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Abstract A measurement of splitting scales, as defined by
the kT clustering algorithm, is presented for final states con-
taining a W boson produced in proton–proton collisions at a
centre-of-mass energy of 7 TeV. The measurement is based
on the full 2010 data sample corresponding to an integrated
luminosity of 36 pb−1 which was collected using the AT-
LAS detector at the CERN Large Hadron Collider. Clus-
ter splitting scales are measured in events containing W

bosons decaying to electrons or muons. The measurement
comprises the four hardest splitting scales in a kT cluster
sequence of the hadronic activity accompanying the W bo-
son, and ratios of these splitting scales. Backgrounds such
as multi-jet and top-quark-pair production are subtracted
and the results are corrected for detector effects. Predictions
from various Monte Carlo event generators at particle level
are compared to the data. Overall, reasonable agreement is
found with all generators, but larger deviations between the
predictions and the data are evident in the soft regions of the
splitting scales.

1 Introduction

The CERN Large Hadron Collider (LHC), in addition to be-
ing a discovery machine, produces a wealth of data suitable
for studies of the strong interaction. Due to the strongly in-
teracting partons in the initial state and the large phase space
available, final states often include hard jets arising from
QCD bremsstrahlung. Discovery signals, on the other hand,
often contain jets from quarks produced in electroweak in-
teractions. A robust understanding of QCD-initiated pro-
cesses in measurement and theory is necessary in order to
distinguish such signals from backgrounds.

One critical background for searches is the W + jets pro-
cess in the leptonic decay mode, which provides a large
amount of missing transverse momentum together with jets

� e-mail: atlas.publications@cern.ch

and a lepton. This process is a testing ground for recent
progress in QCD calculations, e.g. at fixed order [1, 2] or in
combination with resummation [3–5], and it has been mea-
sured using many observables at both the Tevatron [6, 7] and
the LHC [8–14].

In this paper the kT jet finding algorithm [15, 16] is em-
ployed for a measurement of differential distributions of
the kT splitting scales in W + jets events. These measure-
ments aim to provide results which can be interpreted partic-
ularly well in a theoretical context and improve the theoret-
ical modelling of QCD effects. The measurement was per-
formed independently in the electron (W → eν) and muon
(W → μν) final states. Backgrounds such as multi-jet and
top-quark pair production were subtracted and results were
corrected for detector effects. The resulting data distribu-
tions are compared to predictions from various Monte Carlo
event generators at particle level.

After an outline of the measurement in this section, the
data analysis and event selection are summarised in Sect. 2.
The Monte Carlo (MC) simulations used for theory compar-
isons are described in Sect. 3. Distributions at the detector
level are displayed in Sect. 4. The procedure used to correct
these to the particle level before any detector effects is out-
lined in Sect. 5 together with a weighting technique used to
maximise the statistical power available, whilst minimising
the systematic uncertainty arising from pileup. The evalua-
tion of the systematic uncertainties is summarised in Sect. 6,
and the results are shown in Sect. 7, followed by the conclu-
sions in Sect. 8.

1.1 Definition of kT splitting scales

The kT jet algorithm is a sequential recombination algo-
rithm. Its splitting scales are determined by clustering ob-
jects together according to their distance from each other.
The inclusive kT algorithm uses the following distance defi-
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nition [15, 16]:

dij = min
(
p2

Ti , p
2
Tj

)�R2
ij

R2
,

�R2
ij = (yi − yj )

2 + (φi − φj )
2,

diB = p2
Ti ,

(1)

where the transverse momentum pT, rapidity y and az-
imuthal angle φ of the input objects are labelled with an
index corresponding to the ith and j th momentum in the in-
put configuration, and B denotes a beam. These momenta
can be determined using energy deposits in the calorime-
ter at the detector level, or hadrons at the particle level in
Monte Carlo simulation. The R parameter was chosen to be
R = 0.6 in this paper, which is an intermediate choice be-
tween small values R ≈ 0.2, whose narrow width minimizes
the impact of pileup and the underlying event, and R ≈ 1.0,
whose large width efficiently collects radiation.

The clustering from the set of input momenta proceeds
along the following lines:

1. Calculate dij and diB for all i and j from the input mo-
menta according to Eq. (1).

2. Find their minimum:
(a) If the minimum is a dij , combine i and j into

a single momentum in the list of input momenta:
pij = pi + pj

(b) If the minimum is a diB , remove i from the input
momenta and declare it to be a jet.

3. Return to step 1 or stop when no particle remains.

The observables measured are defined as the smallest of
the square roots of the dij and diB variables (

√
dij ,

√
diB )

found at each step in the clustering sequence. To simplify
the notation they are commonly referred to as the splitting
scales

√
dk , which stand for the minima that occur when the

input list proceeds from k + 1 to k momenta by clustering
and removing in each step. For example,

√
d0 is found from

the last step in the clustering sequence and reduces to the
transverse momentum of the highest-pT jet.

