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Volatile working memory representations 
crystallize with practice

Arash Bellafard1 ✉, Ghazal Namvar1, Jonathan C. Kao2, Alipasha Vaziri3,4 & 
Peyman Golshani1,5,6,7,8 ✉

Working memory, the process through which information is transiently maintained 
and manipulated over a brief period, is essential for most cognitive functions1–4. 
However, the mechanisms underlying the generation and evolution of working- 
memory neuronal representations at the population level over long timescales 
remain unclear. Here, to identify these mechanisms, we trained head-fixed mice to 
perform an olfactory delayed-association task in which the mice made decisions 
depending on the sequential identity of two odours separated by a 5 s delay. Optogenetic 
inhibition of secondary motor neurons during the late-delay and choice epochs 
strongly impaired the task performance of the mice. Mesoscopic calcium imaging of 
large neuronal populations of the secondary motor cortex (M2), retrosplenial cortex 
(RSA) and primary motor cortex (M1) showed that many late-delay-epoch-selective 
neurons emerged in M2 as the mice learned the task. Working-memory late-delay 
decoding accuracy substantially improved in the M2, but not in the M1 or RSA, as the 
mice became experts. During the early expert phase, working-memory representations 
during the late-delay epoch drifted across days, while the stimulus and choice 
representations stabilized. In contrast to single-plane layer 2/3 (L2/3) imaging, 
simultaneous volumetric calcium imaging of up to 73,307 M2 neurons, which 
included superficial L5 neurons, also revealed stabilization of late-delay working- 
memory representations with continued practice. Thus, delay- and choice-related 
activities that are essential for working-memory performance drift during learning 
and stabilize only after several days of expert performance.

Working memory (WM)—the ability to temporarily store and manipu-
late information—is essential for most cognitive functions1–4 and is 
impaired in several neurological and psychiatric disorders5–7. The main-
tenance of information in WM is thought to be mediated by persistent, 
sequential or oscillatory activity8–10, and its representation in the state 
space of dynamical systems is often modelled as discrete or continu-
ous attractors11–15. The mechanism of generation and maintenance of 
WM-related neural representations during learning and their evolution 
with continued expert performance remains unclear. A key challenge 
has been to record and manipulate the same neuronal populations 
over a long period of time while the animal learns and becomes an 
expert in the task. Here we pose two fundamental questions concern-
ing the stability and causality of WM representations, examining (1) the 
stability of WM representations across time as the mouse learns the 
task and attains expertise through practice; and (2) the role of these 
representations in driving task performance.

To address these questions, we trained mice to perform an olfactory 
delayed-association WM task16 (Fig. 1a,b). In this task, water-deprived 
head-fixed mice were presented with odours A or B for 1 s. After a 5 s 

delay period, the mice were presented with odours C or D for another 
second. If odour C followed odour A or odour D followed odour B, the 
mice were rewarded with water after licking during the 3 s choice period 
after the second odour (Fig. 1b). For the other odour combinations, 
the animals learned to withhold licking. The mice were not punished 
for false alarms or for licking during the delay period, but their licking 
patterns after learning showed that licking was restricted to the choice 
period (Fig. 1d and Extended Data Fig. 1b). The mice learned to perform 
the task after training for around seven sessions, with an accuracy level 
of 94.2 ± 1.3% (discriminability index, D′ > 3) (Fig. 1c and Extended Data 
Fig. 1a). The performance was assessed as the ratio of hits and correct 
rejections over the total number of trials that the mouse completed 
during the training session. Several behavioural control experiments 
and photoionization detector measurements demonstrated that odour 
residues did not linger during the delay period (Extended Data Fig. 1c). 
Moreover, airflow modulation did not affect the animal’s performance. 
However, performance decreased with increasing duration of the delay 
period or decreasing levels of odorant concentration, as expected 
(Extended Data Fig. 1d).
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To ensure that different odours or odour combinations result in simi-
lar behavioural responses, we measured the lick time distributions while 
the mice performed the task at an expert level (performance ≥ 80%). 
Lick time distributions for AC versus BD trials, as well as AD versus BC 
trials, showed no statistically significant differences (Extended Data 
Fig. 1e). This indicates consistent behavioural responses across differ-
ent odour combinations. We also measured pupil diameter changes to 
distinct odour combinations and found highly consistent pupillary 
responses within individual animals. Pupillary responses were similar 
across animals for odour combinations associated with rewards (AC 
and BD trials) and those without rewards (AD and BC trials) (Extended 
Data Fig. 1n). To ensure that the neural activity that we measured in 
the next section was not simply a correlate of motor movements, we 
recorded paw movement during the delay period for different odour 
combinations and found no significant differences in paw movements 
for different trial types, suggesting that delay-related activity does 
not simply correlate with motor movements (Extended Data Fig. 1o). 
Furthermore, we measured forelimb speed distribution across odour 
combinations and different task epochs. Partitioning each trial into six 
intervals revealed marked heterogeneity in forelimb movement speed 
among the examined animals, indicating that different odours do not 

differentially and consistently impact motor behaviour (Extended 
Data Fig. 1p).

Importance of late-delay epoch activity pattern
To assess the role of M2 neurons in the performance of the olfactory 
delayed-association WM task, expert mice received bilateral injections 
of either saline or muscimol into the M2 1 h before testing. M2-localized 
(Extended Data Fig. 1f) muscimol injections led to a performance drop 
(70.5% ± 1.8% versus 92.8% ± 1.2% with saline; Extended Data Fig. 1g). 
Licking behaviour remained unaffected by muscimol (Extended Data 
Fig. 1g). The performance on a non-WM task was not impaired by mus-
cimol (Extended Data Fig. 1h), suggesting the specific importance of 
the M2 for WM task performance, but not simple decision-making.

We investigated the impact of inhibiting CaMKII+ neurons in the M2 
at different task stages using soma-targeted anion channelrhodop-
sin (stGtACR2), which effectively suppressed neuronal firing without 
rebound activity (Extended Data Fig. 1i,j). Inhibition of M2 neurons 
only during the fourth and the fifth second of the delay period, dur-
ing the second odour, and during early-choice epochs significantly 
degraded performance by 24.7 ± 9.6% (n = 5), 29.2 ± 5.4% (n = 5), 
34.6 ± 5.9% (n = 10) and 31.9 ± 3.3% (n = 8), respectively (Fig. 1e and 
Extended Data Fig. 1l). By contrast, inactivation at other times did not 
affect performance. Illumination of the M2 in control mice injected 
with AAV-CaMKIIa-eGFP did not affect performance. Thus, neuronal  
activity in late-delay but not early-delay periods is essential for  
performance of the WM task.

We next examined whether suppression of late-delay activity in the 
M2 impedes learning of the WM task. To answer this question, we inhib-
ited the M2 activity of mice during the last 2 s of the delay period for 
every trial while the animal learned the task for the first seven sessions. 
M2 inhibition significantly impaired performance during learning 
sessions in comparison to the control mice that were injected with 
AAV-CaMKIIa-mCherry (Fig. 1f). However, when we stopped the photo
inhibition during sessions 8 to 10, the performance of the mice rapidly 
converged to the level of performance of the control mice, suggesting 
that learning had proceeded despite the deficient performance of 
the animal in the previous sessions (Fig. 1f and Extended Data Fig. 1q), 
consistent with ‘silent learning’17. In all instances, we histologically 
verified the injection site, confirming its localization to the M2 region. 
In no case was the M1 labelled (Extended Data Fig. 1k).

Thus, M2 neuronal late-delay and choice-period activity causally 
drives WM performance but, while sufficient, it is not necessary for 
learning of the task.

The M2 contains task-related selective neurons
We recorded neuronal activity in M2 L2/3 using mesoscopic two-photon 
calcium imaging while C57BL/6JTg (Thy1-GCaMP6s) GP4.12Dkim/J 
mice performed the task at expert level (Fig. 2a). We typically recorded 
622 ± 295 neurons simultaneously during each session. Within each day, 
we observed selective and reliable responses to the first odour during 
the first-odour, early-delay, late-delay and choice epochs (Fig. 2b,c).  
A total of 46.5 ± 4.5% of cells showed selectivity during at least one of the 
epochs. We quantified the selectivity of individual cells by comparing 
the distribution of their calcium activity based on the identity of the 
first odour presented at different time intervals. Neurons with selec-
tive activity during a single epoch were rare. In expert mice, 5.0 ± 0.8%, 
2.3 ± 0.8%, 1.3 ± 0.5% and 18.3 ± 7.4% (n = 4 mice) of neurons showed pure 
selectivity during first-odour, early-delay, late-delay and choice epochs 
(Fig. 2b,d). By contrast, a larger proportion of neurons (13.0 ± 2.6%, 
8.5 ± 1.9%, 5.8 ± 0.8 and 10.3 ± 1.9%) showed mixed selectivity18 and had 
strong activity during multiple task epochs (Fig. 2c,d).

