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Working memory, the process through which information is transiently maintained
and manipulated over abrief period, is essential for most cognitive functions'™.
However, the mechanisms underlying the generation and evolution of working-
memory neuronal representations at the population level over long timescales
remain unclear. Here, to identify these mechanisms, we trained head-fixed mice to
perform an olfactory delayed-association task in which the mice made decisions
depending on the sequential identity of two odours separated by a5 s delay. Optogenetic
inhibition of secondary motor neurons during the late-delay and choice epochs
strongly impaired the task performance of the mice. Mesoscopic calcium imaging of
large neuronal populations of the secondary motor cortex (M2), retrosplenial cortex

(RSA) and primary motor cortex (M1) showed that many late-delay-epoch-selective
neurons emerged in M2 as the mice learned the task. Working-memory late-delay
decodingaccuracy substantiallyimproved inthe M2, but notinthe M1 or RSA, asthe
mice became experts. During the early expert phase, working-memory representations
during the late-delay epoch drifted across days, while the stimulus and choice
representations stabilized. In contrast to single-plane layer 2/3 (L2/3) imaging,
simultaneous volumetric calcium imaging of up to 73,307 M2 neurons, which
included superficial L5 neurons, also revealed stabilization of late-delay working-
memory representations with continued practice. Thus, delay- and choice-related
activities that are essential for working-memory performance drift during learning
and stabilize only after several days of expert performance.

Working memory (WM)—the ability to temporarily store and manipu-
late information—is essential for most cognitive functions'* and is
impaired in several neurological and psychiatric disorders>”. The main-
tenance of informationin WMis thought to be mediated by persistent,
sequential or oscillatory activity® ', and its representation in the state
space of dynamical systems is often modelled as discrete or continu-
ous attractors™ %, The mechanism of generation and maintenance of
WM-related neural representations during learning and their evolution
with continued expert performance remains unclear. A key challenge
has been to record and manipulate the same neuronal populations
over a long period of time while the animal learns and becomes an
expertinthetask. Here we pose two fundamental questions concern-
ing the stability and causality of WM representations, examining (1) the
stability of WM representations across time as the mouse learns the
task and attains expertise through practice; and (2) the role of these
representations in driving task performance.

Toaddress these questions, we trained mice to performan olfactory
delayed-association WM task' (Fig. 1a,b). In this task, water-deprived
head-fixed mice were presented with odours A or Bfor1s. Aftera5s

delay period, the mice were presented with odours C or D for another
second. If odour Cfollowed odour A or odour D followed odour B, the
mice were rewarded with water after licking during the 3 s choice period
after the second odour (Fig. 1b). For the other odour combinations,
the animals learned to withhold licking. The mice were not punished
for false alarms or for licking during the delay period, but their licking
patterns after learning showed that licking was restricted to the choice
period (Fig.1d and Extended DataFig. 1b). The mice learned to perform
the task after training for around seven sessions, with anaccuracy level
0f94.2 +1.3% (discriminability index, D’ > 3) (Fig. 1c and Extended Data
Fig.1a). The performance was assessed as the ratio of hits and correct
rejections over the total number of trials that the mouse completed
during the training session. Several behavioural control experiments
and photoionization detector measurements demonstrated that odour
residues did not linger during the delay period (Extended Data Fig.1c).
Moreover, airflow modulation did not affect the animal’s performance.
However, performance decreased withincreasing duration of the delay
period or decreasing levels of odorant concentration, as expected
(Extended Data Fig.1d).
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Fig.1| The effects of optogeneticinhibition on WM task performance.
a, Theexperimental set-up. b, The delayed-association WM task trial types;
licking was assessed during the 3 s choice period, with early- and late-delays
periods noted. ¢, Learning progress across eight sessions, measured on the
basis of the percentage of correct responses. d, Learning sessionexample,
withlicks marked. e, Photoinhibition effect during different task epochs on
the animal’s performance (fourth second of the delay period, P=0.009; fifth
second of the delay period, P=0.005; second odour, P=0.0004; first second
of choiceepoch, P=0.0001). Statistical analysis was performed using paired
t-tests. f, Photoinhibition of the M2 during the last 2 s of the delay period across
thefirst 7 days of training impairs task performance. n = 4 (stGtACR2-expressing)
and n=4 (mCherry-expressing) mice. The Pvalues determined using
two-sample t-tests for sessions 1-10 were as follows: P, = 0.8425, P, = 0.4610,
P3 0.6904,P,=0.0724,P;=0.0463,P,=0.0146, P,= 0.0161, P, = 0.7065,
=0.6530and P,,=0.7955.For c,eandf, dataare mean = s.e.m. NS, not
significant; *P<0.05,**P<0.01,***P<0.001,***P< 0.0001. Details of the
statistical analyses are provided in the Methods.

Toensurethatdifferent odours or odour combinations resultin simi-
lar behavioural responses, we measured the lick time distributions while
the mice performed the task at an expert level (performance > 80%).
Lick time distributions for AC versus BD trials, as well as AD versus BC
trials, showed no statistically significant differences (Extended Data
Fig.1le). Thisindicates consistent behavioural responses across differ-
ent odour combinations. We also measured pupil diameter changes to
distinct odour combinations and found highly consistent pupillary
responses withinindividual animals. Pupillary responses were similar
across animals for odour combinations associated with rewards (AC
and BD trials) and those without rewards (AD and BC trials) (Extended
Data Fig. 1n). To ensure that the neural activity that we measured in
the next section was not simply a correlate of motor movements, we
recorded paw movement during the delay period for different odour
combinations and found no significant differences in paw movements
for different trial types, suggesting that delay-related activity does
not simply correlate with motor movements (Extended Data Fig. 10).
Furthermore, we measured forelimb speed distribution across odour
combinations and different task epochs. Partitioning each trialinto six
intervalsrevealed marked heterogeneity in forelimb movement speed
among the examined animals, indicating that different odours do not
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differentially and consistently impact motor behaviour (Extended
Data Fig. 1p).

Importance of late-delay epoch activity pattern

To assess the role of M2 neurons in the performance of the olfactory
delayed-association WM task, expert mice received bilateral injections
of either saline or muscimolintothe M21 hbefore testing. M2-localized
(Extended DataFig. 1f) muscimolinjectionsled to a performance drop
(70.5% +1.8% versus 92.8% + 1.2% with saline; Extended Data Fig. 1g).
Licking behaviour remained unaffected by muscimol (Extended Data
Fig.1g). The performance onanon-WM task was notimpaired by mus-
cimol (Extended Data Fig. 1h), suggesting the specific importance of
the M2 for WM task performance, but not simple decision-making.

Weinvestigated theimpact of inhibiting CaMKII* neurons in the M2
at different task stages using soma-targeted anion channelrhodop-
sin (stGtACR2), which effectively suppressed neuronal firing without
rebound activity (Extended Data Fig. 1i,j). Inhibition of M2 neurons
only during the fourth and the fifth second of the delay period, dur-
ing the second odour, and during early-choice epochs significantly
degraded performance by 24.7 +9.6% (n=5), 29.2 +5.4% (n=5),
34.6 +5.9% (n=10) and 31.9 + 3.3% (n = 8), respectively (Fig. 1e and
Extended DataFig. 1I). By contrast, inactivation at other times did not
affect performance. Illumination of the M2 in control mice injected
with AAV-CaMKIla-eGFP did not affect performance. Thus, neuronal
activity in late-delay but not early-delay periods is essential for
performance of the WM task.

We next examined whether suppression of late-delay activity inthe
M2impedes learning of the WM task. To answer this question, we inhib-
ited the M2 activity of mice during the last 2 s of the delay period for
everytrial while the animal learned the task for the first seven sessions.
M2 inhibition significantly impaired performance during learning
sessions in comparison to the control mice that were injected with
AAV-CaMKlla-mCherry (Fig. 1f). However, when we stopped the photo-
inhibition during sessions 8to 10, the performance of the mice rapidly
convergedtothelevel of performance of the control mice, suggesting
that learning had proceeded despite the deficient performance of
the animalin the previous sessions (Fig. 1fand Extended Data Fig.1q),
consistent with ‘silent learning’. In all instances, we histologically
verified the injectionsite, confirming its localization to the M2 region.
Inno case was the Ml labelled (Extended Data Fig. 1k).

Thus, M2 neuronal late-delay and choice-period activity causally
drives WM performance but, while sufficient, it is not necessary for
learning of the task.

