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ABSTRACT OF THE DISSERATION 

Neuromorphic Nanowire Networks as a Physical Substrate for In-Materio Reservoir Computing   

by 

Sam Lilak 

Doctor of Philosophy in Chemistry 

University of California, Los Angeles, 2022 

Professor James K. Gimzewski, Chair 

 

The past decade has seen a sharp rise in the development and manufacture of different 

hardware frameworks to meet the ever-rising computational demands of the machine learning 

software community. Conventional computing architectures require massive server farms and 

consume large quantities of energy to perform these tasks. Consequently, this necessitates that end 

users must connect wirelessly to powerful servers capable of performing complex machine 

learning tasks. The aforementioned shortcomings have sparked a pursuit for the development of 

energy efficient hardware capable of successfully performing complex computational tasks offline. 

Self-organized nanowire arrays of memristive materials, known as atomic switch networks, 

are the collection of billions of individual memristive elements randomly intertwined as an 

interconnected network of electrically active junctions. The resulting morphology of the network 

has a number of attractive neuromorphic properties and emergent phenomena which yield an 

intrinsic capacity to perform complex computational tasks on a physical substrate. Under an 

external stimulus these networks exhibit a dynamic, non-equilibrium modulation of conductance 
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across the entire network. The resultant non-linear dynamics are capable of being utilized as both 

logic and memory components operating in parallel through a technique called in-materio 

computing. This form of computing enables a physical substrate to be utilized as a dynamic 

reservoir capable of transforming a simple external stimulus into higher dimensional non-linear 

outputs. The output layer is then mapped onto a desired computational task through a technique 

called reservoir computing (RC). Silver selenide (Ag2Se) and silver iodide-based (AgI) nanowire 

networks were characterized and implicated as efficient memristive materials for RC applications. 

Both materials were successfully employed within an RC framework for waveform regression, 

spoken digit recognition and handwritten digit classification tasks.   

Conventional techniques for nanoscale manufacturing have also begun to hit their limit of 

resolution, garnering interest in developing new techniques capable of manufacturing materials 

with molecular and/or atomic precision. Atomically precise manufacturing (APM) aims to 

implement scanning probe microscopy techniques in conjunction with tailor made molecular tools 

as a powerful system capable of realizing atomic scale 3D printing. The preliminary state of APM 

is explored using molecular tools for the abstraction/donation of individual atoms.  
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Sometimes I think it is a great mistake to have matter that can think and feel. It complains so. By 

the same token, though, I suppose that boulders and mountains and moons could be accused of 

being a little too phlegmatic. – Kurt Vonnegut 
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Machine learning applications have become ubiquitous in everyday life and are readily 

accessible to your average individual1,2. There is currently a large demand for increasing the 

efficiency of these machine learning algorithms coupled with the desire for them to process ever 

increasing sizes of datasets3. Consequently, this has imposed a massive computational burden on 

the training costs and modern compute architectures have not been able to keep pace with the steep 

rise in demand3. Current computing architectures which are employed for machine learning tasks 

require access to prohibitively expensive large arrays of supercomputers which consume massive 

amounts of energy to achieve higher accuracies. Because end users don’t have access to such 

hardware, this necessitates that they have access to a wireless connection in order to carry out their 

desired machine learning tasks which consequently cannot be utilized in remote environments. Of 

even more concern is the sharp rise in computing power demands which have skyrocketed within 

the last decade3. These demands have sparked environmental concerns and recently debates on 

policy considerations that should be accounted for in curbing machine learning’s carbon 

footprint4,5. It has been postulated that at the current rate of machine learning trends that the 

ImageNet dataset could be classified with an error rate of just 5%. While this sounds impressive it 

would come at the cost of requiring 1018 billion floating-point operations which would generate 

an estimated 10 billion pounds of CO2, roughly the same amount generated by the entirety of New 

York City in one month without green energy sources6.  

