clouds and multi views for each object.

A recent work PointNet [169] suggests a classification network with symmetric feature

operations like max pooling to classify un-ordered point clouds. The authors of MVCNN [170]

use 2D images of 12 view points per object and train a CNN to extract view based features

for 3D object classification. They use CNNs to obtain features for each view point, pool the

view based features and use a softmax classifier for classification. See Figure B.3.

Figure B.3: Multi View CNN (MVCNN) model. At test time, a 3D shape is rendered from 12
different views and are passed thorough CNN1 to extract view based features. These are then pooled
across views and passed through CNN2 to obtain a compact shape descriptor. [170]

We used ResNet-18 [15] as the CNNs in Figure B.3 and used that model as the baseline

model for RGB inputs encoded and decoded as JPEG2000. Then we extracted DWT level-1

coefficients as discussed in section 3.2 and used them as the input for MVCNN. We observe

the similar accuracy and training/inference improvements with DWT inputs even before

considering reconstruction savings. See table B.3. We used same training and test split as in

156

B.3 3d model classification with multi-view cnns

[164] and [170]. Input images are 224×224 RGB images for the baseline and 112×112×12 for

DWT model.

Table B.3: Results of ModelNet-40.

parameter RGB DWT (ours)
Overall test Acc. (%) 93.15 93.96
Avg. class test Acc. (%) 90.04 91.41
No of CONV layers 20 9
No of parameters (M) 11.20 8.87
Training rate/epoch (images/s) 979 1112
Inference rate (images/s) 3042 3050

Classification in DWT domain shows over 1% accuracy improvement with faster training

using over 20% less number of parameters compared to RGB domain on ModelNet-40 data

set. We summarize the ResNet models we used in the table B.4. During training we used

Adam optimizer with 5e-5 learning rate for 60 epochs with 0.001 weight decay and batch size

of 8×12 (3D models×no of views) without pre-training.

Table B.4: ResNet architecture for ModelNet-40.

layer name RGB DWT
output size operation output size operation

conv1 112×112 7×7, 64 stride 2 56×56 7×7, 256 stride 2
3×3, max pool stride 2

conv2x 56×56
[
3× 3, 64
3× 3, 64

]
× 2 28×28

[
3× 3, 256
3× 3, 256

]
× 1

conv3x 28×28
[
3× 3, 128
3× 3, 128

]
× 2 14×14

[
3× 3, 384
3× 3, 384

]
× 1

conv4x 14×14
[
3× 3, 256
3× 3, 256

]
× 2 7×7

[
3× 3, 576
3× 3, 576

]
× 1

conv5x 7×7
[
3× 3, 512
3× 3, 512

]
× 2 - -

1× 1 avg pool 40-d fc softmax

Compared to 2D image classification with CIFAR-10 and imageNet, we were able to

reduce the number of parameters significantly for DWT models. Inputs being in the gray

157

B.4 resnet architectures used for db1, dwt coefficients.

scale can be the result for this observations. In comparison to RGB inputs, gray scale inputs

contain less number of features hence less number of parameters may be sufficient to capture

the input variations of the compact DWT format.

b.4 resnet architectures used for db1, dwt coefficients.

Table B.5: ResNet architectures used for DB1, DWT coefficients.

layer name output size 8-layer 20-layer
conv1 16× 16 3×3, 16 stride 1 3×3, 50 stride 1

conv2x 16× 16
[
3× 3, 16
3× 3, 16

]
× 1

[
3× 3, 50
3× 3, 50

]
× 3

conv3x 8× 8
[
3× 3, 32
3× 3, 32

]
× 1

[
3× 3, 100
3× 3, 100

]
× 3

conv4x 4× 4
[
3× 3, 64
3× 3, 64

]
× 1

[
3× 3, 200
3× 3, 200

]
× 3

1× 1 avg pool 10-d fc softmax

158

C
VA E - B A S E D C L A S S I F I E R S

c.1 robustness to visual corruptions

In this section, we demonstrate the robustness of the proposed VAE-based classifier against

common visual corruptions of images based on CIFAR-10-C [171] data set. CIFAR-10-C data

set provides corrupted versions of CIFAR-10 [111] test data set for visual corruptions such as

noise, blur, pixelation etc. at 5 different severity levels of each corruption.

We selected the proposed AE-V2 VAE model with L = 6 trained on CIFAR-10 data

as discussed in Sec. 5.4.1 during inference on CIFAR-10-C test data set. For 9 types

of corruptions namely Fog, Motion Blur, Defocus Blur, Frost, Pixelation, Elastic

transformation, Impulse noise, Gaussian noise and Shot noise, we repeated the

above inference for classification at 5 severity levels. Figures C.1(a)-(c) show the results.

‘RGB’ baseline corresponds to the inference accuracy with ResNet-18 classifier trained on

CIFAR-10 training set.

(a) fog, motion blur and defocus (b) frost, pixelation and elastic (c) impulse, Gaussian and shot noise

Figure C.1: Robustness comparison for visual corruptions: fog, motion blur, defocus blur, frost,
pixelation, elastic transformation, impulse noise, Gaussian noise, shot noise on CIFAR-10-C data
set.

We note that AE-V2 classifier outperforms ResNet-18 baseline classifier at inference on

images corrupted with fog, motion blur and defocus blur at 3-5 severity levels by a significant

159

C.2 implementation details: effect of β adjustment

margin. Further the proposed model performs slightly worse than the baseline classifier on

images corrupted with impulse, Gaussian and shot noise.

c.2 implementation details: effect of β adjustment

Recall that the VAE loss of the proposed method for a sample x is given by,

Lθ,φ(x, ygt) = LCL(θ,φ)(ẑ|x, ygt) + βLR(θ,φ)(ẑ|x) (C.1)

where LR(θ,φ)(ẑ|x) is the bandwidth of z transmitted over a network link. We measure the

bandwidth (rate) in BPP in our experiments. The effect of the trade-off parameters β for

CIFAR-10 data set is shown in Fig. C.2(a).

In order to achieve optimal rate-classification accuracy performance at a given rate (rt),

we minimize the following loss instead of the loss given in Eq. (C.1).

Lθ,φ(x, ygt) = LCL(θ,φ)(ẑ|x, ygt) + βmax
(
LR(θ,φ)(ẑ|x)− rt, 0

)
(C.2)

We observed better classification accuracy by this approach at a rate slightly above the

requirement rt. In Fig. C.2(b) we illustrate the loss curves for a selected β and an rt value.

c.3 visualization of latent maps

Figs. C.3(a), (b) and (c) show the latent maps ẑ of a sample image x for L = 6, 3, 2 related

to the model AE-V3. For each sub figure, top-left color image is the original and bottom left

color image is the reconstructed from the latent maps visualized next to them. We visualize

32 latent maps (each of size 20× 20) before (z) and after quantization maps (ẑ). Starting

160

C.3 visualization of latent maps

(a) Effect of β

0 20 40 60 80 100 120 140 160 180

epoch

0.5

1

1.5

2

2.5

3

(b) Convergence of losses

Figure C.2: (a). CIFAR-10 results for different β values. Black dash lines connect the points for AE
models with the same β value. (b). CIFAR-10 average validation losses obtained with Eq. (C.2) at
β = 2 and rt = 0.6 for AE-V1, L = 3 model. Note the smooth convergence of the rate LC around
0.6 at higher number of epochs.

from the first row, the z maps are given in every other row. The corresponding quantized ẑ

is given right below each z map. Each map is normalized before visualization.

Observe that for each number of quantization centers L, the quantized maps ẑ has only

L different colors. Some of the ẑ maps for L = 6 show clearly identifiable snow leopard

figures implying that high level information of x is preserved during training and helpful for

classification.

(a) L = 6 (b) L = 3 (c) L = 2

Figure C.3: Latent maps ẑ of a sample image x for L = 6, 3 and 2 related to the model AE-V3. For
each sub figure, top-left color image is the original and bottom left color image is the reconstructed
from the latent maps visualized next to them. Some of the ẑ maps for L = 6 show clearly identifiable
snow leopard figures implying that high level information of x is preserved during training and
helpful for classification.

161

C.4 further theoretical explanations

Furthermore, we demonstrate that such feature maps that are learned and transmitted by

the proposed VAE for classification can also be used for reconstructing source images with

sufficient quality in terms of achieved PSNR. We show that such retraining of reconstruction

decoder model can be successful without compromising the performance of VAE-based

classification.

c.4 further theoretical explanations

c.4.1 Relationship to the Information Bottleneck

In this section, we theoretically derive the relationship between the proposed VAE framework

for classification and the well-known Information Bottleneck principle [102,103]. Consider

the random variables Y, x and z related according to a Markov chain as follows.