The M2 contains task-related selective neurons

We recorded neuronal activity in M2 L2/3 using mesoscopic two-photon
calcium imaging while C57BL/6)Tg (Thyl-GCaMPé6s) GP4.12Dkim/J
mice performed the task at expert level (Fig. 2a). We typically recorded
622 + 295 neurons simultaneously during each session. Within each day,
we observed selective andreliable responses to the first odour during
the first-odour, early-delay, late-delay and choice epochs (Fig. 2b,c).
Atotal of 46.5 + 4.5% of cells showed selectivity during at least one of the
epochs. We quantified the selectivity of individual cells by comparing
the distribution of their calcium activity based on the identity of the
first odour presented at different time intervals. Neurons with selec-
tive activity during asingle epoch wererare. In expert mice, 5.0 + 0.8%,
2.3+0.8%,1.3+0.5%and18.3 + 7.4% (n = 4 mice) of neurons showed pure
selectivity during first-odour, early-delay, late-delay and choice epochs
(Fig. 2b,d). By contrast, a larger proportion of neurons (13.0 + 2.6%,
8.5+1.9%,5.8 + 0.8and 10.3 + 1.9%) showed mixed selectivity'® and had
strong activity during multiple task epochs (Fig. 2c,d).

We also quantified the proportion of trials with active delay
cells in well-trained mice (Extended Data Fig. 2h,i). In novice mice



\from M1/M2

P First-odour decoding
A

K] 7} e
° © -
S o i
< . <
) )
= =
a =}
< <
@ 0 .
= ©
Q
8 8
El I
° )
g I 0o Z.
a 8 a
m o [
s N 3
: 5 "
A

|

e et Ny

Decoding accuracy (%)

Cell 3
"

I} e

i
5

Time to first odour (s)

i First-odour decoding

90 1A\ from RSA/M2
Nl —M2

| RSA

\ M2 and RSA

NRA%

90

i R
i N/

Decoding accuracy (%)
P.
{7

z score (s.d.)

i
70 :
| 'Choice decoding
|/ ifrom RSA/M2

i
|
|
|
|
|
|
, i
"

50y r;\‘,‘\‘:g\,&/:r
et S,

0 5 10

50 51050 510 -50 510 -5 0 5 10
Time to first odour (s)

e First-odour-epoch-
selective cells

Late-delay-epoch-

Choice-epoch-

selective cells selective cells

IS
S

w
=}

Percentage of cells

AN
AR
N

3

Fig.2|Evolution oflate-delay M2 activity patterns carrying WM
information. a, Imaging set-up and calcium activity of representative neurons
across trials fromone of the animals. Images of the other mice looked similar.
Scalebars, 500 um (left),200 um (leftinset) and 100 pm (top and bottom
right). AF/F, fluorescence signal change; SS, somatosensory. b, z-scored
activity of four example neurons selectively responsive to specificodours,
choices or delay epochs. ¢, Example neurons exhibiting mixed selectivity.
Inbandc, cellsweresampled fromatleast 2 days after the animal achieved
expert-level performance.d, The percentage of neurons exhibiting pure or
mixed selective activity (n =4 expert mice; first odour, P= 0.022; early delay,
P=0.035; late delay, P=0.006; choice, P= 0.353). Statistical analysis was

(performance < 65%) on the first training day, delay cells were active
in 85.8 £ 2.6% of trials. On the last recording day for expert animals,
delay cells were active in 82.8 + 2.9% of trials, indicating little change
in the reliability of the responses with learning. Notably, the number
ofactive cells during the delay period was significantly lower in novice
mice (Extended Data Fig. 2h).

To ensure that the slow decay of calcium transients did not arti-
ficially give the appearance of delay-related activity, we performed
single-unit electrophysiological recordings in expert animals as they
performed the WM task. Consistent with our imaging experiment,
these recordings showed odour-selective activity during the odour
period and odour-selective ramping activity during the late-delay
period (Extended Data Fig. 2g). Thus, delay-related activity recorded
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performed using paired t-tests. e, The accuracy of decoding the first odour
(leftand middle) or choice (right) using N% of the most selective neurons.n=>5
mice performing at expertlevel. f, The maximum decodingaccuracy compared
with shuffled data. g,h, The decoding accuracy of predicting the first odour
and choice from the activity of M1and M2 (g) and RSA and M2 (h) neurons
separately and combined. The same number of neuronswasused to ensurea
fair comparison. i,j, Decoding accuracy comparison between correctand error
trialsinexpert mice (i; n = 5), demonstrating significant predictive value during
thelate-delay epoch (P=0.0001, paired t-test). The analysising-jis based on
datafromthelastimaging day. Fore,fandi, dataare mean + s.e.m. Details of
thestatistical analyses are provided in the Methods.

with calciumimaging was not an artifact of the decay of calcium tran-
sients.

Theneural activity patterns recorded with calciumimaging did not
correlate with the movements of the mice. From 2,611 recorded cellsin
five mice, only 32 cells (1.2 + 0.2%) showed asignificant correlation with
the limb movements of the mice (Methods and Extended Data Fig. 2d).

Late-delay M2 activity contains WM information

Assingle-neuronactivity patterns showed mixed selectivity, we exam-
ined whether population decoding techniques could better reveal WM
information content represented within the ensemble. We trained
alinear support vector machine (SVM) to decode the identity of the
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first odour from the deconvolved calcium signals of populations of
M2 neurons recorded when the animal performed at expert level.
When trained with data from all simultaneously recorded neurons,
the decoder could successfully decode the odour identity during the
odour period and the delay period. SVM decoders could also decode
the choice of the animals with high accuracy. To determine whether
asmallnumber of selective neurons is sufficient toencode the WM, we
investigated how the decoding accuracy changes with the number of
neurons used to train the network. We first used the data from the last
day of calciumimaging during which all five mice were performing the
task at expert level and ranked the selectivity of each recorded neuron.
We then trained the decoder using the top N% of the most selective
neurons,whereNe{l1,2,4, ..., 64,100}. We found that the accuracy of
decodingthefirst-odouridentity during the first-odour and late-delay
epochsand choice during the choice epochincreased with Nat differ-
entrates (Fig. 2e,f). The first-odour identity representation during
the late-delay epoch required a much higher number of neurons for
adequate decodingthanthefirst-odouridentity representation during
odour presentation, or the animal’s choice. In further support of this,
we performed ¢-distributed stochastic neighbour embedding (¢-SNE)
analysis of the mean activity of neurons to reduce the dimensionality
ofthe populationactivity during the first-odour, late-delay and choice
epochs. Thefirst two t-SNE dimensions were sufficient to disentangle
thetrialtype (whether odour A or Bwas presented during the first odour
presentation period) and choice during the first-odour and choice
epochs. However, the model could not cluster the trial types from the
activity of the late-delay epoch (Extended Data Fig. 3a), reaffirming
the notion that late-delay representations were high dimensional.
To confirm that the unsuccessful clustering of trial types during the
late-delay epoch did not result from the absence of WM representation
in the neuronal population activity, we applied SVM decoding to the
identical dataset. Asillustrated in Extended DataFig.3a, SVM decoding
successfully identified trial types during the late-delay epoch based on
neuronal population activity.

To eliminate the possibility that neuronal activity merely mirrored
mouse behaviour, we focused on a subset of neurons exhibiting selec-
tivity during the choice epoch—acrucial period for decision-makingin
the task. Using these choice-epoch-selective neurons, we attempted to
decode the identity of the first odour presented in the task. As shown
in Extended Data Fig. 3h, during the late-delay epoch, decoding the
first odour identity was not reliably achieved with up to 64% of the
choice-epochselective neurons. However, using all choice-epoch selec-
tive neurons (100%) significantly improved decoding performance
to 69 + 3%. This observation suggests that mixed selectivity probably
contributes to the decoding process during this epoch.

To determine the specificity of these results, we recorded the activ-
ity of M1 and M2, or RSA and M2 neurons simultaneously. We chose
the RSA because this regionis involved in cognitive tasks' and makes
monosynaptic connections with the M2 (ref.20). In expert animals, we
could decode the identity of the first odour during the delay period
fromthe activity ofthe M2 but not the M1 or RSA neurons; the addition
of M1 or RSA neurons to M2 neurons did notimprove the performance
of the decoder beyond what could be decoded from the M2 alone.
Even so, we could decode choice from the activity of all three regions
(Fig. 2g,h). Thus, successful decoding of odour identity during the
late-delay epoch was only possible in the M2.

To assess whether the linearity of the SVM decoder posed limita-
tions on decoding WM during the delay period, we used a nonlinear
long short-term memory (LSTM) recurrent neural network decoder
for analogous analyses. The performance of the LSTM decoder was
very similar to the SVM and did not enhance the decodability of WM
information during the delay period or choice during the reward period
(Extended Data Fig. 3i-1).

