UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
File System Workload Analysis For Large Scale Scientific Computing Applications

Permalink

Ihttps://escholarship.org/uc/item/7m82b6dd

Authors

Wang, Feng
Xin, Qin
Hong, Bo

Et al

Publication Date
2004-04-14

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License,

available at |https://creativecommons.org/licenses/bv/‘t.0/1

Peer reviewed

eScholarship.org Powered by the California Digital Library

University of California


https://escholarship.org/uc/item/7m82b6d9
https://escholarship.org/uc/item/7m82b6d9#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

File System Workload Analysis For Large Scale Scientific Coputing
Applications

Feng Wang, Qin Xin, Bo Hong, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long
Storage Systems Research Center
University of California, Santa Cruz
Santa Cruz, CA 95064
{cyclonew, gxin, hongbo, sbrandt, elm, darfé@lcs.ucsc.edu
Tel +1 831-459-4458
Fax +1 831-459-4829

Tyce T. McLarty
Development Environment Group/Integrated Computing amch@unications
Lawrence Livermore National Laboratory
Livermore, CA 94551
{tmclarty@lIInl.goV}
Tel +1 925-424-6975
Fax +1 925-423-8719

Abstract

Parallel scientific applications require high-performant/O support from underlying file systems.
A comprehensive understanding of the expected worklodterefore essential for the design of
high-performance parallel file systems. We re-examine thkklaad characteristics in parallel
computing environments in the light of recent technologyaades and new applications.

We analyze application traces from a cluster with hundrddsodes. On average, each application
has only one or two typical request sizes. Large requesis everal hundred kilobytes to several
megabytes are very common. Although in some applicatiomsl] gequests account for more than
90% of all requests, almost all of the 1/O data are transfdrbg large requests. All of these applica-
tions show bursty access patterns. More than 65% of writaests have inter-arrival times within
one millisecond in most applications. By running the sammebmark on different file models, we
also find that the write throughput of using an individual it file for each node exceeds that of
using a shared file for all nodes by a factor of 5. This indisdteat current file systems are not well
optimized for file sharing.

1. Introduction

Parallel scientific applications impose great challengesat only the computational speeds but also
the data-transfer bandwidths and capacities of 1/0O subsyst The U.S. Department of Energy Ac-

This paper was published in tiEst IEEE / 12th NASA Goddard Conference on Mass StoragerSysing
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celerated Strategic Computing Initiative (ASCI) projectsnputers with 100 TeraFLOPS, I/O rates
of 50-200 gigabytes/second, and storage system capauiit®e§—20 PB in 2005. The projected
computing and storage requirements are estimated to 4@F-0I&PS, 80-500 gigabytes/second,
and 3-20 PB in 2008 [2].

The observed widening disparity in the performance of I/@akes, processors, and communication
links results in a growing imbalance between computatigreaformance and the 1/0 subsystem
performance. To reduce or even eliminate this growing I/@gomance bottleneck, the design of
high-performance parallel file systems needs to be imprtvetkeet the I/O requirements of parallel
scientific applications.

The success of file system designs comes from a comprehamsiegstanding of 1/0 workloads
generated by targeted applications. In the early and mities, significant research efforts were
focused on characterizing parallel /0 workload pattemd providing insights on parallel system
designs [1, 4, 7, 14]. The following decade has witnessexdifgignt improvements in computer
hardware, including processors, memory, communicatiggsliand 1/O devices. At the same time,
systems are scaling up to match the increasing demands @iutimm capability and storage capac-
ity. This advance in technologies also enables new sciemtifplications. Together these changes
motivate us to re-examine the characteristics of pardlorkloads a decade later.

In our research, we traces the system I/O activities undeettypical parallel scientific applica-
tions: the benchmarior2 [6], a physics simulatiorfl, running on 343 nodes, and another physics
simulation,m1, running on 1620 nodes. We study both static file system andrdic I/O workload
characteristics. We use the results to address the foltpgurestions:

What were the file sizes? How old were they?