Y −→ x E−→
φ

z (C.3)

In the context of image classification with auto-encoders Y, x and z can be viewed as variables

corresponding to image label, image and latent encoding of the image respectively. z is

mapped from x with an Encoder (E) parameterized by φ. Hence, we can denote z as z(φ),

which is often written as z for simplicity.

We can write the objective function of the Information Bottleneck (IB) principle [102,103]

as the following.

max
φ

IBx,z,Y(φ) = I(z(Œ); Y)− βI(x; z(Œ)), β ≥ 0 (C.4)

162

C.4 further theoretical explanations

I(x; z) is the Mutual Information (MI) between the random variables x and z. We rewrite

this as a minimization objective to match the above VAE narrative.

min
φ
−I(z(Œ); Y) + βI(x; z(Œ)), β ≥ 0 (C.5)

Following the definition of MI we write,

I(z; Y) =
∫
p(y, z) log p(y|z)

p(y)
dy dz (C.6)

In order to track the distribution p(y|z) we employ a classifier (CL) parameterized by θ and es-

timate the conditional label distribution ηθ(y|z) as in Eq. (5.3). Since KL(p(Y|z)|ηθ(Y|z)) ≥

0 we can write the inequality,

∫
p(y|z) log p(y|z)dy ≥

∫
p(y|z) log ηθ(y|z)dy (C.7)

We utilize this inequality to bound for I(z; Y) in Eq. (C.6).

I(z; Y) =
∫
p(y, z) log p(y|z)dy dz −

∫
p(y) log p(y)dy ≥

∫
p(y, z) log ηθ(y|z)dy dz +H(Y)

(C.8)

Leveraging the Markov assumption in Eq. (C.3) , p(y, z, x) = p(x, y)qφ(z|x) with the encoder

distribution qφ(z|x), we can express the bound in Eq. (C.8) for I(z; Y) as the following.

I(z; Y) ≥
∫
p(y, z,x) log ηθ(y|z)dx dy dz +H(Y)

≥
∫
p(x, y)qφ(z|x) log ηθ(y|z)dx dy dz +H(Y) (C.9)

163

C.4 further theoretical explanations

For the second term of the IB objective given in Eq. (C.5), following the definition of MI,

we write,

I(x; z) =
∫
qφ(x, z) log qφ(z|x)dz dx−

∫
qφ(z) log qφ(z)dz (C.10)

With the definition of KL divergence, for an arbitrary r(z), we write the following

inequality similar to Eq. (C.7).

∫
qφ(z) log qφ(z)dz ≥

∫
qφ(z) log r(z)dz. (C.11)

We combine Eq. (C.10) and (C.7) to obtain an upper bound for I(x; z).

I(x; z) ≤
∫
qφ(x, z) log qφ(z|x)dz dx−

∫
qφ(z) log r(z)dz

=
∫
qφ(x, z) log qφ(z|x)

r(z)
dz dx

=
∫
p(x)qφ(z|x) log qφ(z|x)

r(z)
dz dx (C.12)

=
∫
p(x, y)qφ(z|x) log qφ(z|x)

r(z)
dx dy dz (C.13)

Eq. (C.13) follows from Eq. (C.12) since p(x) =
∫
p(x, y)dy. Similar to [172], we approximate

p(x, y) with an empirical distribution based on data samples (xn, yn) ∈ S s.t.,

p(x, y) = 1
|S|

|S|∑
n=1

δxn(x)δyn(y). (C.14)

164

C.4 further theoretical explanations

Hence the approximated IB loss for minimization can be written as the following.

IBx,z,Y(φ,θ) ≤−
∫
p(x, y)qφ(z|x) log ηθ(y|z)dx dy dz −H(Y)

+ β
∫
p(x, y)qφ(z|x) log qφ(z|x)

r(z)
dx dy dz (C.15)

≈ 1
|S|

|S|∑
n=1
{−

∫
qφ(z|xn) log ηθ(yn|z)dz

+ β
∫
qφ(z|xn) log qφ(z|xn)

r(z)
dz} −H(Y) (C.16)

=
1
|S|

|S|∑
n=1
{−

∫
qφ(z|xn) log ηθ(yn|z)dz

+ β
∫
qφ(z|xn) log qφ(z|xn)

pθ(z|xn)
dz} −H(Y) (C.17)

From Eq. (C.16) to Eq. (C.17), we replace the arbitrary r(z) with pθ(z|xn).

Using the definition of KL divergence, we re-write Eq. (C.17) as the following which is

upper bounded by the β-VAE loss Lθ,φ for classification.

IBx,z,Y(φ,θ) ≤ 1
|S|

|S|∑
n=1
{−

∫
qφ(z|xn) log ηθ(yn|z)dz + β KL[qφ(z|xn), pθ(z|xn)]} −H(Y)

≤ 1
|S|

|S|∑
n=1
{Lθ,φ(xn, yn)} −H(Y) (C.18)

A Similar result has been shown in [172] for image reconstruction.

c.4.2 An alternative problem formulation

Assuming the same setting as we discussed above, we provide an alternative derivation the

loss function for joint image classification and compression as follows.

165

C.4 further theoretical explanations

We start with the classification cross entropy loss between the true and estimated label

distributions. From Eqs. (5.6)(5.7), we can write the cross entropy loss as

CEy|x(ρ, ρ̂θ) = −
∑
c∈Y

ρ(y = c|x) log ρ̂θ(y = c|x)− log ρ̂θ(ygt|x) (C.19)

For the setting with an Encoder (E) with the density qφ(z|x), we have

x E−→
φ

z CL−−→
θ

y. (C.20)

Considering different instances of z for a given sample x, Eq. (5.3) can be re-written to

formulate the following problem to maximize ρ̂θ(ygt|x) in order to minimize classification

cross entropy.

max
θ,φ

Eqz|x,φ [ηθ(ygt|z)] (C.21)

Since the density qφ(z|x) is not available at the Decoder (D), we employ a Probability

Estimator pθ(z|x) to closely estimate qφ(z|x). This introduces a constraint to the problem

in Eq. (C.21) with ε ≥ 0 [68, 100].

max
θ,φ

Eqz|x,θ [ηθ(ygt|z)] s.t. 0 ≤ KL(qz|x,φ|pz|x,θ) ≤ ε (C.22)

This can be re-written as a minimization problem by introducing a monotonic − log()

function.

min
θ,φ
− logEqz|x,θ [ηθ(ygt|z)] s.t. KL(qz|x,φ|pz|x,θ) ≤ ε (C.23)

According to Jensen’s inequality, we can write,

− logEqz|x,θ [ηθ(ygt|z)] ≤ Eqz|x,θ [− log(ηθ(ygt|z))] . (C.24)

166

C.4 further theoretical explanations

Instead of directly minimizing the optimization problem in Eq. (C.23), we can minimize its

upper bound as follows.

min
θ,φ

Eqz|x,θ [− log(ηθ(ygt|z))] s.t. KL(qz|x,φ|pz|x,θ) ≤ ε (C.25)

By re-writing the problem in Eq (C.25) as a Lagrangian under KKT [173] conditions for the

Lagrangian multiplier β ≥ 0, we write,

Fθ,φ(x, ygt) = Eqz|x,φ [− log(ηθ(ygt|z))] + β
[
KL(qz|x,φ|pz|X,θ)− ε

]
. (C.26)

With this we can arrive at the β-VAE loss function for classification.

Fθ,φ(x, ygt) ≤ Lθ,φ(x, ygt) = Eqz|x,φ [− log(ηθ(ygt|z))] + βKL(qz|x,φ|pz|x,θ). (C.27)

167

D
C L A S S I F I C AT I O N - G U I D E D R O I - B A S E D E N D - T O - E N D

I M A G E C O M P R E S S I O N

d.1 poolnet generated roi

Fig. D.1 illustrates the ROI predictions generated by PoolNet [117] for some selected samples

of HKU-IS data set.

Image

GT mask

PoolNet
masks

Figure D.1: ROI mask comparison for some selected samples of HKU-IS dataset. PoolNet [117]
with ResNet-50 backbone generates ROI masks with mean absolute error (MAE) of 0.0362. GT:
ground truth.

d.2 complexity comparison

In this section, we provide an detailed complexity comparison of the ROI prediction of

proposed classification-guided ROI codec and PoolNet [117] (baseline) in terms of number

of parameters. Our proposed feature-sharing ROI prediction achieves 81% (5 times) of

parameter reduction compared to the baseline.