To fully understand the current limitations of machine learning algorithms we need to 

consider the hardware employed to carry out these operations. Prior to 2012, most machine 

learning tasks employed the central processing unit of computers to drive the algorithms3. Graphics 

processing units (GPU) emerged as an efficient alternative due to its parallel processing 

capabilities at the cost of higher energy consumption7. Since the advent of GPU driven algorithms 
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in 2012, the computing power demands have doubled every 3.4 months. That rate has further risen 

since 2016 to doubling every 2 months3,8. This is a stark contrast to the pre-2012 era of Moore’s 

Law in which computing power demands had doubled every 2 years since 1985 and it’s likely that 

these power demands will continue to increase at an accelerated rate if new hardware frameworks 

aren’t developed. Current computing architectures are based on a Von Neumann design which is 

comprised of separate processing and memory elements. The separation of hardware elements 

requires hardware for bussing information between the two. Consequently, even the most 

efficiently optimized processing units are going to be limited by the rate at which information can 

be bused between it and the memory component. This fault in modern architectures is called the 

Von Neumann bottleneck and it has sparked the search for a new hardware element capable of 

performing both memory and logic operations in parallel9–11.  

Memristive frameworks are one such promising candidate to achieve parallel computing. 

A memristive material exhibits a dynamic, non-linear response to an input stimulus as shown in 

Figure 112,13. This unique, dynamic response has the intrinsic capacity to be harnessed as both logic 

and memory elements. Logic elements are typically represented as a binary 0 or 1 which could 

correspond to the low (OFF) and high (ON) conductance states respectively. However, memristive 

materials exhibit quantized conductance states and the most advanced realization of a multibit 

memristive material has exhibited 92 stable bits14. This is similar to the interest in using qbits in 

quantum computing to represent non-binary bits and is a highly desired property for different 

algorithmic approaches15. Likewise, the ON state usually has a specific lifetime or memory 

component to it. This fading memory can exist as both volatile and non-volatile states dependent 

on the input stimulus as an analogy to short- and long-term memory respectively16,17. 
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Figure 1. The non-linear current-voltage response of a silver selenide nanowire network biased by a 1 V, 1 Hz 

triangle wave.  

 

The first physical realization of a memristive material was achieved in 2008 at Hewlett-

Packard by Stanley Williams13,18. Since that time there has been an explosion in interest in 

developing new memristive materials and hardware frameworks for them to be implemented in19. 

The two common architectures explored to date are crossbar arrays and atomic switch networks20–

22. Crossbar arrays aim to leverage individual memristive elements with absolute control over 

every single element in the array which is analogous to tuning the individual synaptic weights in 

modern artificial neural network (ANN) algorithms implemented in software23,24. Atomic switch 

networks (ASN) on the other hand aim to leverage the self-organization of randomly intertwined 

memristive elements and the behavior that emerges as a consequence25,26. While there is merit to 

the utilization of both architectures, this work focuses on the ASN framework as a suitable 

substrate for parallel computing. 
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Modern ANNs typically require the weighting of every synaptic connection within the 

algorithm (or crossbar) with each weight adding to the computational burden on the system27. A 

modified ANN approach called reservoir computing employs a dynamic reservoir algorithmically 

which transforms simple input signals into a higher dimensional phase space28. This dynamic 

transformation generates a complex output layer which is the only layer used for weighting in RC, 

greatly reducing the computational training costs29.  

Historically the reservoirs for RC applications were all created algorithmically in software 

(Figure 2.), however recent advances began employing physical reservoirs such as liquids and 

memristive materials29,30. Given the memristive properties of materials within an ASN framework, 

the ASN is implicated as a suitable physical substrate with the intrinsic capacity to perform 

computational tasks31–33. Leveraging the innate ability for the ASN to perform computations 

physically, or in-materio, further reduces the training costs of modern software-based RC 

frameworks. The effectiveness of the ASN as an in-materio RC substrate has been demonstrated 

through the successful classification of spoken and handwritten digit tasks31. 
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Figure 2. Schematic representation of software-based RC. A simple input layer (blue) is fed into a dynamic reservoir 

(green) which transforms the input into a higher dimensional space. Connections between green nodes would 

normally be weighted in a traditional ANN. Through RC, only the output layer (red) is weighted and used for linear 

regression-based training. 