How many files were opened, read, and written? What were simis?
How frequent were typical file system operations?

How often did nodes send I/O requests? What were the requaesfs
What forms of locality were there? How might caching be uefu
Did nodes share data often? What were the file sharing pa#tern
How well did nodes utilize the 1/O bandwidth?

The remainder of this paper is organized as follows: a brehadew of the related work is given
in Section 2. We then describe the tracing methodology ini@e8& and present our results in
Section 4. Finally, we conclude our paper in Section 5.

2. Related Work

The I/O subsystem has been a system performance bottlemeakdng time. In parallel scientific
computing environments, the high 1/0O demands make the l{@elpeck problem even more severe.
Kotz and Jain [3] surveyed impacts of I/O bottlenecks in maijeas of parallel and distributed
systems and pointed out that I/O subsystem performancédshegonsidered at all levels of system
design.

Previous research showed that the 1/0 behavior of scieafifilications is regular and predictable [7,
9]. Users have also made attempts to adjust access pattdmprove performance of parallel file
systems [13].



There are several studies on file system workload charaatems in scientific environments [1,

4,7, 8, 11]. They have shown that file access patterns shamenoao properties such as large file
sizes, sequential accesses, bursty program accesse$;anggfe sharing among processes within
a job. A more recent study [14] showed that applications usenabination of both sequential and
interleaved access patterns and all I/O requests are dedriheough a single node when applica-
tions require concurrent accesses; we observe similarophema in one of the applications under
our examinations.

Pasquale [9] found that the data transfer rates ranges frééntd 131 megabytes/sec in fifty long-
running large-scale scientific applications. They also destrated that the the 1/0 request bursti-
ness is periodic and regular [10].

Baylor et al.[1] showed that the I/O request rate is on the order of huredo¢dequests per second;
this is similar to our results. They also found that a larggomnity of requests are on the order of
kilobytes and a few requests are on the order of megabytesesuits differ in this regard.

Previous research has mainly investigated scientific wauiklin 1990’s, although technology has
evolved very quickly since then. We observed changes iretacgle scientific workloads, in our
study, and provided guidelines for future file system desiggsed on a thorough understanding of
current requirements of large-scale scientific computing.

3. Tracing Methodology

All the trace data in this study was collected from a largeukicluster with more than 800 dual
processor nodes at the Lawrence Livermore National LabgrgtLNL). A development version

of Lustre Lite [12] is employed as the parallel file system HrelLinux kernel in use is a variant of
2.4.18.

3.1. Data Collection

Tracing I/O activities in large scale distributed file systeis challenging. One of the most critical

issues is minimizing the disturbance of tracing on the sydiehaviors. A commonly-used method

is to develop a trace module that intercepts specific I/Gesysialls—a dedicated node in the cluster
collects all trace data and stores them to local disks.

However, due to time limits, we chose a simpler approach: mplaeyed thestrace utility with
parameters tuned for tracing file-related system calls. tidee data are written to local files. We
rely on the local host file systems to buffer trace data.

This approach has two shortcomings: first, strace intescafptl/O-related activities, including
parallel file system, local file system, and standard inpigbiat activities. This results in relatively
large data footprint. Second, the strace utility relieslomlbcal file system to buffer traced data.
This buffer scheme works poorly when the host file system @euheavy I/0O workloads. In such a
scenario, the host system performance might be affecteceijuént I/Os of the traced data.

However, the strace utility greatly simplifies the tediowaadcollection process to a simple shell
script. More importantly, the shortcomings mentioned a&waere not significant in our trace col-