We also quantified the proportion of trials with active delay 
cells in well-trained mice (Extended Data Fig. 2h,i). In novice mice 
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Fig. 1 | The effects of optogenetic inhibition on WM task performance.  
a, The experimental set-up. b, The delayed-association WM task trial types; 
licking was assessed during the 3 s choice period, with early- and late-delays 
periods noted. c, Learning progress across eight sessions, measured on the 
basis of the percentage of correct responses. d, Learning session example,  
with licks marked. e, Photoinhibition effect during different task epochs on  
the animal’s performance (fourth second of the delay period, P = 0.009; fifth 
second of the delay period, P = 0.005; second odour, P = 0.0004; first second  
of choice epoch, P = 0.0001). Statistical analysis was performed using paired 
t-tests. f, Photoinhibition of the M2 during the last 2 s of the delay period across 
the first 7 days of training impairs task performance. n = 4 (stGtACR2-expressing) 
and n = 4 (mCherry-expressing) mice. The P values determined using 
two-sample t-tests for sessions 1–10 were as follows: P1 = 0.8425, P2 = 0.4610, 
P3 = 0.6904, P4 = 0.0724, P5 = 0.0463, P6 = 0.0146, P7 = 0.0161, P8 = 0.7065, 
P9 = 0.6530 and P10 = 0.7955. For c, e and f, data are mean ± s.e.m. NS, not 
significant; *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001. Details of the 
statistical analyses are provided in the Methods.
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(performance < 65%) on the first training day, delay cells were active 
in 85.8 ± 2.6% of trials. On the last recording day for expert animals, 
delay cells were active in 82.8 ± 2.9% of trials, indicating little change 
in the reliability of the responses with learning. Notably, the number 
of active cells during the delay period was significantly lower in novice 
mice (Extended Data Fig. 2h).

To ensure that the slow decay of calcium transients did not arti-
ficially give the appearance of delay-related activity, we performed 
single-unit electrophysiological recordings in expert animals as they 
performed the WM task. Consistent with our imaging experiment, 
these recordings showed odour-selective activity during the odour 
period and odour-selective ramping activity during the late-delay 
period (Extended Data Fig. 2g). Thus, delay-related activity recorded 

with calcium imaging was not an artifact of the decay of calcium tran-
sients.

The neural activity patterns recorded with calcium imaging did not 
correlate with the movements of the mice. From 2,611 recorded cells in 
five mice, only 32 cells (1.2 ± 0.2%) showed a significant correlation with 
the limb movements of the mice (Methods and Extended Data Fig. 2d).

Late-delay M2 activity contains WM information
As single-neuron activity patterns showed mixed selectivity, we exam-
ined whether population decoding techniques could better reveal WM 
information content represented within the ensemble. We trained 
a linear support vector machine (SVM) to decode the identity of the 
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the statistical analyses are provided in the Methods.
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first odour from the deconvolved calcium signals of populations of 
M2 neurons recorded when the animal performed at expert level. 
When trained with data from all simultaneously recorded neurons, 
the decoder could successfully decode the odour identity during the 
odour period and the delay period. SVM decoders could also decode 
the choice of the animals with high accuracy. To determine whether  
a small number of selective neurons is sufficient to encode the WM, we 
investigated how the decoding accuracy changes with the number of 
neurons used to train the network. We first used the data from the last 
day of calcium imaging during which all five mice were performing the 
task at expert level and ranked the selectivity of each recorded neuron. 
We then trained the decoder using the top N% of the most selective 
neurons, where N ∈ {1, 2, 4, …, 64, 100}. We found that the accuracy of 
decoding the first-odour identity during the first-odour and late-delay 
epochs and choice during the choice epoch increased with N at differ-
ent rates (Fig. 2e,f). The first-odour identity representation during 
the late-delay epoch required a much higher number of neurons for 
adequate decoding than the first-odour identity representation during 
odour presentation, or the animal’s choice. In further support of this, 
we performed t-distributed stochastic neighbour embedding (t-SNE) 
analysis of the mean activity of neurons to reduce the dimensionality 
of the population activity during the first-odour, late-delay and choice 
epochs. The first two t-SNE dimensions were sufficient to disentangle 
the trial type (whether odour A or B was presented during the first odour 
presentation period) and choice during the first-odour and choice 
epochs. However, the model could not cluster the trial types from the 
activity of the late-delay epoch (Extended Data Fig. 3a), reaffirming 
the notion that late-delay representations were high dimensional. 
To confirm that the unsuccessful clustering of trial types during the 
late-delay epoch did not result from the absence of WM representation 
in the neuronal population activity, we applied SVM decoding to the 
identical dataset. As illustrated in Extended Data Fig. 3a, SVM decoding 
successfully identified trial types during the late-delay epoch based on 
neuronal population activity.

To eliminate the possibility that neuronal activity merely mirrored 
mouse behaviour, we focused on a subset of neurons exhibiting selec-
tivity during the choice epoch—a crucial period for decision-making in 
the task. Using these choice-epoch-selective neurons, we attempted to 
decode the identity of the first odour presented in the task. As shown 
in Extended Data Fig. 3h, during the late-delay epoch, decoding the 
first odour identity was not reliably achieved with up to 64% of the 
choice-epoch selective neurons. However, using all choice-epoch selec-
tive neurons (100%) significantly improved decoding performance 
to 69 ± 3%. This observation suggests that mixed selectivity probably 
contributes to the decoding process during this epoch.

To determine the specificity of these results, we recorded the activ-
ity of M1 and M2, or RSA and M2 neurons simultaneously. We chose 
the RSA because this region is involved in cognitive tasks19 and makes 
monosynaptic connections with the M2 (ref. 20). In expert animals, we 
could decode the identity of the first odour during the delay period 
from the activity of the M2 but not the M1 or RSA neurons; the addition 
of M1 or RSA neurons to M2 neurons did not improve the performance 
of the decoder beyond what could be decoded from the M2 alone. 
Even so, we could decode choice from the activity of all three regions 
(Fig. 2g,h). Thus, successful decoding of odour identity during the 
late-delay epoch was only possible in the M2.

To assess whether the linearity of the SVM decoder posed limita-
tions on decoding WM during the delay period, we used a nonlinear 
long short-term memory (LSTM) recurrent neural network decoder 
for analogous analyses. The performance of the LSTM decoder was 
very similar to the SVM and did not enhance the decodability of WM 
information during the delay period or choice during the reward period 
(Extended Data Fig. 3i–l).

As another control, we conducted calcium imaging recordings 
of M2 neurons in mice engaged in a go/no-go task that lacked a WM 

component (Fig. 1h). The mice rapidly acquired proficiency in the task, 
achieving high performance within a single session. We successfully 
decoded the identity of the presented odour with a high degree of 
accuracy (Extended Data Fig. 3b,c). In this task, because the animal 
has to lick in response to one odour and withhold licking in response 
to the other, the odour decoding is similar to choice decoding in the 
delayed association WM task, in which choice decoding exhibited  
a high level of accuracy for a similar duration of 3 to 4 s subsequent to 
the introduction of the second odour.