As another control, we conducted calcium imaging recordings
of M2 neurons in mice engaged in a go/no-go task that lacked a WM
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component (Fig.1h). The mice rapidly acquired proficiencyinthe task,
achieving high performance within a single session. We successfully
decoded the identity of the presented odour with a high degree of
accuracy (Extended Data Fig. 3b,c). In this task, because the animal
has to lick in response to one odour and withhold licking in response
to the other, the odour decoding is similar to choice decoding in the
delayed association WM task, in which choice decoding exhibited
ahighlevel of accuracy for asimilar duration of 3to 4 s subsequent to
theintroduction of the second odour.

To investigate late-delay activity when the initial odour lacks rel-
evance to the reward, we also conducted calcium imaging of M2 neu-
rons during a WM task with randomized reward contingencies. In
this task variant, the reward outcome was not tied to specific odour
sequences, and the mice could not discern precise odour combina-
tions associated with the reward. In response to this uncertainty, the
mice adopted astrategy of engaging in licking behaviour for all trials,
anticipating awater reward in approximately half of them. During the
odour presentation and early delay epochs, we could accurately decode
thefirstodour’sidentity from the first-odour epoch selective neurons.
However, the decoding accuracy progressively declined during the
late-delay epoch and beyond, reaching chance levels (Extended Data
Fig. 3d). We could not decode the identity of the first odour during
the first-odour or late-delay epochs when we used the activity of the
late-delay-epoch selective neurons. This decline in decoding accuracy
for the first odour can be attributed to the absence of WM represen-
tation during the late delay when reward outcomes lack a structured
relationship with presented stimuli. The absence of a reward struc-
ture prompted consistent licking behaviour in all trials and, notably,
we could decode whether the mouse received water (Extended Data
Fig.3d). The decoding accuracy diverged only after a delay following
the second odour, presumably once the animal internally processed
reward consumption.

Tofurther examine theimportance of the late-delay period activity,
we compared the accuracy of decoding the identity of the first odour
duringthelate-delay epochusing the activity of the neuronsin correct
and error trials. The decoding accuracy of the error trials during the
first-odour epoch was statistically indistinguishable from the correct
trials. However, the decoding accuracy during the late-delay period of
theerror trials wassignificantly lower and atchance (54.7 £ 5.2%,n=5)
compared with the decoding accuracy of the correct trials (78.5 + 4.5%;
Fig. 2i,j). Thus, population representations of the first odour during
the late-delay period are behaviourally relevant.

Late-delay selectivity emerges after learning

We followed the deconvolved calcium activity of the same population
of L2/3 M2 neurons over 10 days and examined the stability of WM
neural correlates throughout learning and expert behaviour (Fig. 3a,b).
From the first day of training, we observed neurons with significant
activity fields during different task epochs (Methods and Extended
DataFig.2a). Aneuronwas considered to have significant activity if the
distribution of its activity within a specificepoch was significantly dif-
ferent from the distribution of its circularly shuffled activity. In novice
mice,43.3 +3.1%,42.3 +£3.9%,52.0 £ 5.5% and 41.3 + 3.2% of neurons had
significantactivity fields during the first-odour, early-delay, late-delay
and choice epochs, respectively (n =4 mice). As the mice learned the
task, more neurons were recruited during all time epochs. In expert
mice, the proportion of neurons with significant activity fields dur-
ing first-odour, early-delay, late-delay and choice epochs increased
t058.5+3.7%, 68.5+2.5%, 61.3 + 6.0% and 54.3 + 2.5%, respectively
(Extended DataFig. 2a).

Asmicelearnedthe task, the proportion of neurons that fired selec-
tively toodour A or Bduring the first-odour, early-delay and late-delay
epochs, andlick or no-lick during choice epoch significantly increased
(Fig. 3b,c and Extended Data Fig. 2e). Importantly, odour-selective
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Fig.3|Volatilelate-delay epoch WMrepresentation. a, Example of the
same field of view over 10 days from one of the animals. Images of the other
mice looked similar. Scale bar,100 pm. b, z-scored activity of two example
neuronsover 10 days. ¢, The percentage of neurons (n = 4 mice) exhibiting
selective activity for the first odour during different task epochs (first odour,
P=0.023; early delay, P=0.022;late delay, P= 0.0002; choice, P=0.026).
Statistical analysis was performed using paired ¢-tests. d, Improvementin
first-odour decoding from M2 and M1 cortices as mice progress fromnovice
to expertstages.n=4mice.Decoding was performed using overlapping
neuronsonbothnovice and expert sessions. All recorded neurons were used
fordecoding. Novice, the animal’s performanceis less than 65%; expert, the
animal’s performance is 80% or greater. e, The z-scored activity of 290
neurons (n =4 mice) across naive, training and expert days, ordered by the
response magnitude of the expert day. During the first-odour, early-delay,
late-delay and choice epochs, 8.2 +5.2%, 6.9 +4.5%,0.2+ 0.2% and 1.0 + 0.7% of
neurons maintained their selectivity throughout all three stages, respectively.

firing during the late-delay epoch emerged only after the mice learned
the task.

In the RSA and M1, the proportion of selective neurons during the
first-odour, early-delay and late-delay epochs did not increase with
learning. However, the proportion of cells activated during the choice
epochincreasedintheexpert phaseinboth the Ml1and RSA (Extended
DataFig. 2j,k).

Todetermine whether individual neurons encode the association of
rewarded odours, we examined whether any neurons were selectively
activated by associated pairs of rewarded odours (odours Aand C, or
odours Band D). In novice mice, no cells demonstrated selectivity for
bothodours Aand C, orboth odours B and D. By contrast,among expert
mice, only 1.4 + 0.5% exhibited selectivity for both odours Aand C,
orbothodoursBandD. Consistent with the presence of these neurons,

f, Thez-scored activity of 289 neurons (n = 4 mice) across 3 days of expert
performance, ordered accordingto the response magnitude of the first day.
Duringthe first-odour, early-delay, late-delay and choice epochs, 3.9 +2.2%,
4.8+1.7%,1.0 + 0.7% and 10.3 + 4.9% of cells maintained their selectivity across
all 3 days, respectively. g, Decoding first-odour and choice across 7 days using
adaily-trained decoder (top) (n =4 expert mice). Bottom, quantification of
decodingaccuracy by task epoch; the dashed red lines represent shuffled data
accuracy. h, Similarto g, but the network, trained on day 7 (first subscript
value), was tested across all days (1-7; second subscript value). i, The decoding
accuracy for first odour and choice, trained and tested on all day pairs.j, The
average decodingaccuracies for early versus late days (n = 4 mice), showing
significant differences (first-odour and choice, P<0.0001; late delay, P= 0.12).
Statistical analysis was performed using unpaired t-tests. Ford, g and h, data
aremean = s.e.m. Details of the statistical analyses are provided in the
Methods.

wewere ableto traina decoder to discriminate between trial categories
(AC, AD, BCor BD) during the second odour using population activity
patterns (Extended Data Fig.3m).

Late-delay WM representation emerges after learning

To determine how WM population representations emerge with
learning, we used the activity of the same overlapping population of
neurons when the mouse was a novice and after it became an expert
in the task to train the network and decode for each day separately.
Innovice mice, the cross-validated first-odour identity decoding accu-
racy during the first-odour and late-delay epochs were at chance level.
Conversely, in expert animals, the accuracy of first-odour identity
decoding during the first-odour and late-delay epochs significantly
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increased to 80.3 + 5.3% and 73.0 + 4.2%, respectively (Fig. 3d).
To determine whether WM-related activity was specific to the M2 or
was present within other structures implicated in motor execution
or rule-based task performance®, we performed a similar analysis
inrecorded neurons in the M1. The decoder performed significantly
worse, withadecoding accuracy of near chance (53.6 + 2.4%) in novice
and 64.7 + 4.0% in expert mice during the first-odour epoch. During
thelate-delay epoch, the accuracy of decoding the first odour identity
from M1 neurons was near chance levels at both the novice and expert
stages of task performance (Fig. 3d).

Stabilization of activity patterns over days

Our analyses demonstrated gradual and pronounced changes in M2
neuronal responses across days (Fig. 3b). We quantified the specific-
ity of neurons for different parameters during different task epochs
at different learning stages (Extended Data Fig. 2e,f). Single neurons
either gained or lost responsiveness to a specific odorant and rarely
exhibited stable responses across sessions. First-odour information
during the late-delay epoch emerged as the animals became experts
intask performance. Critically, changesin the responses of individual
neurons were due to continual alterations in responses across sessions,
not to aglobal loss of responsiveness in the M2.