In addition to the desire for new compute frameworks to address the aforementioned 

limitations of modern computing architectures, there is a great demand to improve the limits of 

resolution when manufacturing these materials. Conventional techniques for manufacturing 

nanoscale materials like extreme ultraviolet lithography have begun to reach their fundamental 

limits, though research in the field to surpass these limits is still ongoing34,35. Scanning probe 

microscopes are a promising form of instrumentation for additive manufacturing techniques 

capable of achieving atomic scale resolution. Through a technique known as atomically precise 

manufacturing this work explores the proof of concept process of using tailor made molecular tools 

in conjunction with a scanning tunneling microscope (STM) to fabricate atomically resolved 3D 

structures.   
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Neuromorphic Atomic  
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2.1 Material Development and History 

Interest in atomic switch networks originated from Masa Aono’s seminal paper on the 

quantized conductance observed in an isolated silver sulfide (Ag2S) nanowire in 200536. This work 

ultimately led to a collaboration with James K. Gimzewski and together they fabricated the first 

brain inspired, neuromorphic silver sulfide atomic switch networks in 201220. These networks 

consequently demonstrated an array of fascinating dynamic electrical properties which were 

further explored. These networks exhibited short- and long-term memory properties in addition to 

higher harmonic generation from the non-linear transformations of simple input signals20,37. The 

ASN was first implicated as a suitable substrate for RC a year later via simulations38. In 2016 a 

physical network successfully realized waveform generation from a simple sinusoidal input signal 

in an RC framework33. It has since been implicated as a suitable substrate for additional RC 

applications including temporal logic operations, spoken digit classification and handwritten digit 

classification techniques31,32.  

Exploration of new classes of materials in addition to Ag2S began in 2018 as a proof of 

concept that this framework could be expanded upon (Figure 3.). Silver iodide nanowires emerged 

as a promising candidate which could easily be implemented into the existing underlying 

architecture with minimal modifications. In the 2021 they were successfully utilized in an RC 

framework for spoken digit recognition tasks using publicly available audio data31. Recent works 

have explored silver selenide as a robust, stable switching material inspired by commercially 

available single element memristors. Like its predecessors, Ag2Se networks have been 

implemented as a suitable RC framework for spoken digit and handwritten digit classification 

tasks39.     
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Figure 3. Schematic overview of the history of ASN material development overtime (scale bars of 50 µm, 20 µm 

and 5 µm from left to right). 

 

2.2 Device Fabrication 

Custom 16 electrode multielectrode arrays (MEA) were fabricated in a clean room 

environment on 4” silicon wafers. The wafers were first thermally passivated with a 500 nm oxide 

layer. The 4x4 grid of electrodes was patterned using optical lithography in conjunction with an 

nLOF-2020 photoresist. Platinum electrodes were then deposited using electron beam (e-beam) 

evaporation of Cr(5nm)/Pt(150nm) with chromium acting as a wetting layer to facilitate better 

adhesion to the wafer. Chemical liftoff was carried out overnight using n-methyl-2-pyrrolidone 

(NMP) as a solvent. The inner electrodes were spaced 200 µm apart with diameters of 30 or 50 

µm. A 400 nm layer of SU-8 was then spin coated onto the wafer and lithographically patterned 

to make point contacts on the inner electrodes. The SU-8 was hard baked to create a permanent, 

insoluble layer. Finally, 5 µm diameter grids spaced 5 µm apart were then lithographically 

patterned over the inner electrodes using optical lithography and an nLOF-2020 photoresist. These 
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grids were used to deposit 300 nm of copper via e-beam lithography to serve as seed sites for the 

electroless growth of silver nanowires. Chemical liftoff of copper was also carried out overnight 

with NMP as a solvent. Each 4” wafer yielded 16 suitable MEAs for the growth or drop casting of 

nanowires. 

