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A Formula for K-Theory Truncation Schubert Calculus

Allen Knutson and Alexander Yong

1 Introduction

Let Flags(Cn) denote the variety of complete flags in C
n. To each permutation π in the

symmetric group Sn, there is an associated Schubert variety Xπ ⊆ Flags(Cn). The classes

of the Schubert structure sheaves [OXπ ] form an additive Z-linear basis of the K-theory

(Grothendieck) ring K(Flags(Cn)) of algebraic vector bundles over Flags(Cn). The Schu-

bert structure constants are the integers defined by

[
OXσ

] · [OXρ

]
=

∑
π∈Sn

Cπ
σ,ρ

[
OXπ

]
. (1.1)

It is known [4] that (−1)�(σ)+�(ρ)−�(π)Cπ
σ,ρ ≥ 0, where �(α) is the minimum � such that α

is expressible as a product of � simple transpositions si = ti↔i+1. In the cohomology

case, that is, when �(σ) + �(ρ) = �(π), these are the structure constants for the anal-

ogous expansion of the product of Schubert classes [Xσ] · [Xρ] in the cohomology ring

H∗(Flags(Cn)). These structure constants count the number of points in the intersection

of general triple translates of Xσ, Xρ, Xw0π (where w0 denotes the longest permutation in

Sn). The expansion (1.1) behaves well with respect to the inclusion Sn ↪→ Sn+1. In partic-

ular, for any two permutations σ, ρ, and n sufficiently large, (1.1) stabilizes. Therefore, it

will be unambiguous (and convenient) to call (σ, ρ, π) ∈ S3∞ a Schubert problem, where

S∞ =
⋃

n≥1 Sn.
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It is a famous open problem to give a general subtraction-free combinatorial

formula applicable to any Schubert problem. The analogous problem for Grassmanni-

ans is solved in the cohomology case by the Littlewood-Richardson rule, and more re-

cently in the K-theory by Buch [6]. A solution for the flag variety would provide an

important generalization of the Littlewood-Richardson rule. However, the known gen-

eralized Littlewood-Richardson rules [6, 21] handle only limited cases of the Schubert

problems.

Our main result is a subtraction-free combinatorial formula for the family we

call truncation Schubert problems (defined below). This formula specializes to compute

the K-theory generalizations of the numbers considered by Kogan [21] and the K-theory

Littlewood-Richardson coefficients of [6]. Actually, our main result gives formulas for

many other combinatorial numbers studied in connection to the Schubert calculus [2, 6,

22], formulas for Schubert and Grothendieck polynomials [3, 13, 14, 23], degeneracy loci

[5, 7, 8, 9, 16], and quantum Schubert polynomials [8, 11, 12]; see, for example, [10] and

the references therein. We find it interesting that our formula also applies to new cases

of Schubert problems where neither class is a pullback from a Grassmannian.

The fact that these numbers all arise from the single framework of problems iso-

lated here suggests that their common combinatorial and geometric features ought to be

better understood.

On the combinatorial side, in Section 3, we present our formula in terms of sim-

ple “marching” moves of the diagram of a permutation. We would like to understand how,

for example, various combinatorial aspects of the classical Littlewood-Richardson coef-

ficients might extend to this family of numbers. It would be interesting to understand

the relations between the formula given here and formulas for the aforementioned spe-

cial cases, and other related formulas, for example, see [17, 25, 27, 29, 30].

One feature of our proof is that it is both short and completely combinatorial.

It is based on “truncation” techniques concerning Grothendieck polynomials [23] and in

particular, the “transition” formula of Lascoux [22]. These methods (at least in cohomol-

ogy) can be considered classical in the subject. Indeed, in previous work [22] (see also

[24]), similar techniques were applied to give new formulas for the K-theory Littlewood-

Richardson coefficients (after [6]). However, it is perhaps surprising that such methods

are in fact applicable to more general Schubert calculus problems, and in particular, Ko-

gan’s Schubert problems. Our principal novelty of three simultaneous observations is

reflected respectively in the three equalities found in (3.8).