To understand how stable the WM representation was across days,
even after the animal became an expert, we tracked the activity of290
cells (n =4 mice) during the learning phase in naive, training and expert
mice (Methods). In total, 8.2 + 5.2% of tracked neurons maintained
their selectivity during the first-odour epoch throughout all three
stages (Fig. 3e). For the early-delay, late-delay and choice epochs,
6.9 £4.5%,0.2+0.2% and 1.0 + 0.7% neurons remained stable. During
the expert phase (Fig. 3f), we tracked the activity of 289 cells (n=4
mice) across three consecutive days; we found that only 3.9 + 2.2%,
4.8+1.7%,1.0 £ 0.7% and 10.3 + 4.9% of cells maintained their selectivity
duringfirst-odour, early-delay, late-delay and choice epochs across all
3 days, respectively. Thus, neurons with significant late-delay activity
were the least stable during the expert phase.

To determine whether population representations of L2/3 M2
activity were stable during the expert stage, we used same-day and
cross-day decoding approaches. At the population level, we deter-
mined whether decoders trained and tested on the same-day activity
of expertanimals could reliably predict the first odour and choice for
seven consecutive days using activity recorded fromL2/3 M2 neurons.
The decoding accuracy for all epochs was high and remained stable
acrossall 7 days (Fig. 3g). There were no significant changes in perfor-
mance, recorded neuron count or the percentage of neurons exhibit-
ing selectivity across imaging days for the analysed mice (Extended
DataFig.3e-g). To quantify the stability of network dynamics across
days, we tested whether the network that was trained to decode the
identity of the first odour or choice on the expert day seven could also
decode the first-odour identity or choice on the earlier days. For this
analysis, we used the activity of overlapping populations of neurons
on both days. If the same population of neurons shared a common
representation and dynamics across days, we would expect the decod-
ingaccuracytobeindependent of the day the decoder was tested. The
accuracy of decoding the first odour during the first-odour epoch
gradually declined over days but remained above chance (Fig. 3h).
The accuracy of choice decoding declined slowly, like that of odour
decoding during the first-odour epoch. By contrast, late-delay rep-
resentations drifted more rapidly to chance. To determine whether
stability emerged gradually during the expert performance period,
we conducted a similar analysis but trained on each of the 7 days and
compared the performance on the remaining 6 days (Fig. 3i). Our
null hypothesis assumed that the decoding stability remains the
same across all 7 days. To assess this, we used the cross-day decoding
accuracy statistic averaged across animals for late versus early days.
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The decoding accuracy of the identity of the first odour during the
first-odour epoch and choice during the choice epoch when decoders
were trained and tested on days 5-7 was significantly higher com-
pared withwhenthe training and testing were performed on days 1-3,
rejecting the null hypothesis (Fig. 3j). No such pattern was evident for
late-delay epoch decoding of the first odour. As asecondary measure,
we performed an additional statistical test by shuffling the day identi-
ties. If the decoders show no greater stability at later days compared
toearlier ones, our statistics should be similar to the one obtained by
shuffling day identities. However, we observed that thisis not true for
the first-odour and choice epochs. Consequently, the results of this
second test also rejected the null hypothesis that decoding stability
remains constant across all 7 days (Extended Data Fig. 2n). To deter-
mine whether this trend was stable across animals, we compared the
mean decoding accuracy within individual mice across first and last
2 day pairs (Extended Data Fig. 21). Decoding showed a statistically
significantimprovement during the choice epoch. Thus, as the mice
continue to perform the task (even as experts), their representations
forthe first odour and choice epochs stabilize, while representations
for the late delay seem to drift daily.

Emergence and crystallization of late-delay epoch WM
representation

As shown above, the activity of L2/3 neurons in expert animals dem-
onstrated considerable representational drift during the late-delay
epoch. We therefore examined whether this drift was layer specific,
and whether deeper layers hold aninvariant memory of representation
across days. To answer this question, we performed volumetric imag-
ing of tens of thousands of M2 neurons during the expert performance
to investigate whether the late-delay representation stabilizes with
continued practice.

Werecorded the activity of up to 73,307 M2 neurons simultaneously
in a volume of 2,000 x 2,000 x 450 pm? using light-bead microscopy
(LBM)?, while TRE-GCaMP6s* mice performed the task (Fig. 4a). LBM
uses two-photon excitation of axially separated and temporally delayed
excitation focitorecord from 30 axially separated voxels over 500 pm
within 200 ns. Lateral scanning and temporal demultiplexing of the
signal from this column of light beads results in 6.5 Hz recording of
neuronal activity within 30 imaging planes, each separated by 15 pm,
extending from superficial L2/3 to superficial L5. We examined the
dependence of decoding accuracy as a function of recording depth.
We divided the bottom 420 pm depth of our calcium imaging volume
intosevenintervals of 60 pum thickness each. We identified the recorded
neuronsinall sevenintervals and noted the layer with the fewest num-
ber of neurons recorded. We equalized the number of neurons analysed
for decoding by randomly selecting neurons to match the number of
neuronsrecordedinthislayer containing the fewest neurons. We then
calculated the accuracy of decoding the identity of the first odour or
choice during the first-odour, late-delay or choice epochs. The accu-
racy of thefirst-odour decoding during the first-odour epochinitially
increased with increasing depth and then decreased to an intermedi-
ate level (Fig. 4b). However, the accuracy of decoding the first odour
during the late-delay epoch increased monotonically with increasing
depth. The accuracy of decoding choice during the choice epoch was
uniformly high at all depths. There was therefore anincrease in infor-
mation about the first odour during the late-delay periodinthe deeper
cortical neurons imaged.

Todetermine whetherindividual neurons encode the association of
rewarded odours, we examined whether any neurons were selectively
activated by associated pairs of rewarded odours (odours Aand C,
or odours B and D). In expert mice, only 1.2 + 0.5% of neurons exhib-
ited selectivity for both odours A and C, or both odours B and D. The
sequences of these cell activities during AC and BD trials, sorted on
thebasis of their activity inboth trial types and vice versa, revealed the
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Fig.4|Thestability of late-delay epoch representation. a, Schematic of
LBM (left). Apump pulseis splitinto 30 light beads, each delayed (At=7ns,
where Atrepresents the time delay between excitation foci) and focused at
different sample depths, enabling full-volume sampling at the microscope’s
framerate. Topright,a3Drendering of neuron locations across 30 planes.
Bottom middle, the activity of 36,471 neurons during A-odour or B-odour trials,
sorted by response and shown over 60 min. Bottomright, a 60 min raster of
these neurons, highlighting AF/F activity for selected neurons. Scale bar,
500 pm. b, Theaccuracy of decoding the first odour and choice during the
first-odour, late-delay and choice epochs using the activity of neurons at
differentdepths.n=4mice.c, The performance of the mouse during the

10 days of calciumimaging. Mice (n = 4) were performing atexpert level from
the first day of imaging. d, Example field of view showing 1 out of the 30 planes

presence of numerous cells with mixed selectivity for Aand B odours
or Cand D odours. Importantly, the sequences differed between the
two trial types, underscoring that neurons convey content-specific
information during the delay period. While some neurons exhibited a
strong correlationin activity during the AC and BD trials, most did not
show asignificant correlation. Particularly, the correlation was weakest
atthe pointatwhichthe delay period sequence was formed, indicating
greater dissimilarity in activity during the delay period across different
trial types (Extended Data Fig. 2p).

We wondered whether continued practice refines the WM repre-
sentation of the first odour, pushing the neuronal activity to a sin-
gle attractor, stable across days. To investigate this, we followed the
deconvolved calcium activity of the same population of neurons over

withthe same constellation of neurons across multipleimaging days. e, Decoding
firstodour and choice over 10 days with a daily-trained decoder, using up to
73,307 neurons across 30 planes and 450 pm depth (top) (n = 4 mice). Bottom,
quantification of accuracy by epoch; the dashed lines indicate shuffled data
decoding. f, Similar to e, with the decoder trained on day 10 and tested across
days1-10.g, The decoding accuracy for first odour during first-odour and
late-delay epochs, and choice accuracy during the choice epoch. n =4 mice.

h, The average across-day decoding accuracies for early versus late days
(n=4mice),as depictedinthe off-diagonal terms of Fig. 4g, with significant
improvements (first-odour and late-delay, P < 0.0001; choice, P=0.0003).
Statistical analysis was performed using unpaired t-tests. Forb, ¢, e and f, data
aremean t s.e.m. Details of the statistical analyses are provided in the
Methods.