To investigate late-delay activity when the initial odour lacks rel-
evance to the reward, we also conducted calcium imaging of M2 neu-
rons during a WM task with randomized reward contingencies. In 
this task variant, the reward outcome was not tied to specific odour 
sequences, and the mice could not discern precise odour combina-
tions associated with the reward. In response to this uncertainty, the 
mice adopted a strategy of engaging in licking behaviour for all trials, 
anticipating a water reward in approximately half of them. During the 
odour presentation and early delay epochs, we could accurately decode 
the first odour’s identity from the first-odour epoch selective neurons. 
However, the decoding accuracy progressively declined during the 
late-delay epoch and beyond, reaching chance levels (Extended Data 
Fig. 3d). We could not decode the identity of the first odour during 
the first-odour or late-delay epochs when we used the activity of the 
late-delay-epoch selective neurons. This decline in decoding accuracy 
for the first odour can be attributed to the absence of WM represen-
tation during the late delay when reward outcomes lack a structured 
relationship with presented stimuli. The absence of a reward struc-
ture prompted consistent licking behaviour in all trials and, notably, 
we could decode whether the mouse received water (Extended Data 
Fig. 3d). The decoding accuracy diverged only after a delay following 
the second odour, presumably once the animal internally processed 
reward consumption.

To further examine the importance of the late-delay period activity, 
we compared the accuracy of decoding the identity of the first odour 
during the late-delay epoch using the activity of the neurons in correct 
and error trials. The decoding accuracy of the error trials during the 
first-odour epoch was statistically indistinguishable from the correct 
trials. However, the decoding accuracy during the late-delay period of 
the error trials was significantly lower and at chance (54.7 ± 5.2%, n = 5) 
compared with the decoding accuracy of the correct trials (78.5 ± 4.5%; 
Fig. 2i,j). Thus, population representations of the first odour during 
the late-delay period are behaviourally relevant.

Late-delay selectivity emerges after learning
We followed the deconvolved calcium activity of the same population 
of L2/3 M2 neurons over 10 days and examined the stability of WM 
neural correlates throughout learning and expert behaviour (Fig. 3a,b). 
From the first day of training, we observed neurons with significant 
activity fields during different task epochs (Methods and Extended 
Data Fig. 2a). A neuron was considered to have significant activity if the 
distribution of its activity within a specific epoch was significantly dif-
ferent from the distribution of its circularly shuffled activity. In novice 
mice, 43.3 ± 3.1%, 42.3 ± 3.9%, 52.0 ± 5.5% and 41.3 ± 3.2% of neurons had 
significant activity fields during the first-odour, early-delay, late-delay 
and choice epochs, respectively (n = 4 mice). As the mice learned the 
task, more neurons were recruited during all time epochs. In expert 
mice, the proportion of neurons with significant activity fields dur-
ing first-odour, early-delay, late-delay and choice epochs increased 
to 58.5 ± 3.7%, 68.5 ± 2.5%, 61.3 ± 6.0% and 54.3 ± 2.5%, respectively 
(Extended Data Fig. 2a).

As mice learned the task, the proportion of neurons that fired selec-
tively to odour A or B during the first-odour, early-delay and late-delay 
epochs, and lick or no-lick during choice epoch significantly increased 
(Fig. 3b,c and Extended Data Fig. 2e). Importantly, odour-selective 
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firing during the late-delay epoch emerged only after the mice learned 
the task.

In the RSA and M1, the proportion of selective neurons during the 
first-odour, early-delay and late-delay epochs did not increase with 
learning. However, the proportion of cells activated during the choice 
epoch increased in the expert phase in both the M1 and RSA (Extended 
Data Fig. 2j,k).

To determine whether individual neurons encode the association of 
rewarded odours, we examined whether any neurons were selectively 
activated by associated pairs of rewarded odours (odours A and C, or 
odours B and D). In novice mice, no cells demonstrated selectivity for 
both odours A and C, or both odours B and D. By contrast, among expert 
mice, only 1.4 ± 0.5% exhibited selectivity for both odours A and C,  
or both odours B and D. Consistent with the presence of these neurons, 

we were able to train a decoder to discriminate between trial categories 
(AC, AD, BC or BD) during the second odour using population activity 
patterns (Extended Data Fig. 3m).

Late-delay WM representation emerges after learning
To determine how WM population representations emerge with 
learning, we used the activity of the same overlapping population of 
neurons when the mouse was a novice and after it became an expert 
in the task to train the network and decode for each day separately.  
In novice mice, the cross-validated first-odour identity decoding accu-
racy during the first-odour and late-delay epochs were at chance level. 
Conversely, in expert animals, the accuracy of first-odour identity 
decoding during the first-odour and late-delay epochs significantly 
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Fig. 3 | Volatile late-delay epoch WM representation.  a, Example of the 
same field of view over 10 days from one of the animals. Images of the other 
mice looked similar. Scale bar, 100 μm. b, z-scored activity of two example 
neurons over 10 days. c, The percentage of neurons (n = 4 mice) exhibiting 
selective activity for the first odour during different task epochs (first odour, 
P = 0.023; early delay, P = 0.022; late delay, P = 0.0002; choice, P = 0.026). 
Statistical analysis was performed using paired t-tests. d, Improvement in 
first-odour decoding from M2 and M1 cortices as mice progress from novice  
to expert stages. n = 4 mice. Decoding was performed using overlapping 
neurons on both novice and expert sessions. All recorded neurons were used 
for decoding. Novice, the animal’s performance is less than 65%; expert, the 
animal’s performance is 80% or greater. e, The z-scored activity of 290 
neurons (n = 4 mice) across naive, training and expert days, ordered by the 
response magnitude of the expert day. During the first-odour, early-delay, 
late-delay and choice epochs, 8.2 ± 5.2%, 6.9 ± 4.5%, 0.2 ± 0.2% and 1.0 ± 0.7% of 
neurons maintained their selectivity throughout all three stages, respectively. 

f, The z-scored activity of 289 neurons (n = 4 mice) across 3 days of expert 
performance, ordered according to the response magnitude of the first day. 
During the first-odour, early-delay, late-delay and choice epochs, 3.9 ± 2.2%, 
4.8 ± 1.7%, 1.0 ± 0.7% and 10.3 ± 4.9% of cells maintained their selectivity across 
all 3 days, respectively. g, Decoding first-odour and choice across 7 days using 
a daily-trained decoder (top) (n = 4 expert mice). Bottom, quantification of 
decoding accuracy by task epoch; the dashed red lines represent shuffled data 
accuracy. h, Similar to g, but the network, trained on day 7 (first subscript 
value), was tested across all days (1–7; second subscript value). i, The decoding 
accuracy for first odour and choice, trained and tested on all day pairs. j, The 
average decoding accuracies for early versus late days (n = 4 mice), showing 
significant differences (first-odour and choice, P < 0.0001; late delay, P = 0.12). 
Statistical analysis was performed using unpaired t-tests. For d, g and h, data 
are mean ± s.e.m. Details of the statistical analyses are provided in the 
Methods.
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increased to 80.3 ± 5.3% and 73.0 ± 4.2%, respectively (Fig.  3d).  
To determine whether WM-related activity was specific to the M2 or 
was present within other structures implicated in motor execution 
or rule-based task performance21, we performed a similar analysis 
in recorded neurons in the M1. The decoder performed significantly 
worse, with a decoding accuracy of near chance (53.6 ± 2.4%) in novice 
and 64.7 ± 4.0% in expert mice during the first-odour epoch. During 
the late-delay epoch, the accuracy of decoding the first odour identity 
from M1 neurons was near chance levels at both the novice and expert 
stages of task performance (Fig. 3d).

Stabilization of activity patterns over days
Our analyses demonstrated gradual and pronounced changes in M2 
neuronal responses across days (Fig. 3b). We quantified the specific-
ity of neurons for different parameters during different task epochs 
at different learning stages (Extended Data Fig. 2e,f). Single neurons 
either gained or lost responsiveness to a specific odorant and rarely 
exhibited stable responses across sessions. First-odour information 
during the late-delay epoch emerged as the animals became experts 
in task performance. Critically, changes in the responses of individual 
neurons were due to continual alterations in responses across sessions, 
not to a global loss of responsiveness in the M2.

To understand how stable the WM representation was across days, 
even after the animal became an expert, we tracked the activity of 290 
cells (n = 4 mice) during the learning phase in naive, training and expert 
mice (Methods). In total, 8.2 ± 5.2% of tracked neurons maintained 
their selectivity during the first-odour epoch throughout all three 
stages (Fig. 3e). For the early-delay, late-delay and choice epochs, 
6.9 ± 4.5%, 0.2 ± 0.2% and 1.0 ± 0.7% neurons remained stable. During 
the expert phase (Fig. 3f), we tracked the activity of 289 cells (n = 4 
mice) across three consecutive days; we found that only 3.9 ± 2.2%, 
4.8 ± 1.7%, 1.0 ± 0.7% and 10.3 ± 4.9% of cells maintained their selectivity 
during first-odour, early-delay, late-delay and choice epochs across all 
3 days, respectively. Thus, neurons with significant late-delay activity 
were the least stable during the expert phase.