Thus, since Kogan’s Schubert problems form a special case of the truncation

Schubert problems, our formula covers new cases of the Schubert problem in the

K-theory (and, moreover, our proof makes transparent the role of Kogan’s conditions).



A Formula for K-Theory Truncation Schubert Calculus 3743

However, we emphasize that our formula handles new cases beyond that in [21], even in

cohomology.

A further goal of this paper is to present the diagram marching moves. One rea-

son to use such (recursive) combinatorics is that the moves have a natural geometric

interpretation. In a sequel [20] to this paper, we interpret the moves in terms of Gröbner

degeneration of matrix Schubert varieties [15] via diagonal term orders (in an important

contrast to the antidiagonal term orders used in [19]). For example, in the cohomology

case, our formula can be interpreted as counting certain components of a partially de-

generated matrix Schubert variety. It would be interesting to understand what relations

exist between the formula presented here and the geometric Littlewood-Richardson rule

of Vakil [31], which is also based on degeneration.

Finally, one other advantage of the approach presented here is the possible exten-

sions to other Schubert calculus settings, for example, the cohomology/K-theory ring of

flag varieties corresponding to the other classical Lie-type BCD (work in progress with

F. Sottile).

2 Diagram moves and the main result

Let G(π) denote the permutation matrix associated to π ∈ Sn, and call the nonzero entries

of G(π) its dots. The diagram of a permutation π is the following subset of [n] × [n]:

D(π) :=
{
(p, q), 1 ≤ p, q ≤ n, π(p) > q, π−1(q) > p

}
. (2.1)

Equivalently, (p, q) ∈ D(π) if (p, π−1(q)) is an inversion of π; thus #D(π) = �(π). Graphi-

cally, D(π) is obtained from G(π) by drawing a “hook” consisting of lines going east and

south from each dot. The diagram appears as a collection of “connected components” of

squares not in the hook of any dot (see Example 2.1).

Call the southernmost, then eastmost, box (l,m) ∈ D(π) the maximal corner.

Note that the maximal corner of π is in row l if and only if the last descent of π is in

row l, that is, the largest index l such that π(l) > π(l + 1). Call any dot that is maximally

southeast with respect to the condition that it is northwest of (l,m) a pivot. There are no

pivots if and only if the maximal corner is in the connected component of D(π) attached

to the top left corner of [n] × [n]. See Example 2.1.

In the following definitions, it is convenient to describe the cohomology versions

first before explaining their K-theory analogs. In Section 3, we will connect what follows

to the Grothendieck transition formula of [22].
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First, we describe the marching operation on D(π). Suppose the maximal corner

is at (l,m). If the input permutation has no pivots, declare the output of the marching

to be null “∅,” and write π → ∅. Otherwise, consider a pivot (i, j) ∈ G(π). Remove the

hook emanating from (i, j), and move strictly to the northwest every diagram box in the

rectangle with the corners (i, j), (l,m) into the only spaces available (i.e., by “hopping”

over any hooks in the way). Do this by starting with the unique northwest box in the

rectangle and continue left to right along the rows, and from top to bottom. It is easy to

check that the resulting collection of boxes is necessarily the diagram of a permutation

ρ. Let π
i−→ ρ denote that ρ is obtained from marching on D(π) towards the pivot in row i.

Example 2.1. Let π = 4317625. We have D(π) = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (4, 2), (4, 5),

(4, 6), (5, 2), (5, 5)}. The maximal corner is (5, 5) and its pivots are the dots at (1, 4), (2, 3),

and (3, 1). The boxes in the (3, 1), (5, 5) rectangle of π are marked with Xs. Marching to-

wards the pivot (2, 3), we get ρ = 4517326 as in Figure 2.1. Note that two adjacent X’s at

(4, 5) and (5, 5) can become separated (to (2, 3) and (4, 3), respectively) after marching.