Table 1. The ASCI Linux Cluster Parameters

Total Nodes (IBM x355) 960
Compute Nodes 924
Login Nodes 2
Gateway Nodes 32
Metadata Server Nodes 2
Processor per Nodes (Pentium 4 Prestonia) 2
Total Number of Processors 1920
Processor Speed (GHz) 2.4
Theoretical Peak System Performance (TFlops 9.2
Memory per Node (GB) 4
Total Memory (TB) 3.8
Total Local Disk Space (TB) 115
Nodes Interconnection Quadrics Switch

lection because of the large I/O requests and the relatsladyt tracing periods. As we discuss in
Section 4, 1/0 requests in such a large system are usualiydmseveral hundred kilobytes to several
megabytes. Even in the most bursty 1/O period, the total rerrobl/Os per node is still around tens
of requests per second. Up to one hundred trace recordsengiéberated on each node per second
on average. Buffering and storing these data only has at stighact on the system performance.
Moreover, instead of tracing the whole cluster, we only gtseleral typical scientific applications.
Those applications are usually composed of two stages:dimpuatation phase and the I/O phase.
The typical I/O stage ranges from several minutes to sewenals. During this period, each node
usually generates several hundred kilobytes of trace déiigh can be easily buffered in memory.

3.2. Applications and Traces

All of the trace data were collected from the ASCI Linux Clrsn Lawrence Livermore National
Laboratory. This machine is currently in limited-accessdmdor science runs and file system
testing. It has 960 dual-processor nodes connected thrau@hadrics Switch. Two of them are
dedicated for metadata servers and another 32 nodes arasifelgateways for accessing a global
parallel file system. The detailed configuration of this niaglis provided in table 1 [5]. We traced
three typical parallel scientific applications during JWQ03. The total size of the traces is more
than 800 megabytes.

The first application is a parallel file system benchmark [6], developed by LLNL. It is used for
benchmarking parallel file systems using POSIX, MPIIO, orfDnterfaces. Basically it writes
a large amount of data to one or more files and then reads thekntdaerify the correctness of
the data. The data set is large enough to minimize the opgratistem caching effect. Based
on different file usages, we collected three different bematk traces, nameidr2-fileproc ior2-
shared andior2-stride respectively. All of them are running on a 512-node clusteR-fileprocis
configured to assign an individual output file for each noda|enor2-sharedandior2-stride use a
share file for all the nodes. The difference between thevastriaces is thaibr2-sharedallocates a
contiguous region in the shared file for each node, whbit2-stride strides the blocks from different
nodes into the shared file.



The second application is a physics simulation run on 348gs%es. In this application, a single
node gathers a large amount of data in small pieces from tiesohodes. A small set of hodes
will then write these data to a shared file. Reads are exeduted a single file independently
by each node. This application has two I/O-intensive phates restart phase, in which read is
dominant; and the result-dump phase, in which write is damin The corresponding traces are
namedfl-restartandfl-write, respectively.

The last application is another physics simulation whiatsran 1620 nodes. This application use
individual output file for each node. Like the previous agglion, it also has a restart phase and a
result-dump phase. The corresponding traces are refesmd-sestartandml-write respectively.

3.3. Analysis

The raw trace files required some processing before theyl cmukasily analyzed. Some unrelated
system calls and signals were filtered out. Since each nodeaimed its own trace records, the raw
trace for each application is composed of hundreds of iddadifiles. We merged those individual

files in chronological order. Thanks to the Quadrics switehjch has a common clock, all the

traced time in those individual trace files are globally $yoaized. Our analysis work, such as
request inter-arrival time, have been greatly simplifiedbsting all requests into a chronologically

sorted trace file.

A good understanding of file metadata operation charatitayiss important, however, our traces
are not large enough to capture general metadata accesspattherefore, we focus more on file
data I/O characterization in the following section.

4. \Workload Characteristics

We present the characteristics of the workloads, includilegdistributions and 1/0 request prop-
erties. We study the distributions of file size and lifetinagsl show the uniqueness of large-scale
scientific workloads. We focus on three typical applicagias described in Section 3.2 and examine
the characteristics of 1/0 requests, such as the size antieruof read and write requests and the
burst and the distribution of I/O requests on various nodes.