Figure 1 schematically displays the clustering sequence
derived from an original input configuration of three objects
labelled p1, p2, p3 in the presence of beams B1 and B2. In
the first clustering step, where three objects are grouped into
two (denoted 3 → 2), the minimal splitting scale is found
between momenta p2 and p3, leading to d2 = d23. In the
second step (2 → 1), the momentum p1 is closest to the
beam, and thus is removed and declared a jet at the scale
d1 = d1B = p2

T1. Ultimately, the third clustering (1 → 0) has
only the beam distance of the combined input p2,3 remain-
ing, leading to a scale of d0 = d(23)B = p2

T,(23)
.

Fig. 1 Illustration of the kT clustering sequence starting from the orig-
inal input configuration (three objects p1, p2, p3, and beams B1, B2).
At each step, k + 1 objects are merged to k

1.2 Features of the observables

An important feature of these observables is their separation
into two regions: a “hard” one with

√
dk � 20 GeV which

is dominated by perturbative QCD effects, and a “soft” one
in which more phenomenological modelling aspects such as
hadronisation and multiple partonic interactions may exert
substantial influence on theory predictions. The number of
events in the hard region for high k is naturally low in the
data sample analysed for this measurement. Thus for statis-
tical reasons values of 0 ≤ k ≤ 3 are considered in this pub-
lication. No explicit jet requirement is imposed in the event
selection.



Eur. Phys. J. C (2013) 73:2432 Page 3 of 30

In addition to the observables mentioned above, it is also
interesting to study ratios of consecutive clustering values,√

dk+1/dk , where some experimental uncertainty cancella-
tions occur, as discussed in Sect. 6. Of particular interest
is the region where

√
dk+1/dk → 1, as it probes events

with subsequent emissions at similar scales. Those events
could be challenging to describe correctly for parton shower
generators without matrix element corrections. The split-
ting scale ratio amounts to a normalisation of the splitting
scale to the scale of the QCD activity in the “underlying
process”, i.e. after the clustering. To reduce the influence of
non-perturbative effects, each ratio observable

√
dk+1/dk is

measured with events satisfying
√

dk > 20 GeV.
The central idea underlying this measurement is that the

measure of the kT algorithm corresponds relatively well to
the singularity structure of QCD. To illustrate this, the small-
angle limit of the squared kT measure is given in terms of
the angle θij between two momenta i and j , and the energy
corresponding to the softer momentum, Ei , by Ref. [15]:

p2
Ti�R2

ij � E2
i θ

2
ij (2)

p2
Ti � E2

i θ2
iB, (3)

while the splitting probability for a final-state branching into
partons i and j evaluates to

dPij→i,j

dEidθij

∼ 1

min(Ei,Ej )θij

(4)

in the collinear limit [17].
From a comparison of Eqs. (2) and (4) it can be seen that

each step of the kT algorithm identifies the parton pair which
would be the most likely to have been produced by QCD
interactions. In that sense, this clustering sequence mimicks
the reversal of the QCD evolution.

In contrast the anti-kt [18] algorithm cannot be used in
the same way: its distance measure replaces all p2

T by p−2
T .

So even though collinear branchings are still clustered first,
the same is not true for soft emissions anymore. Thus the
splitting structure within the anti-kt algorithm must be con-
structed via the kT splitting algorithm [19].

Just like QCD matrix elements, the kT splitting scales
provide a unified view of initial- and final-state radiation.
Through the combination of the distance to the beams and
the relative distance of objects to each other, the

√
dk distri-

butions contain information about both the pT spectra and
the substructure of jets.

1.3 Existing predictions and measurements

The kT splittings and related distributions have attracted the
attention of theorists, in W → �ν and similar final states.
They can be resummed analytically at next-to-leading-
logarithm accuracy as demonstrated for the example of

jet production by QCD processes in hadron collisions in
Refs. [20, 21]. The ratio observable y23 defined by the au-
thors is closely related to the ratio observables

√
dk+1/dk

in this analysis. Other theoretical studies may be found in
Refs. [22, 23].

Experimentally, these kinds of observables were mea-
sured at LEP [24–26] using the e+e− (Durham) kT algo-
rithm. Their theoretical features (resummability) were used
in Refs. [27, 28] to determine αs with high precision. Re-
lated observables were also measured at HERA [29–32].

2 Data analysis

2.1 The ATLAS detector

The ATLAS detector [33] at the LHC covers nearly the en-
tire solid angle around the collision point. It consists of
an inner tracking detector surrounded by a thin supercon-
ducting solenoid, electromagnetic and hadronic calorime-
ters, and a muon spectrometer incorporating three large su-
perconducting toroid magnets.

The inner-detector system is immersed in a 2 T axial
magnetic field and provides charged particle tracking in the
range |η| < 2.5.1 The high-granularity silicon pixel detector
covers the vertex region and typically provides three mea-
surements per track. It is followed by the silicon microstrip
tracker which usually provides four two-dimensional mea-
surement points per track. These silicon detectors are com-
plemented by the transition radiation tracker, which con-
tributes to track reconstruction up to |η| = 2.0. The tran-
sition radiation tracker also provides electron identification
information based on the fraction of hits (typically 30 in to-
tal) above a higher energy-deposit threshold corresponding
to transition radiation.