Marching instead towards the pivot (3, 1), we get ρ = 4357126 as shown in Figure 2.2. This

time, some nonadjacent boxes in π become adjacent in ρ.
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More generally, suppose that 1 ≤ i1 < i2 < · · · < ik < l represent a subset of

the rows that contain pivots of (l,m). Consider π
i1−→ ρ1. Add a box to the diagram of

ρ1 at (l, ρ1(l)). This is the diagram of a new permutation ρ ′
1, where the added box is the

maximal corner for ρ ′
1, and the dot in row i2 is a pivot for this box. Now march ρ ′

1
i2−→ ρ2

and add a maximal corner similarly in row l to give ρ ′
2. Repeat this process of marching

and adding a box in row l until we obtain ρ = ρk. We write π
i1,i2,...,ik−−−−−−−→ ρ to denote this

more general K-marching operation; a total of k − 1 boxes are added.

Example 2.2. Let π be as in the above example and suppose we march to the pivots (1, 4)

and (3, 1) of the maximal corner (5, 5), in succession (see Figure 2.3).

For any β ∈ Sn and any positive integer t, we define a rooted, labeled tree Tt(β)

whose vertices are labeled either by ∅ or by a permutation (repetitions allowed). The root

is labeled by β. If a vertex is labeled by a permutation that has its last descent weakly

smaller than t, or is labeled by ∅, then declare that vertex to be a leaf. Otherwise, the

children of a vertex are indexed by the output of all ways of marching from that vertex.

One can check easily that in finitely many steps, this growth process terminates, giving

Tt(β). Note that Tt(β) is a pruning of Ts(β) for t ≤ s. Define KTt(β) similarly, using in-

stead the K-marching operation (and, similarly, KTt(β) ⊆ KTs(β)). Finally, if a leaf vertex

v is labeled π, call it a π-leaf.
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We will be particularly interested in the cases that KTs(β) or Ts(β) has exactly

one labeled leaf (i.e., not by ∅). The best-behaved cases are when β is “2143-avoiding,”

also known as “vexillary,” in which case, KTs(β) has at most one leaf for any s. In the

other direction, if π has a unique descent π(i) > π(i + 1), at i = s (called a Grassmannian

permutation), N ∈ N, and β is the N-stabilization of π, meaning

β(i) =




i for i ≤ N,

N + π(i − N) for i > N,
(2.2)

then KTs(β) will have only one labeled leaf, and it will be labeled π.

We are now ready to introduce the family of Schubert problems covered by our

main theorem. There is a standard operation �n on two permutations σ, α ∈ Sn. Let σ�n α

be the permutation in S2n whose matrix is the direct sum of G(σ) and G(α). For example,

id �nα is just the n-stabilization of α. Let σ ∈ Sn be a permutation whose last descent is

l, and let l ≤ t ≤ 2n be an integer. Suppose that α ∈ Sn is such that KTt(id �nα) contains a

single leaf v with label(v) �= ∅; let label(v) = ρ. Under these circumstances, call (σ, ρ, π) ∈
S2

n × S∞ a truncation Schubert problem subjugate to (t, α).

Theorem 2.3. If (σ, ρ, π) ∈ S2
n × S∞ is a truncation Schubert problem subjugate to (t, α),

then (−1)�(σ)+�(ρ)−�(π)Cπ
σ,ρ is the number of π-leaves of KTt

(
σ �n α

)
. A simpler formula is

available in the cohomology case: Cπ
σ,ρ is the number of π-leaves of Tt

(
σ �n α

)
. �

Example 2.4. Let σ = 3412 and α = 3214 be permutations in S4; so σ �4 α = 34127658 ∈
S8. One can check that KT4(id �4α) has a single labeled leaf, labeled by the permutation

12463578. Now KT4(σ �4 α) is given in Figure 2.4, and so by Theorem 2.3,

[
OX3412

] · [OX12463578

]
=

[
OX46123578

]
+

[
OX36142578

]
+

[
OX35162478

]
+

[
OX34261578

]

−
[
OX46132578

]
−

[
OX36152478

]
−

[
OX36241578

]

−
[
OX35261478

]
+

[
OX36251478

]
,

(2.3)

where the expansion (1.1) has been done in the case Flags(C8).

