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Abstract
This study aimed to compare serum amyloid processing biomarkers among HIV subtype B (n = 25), HIV subtype C (n = 26),
healthy HIV-negative controls (n = 18), and patients with Alzheimer’s disease (AD; n = 24). Immunoassays were used tomeasure
main soluble Aβ isoforms Aβ38, Aβ40, Aβ42, and Aβ-total in serum and cerebrospinal fluid (CSF). People living with HIV
(PLWH) andHIV(−) samples, including AD samples, were compared for gender and age, while HIV subtypes were compared for
nadir CD4 and plasma viral load suppression. CSF/serum ratios of Aβ40, Aβ42, and Aβ-total were lower in HIV-1C group than
in HIV-1B group (p = 0.020, 0.025, and 0.050, respectively). In serum, these biomarkers were comparable. Serum Aβ isoforms
were significantly lower in PLWH than in AD. SerumAβ42 levels in PLWHwere decreased compared to those in control group,
thus similar to Aβ42 alterations in CSF; these results were different from those observed in AD. Impaired cellular immunity, low
CD4 cell count (nadir or current) influences serum Aβ metabolism in HIV-1B but not HIV-1C. However, in PLWH overall, but
not in individual HIV subtype groups, greater CD4 recovery, calculated as the difference between current and nadir CD4,
correlated with Aβ42/Aβ40 ratio in serum (rs 0.246; p = 0.0479). No significant correlation was found with global deficit score
(GDS), an index of neurocognitive performance, age, or duration of infection. These findings are consistent with those of
subtype-dependent amyloid processing in blood in chronic HIV disease.

Keywords Neuronal injury . Aging . Biomarkers . HIV-associated neurocognitive disorders . Subtype

Introduction

The profile of amyloid processing biomarkers in HIV infec-
tion is not yet well defined. Several studies have been carried
out on HIV subtype B (HIV-1B) (Brew et al., 2005; Gisslén
et al. 2009; Nath and Hersh 2005; Peterson et al. 2014; Krut
et al. 2013, 2014), but data on other subtypes has not been
reported. Soluble amyloid-β (Aβ), a small ~ 4 kDa polypep-
tide, is the product of normal cell metabolism; it is found in
various body fluids, including blood and cerebrospinal fluid
(CSF) (Mehta et al. 2000). As blood can be obtained through

minimal invasive sampling methods, there is an increasing
interest on the validation of blood-based neural injury bio-
markers. The majority of these validation studies are on
Alzheimer’s disease (AD) (Wang et al. 2017).

The association between HIV infection and aging is an
increasingly important topic, as the life expectancy of people
with HIV has increased and quality of life has improved
(Raboni et al. 2017). HIV infection is associated with the
development of age-related physiological disturbances and
medical co-morbidities earlier in life. HIV-associated
neurocognitive disorders (HAND) are more common in older
people living with HIV (PLWH). Moreover, PLWH have an
epigenetic age 4.9 years older than that of healthy controls
(Gross et al. 2016).

Aging is a risk factor for Aβ accumulation and
neurocognitive impairment (High et al. 2012). PLWH may
show Aβ deposition in the brain at younger ages. This sug-
gests a dysregulation of amyloid processing in the setting of
HIV infection. Aβ is the primary component of amyloid
plaques (Hardy and Selkoe 2002); several studies have noted
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marked increases in the prevalence of diffuse amyloid plaques
in PLWH compared to HIV(−) age-matched controls (Green
et al. 2005; Rempel and Pulliam 2005; Esiri et al. 1998).

We previously reported CSF biomarkers suggesting that
amyloid processing pathways are altered in a subtype-
dependent manner, such that more brain Aβ deposits would
occur in chronically infected patients with HIV-1C than in
age-matched HIV-1B (de Almeida et al. 2018a, b).
Additionally, over a prolonged period of time, HIV-1-
induced accumulation of Aβ may lower the threshold for de-
mentia (Rempel and Pulliam 2005). Based on these and pre-
vious studies of blood Aβ biomarkers on AD, the authors
hypothesized that there is a higher level of serum Aβ in
HIV-1C than in HIV-1B group.

This study aimed to compare serum and CSF/serum ratios
of amyloid processing biomarkers between HIV-1B and HIV-
1C-infected participants; additional comparisons between
these and healthy HIV(−) and AD patients were done. Here,
we investigated for the first time the main Aβ isoforms in
peripheral blood of PLWH. The use of these biomarkers could
influence decisions to treat neurocognitively impaired HIV+
individuals with cholinesterase inhibitors or memantine, a par-
tial antagonist of NMDA receptors. Both drugs registered in
many countries for the treatment of cognitive impairment in
dementia, particularly for AD (Knight et al. 2018).