The calorimeter system covers the pseudorapidity range
|η| < 4.9. Within the region |η| < 3.2, electromagnetic
calorimetry is provided by barrel and endcap high-granu-
larity lead/liquid-argon (LAr) calorimeters, with an addi-
tional thin LAr presampler covering |η| < 1.8 to correct
for energy loss in material upstream of the calorimeter.
Hadronic calorimetry is provided by a steel/scintillator-
tile calorimeter, segmented radially into three barrel struc-
tures within |η| < 1.7, and two copper/LAr hadronic endcap
calorimeters. The solid angle coverage is completed with
forward copper/LAr and tungsten/LAr calorimeter modules

1ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point (IP) in the centre of the detector and the z-
axis along the beam pipe. The x-axis points from the IP to the centre
of the LHC ring, and the y-axis points upward. Cylindrical coordinates
(r,φ) are used in the transverse plane, φ being the azimuthal angle
around the beam pipe. The pseudorapidity is defined in terms of the
angle θ as η = − ln tan(θ/2).
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optimised for electromagnetic and hadronic measurements
respectively.

The muon spectrometer comprises separate trigger and
high-precision tracking chambers measuring the deflection
of muons in a magnetic field generated by superconducting
air-core toroids. The precision chamber system covers the
region |η| < 2.7 with three layers of monitored drift tubes,
complemented by cathode strip chambers in the forward re-
gion, where the background is highest. The muon trigger
system covers the range |η| < 2.4 with resistive plate cham-
bers in the barrel, and thin gap chambers in the endcap re-
gions.

A three-level trigger system is used to select interesting
events [34]. The Level-1 trigger is implemented in hardware
and uses a subset of detector information to reduce the event
rate to a design value of at most 75 kHz. This is followed by
two software-based trigger levels which together reduce the
event rate to about 200 Hz.

2.2 Event selection

The selection of W events is based on the criteria described
in Refs. [13, 35] and summarised briefly below.

2.2.1 Data sample and trigger

The entire 2010 data sample at
√

s = 7 TeV was used,
corresponding to an integrated luminosity of approximately
36 pb−1. The 2010 data sample was chosen due to the low
pileup conditions during data taking, where the mean num-
ber of interactions per bunch crossing was at most 2.3 during
that period. In the W → μν analysis, the first few pb−1 were
excluded to restrict to a data sample of events recorded with
a uniform trigger configuration and optimal detector perfor-
mance.

Single-lepton triggers were used to retain W → �ν can-
didate events. For the electron channel a trigger threshold
of 14 GeV for early data-taking periods and 15 GeV for
later data-taking periods was applied. For the muon chan-
nel a trigger threshold of 13 GeV was applied. All relevant
detector components were required to be fully operational
during the data taking. Events with at least one reconstructed
interaction vertex within 200 mm of the interaction point in
the z direction and having at least three associated tracks
were considered. The number of reconstructed vertices re-
flects the pileup conditions and, in both channels, was used
to reweight the MC simulation to improve its modelling of
the pileup conditions observed in data. The number of recon-
structed vertices was also used to estimate the uncertainty
due to possible mismodelling of the pileup.

2.2.2 Electron selection

Clusters formed from energy depositions in the electromag-
netic calorimeter were required to have matched tracks, with

the further requirement that the cluster shapes are consistent
with electromagnetic showers initiated by electrons. On top
of the tight identification criteria, a calorimeter-based iso-
lation requirement for the electron was applied to further
reduce the multi-jet background. Additional requirements
were applied to remove electrons falling into calorimeter
regions with non-operational LAr readout. The kinematic
requirements on the electron candidates included a trans-
verse momentum requirement p�

T > 20 GeV and pseudo-
rapidity |η�| < 2.47 with removal of the transition region
1.37 < |η�| < 1.52 between the calorimeter modules. Ex-
actly one of these selected electrons was required for the
W → eν selection. In constructing the kT cluster sequence,
clusters of calorimeter cells included in a reconstructed jet
within �R = 0.3 of the electron candidate were removed
from the input configuration.

2.2.3 Muon selection

Muon candidates were required to have tracks reconstructed
in both the muon spectrometer and inner detector, with p�

T
above 20 GeV and pseudorapidity |η�| < 2.4. Requirements
on the number of hits used to reconstruct the track in the in-
ner detector were applied, and the muon’s point of closest
approach to the primary vertex was required to be displaced
in z by less than 10 mm. Track-based isolation requirements
were also imposed on the reconstructed muon. At least one
muon was required for the W → μν selection. To retain con-
sistency with the acceptance in the electron channel, when
constructing the kT cluster sequence, clusters of calorimeter
cells falling close to the muon candidate were removed from
the input configuration as in the electron selection.