10 days of expert performance (Fig. 4c,d) and examined the stabil-
ity of WM neural correlates throughout expert behaviour. We took
great care to match the identity of neurons recorded with volumetric
imaging across days, matching up to 47,384 neurons across days.
Consistent with our earlier results, when the decoder was trained and
tested on the activity from the same day of recording, the identity
of the first odour could be decoded with high accuracy during the
first-odour and late-delay periods, and choice could be decoded with
very high accuracy during the choice epoch (Fig. 4e). Also consist-
ent with our earlier results, the identity of the first odour and choice
couldbe decoded withrelatively high accuracy when the decoder was
trained on the activity of day 10 (the final day of imaging) and tested
on previous days of imaging, with the decoding accuracy declining
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withanincreasing number of days between training and testing days;
this indicated the emergence of a stable representation during the
final imaging days (Fig. 4f,g). However, in contrast to our previous
results using single plane L2/3 imaging, the performance of decoders
in predicting the first odour during the late-delay epoch was higher
when trained and tested on days 6-10 of imaging compared with when
trained and tested on days 1-5 of imaging (Fig. 4g,h). We conducted an
additional statistical test by shuffling the day identities. If decoding
stability is not higher in the later days compared to earlier ones, our
results should resemble those obtained by randomly shuffling day
identities. However, we observed that this is not the case for any of
thethree epochs. Consequently, our second test also rejected the null
hypothesis, indicating that decoding stability does not remain con-
stant across all 10 days (Extended Data Fig. 2m). Moreover, to exam-
ine whether this trend holds across different animals, we compared
the mean decoding accuracy within individual animals for the first
and last 3 days pairs (Extended Data Fig. 20). The decoding accuracy
demonstrated a statistically significantimprovement during all three
epochs. Inotherwords, during the first 5 days of expert performance,
the decoder trained on the activity on any day’s imaging could not
decodetheidentity of the first odour during the late-delay epoch on
any other day. However, as the mouse kept practicing the task, during
days 6-10 of expert performance, the decoder trained on the activity
of neurons during any of these later days could accurately decode
the identity of the first odour during the late-delay epoch. Thus, in
addition to the stabilization of activity during the first-odour and
choice epochs, volumetric imaging demonstrated stabilization of
the WM representation with continued practice during the late-delay
epoch. The stabilization was uniform throughout theimaged volume
(Extended Data Fig. 4).

Discussion

Tracking M2 neuron activity over 10 days revealed that late-delay WM
representations, which are crucial for task performance, initially fluctu-
ate in early expert stages but stabilize with continued practice in the
late expert phase.

M2 neuron activity strongly encoded odour identity in the early task
stages without affecting behaviour when disrupted. This suggests that
early-stage activity does not drive persistent attractors within the M2.
The sensitivity to disruption emerges in late-delay and choice epochs,
indicating that late-delay activity probably depends on interactions
with regions projecting to the M2. This allows for recovery and rea-
lignment to the attractor state by the late-delay period despite early
disruptions.

Inhibiting M2 neurons during late delay in training animals did not
impair rule learning, suggesting that task learning occurs upstream of
the secondary motor cortex. Alternatively, neural redundancy might
explain this, whereby inhibiting one area could be compensated by
other regions or pathways that are involved in the task.

Our study extends previous research performed in the premotor cor-
tex during motor preparation and WM tasks. It was previously shown
thatactivity in the premotor anterior lateral motor cortex during the
first-odour and delay periods was important for task performance®.
Differencesin findings between our study and theirs may arise owing
to differencesindelay duration (1.5 s versus 5 s for our study) and dif-
ferences inrecording location (anterior lateral motor cortex versus
M2 in our study). Chronic recordings from the same population of
neuronsover days to weeks have enabled investigators to track whether
apopulation of neurons in cortical or hippocampal regions encodes
sensory, motor or cognitive variables in a stable manner or whether
these distributions drift over time***. In general, while there was vari-
ability in the engagementor selectivity of individual neuron firing rates
from day to day (but see refs. 32-35 for highly stable reactivation), in
most cases, reliable cross-day population decoding of sensory and
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cognitive variables was still possible for several days up to several
weeks??830%¢_In contrast to these findings, for late-delay decoding,
we saw the emergence of successful cross-day decoding only after
several days of performance of the task in mice already performing
the task at high accuracy levels. This reassignment of neurons par-
ticipating in late-delay activity from day to day during learning and
early expert performance periods may allow more rapid erasure of
the WM sketchpad and may be necessary for increasing WM capacity
for the large number of stimuli encountered in the world. It may also
allow more flexibility for adapting to new decision-making rules as
WM representations are recruited for driving distinct actions in dif-
ferent contexts. Future studies will dissect plasticity processes that
drive dynamic learning-related activity patterns that stabilize with
continued practice.
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Methods

Mice

All of the experiments were conducted according to the National
Institute of Health (NIH) guidelines and with the approval of the Chan-
cellor’s Animal Research Committee of the University of California,
Los Angeles. Experiments were performed with 8-15-week-old adult
male and female C57BL/6J (Jackson Laboratory, 000664), C57BL/6)-Tg
(Thyl-GCaMPé6s), GP4.12Dkim/J (Jackson Laboratory, 025776) and
B6;DBA-Tg(tetO-GCaMP6s)2Niell/] (Jackson Laboratory, 024742) mice
crossed with B6.Cg-Tg(Camk2a-tTA)IMmay/DboJ (Jackson Labora-
tory, 007004) mice. Mice were kept in the vivariumundera12h-12h
light-dark cycle.

Viruses

For optogenetic experiments, CaMKIla-driven soma-targeted anion-
conducting channelrhodopsin fused to FusionRed (pAAV-CKIlla-
stGtACR2-FusionRed, Addgene, 105669; titre, 1 x 10™ viral genomes
per ml) was used to express GtACR2 in the soma of excitatory neurons.
For control experiments, we used pAAV-CaMKlla-mCherry (Addgene,
114469; titre, 7 x 10" viral genomes per ml) or pAAV-CaMKIla-EGFP
(Addgene 50469; titre, 7 x 10” viral genomes per ml).

Head-bar and cranial window implantation

Adult 8-to-12-week-old male and female C57BL/6)-Tg (Thyl-GCaMPé6s)
GP4.12Dkim/) mice were anaesthetized with isoflurane (5% for induc-
tion,1-2% (v/v) for maintenance). The depth of anaesthesia was moni-
tored continuously and adjusted when necessary. After induction of
anaesthesia, the mice were fitted into a stereotaxic frame (Kopf), with
their heads secured by blunt ear bars and their noses placed into an
anaesthesia and ventilation system (David Kopf Instruments). Body
temperature was keptat 37 °C with afeedback-controlled heating pad
(Harvard Apparatus). Mice were administered 0.05 ml lidocaine (2%;
Akorn) subcutaneously as alocal anaesthetic before surgery. The sur-
gical incision site was cleaned three times with 10% povidone-iodine
and 70% ethanol. After removing the scalp and clearing the skull of
connective tissues, a custom-made lightweight metal head-bar was
fixed onto the skull with cyanoacrylate adhesive and covered with black
dental cement (Ortho-Jet). Acircular craniotomy (diameter, 5 mm) was
performed above the secondary motor cortex (centred at 1.94 mm
anterior from bregma or centred at bregma for M2/RSA imaging).
A cranial glass window consisting of a5 mm diameter round #1 coverslip
(Warner Instruments) wasimplanted in the craniotomy, flush with the
skull surface and sealed in place using tissue adhesive (Vetbond). The
exposed skull surrounding the cranial window was then completely
covered with black dental cement to build asmall chamber forimaging
withawater-immersion objective. After surgery, the mice wereinjected
with carprofen (5 mg per kg of body weight) and allowed to recover
overnightin cages placed on alow-voltage heating pad. Carprofen was
administered once per day for up to 2 days after surgery. Amoxicillin
antibiotic (0.25 mg ml™) was dispensed in the drinking water for 7 days.
Animals were returned to the vivarium for 1-2 weeks for recovery before
undergoing imaging experiments.

AAVinjection and fibre optic cannulaimplantation

Adult 8-to-12-week-old male and female C57BL/6) mice were anaesthe-
tized with isoflurane (5% for induction, 1-2% (v/v) for maintenance).
Skin incisions were made, followed by craniotomies 1 mm in diam-
eter above the secondary motor cortex (centred at 1.94 mm anterior
to bregma and 0.5 mm lateral to the midline) using a small steel burr
(Fine Science Tools) powered by a high-speed drill. Saline (0.9%) was
applied to the skull to reduce heating caused by drilling. Bilateral viral
injections were performed by using stereotaxic apparatus (David Kopf
Instruments) to guide the placement of bevelled glass pipettes with a
tip diameter of about 50 pum (World Precision Instruments) into the

secondary motor cortex (1.94 mm anterior to bregma, 0.5 mm lateral
to the midline and 0.3 mm from the pial surface). Using the Nanoject
Il micro-injector (Drummond Scientific), 300 nl of 1:100 PBS-diluted
AAV wasbilaterally injected using asyringe pump. Glass pipettes were
leftin place for at least 10 min after virus injection.