To determine whether population representations of L2/3 M2 
activity were stable during the expert stage, we used same-day and 
cross-day decoding approaches. At the population level, we deter-
mined whether decoders trained and tested on the same-day activity 
of expert animals could reliably predict the first odour and choice for 
seven consecutive days using activity recorded from L2/3 M2 neurons. 
The decoding accuracy for all epochs was high and remained stable 
across all 7 days (Fig. 3g). There were no significant changes in perfor-
mance, recorded neuron count or the percentage of neurons exhibit-
ing selectivity across imaging days for the analysed mice (Extended 
Data Fig. 3e–g). To quantify the stability of network dynamics across 
days, we tested whether the network that was trained to decode the 
identity of the first odour or choice on the expert day seven could also 
decode the first-odour identity or choice on the earlier days. For this 
analysis, we used the activity of overlapping populations of neurons 
on both days. If the same population of neurons shared a common 
representation and dynamics across days, we would expect the decod-
ing accuracy to be independent of the day the decoder was tested. The 
accuracy of decoding the first odour during the first-odour epoch 
gradually declined over days but remained above chance (Fig. 3h). 
The accuracy of choice decoding declined slowly, like that of odour 
decoding during the first-odour epoch. By contrast, late-delay rep-
resentations drifted more rapidly to chance. To determine whether 
stability emerged gradually during the expert performance period, 
we conducted a similar analysis but trained on each of the 7 days and 
compared the performance on the remaining 6 days (Fig. 3i). Our 
null hypothesis assumed that the decoding stability remains the 
same across all 7 days. To assess this, we used the cross-day decoding 
accuracy statistic averaged across animals for late versus early days. 

The decoding accuracy of the identity of the first odour during the 
first-odour epoch and choice during the choice epoch when decoders 
were trained and tested on days 5–7 was significantly higher com-
pared with when the training and testing were performed on days 1–3, 
rejecting the null hypothesis (Fig. 3j). No such pattern was evident for 
late-delay epoch decoding of the first odour. As a secondary measure, 
we performed an additional statistical test by shuffling the day identi-
ties. If the decoders show no greater stability at later days compared 
to earlier ones, our statistics should be similar to the one obtained by 
shuffling day identities. However, we observed that this is not true for 
the first-odour and choice epochs. Consequently, the results of this 
second test also rejected the null hypothesis that decoding stability 
remains constant across all 7 days (Extended Data Fig. 2n). To deter-
mine whether this trend was stable across animals, we compared the 
mean decoding accuracy within individual mice across first and last 
2 day pairs (Extended Data Fig. 2l). Decoding showed a statistically 
significant improvement during the choice epoch. Thus, as the mice 
continue to perform the task (even as experts), their representations 
for the first odour and choice epochs stabilize, while representations 
for the late delay seem to drift daily.

Emergence and crystallization of late-delay epoch WM 
representation
As shown above, the activity of L2/3 neurons in expert animals dem-
onstrated considerable representational drift during the late-delay 
epoch. We therefore examined whether this drift was layer specific, 
and whether deeper layers hold an invariant memory of representation 
across days. To answer this question, we performed volumetric imag-
ing of tens of thousands of M2 neurons during the expert performance 
to investigate whether the late-delay representation stabilizes with 
continued practice.

We recorded the activity of up to 73,307 M2 neurons simultaneously 
in a volume of 2,000 × 2,000 × 450 μm3 using light-bead microscopy 
(LBM)22, while TRE-GCaMP6s23 mice performed the task (Fig. 4a). LBM 
uses two-photon excitation of axially separated and temporally delayed 
excitation foci to record from 30 axially separated voxels over 500 μm 
within 200 ns. Lateral scanning and temporal demultiplexing of the 
signal from this column of light beads results in 6.5 Hz recording of 
neuronal activity within 30 imaging planes, each separated by 15 μm, 
extending from superficial L2/3 to superficial L5. We examined the 
dependence of decoding accuracy as a function of recording depth. 
We divided the bottom 420 μm depth of our calcium imaging volume 
into seven intervals of 60 μm thickness each. We identified the recorded 
neurons in all seven intervals and noted the layer with the fewest num-
ber of neurons recorded. We equalized the number of neurons analysed 
for decoding by randomly selecting neurons to match the number of 
neurons recorded in this layer containing the fewest neurons. We then 
calculated the accuracy of decoding the identity of the first odour or 
choice during the first-odour, late-delay or choice epochs. The accu-
racy of the first-odour decoding during the first-odour epoch initially 
increased with increasing depth and then decreased to an intermedi-
ate level (Fig. 4b). However, the accuracy of decoding the first odour 
during the late-delay epoch increased monotonically with increasing 
depth. The accuracy of decoding choice during the choice epoch was 
uniformly high at all depths. There was therefore an increase in infor-
mation about the first odour during the late-delay period in the deeper 
cortical neurons imaged.

To determine whether individual neurons encode the association of 
rewarded odours, we examined whether any neurons were selectively 
activated by associated pairs of rewarded odours (odours A and C, 
or odours B and D). In expert mice, only 1.2 ± 0.5% of neurons exhib-
ited selectivity for both odours A and C, or both odours B and D. The 
sequences of these cell activities during AC and BD trials, sorted on 
the basis of their activity in both trial types and vice versa, revealed the 
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presence of numerous cells with mixed selectivity for A and B odours 
or C and D odours. Importantly, the sequences differed between the 
two trial types, underscoring that neurons convey content-specific 
information during the delay period. While some neurons exhibited a 
strong correlation in activity during the AC and BD trials, most did not 
show a significant correlation. Particularly, the correlation was weakest 
at the point at which the delay period sequence was formed, indicating 
greater dissimilarity in activity during the delay period across different 
trial types (Extended Data Fig. 2p).

We wondered whether continued practice refines the WM repre-
sentation of the first odour, pushing the neuronal activity to a sin-
gle attractor, stable across days. To investigate this, we followed the 
deconvolved calcium activity of the same population of neurons over 

10 days of expert performance (Fig. 4c,d) and examined the stabil-
ity of WM neural correlates throughout expert behaviour. We took 
great care to match the identity of neurons recorded with volumetric 
imaging across days, matching up to 47,384 neurons across days. 
Consistent with our earlier results, when the decoder was trained and 
tested on the activity from the same day of recording, the identity 
of the first odour could be decoded with high accuracy during the 
first-odour and late-delay periods, and choice could be decoded with 
very high accuracy during the choice epoch (Fig. 4e). Also consist-
ent with our earlier results, the identity of the first odour and choice 
could be decoded with relatively high accuracy when the decoder was 
trained on the activity of day 10 (the final day of imaging) and tested 
on previous days of imaging, with the decoding accuracy declining 
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Fig. 4 | The stability of late-delay epoch representation.  a, Schematic of 
LBM (left). A pump pulse is split into 30 light beads, each delayed (Δτ ≈ 7 ns, 
where Δτ represents the time delay between excitation foci) and focused at 
different sample depths, enabling full-volume sampling at the microscope’s 
frame rate. Top right, a 3D rendering of neuron locations across 30 planes. 
Bottom middle, the activity of 36,471 neurons during A-odour or B-odour trials, 
sorted by response and shown over 60 min. Bottom right, a 60 min raster of 
these neurons, highlighting ΔF/F activity for selected neurons. Scale bar, 
500 μm. b, The accuracy of decoding the first odour and choice during the 
first-odour, late-delay and choice epochs using the activity of neurons at 
different depths. n = 4 mice. c, The performance of the mouse during the 
10 days of calcium imaging. Mice (n = 4) were performing at expert level from 
the first day of imaging. d, Example field of view showing 1 out of the 30 planes 