2.2.4 Selection of W candidate events and construction
of observables

The W → �ν event selection required that the magnitude
of the missing transverse momentum, Emiss

T [36], be greater
than 25 GeV. The reconstructed transverse mass obtained
from the lepton transverse momentum �p�

T and �Emiss
T vectors

was required to fulfill mW
T =

√
2(p�

TEmiss
T − �p�

T · �Emiss
T ) >

40 GeV. No requirements were made with respect to the
number of reconstructed jets in the event.

The observables defined in Sect. 1.1 were constructed
using calorimeter energy clusters within a pseudorapidity
range of |ηcl| < 4.9. The clusters were seeded by calorime-
ter cells with energies at least 4σ above the noise level. The
seeds were then iteratively extended by including all neigh-
bouring cells with energies at least 2σ above the noise level.
The cell clustering was finalised by the inclusion of the outer
perimeter cells around the cluster. The so-called topological
clusters that resulted were calibrated to the hadronic energy
scale [37, 38], by applying weights to account for calorime-
ter non-compensation, energy lost upstream of the calorime-
ters and noise threshold effects.
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2.3 Background treatment

The contributions of electroweak backgrounds (Z → ��,
W → τν and diboson production), as well as t t and single-
top-quark production, to both channels were estimated using
the MC simulation. The absolute normalisation was derived
using the total theoretical cross sections and corrected using
the acceptance and efficiency losses of the event selection.
The shape and normalisation of the distributions of various
observables for the multi-jet background were determined
using data-driven methods in both analysis channels. For the
W → eν selection, the background shape was obtained from
data by reversing certain calorimeter-based electron identifi-
cation criteria to produce a multi-jet-enriched sample. Sim-
ilarly, to estimate the multi-jet contribution to W → μν,
the background shape was obtained from data by inverting
the requirements on the muon transverse impact parameter
and its significance. These multi-jet enriched samples pro-
vided the shapes of the distributions of multi-jet background
observables. The normalisation of the multi-jet background
was determined by fitting a linear combination of the multi-
jet and leptonic Emiss

T shapes to the observed Emiss
T distribu-

tion, following the procedures described in Refs. [13, 35].
The total background was thus estimated to be 5 % of the
signal for the W → eν analysis, with the largest contribution
arising from multi-jet production. For the W → μν analysis,
the total background is 9 % of the signal and is dominated
by the Z → �� process. At large splitting scales, top quark
pair production becomes the dominant contribution in both
channels.

3 Monte Carlo simulations

All detector-level studies and the extraction of particle-
level distributions involved two signal MC generators,
ALPGEN + HERWIG and SHERPA. ALPGEN v2.13 [39], a
matrix-element (ME) generator, was interfaced to HERWIG

v6.510 [40] for parton showering (PS) and hadronisation,
and to JIMMY v4.31 [41] for multiple parton interactions.
The MLM [22] matching scheme was used to combine W -
boson production samples having up to five partons with
the parton shower, with the matching scale set at 20 GeV.
SHERPA v1.3.1 [42] was used to generate an alternative sig-
nal sample of events with W + jets, using a ME + PS merg-
ing approach [23] to prevent double counting from the par-
ton shower, and extending the original CKKW method [43]
by taking into account truncated shower emissions. Up to
five partons were generated in the ME and the matching
scale was set to 30 GeV.

The single-top-quark background events were gener-
ated at next-to-leading-order (NLO) accuracy using the
MC@NLO v3.3.1 [44] generator. MC@NLO was interfaced
to HERWIG and JIMMY. The POWHEG v1.01 [45] generator,
interfaced to PYTHIA6 v6.421 [46], was used to simulate the

t t̄ background. The background from diboson production
was generated using HERWIG. Backgrounds from inclusive
Z production were simulated using PYTHIA6.

Three sets of parton density functions (PDFs) were used
in these MC samples: CTEQ6L1 [47] for the ALPGEN

samples and the parton showering and underlying event in
the POWHEG samples interfaced to PYTHIA6; MRST 2007
LO∗ [48] for PYTHIA6 and HERWIG; and CTEQ6.6M [49]
for MC@NLO, SHERPA, and the NLO matrix element cal-
culations in POWHEG. The underlying event tunes were
AUET1 [50] for the HERWIG, ALPGEN, and MC@NLO

samples, and AMBT1 [51] for the PYTHIA6 and POWHEG

samples. The samples generated with SHERPA used the de-
fault underlying event tune.

Each generated event was passed through the standard
ATLAS detector simulation [52], based on GEANT4 [53].
The MC events were reconstructed and analysed using the
same software chain as applied to the data. The resulting
MC predictions for the samples were normalised to their re-
spective theoretical cross sections calculated at NLO [13],
with the exception of the W and Z samples which were nor-
malised to NNLO [54], and the multi-jet background which
was normalised to a value extracted from the data as is de-
scribed in Sect. 2.

At the particle level, some additional W + jets NLO
MC generators were compared to the final results. The
POWHEG [45, 55] samples were matched to PYTHIA6
v6.425 or PYTHIA8 v8.165 [56] for parton showering
and hadronisation, while another sample was generated
with MC@NLO v4.06 [44] using HERWIG v6.520.2. The
SHERPA MENLOPS sample used SHERPA v1.4.1 with its
built-in MENLOPS method [4], allowing an NLO + PS
matched sample for inclusive W production [57] to be
merged with LO matrix elements for a W boson and up
to five partons using a matching scale at 20 GeV. All these
NLO samples were generated with the CT10 PDF set [58].