As mentioned before the theorem, and spelled out in the corollary below, one

family of truncation Schubert problems comes from Grassmannian permutations. In the

cohomology case, these were given a (different) positive combinatorial formula by Kogan

[21].
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π = 34127658
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Figure 2.4 The tree KT4(34127657).

Corollary 2.5. Let σ ∈ Sn have the last descent at l and let ρ be a Grassmannian permuta-

tion with unique descent at t, where l ≤ t ≤ n. Then for any π ∈ S∞ , (−1)�(σ)+�(ρ)−�(π)Cπ
σ,ρ

is the number of π-leaves of KTt

(
σ �n ρ

)
. In the cohomology case (treated in [21]), Cπ

σ,ρ is

the number of π-leaves of Tt

(
σ �n ρ

)
. �

If we also assume that σ is Grassmannian and moreover t = l, the first conclu-

sion of Corollary 2.5 computes the K-theory Littlewood-Richardson coefficients of [6],

while the second conclusion computes the classical Littlewood-Richardson coefficients.

See Section 4.1 for more details.

Example 2.6. Let σ = 321 ∈ S3, ρ = 132, and σ �3 ρ = 321465. The tree KT2(321465) is given

in Figure 2.5. Using this, the expansion (1.1) for Flags(C6) is

[
OX321

] · [OX132

]
=

[
OX421356

]
+

[
OX341256

]
−

[
OX431256

]
. (2.4)
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Figure 2.5 The tree KT2(321465).

There is an isomorphism of Flags(Cn) to itself induced by sending each vector

subspace V to its orthogonal complement V⊥ (with respect to an arbitrarily chosen bi-

linear form). The induced automorphism of K(Flags(Cn)) gives the symmetry Cπ
σ,ρ =

Cw0πw0
w0σw0,w0ρw0

. This observation, combined with the corollary (or the theorem), gives,

for example, a subtraction-free formula also for the Schubert numbers Cπ
σ,ρ, where ρ is

Grassmannian of descent t which is weakly smaller than the first descent of σ.

Theorem 2.3 also handles some new (but apparently limited) cases of Schubert

problems (σ, ρ), where neither σ nor ρ are Grassmannian permutations. This differs from

other formulas; see, for example, [2, 6, 10, 21, 22, 25, 27, 28, 30, 31].

Example 2.7. The tree KT7(12345987610) has a single leaf indexed by a permutation, and

that permutation is 12346985710. Hence a product of [OX12346985710
] with any [OXρ ] where
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ρ ∈ S5 is covered by Theorem 2.3, and in particular in K(Flags(C10)),

[
OX12346985710

] · [OX41352

]
=

[
OX41362985710

]
+

[
OX41356982710

]
−

[
OX41365982710

]

(2.5)

is a nontrivial expansion which is not computed by any previously known (subtraction-

free) multiplication formula. We remark that Theorem 2.3 is the first to give a positive

formula for even the cohomology expansion in H∗(Flags(C10)):

[
X12346985710

] · [X41352

]
=

[
X41362985710

]
+

[
X41356982710

]
. (2.6)

3 Proof of Theorem 2.3 and Corollary 2.5

We begin by recalling Lascoux and Schützenberger’s Grothendieck polynomials [23],

albeit via a rather unconventional definition. Let X = {x1, x2, . . .} be a collection of com-

muting independent variables. To each π ∈ S∞ , there is an associated Grothendieck poly-

nomial in the {xi}, and these polynomials satisfy the following crucial recursion.