Methods

This was a cross-sectional survey of stored CSF and serum
samples, which was approved by institutional review boards

(IRB) at Clínicas Hospital, University Federal of Paraná (HC-
UFPR, Curitiba, Paraná, Brazil), the Brazilian National
Commission of Ethics in Research (CONEP, Brasilia,
Brazil), and the University of California San Diego (UCSD,
San Diego, USA).

Subjects

All participants agreed and signed a consent form approved by
the IRB. For AD participants, legally responsible caregivers
signed the consent. CSF and serum samples were collected
under a protocol funded by NIMH (R21 MH076651-01).
HIV(+) and AD participants were recruited at HC-UFPR.

A total of 107 paired serum and CSF samples were ana-
lyzed. Participants were divided in groups as follows: HIV(+)
(n = 65), HIV(−) (n = 18), and AD patients (n = 24).
Demographic characteristics, HIV status, and co-infections
from each group are summarized in Table 1.

PLWH participants As previously mentioned, PLWH, n = 65,
were recruited at HC-UFPR, Brazil. Individuals with oppor-
tunistic CNS infections were not selected for the study. All
volunteers provided both blood and CSF samples, and
underwent serological testing to confirm HIV status before
enrollment, in accordance with guidelines published by the
Brazilian Ministry of Health (Brasil, Ministério da Saúde
2017). For participants with clinically resistant infections,
the infecting HIV strain was genotyped using pol sequences,
while env sequences were used for all other participants.
Genotyping indicated that 25 individuals were infected with
HIV-1 subtype B, and 39 with non-B HIV-1 subtypes (C-26,

Table 1 Demographic data,
clinical and HIV infection
characteristics, and co-
morbidities of HIV participants,
uninfected volunteers, and
Alzheimer’s disease group

HIV+ (n = 65) HIV− (n = 18) AD (n = 24) p

Demographics

Age, years 43 (35; 48) 40 (34; 50) 76.5 (67; 79.5) < 0.0001

Education, years 7 (5; 11) 12 (11; 15.5) 4 (2; 6) 0.0001

Gender, n male (%) 32 (49) 14 (77.8) 8 (33) 0.0120

Clinical scales

GDS 0.65 (0.3; 1.05)

MMSE – – 14 (9.5; 20)

MoCA, (n = 8) 11.5 (10.5; 12.5)

FAQ – – 23.5 (15; 27.5)

Geriatric Depression Scale – – 1 (0.5; 3)

Co-morbidities

HCV, n (%) 10 (15) 0 0 –

Log plasma HCV RNA, n 2.9 (1.7; 5.9) 0 0 –

Data are median (IQR) or number of cases (%)

Hepatitis C virus (HCV) status was assessed by antibody testing (Abbott-Architect). Participants co-infected with
HCV were not on treatment with interferon-gamma

Mini–mental state examination (MMSE); Montreal Cognitive Assessment (MoCA); Functional Activities
Questionnaire (Pfeffer’s FAQ); Global deficit score (GDS) (de Almeida et al. 2013)
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BF-09, BC-1, CF-1, and F-2 participants). In one participant,
the HIV-1 subtype could not be determined.

HIV-uninfected controls A control group of 18 age-matched
HIV(−) individuals was recruited at the HIV Neurobehavioral
Research Center, University of California San Diego, USA.
Inclusion criteria and characteristics were described previous-
ly (de Almeida et al. 2018b).

Alzheimer disease participants AD, n = 24, were clinically
diagnosed by the dementia investigative team from the cogni-
tive dysfunction outpatient clinic, Neurology Unit, HC-
UFPR. They all underwent detailed clinical anamnesis and
examination routine blood analyses to rule out treatable causes
of dementia. All AD patients were HIV, HCV, syphilis, and
neurosyphilis negatives. All AD participants met dementia
criteria of the Diagnostic and Statistical Manual of Mental
Disorders, DSM-V (American Psychiatric Association
2013), and criteria for probable AD according to the
National Institute on Aging and Alzheimer’s Association,
NIA-AA (McKhann et al. 2011). Diagnostic methods used
on the AD group were previously described (de Almeida
et al. 2018b). Clinical diagnoses of AD were made indepen-
dently of CSF AD biomarkers. AD participants were classi-
fied, at the moment of CSF and serum collection, with prob-
able AD, with a clinical dementia rating (CDR) of 2 (2–2.5),
indicating moderate dementia, severe decrease of daily instru-
mental activity, and no associated depression (Table 1).
Neuroimaging (n = 18), computed tomography or magnetic
resonance imaging, showed volumetric reduction of the brain,
absence of expansive lesions or extra-axial collections, or
pathological calcifications in the brain. The median duration
of symptoms was 36 (range 24 to 60) months.