The MC@NLO, POWHEG and ALPGEN + HERWIG sam-
ples were supplemented with a simulation of QED final-
state radiation using PHOTOS v2.15.4 [59] and tau decays
using TAUOLA v27feb06 [60]. The SHERPA samples in-
cluded QED final-state radiation in a different resummation
approach [61] and a built-in tau decay algorithm.

4 Detector-level comparisons of Monte Carlo to data

The observed and expected detector-level distributions for√
d0 in the electron and muon channels are shown in Fig. 2,

where the MC signal predictions are provided by ALP-
GEN + HERWIG normalised to NNLO predictions [54]. The
W -boson kinematic distributions are shown in detail in
Refs. [13, 35]. The corresponding plots for

√
d1,

√
d2 and√

d3 can be found Figs. 9, 10 and 11 in Appendix A.1. Fig-
ure 3 shows the ratio of the second-hardest to the hardest
splitting scale in each event. Again, the sub-leading ratio
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Fig. 2 Uncorrected splitting
scale

√
d0 for events passing the

W → eν (left) and W → μν

(right) selection requirements.
The distributions from the data
(markers) are compared with the
predicted signal from the MC
simulation, provided by
ALPGEN + HERWIG and
normalised to the NNLO
prediction. In addition, physics
backgrounds, also shown, have
been added in proportion to the
predictions from the MC
simulation. The ratio between
the expectation and the data is
shown in the lower plot. The
error bars shown on the data are
statistical only

Fig. 3 Uncorrected ratio√
d1/d0 for events passing the

W → eν (left) and W → μν

(right) selection requirements.
The distributions from the data
(markers) are compared with the
predicted signal from the MC
simulation, provided by
ALPGEN + HERWIG and
normalised to the NNLO
prediction. In addition, physics
backgrounds, also shown, have
been added in proportion to the
predictions from the MC
simulation. The ratio between
the expectation and the data is
shown in the lower plot. The
error bars shown on the data are
statistical only

distributions at detector level are displayed in Appendix A.1.
For the hardest clustering in the event,

√
d0, generally good

agreement between the ALPGEN + HERWIG MC predic-
tions and the data is observed. The agreement is similar for
both the electron and the muon channels.

5 Particle-level extraction

5.1 Corrections for detector effects

After subtraction of backgrounds, the detector level distribu-
tions were corrected (“unfolded”) to the final-state particle

level separately for the two channels, taking into account
the effects of pileup and detector response. The unfolding
was performed with the RooUnfold [62] package, using a
Bayesian algorithm[63], in which Bayes theorem was used
to derive the particle-level distributions from the detector-
level distributions, over three iterations. The input for the
algorithm at particle and detector level was taken from the
ALPGEN + HERWIG sample as a default. Both the MC sim-
ulation and data-driven methods were used to demonstrate
that this iterative Bayesian method was able to recover the
corresponding particle-level distributions.
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The selection requirements applied to the event at the par-
ticle level are:

• p�
T > 20 GeV (� = electron e or muon μ)

• |ηe| < 2.47 excluding 1.37 < |ηe| < 1.52
• |ημ| < 2.4
• pν

T,lead > 25 GeV (νlead = highest-pT neutrino in event)

• mW
T > 40 GeV

Only events with exactly one lepton passing the require-
ments were taken into account. Leptons were defined to in-
clude all photon radiation within a cone of �R = 0.1 around
the final-state lepton as suggested in Ref. [64]. All lep-
ton requirements were calculated from these combined ob-
jects. The observables defined in Sect. 1.1 were constructed
using all stable particles within a pseudorapidity range of
|ηcl| < 4.9 with lifetime greater than 10 ps, excluding the
lepton and neutrino originating from the W boson decay.

5.2 Weighted combination

To reduce the impact of imperfect MC modelling of pileup
effects, whilst optimising the statistical power available, two
different event samples were defined and utilised as follows.

– “Low-pileup sample”: exactly one reconstructed vertex
was required in data. The response matrices used to un-
fold the data and the background templates were also con-
structed from events where exactly one reconstructed ver-
tex was required.

– “High-pileup sample”: as above, with the difference that
the number of reconstructed vertices was required to be
greater than one.

At large
√

dk , the statistical uncertainty of the high-
pileup sample is smaller than that in the low-pileup sample.
However, at small

√
dk , the systematic pileup uncertainty of

the low-pileup sample is smaller than that in the high-pileup
sample. To minimise the overall uncertainty on the measure-
ment, the distributions were combined as follows. For each
bin of the final distribution, the best estimate N was calcu-
lated from the bin contents N1, N2 of the distributions in the
low-pileup and high-pileup samples respectively, as

N = N1 · W1 + N2 · W2

W1 + W2
. (5)

The weights Wi for each sample were constructed from the
inverse of the sum in quadrature of the statistical and pileup
uncertainties on the low-pileup and the high-pileup samples.
The evaluation of the pileup uncertainty on each sample is
described in detail in Sect. 6. The statistical uncertainty of
the final distribution was calculated assuming no correlation
between the two samples.