with the same constellation of neurons across multiple imaging days. e, Decoding 
first odour and choice over 10 days with a daily-trained decoder, using up to 
73,307 neurons across 30 planes and 450 μm depth (top) (n = 4 mice). Bottom, 
quantification of accuracy by epoch; the dashed lines indicate shuffled data 
decoding. f, Similar to e, with the decoder trained on day 10 and tested across 
days 1–10. g, The decoding accuracy for first odour during first-odour and 
late-delay epochs, and choice accuracy during the choice epoch. n = 4 mice.  
h, The average across-day decoding accuracies for early versus late days  
(n = 4 mice), as depicted in the off-diagonal terms of Fig. 4g, with significant 
improvements (first-odour and late-delay, P < 0.0001; choice, P = 0.0003). 
Statistical analysis was performed using unpaired t-tests. For b, c, e and f, data 
are mean ± s.e.m. Details of the statistical analyses are provided in the 
Methods.
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with an increasing number of days between training and testing days; 
this indicated the emergence of a stable representation during the 
final imaging days (Fig. 4f,g). However, in contrast to our previous 
results using single plane L2/3 imaging, the performance of decoders 
in predicting the first odour during the late-delay epoch was higher 
when trained and tested on days 6–10 of imaging compared with when 
trained and tested on days 1–5 of imaging (Fig. 4g,h). We conducted an 
additional statistical test by shuffling the day identities. If decoding 
stability is not higher in the later days compared to earlier ones, our 
results should resemble those obtained by randomly shuffling day 
identities. However, we observed that this is not the case for any of 
the three epochs. Consequently, our second test also rejected the null 
hypothesis, indicating that decoding stability does not remain con-
stant across all 10 days (Extended Data Fig. 2m). Moreover, to exam-
ine whether this trend holds across different animals, we compared 
the mean decoding accuracy within individual animals for the first 
and last 3 days pairs (Extended Data Fig. 2o). The decoding accuracy 
demonstrated a statistically significant improvement during all three 
epochs. In other words, during the first 5 days of expert performance, 
the decoder trained on the activity on any day’s imaging could not 
decode the identity of the first odour during the late-delay epoch on 
any other day. However, as the mouse kept practicing the task, during 
days 6–10 of expert performance, the decoder trained on the activity 
of neurons during any of these later days could accurately decode 
the identity of the first odour during the late-delay epoch. Thus, in 
addition to the stabilization of activity during the first-odour and 
choice epochs, volumetric imaging demonstrated stabilization of 
the WM representation with continued practice during the late-delay 
epoch. The stabilization was uniform throughout the imaged volume 
(Extended Data Fig. 4).

Discussion
Tracking M2 neuron activity over 10 days revealed that late-delay WM 
representations, which are crucial for task performance, initially fluctu-
ate in early expert stages but stabilize with continued practice in the 
late expert phase.

M2 neuron activity strongly encoded odour identity in the early task 
stages without affecting behaviour when disrupted. This suggests that 
early-stage activity does not drive persistent attractors within the M2. 
The sensitivity to disruption emerges in late-delay and choice epochs, 
indicating that late-delay activity probably depends on interactions 
with regions projecting to the M2. This allows for recovery and rea-
lignment to the attractor state by the late-delay period despite early 
disruptions.

Inhibiting M2 neurons during late delay in training animals did not 
impair rule learning, suggesting that task learning occurs upstream of 
the secondary motor cortex. Alternatively, neural redundancy might 
explain this, whereby inhibiting one area could be compensated by 
other regions or pathways that are involved in the task.

Our study extends previous research performed in the premotor cor-
tex during motor preparation and WM tasks. It was previously shown 
that activity in the premotor anterior lateral motor cortex during the 
first-odour and delay periods was important for task performance24. 
Differences in findings between our study and theirs may arise owing 
to differences in delay duration (1.5 s versus 5 s for our study) and dif-
ferences in recording location (anterior lateral motor cortex versus 
M2 in our study). Chronic recordings from the same population of 
neurons over days to weeks have enabled investigators to track whether 
a population of neurons in cortical or hippocampal regions encodes 
sensory, motor or cognitive variables in a stable manner or whether 
these distributions drift over time25–34. In general, while there was vari-
ability in the engagement or selectivity of individual neuron firing rates 
from day to day (but see refs. 32–35 for highly stable reactivation), in 
most cases, reliable cross-day population decoding of sensory and 

cognitive variables was still possible for several days up to several 
weeks25,28,30,36. In contrast to these findings, for late-delay decoding, 
we saw the emergence of successful cross-day decoding only after 
several days of performance of the task in mice already performing 
the task at high accuracy levels. This reassignment of neurons par-
ticipating in late-delay activity from day to day during learning and 
early expert performance periods may allow more rapid erasure of 
the WM sketchpad and may be necessary for increasing WM capacity 
for the large number of stimuli encountered in the world. It may also 
allow more flexibility for adapting to new decision-making rules as 
WM representations are recruited for driving distinct actions in dif-
ferent contexts. Future studies will dissect plasticity processes that 
drive dynamic learning-related activity patterns that stabilize with 
continued practice.
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Methods

Mice
All of the experiments were conducted according to the National 
Institute of Health (NIH) guidelines and with the approval of the Chan-
cellor’s Animal Research Committee of the University of California, 
Los Angeles. Experiments were performed with 8–15-week-old adult 
male and female C57BL/6J ( Jackson Laboratory, 000664), C57BL/6J-Tg 
(Thy1-GCaMP6s), GP4.12Dkim/J ( Jackson Laboratory, 025776) and 
B6;DBA-Tg(tetO-GCaMP6s)2Niell/J ( Jackson Laboratory, 024742) mice 
crossed with B6.Cg-Tg(Camk2a-tTA)1Mmay/DboJ ( Jackson Labora-
tory, 007004) mice. Mice were kept in the vivarium under a 12 h–12 h 
light–dark cycle.

Viruses
For optogenetic experiments, CaMKIIa-driven soma-targeted anion- 
conducting channelrhodopsin fused to FusionRed (pAAV-CKIIa- 
stGtACR2-FusionRed, Addgene, 105669; titre, 1 × 1013 viral genomes 
per ml) was used to express GtACR2 in the soma of excitatory neurons. 
For control experiments, we used pAAV-CaMKIIa-mCherry (Addgene, 
114469; titre, 7 × 1012 viral genomes per ml) or pAAV-CaMKIIa-EGFP 
(Addgene 50469; titre, 7 × 1012 viral genomes per ml).

Head-bar and cranial window implantation
Adult 8-to-12-week-old male and female C57BL/6J-Tg (Thy1-GCaMP6s) 
GP4.12Dkim/J mice were anaesthetized with isoflurane (5% for induc-
tion, 1–2% (v/v) for maintenance). The depth of anaesthesia was moni-
tored continuously and adjusted when necessary. After induction of 
anaesthesia, the mice were fitted into a stereotaxic frame (Kopf), with 
their heads secured by blunt ear bars and their noses placed into an 
anaesthesia and ventilation system (David Kopf Instruments). Body 
temperature was kept at 37 °C with a feedback-controlled heating pad 
(Harvard Apparatus). Mice were administered 0.05 ml lidocaine (2%; 
Akorn) subcutaneously as a local anaesthetic before surgery. The sur-
gical incision site was cleaned three times with 10% povidone-iodine 
and 70% ethanol. After removing the scalp and clearing the skull of 
connective tissues, a custom-made lightweight metal head-bar was 
fixed onto the skull with cyanoacrylate adhesive and covered with black 
dental cement (Ortho-Jet). A circular craniotomy (diameter, 5 mm) was 
performed above the secondary motor cortex (centred at 1.94 mm 
anterior from bregma or centred at bregma for M2/RSA imaging).  
A cranial glass window consisting of a 5 mm diameter round #1 coverslip 
(Warner Instruments) was implanted in the craniotomy, flush with the 
skull surface and sealed in place using tissue adhesive (Vetbond). The 
exposed skull surrounding the cranial window was then completely 
covered with black dental cement to build a small chamber for imaging 
with a water-immersion objective. After surgery, the mice were injected 
with carprofen (5 mg per kg of body weight) and allowed to recover 
overnight in cages placed on a low-voltage heating pad. Carprofen was 
administered once per day for up to 2 days after surgery. Amoxicillin 
antibiotic (0.25 mg ml−1) was dispensed in the drinking water for 7 days. 
Animals were returned to the vivarium for 1–2 weeks for recovery before 
undergoing imaging experiments.