Laboratory methods

Serum and CSF biomarkers Amyloid-β isoforms (Aβ38,
Aβ40, and Aβ42) were assayed by electrochemiluminescence
(MSD, Meso Scale Discovery multi-array; Rockville, MD,
USA). The analytic sensitivity of these assays ranged between
0.1 and 10.1 pg/mL. All samples were assayed concurrently in
duplicate according to the manufacturers’ instructions. The ac-
ceptable coefficient of variation (CV) between duplicates was
lower than 20%. When results were under the minimum low-
detection limit determined by themanufacturer, the correspond-
ing low-detection limit value was used for statistical analysis.
Aβ-total was defined as the sum of all three Aβ isoforms quan-
tified, which are the main Aβ isoforms produced. Ratios be-
tween Aβ38, Aβ40, Aβ42, and Aβ-total were calculated both
for CSF and serum. We calculated Aβ isoform CSF/serum
ratios in order to evaluate the Aβ proportion between the com-
partments (blood and CSF) on the different groups studied. Not
with the intend to identify the amount that crossed the blood

brain barrier (BBB); as the transport of Aβ isoforms across the
BBB, in both directions, is carrier mediated (Deane et al. 2009;
El Ali and Rivest 2013).

Sample collection and storage CSF was collected by lumbar
punctures with atraumatic spinal needles under aseptic condi-
tions by a trained neurologist. All samples were collected at
the same time on sampling days to limit diurnal variations.
CSF and serum were collected in parallel. Samples were col-
lected in polypropylene tubes to avoid adherence of the pro-
teins to the tube walls in accordance with instructions from
biomarker reagent manufacturers. CSF total protein, glucose,
and WBC counts were measured with standard laboratory
methods. CSF and serum aliquots were frozen and stored at
− 80 °C at HC-UFPR facilities.

Data analyses

The demographic variables (age, gender, and education) were
compared between the HIV(+), the HIV(−), and the AD
groups in pair-wise using the Student t tests for continuous
variables and Fisher’s exact test for binary and categorical
variables. Demographic and HIV disease characteristics were
compared between individuals with HIV-1 subtypes B and C
using similar methods. The CSF and serum biomarkers, the
biomarker index, and the biomarker CSF/serum ratios were
presented in terms of median (IQR), and log10-transformed
prior to statistical analyses if their distributions were not ap-
proximately normal.

First, hierarchical comparisons were performed with AD
versus HIV(+) groups as primary comparison, and HIV(−)
versus AD groups and HIV(−) versus HIV(+) groups as sec-
ondary comparisons, without adjustment for multiple compar-
isons. Age and gender were included as covariates in multivar-
iable linear regression models if they had a p value of < 0.2 in
the adjusted model. If the effect of age was shown statistically
significant non-linearity, a smooth age effect was used within a
generalized additive model (Wood 2006). The p values for the
biomarker effects were then corrected for multiple testing with
the Benjamini-Hochberg procedure, within each class of bio-
markers (serum, CSF, index, and CSF/serum ratio).

Second, the CSF and serum biomarkers, the biomarker
index, and the biomarker CSF/serum ratios were compared
between HIV-1 subtypes B and C. A multivariable model
was applied to control for plasma HIV viral load suppression
and nadir CD4 count, which has been shown in previous stud-
ies to be associated with increased soluble biomarkers of in-
flammation and chemotaxis in HIV (Noel et al. 2014; Mooney
et al. 2015). Using similar methods as above, the p values
were adjusted for multiple testing. In addition, simple linear
regression was used to compare the serum biomarkers and
biomarker CSF/serum ratios of controls vs. HIV subtype B,
and controls vs. HIV subtype C.

J. Neurovirol.



Ta
bl
e
2

H
IV

(+
),
H
IV

(−
),
an
d
A
lz
he
im

er
’s
di
se
as
e
le
ve
ls
of

se
ru
m

am
yl
oi
d-
β
is
of
or
m
s,
in
de
xe
s,
an
d
ce
re
br
os
pi
na
lf
lu
id
/s
er
um

ra
tio

s

B
io
m
ar
ke
r

H
IV

+
A
D

C
T
R
L

D
if
f
(9
5%

C
I)
a

pa
D
if
f
(9
5%

C
I)
b

pb
D
if
f
(9
5%

C
I)
c

pc

S
er
um

65
24

18

A
β
-3
8,
pg
/m

L
2.
48

(2
.4
8;

21
.3
9)

24
.6
0
(9
.0
0;

75
.8
)

7.
22
6
(2
.4
8;

22
.5
0)

−
0.
81

(−
1.
33
,−

0.
28
)

0.
00
2

0.
07

(−
0.
45
,0
.5
9)

0.
79

0.
71

(0
.0
01
,1
.4
1)