2.3 Silver Iodide Synthesis 

Silver nanowires were synthesized through an electroless deposition technique40. The 16 

electrode MEA was immersed in a 20 mL 50 mM AgNO3 solution for 30 minutes in which the 

copper grid was optically converted to a lustrous silver as shown in equation 1. 

 

Resistance measurements were then carried out to ensure sufficient conductivity 

(connectivity) between all possible electrode permutations. Silver iodide nanowires were then 

synthesized by suspending the silver nanowire chip over an iodine pellet in an ultrahigh purity 

nitrogen atmosphere. The iodine pellet was heated to 30o C for 2 minutes and the exposure to the 

iodine gas immediately resulted in a visually apparent tarnishing of the silver nanowires as shown 

in equation 2.  

 

The formation of silver iodide was confirmed by using transparent thin films of silver 

sputter coated onto a glass microscope slide for ultraviolet-visible (UV-Vis) spectroscopy and X-

ray photoelectron spectroscopy (XPS) experiments as shown in Figure 4. The absorbance 

maximum at 424 nm is in good agreement with previously reported AgI spectra41,42. XPS revealed 

the presence of iodine 3d5/2 and 3d3/2 at 620 eV and 631 eV respectively which is consistent with 

the presence of I- in AgI materials43.  
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Figure 4. UV-Vis spectra (left) show a maximum at 424 nm confirming the presence of AgI formation from Ag thin 

films. The broad peak of the Ag control is a surface Plasmon from small Ag island in the thin film. XPS spectra of 

iodine’s core levels 3d5/2 (620 ev) and 3d3/2 (631 eV) post-iodization are shown and indicative of I- in AgI crystals. 

 

2.4 Silver Selenide Synthesis 

The preparation of silver selenide nanowires was performed through the synthesis of 

selenium nanowires which were drop cast onto an MEA without SU-8 derived point contacts to 

serve as a template for silver selenide. Selenium nanoparticles were first prepared in a 

hydrothermal reaction in which a 5.96 mM Na2SeO3 and 1.67 * 10-1
 M glucose solution was 

prepared in 20 mL fresh DI water44. The solution was then heated to 180o C for 30 minutes. During 

the nanoparticle formation process the clear solution turned to a turbid brick red color indicating 

the reduction of the selenite ion into α-Se nanoparticles as shown in equation 3.  

 

The α-Se nanoparticles were then purified by centrifuging 1.5 mL aliquots at 13.4 kRPM 

for 10 minutes with fresh DI water and subsequent removal of the supernatant in triplicate. The 

purified red pellet was then suspended in 1.5 mL of ethylene glycol and sonicated for 45 seconds 
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to agitate the solution and initiate the nanowire growth process. The ethylene glycol solution is 

then stored in the dark for a minimum of 3 days during which time a solid-solution-solid 

precipitation reaction begins to occur. The α-Se is partially soluble in ethylene glycol solutions 

and upon saturation begins to precipitate onto the colloidal nanoparticles acting as seed sites which 

yields trigonal nanowires45 as shown in equation 4 and the scanning electron microscope (SEM) 

images in Figure 5.  

 

 

 

Figure 5. SEM images confirming the morphology of ethylene glycol synthesized nanowires  

(both scale bars are 5 µm).   

Ag2Se nanowires were also prepared using isopropanol and their morphology is shown 

both in SEM and transmission electron microscope (TEM) images in Figure 6. These nanowires 

are then drop cast onto the inner electrodes of an MEA and the formation of silver selenide was 

carried out by immersing the MEA into a 30 mL 50 mM AgNO3 solution for 3 hours (equation 5).  
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The formation of ß-silver selenide was confirmed by X-ray diffraction (XRD) and energy-

dispersive X-ray spectroscopy (EDS) techniques also shown in Figure 6.  