AAV injection and fibre optic cannula implantation
Adult 8-to-12-week-old male and female C57BL/6J mice were anaesthe-
tized with isoflurane (5% for induction, 1–2% (v/v) for maintenance). 
Skin incisions were made, followed by craniotomies 1 mm in diam-
eter above the secondary motor cortex (centred at 1.94 mm anterior 
to bregma and 0.5 mm lateral to the midline) using a small steel burr 
(Fine Science Tools) powered by a high-speed drill. Saline (0.9%) was 
applied to the skull to reduce heating caused by drilling. Bilateral viral 
injections were performed by using stereotaxic apparatus (David Kopf 
Instruments) to guide the placement of bevelled glass pipettes with a 
tip diameter of about 50 μm (World Precision Instruments) into the 

secondary motor cortex (1.94 mm anterior to bregma, 0.5 mm lateral 
to the midline and 0.3 mm from the pial surface). Using the Nanoject 
II micro-injector (Drummond Scientific), 300 nl of 1:100 PBS-diluted 
AAV was bilaterally injected using a syringe pump. Glass pipettes were 
left in place for at least 10 min after virus injection.

A ferrule-terminated optical fibre (Thorlabs) was placed above the 
injected site. The fibre tip was aimed to terminate at the pial surface. 
The optical fibre was secured to the skull using cyanoacrylate adhesive 
and black dental cement (Ortho-Jet). After surgery, the mice were left 
overnight in cages placed on a low-voltage heating pad. Mice were 
allowed to recover for 2–3 weeks before the experiments. The locations 
of injections and implanted optical fibres were validated histologically 
for all experimental mice.

Behavioural training
After recovery from surgery, mice were handled and water-restricted 
to 85–90% of their original weight. The mice were subsequently habitu-
ated to head fixation, airflow and water port for two sessions (one ses-
sion per day). During the two shaping days, the mice were presented 
only with the combination of the odours (A, 1-pentanol; B, butyl for-
mate; C, 3-methyl-2-buten-1-ol; and D, ethyl acetate; Sigma Aldrich, 
138975, 261521, 162353 and 270989) that led to reward (AC and BD 
trials) and water was automatically delivered. After 2 days of shaping, 
the mice were trained to perform the complete delayed-association 
WM task. The lick port was connected to a touch sensor, and mouse 
tongues had to touch the lick port at least once to receive a water 
reward. Each training session consisted of 150 to 250 trials. Odour 
combinations were presented in a random order. Responses were 
assessed based on mouse licking during the choice window. If any 
licks occurred during the choice window, the trial was considered to 
be a hit for AC and BD trials or false alarm for AD and BC trials. If no 
licking occurred during the choice window, the trial was considered 
to be a miss for AC and BD trials or correct rejection for AD and BC 
trials. Mice were not punished for miss or false alarm trials. A training 
session was aborted early if a mouse had more than three misses within 
the most recent ten trials, indicating the animal’s lack of motivation to 
obtain the water reward. Performance was quantified as the number 
of hits and correct rejections over the total number of completed tri-
als. The airflow and odour delivery were frequently monitored using 
an Aurora Scientific photo-ionization detector at the beginning of 
each training session.

In vivo calcium imaging
Two-photon laser-scanning microscopy was conducted using the Thor-
labs multiphoton mesoscope using a 12 kHz resonant scanner with a 
water-immersion objective with 0.6 excitation NA, 1.0 collection NA and 
2.7 mm working distance. The excitation laser was a 920 nm Tiberius 
Ti:Sapphire Femtosecond Laser, and the laser intensity was 30–80 mW 
at the sample. Images were acquired using the ScanImage software (Vid-
rio Technologies). Fully awake mice were mounted in a 2-inch-diameter 
transparent tube by securing its head bar onto a custom-made head-bar 
holder under the microscope. 600 px × 1,200 px to 600 px × 2,500 px 
images were acquired at 8–17 Hz at 150–250 μm depth. To track the 
mouse movement, a camera mounted underneath the animal acquired 
the paw location of the animals at 30 Hz. The locomotion data were 
acquired simultaneously with the calcium imaging data and synchro-
nized with the scanning mirror signals. The microscope and behav-
ioural set-up were encased in a light-tight box, and the mice were kept 
in darkness during the imaging sessions. We performed online image 
processing at the beginning of every session to align cells across days. 
We tried to maximize the correlation between the moving average of 
frames of the current field of view and the average of frames of the 
previous sessions.

Two-photon LBM was conducted using a custom-built microscope 
equipped with a 960 nm, 4.89  MHz repetition rate optical parametric 



chirped-pulse amplification (OPCPA) pumped by an ytterbium laser at 
1,030 nm with 80 W power, delivering a 2 μJ pulse energy and a 90 fs 
pulse width. The LBM featured a rapid 12 kHz resonant scanner and 
was paired with a 0.6 excitation NA, 1.0 emission water-immersion 
objective lens with a 2.7 mm working distance. The LBM technique 
divided a single pulse into 30 distinct subpulses of varying intensities, 
targeting 30 separate depths of the specimen separated by 15 μm, yet 
eliciting a consistent level of fluorescence across these layers22. In our 
initial LBM experiments, we successfully recorded a region measuring 
1,450 × 1,825 × 450 μm3 at a frequency of 7.95 Hz in two mice. Subsequent 
experiments extended the recorded area to 2,000 × 2,000 × 450 μm3, 
recorded at 6.45 Hz, in another two animals.

Optogenetics
Optical stimulation was applied through a ferrule-terminated 200 μm 
core and 0.39 NA optical fibre (Thorlabs) attached to the 200 μm core 
and 0.39 NA patch cable using a 1.25 mm ceramic mating sleeve (Thor-
labs). We used a blue-fibre-coupled light emission diode (λ = 470 nm, 
Thorlabs, M470F3). The light was delivered at 20 Hz with a 0.4 duty 
cycle at an irradiance of 10 mW mm−2 at the output tip of the fibre.

Optogenetic experiments commenced only when the animals 
achieved a behavioural performance threshold exceeding 90% accuracy 
for at least three consecutive sessions. This criterion ensured that the 
animals were well-trained and proficient in reliably executing the behav-
ioural tasks before the introduction of optogenetic manipulations.

Electrophysiology
For in-vivo electrophysiology recordings, expert mice were anaesthe-
tized with isoflurane (5% for induction, 1–2% (v/v) for maintenance). 
They underwent a 2 mm craniotomy (centred at 1.94 mm anterior 
to bregma and 0.5 mm lateral to the midline) and silver wire ground 
(Warner Instruments) implantation surgery over the cerebellum 
1 day before recording. The ground wire was fixed in place with dental 
cement. The exposed skull was covered with Kwik-Sil, and the mouse 
was allowed to recover overnight. On the day of the recording, the 
mice were head-fixed into a tube, the Kwik-Sil covering the craniotomy 
was removed and replaced with buffered artificial cerebrospinal fluid, 
and the mouse was aligned to the micromanipulator. A 128-channel 
silicon microprobe37 was slowly lowered using a micromanipulator 
into M2, and the surface of the exposed brain was covered with mineral 
oil. The process was monitored using a surgical microscope (Zeiss, 
STEMI 2000). The microprobe contained 128 channels that were 
densely distributed (honeycomb layout with 20 μm spacing between 
nearest-neighbour channels) on two shanks (placed 0.4 mm apart). 
After insertion, the microprobe was allowed to settle for at least 30 min 
before the recording began and continued for the entire duration of 
the session. The electrophysiological and behavioural data acquisitions 
were synchronously performed using custom MATLAB software while 
the mouse performed the task. The probe readout was achieved using 
a detachable head stage module (Intan Technologies RHD 128). Head 
stages contained commercial integrated electronic circuits (Intan 
Technologies RHD 2000 USB interface board) providing a multiplexed 
signal recorded with open source software (Intan Technologies) at 
25 kHz per channel.

Histology
At the end of experiments, the mice were deeply anaesthetized under 
isoflurane and transcardially perfused with 40 ml 1× PBS followed 
by 40 ml 4% paraformaldehyde in 1× PBS at a rate of approximately 
4 ml min−1. After perfusion, the brains were rapidly extracted and 
post-fixed in 4% paraformaldehyde. Coronal sections (thickness, 
100 μm) were collected using a vibratome. The sections were mounted 
onto glass slides. The slides were then cover-slipped with mounting 
medium DAPI. Images were acquired using the Leica DM6 B micro-
scope.