It is note worthy that when guided with classification loss, a simple encoder backbone is

sufficient to extract relevant features for saliency map generation. Compared to ResNet-50

168

D.3 cai-2019 complexity estimation

Table D.1: Complexity comparison: No. of parameters are given in millions (M). Our proposed
feature-sharing ROI prediction achieves 81% (5 times) of parameter reduction compared to the
baseline.

Module PoolNet Classification Percentage
guided ROI reduction

ROI prediction 68.26 12.9 81%

−Feature backbone ResNet-50 Encoder (ga)
25.51 1.49 94%

−Saliency generation 42.75 11.41 73%
− Pyramid pooling 11.27 1.47 87%
− Deep pooling 24.4 8.83 64%
− Aggregation 7.08 1.11 84%

backboned used in PoolNet, Our proposed ROI prediction reuses the features extracted from

over 10 times less complex encoder backbone. More importantly, our proposed ROI codec

achieves superior ROI rate-distortion performance compared to the baseline even after above

such complexity reductions.

d.3 cai-2019 complexity estimation

When calculating number of parameters for Cai-2019 [38], we relied on the implementation

details provided in their paper since implementation code is unavailable.

During the parameter estimation of Cai-2019, we did not include the parameters of the

entropy coder and entropy decoder in Table. D.2. Note that the backbone image coder of

Cai-2019 (Encoder+Decoder) alone has 10.91 M parameters which is 2 times the SHP codec

we used as the backbone image codec.

d.4 classifier fine-tuning

Thus far, when training the baselines and the proposed framework, we kept the image

classifier frozen at the default pre-trained state. This is mainly motivated by many real world

169

D.4 classifier fine-tuning

Table D.2: Estimation of number of parameters of Cai-2019. MSD: Multi-scale decomposition
layer [174], IMSD: inverse MSD, Conv: 2D convolution layer, GDN: Generalized divisive normaliza-
tion layer [175], IGDN: inverse GDN, Dconv: 2D deconvolution layer, ResNet: basic ResNet [15]
block, ASPP: Atrous spatial pyramid pooling [21]

Module Layer Parameters Total

Encoder Conv-1 24,320
GDN 102,720
Conv-2 2,560,320
GDN 102,720
Conv-3 2560,320
GDN 102720 5,453,120

MSD B1, Conv-1 921,920
B1, Conv-2 921,920
B1, Conv-3 921,920
B1, Conv-4 553,152
B1, GDN 37,056
B2, Conv-5 345,720
B2, GDN 345720 4,047,408

Implicit ROI Conv-1 102,720
prediction network Conv-2 51,841

ResNet block
Conv-1 921,920
Conv-2 921,920

ASPP(1,3,6,9)
Conv-1 102,720
Conv-2 921,920
Conv-3 921,920
Conv-4 921,920 4,866,881

IMSD B1, IGDN 37,056
B1, Dconv-1 553,280
B1, Dconv-2 921,920
B1, Dconv-3 921,920
B1, Dconv-4 921,920
B2, IGDN 1,4520
B2, Dconv-5 345920 3,716,536

Decoder IGDN 102,720
Dconv-1 2,560,320
IGDN 102,720
Dconv-2 2,560,320
IGDN 102,720
Dconv-3 24,003 5,452,803

Cai-2019 23,536,748

applications where existing classifiers may either be shared with other modules or are costly

to retrain. Nevertheless, our proposed framework is fully compatible for deployment and

applications when fine-tuning of image classifier is possible.

170

D.4 classifier fine-tuning

In view of Sec. 6.4.1, we can minimize the same loss function in Eq. (6.10), but also activate

classifier optimization along with other parts of the codec during training. In our test, we

initialize the off-the-shelf classifier model from its pre-trained state and apply Adam optimizer

for 40 training epochs with initial learning rate of 1e-4, reduced to ×1/10, respectively, at 15

and 30 epochs.

(a) ROI PSNR (b) Overall MS-SSIM (c) Classification accuracy

Figure D.2: Rate-distortion and classification accuracy comparison with and without fine tuning the
classifier for Imagenette dataset. Fine-tuning the classifier improves ROI PSNR and classification
accuracy for all considered cases.

The resulting R-D-C for Imagenette is shown in Fig D.2. Clearly, classifier fine tuning

can significantly improve classification accuracy for each scenario under consideration. Our

proposed joint ROI compression and classification framework maintains similar benefits shown

in Fig. 6.7. When feasible, fine-tuning the classifier further improves R-D-C performance for

the proposed framework.

171

E
L D R - G U I D E D L O W - S H O T L E A R N I N G

e.1 classes versus attributes: an ablation study

In this section, we validate the importance of using attribute-based membership over class-

based membership for ZSL when calculating MCR2 loss as described in Sec. 7.3.1. For this

purpose, we trained two LDR-guided ALE classifiers: (a) with Π which encodes seen class

labels and (b) with Π which encodes seen attributes. To further isolate the membership

function’s ability to learn generalized features, we did not use ImageNet-1k pre-trained

parameters to initialize the encoder. We then followed the same training steps as in Sec. 7.4.1.

Fig. E.1 shows how the test accuracy of seen, unseen and H-mean categories change with

epochs for AwA2 data set.

(a) Class-based membership (b) Attribute-based membership

Figure E.1: ZSL and GZSL accuracy comparison.

Note that compared to class-based membership, attribute-based membership records

improved accuracy for all three accuracy categories. In particular, the unseen accuracy

for attribute-based membership case continuous to improve even after 30 epochs whereas

the useen accuracy of class-based membership case starts to drop after 20 epochs. This

172

E.2 robustness to noise and common perturbations

observation indicates that over-fitting to seen classes is further mitigated with attribute-based

membership for calculating MCR2 loss during training of ZSL tasks.

e.2 robustness to noise and common perturbations

We evaluate the robustness of the proposed LDR-guided ALE classifiers for different levels

of uniform, Gaussian, and shot noises as well as fog, snow and defocus blur perturbations.

Fig. E.3 shows visual illustrations of the sample images corrupted with noise and common

perturbations. As revealed in the top row of Fig. E.2, our LDR-guided classifier demonstrates

ZSL accuracy gain of at least 2% over the baseline model for each level and each type of additive

noise. Besides, as demonstrated in the bottom row of Fig. E.2, for each of the considered

perturbation cases, LDR-guided classifier exhibits marginal ZSL accuracy improvement over

the baseline and almost zero H-mean accuracy gain under defocus, pixelation and snow

perturbations. Under fog perturbations, however, the accuracy improvement is evident under

various severity levels.

e.3 robustness to number of unseen classes

Fig. E.4 compares 5-way and 2-way ZSL accuracy of the proposed LDR-guided ALE classifier

against baseline ALE classifier on corrupted images with uniform noise. When reporting

accuracy for each 5-way or 2-way case, we averaged the test accuracy over all possible

combination of test class selections. For instance, we averaged the test accuracy over 10C2

test set combinations for 2-way classification for both baseline and the proposed method.

Note that significant ZSL accuracy gains can be observed for the proposed LDR-guided

ALE over baseline ALE for both 2-way and 5-way cases, specially at lower severity levels of

uniform noise.

173

E.3 robustness to number of unseen classes

(a) Uniform noise (b) Gaussian noise (c) Shot noise

(d) Fog (e) Snow (f) Defocus

Figure E.2: Noise severity vs accuracy performance of the proposed LDR-guided ALE model under
(a) Uniform, (b) Gaussian and (c) Shot noises. And Perturbation severity vs accuracy performance
of the proposed LDR-guided ALE model under (d) fog, (e) snow and (f) defocus blur.

(a) Uniform (b) Gaussian (c) Shot

(d) Defocus (e) Fog (f) Snow (g) Original

Figure E.3: Original image (g) is corrupted with noises: Uniform, Gaussian, and Shot noise, and
common perturbations: defocus, fog and snow at severity level 2.

174

E.4 ldr-guided fsl training

Figure E.4: ZSL accuracy comparison of the proposed LDR-guided ALE for 5-way and 2-way
classification under uniform noise on AwA2 data set.

e.4 ldr-guided fsl training

To ensure the reproducibility of the results reported by the proposed LDR-guided FSL

classifiers, in Table. E.1, we list the values of learning rates (lr) and trade-off parameter

λ used during training on Mini-ImageNet data set. Note that for a given encoder-shot

combination, same {lr,λ} values were used to produce the accuracy of LDR-guided versions

of all FSL approaches reported in Table. 7.3.