 

Figure 6. (a) SEM image showing morphology of the isopropanol nanowires (b) XRD confirms the initial presence 

of Se (blue line) and the conversion to Ag2Se (orange line) through a templated reaction (c) TEM image of a single 

nanowire and its corresponding diffraction pattern (d) EDS analysis confirms a 2:1 Ag to Se stoichiometric ratio in 

the Ag2Se nanowires. 
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2.5 In-Materio Reservoir Computing 

There are four criteria that a physical reservoir must meet to be suitable for RC 

applications29: high dimensionality, non-linearity, fading memory and a separation property. High 

dimensionality is essential for its capability to map a simple input into a higher dimensional space 

which enables the readout of spatiotemporal dependencies from the parent signal when employing 

prediction tasks. Non-linearity is essential for the classification of systems that are conventionally 

only linearly separable46. The non-linear transformations of input signals enable those complex 

systems to become linearly separable with the XOR task as prime example32,47. The network must 

also exhibit a fading memory of previous inputs. Fading memory enables temporal correlations of 

recently input data without the system retaining memory of all past inputs. This is essential when 

analyzing time-series data with short-term dependencies. Finally, the network must have a 

separation property such that different reservoir signals can be separated into different classes. A 

modified schematic detailing in-materio RC in contrast to software based RC is shown in figure 7.  

 

 

Figure 7. (Left) Optical image of the 16 electrode MEA with an electrolessly grown silver nanowire network (scale 

bar = 4 mm). (Right) Schematic of in-materio RC in which a simple input signal (blue) is non-linearly transformed 

throughout a dynamic network and weighting is only performed at the readout layer (red, scale bar = 600 µm). 
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Previous Ag2S based ASNs have successfully exhibited the necessary criteria for RC and 

have been implemented into RC frameworks for both temporal logic operations and waveform 

regression31–33. Logic operations and waveform regression tasks were used as benchmarks to 

assess the suitability AgI and Ag2Se based networks as substrates for in-materio RC tasks.  

For logic operations, the XOR task was chosen due to the fact that its outputs are not linearly 

separable. This is of interest because many machine learning classifiers rely on the linear 

separation of different features to be isolated and classified. Successfully implementing the XOR 

task would implicate the networks as being capable of a higher order degree of separation. To 

perform the XOR task, two unipolar, arbitrary square wave pulses were fed into the network. The 

voltage pulse corresponds to a bit value of 1 and the 0 V regions correspond to a bit value of 0. 

Different voltages and frequencies were explored to discern the optimal conditions for RC. Linear 

regression was performed on the input layer (I), the output layer (N) and both layers combined 

(full reservoir R) to discern the accuracy of the XOR task. The non-temporal XOR task was able 

to achieve 100% accuracy with high fidelity at lower frequencies as shown in Table 1.  
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Table 1. Non-temporal accuracy of the XOR task in an AgI network with voltage pulses of 0.3 V and 3 V at input 

frequencies of 10 Hz and 5 kHz. Both the output layer (N) and full reservoir (R) show a significant improvement in 

accuracy over regressing the input layer (I) alone. 

 

 

Because RC relies on the manipulation of time-series data, it is paramount for the network 

to exhibit memory properties in addition to the non-linear dynamics. To assess the network’s 

memory capabilities, recall of previous inputs was explored as shown in Figure 8. The lower 

frequency 10 Hz series of experiments only had a pattern length of 5, meaning only 4 possible bits 

of memory could be recalled. Despite this, the network demonstrated 100% accurate recall of 

previous XOR inputs in that limited dataset. The 5 kHz signal performed demonstrably worse, 

likely due to capacitive effects present in the AgI networks. At higher frequencies the non-linear 

behavior of the system becomes dominated by capacitance and is no longer effective as a dynamic 

reservoir. These results implicate the AgI networks as a suitable substrate for in-materio RC based 

applications.  
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Figure 8. Recall of the XOR input signal τ bits in the past demonstrates 100% accuracy at lower 10 Hz frequencies, 

though accuracy quickly degrades at higher frequencies due to being dominated by capacitive effects.  