0.
04
9

A
β
-4
0,
pg
/m

L
93
.4
0
(5
9.
55
;1

32
.0
)

16
7.
6
(1
45
.4
;2

34
.5
)

11
7.
9
(1
08
.0
;1

41
.7
)

−
1.
06

(−
1.
69
,−

0.
43
)

<
0.
00
1

0.
18

(−
0.
38
,0
.7
3)

0.
61

0.
69

(0
.0
01
,1
.3
8)

0.
04
9

A
β
-4
2,
pg
/m

L
5.
14

(2
.6
8;

7.
73
)

9.
95

(7
.5
1;

14
.7
1)

7.
99

(5
.2
4;

9.
55
)

−
1.
68

(−
1.
46
,−

0.
35
)

<
0.
00
1

0.
73

(0
.0
7,
1.
38
)

0.
02
3

1.
71

(0
.0
06
,3
.4
1)

0.
04
9

A
β
-t
ot
al
,p
g/
m
L

10
9.
2
(6
7.
65
;1

43
.8
)

21
3.
0
(1
70
.1
;3

47
.9
)

14
0.
6
(1
21
.7
;1

72
.6
)

−
1.
07

(−
1.
70
,−

0.
44
)

<
0.
00
1

0.
2
(−

0.
36
,0
.7
5)

0.
61

0.
71

(0
.0
01
,1
.4
2)

0.
04
9

In
de
xe
s
in

se
ru
m

A
β
-3
8/
A
β
-4
0

0.
07
96

(0
.0
36
;0

.2
05
)

0.
15
8
(0
.0
77
;0

.3
10
)

0.
07
7
(0
.0
21
7;

0.
27
2)

−
0.
33

(−
0.
84
,0
.1
9)

0.
19

0.
02
1
(−

0.
54
,0
.5
9)

0.
94

−
0.
59

(−
0.
94
,0
.3
9)

0.
46
0

A
β
-3
8/
A
β
-t
ot
al

0.
06
9
(0
.0
32
;0

.1
62
)

0.
12
5
(0
.0
61
;0

.2
21
)

0.
06
5
(0
.0
20
;0

.1
74
)

−
0.
32

(−
0.
83
,0
.1
9)

0.
19

0.
04
7
(−

0.
52
,0
.6
2)

0.
94

−
0.
62

(−
0.
95
,0
.3
8)

0.
46
0

A
β
-4
0/
A
β
-t
ot
al

0.
86
6
(0
.7
84
;0

.9
14
)

0.
79
0
(0
.6
92
;0

.8
90
)

0.
86
0
(0
.7
34
;0

.9
18
)

0.
35

(−
0.
16
,0
.8
6)

0.
19

0.
15

(−
0.
42
,0
.7
2)

0.
94

−
0.
23

(−
0.
89
,0
.4
4)

0.
46
0

A
β
-4
2/
A
β
-3
8

0.
87
6
(0
.2
70
;1

.8
41
)

0.
43
2
(0
.1
48
;1

.2
90
)

1.
29
1
(0
.3
80
;2

.8
21
)

0.
05

(−
0.
42
,0
.5
2)

0.
90

0.
31

(−
0.
21
,0
.8
3)

0.
24

0.
31

(−
0.
31
,0
.9
2)

0.
83
0

A
β
-4
2/
A
β
-4
0

0.
06

(0
.0
4;

0.
07
)

0.
06

(0
.0
5;

0.
07
)

0.
07

(0
.0
5;

0.
10
)

−
0.
86

(−
0.
98
,0
.0
5)

0.
08
4

0.
58

(0
.0
3,
1.
13
)

0.
04
5

−
0.
03

(−
0.
69
,0
.6
4)

0.
94
0

A
β
-4
2/
A
β
-t
ot
al

0.
05

(0
.0
3;

0.
06
)

0.
05

(0
.0
4;

0.
06
)

0.
06

(0
.0
5;

0.
09
)

−
0.
19

(−
0.
66
,0
.2
8)

0.
43

0.
54

(0
.0
1,
1.
09
)

0.
04
5

−
0.
08

(−
0.
74
,0
.5
9)

0.
94
0

C
SF

/s
er
um

A
β
-3
8

50
7.
9
(9
1.
97
;9

18
.2
)

65
.4
8
(2
4.
11
;2

65
.3
0)

32
2.
90

(9
3.
18
;8

46
.6
0)

0.
86

(0
.3
3,
1.
37
)

<
0.
00
1

0.
03

(−
0.
53
,0
.5
9)

0.
92

−
0.
84

(−
1.
61
,−

0.
07
)

0.
02
3

A
β
-4
0

49
.1
1
(2
7.
19
;7

3.
60
)