Table E.1: LDR-guided FSL training details: learning rate and λ

ConvNet ResNet-12

Parameter 1-shot 5-shot 1-shot 5-shot

Learning late 0.0001 0.0001 0.001 0.0002
λ 0.04 0.04 0.1 0.04

175

E.5 fsl encoder models

e.5 fsl encoder models

In addition to popular encoder backbones used in recent FSL literature [138], we experimented

with the following encoder backbones during ablation study in Sec. 7.4.2. Table. E.2 details

model architectures of above encoders.

Table E.2: LDR-guided FSL encoder architectures

Conv-4 ResNet-10
block output block output

input 3×84×84 input 3×84×84
Conv (64, 3, 2) 64×42×42 Conv2d (64, 3, 1) 64×84×84
Conv (64, 3, 2) 64×21×21 ResNet (64, 3, 1) 64×84×84
Conv (64, 3, 2) 64×10×10 ResNet (128, 3, 2) 128×42×42
Conv (64, 3, 2) 64×5×5 ResNet (256, 3, 2) 256×21×21

ResNet (512, 3, 2) 512×11×11
AvgPool2d 512×1×1

Flatten 1600 Flatten 512

176

R E F E R E N C E S

[1] Y. Liu, J. Guo, D. Cai, and X. He, “Attribute attention for semantic disambiguation
in zero-shot learning,” in Proceedings of the IEEE/CVF international conference on
computer vision, 2019, pp. 6698–6707.

[2] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, “Deep learning for
computer vision: A brief review,” Computational intelligence and neuroscience, vol.
2018, 2018.

[3] A. Shrestha and A. Mahmood, “Review of deep learning algorithms and architectures,”
IEEE access, vol. 7, pp. 53 040–53 065, 2019.

[4] S. Dörner, S. Cammerer, J. Hoydis, and S. Ten Brink, “Deep learning based commu-
nication over the air,” IEEE Journal of Selected Topics in Signal Processing, vol. 12,
no. 1, pp. 132–143, 2017.

[5] H. Huang, S. Guo, G. Gui, Z. Yang, J. Zhang, H. Sari, and F. Adachi, “Deep learning for
physical-layer 5g wireless techniques: Opportunities, challenges and solutions,” IEEE
Wireless Communications, vol. 27, no. 1, pp. 214–222, 2019.

[6] S. Khan and T. Yairi, “A review on the application of deep learning in system health
management,” Mechanical Systems and Signal Processing, vol. 107, pp. 241–265, 2018.

[7] F. Piccialli, V. Di Somma, F. Giampaolo, S. Cuomo, and G. Fortino, “A survey on
deep learning in medicine: Why, how and when?” Information Fusion, vol. 66, pp.
111–137, 2021.

[8] S. Nosratabadi, A. Mosavi, P. Duan, P. Ghamisi, F. Filip, S. S. Band, U. Reuter,
J. Gama, and A. H. Gandomi, “Data science in economics: comprehensive review of
advanced machine learning and deep learning methods,” Mathematics, vol. 8, no. 10, p.
1799, 2020.

[9] Y. Zhao, J. Li, and L. Yu, “A deep learning ensemble approach for crude oil price
forecasting,” Energy Economics, vol. 66, pp. 9–16, 2017.

[10] A. Warnecke, D. Arp, C. Wressnegger, and K. Rieck, “Evaluating explanation methods
for deep learning in security,” in 2020 IEEE european symposium on security and
privacy (EuroS&P). IEEE, 2020, pp. 158–174.

[11] M. A. Amanullah, R. A. A. Habeeb, F. H. Nasaruddin, A. Gani, E. Ahmed, A. S. M.
Nainar, N. M. Akim, and M. Imran, “Deep learning and big data technologies for iot
security,” Computer Communications, vol. 151, pp. 495–517, 2020.

177

REFERENCES

[12] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with deep convolu-
tional neural networks,” in Advances in neural information processing systems, 2012,
pp. 1097–1105.

[13] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” in International Conference on Learning Representations (ICLR), 2015.

[14] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2015, pp. 1–9.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2016,
pp. 770–778.

[16] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2017,
pp. 1251–1258.

[17] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate
object detection and semantic segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2014, pp. 580–587.

[18] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object
detection with region proposal networks,” in Advances in neural information processing
systems, 2015, pp. 91–99.

[19] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proceedings of the
IEEE international conference on computer vision, 2017, pp. 2961–2969.

[20] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical
image segmentation,” in International Conference on Medical image computing and
computer-assisted intervention. Springer, 2015, pp. 234–241.

[21] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs,” IEEE transactions on pattern analysis and machine intelligence,
vol. 40, no. 4, pp. 834–848, 2017.

[22] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic
segmentation,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 3431–3440.

[23] H. Li, K. Ota, and M. Dong, “Learning iot in edge: Deep learning for the internet of
things with edge computing,” IEEE Network, vol. 32, no. 1, pp. 96–101, 2018.

[24] C. Zhang, P. Patras, and H. Haddadi, “Deep learning in mobile and wireless networking:
A survey,” IEEE Communications Surveys & Tutorials, 2019.

178

REFERENCES

[25] L. D. Chamain, S. S. Cheung, and Z. Ding, “Quannet: Joint image compression
and classification over channels with limited bandwidth,” in 2019 IEEE International
Conference on Multimedia and Expo (ICME), 2019, pp. 338–343.

[26] H. Cai, B. Xu, L. Jiang, and A. V. Vasilakos, “IoT-based big data storage systems
in cloud computing: perspectives and challenges,” IEEE Internet of Things Journal,
vol. 4, no. 1, pp. 75–87, 2016.

[27] A. M. Ghosh and K. Grolinger, “Edge-cloud computing for internet of things data
analytics: Embedding intelligence in the edge with deep learning,” IEEE Transactions
on Industrial Informatics, vol. 17, no. 3, pp. 2191–2200, 2020.

[28] G. K. Wallace, “The jpeg still picture compression standard,” IEEE Transactions on
Consumer Electronics, vol. 38, no. 1, pp. xviii–xxxiv, Feb 1992.

[29] D. S. Taubman and M. W. Marcellin, JPEG2000 Image Compression Fundamentals,
Standards and Practice. Springer Science & Business Media, 2012, vol. 642.

[30] L. D. Chamain and Z. Ding, “Improving deep learning classification of jpeg2000 images
over bandlimited networks,” in ICASSP 2020 - 2020 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2020, pp. 4062–4066.

[31] L. D. Chamain, F. Racapé, J. Bégaint, A. Pushparaja, and S. Feltman, “End-to-
end optimized image compression for machines, a study,” in 2021 Data Compression
Conference (DCC). IEEE, 2021, pp. 163–172.

[32] J. Chen, Y. Ye, and S. H. Kim, “JVET-Q2002 Algorithm description for Versatile
Video Coding and Test Model 8 (VTM 8),” Jan. 2020.

[33] J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston, “Variational image
compression with a scale hyperprior,” arXiv preprint arXiv:1802.01436, 2018.

[34] F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte, and L. Van Gool, “Conditional
probability models for deep image compression,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp. 4394–4402.

[35] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” 2013.

[36] Y. Duan, Y. Zhang, X. Tao, C. Han, M. Xu, C. Yang, and J. Lu, “Content-aware deep
perceptual image compression,” in 2019 11th International Conference on Wireless
Communications and Signal Processing (WCSP). IEEE, 2019, pp. 1–6.

[37] H. Akutsu and T. Naruko, “End-to-end deep roi image compression,” IEICE Transac-
tions on Information and Systems, vol. 103, no. 5, pp. 1031–1038, 2020.

[38] C. Cai, L. Chen, X. Zhang, and Z. Gao, “End-to-end optimized roi image compression,”
IEEE Transactions on Image Processing, vol. 29, pp. 3442–3457, 2019.

179

REFERENCES

[39] C. De Alwis, A. Kalla, Q.-V. Pham, P. Kumar, K. Dev, W.-J. Hwang, and M. Liyanage,
“Survey on 6g frontiers: Trends, applications, requirements, technologies and future
research,” IEEE Open Journal of the Communications Society, vol. 2, pp. 836–886,
2021.

[40] V. Cisco, “Cisco visual networking index: Forecast and trends, 2017–2022,” White
Paper, vol. 1, 2018.

[41] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang, “A survey on the
edge computing for the internet of things,” IEEE access, vol. 6, pp. 6900–6919, 2017.

[42] F. Samie, L. Bauer, and J. Henkel, “From cloud down to things: An overview of
machine learning in internet of things,” IEEE Internet of Things Journal, vol. 6, no. 3,
pp. 4921–4934, 2019.