6 Systematic uncertainties

To evaluate the impact of a particular source of systematic
uncertainty at the particle level, the observable considered
was varied within its uncertainty, the response matrix was
recalculated taking this variation into account, and the new
response matrix was used to unfold the data. The fractional
shift in the resulting unfolded data from nominal was inter-
preted as the systematic uncertainty due to that particular
effect. The separate sources of uncertainty are described in
the following.

The relative systematic uncertainty on the energy scale of
the topological clusters was evaluated from a combination of
MC studies and single-pion response measurements [36] to
be 1 ± a × (1 + b/pcl

T ) where pcl
T represents the transverse

momentum of each cluster. The constants a and b were de-
termined to be a = 3 (10) % when |ηcl| < 3.2 (|ηcl| > 3.2),
and b = 1.2 GeV. A shift of the cluster energy results in
a shift of the distributions to higher or lower values. The
uncertainty due to the cluster energy scale was thus eval-
uated separately for the low-pileup and high-pileup distri-
butions and combined in a weighted linear sum. The un-
certainty ranges from 5 % to 55 % for the splitting scales√

dk and from 2 % to 85 % for the
√

dk+1/dk ratio distribu-
tions.

The lepton trigger, identification and reconstruction ef-
ficiencies as well as the lepton energy scale and resolution
were measured in data using Z → �� events via the tag-and-
probe method, as described in Refs. [13, 35, 65]. The uncer-
tainty is less than 3 % for the splitting scales

√
dk and less

than 1 % for the
√

dk+1/dk ratio distributions.
The systematic uncertainty due to possible MC mis-

modelling of pileup was evaluated separately on the low-
pileup and high-pileup distributions. The impact of pileup
mismodelling on the low-pileup sample was evaluated by
varying the requirements on the z-displacement of the in-
teraction vertex and the number of associated tracks. An
additional uncertainty accounts for the possible mismod-
elling of contributions from adjacent bunch-crossings. It
was evaluated by comparing two different data-taking peri-
ods: one in which proton bunches were arranged in trains,
and the other without bunch trains. The impact of pileup
mismodelling on the high-pileup sample was evaluated as
the fractional difference between the particle-level mea-
surements for the low-pileup and the high-pileup events,
with the statistical uncertainty subtracted in quadrature. The
uncertainty ranges from 1 % to 30 % for the splitting
scales

√
dk and is largest for small splitting scales. For the√

dk+1/dk ratio distributions the uncertainty ranges from
1 % to 15 %.

The uncertainty inherent in the unfolding procedure it-
self was estimated by reweighting the response matrix in
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the unfolding such that ALPGEN + HERWIG would accu-
rately model the distribution under consideration as mea-
sured from data at reconstruction level. A second variation
was performed by creating a response matrix from SHERPA.
The larger effect, per bin, obtained from these two estimates
of the systematic uncertainty was taken as the systematic un-
certainty due to unfolding. The uncertainty ranges between
5 % and 55 % for the splitting scales

√
dk , being largest for

small values of
√

dk and in the vicinity of
√

dk ≈ 15 GeV.
For the

√
dk+1/dk ratio distributions the uncertainty ranges

between 1 % and 35 %.
The systematic uncertainties on the electroweak and top-

quark background normalisations were assigned using the
theoretical uncertainty on the cross section of each process
under consideration. The uncertainty on the multi-jet back-
ground normalisation was obtained by varying the meth-
ods used for extracting this value from data, as described
in Refs. [13, 35]. An additional uncertainty was included on
the shape of the multi-jet contribution, which was derived
by comparing data-driven and simulation estimates of this
background contribution. The uncertainty ranges from 0.5 %

to 15 % for the splitting scales
√

dk and from 1 % to 20 %
for the

√
dk+1/dk ratio distributions.

The magnitudes of the separate uncertainties for the hard-
est and fourth-hardest splittings are summarised in Figs. 4
and 5, where the statistical errors are also shown. Other
cases are available in Appendix A.2. The cluster energy
scale, pileup, and the unfolding procedure are the dominant
sources of uncertainty in both the electron and muon chan-
nels.

For each uncertainty an error band was calculated, where
the upper limit is defined as the variation leading to larger
values compared to the nominal distribution and the lower
limit as the variation leading to lower values. To avoid un-
derestimating the uncertainty in bins where statistical fluc-
tuations were large, if both variations led to a shift in the
same direction the larger difference with respect to the nom-
inal distribution was taken as a symmetric uncertainty. Cor-
relations between separate sources of systematic uncertain-
ties and between different bins of the distributions were not
considered. The quadratic sum of all systematic uncertain-
ties considered above was taken to be the overall systematic

Fig. 4 Summary of the systematic uncertainties on the measured particle-level distributions for
√

d0 (top) and
√

d3 (bottom) in the W → eν (left)
and W → μν (right) channels
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Fig. 5 Summary of the systematic uncertainties on the measured particle-level ratios for
√

d1/d0 (top) and
√

d3/d2 (bottom) in the W → eν (left)
and W → μν (right) channels

uncertainty on the distributions. The overall systematic un-
certainty ranges between 10 % and 60 % for the

√
dk dis-

tributions, being largest for small splitting scales and in the
vicinity of

√
dk ≈ 15 GeV. The uncertainty is smallest in

the vicinity of
√

dk ≈ 10 GeV as this corresponds to the
peak of the distribution and is thus less sensitive to scale
uncertainties. For the

√
dk+1/dk ratio distributions the over-

all systematic uncertainty ranges between 5 % and 95 %,
being largest for small values of the ratios. The statistical
uncertainty on the unfolded measurement was combined in
quadrature with the systematic uncertainty to obtain the total
uncertainty.