23
.4
2
(1
6.
52
;3

2.
73
)

38
.6
4
(2
5.
75
;4

8.
01
)

1.
02

(0
.4
3,
1.
59
)

<
0.
00
1

0.
04

(−
0.
52
,0
.6
0)

0.
92

−
0.
77

(−
1.
47
,−

0.
05
)

0.
03
2

A
β
-4
2

83
.1
7
(5
6.
63
;1

70
.2
)

27
.1
5
(1
6.
41
;4

4.
51
)

76
.7
1
(6
1.
58
;1

32
.6
0)

1.
58

(0
.8
6,
2.
29
)

<
0.
00
1

0.
21

(−
0.
35
,0
.7
7)

0.
92

−
1.
31

(−
2.
23
,−

0.
38
)

0.
00
1

A
β
-t
ot
al

66
.5
6
(3
9.
50
;9

7.
51
)

25
.2
6
(1
8.
63
;4

1.
64
)

50
.0
8
(3
8.
31
;6

8.
65
)

1.
09

(0
.4
7,
1.
71
)

<
0.
00
1

0.
06

(−
0.
50
,0
.6
2)

0.
92

−
0.
86

(−
1.
63
,−

0.
08
)

0.
02
3

V
al
ue
s
in
m
ed
ia
n
(I
Q
R
);
D
iff
,g
ro
up

di
ff
er
en
ce
s
pr
es
en
te
d
as

C
oh
en
’s
d;

C
I,
co
nf
id
en
ce

in
te
rv
al
;p

,p
va
lu
e;
al
lp

va
lu
es

ad
ju
st
ed

fo
r
m
ul
tip

le
te
st
in
g
w
ith

th
e
B
en
ja
m
in
i-
H
oc
hb
er
g
(B
H
)
m
et
ho
d,

a
an
d
c

ad
ju
st
ed

fo
r
ge
nd
er

or
ag
e
an
d
B
H
m
et
ho
d

S
ig
ni
fi
ca
nt

di
ff
er
en
ce
s
ar
e
in

ita
lic

ty
pe
fa
ce

a
H
IV

(+
)×

A
D

b
H
IV

(+
)×

C
T
R
L

c
A
D
×
C
T
R
L

J. Neurovirol.



In correlation analysis, the correlation coefficients (rs) were
estimated using Spearman’s rank-order method. We tested the
correlation of serum biomarkers and biomarker indexes with
the variables: global deficit score (GDS); HIV infection char-
acteristics (duration of infection, age at the time of study, age
at the time of the beginning of the infection, plasma and CSF
HIV RNA, peripheral blood platelets cell count); cell immu-
nity characteristics [nadir CD4, current CD4, CD4 recovery =
current CD4 − nadir CD4].

Results were considered statistically significant at the
5% alpha level. Statistical analyses were implemented
using R version 3.2.3, 2015. Cohen’s d effect sizes (and
95% confidence intervals) were reported for differences
between groups.

Results

Aβ isoform levels were on average 50–1000 times higher in
CSF than in serum in all three groups studied. Aβ isoforms
were not significantly correlated between CSF and blood in
the HIV(+) group or subtypes (all p > 0.05). Aβ isoform CSF/
serum ratios in the three groups studied are shown in Table 2.
Across all participants, the levels of serum Aβ-40 were higher
than the levels of other Aβ isoforms. The concentrations of
Aβ38, Aβ40, Aβ42, and Aβ-total in CSF were described
previously (de Almeida et al. 2018b).

Serum Aβ in PLWH, HIV(−), and AD patients

Figure 1 shows that serum levels of Aβ38, Aβ40, Aβ42, and
Aβ-total were significantly lower in the HIV(+) group than in
the AD group (for Aβ38 p = 0.002; all others p < 0.001).
Serum levels of Aβ42 were also lower in PLWH than in the
HIV(−) group (p = 0.018). Pair-wise comparisons of Aβ iso-
forms and ratios are shown in Table 2.

The ratio of serum Aβ42/Aβ40 was lower in PLWH than
in the HIV(−) group (p = 0.045; Table 2). The proportion of
Aβ42 to Aβ-total in PLWH was lower than that for HIV−
(p = 0.045), but did not differ from AD participants (p =
0.43). However, the proportions of the other Aβ isoforms
studied did not differ between three groups (Table 2).

HIV-1B and HIV-1C patients

Comparisons of serum Aβ isoforms, between HIV-1 subtypes
B and C, and control group, are shown in Table 3. CSF/serum
ratios of Aβ40, Aβ42, and Aβ-total were lower in HIV-1C
than in HIV-1B (p = 0.020, 0.025, and 0.050 respectively;
Fig. 2); although comparable with the HIV(−) control group.