4.1. File Distributions

We collected file distributions from thirty-two file servelgt were in use for the ASCI Linux cluster

during the science runs phase. Each file server has storpgeityeof 1.4 terabytes. The file servers
were dedicated to a small number of large-scale scientifitagtions, which provides a good model

of data storage patterns. In average, the number of files @nféa server was 350,250, and each
server stores 1.04 terabytes of data, more than 70% of the#@roity. On most of the file servers, the
number and capacity of files are similar except for five filesses. table 2 displays statistic values
of the number and capacity of files on these servers, inaudtiaan, standard deviation (std. dev.),
median, minimum (min) and maximum (max).

Figure 1(a) presents file size distributions by number amdd@pacity. The ranges of file sizes
are sampled from 0-1 Byte to 1-2 gigabytes. Some of the ipagitwere merged due to space
limitations. We observed that over 80% of the files are betwsk? kilobytes and 16 megabytes in



Table 2. File Numbers and Capacity of the 32 File Servers

\ | Number |  Capacity |

mean 305,200| 1044.33 GB
standard deviation 75,760 139.66 GB
median 305,680| 1072.88 GB
minimum 67,276 557.39 GB
maximum 605,230| 1207.37 GB
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20 +

10
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O - ¢ L ¢ | =
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(b) By File Ages

percentage in all the files (%)

52 wk

Figure 1. Distribution of Files

size and these files accounted for over 80% of the total cigpakmong various file size ranges,
the most noticeable one is from 2 megabytes to 8 megabytest &f.7% of all files and 60.5% of
all bytes are in this range.

We divided file lifetimes into 9 categories: from 0-1 day tovB@eks and older. As illustrated in
figure 1(b), 60% of the files and 50% of the bytes lived from 2 kede 8 weeks, while 6.6% of the
files and 7.3% of the bytes lived less than one day. The lifetifrthe traced system is about 1 year
so that no files lived longer than 52 weeks.

4.2. 1/0 Request Sizes

Figure 2 shows the cumulative distribution function of resjusizes and request numbers. Since
all threeior2 benchmarks have identical request size distributions, e ghow one of them. As
shown in Figure 2(a)pr2 has only an unique request size of around 64 kilobytes.

Figure 2(b) shows the write request size distribution ofrémult-dump stage in the physics simu-
lation, f1. Almost all the write requests are smaller than 16 byteslendimost all the I/O data are
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Figure 2. Cumulative Distribution Functions (CDF) of the Si ze and the Number of 1/0O
Requests (X axis-logscale). The read.numand write_numcurves indicate the fraction of

all requests that is smaller than the size given in X axis. The read sizeand write_size
curves indicate the fraction of all transferred data that li ve in requests with size smaller
than the value given in the X axis.

transferred in the requests with sizes larger than one nyégabhis turns out to be a common 1/O
pattern of scientific applications: a master node collestallspieces of data from all computing
nodes and writes them to data files, which results in a hugeébauwf small writes. Other nodes
read and write these data files in very large chunks afterwindre are so few read requests in the
result-dump stage and write requests in the restart stagevin actually ignore the write request
curves in figure 2(b) and figure 2(c).

Figure 2(d) and figure 2(e) show the same write request lligioin in the restart and result-dump
stages of the physics simulatioml The two spikes in thevrite_numcurves indicate two major
write sizes: 64 kilobytes and 1.75 megabytes, respectiEfich of them accounts for 50% of all
write requests. More than 95% of the data are transferedrig l@quests, which is also shown in
Figures 2(d) and 2(e). Readsririlare dominated by small requests less than 1 kilobytes. Henvev
a small faction (less than 3%) of 8 kilobyte requests stitlcamts for 30% of all read data transfer.
This is similar to the read distribution in Figure 2(e): oBB6 of the read requests contribute to 90%
of all data read.