[43] A. A. Diro, N. Chilamkurti, and Y. Nam, “Analysis of lightweight encryption scheme
for fog-to-things communication,” IEEE Access, vol. 6, pp. 26 820–26 830, 2018.

[44] C. Gong, F. Lin, X. Gong, and Y. Lu, “Intelligent cooperative edge computing in
internet of things,” IEEE Internet of Things Journal, vol. 7, no. 10, pp. 9372–9382,
2020.

[45] M. Chen and Y. Hao, “Task offloading for mobile edge computing in software defined
ultra-dense network,” IEEE Journal on Selected Areas in Communications, vol. 36,
no. 3, pp. 587–597, 2018.

[46] R. Roman, J. Lopez, and M. Mambo, “Mobile edge computing, fog et al.: A survey
and analysis of security threats and challenges,” Future Generation Computer Systems,
vol. 78, pp. 680–698, 2018.

[47] H. El-Sayed, S. Sankar, M. Prasad, D. Puthal, A. Gupta, M. Mohanty, and C.-T. Lin,
“Edge of things: The big picture on the integration of edge, IoT and the cloud in a
distributed computing environment,” IEEE access, vol. 6, pp. 1706–1717, 2017.

[48] G. Algan and I. Ulusoy, “Label noise types and their effects on deep learning,” arXiv
preprint arXiv:2003.10471, 2020.

[49] M. Ren, W. Zeng, B. Yang, and R. Urtasun, “Learning to reweight examples for robust
deep learning,” in International conference on machine learning. PMLR, 2018, pp.
4334–4343.

[50] C. H. Lampert, H. Nickisch, and S. Harmeling, “Attribute-based classification for
zero-shot visual object categorization,” IEEE transactions on pattern analysis and
machine intelligence, vol. 36, no. 3, pp. 453–465, 2013.

[51] H. Larochelle, D. Erhan, and Y. Bengio, “Zero-data learning of new tasks.” in AAAI,
vol. 1, no. 2, 2008, p. 3.

180

REFERENCES

[52] X. Dai, S. Tong, M. Li, Z. Wu, M. Psenka, K. H. R. Chan, P. Zhai, Y. Yu, X. Yuan,
H.-Y. Shum et al., “CTRL: Closed-loop transcription to an LDR via minimaxing rate
reduction,” Entropy, vol. 24, no. 4, p. 456, 2022.

[53] Y. Yu, K. H. R. Chan, C. You, C. Song, and Y. Ma, “Learning diverse and discriminative
representations via the principle of maximal coding rate reduction,” Advances in Neural
Information Processing Systems, vol. 33, 2020.

[54] Y. Xian, C. H. Lampert, B. Schiele, and Z. Akata, “Zero-shot learning—a comprehensive
evaluation of the good, the bad and the ugly,” IEEE transactions on pattern analysis
and machine intelligence, vol. 41, no. 9, pp. 2251–2265, 2018.

[55] Y. Xian, Z. Akata, G. Sharma, Q. Nguyen, M. Hein, and B. Schiele, “Latent embeddings
for zero-shot classification,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 69–77.

[56] L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object categories,” IEEE
transactions on pattern analysis and machine intelligence, vol. 28, no. 4, pp. 594–611,
2006.

[57] B. Lake, R. Salakhutdinov, J. Gross, and J. Tenenbaum, “One shot learning of simple
visual concepts,” in Proceedings of the annual meeting of the cognitive science society,
vol. 33, no. 33, 2011.

[58] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra et al., “Matching networks for one
shot learning,” Advances in neural information processing systems, vol. 29, 2016.

[59] L. D. Chamain, S. Qi, and Z. Ding, “An end-to-end learning architecture for efficient
image encoding and deep learning,” in 2021 29th European Signal Processing Conference
(EUSIPCO). IEEE, 2021, pp. 691–695.

[60] R. C. Gonzalez, R. E. Woods et al., “Digital image processing [M],” Publishing house
of electronics industry, vol. 141, no. 7, 2002.

[61] W. Sweldens, “The lifting scheme: A construction of second generation wavelets,” SIAM
journal on mathematical analysis, vol. 29, no. 2, pp. 511–546, 1998.

[62] D. Taubman, “High performance scalable image compression with ebcot,” IEEE Trans-
actions on image processing, vol. 9, no. 7, pp. 1158–1170, 2000.

[63] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalch-
brenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A generative model for raw audio,”
arXiv preprint arXiv:1609.03499, 2016.

[64] L. Dinh, D. Krueger, and Y. Bengio, “Nice: Non-linear independent components
estimation,” in Proceedings of the International Conference on Learning Representations
(ICLR), 2015.

181

REFERENCES

[65] D. P. Kingma and P. Dhariwal, “Glow: Generative flow with invertible 1x1 convolutions,”
in Advances in Neural Information Processing Systems, 2018, pp. 10 215–10 224.

[66] C. Doersch, “Tutorial on variational autoencoders,” arXiv preprint arXiv:1606.05908,
2016.

[67] A. Habibian, T. v. Rozendaal, J. M. Tomczak, and T. S. Cohen, “Video compression
with rate-distortion autoencoders,” in Proceedings of the IEEE International Conference
on Computer Vision, 2019, pp. 7033–7042.

[68] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and
A. Lerchner, “beta-vae: Learning basic visual concepts with a constrained variational
framework,” in Proceedings of the International Conference on Learning Representations
(ICLR), 2017.

[69] Y. Ma, H. Derksen, W. Hong, and J. Wright, “Segmentation of multivariate mixed
data via lossy data coding and compression,” IEEE transactions on pattern analysis
and machine intelligence, vol. 29, no. 9, pp. 1546–1562, 2007.

[70] K. H. R. Chan, Y. Yu, C. You, H. Qi, J. Wright, and Y. Ma, “Redunet: A white-box
deep network from the principle of maximizing rate reduction,” Journal of Machine
Learning Research, 2022.

[71] L. Gueguen, A. Sergeev, B. Kadlec, R. Liu, and J. Yosinski, “Faster neural networks
straight from JPEG,” in Advances in Neural Information Processing Systems, 2018, pp.
3937–3948.

[72] X. Zou, X. Xu, C. Qing, and X. Xing, “High speed deep networks based on discrete
cosine transformation,” in IEEE Int. Conf. on Image Processing (ICIP), Oct 2014, pp.
5921–5925.

[73] T. Williams and R. Li, “Advanced image classification using wavelets and convolutional
neural networks,” in 15th IEEE Int. Conf. on Machine Learning and Applications
(ICMLA), Dec 2016, pp. 233–239.

[74] S. Fujieda, K. Takayama, and T. Hachisuka, “Wavelet convolutional neural networks
for texture classification,” arXiv preprint arXiv:1707.07394, 2017.

[75] A. Levinskis, “Convolutional neural network feature reduction using wavelet transform,”
Elektronika ir Elektrotechnika, vol. 19, no. 3, pp. 61–64, 2013.

[76] E. Kang, J. Min, and J. Ye, “A deep convolutional neural network using directional
wavelets for low-dose X-ray CT reconstruction,” Medical Physics, vol. 44, no. 10, 2017.

[77] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein et al., “Imagenet large scale visual recognition challenge,”
International journal of computer vision, vol. 115, no. 3, pp. 211–252, 2015.

182

REFERENCES

[78] R. Torfason, F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte, and L. Van Gool,
“Towards image understanding from deep compression without decoding,” in Proceedings
of the International Conference on Learning Representations (ICLR), 2018.

[79] J. Chao, H. Chen, and E. Steinbach, “On the design of a novel jpeg quantization
table for improved feature detection performance,” in 2013 IEEE Inte. Conf. on Image
Processing, Sept 2013, pp. 1675–1679.

[80] Z. Liu, T. Liu, W. Wen, L. Jiang, J. Xu, Y. Wang, and G. Quan, “DeepN-JPEG: A
deep neural network favorable jpeg-based image compression framework,” in Proc.
55th IEEE Annual Design Automation Conf. (DAC’18, San Francisco, USA, 2018, pp.
18:1–18:6. [Online]. Available: http://doi.acm.org/10.1145/3195970.3196022

[81] G. Chen, Y. Li, and S. N. Srihari, “Joint visual denoising and classification using
deep learning,” in IEEE International Conference on Image Processing, Sept 2016, pp.
3673–3677.

[82] S. Diamond, V. Sitzmann, F. Julca-Aguilar, S. Boyd, G. Wetzstein, and F. Heide,
“Dirty pixels: Towards end-to-end image processing and perception,” ACM Transactions
on Graphics (TOG), vol. 40, no. 3, pp. 1–15, 2021.