Aferrule-terminated optical fibre (Thorlabs) was placed above the
injected site. The fibre tip was aimed to terminate at the pial surface.
The optical fibre was secured to the skull using cyanoacrylate adhesive
and black dental cement (Ortho-Jet). After surgery, the mice were left
overnight in cages placed on a low-voltage heating pad. Mice were
allowed to recover for 2-3 weeks before the experiments. The locations
ofinjections and implanted optical fibres were validated histologically
for all experimental mice.

Behavioural training

After recovery fromsurgery, mice were handled and water-restricted
t085-90% of their original weight. The mice were subsequently habitu-
ated to head fixation, airflow and water port for two sessions (one ses-
sion per day). During the two shaping days, the mice were presented
only with the combination of the odours (A, 1-pentanol; B, butyl for-
mate; C, 3-methyl-2-buten-1-ol; and D, ethyl acetate; Sigma Aldrich,
138975, 261521, 162353 and 270989) that led to reward (AC and BD
trials) and water was automatically delivered. After 2 days of shaping,
the mice were trained to perform the complete delayed-association
WM task. The lick port was connected to a touch sensor, and mouse
tongues had to touch the lick port at least once to receive a water
reward. Each training session consisted of 150 to 250 trials. Odour
combinations were presented in arandom order. Responses were
assessed based on mouse licking during the choice window. If any
licks occurred during the choice window, the trial was considered to
be a hit for AC and BD trials or false alarm for AD and BC trials. If no
licking occurred during the choice window, the trial was considered
to be a miss for AC and BD trials or correct rejection for AD and BC
trials. Mice were not punished for miss or false alarm trials. A training
sessionwas aborted early if amouse had more than three misses within
the mostrecent tentrials, indicating the animal’s lack of motivationto
obtain the water reward. Performance was quantified as the number
of hitsand correct rejections over the total number of completed tri-
als. The airflow and odour delivery were frequently monitored using
an Aurora Scientific photo-ionization detector at the beginning of
each training session.

In vivo calciumimaging
Two-photonlaser-scanning microscopy was conducted using the Thor-
labs multiphoton mesoscope using a 12 kHz resonant scanner with a
water-immersion objective with 0.6 excitationNA, 1.0 collection NA and
2.7 mm working distance. The excitation laser was a 920 nm Tiberius
Ti:Sapphire Femtosecond Laser, and the laser intensity was 30-80 mW
atthe sample.Images were acquired using the Scanlmage software (Vid-
rio Technologies). Fully awake mice were mountedin a2-inch-diameter
transparent tube by securingits head bar onto a custom-made head-bar
holder under the microscope. 600 px x 1,200 px to 600 px x 2,500 px
images were acquired at 8-17 Hz at 150-250 pum depth. To track the
mouse movement, acameramounted underneath the animalacquired
the paw location of the animals at 30 Hz. The locomotion data were
acquired simultaneously with the calcium imaging data and synchro-
nized with the scanning mirror signals. The microscope and behav-
ioural set-up were encasedinalight-tight box, and the mice were kept
in darkness during the imaging sessions. We performed online image
processing at the beginning of every sessionto align cells across days.
We tried to maximize the correlation between the moving average of
frames of the current field of view and the average of frames of the
previous sessions.

Two-photon LBM was conducted using a custom-built microscope
equipped witha960 nm, 4.89 MHz repetitionrate optical parametric



chirped-pulse amplification (OPCPA) pumped by an ytterbium laser at
1,030 nm with 80 W power, delivering a 2 pJ pulse energy and a 90 fs
pulse width. The LBM featured a rapid 12 kHz resonant scanner and
was paired with a 0.6 excitation NA, 1.0 emission water-immersion
objective lens with a 2.7 mm working distance. The LBM technique
divided asingle pulseinto 30 distinct subpulses of varying intensities,
targeting 30 separate depths of the specimen separated by 15 um, yet
eliciting a consistent level of fluorescence across these layers®. In our
initial LBM experiments, we successfully recorded aregion measuring
1,450 x 1,825 x 450 pm?*atafrequency of 7.95 Hzin two mice. Subsequent
experiments extended the recorded areat02,000 x 2,000 x 450 pm?,
recorded at 6.45 Hz, in another two animals.

Optogenetics
Optical stimulation was applied through a ferrule-terminated 200 pm
coreand 0.39 NA optical fibre (Thorlabs) attached to the 200 pm core
and 0.39 NA patch cable using a1.25 mm ceramic mating sleeve (Thor-
labs). We used a blue-fibre-coupled light emission diode (1 =470 nm,
Thorlabs, M470F3). The light was delivered at 20 Hz with a 0.4 duty
cycleatanirradiance of 10 mW mm2at the output tip of the fibre.
Optogenetic experiments commenced only when the animals
achieved abehavioural performance threshold exceeding 90% accuracy
foratleast three consecutive sessions. This criterion ensured that the
animals were well-trained and proficientinreliably executing the behav-
ioural tasks before the introduction of optogenetic manipulations.

Electrophysiology

Forin-vivoelectrophysiology recordings, expert mice were anaesthe-
tized with isoflurane (5% for induction, 1-2% (v/v) for maintenance).
They underwent a2 mm craniotomy (centred at .94 mm anterior
to bregma and 0.5 mm lateral to the midline) and silver wire ground
(Warner Instruments) implantation surgery over the cerebellum
1daybeforerecording. The ground wire was fixed in place with dental
cement. The exposed skull was covered with Kwik-Sil, and the mouse
was allowed to recover overnight. On the day of the recording, the
mice were head-fixed into atube, the Kwik-Sil covering the craniotomy
wasremoved and replaced with buffered artificial cerebrospinal fluid,
and the mouse was aligned to the micromanipulator. A 128-channel
silicon microprobe® was slowly lowered using a micromanipulator
into M2, and the surface of the exposed brain was covered with mineral
oil. The process was monitored using a surgical microscope (Zeiss,
STEMI 2000). The microprobe contained 128 channels that were
densely distributed (honeycomb layout with 20 pm spacing between
nearest-neighbour channels) on two shanks (placed 0.4 mm apart).
Afterinsertion, the microprobe was allowed to settle for at least 30 min
before the recording began and continued for the entire duration of
the session. Theelectrophysiological and behavioural data acquisitions
were synchronously performed using custom MATLAB software while
the mouse performed the task. The probe readout was achieved using
adetachable head stage module (Intan Technologies RHD 128). Head
stages contained commercial integrated electronic circuits (Intan
Technologies RHD 2000 USBinterface board) providing amultiplexed
signal recorded with open source software (Intan Technologies) at
25 kHz per channel.

Histology

Atthe end of experiments, the mice were deeply anaesthetized under
isoflurane and transcardially perfused with 40 ml 1x PBS followed
by 40 ml 4% paraformaldehyde in 1x PBS at a rate of approximately
4 ml min~.. After perfusion, the brains were rapidly extracted and
post-fixed in 4% paraformaldehyde. Coronal sections (thickness,
100 pum) were collected using a vibratome. The sections were mounted
onto glass slides. The slides were then cover-slipped with mounting
medium DAPI. Images were acquired using the Leica DM6 B micro-
scope.

Quantification and statistical analysis

Calciumimaging data processing, including motion correction, seg-
mentation, fluorescence signal extraction and deconvolution, was
performed using the Python implementation of Suite2P*. Before
segmentation, we performed several steps to enhance image quality,
including noise reduction, background subtractionand image registra-
tion to correct for tissue movement. We validated our segmentation
results by comparing the automated segmentation to manually anno-
tated ground truth data. Adjustments to parameters and algorithms
were done to achieve optimal results. We used the deconvolved signal
for all our analyses. Silicon probe data processing and spike sorting
were performed using custom code, KiloSort* and Phy*°.

Tovisualize the calcium activity of individual neurons, we computed
aperistimulus time histogram averaged across all trials for all four com-
binations of odours, smoothed using amoving average over a400 ms
window. To generate response maps for each neuron, we subtracted
its mean spontaneous baseline calcium activity across all trials on
agivenday during the baseline epoch (5 sbefore the first-odour onset).
Wedivideditby thes.d. of calciumactivity during the baseline epoch.
Thus, the response maps show changes in calcium activity in units of
thes.d. of spontaneousactivity. This method was used for visualization
purposes only. Unless stated otherwise, all statistical analyses were
performed on unsmoothed, deconvolved calcium activity without
baseline calcium activity subtracted.

Aneuronwas considered to have asignificant activity field during a
specifictime epochifits activity within that epoch significantly differed
fromthe distribution of its1,000 times circularly shuffled mean activity.