 

Waveform regression tasks were carried out on the Ag2Se networks to assess their 

suitability for RC applications. To do so, a simple 1 V, 11 Hz sinusoidal wave was fed into the 

network with two readout electrodes. Several different waveforms were learned through ridge 

regression as shown in Figure 9. The high accuracy of cosine and triangle waves is attributed to 

their similarities to the parent signal and are considered easier tasks. The lower performance of the 

sawtooth and square waves is a consequence of their relative complexity and higher frequency 

components innate to those signals. Nonetheless the incredibly high accuracy of the cosine and 

triangle waves exceeds the literature values previously reported in the Ag2S networks and further 

implicated Ag2Se as yet another suitable material for in-materio RC.  
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Figure 9. Waveform regression accuracies of the Ag2Se networks demonstrates over 98.6% accuracy in the 

relatively easier cosine and triangle wave tasks while still offering some notable degree of accuracy in the 

significantly more difficult sawtooth and square wave tasks. 
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3.1 Hardware Overview 

Electrical measurements were performed with National Instruments (NI) hardware using a 

NI-6368 direct acquisition (DAQ) in conjunction with a NI-4141 source measurement unit (SMU) 

and a PXI-2523 16x32 switch matrix. The DAQ is a 16-bit analog to digital converter (ADC) that 

also acts as 16-bit digital to analog converter (DAC) capable of both measuring and driving voltage 

signals simultaneously. The ADC was used to measure voltage traces at all 16 electrodes in 

addition to the DAC sourcing voltage signals as desired. Wiring from the DAQ to the device was 

routed through shielded connector boxes (SCB-64) to reduce electrical noise in the system. The 

SMU was employed as a sink used to measure current at the desired electrode. Signals could be 

routed as desired through any possible electrode permutation through the switch matrix. Wires are 

delivered from the switch matrix into a custom 3D printed sample holder capable of interfacing 

with our MEAs as shown in Figure 10. All of the PXI(e) cards are connected to a PXIe-1078 

chassis. The PXIe chassis is highly modular in nature and can accommodate numerous additional 

forms of hardware as needed.  
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Figure 10. Visualization of wiring from SMUs and DAQs routed into the switch matrix (white wires, left) and wires 

then routed into the custom sample holder (black wires, right) which uses gold push pin electrodes to lock the holder 

firmly against the MEA’s electrodes. 

 

3.2 LabVIEW Software Suite Overview 

A custom made LabVIEW software suite was programmed to interface with the NI 

hardware. This program enables users to work with a graphical user interface with which they can 

programmatically design experiments to suit their custom needs. The system is capable of 

outputting standard AC and DC waveforms in addition to spike pulses and variable noise based 

signals. Additionally, users can create arbitrary waveforms from external worksheets. This 

technique will be essential for the pre-processing of classification data to be fed into the network 

in the preceding chapters. The software also displays current, voltage and current-voltage traces to 
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give the user a real-time visualization of the dynamics at play within the network. The 16x32 

switch matrix enables users to route a signals through any possible electrode permutation as 

desired. Users are also able to save large switch matrix layouts for performing long-term 

experiments over days or even weeks. The system is fully automated and once all parameters have 

been tuned to the users liking they can set it and forget until the software terminates the experiment. 

A representative graphical interface of a sinusoidal wave being driven through the network is 

shown in Figure 11. 

 

 

Figure 11. Overview of the LabVIEW software suite’s graphical interface sourcing a 3 V 1 Hz sinusoidal wave into 

electrode 0 and the sink designated to electrode 5. 
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3.3 Electrical Properties of Neuromorphic Networks 

Representative voltage-voltage responses of AgI and Ag2Se networks are demonstrated in 

Figures 12 and 13 respectively. Each system bears its own unique non-linear switching properties. 