Theorem 3.1 (cf. [22, 25]). For any permutation γ ∈ S∞ with the last descent g, let m > g

be the largest integer such that γ(m) < γ(g) and set γ ′ = γtg↔m. Suppose that 1 ≤ i1 <

i2 < · · · < is < g are the positions such that �(γ ′tij↔g) = �(γ ′) + 1. Then the (K-theory)

transition formula of Lascoux [22] (as formulated in [25, Corollary 3.10]) holds:

Gγ(X) = Gγ ′(X) +
(
xg − 1

)[
Gγ ′(X) · (I − ti1↔g

) · · · (I − tis↔g

)]
, (3.1)

where tj↔l acts on the {Gξ(X)} by Gξ(X) · tj↔l = Gξtj↔l
(X) and I acts as the identity oper-

ator. �

This and the base case Gid(X) = 1 uniquely determine the Grothendieck polyno-

mials (the usual definition is via isobaric divided difference operators). Together, these

polynomials form a Z-linear basis of Z[X] and satisfy

Gσ(X)Gρ(X) =
∑

π∈S∞
Cπ

σ,ρGπ(X). (3.2)

For any positive integer t, define the truncation homomorphism rt : Z[X] → Z[X]

by rt(f(X)) = f(x1, . . . , xt, 0, 0, . . .).

Theorem 2.3 is immediate from the second formula of the following result.
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Theorem 3.2. For any γ ∈ S∞ ,

rt

(
Gγ(X)

)
=

∑
v

(−1)�(γ)−�(label(v))Glabel(v)(X), (3.3)

where the sum is over all leaves v of KTt(γ) such that label(v) �= ∅.

If σ ∈ Sn has its last descent weakly smaller than t, and α ∈ Sn is arbitrary, then

Gσ(X)rt

(
Gid �nα(X)

)
=

∑
v

(−1)�(σ)+�(α)−�(label(v))Glabel(v)(X), (3.4)

where the sum is over all leaves v of KTt(σ �n α) such that label(v) �= ∅. �

Proof. To expand rt(Gγ(X)), we will need the following lemma, which connects the dia-

gram moves of Section 2 to the (K-theory) transition formula in Theorem 3.1. It also gives

an alternative form of a substitution formula of [26].

Lemma 3.3 (cf. [26]). Under the assumptions of Theorem 3.1,

(i) (i1, γ(i1)), . . . , (is, γ(is)) are the pivots of the maximal corner (g, γ−1(m)) ∈
D(γ);

(ii) the following formula holds:

rg−1

(
Gγ(X)

)
=

∑
γ

I−→τ

(−1)�(γ)−�(τ)rg−1

(
Gτ(X)

)
, (3.5)

where the summation ranges over all subsets I of {i1, . . . , is}. �

Proof. Observe that the diagram of γ ′ differs from the diagram of γ only in that the max-

imal accessible box of γ has been removed (and thus there is a dot of G(γ ′) in that po-

sition instead).1 Now, for any index 1 ≤ a < g, �(γ ′ta↔g) = �(γ ′) + 1 holds if and only

if γ ′(a) < γ ′(g) and the rectangle defined by (a, γ ′(a)) and (g, γ ′(g)) contains no other

dots of G(γ ′); that is, if and only if (a, γ ′(a)) is a pivot of the maximal accessible box of γ.

Hence (i) holds.

Thus in view of (i), conclusion (ii) follows easily by expanding the K-transition

formula from Theorem 3.1, observing that (−1)#I = (−1)�(γ)−�(τ), and setting xg = 0. �

1This seems to be the main reason to work with diagrams of permutations rather than inversion sets (which
more easily generalize to other root systems).
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From the above lemma, we have

rg−1

(
Gγ(X)

)
=

∑
γ

I−→τ

(−1)�(γ)−�(τ)rg−1

(
Gτ(X)

)

=
∑
A

(−1)�(γ)−�(τ)Gτ +
∑
B

(−1)�(γ)−�(τ)rg−1

(
Gτ(X)

)
,

(3.6)

where A consists of those τ appearing from marching from γ that have the last descent

at g − 1 or smaller, and B consists of those that still have their last descent at g. It is not

hard to see that a finite number of iterations of marches from γ results in ∅ or a permu-

tation with the last descent weakly smaller than g − 1. Thus after repeated application

of Lemma 3.3 on (3.6), we expand rg−1(Gγ(X)) into the sum of Grothendieck polynomials

indexed by such permutations (in particular, we have just used the fact that if a permuta-

tion τ has the last descent t and has no pivots, then rt−1(Gτ(X)) = 0). Therefore, the first

conclusion follows by iterating the operation of setting the variables xg−1, xg−2, . . . , xt+1

to zero in succession.