Quantification and statistical analysis
Calcium imaging data processing, including motion correction, seg-
mentation, fluorescence signal extraction and deconvolution, was 
performed using the Python implementation of Suite2P38. Before 
segmentation, we performed several steps to enhance image quality, 
including noise reduction, background subtraction and image registra-
tion to correct for tissue movement. We validated our segmentation 
results by comparing the automated segmentation to manually anno-
tated ground truth data. Adjustments to parameters and algorithms 
were done to achieve optimal results. We used the deconvolved signal 
for all our analyses. Silicon probe data processing and spike sorting 
were performed using custom code, KiloSort39 and Phy40.

To visualize the calcium activity of individual neurons, we computed 
a peristimulus time histogram averaged across all trials for all four com-
binations of odours, smoothed using a moving average over a 400 ms 
window. To generate response maps for each neuron, we subtracted 
its mean spontaneous baseline calcium activity across all trials on  
a given day during the baseline epoch (5 s before the first-odour onset). 
We divided it by the s.d. of calcium activity during the baseline epoch. 
Thus, the response maps show changes in calcium activity in units of 
the s.d. of spontaneous activity. This method was used for visualization 
purposes only. Unless stated otherwise, all statistical analyses were 
performed on unsmoothed, deconvolved calcium activity without 
baseline calcium activity subtracted.

A neuron was considered to have a significant activity field during a 
specific time epoch if its activity within that epoch significantly differed 
from the distribution of its 1,000 times circularly shuffled mean activity.

The first-odour selectivity of a neuron was assessed by comparing 
the distribution of its mean deconvolved calcium activity over a time 
epoch for A and B odour trials using the Wilcoxon rank-sum test with 
a confidence interval of 99%. A neuron was considered to be purely 
selective if it exhibited selectivity for a specific odour or choice during 
a specific epoch and did not show selectivity for any other parameter 
at any other time. Conversely, a neuron was considered to be mixed 
selective if it showed selectivity for more than one odour or choice at 
different epochs.

We considered an animal naive, training or expert if its behavioural 
performance (p) was, respectively, p < 65%, 65% ≤ p < 80% or p ≥ 80%. 
An animal was considered a novice during the first training day.

To determine whether a neuron’s response was related to the animals’ 
motor activity, we used DeepLabCut41 to find the position of the animals’ 
paws from which we extracted the animals’ movements. We calculated 
the correlation coefficient between the activity of each neuron and the 
unshuffled and 1,000 times circularly shuffled locomotion activity.  
A neuron was considered to be significantly correlated if its correlation 
coefficient was at least 2 s.d. away from the mean value of the correla-
tion coefficients of shuffled distribution.

We assessed the WM information content in a population activity 
of neurons by measuring the classification performance using a SVM 
with a linear kernel. We implemented the SVM binary classification 
in MATLAB and performed the computations on high-performance 
computing clusters using thousands of computing nodes. We used 
the activity of neurons in 500 ms time bins to train a decoder on 90% of 
randomly chosen trials and tested its accuracy on the 10% of the trials 
that were withheld. To ensure our model was not biased or overfit to 
specific data patterns, we repeated the classification measurements 
at least 32 times with different sets of randomly chosen trials. We then 
calculated the average of all measurements. This approach introduces 
randomness and helps to ensure that the decoding results are not a 
product of a model memorizing specific instances. Decoding accuracy 
and its standard error were then found by averaging the prediction 
accuracy of the decoder across all mice.

For across-day classification, we used the activity of the overlapping 
neurons for our analyses. We trained a model on all trials on one day and 
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tested that model’s predictions on all trials on another day. To assess 
statistical significance and determine whether decoding performance 
surpasses chance, we randomized trial types by assigning random 
labels to each trial.

For the LSTM decoding analyses, we configured the recurrent neural 
network architecture so that the dimensions of the input layer were 
aligned with the number of neurons recorded in the pertinent dataset. 
The network comprised 128 hidden units followed by a linear layer to 
compute logits for a softmax classifier using cross-entropy loss. The 
weights and biases within the LSTM layers during the training phase 
were optimized using the adaptive moment estimation (Adam) opti-
mizer. LSTMs were trained for 100 epochs (passes through the training 
set). For the decoding process, temporal data granularity was 500 ms. 
Training involved 90% of randomly selected trials, with the remaining 
10% reserved for testing. Analogous to the SVM decoding procedure, 
the LSTM classification was iterated at least 32 times using distinct 
randomly chosen trial subsets. The resultant metrics were then aver-
aged over the 32 samples. Furthermore, we performed trial shuffling 
to mitigate potential biases and ensure the robustness of the LSTM 
model’s performance assessment.

To find overlapping neurons across sessions, we used co-registration 
of spatial cell footprints using CellReg42. Neurons were modelled with a 
maximal centroid distance of 10 μm. Final registration used the proba-
bilistic model with a threshold of more than 95% probability of cells 
being the same for all mice. We used these parameters to ensure the 
accuracy of matching cells.

We used t-SNE43 to embed the high-dimensional neuronal activity 
into two dimensions. We calculated the time-averaged calcium activity 
of neurons during a specific epoch and found the pairwise distances 
between the high-dimensional points for each trial. For each point, 
we calculated a s.d. so that the perplexity of each data point matched  
a predefined value. Starting from an initial set of low-dimensional points, 
we iteratively updated the points to minimize the Kullback–Leibler 
divergence between a Gaussian distribution in the high-dimensional 
space and a t-distribution in the low-dimensional space.

Statistics and reproducibility
All statistical analyses were conducted using Prism (GraphPad), MAT-
LAB (MathWorks) or Python. Statistical tests used in this study include 
Wilcoxon rank-sum tests and paired t-tests. The significance threshold 
was held at α = 0.05; NS, not significant (P > 0.05); *P ≤ 0.05, **P ≤ 0.01, 
***P ≤ 0.001, ****P ≤ 0.0001. All behavioural, imaging and optogenetics 
experiments were replicated in multiple animals. Sample sizes were 
not predetermined using statistical methods.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
All data and analyses necessary to understand the conclusions of the 
manuscript are provided in the Article. Source data are provided with 
this paper.

Code availability
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DAT-Decoding) are available at GitHub.
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Extended Data Fig. 1 | Behavioural and physiological responses in mice 
undergoing task learning and optogenetic manipulation. (a) Performance  
of the animals while they learned the task over eight days assessed with 
discriminability index (D’). (b) Normalized licking distribution of novice and 
expert mice during the 20 second trial period. (c) Odour intensity measured by 
photoionization detector (PID). (d) Effect of airflow (left), delay period duration 
(middle), and odour concentration (right) on animal’s task performance.  
(e) Licking distribution for different trial types in expert animals. (f) Schematic 
from Paxinos and Franklin44 illustrating the muscimol injection target and a 
histological section after the fluorescent dye (DiI) injection marking the 
injection location. (g) Muscimol’s impact on expert mice’s performance and 
licking, indicating significant performance disruption (paired t-test; 95% CI; 
performance p = 0.0001; licking p = 0.159). Mice received muscimol or saline 
randomly across consecutive sessions. Each colour indicates one mouse with 
two mice being experimented with twice. (h) Schematics and effect of muscimol 
inhibition on mice in a non-working memory task. (i) Schematic from Paxinos 
and Franklin44 illustrating the injection target and a histological section after 
the stGtACR2 showing injection localization. (j) Blue light illumination silences 
stGtACR2-expressing neurons, as demonstrated by a neuron’s activity raster 
plot and its averaged firing rates during photostimulation, alongside the 
collective activity of 20 recorded units before, during, and after inhibition, 
showing significant changes (paired t-test; before-during p = 0.026; during-after 

p = 0.020; before-after p = 0.235). The right panel is another example of the 
effect of blue light on modulating the activity of stGtACR2-expressing neurons 
showing the activity of 102 electrophysiologically recorded units before, 
during, and after photoinhibition (paired t-test; before-during p = 1.28 × 10−7; 
during-after p = 1.01 × 10−6; before-after p = 0.70). (k) Illustration of bilateral 
optogenetic setup and histology showing stGtACR2-expressing neurons.  
(l) Optogenetic inhibition during different task epochs reduces expert mice’s 
task performance (paired t-tests: delay 4, p = 0.0088; delay 5, p = 0.005;  
second odour, p = 0.0004; choice 1, p < 0.0001). (m) Effect of blue light on the 
performance (top) and licking (bottom) of expert mice expressing EGFP. The 
plot titles indicate the epochs at which the illumination was done. Each colour 
indicates one mouse. (n) Normalized pupil diameter for various trial types in 
three distinct animals exhibiting expert-level performance. (o) Normalized paw 
position across different trial types in three distinct animals demonstrating 
expert-level performance. (p) Distribution of forelimb speed in three individual 
expert animals across various odour combinations and temporal segments.  
(q) Photoinhibition of the M2 during the last 2 seconds of the delay period  
across the first 7 days of training impairs task performance. Performances are 
calculated over twenty-trial blocks in each session (n = 4 stGtACR2-expressing 
mice; n = 4 mCherry-expressing mice). (a), (b), (d), (e), (g)–(j), (l)–(o), and (q) 
Mean ± s.e.m. *p≤ 0.05, **p≤ 0.01, ***p≤ 0.001, ****p≤ 0.0001, ns, not significant. 
See Methods for details of statistical analyses.
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Extended Data Fig. 2 | See next page for caption.