[83] L. Theis, W. Shi, A. Cunningham, and F. Huszár, “Lossy image compression with
compressive autoencoders,” in Proceedings of the International Conference on Learning
Representations (ICLR), 2017.

[84] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment:
from error visibility to structural similarity,” IEEE Trans. on Image Processing, vol. 13,
no. 4, pp. 600–612, April 2004.

[85] L. D. Chamain and Z. Ding, “Faster and accurate classification for jpeg2000 compressed
images in networked applications,” arXiv preprint arXiv:1909.05638, 2019.

[86] M. H. Miraz, M. Ali, P. S. Excell, and R. Picking, “A review on internet of things
(iot), internet of everything (ioe) and internet of nano things (iont),” in 2015 Internet
Technologies and Applications (ITA). IEEE, 2015, pp. 219–224.

[87] Q. Rao and J. Frtunikj, “Deep learning for self-driving cars: chances and challenges,”
in Proceedings of the 1st International Workshop on Software Engineering for AI in
Autonomous Systems, 2018, pp. 35–38.

[88] G. Sreenu and M. S. Durai, “Intelligent video surveillance: a review through deep
learning techniques for crowd analysis,” Journal of Big Data, vol. 6, no. 1, p. 48, 2019.

[89] Z. Yang and L. S. Pun-Cheng, “Vehicle detection in intelligent transportation sys-
tems and its applications under varying environments: A review,” Image and Vision
Computing, vol. 69, pp. 143–154, 2018.

[90] J. Kaur, M. A. Khan, M. Iftikhar, M. Imran, and Q. E. U. Haq, “Machine learning
techniques for 5g and beyond,” IEEE Access, vol. 9, pp. 23 472–23 488, 2021.

183

http://doi.acm.org/10.1145/3195970.3196022

REFERENCES

[91] B. Ji, Y. Wang, K. Song, C. Li, H. Wen, V. G. Menon, and S. Mumtaz, “A survey of
computational intelligence for 6g: Key technologies, applications and trends,” IEEE
Transactions on Industrial Informatics, 2021.

[92] H. Wang, C. Tao, J. Qi, H. Li, and Y. Tang, “Semi-supervised variational generative
adversarial networks for hyperspectral image classification,” in IGARSS 2019-2019
IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2019, pp.
9792–9794.

[93] Y. Luo and H. Pfister, “Adversarial defense of image classification using a variational
auto-encoder,” arXiv preprint arXiv:1812.02891, 2018.

[94] X. Chen, Y. Sun, M. Zhang, and D. Peng, “Evolving deep convolutional variational
autoencoders for image classification,” IEEE Transactions on Evolutionary Computation,
vol. 25, no. 5, pp. 815–829, 2020.

[95] S. Dodge and L. Karam, “Understanding how image quality affects deep neural networks,”
in 2016 eighth international conference on quality of multimedia experience (QoMEX).
IEEE, 2016, pp. 1–6.

[96] G. J. Sullivan, J. Ohm, W.-J. Han, and T. Wiegand, “Overview of the high
efficiency video coding (HEVC) standard,” IEEE Transactions on circuits and systems
for video technology, vol. 22, no. 12, pp. 1649–1668, 2012. [Online]. Available:
http://ieeexplore.ieee.org/abstract/document/6316136/

[97] G. K. Wallace, “The jpeg still picture compression standard,” IEEE transactions on
consumer electronics, vol. 38, no. 1, pp. xviii–xxxiv, 1992.

[98] E. Agustsson, F. Mentzer, M. Tschannen, L. Cavigelli, R. Timofte, L. Benini, and
L. V. Gool, “Soft-to-hard vector quantization for end-to-end learning compressible
representations,” 2017.

[99] M. Li, W. Zuo, S. Gu, D. Zhao, and D. Zhang, “Learning convolutional
networks for content-weighted image compression,” 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, Jun 2018. [Online]. Available:
http://dx.doi.org/10.1109/CVPR.2018.00339

[100] J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston, “Variational image
compression with a scale hyperprior,” in International Conference on Learning Repre-
sentations (ICLR), 2018.

[101] G. Toderici, D. Vincent, N. Johnston, S. Jin Hwang, D. Minnen, J. Shor, and M. Covell,
“Full resolution image compression with recurrent neural networks,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 5306–5314.

[102] N. Tishby, F. C. Pereira, and W. Bialek, “The information bottleneck method,” arXiv
preprint physics/0004057, 2000.

184

http://ieeexplore.ieee.org/abstract/document/6316136/
http://dx.doi.org/10.1109/CVPR.2018.00339

REFERENCES

[103] N. Tishby and N. Zaslavsky, “Deep learning and the information bottleneck principle,”
in 2015 IEEE Information Theory Workshop (ITW). IEEE, 2015, pp. 1–5.

[104] S. Singh, S. Abu-El-Haija, N. Johnston, J. Ballé, A. Shrivastava, and G. Toderici,
“End-to-end learning of compressible features,” in 2020 IEEE International Conference
on Image Processing (ICIP). IEEE, 2020, pp. 3349–3353.

[105] X. Luo, H. Talebi, F. Yang, M. Elad, and P. Milanfar, “The rate-distortion-accuracy
tradeoff: Jpeg case study,” arXiv preprint arXiv:2008.00605, 2020.

[106] M. Weber, C. Renggli, H. Grabner, and C. Zhang, “Lossy image compression with re-
current neural networks: from human perceived visual quality to classification accuracy,”
arXiv preprint arXiv:1910.03472, 2019.

[107] E. Schonfeld, S. Ebrahimi, S. Sinha, T. Darrell, and Z. Akata, “Generalized zero-and few-
shot learning via aligned variational autoencoders,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp. 8247–8255.

[108] D. Marpe, H. Schwarz, and T. Wiegand, “Context-based adaptive binary arithmetic
coding in the h. 264/avc video compression standard,” IEEE Transactions on circuits
and systems for video technology, vol. 13, no. 7, pp. 620–636, 2003.

[109] V. Sze and D. Marpe, “Entropy coding in hevc,” in High Efficiency Video Coding
(HEVC). Springer, 2014, pp. 209–274.

[110] F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte, and L. V. Gool, “Practical full
resolution learned lossless image compression,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2019, pp. 10 629–10 638.

[111] A. Krizhevsky, V. Nair, and G. Hinton, “The cifar-10 dataset,” online: http://www. cs.
toronto. edu/kriz/cifar. html, vol. 55, 2014.

[112] A. Krizhevsky, “Learning multiple layers of features from tiny images,” Tech. Rep.,
2009.

[113] J. Ballé, V. Laparra, and E. P. Simoncelli, “End-to-end optimized image compression,”
in Proceedings of the International Conference on Learning Representations (ICLR),
2017.

[114] Y. Deng, “Deep learning on mobile devices: a review,” in Mobile Multimedia/Image
Processing, Security, and Applications 2019, vol. 10993. International Society for
Optics and Photonics, 2019, p. 109930A.

[115] N. D. Lane, S. Bhattacharya, A. Mathur, P. Georgiev, C. Forlivesi, and F. Kawsar,
“Squeezing deep learning into mobile and embedded devices,” IEEE Pervasive Comput-
ing, vol. 16, no. 3, pp. 82–88, 2017.

[116] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick, “Microsoft coco: Common objects in context,” in European conference
on computer vision. Springer, 2014, pp. 740–755.

185

REFERENCES

[117] J.-J. Liu, Q. Hou, M.-M. Cheng, J. Feng, and J. Jiang, “A simple pooling-based design
for real-time salient object detection,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2019.

[118] Z. Chen, Q. Xu, R. Cong, and Q. Huang, “Global context-aware progressive aggregation
network for salient object detection,” in Proceedings of the AAAI conference on artificial
intelligence, vol. 34, no. 07, 2020, pp. 10 599–10 606.

[119] Y. Ma, Y. Zhai, C. Yang, J. Yang, R. Wang, J. Zhou, K. Li, Y. Chen, and R. Wang,
“Variable rate roi image compression optimized for visual quality,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp.
1936–1940.

[120] P. Sreenivasulu and S. Varadarajan, “An efficient lossless roi image compression using
wavelet-based modified region growing algorithm,” Journal of Intelligent Systems, vol. 1,
no. ahead-of-print, 2018.

[121] A. M. Taheri and H. Mahdavi-Nasab, “Sparse representation based facial image com-
pression via multiple dictionaries and separated roi,” Multimedia Tools and Applications,
vol. 77, no. 23, pp. 31 095–31 114, 2018.