The first-odour selectivity of a neuron was assessed by comparing
the distribution of its mean deconvolved calcium activity over a time
epoch for A and B odour trials using the Wilcoxon rank-sum test with
a confidence interval of 99%. A neuron was considered to be purely
selectiveifitexhibited selectivity for a specific odour or choice during
aspecific epoch and did not show selectivity for any other parameter
atany other time. Conversely, a neuron was considered to be mixed
selective if it showed selectivity for more than one odour or choice at
different epochs.

We considered an animal naive, training or expert if its behavioural
performance (p) was, respectively, p < 65%, 65% < p < 80% or p > 80%.
An animal was considered a novice during the first training day.

To determine whether aneuron’sresponse was related to the animals’
motoractivity, we used DeepLabCut* to find the position of the animals’
paws from which we extracted the animals’movements. We calculated
the correlation coefficient between the activity of each neuronand the
unshuffled and 1,000 times circularly shuffled locomotion activity.
Aneuronwas considered to be significantly correlated if'its correlation
coefficient was at least 2 s.d. away from the mean value of the correla-
tion coefficients of shuffled distribution.

We assessed the WM information content in a population activity
of neurons by measuring the classification performance using a SVM
with alinear kernel. We implemented the SVM binary classification
in MATLAB and performed the computations on high-performance
computing clusters using thousands of computing nodes. We used
the activity of neuronsin 500 ms time bins to train a decoder on 90% of
randomly chosen trials and tested its accuracy on the 10% of the trials
that were withheld. To ensure our model was not biased or overfit to
specific data patterns, we repeated the classification measurements
atleast 32 times with different sets of randomly chosen trials. We then
calculated the average of all measurements. This approachintroduces
randomness and helps to ensure that the decoding results are not a
product of amodel memorizing specificinstances. Decoding accuracy
and its standard error were then found by averaging the prediction
accuracy of the decoder across all mice.

Foracross-day classification, we used the activity of the overlapping
neurons forour analyses. We trained amodel onall trials on one day and
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tested that model’s predictions on all trials on another day. To assess
statistical significance and determine whether decoding performance
surpasses chance, we randomized trial types by assigning random
labels to each trial.

For the LSTM decoding analyses, we configured the recurrent neural
network architecture so that the dimensions of the input layer were
aligned with the number of neurons recorded in the pertinent dataset.
The network comprised 128 hidden units followed by a linear layer to
compute logits for a softmax classifier using cross-entropy loss. The
weights and biases within the LSTM layers during the training phase
were optimized using the adaptive moment estimation (Adam) opti-
mizer. LSTMs were trained for 100 epochs (passes through the training
set). For the decoding process, temporal data granularity was 500 ms.
Traininginvolved 90% of randomly selected trials, with the remaining
10% reserved for testing. Analogous to the SVM decoding procedure,
the LSTM classification was iterated at least 32 times using distinct
randomly chosen trial subsets. The resultant metrics were then aver-
aged over the 32 samples. Furthermore, we performed trial shuffling
to mitigate potential biases and ensure the robustness of the LSTM
model’s performance assessment.

Tofind overlapping neurons across sessions, we used co-registration
of spatial cell footprints using CellReg*. Neurons were modelled with a
maximal centroid distance of 10 um. Final registration used the proba-
bilistic model with a threshold of more than 95% probability of cells
being the same for all mice. We used these parameters to ensure the
accuracy of matching cells.

We used t-SNE* to embed the high-dimensional neuronal activity
into two dimensions. We calculated the time-averaged calciumactivity
of neurons during a specific epoch and found the pairwise distances
between the high-dimensional points for each trial. For each point,
we calculated as.d. so that the perplexity of each data point matched
apredefinedvalue.Starting fromaninitial set of low-dimensional points,
we iteratively updated the points to minimize the Kullback-Leibler
divergence between a Gaussian distribution in the high-dimensional
space and a t-distribution in the low-dimensional space.

Statistics and reproducibility

Allstatistical analyses were conducted using Prism (GraphPad), MAT-
LAB (MathWorks) or Python. Statistical tests used in this study include
Wilcoxon rank-sum tests and paired ¢-tests. The significance threshold
was heldata = 0.05; NS, not significant (P> 0.05);*P< 0.05,**P< 0.01,
P < 0.001,***P< 0.0001. Allbehavioural,imaging and optogenetics
experiments were replicated in multiple animals. Sample sizes were
not predetermined using statistical methods.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Extended DataFig.1|Behavioural and physiological responsesinmice
undergoingtasklearningand optogenetic manipulation. (a) Performance
of the animals while they learned the task over eight days assessed with
discriminability index (D’). (b) Normalized licking distribution of novice and
expertmice duringthe 20 second trial period. (c) Odour intensity measured by
photoionization detector (PID). (d) Effect of airflow (left), delay period duration
(middle), and odour concentration (right) on animal’s task performance.
(e) Licking distribution for different trial typesin expert animals. (f) Schematic
from Paxinos and Franklin**illustrating the muscimolinjection targetand a
histological section after the fluorescent dye (Dil) injection marking the
injectionlocation. (g) Muscimol’simpact onexpert mice’s performance and
licking, indicating significant performance disruption (paired t-test; 95% CI;
performance p=0.0001; licking p = 0.159). Mice received muscimol or saline
randomly across consecutive sessions. Each colour indicates one mouse with
two mice being experimented with twice. (h) Schematics and effect of muscimol
inhibition on mice inanon-working memory task. (i) Schematic from Paxinos
and Franklin**illustrating the injection target and a histological section after
the stGtACR2 showinginjectionlocalization. (j) Blue lightillumination silences
stGtACR2-expressing neurons, as demonstrated by aneuron’s activity raster
plotandits averaged firing rates during photostimulation, alongside the
collective activity of 20 recorded units before, during, and after inhibition,
showingsignificant changes (paired t-test; before-during p = 0.026; during-after

Session

p=0.020; before-after p=0.235). Theright panel is another example of the
effect of blue light on modulating the activity of stGtACR2-expressing neurons
showing the activity of102 electrophysiologically recorded units before,
during, and after photoinhibition (paired t-test; before-during p=1.28 x107;
during-after p=1.01x10"%; before-after p = 0.70). (k) lllustration of bilateral
optogenetic setup and histology showing stGtACR2-expressing neurons.

(I) Optogeneticinhibition during different task epochs reduces expert mice’s
task performance (paired t-tests: delay 4, p = 0.0088; delay 5, p = 0.005;
second odour, p=0.0004; choicel, p<0.0001). (m) Effect of blue light on the
performance (top) and licking (bottom) of expert mice expressing EGFP. The
plottitlesindicatethe epochsat which theillumination was done. Each colour
indicates one mouse. (n) Normalized pupil diameter for various trial types in
threedistinct animals exhibiting expert-level performance. (o) Normalized paw
positionacross different trial typesin three distinct animals demonstrating
expert-level performance. (p) Distribution of forelimb speed in three individual
expertanimalsacross various odour combinations and temporal segments.
(q) Photoinhibition of the M2 during the last 2seconds of the delay period
across the first 7 days of training impairs task performance. Performances are
calculated over twenty-trial blocksineach session (n=4 stGtACR2-expressing
mice; n=4 mCherry-expressing mice). (a), (b), (d), (e), (g)-(j), ()-(0),and (q)
Mean ts.e.m.*p<0.05, **p<0.01, ***p<0.001, ****p< 0.0001, ns, not significant.
See Methods for details of statistical analyses.
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Extended DataFig.2|Neural selectivity and activity dynamicsin mice
performing adelayed-association WM task. (a) Percentage of cells with
significant activity field during different task epochs. (n =4 mice; paired ¢-
tests; firstodour, p = 0.050; early-delay, p = 0.011; late-delay, p = 0.351; choice,
p=0.085). (b) Selectivity distribution during different task epochs. Shades
denote the significantly selective cells. (c) Percentage of selective cells
overlapping during different task epochs. (d) Distribution of correlation
coefficient between animal’s body movement and calciumactivity of 2611
neurons (n=5expert mice) with mean correlation value of 0.007 + 0.003.