4.3. 1/0O Accesses Characteristics

Figure 3-5 show I/O accesses characteristics over timerédudution for these figures is 1 second
except figure 4(a), which uses a resolution of 50 secondsuiréig shows that the request number
distribution and the request size distribution are almdstiical inior2 due to the fixed size re-
guests used in those benchmarks. h2-fileproc benchmark, using the one-file-per-node model,
presents the best write performance. Up to 150,000 writeestlg per second, totaling 9 gigabytes
per second, are generated by the 512 nodes. Howeveagrtheharedandior2-stride benchmarks
can only achieve 25,000 write requests per second, totaligmabytes per second. These two
benchmarks use the shared-region and the shared-stridadilel, respectively. We believe that
the performance degradation is caused by the underlyingdifsistency protocol. This result is
somewhat counterintuitive. The shared-region file modpkaps to be similar to the one-file-per-
node model because the contiguous regions in the formereandogous to the separate files in
the latter. Therefore, their performance should be conpparas well. The severe performance
degradation implies that the shared-file model is not optahifor this scenario.

After a write, each node reads back one another node’s dataossas it is available. The gaps
between the write and read curves in each sub-figure reflecidtual I/O times. Obviously, the
ior2-fileproc benchmark demonstrates much better performance: onlyctihde are used in this
model, while more than 20 seconds are needed to dump the samentof data when using the
shared file model. Since reads must be synchronous, we ciymfaage out the file system read
bandwidth from theead sizecurve. Theor2-fileproc andior2-sharedbenchmarks have compara-
ble read performance. However, tloe2-stride has the worst read performance, which is only 100
megabytes per second for 512 nodes. This result is not simprithe stride data layout in shared
files limits the chances of large sequential reads.

Figure 4 shows the I/O access pattern of the applicdtios we mentioned befordl-write has
very few reads andll-restarthas very few writes. Therefore, we can ignore those requrestse
corresponding figures. In Figure 4(a), we chose a resolufds0 seconds because it becomes
unreadable if we use finer time resolutions. The spike ofwhiee-numcurve is caused by the
activities of the master node to collect small pieces of dfaia other computing nodes. At its peak
time, nearly 1 million requests are issued to file systemsgeond. However, due to the very small
request size (8 to 16 bytes), this intensive write phaseritoies negligable amounts of data to the
overall data size. In the rest of the application, large ewré#gquests from 48 nodes dominate the
I/0O activities. Requests are issued in a very bursty markigure 4(b) zooms in a small region of
Figure 4(a) by 1 second resolution. It shows that sharpifctipikes are separated by long idleness.
At the peak time, up to 120 megabytes per second of data aszajed by 48 nodes. In the restart
phase off1, read requests become dominant. However, both the numbahardata size of read
requests are small compared to those in the write phase.

Figure 5 presents the 1/0O access pattern of the physicscafipihml It demonstrates very good
read performance: nearly 28 gigabytes per second bandeadthe achieved by 1620 nodes, thanks
to the large read size (1.6 megabytes — 16 megabytes).fLikis write activities are also bursty.
We observed that the write curves have similar shapes ingfiguthey all begin with a sharp spike
and then followed by several less intensive spikes. Ondlgessxplaination is that the file system
buffer cache absorbs the coming write requests at the bédine avrites. However, as soon as the
buffer is filled out, the I/O rate drops greatly to what can &eved by the persistent storage.
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4.4. |/O Burstiness

To study I/O burstiness, we measure 1/O request interartimes Figure 6 shows the cumulative
distribution functions (CDF) of 1/O request inter-arrivethes. Note that the x-axis is in the loga-
rithmic scale. Write activities are very bursty in tloe2 benchmarks and thid application: over
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65—-100% of write requests have inter-arrival times withimilisecond. Inior2 andfl, most of
write activities are due to memory dump and I/O nodes careigsite requests quickly. However,
write activities onrmlare less intensive than thoseion2 andfl

On the other hand, read requests are generally less ingetiisin write requests because reads are
synchronous. In particular, Figure 6(c) indicates tbhe?2 under shared-strided files suffers low read
performance, as described in Section 4.3. In this scerdata, are interleaved in the shared file and
read accesses are not sequential.

4.5. 1/0 Nodes

In this section, we study the distributions of I/O requesesiand numbers over nodes, as shown in
Figure 7. For theor2 benchmarks, read and writes are distributed evenly amodgs@s shown

in Figures 7(a) and 7(b), because each node executes thesegmence of operations in these
benchmarks.