[122] W. Wang, Q. Lai, H. Fu, J. Shen, H. Ling, and R. Yang, “Salient object detection in
the deep learning era: An in-depth survey,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2021.

[123] J. Choi, H. J. Chang, T. Fischer, S. Yun, K. Lee, J. Jeong, Y. Demiris, and J. Y.
Choi, “Context-aware deep feature compression for high-speed visual tracking,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 479–488.

[124] B. Wang, Q. Peng, E. Wang, K. Han, and W. Xiang, “Region-of-interest compression
and view synthesis for light field video streaming,” IEEE Access, vol. 7, pp. 41 183–41 192,
2019.

[125] A. I. Khaleel, N. A. H. Zahri, and M. I. Ahmad, “A hybrid compression method for
medical images based on region of interest using artificial neural networks,” Journal of
Engineering, vol. 2021, 2021.

[126] E. M. Rubino, A. J. Álvares, R. Marín, and P. J. Sanz, “Real-time rate distortion-
optimized image compression with region of interest on the arm architecture for
underwater robotics applications,” Journal of Real-Time Image Processing, vol. 16,
no. 1, pp. 193–225, 2019.

[127] G. Li and Y. Yu, “Deep contrast learning for salient object detection,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, 2016, pp. 478–487.

[128] N. Liu and J. Han, “Dhsnet: Deep hierarchical saliency network for salient object
detection,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 678–686.

186

REFERENCES

[129] Q. Hou, M.-M. Cheng, X. Hu, A. Borji, Z. Tu, and P. Torr, “Deeply supervised salient
object detection with short connections,” IEEE TPAMI, vol. 41, no. 4, pp. 815–828,
2019.

[130] Benjamin Bross, Jianle Chen, Shan Liu, and Y.-K. Wang, “JVET-S2001 Versatile Video
Coding (Draft 10),” in Joint Video Exploration Team (JVET) of ITU-T SG 16 WP 3
and ISO/IEC JTC 1/SC 29/WG 11, Oct. 2020.

[131] J. Bégaint, F. Racapé, S. Feltman, and A. Pushparaja, “Compressai: a pytorch
library and evaluation platform for end-to-end compression research,” arXiv preprint
arXiv:2011.03029, 2020.

[132] S. Liu, M. Long, J. Wang, and M. I. Jordan, “Generalized zero-shot learning with
deep calibration network,” Advances in Neural Information Processing Systems, vol. 31,
2018.

[133] M. Rohrbach, M. Stark, and B. Schiele, “Evaluating knowledge transfer and zero-shot
learning in a large-scale setting,” in CVPR 2011. IEEE, 2011, pp. 1641–1648.

[134] X. Xu, F. Shen, Y. Yang, D. Zhang, H. Tao Shen, and J. Song, “Matrix tri-factorization
with manifold regularizations for zero-shot learning,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 3798–3807.

[135] L. Zhang, T. Xiang, and S. Gong, “Learning a deep embedding model for zero-shot
learning,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 2021–2030.

[136] W. Xu, Y. Xian, J. Wang, B. Schiele, and Z. Akata, “Attribute prototype network for
zero-shot learning,” Advances in Neural Information Processing Systems, vol. 33, pp.
21 969–21 980, 2020.

[137] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-shot learning,”
Advances in Neural Information Processing Systems, vol. 30, 2017.

[138] H.-J. Ye, H. Hu, D.-C. Zhan, and F. Sha, “Few-shot learning via embedding adaptation
with set-to-set functions,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 8808–8817.

[139] W.-L. Chao, S. Changpinyo, B. Gong, and F. Sha, “An empirical study and analysis of
generalized zero-shot learning for object recognition in the wild,” in European conference
on computer vision. Springer, 2016, pp. 52–68.

[140] Y. Xian, T. Lorenz, B. Schiele, and Z. Akata, “Feature generating networks for zero-
shot learning,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 5542–5551.

[141] Y. Zhu, M. Elhoseiny, B. Liu, X. Peng, and A. Elgammal, “A generative adversarial
approach for zero-shot learning from noisy texts,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2018, pp. 1004–1013.

187

REFERENCES

[142] Y. Zhu, J. Xie, B. Liu, and A. Elgammal, “Learning feature-to-feature translator by
alternating back-propagation for generative zero-shot learning,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2019, pp. 9844–9854.

[143] S. Tong, X. Dai, Z. Wu, M. Li, B. Yi, and Y. Ma, “Incremental learning of structured
memory via closed-loop transcription,” arXiv preprint arXiv:2202.05411, 2022.

[144] Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid, “Label-embedding for image
classification,” IEEE transactions on pattern analysis and machine intelligence, vol. 38,
no. 7, pp. 1425–1438, 2015.

[145] K. Lee, S. Maji, A. Ravichandran, and S. Soatto, “Meta-learning with differentiable
convex optimization,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2019, pp. 10 657–10 665.

[146] H. Li, D. Eigen, S. Dodge, M. Zeiler, and X. Wang, “Finding task-relevant features for
few-shot learning by category traversal,” in Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, 2019, pp. 1–10.

[147] C. H. Lampert, H. Nickisch, and S. Harmeling, “Learning to detect unseen object
classes by between-class attribute transfer,” in 2009 IEEE conference on computer
vision and pattern recognition. IEEE, 2009, pp. 951–958.

[148] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, “The caltech-ucsd
birds-200-2011 dataset,” 2011.

[149] G. Patterson, C. Xu, H. Su, and J. Hays, “The sun attribute database: Beyond
categories for deeper scene understanding,” International Journal of Computer Vision,
vol. 108, no. 1, pp. 59–81, 2014.

[150] G.-S. Xie, L. Liu, X. Jin, F. Zhu, Z. Zhang, J. Qin, Y. Yao, and L. Shao, “Attentive
region embedding network for zero-shot learning,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp. 9384–9393.

[151] S. Ravi and H. Larochelle, “Optimization as a model for few-shot learning,” in Proceed-
ings of the International Conference on Learning Representations (ICLR).

[152] L. D. Chamain, S.-c. S. Cheung, and Z. Ding, “Quannet: Joint image compression
and classification over channels with limited bandwidth,” in 2019 IEEE International
Conference on Multimedia and Expo (ICME). IEEE, 2019, pp. 338–343.

[153] L. D. Chamain and Z. Ding, “Improving deep learning classification of jpeg2000 images
over bandlimited networks,” in ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020, pp. 4062–4066.

[154] N. Natarajan, I. S. Dhillon, P. Ravikumar, and A. Tewari, “Learning with noisy labels.”
in NIPS, vol. 26, 2013, pp. 1196–1204.

188

REFERENCES

[155] D. Tanaka, D. Ikami, T. Yamasaki, and K. Aizawa, “Joint optimization framework
for learning with noisy labels,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 5552–5560.

[156] H. Wei, Y. Yang, L. Li, A. B. Winston, and A. Ten-Ami, “Hybrid learning for adaptive
video grouping and compression,” Sep. 17 2019, uS Patent 10,419,773.

[157] K.-O. Cheng, N.-F. Law, and W.-C. Siu, “Clustering-based compression for population
dna sequences,” IEEE/ACM transactions on computational biology and bioinformatics,
vol. 16, no. 1, pp. 208–221, 2017.

[158] R. Kozhemiakin, S. Abramov, V. Lukin, B. Djurović, I. Djurović, and B. Vozel, “Lossy
compression of landsat multispectral images,” in 2016 5th Mediterranean Conference
on Embedded Computing (MECO). IEEE, 2016, pp. 104–107.

[159] X. Zhu and M. Bain, “B-cnn: branch convolutional neural network for hierarchical
classification,” arXiv preprint arXiv:1709.09890, 2017.

[160] J. Y. Chang and K. M. Lee, “Large margin learning of hierarchical semantic similarity
for image classification,” Computer Vision and Image Understanding, vol. 132, pp. 3–11,
2015.

[161] T. M. Cover, Elements of information theory. John Wiley & Sons, 1999.

[162] L. D. Chamain, F. Racapé, J. Bégaint, A. Pushparaja, and S. Feltman, “End-to-end opti-
mized image compression for multiple machine tasks,” arXiv preprint arXiv:2103.04178,
2021.

[163] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein et al., “Imagenet large scale visual recognition challenge,”
International journal of computer vision, vol. 115, no. 3, pp. 211–252, 2015.

[164] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3d shapenets: A
deep representation for volumetric shapes,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 1912–1920.

[165] G. Li and Y. Yu, “Visual saliency based on multiscale deep features,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2015, pp. 5455–5463.

[166] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool, M. Gross, and A. Sorkine-
Hornung, “A benchmark dataset and evaluation methodology for video object seg-
mentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 724–732.