7 Results

The different MC simulations in Sect. 3 were compared to
the data using Rivet [66]. The FastJet library [19] was used
to construct the kT cluster sequence. Figures 6 and 7 display
the

√
dk distributions, which have been individually norma-

lised to unity to allow for shape comparisons.

The ALPGEN + HERWIG MC simulation generally agrees
very well with the data, as already seen in the detector-level
distributions. The discrepancies between the MC and data
distributions are covered by the systematic and statistical
uncertainties. The SHERPA predictions are almost identical
to those from ALPGEN + HERWIG in the hard region of the
distributions,

√
dk > 20 GeV, where tree-level matrix ele-

ments are applied.
All three generators based on NLO + PS methods,

i.e. MC@NLO, POWHEG + PYTHIA6 and POWHEG +
PYTHIA8, predict significantly less hard activity than that
found in data. As expected, this effect is strongest for higher
multiplicities k ≥ 1, where in NLO + PS generators no ma-
trix elements are used for the description of the QCD emis-
sion. It is interesting that they also do not describe well the
hard tail of the hardest splitting scale

√
d0, even though

they are nominally at the same leading-order accuracy as
ALPGEN + HERWIG and SHERPA in this distribution. This
may be due to differences in higher-multiplicity parton pro-
cesses becoming relevant in that region or different scale
choices in the real-emission matrix element or a combina-
tion of both.
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Fig. 6 Distributions of
√

d0 (top) and
√

d1 (bottom) in the W → eν

(left) and W → μν (right) channels, shown at particle level. The data
(markers) are compared to the predictions from various MC genera-

tors, and the shaded bands represent the quadrature sum of systematic
and statistical uncertainties on each bin. The histograms have been nor-
malised to unity

In the intermediate region of 10–20 GeV, both SHERPA

and MC@NLO show a similar excess over data in all
√

dk .
For SHERPA it is compensated by an undershoot in the very
soft region, while for MC@NLO the soft region is described
well. POWHEG + PYTHIA6 and POWHEG + PYTHIA8 also
agree with data in the soft region, and their deviations
from each other due to the differences in parton shower-
ing and hadronisation lie within the experimental uncertain-
ties. They give identical predictions for the hard region of√

d0, where both of them should be dominated by an identi-
cal real-emission matrix element. This confirms the expecta-
tion that the hard region is dominated by perturbative effects
while resummation and non-perturbative effects have a large
influence in the softer regions.

The distributions of the ratios
√

dk+1/dk are displayed
in Fig. 8. These probe the probability for a QCD emis-
sion of hardness

√
dk+1 given a previous emission of scale√

dk . The HERWIG parton shower used with both ALPGEN

and MC@NLO gives the best description of these observ-
ables. None of the ratio observables are expected to be dom-
inated by perturbative effects, since the bulk of the events
are collected near the lower threshold at

√
dk = 20 GeV,

and
√

dk+1 is always softer than
√

dk . The POWHEG predic-
tions, particularly for the case where POWHEG is matched
to PYTHIA6, deviate from the data in the ratio of the hardest
and second-hardest clustering,

√
d1/d0. This is the only ra-

tio observable that directly probes the NLO + PS matching
in POWHEG and MC@NLO.
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Fig. 7 Distributions of
√

d2 (top) and
√

d3 (bottom) in the W → eν

(left) and W → μν (right) channels, shown at particle level. The data
(markers) are compared to the predictions from various MC genera-

tors, and the shaded bands represent the quadrature sum of systematic
and statistical uncertainties on each bin. The histograms have been nor-
malised to unity

8 Conclusions

A first measurement of the kT cluster splitting scales in W

boson production at a hadron–hadron collider has been pre-
sented. The measurement was performed using the 2010
data sample from pp collisions at

√
s = 7 TeV collected

with the ATLAS detector at the LHC. The data correspond
to approximately 36 pb−1 in both the electron and muon W -
decay channels.

Results are presented for the four hardest splitting scales
in a kT cluster sequence, and ratios of these splitting scales.
Backgrounds were subtracted and the results were corrected
for detector effects to allow a comparison to different gener-
ator predictions at particle level. A weighted combination

was performed to optimise the precision of the measure-
ment. The dominant systematic uncertainties on the mea-
surements originate from the cluster energy scale, pileup and
the unfolding procedure.