Higher current CD4was significantly correlated with lower
serum Aβ38, Aβ40, and Aβ-total levels in PLWH as a whole
and in HIV-1B, but not in HIV-1 subtype C (for PLWH: rs = −
0.311, p = 0.012; rs = − 0.266, p = 0.032; rs = − 0.293, p =
0.018; for HIV-1B: rs = − 0.465, p = 0.017; rs = − 0.462, p =

Fig. 1 Serum amyloid-beta
(Aβ) isoforms concentrations in
HIV(+), AD, and HIV(−) con-
trol (CTRL) groups. a Aβ38
(pg/mL). b Aβ40 (pg/mL). c
Aβ42 (pg/mL). d Aβ-total (pg/
mL). Comparisons between
HIV(+) and AD, and AD and
CTRL groups were adjusted for
gender or age. All p values were
adjusted for multiple testing
with the Benjamini-Hochberg
(BH) method. The line in the
center of the box represents
median; the superior and inferi-
or borders of the box represent
IQRs; the whiskers represent
the least and greatest values
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0.017; rs = − 0.481, p = 0.013, respectively). Nadir CD4 cor-
related negatively with serum Aβ42 and Aβ-total (rs = −
0.412, p = 0.041; rs = − 0.452, p = 0.023, respectively) in the
HIV-1B group, but not in PLWH as a whole or HIV-1 C
group. Greater CD4 recovery correlated with higher Aβ42/
Aβ40 ratio in serum (rs = 0.244; p = 0.050) in PLWH as a
whole, but not when subtypes were analyzed separately
(Fig. 3). There was no correlation between serum Aβ isoform
levels and other variables studied (p > 0.05).

PLWH participants’ clinical characteristics From the group, 52
(80%) patients had AIDS; duration of infection, 87 (29; 135)
months; current CD4, 347 (193; 534) cell/mm3; nadir CD4, 88
(28; 267) cell/mm3; Log plasma HIV RNA, 1.7 (1.7; 3.6);
plasma HIV RNA< 50 copies/mL, 35 (54%); Log CSF HIV
RNA, 1.7 (1.7–2.8); CSF HIV RNA < 50 copies/mL, 32
(49%); on combination antiretroviral therapy (cART), 52
(80%); antiretroviral CNS penetration effectiveness (CPE)
(Letendre et al. 2010), 6 (5–9); adherence, antiretroviral treat-
ment adherence was evaluated using AIDS clinical trial group
(ACTG) adherence questionnaire (4-day recall), 51 (93%).
From those on therapy, the most frequent cART regimen (33
participants; 63%) contained a ritonavir-boosted HIV protease
inhibitor (PI) plus two nucleoside/nucleotide reverse tran-
scriptase inhibitors (NRTI and NtRTI); whereas, 18 partici-
pants (35%) received a non-nucleoside RT inhibitor
(NNRTI) with 2 NRTIs, and 4 (8%) participants received oth-
er regimen types. Platelets count in the HIV+ group as a whole
223 × 103(179 × 103; 256 × 103); in the group HIV-1B 227 ×

103 (176 × 103; 259 × 103); and HIV-1C 221 × 103 (181 × 103;
253 × 103), p = 0.948.

Discussion

This exploratory survey provides a broad view of the impact
of HIV in the amyloidogenic pathway in blood, over the
course of chronic HIV infection. Our findings suggest that
impaired cellular immunity (low CD4 cell count, nadir, or
current) influences serum Aβ in a subtype-dependent pattern;
in HIV-1B but not HIV-1C, low CD4 may increase synthesis
or decrease clearance of specific Aβ isoforms. However, CD4
recovery was associated with an increased serum Aβ-42/Aβ-
40 ratio, independent of subtype. A higher ratio may indicate
greater production or decreased clearance of Aβ-42 and
higher probability to develop Aβ deposits.

Aβ accumulation in the brain is one of the pathological
hallmarks in AD, and previous reports showed increased
levels of blood Aβ in AD participants (Wang et al. 2017).
Aβ overproduction is widespread in the peripheral organs
and tissues in AD patients. It has been shown that β-
secretase activity in the membranes of platelets is in-
creased in patients with mild cognitive decline and AD
(Liu et al. 2007; Johnston et al. 2008; Bu et al. 2017),
but whether peripherally generated Aβ contributes to the
pathogenesis of AD is uncertain (Citron et al. 1994; Kuo
et al. 2000; Deane and Zlokovic 2007; Bu et al. 2017). It
has traditionally been thought that the Aβ deposited in the