Only a little more is necessary for the second conclusion of the theorem. Using

Theorem 3.1 and induction, it is easy to check that

Gσ(X)Gid �nρ(X) = Gσ�nρ(X). (3.7)

Since the last descent of σ is l, then only the variables x1, . . . , xl appear in Gσ(X). Hence

because l ≤ t, we have rt(Gσ(X)) = Gσ(X) and so

Gσ(X)rt

(
Gid �nα(X)

)
= rt

(
Gσ(X)

)
rt

(
Gid �nα(X)

)

= rt

(
Gσ(X)Gid �nα(X)

)
= rt

(
Gσ�nα(X)

)
.

(3.8)

We conclude by applying the first conclusion to γ = σ �n α and observing that �(σ �n α) =

�(σ) + �(α). �

Proof of Corollary 2.5. Since rt(Gid �nρ(X)) = Gρ(X) [13], it follows from our above dis-

cussions that the hypotheses of Theorem 2.3 hold. �

4 Remarks

4.1 Comparisons with the Buch and Kogan formulas

We make a few remarks comparing the formula given by Theorem 2.3 with Buch’s rule for

the K-theory of Grassmannians, and Kogan’s generalized Littlewood-Richardson rule.

For this purpose, we give a simple example where all these results apply.
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Let Gr(k, n) denote the Grassmannian of k-dimensional subspaces of C
n. The

Schubert varieties {Xλ} of Gr(k, n) are indexed by partitions λ whose shape fits inside

the k × (n − k) rectangle. Buch’s rule is for expanding the product of classes of Schubert

structure sheaves

[
OXλ

] · [OXµ

]
=

∑
ν⊆k×(n−k)

Cν
λ,µ

[
OXν

] ∈ K
(
Gr(k, n)

)
. (4.1)

Let λ � µ denote the shape obtained by placing the shapes of λ and µ corner to

corner, as shown below:

λ � µ =

λ

µ

(4.2)

Define a set-valued tableau T of shape λ � µ to be a filling of the “boxes” of λ � µ by

subsets of {1, 2, . . . , k} such that the entries are weakly increasing along rows as we read

from left to right, and they are strictly increasing along columns as we read from top to

bottom. We read the entries of any single box in increasing order.

Define the column word of T to be the sequence of integers obtained by reading

the boxes of the tableaux from bottom to top and from left to right. Suppose (w1, w2, . . . ,

wt) is this column word. We say that this is a reverse lattice word if each subsequence

(ws, ws+1, . . . , wt) for s ≥ 1 has more i’s than (i + 1)’s for i ≥ 1. Let the content of T be

the vector (c1, c2, . . . , ck), where ci records the number of i’s appearing in T . Finally, let |λ|

denote the number of boxes of a partition λ.

Then Buch’s rule states that (−1)|λ|+|µ|−|ν|Cν
λ,µ is the number of set-valued tab-

leaux of shape λ � µ of content µ whose column word is a reverse lattice word. Thus for

example,

[
OX(1)

]2
=

[
OX(2)

]
+

[
OX(1,1)

]
−

[
OX(2,1)

] ∈ K
(
Gr(2, 4)

)
. (4.3)

The terms on the right-hand side of (4.3) correspond respectively to the following set-

valued tableaux from Buch’s rule:

1

1

1

2

1

1, 2

(4.4)
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It is well known that the natural “forgetting subspaces” projection from Flags(Cn)

to Gr(k, n) induces an injective ring homomorphism in the other direction between their

respective K-theory rings. This sends [OXλ
] ∈ K(Gr(k, n)) to [OXσ ] ∈ K(Flags(Cn)), where

σ is the Grassmannian permutation with unique descent at k uniquely determined by

setting

σ(i) = i + λk−i+1 for 1 ≤ i ≤ k. (4.5)

Thus, the calculation corresponding to (4.3) is [OX1324
]2 ∈ K(Flags(C4)). In the

notation of Theorem 2.3, we have σ = ρ = 1324 and hence σ �4 ρ = 13245768. We invite the

reader to draw out KT2(13245768) in order to conclude

[
OX1324

]2
=

[
OX1423

]
+

[
OX2314

]
−

[
OX2413

]
, (4.6)

in agreement with (4.3). In general, it is easy to read off the partitions from the dia-

grams in the leaves of the tree: simply turn the diagram upside down and remove empty

columns.