The degree of agreement between various Monte Carlo
simulations with the data varies strongly for different re-
gions of the observables. The hard tails of the distributions
are significantly better described by the multi-leg genera-
tors ALPGEN + HERWIG and SHERPA, which include exact
tree-level matrix elements, than by the NLO+PS generators
MC@NLO and POWHEG. This also holds true for the hard-
est clustering,

√
d0, even though it is formally predicted at

the same QCD leading-order accuracy by all of these gener-
ators.
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Fig. 8 Distributions of the
√

dk+1/dk ratio distributions for W → eν

(left) and W → μν (right) in the data after correcting to particle level
(marker) in comparison with various MC generators as described in

the text. The shaded bands represent the quadrature sum of system-
atic and statistical uncertainties on each bin. The histograms have been
normalised to unity



Eur. Phys. J. C (2013) 73:2432 Page 13 of 30

In the soft regions of the splitting scales, larger varia-
tions between all generators become evident. The genera-
tors based on the HERWIG parton shower provide a good
description of the data, while the SHERPA and POWHEG +
PYTHIA predictions do not reproduce the soft regions of the
measurement well.

With this discriminating power the data thus test the re-
summation shape generated by parton showers and the ex-
tent to which the shower accuracy is preserved by the dif-
ferent merging and matching methods used in these Monte
Carlo simulations.
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Appendix

A.1 Additional detector-level comparisons

Fig. 9 Uncorrected splitting scales
√

d1 (left),
√

d2 (middle) and
√

d3
(right) for events passing the W → eν (top) and W → μν (bottom)
selection requirements. The distributions from the data (markers) are
compared with the predicted signal from the MC simulation, provided
by ALPGEN + HERWIG and normalised to the NNLO prediction. In

addition, physics backgrounds, also shown, have been added in pro-
portion to the predictions from the MC simulation. The ratio between
the expectation and the data is shown in the lower plot. The error bars
shown on the data are statistical only
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Fig. 10 Uncorrected ratios
√

d2/d1 (left) and
√

d3/d2 (right) for
events passing the W → eν (top) and W → μν (bottom) selection
requirements. The distributions from the data (markers) are compared
with the predicted signal from the MC simulation, provided by ALP-
GEN + HERWIG and normalised to the NNLO prediction. In addition,

physics backgrounds, also shown, have been added in proportion to the
predictions from the MC simulation. The ratio between the expectation
and the data is shown in the lower plot. The error bars shown on the
data are statistical only
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A.2 Additional summaries of systematic uncertainties

Fig. 11 Summary of the systematic uncertainties on the measured particle-level distributions for
√

d1 (top) and
√

d2 (middle) and the ratio
√

d2/d1
(bottom) in the W → eν (left) and W → μν (right) channels
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fredini99, L. Manhaes de Andrade Filho24b, J.A. Manjarres Ramos136, A. Mann98, P.M. Manning137, A. Manousakis-
Katsikakis9, B. Mansoulie136, R. Mantifel85, A. Mapelli30, L. Mapelli30, L. March167, J.F. Marchand29, F. Marchese133a,133b,
G. Marchiori78, M. Marcisovsky125, C.P. Marino169, F. Marroquim24a, Z. Marshall30, L.F. Marti17, S. Marti-Garcia167,
B. Martin30, B. Martin88, J.P. Martin93, T.A. Martin18, V.J. Martin46, B. Martin dit Latour49, H. Martinez136, M. Mar-
tinez12, V. Martinez Outschoorn57, S. Martin-Haugh149, A.C. Martyniuk169, M. Marx82, F. Marzano132a, A. Marzin111,
L. Masetti81, T. Mashimo155, R. Mashinistov94, J. Masik82, A.L. Maslennikov107, I. Massa20a,20b, N. Massol5, P. Mas-
trandrea148, A. Mastroberardino37a,37b, T. Masubuchi155, H. Matsunaga155, T. Matsushita66, P. Mättig175, S. Mättig42,
C. Mattravers118,d, J. Maurer83, S.J. Maxfield73, D.A. Maximov107,h, R. Mazini151, M. Mazur21, L. Mazzaferro133a,133b,
M. Mazzanti89a, J. Mc Donald85, S.P. Mc Kee87, A. McCarn165, R.L. McCarthy148, T.G. McCarthy29, N.A. McCub-
bin129, K.W. McFarlane56,*, J.A. Mcfayden139, G. Mchedlidze51b, T. Mclaughlan18, S.J. McMahon129, R.A. McPher-
son169,k, A. Meade84, J. Mechnich105, M. Mechtel175, M. Medinnis42, S. Meehan31, R. Meera-Lebbai111, T. Meguro116,
S. Mehlhase36, A. Mehta73, K. Meier58a, C. Meineck98, B. Meirose79, C. Melachrinos31, B.R. Mellado Garcia173,
F. Meloni89a,89b, L. Mendoza Navas162, Z. Meng151,w, A. Mengarelli20a,20b, S. Menke99, E. Meoni161, K.M. Mercurio57,
N. Meric78, P. Mermod49, L. Merola102a,102b, C. Meroni89a, F.S. Merritt31, H. Merritt109, A. Messina30,x, J. Metcalfe25,
A.S. Mete163, C. Meyer81, C. Meyer31, J-P. Meyer136, J. Meyer30, J. Meyer54, S. Michal30, L. Micu26a, R.P. Middleton129,
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