p= 0.80

p= 0.025

p= 0.020

p= 0.050

a b

c d

Fig. 2 Cerebrospinal fluid/serum
ratio of main amyloid-beta (Aβ)
isoforms from HIV-1 subtype B
and C samples. aCSF/serum ratio
for Aβ38. b CSF/serum ratio for
Aβ40. c CSF/serum ratio for
Aβ42. d CSF/serum ratio for Aβ-
total. p values were adjusted for
plasma VL suppression and CD4
nadir count, not corrected for
multiple testing with the
Benjamini-Hochberg (BH) meth-
od. We calculated Aβ isoform
CSF/serum ratios in order to
evaluate the Aβ proportion be-
tween the compartments (blood
and CSF) on the different groups
studied. The line in the center of
the box represents median; the
superior and inferior borders of
the box represent IQRs; the
whiskers represent the least and
greatest values
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brain originates in neurons. However, investigators have
shown that Aβ crosses the BBB; thus, Aβ present in
plasma may contribute to the development of Aβ deposits
in the brain and induce AD-type pathologies such as the
induction and promotion of Tau hyperphosphorylation
(Bu et al. 2017).

In this study, the ratio of serum Aβ42/Aβ40 was lower in
PLWH as compared to the HIV(−) group. A previous report
found that in AD patients, CSFAβ42/40 ratio was superior to
quantification of Aβ42 alone as a marker of amyloid positiv-
ity by PET (Lewczuk et al. 2017).

Previous work has demonstrated a great impact of HIV
infection on Aβ metabolisms (Green et al. 2005; Rempel
and Pulliam 2005; Aksenov et al. 2010). Impaired cellular
immunity (CD4, CD4/CD8 ratio) is a hallmark of HIV infec-
tion. In this study, poorer cell-mediated immunity characteris-
tics (current or nadir CD4) were associated with higher levels
of Aβ isoforms in PLWH as a whole and among HIV-1B, but
not HIV-1 subtype C. These findings are consistent with great-
er disturbance of amyloid processing as HIV-related immuno-
suppression worsens. The positive correlation between CD4
recovery, and the serum Aβ-42/Aβ-40 ratio, as well as the

(rs=0.244; 95%CI -0.0067 to 0.467; p=0.050)

(rs= -0.465; 95%CI -0.7281 to -0.083; 

p=0.017)

(rs=-0.412; 95%CI -0.700 to -0.007; p=0.041)

(rs= -0.481; 95%CI -0.737 to -0.103; p=0.013)

(rs= -0.462; 95%CI -0.726 to -0.079; p=0.017) 

(rs=-0.452; 95%CI -0.725 to -0.057; p=0.023)

a b

c d

e f

Fig. 3 Correlation between serum
Aβ isoforms and cell immunity
characteristics in the HIV+ group.
a CD4 recovery correlated
positively with serum Aβ42/
Aβ40 ratio in the HIV(+) group
as a whole. This ratio represents
the proportion between the main
Aβ isoform constituent the amy-
loid plaques (Aβ-42) in the brain,
and the main AB isoform
synthetized (Aβ40). In the HIV-
1B group, but not on subtype C:
there was moderate negative cor-
relation between b current CD4
(cells/mm3) in blood and Aβ-
Total (pg/mL) in serum; c current
CD4 (cells/mm3) in blood and
Aβ-38 (pg/mL) in serum; d cur-
rent CD4 (cells/mm3) in blood
and Aβ-40 (pg/mL) in serum; e
nadir CD4 (cells/mm3) in blood
and Aβ-42 (pg/mL) in serum; and
f nadir CD4 (cells/mm3) in blood
and Aβ-total (pg/mL) in serum
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negative correlation of Aβ isoforms and nadir CD4, can be
result of immunological disbalance, due to an impaired cell
immunity recovery with less effective CD4 cells, mainly on
those cases on which there was very low CD4 nadir. This was
the first study to show the impact of HIV infection on serum
Aβ metabolism, future studies examining the mechanism by
which improved immunity influences it are necessary.

Our results add to previously published studies, investigat-
ing differences between HIV-1 subtypes B and C, in which
CSF Aβ42 levels decreased in HIV-1C compared to HIV-1B
(de Almeida et al. 2018b). We previously reported that CSF
Aβ42 levels in PLWH were lower than HIV− controls (de
Almeida et al. 2018b); here, we found that serum Aβ42 levels
showed a similar pattern. These results were different from
reported patterns of Aβ isoforms in AD, where CSF levels
are decreased, but serum levels are increased. The majority of
AD studies describe increased blood Aβ levels (Mehta et al.
2000; van Oijen et al. 2006; Graff-Radford et al. 2007; Wang
et al. 2017); although these results are not uniform (Lopez
et al. 2008; Toledo et al. 2013).