(e) Evolution of selective cells during different task epochs over different
learning stages. The numbers denote percentages. Radius of the circles and
theline thicknessesare properly scaled. (f) Similar to (e) but for expert animals
over three consecutive days. (g) Electrophysiology recording of four example
M2 neurons. (h) Proportion of late-delay neurons that are active in novice and
expertanimals (paired t-test). (i) Percentage of trials with active delay cells in
novice and expertanimals (paired t-test). Note that novice animals exhibit a
significantly lower proportion of delay cell activity compared to experts as
shownin (h). (j) Percentages of selective neurons during the first-odour
(p=0.11), early-delay (p = 0.2), late-delay (p = 0.51), and choice (p = 0.13) epochs
inMlamongnovice and expert mice, with statistical analyses conducted using
paired t-tests. (k) Proportions of selective neurons in the first-odour (p = 0.18),
early-delay (p = 0.63), late-delay (p = 0.59), and choice (p = 0.09) epochs within
the RSA of both novice and expert mice. Statistical analyses were conducted
using paired t-tests. (I) Average across-day decoding accuracy for individual

animalsintheearly (first two days) and late (last two days) expert phase of task
performance (paired t-tests) in the first-odour (p = 0.11), late-delay (p = 0.06),
and choice (p = 0.04) epochs, extracted from Fig. 3i. (m) Similar to (1), but with
corresponding p-values of 0.05,0.03,and 0.02 for the first-odour, late-delay,
and choice epochs, respectively, extracted from Fig. 4g. (n) Distribution of
differenceinthe mean decodingaccuracies whenshuffling day identities. The
red dashedlinerepresents the mean changeindecoding accuracy betweenthe
last three and first three days without shuffling. The p-value (z-test) suggests a
significant differencein decoding accuracy for the first-odour and choice
epochsbutnot for the late-delay epoch. Thisindicates that representations
for the first-odour and choice epochs stabilize, while those for the late delay
appear todrift daily. (o) Similar to (n), but using LBM data and the difference in
decodingaccuracies between the first and last five days. The p-valueindicates
asignificant differencein decoding accuracy for all three epochs, suggesting
that representations for the late-delay epoch also stabilize as mice continue
practicing the task. (p) Z-scored activity of neurons exhibiting selectivity for
Aand CorBandD,sorted by their activity during AC and BD trials, and vice
versa. Theright panelillustrates the correlation coefficient of the neurons’
activity whensorted by AC or BD trials. Neuron activity was temporally
shuffled 10,000 times to determine the significance of actual correlations
against the distribution. Red markers indicate the 95th percentile. *p< 0.05,
**p<0.01,**p<0.001, ***p< 0.0001, ns, not significant. See Methods for
details of statistical analyses.
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Extended DataFig. 3 |Decoding neuronal representations of the first-
odouridentity and choice across different task epochs. (a) Visualization
ofthefirst odour identity and choice during different task epochs using
t-distributed stochastic neighbour embedding (t-SNE), in an expert animal
performingat92%. The decoding accuracy of the SVM decoder, presented in
theright panel, illustrates the presence of working memoryinformationin the
neuronal populationactivity during the late-delay epoch for the same dataset.
(b) Decoding accuracy for odour identificationin the go/no-go task, devoid of
aworking memory component (n=3 mice). (c) Distribution of the animal’s
licking behaviour during the go/no-go task (n=3 mice). (d) Left panel: Decoding
accuracy for the first odour in normal and confusion tasks with randomized
reward contingencies, using N% of the top selective neurons during first-odour
and late-delay epochs. Notably, in the confusion task, decoding accuracy
duringthelate-delay epoch approaches chancelevel (n=3 mice). Right panel:
Evaluation of choice decoding in both normal and confusion tasks using
theactivity of all neurons. Shuffled data pertains to the confusion task.

(e) Behavioural performance of mice at expert proficiency levels, featuring the
identical mice analysedin Fig.3g-j (p = 0.25; one-way ANOVA). (f) Number of
imaged neurons for eachimaging day, showcasing the same mice examinedin
Fig.3g-j (p=0.25; one-way ANOVA). (g) Percentage of neurons exhibiting

selectivity in each time epoch on every imaging day, featuring the identical
mice analysed in Fig.3g-j (first-odour epoch p = 0.69, late-delay epoch p = 0.46,
choiceepoch p=0.34; one-way ANOVA). (h) Decoding accuracy for the first
odour using N% of choice epoch’s most selective neurons. (i) Decoding
accuracyin predicting theinitial odouridentity and choice based on the
separate and combined activity of M1and M2 neurons using a non-linear Long
Short-term Memory (LSTM) recurrent neural network decoder. Equal numbers
of Mland M2 neurons are employed in the decoding process to ensure a fair
comparison. (j) Similar to (i), but using simultaneous recordings of the
retrosplenial and secondary motor cortices. (k) Decoding accuracy for the first
odour (left two) or choice (right) using N% of selective neurons during the first-
odour (left), late-delay (middle), or choice (right) epochs. The analysis is
performed with anon-linear LSTM decoder using theidentical datafromn=35
mice performing atexpert level showcased in Fig. 2e. (I) Maximum decoding
accuracy during the first-odour, late-delay, or choice epochs using N% of each
epochselective neurons. Dashed lines represent decoding from shuffled data.
(m) Trial category prediction accuracy (AC, AD, BC, BD; n=5mice). Chance
level, represented by the red trace, is 25% due to the four possible categories.
(a)-(m), Mean +s.e.m.
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(a) Accuracy of decoding the first odour identity during the first-odour (left
column) and late-delay (middle column) epoch using neurons at different
depths. Theright columnis the accuracy of decoding choice during the choice
epoch. (b) Mean decoding (n=4) accuracy obtained by training the decoder on
datafromaspecific depth on one of the five days (1-5 or 6-10), followed by
testing the decoder onthe data of the same depth from the remaining four
days. Each data point represents the outcome of one of the 20 permutations
(one-way ANOVA; first-odour epoch, p < 0.0001; late-delay epoch, p <0.0001;
choiceepoch, p<0.0001).*p<0.05,**p< 0.01, **p< 0.001, ***p< 0.0001, ns,
notsignificant. See Methods for details of statistical analyses.
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bead microscope that is previously published (Demas et. al. 2021, Nature Methods). Behavioral data were collected using National
Instruments data acquisition device. Electrophysiological data were collected using commercially available Intan Technologies headstage and
circuit board.

Data analysis Calcium imaging data processing was performed using the Suite2P (https://github.com/Mouseland/suite2p), NoRMCorre (https://
github.com/flatironinstitute/NoRMCorre) and CellReg (https://github.com/zivlab/CellReg). Electrophysiology data was performed using
KiloSort 2.5 (https://github.com/Mouseland/Kilosort) and Phy2 (https://github.com/cortex-lab/phy). Confocal images were analyzed using
ImageJ 1.53q. Analysis codes (https://github.com/bellafard/DAT-Decoding) were written in MATLAB (R2019b, MathWorks). Statistical analyses
were performed using Prism (v10, GraphPad).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

120 Y210




Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All essential data for understanding the conclusions of the manuscript are presented in the main text and in Extended Data. Source data supporting the findings of
the manuscript is included in the supplemental materials.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

[X] Life sciences [ ] Behavioural & social sciences | | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes were selected to effectively capture experimental effects with the fewest animals, adhering to ethical standards and mirroring
those in comparable studies (e.g., Nguyen et al. 2024, Nature; Vestergaard et al. 2023, Nature; Toader et al. 2023, Cell). They are considered
adequate for the observed effects and consistency. Details are provided in the paper and Methods section.

Data exclusions  In optogenetic studies, animals were excluded if post-examination revealed incorrect viral injections or fiber placements. Exclusion criteria
were set in advance.

Replication All behavioral, imaging, and optogenetic experiments were replicated across several animals, yielding consistent results. See Methods for the
exact number of animals and/or trials for each experiment.

Randomization  Animals were randomly allocated into the experimental groups. Trial types were pseudo randomly determined by a computer program in real
time.

Blinding Experimenters knew the group allocations during experiments and outcome evaluations but were blinded during recordings. Both control and
experimental groups underwent identical conditions, except for specific treatments or manipulations. Data analysis for both groups followed
the same criteria and methods.
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Laboratory animals All mice were 2 to 4-months old male and female C57BL/6J (Jackson Laboratory, Stock No: 000664) or C57BL/6J-Tg (Thy1-GCaMP6s)
GP4.12Dkim/J (Jackson Laboratory, Stock No: 025776) or B6;DBA-Tg(tetO-GCaMP6s)2Niell/J (Jackson Laboratory, Stock No: 024742)
crossed with B6.Cg-Tg(Camk2a-tTA)1Mmay/DboJ (Jackson Laboratory, Stock No: 007004). Animals were kept under a 12-hour light-
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dark cycle (lights on from 8 p.m. to 8 a.m.) with constant food access and underwent experiments during their dark cycle. They were
water-restricted for a week before behavioral training began. See Methods for water restriction details.

Wild animals No wild animals were used in the study.
Field-collected samples  No field collected samples were used in the study.

Ethics oversight All experiments were conducted in accordance with National Institute of Health (NIH) guidelines and with the approval of the
Chancellor’s Animal Research Committee of the University of California, Los Angeles.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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