This distribution of various non-linear dynamics across the networks is an essential component for 

RC based in-materio computing in which the outputs should each bear their own level of unique 

complexity. The AgI networks notably have a prominent capacitive element in addition to their 

non-linearity which created even more uniquely distributed dynamics across the networks. 

 

Figure 12. Lissajous plots highlighting the non-linear dynamics emergent within the AgI network under a 1 V, 7 Hz 

triangle wave sourced to electrode 3 and sink set to electrode 0. The capacitive properties of the network can clearly 

be observed in addition to its memristive non-linearity. 
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Figure 13. Lissajous plots highlighting the non-linear dynamics emergent within the Ag2Se networks under a 2 V, 1 

Hz triangle wave sourced to electrode 5 and sink set to electrode 6. The Ag2Se exhibits more traditional memristive 

behavior distributed throughout the network though channels highlighted in red appear to be Ohmic.  
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4.1 Modern Speech Recognition Techniques 

Speech recognition is one of many fundamental tasks employed in the field of machine 

learning based natural language processing and has become ubiquitous in everyday technology48. 

Common approaches to speech recognition use algorithms to segment sections of raw audio data 

and bin them into hidden Markov models using a Markov chain approach49. Markov models are 

frequently used for processing stochastic time series data which assume that future data will be 

generated independent of the previous inputs49. While this technique has become highly effective, 

it has done so at the cost of becoming increasingly computationally expensive3.  

Emerging neural network models have demonstrated that they may be better suited to 

handle larger data sets at a reduced computational cost and are a promising candidate for the 

processing of dynamic time-series data50. Despite the improvements ANNs offer over Markov 

models, they continue to elicit a high computational demand. Implementing the ASN as a dynamic 

reservoir for RC offers the potential to alleviate the computational burden through in-materio 

computing. Herein, two classes of materials are explored within an ASN framework as potential 

candidates for in-materio RC spoken digit classification tasks.   

4.2 Silver Iodide Network Results 

The AgI networks were capable of achieving 95% accuracy of spoken digit classification 

across all input voltage ranges when taking linear regression of both the input and out layers (the 

full reservoir) as shown in Figure 14. Linear regression of the input layer alone provided worse 

accuracy with increasing points for regression as a consequence of overfitting. This further 

highlights the benefits of employing a dynamic reservoir to improve the efficiency of machine 
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learning tasks. The systems accuracy of classifying tasks across a wide range of voltages, notably 

lower ones, is a further benefit towards lower power in-materio compute frameworks. 

  

 

Figure 14. (Left) Reservoir’s spoken digit accuracy of 95% across all possible voltage ranges of the DAC. (Right) 

Regression of the input layer shows overfitting with increasing points for regression while the reservoirs accuracy 

improves.  

 

Spoken digit classification tasks were successfully realized in the AgI network through RC. 

Raw audio samples were provided from the free spoken digit database (FSDD), however the task 

was not performed on the raw audio data. The audio signal (Figure 15.) was pre-processed into 

Mel-frequency cepstrum coefficients (MFCC) which represent short-term power spectrums of the 

raw signal. This technique generates a non-linear representation of the frequencies that better 

approximate the auditory response in mammals and is commonly employed in the field of language 

processing51,52.  
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Figure 15. Raw audio data of speaker Jackson saying the digit zero. 

 

The raw audio was first zero-padded and then segmented into a series of 25 ms windows 

spaced 10 ms apart. Each window was parametrized into 13 MFCCs for a total of 1,287 MFCCs. 

The array of MFCCs was flattened such that the lowest frequency coefficients were introduced 

into the ASN first followed by the highest as a voltage time series sampled at 1 kHz (Figure 16.). 