In the present study, there was no correlation between Aβ
isoforms in serum and CSF. The brain is the main source of
Aβ isoforms in blood. In addition to the brain, Aβ is produced
in peripheral tissues or cells and secreted into blood circula-
tion, contributing to the pool of circulating Aβ (Bu et al.
2017). Aβ is generated by the proteolytic cleavage of the
amyloid precursor protein (APP). APP and the enzymes re-
quired for Aβ generation from APP are expressed in many
tissues (Deane and Zlokovic 2007; Bu et al. 2017). In the
brain, APP is ubiquitously expressed in neurons, which are
believed to be its primary source (Peterson et al. 2014). In
peripheral tissues, besides the brain, platelets are the primary
source and can generate Aβ by a mechanism similar to that in
neurons (Chen et al. 1995; Evin et al. 2003; Liu et al. 2007;
Johnston et al. 2008; Bu et al. 2017). Other possible sources
for the production of peripheral Aβ are skin fibroblasts, skel-
etal muscles, and cerebrovascular smooth muscle cells (Citron
et al. 1994; Kuo et al. 2000; Van Nostrand andMelchor 2001).

One possibility to explain the lower blood Aβ levels in
HIV is thrombocytopenia (Marks et al. 2009). This would be
expected to lead to less APP and Aβ production, accounting
for our observation that Aβ levels in HIV were lower than
controls. Thrombocytopenia is a common feature amongHIV-
positive patients; it is considered a multifactorial disorder,
commonly due to immune mechanisms (Marks et al. 2009).
However, we found no correlation between platelet counts in
peripheral blood and blood Aβ isoform levels and ratios.
Other mechanisms must be considered to explain the blood
Aβ isoform levels in HIV.

Both animal and human studies suggest that HIV can dis-
rupt several steps in the amyloid cascade, from Aβ biogenesis
to clearance (Pulliam 2009; Xu and Izeku 2009; Andras and
Toborek 2013). The main HIV amyloidogenic protein is Tat

(Rempel and Pulliam 2005; Aksenov et al. 2010; Daily et al.
2006; Lan et al. 2011; Giunta et al. 2008; Kim et al. 2013);
although several other proteins as NEF (White et al. 2005);
gp41(Mankowski et al. 2002); and Gp120 (Aksenov et al.
2010; Zhang et al. 2011) are amyloidogenic as well.
HAART interferes with amyloidogenesis by reducing LRP
(Tran et al. 2003), inhibiting Aβ degradation (Hamel 2007;
Lan et al. 2012), increasing production, and decreasing clear-
ance of Aβ peptides (Brown et al. 2014).

In this study, we found that the main Aβ product in blood
was Aβ40 as well as in CSF, which are consistent with other
research’s results; although we found a higher percentage in
serum (~ 90%) than in CSF (~ 70%) (de Almeida et al. 2018b;
van der Kant and Goldstein 2015).

The present cross-sectional study is not free of limitations. It
does not include a substantial number of older (> 60 years)
PLWH, who are hypothetically more vulnerable to AD than
young PLWH. We did not assess HIV(+) patients with known
AD, though this combination of conditions is rare. The HIV(−)
group was age and gender matched with the HIV(+) group, in
consequence, individuals were younger than those from the AD
group. Samples from the control group were collected in a dif-
ferent site than those from the diseased groups (HIV+ and AD).
In addition, there are several difficulties in the measurement of
Aβ levels in body fluids. Low Aβ concentrations in blood, for
example, require sensitive and reliable laboratory assays. Aβ
measurements are sometimes variable and imprecise measure-
ments vary between studies and laboratories, indicating that stan-
dardization of both preanalytical and analytical procedures is
essential (Molinuevo et al. 2013). In regard to blood Aβ mea-
surements, contradicting results have been reached by using dif-
ferent detectionmethods or research designs (Toledo et al. 2013).
The positive points of this study are that, to our knowledge, this is
the first study on blood Aβ isoforms in PLWH. Also, most
published studies on aging biomarkers from HIV populations
only involve HIV-1 subtype B; this is the first study including
participants with HIV-1 subtype C. Consequently, this study will
contribute to the understanding of the pathophysiology of HIV
infection in blood and the CNS, and the impact of HIV-1 genetic
diversity in HIV-related metabolic changes.

We conclude that there was impact of HIV infection on
blood amyloidal metabolism in a subtype-dependent way,
with differences between subtypes B and C. However, it does
not appear that measurement of blood Aß isoforms will be
useful as a biomarker of HIV-associated dementia, as no cor-
relation between GDS and serum Aß biomarkers was found.
The differences between HIVand AD in the patterns of serum
Aβ isoforms suggested that HIV infection and AD may not
share some of samemechanisms of impairment; corroborating
the findings in CSF (de Almeida et al. 2018b). More studies
are necessary, to test the usefulness of blood Aβ biomarkers to
predict the development of HAND or the differential diagno-
sis with AD.
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