Extended Data Fig. 2 | Neural selectivity and activity dynamics in mice 
performing a delayed-association WM task. (a) Percentage of cells with 
significant activity field during different task epochs. (n = 4 mice; paired t-
tests; first odour, p = 0.050; early-delay, p = 0.011; late-delay, p = 0.351; choice, 
p = 0.085). (b) Selectivity distribution during different task epochs. Shades 
denote the significantly selective cells. (c) Percentage of selective cells 
overlapping during different task epochs. (d) Distribution of correlation 
coefficient between animal’s body movement and calcium activity of 2611 
neurons (n = 5 expert mice) with mean correlation value of 0.007 ± 0.003.  
(e) Evolution of selective cells during different task epochs over different 
learning stages. The numbers denote percentages. Radius of the circles and  
the line thicknesses are properly scaled. (f) Similar to (e) but for expert animals 
over three consecutive days. (g) Electrophysiology recording of four example 
M2 neurons. (h) Proportion of late-delay neurons that are active in novice and 
expert animals (paired t-test). (i) Percentage of trials with active delay cells in 
novice and expert animals (paired t-test). Note that novice animals exhibit a 
significantly lower proportion of delay cell activity compared to experts as 
shown in (h). ( j) Percentages of selective neurons during the first-odour 
(p = 0.11), early-delay (p = 0.2), late-delay (p = 0.51), and choice (p = 0.13) epochs 
in M1 among novice and expert mice, with statistical analyses conducted using 
paired t-tests. (k) Proportions of selective neurons in the first-odour (p = 0.18), 
early-delay (p = 0.63), late-delay (p = 0.59), and choice (p = 0.09) epochs within 
the RSA of both novice and expert mice. Statistical analyses were conducted 
using paired t-tests. (l) Average across-day decoding accuracy for individual 

animals in the early (first two days) and late (last two days) expert phase of task 
performance (paired t-tests) in the first-odour (p = 0.11), late-delay (p = 0.06), 
and choice (p = 0.04) epochs, extracted from Fig. 3i. (m) Similar to (l), but with 
corresponding p-values of 0.05, 0.03, and 0.02 for the first-odour, late-delay, 
and choice epochs, respectively, extracted from Fig. 4g. (n) Distribution of 
difference in the mean decoding accuracies when shuffling day identities. The 
red dashed line represents the mean change in decoding accuracy between the 
last three and first three days without shuffling. The p-value (z-test) suggests a 
significant difference in decoding accuracy for the first-odour and choice 
epochs but not for the late-delay epoch. This indicates that representations  
for the first-odour and choice epochs stabilize, while those for the late delay 
appear to drift daily. (o) Similar to (n), but using LBM data and the difference in 
decoding accuracies between the first and last five days. The p-value indicates 
a significant difference in decoding accuracy for all three epochs, suggesting 
that representations for the late-delay epoch also stabilize as mice continue 
practicing the task. (p) Z-scored activity of neurons exhibiting selectivity for  
A and C or B and D, sorted by their activity during AC and BD trials, and vice 
versa. The right panel illustrates the correlation coefficient of the neurons’ 
activity when sorted by AC or BD trials. Neuron activity was temporally 
shuffled 10,000 times to determine the significance of actual correlations 
against the distribution. Red markers indicate the 95th percentile. *p≤ 0.05, 
**p≤ 0.01, ***p≤ 0.001, ****p≤ 0.0001, ns, not significant. See Methods for 
details of statistical analyses.
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Extended Data Fig. 3 | See next page for caption.



Extended Data Fig. 3 | Decoding neuronal representations of the first-
odour identity and choice across different task epochs. (a) Visualization  
of the first odour identity and choice during different task epochs using 
t-distributed stochastic neighbour embedding (t-SNE), in an expert animal 
performing at 92%. The decoding accuracy of the SVM decoder, presented in 
the right panel, illustrates the presence of working memory information in the 
neuronal population activity during the late-delay epoch for the same dataset. 
(b) Decoding accuracy for odour identification in the go/no-go task, devoid of  
a working memory component (n = 3 mice). (c) Distribution of the animal’s 
licking behaviour during the go/no-go task (n = 3 mice). (d) Left panel: Decoding 
accuracy for the first odour in normal and confusion tasks with randomized 
reward contingencies, using N% of the top selective neurons during first-odour 
and late-delay epochs. Notably, in the confusion task, decoding accuracy 
during the late-delay epoch approaches chance level (n = 3 mice). Right panel: 
Evaluation of choice decoding in both normal and confusion tasks using  
the activity of all neurons. Shuffled data pertains to the confusion task.  
(e) Behavioural performance of mice at expert proficiency levels, featuring the 
identical mice analysed in Fig. 3g-j (p = 0.25; one-way ANOVA). (f) Number of 
imaged neurons for each imaging day, showcasing the same mice examined in 
Fig. 3g-j (p = 0.25; one-way ANOVA). (g) Percentage of neurons exhibiting 

selectivity in each time epoch on every imaging day, featuring the identical 
mice analysed in Fig. 3g-j (first-odour epoch p = 0.69, late-delay epoch p = 0.46, 
choice epoch p = 0.34; one-way ANOVA). (h) Decoding accuracy for the first 
odour using N% of choice epoch’s most selective neurons. (i) Decoding 
accuracy in predicting the initial odour identity and choice based on the 
separate and combined activity of M1 and M2 neurons using a non-linear Long 
Short-term Memory (LSTM) recurrent neural network decoder. Equal numbers 
of M1 and M2 neurons are employed in the decoding process to ensure a fair 
comparison. ( j) Similar to (i), but using simultaneous recordings of the 
retrosplenial and secondary motor cortices. (k) Decoding accuracy for the first 
odour (left two) or choice (right) using N% of selective neurons during the first-
odour (left), late-delay (middle), or choice (right) epochs. The analysis is 
performed with a non-linear LSTM decoder using the identical data from n = 5 
mice performing at expert level showcased in Fig. 2e. (l) Maximum decoding 
accuracy during the first-odour, late-delay, or choice epochs using N% of each 
epoch selective neurons. Dashed lines represent decoding from shuffled data. 
(m) Trial category prediction accuracy (AC, AD, BC, BD; n = 5 mice). Chance 
level, represented by the red trace, is 25% due to the four possible categories. 
(a)–(m), Mean ± s.e.m.
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Extended Data Fig. 4 | Cortical depth-dependent neural decoding accuracy 
of the first-odour identity and choice in mice across task epochs.  
(a) Accuracy of decoding the first odour identity during the first-odour (left 
column) and late-delay (middle column) epoch using neurons at different 
depths. The right column is the accuracy of decoding choice during the choice 
epoch. (b) Mean decoding (n = 4) accuracy obtained by training the decoder on 
data from a specific depth on one of the five days (1–5 or 6–10), followed by 
testing the decoder on the data of the same depth from the remaining four 
days. Each data point represents the outcome of one of the 20 permutations 
(one-way ANOVA; first-odour epoch, p < 0.0001; late-delay epoch, p < 0.0001; 
choice epoch, p < 0.0001). *p≤ 0.05, **p≤ 0.01, ***p≤ 0.001, ****p≤ 0.0001, ns, 
not significant. See Methods for details of statistical analyses.
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