In the physics applicatiofil, a small set of nodes write gathered simulated data to adlidee
Therefore, only a few nodes have significant I/O activityhiait write phase and most of the trans-
fered data are from large write requests (14% of the writeigstg), as shown in Figures 7(c)
and 7(d). There is little read activity in the write phase.weéger, read requests are evenly dis-
tributed among nodes in the restart phase and their sizesrawed 1 kilobyte, as shown in Fig-
ures 7(e) and 7(f). There is little write activity in the rastphase.

In the restart and write phases of the physics applicatidnl/O activity is well balanced among
nodes, as shown in Figures 7(g)—7(j). We also observe signifiwvrite activity in the restart phase.
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Table 3. File Open Statistics

Overall Number of File Opens | Number of Data File Opens
Applicatons Read/Write | Read | Write | Read/Write | Read | Write
ior2 6,656| 5,121 0 1,024 0 0
f1-write 3,871| 6,870 718 98 10 34
fl-restart 3,773| 6,179 0 0| 343 0
ml-restart 17,824| 22,681 | 12,940 0] 1,620| 12,960
m1-write 17,824| 21,061| 12,960 0 0| 12,960
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Figure 7. Cumulative Distribution Functions (CDF) of the Si
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Table 4. Operations During File Open

Avg. open time Avg. I0s per Open | Avg. 10 Size per Open
Applications Overall | Data File | Overall | Data File Overall Data File
ior2-fileproc 0.4 sec 4.5 sec 44.4 512.0 2.8 MB 32.8 MB
ior2-shared 0.7 sec 5.2 sec 44.4 512.0 2.8 MB 32.8 MB
ior2-stride 7.6 sec| 26.57 sec 44.4 512.0 2.8 MB 32.8 MB
f1l-write 20.2 sec| 504.9 sec 14.8 142161 2.4 MB | 3993.5 MB
fl-restart 0.02 sec 0.1 sec 0.5 1| <<1MB| <<1MB
m1l-restart 1.2 sec 3.9 sec 4.2 15.3 3.7MB 8.5 MB
m1-write 1.2 sec 2.4 sec 4.3 17 3.1 MB 6.5 MB

4.6. File Opens

In this section, we study the file open patterns of those eaftins. We use the term déta filesto
refer to those files that actually store results dumped frpplieations.

In all applications, files tend to be opened as read/writeead+only. We only observe significant
write-only files in the physics applicatioml, as shown in table 3. However, the data files are
opened either read-only or write-only except the benchraatk The open operations on the data
files only account for small portion of overall file openedv@&i the fact that the data file operations
dominate the overall I/Os, the small number of data file opedies longer open time and more
I/O operations during each open. As listed in table 4, thenaheation of data files ranges from
several seconds to several hundred seconds, which is ltyfda 20 times longer than overall file
open durations. The average number of operations and thefstata files on each open operation
are also much larger than those on the overall files. For elearap to 400 MB data are transferred
during each data file open in physical applicatibrwrite.

5. Conclusion

In this study, We analyze application traces from a clusiér undreds of nodes. On average, each
application has only one or two typical request sizes. Leegeests from several hundred kilobytes
to several megabytes are very common. Although in someagtigins, small requests account for
more than 90% of all requests, almost all of the 1/0O data aesferred by large requests. All of
these applications show bursty access patterns. More tf4no6 write requests have inter-arrival
times within one millisecond in most applications. By rumnithe same benchmark on different
file models, we also find that the write throughput of usingratividual output file for each node
exceeds that of using a shared file for all nodes by a factor. oftbs indicates that current file
systems are not well optimized for file sharing. In all thoppligations, almost all I/Os are to a
small set of files containing the inter-mediate or final compan results. Such files tend to be
opened for a relatively long time, from several seconds wersé¢ hundred seconds. And a large
amount of data are transferred during each open.
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