Now we turn to Kogan’s generalized Littlewood-Richardson rule. The original

formulation [21, Theorem 4.1] is in terms of an insertion algorithm on RC-graphs [1, 14].

We will instead use the mild reformulation given in [10, Section 3], since this seems to us

to be easier to state and use.

A saturated chain γ in the t-Bruhat order is a sequence of permutations

γ : σ = σ0 −→ σ1 −→ σ2 −→ · · · −→ σ|λ| = π, (4.7)

where �(σi) = �(σ) + i and σ−1
i−1σi is a transposition tai↔bi

with ai ≤ t < bi for each

i = 1, . . . , |λ|. The word of such a chain γ is the sequence of integers

σ1

(
b1

)
, σ2

(
b2

)
, . . . , σ|λ|

(
b|λ|

)
. (4.8)

Under the assumptions of Corollary 2.5 (in the cohomology case), Kogan’s formula as-

serts that Cπ
σ,ρ is the number of saturated chains in the t-Bruhat order from σ to π whose
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word is the column word of a semistandard tableau of shape λ. Then to recover the coho-

mology part of (4.6), we set t = 2 to get

[
X1324

]2
=

[
X1423

]
+

[
X2413

] ∈ H∗( Flags
(
C

4
))

, (4.9)

again, in agreement with the above calculations. The terms in the expansion correspond

to the saturated chains starting from 1324 determined by the transpositions t2↔4 and

t1↔3, respectively. These in turn give, respectively, the tableaux

3 1
(4.10)

In comparing Theorem 2.3 with the Buch and Kogan rules, we find our formula to

be more handy for calculations of (1.1). For example, with even modest size examples, it

is difficult in practice to know that one has found all of the set-valued tableaux (or sat-

urated chains) that contribute to a coefficient. Exhaustively checking all possible cases

usually takes much more effort than computing the tree needed in our formula. For this

reason, we suspect that Theorem 2.3 should be more computationally efficient than the

above alternatives.

Many aspects of the combinatorics of Theorem 2.3 remain mysterious to us, and

thus there are a number of natural open questions. For example, it would be interest-

ing to find a bijection between Theorem 2.3 and Buch or Kogan’s rule in the common

cases of applicability. We mention that it is not difficult to establish a bijection between

Theorem 2.3 and the classical Littlewood-Richardson rule in the relevant cases. We plan

to report on this bijection in [20].

4.2 Extensions to equivariant cohomology

The structure constants in the equivariant cohomology ring H∗
T (Flags(Cn)) are polyno-

mials in a second set of variables {y1, y2, . . . }, and are known to have a positive expansion

in {yi+1 − yi} (as proven in [18]). It does not seem easy to extend our techniques to apply

to this richer problem. While the transition formula does have an equivariant extension,

and one can state an equivariant truncation formula, this formula involves the {yi} indi-

vidually rather than as differences. In trying to group them into differences, one leaves

the realm of subtraction-free formulas.
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[19] A. Knutson and E. Miller, Gröbner geometry of Schubert polynomials, to appear in Ann. of

Math.

[20] A. Knutson and A. Yong, Gröbner geometry of Schubert transition and Littlewood-Richardson

rules, in preparation.

[21] M. Kogan, RC-graphs and a generalized Littlewood-Richardson rule, Int. Math. Res. Not. 2001

(2001), no. 15, 765–782.

[22] A. Lascoux, Transition on Grothendieck polynomials, Physics and Combinatorics (Nagoya,

2000), World Scientific Publishing, New Jersey, 2001, pp. 164–179.

[23] A. Lascoux and M.-P. Schützenberger, Structure de Hopf de l’anneau de cohomologie et de
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