[167] A. Gomez Chavez, A. Ranieri, D. Chiarella, E. Zereik, A. Babić, and A. Birk, “Caddy
underwater stereo-vision dataset for human–robot interaction (hri) in the context of
diver activities,” Journal of Marine Science and Engineering, vol. 7, no. 1, p. 16, 2019.

189

REFERENCES

[168] A. G. Chavez, A. Ranieri, D. Chiarella, and A. Birk, “Underwater vision-based gesture
recognition: A robustness validation for safe human-robot interaction,” IEEE Robotics
& Automation Magazine, 2021.

[169] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets for 3d
classification and segmentation,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 652–660.

[170] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, “Multi-view convolutional neural
networks for 3d shape recognition,” in Proceedings of the IEEE international conference
on computer vision, 2015, pp. 945–953.

[171] D. Hendrycks and T. Dietterich, “Benchmarking neural network robustness to common
corruptions and perturbations,” in Proceedings of the International Conference on
Learning Representations (ICLR), 2019.

[172] A. A. Alemi, I. Fischer, J. V. Dillon, and K. Murphy, “Deep variational information
bottleneck,” in Proceedings of the International Conference on Learning Representations
(ICLR), 2016.

[173] H. W. Kuhn, “Nonlinear programming: a historical view,” in Traces and Emergence of
Nonlinear Programming. Springer, 2014, pp. 393–414.

[174] C. Cai, L. Chen, X. Zhang, and Z. Gao, “Efficient variable rate image compression
with multi-scale decomposition network,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 29, no. 12, pp. 3687–3700, 2018.

[175] J. Ballé, V. Laparra, and E. P. Simoncelli, “Density modeling of images using a gener-
alized normalization transformation,” in Proceedings of the International Conference
on Learning Representations (ICLR), 2016.

190

	Abstract
	Publications
	Acknowledgments
	Abbreviations
	1 Introduction
	1.1 Image compression
	1.1.1 Optimization of conventional compression codecs

	1.2 Learning-based Image Compression
	1.2.1 Learning-based codecs for improved rate-distortion-accuracy

	1.3 Practical limitation of cloud-based inference systems
	1.3.1 LDRs for joint compression and classification

	2 Background
	2.1 Conventional image compression codecs: JPEG 2000
	2.1.1 JPEG2000 Encoder
	2.1.2 JPEG2000 Decoder

	2.2 Learning-based codecs: Variational Autoencoders (VAE)
	2.2.1 Variational Bound for Reconstruction

	2.3 Linear Discriminative representation (LDR)
	2.3.1 Maximal Coding-Rate-Reduction (MCR2)

	 Improving conventional codecs
	3 Faster and accurate deep learning for JPEG2000 images
	3.1 Introduction
	3.1.1 Related works: Image classification on DWT coefficients
	3.1.2 Is reconstruction necessary?

	3.2 Classification of JPEG2000 Compressed images
	3.2.1 DWT-specific Image Augmentation
	3.2.2 Computation Speed and Accuracy

	3.3 Experiments and Results
	3.3.1 Shallow models are faster!
	3.3.2 Experiments over Bandwidth Constrained Channels

	3.4 Conclusions

	4 Joint Optimization of Conventional J2K Compression and deep learning
	4.1 Deep learning over bandwidth constrained channels
	4.1.1 Related works

	4.2 QuanNet: Joint Quantization and deep learning
	4.3 Experiment Results
	4.3.1 Truncation with DB1 wavelets
	4.3.2 Quantization with DB1 wavelets
	4.3.3 Quantization with CDF 9/7 wavelets

	4.4 Discussion
	4.5 Conclusions

	 Learning-based codecs
	5 End-to-End Image Classification and Compression with variational autoencoders
	5.1 Introduction
	5.2 Related Works: VAE-Based Classifier
	5.3 A New VAE Classification Framework
	5.3.1 Variational Bound and Loss for Classification
	5.3.2 Learning Model
	5.3.3 Rate Loss
	5.3.4 Classification Loss

	5.4 Experiments and Results
	5.4.1 VAE-based Joint Compression and Classification models
	5.4.2 CIFAR-10 Experiments
	5.4.3 CIFAR-100 Experiments
	5.4.4 ImageNet Experiments

	5.5 Complexity Comparison
	5.5.1 Model size comparison
	5.5.2 Inference speed comparison
	5.5.3 Power savings comparison
	5.5.4 Comparison to Torfason-2018

	5.6 Discussion: Joint Compression and Classification with Reconstruction
	5.6.1 Visualization of reconstructed images

	5.7 Conclusions

	6 Classification-guided ROI-based End-to-end Image Compression
	6.1 Introduction
	6.2 Related Works
	6.2.1 ROI Coding
	6.2.2 ROI Prediction
	6.2.3 Joint image compression and classification

	6.3 Method
	6.3.1 ROI-based image encoding
	6.3.2 ROI prediction with Saliency maps
	6.3.3 Classification-guided ROI compression

	6.4 Experiments and Results
	6.4.1 Details on Training
	6.4.2 Results and Comparisons

	6.5 Complexity comparison
	6.5.1 Model complexity
	6.5.2 Inference speed
	6.5.3 FLOPS calculation

	6.6 Discussion: Learned masks from shared encoder backbone
	6.7 Conclusions

	 LDR-guided codecs
	7 Linear Discriminative Representation (LDR)-guided Low-shot Learning
	7.1 Introduction
	7.2 Background and Related Works
	7.2.1 ALE for Zero-Shot Learning
	7.2.2 ProtoNets for Few-Shot Learning

	7.3 Methods
	7.3.1 LDR-Guided Zero-Shot Learning
	7.3.2 LDR-Guided Few-Shot learning

	7.4 Experiments and Results
	7.4.1 LDR-Guided Zero-Shot Learning
	7.4.2 LDR-Guided Few-Shot Learning
	7.4.3 rc Performance on JPEG-Compressed Images

	7.5 Conclusions

	8 LDR-based hierarchical grouping for joint image compression and classification
	8.1 Introduction
	8.2 Background and Related works
	8.2.1 Non-asymptotic rate-distortion with multiple groups
	8.2.2 Maximal coding for rate reduction (MCR2)
	8.2.3 MCR2 and Latent Encoding
	8.2.4 Latent Compression in View of Grouping

	8.3 Proposed End-to-End Framework
	8.3.1 Rate under Quantization Noise
	8.3.2 Learning to Group

	8.4 Experiments and Results
	8.4.1 DL Network Architectures
	8.4.2 Quantization Noise Emulation
	8.4.3 Ablation Experiment: Distortion Learning
	8.4.4 Ablation Experiment: Learned Grouping
	8.4.5 Gaussian noise

	8.5 Conclusions

	9 Conclusions and Future Work
	9.1 Summary of contributions
	9.1.1 Open source codes

	9.2 Limitations and future work
	9.2.1 Re-training/fine-tuning is necessary for each rate-accuracy point
	9.2.2 Universal encoders

	Appendix A Data sets
	A.1 Classification data sets
	A.1.1 ImageNet-1k
	A.1.2 Imagenette
	A.1.3 Tiny-ImageNet
	A.1.4 ModelNet-40
	A.1.5 CIFAR-10
	A.1.6 CIFAR-100
	A.1.7 AwA2
	A.1.8 CUB
	A.1.9 SUN

	A.2 Compression data sets
	A.2.1 HKU-IS
	A.2.2 DAVIS-2016
	A.2.3 CADDY
	A.2.4 ASL

	Appendix B Faster and accurate deep learning for JPEG2000 images
	B.1 ResNet for classification
	B.2 Fine-tuning on pre-trained models
	B.3 3D model classification with multi-view CNNs
	B.4 ResNet architectures used for DB1, DWT coefficients.

	Appendix C VAE-based classifiers
	C.1 Robustness to visual corruptions
	C.2 Implementation details: Effect of adjustment
	C.3 Visualization of latent maps
	C.4 Further theoretical explanations
	C.4.1 Relationship to the Information Bottleneck
	C.4.2 An alternative problem formulation

	Appendix D Classification-guided ROI-based End-to-end Image Compression
	D.1 PoolNet generated ROI
	D.2 Complexity comparison
	D.3 Cai-2019 complexity estimation
	D.4 Classifier fine-tuning

	Appendix E LDR-guided Low-shot learning
	E.1 Classes versus Attributes: An ablation study
	E.2 Robustness to Noise and common Perturbations
	E.3 Robustness to number of unseen classes
	E.4 LDR-Guided FSL Training
	E.5 FSL Encoder Models