A sink was designated and all remaining 14 electrodes were left floating and their voltage outputs 

recorded. The recorded voltage traces were used for linear regression to discern which digit had 

been spoken. From the FSDD dataset speakers Jackson and Theo were selected having spoken the 

digits 0, 1 and 2. Two recordings of each digit from each speaker were employed. In addition to 

the 14 output electrodes, the input voltage trace was also used as a time series for regression. 
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Figure 16. (Top) The MFCC converted signal of the raw audio data as voltage time-series to be fed into the network. 

(Bottom) Readout layer response of all 14 electrodes in response to the stimulus shows unique dynamic 

transformations of the parent signal. 

 

4.3 Silver Selenide Network Results  

The accuracy of Ag2Se was surveyed across 10 digits and across 6 speakers to survey a 

wider range of datasets as shown in Figure 17. As with the AgI networks linear regression was 

performed on both the input signal (without device) and with the input and out signals (with 

device). An accuracy of 85% was achieved across all 10 digits spoke 50 times and across 6 

different speakers saying the same digit with the output layer providing a noticeable improvement 

over regression of the input layer alone.  
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Figure 17. (Left) The Ag2Se network’s accuracy was 85% across all ten digits from a single speaker with equal 

accuracy in recalling information of previous inputs.  The F1 score represents the mean harmonics between recall 

and precision. (Right) Accuracies of 82% were achieved in classifying a single spoken digit across six speakers with 

comparable recall and precision. 

 

As with the AgI networks, raw audio data was provided from the FSDD. Fast Fourier 

transforms of the raw audio data were carried out as the pre-processing step and their 

corresponding frequency values were converted to their time dependent values. Only two output 

layers were used in contrast to the 14 in AgI networks. 80% of the output layer was used for 

training tasks with the remaining 20% utilized for the prediction tasks. Unlike the AgI network, a 

support vector machine was used as the classifier during the learning phase. The successful 

classification of spoken digits across different material networks strongly implicates neuromorphic 

nanowires as a viable, low power in-materio substrate for both existing and emergent machine 

learning frameworks. 
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5.1 Modern Image Recognition Techniques  

The current state of image recognition techniques typically employs convolutional neural 

networks (CNNs)53,54. The CNNs are a modified class of ANNs which apply a technique called 

convolution in their layers in addition to the commonly used matrix multiplications in ANNs.  

CNNs are currently the state-of-the-art technique for image recognition tasks, however they rely 

on GPU based hardware to perform these complex tasks55. Consequently, the more complex the 

image recognition task is, higher computational demand and power consumption arise. The 

Modified National Institute of Standards and Technology (MNIST) handwritten digit database has 

become a standard, publicly available dataset which acts a benchmark task for image recognition 

techniques56,57. The MNIST database comprises 60,000 training images and 10,000 testing images. 

Each handwritten digit occupies a 28x28 pixel square grid with pixel intensity values ranging from 

0 (dark) to 255 (bright). This dataset was used to assess the viability of employing a neuromorphic, 

in-materio RC framework for image recognition techniques. As with spoken digit classification 

tasks, this work implicates the utilization of an Ag2Se network as an energy efficient alternative to 

CNN based classification techniques. 

5.2 Silver Selenide Network MNIST Results 

The Ag2Se networks were able to successfully achieve 92% accuracy in classifying 

handwritten digits from MNIST as shown in Figure 18. Interestingly, despite having 14 potential 

readout layers, accuracy saturated after using 7 of the total readouts (Figure 18.) suggesting that 

these networks don’t necessarily require scaling up to improve efficiency. Through a self-

supervised online learning technique, the network was able to reach its maximum accuracy through 

the training of only 2000 digits. This reduction in training dataset sizes is another example of the 
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optimal properties which emerge from in-materio RC and further suggests larger size MEAs may 

not be a requirement for achieving higher accuracies. 

 

Figure 18. (Left) Accuracy of MNIST classification as a function of number of digits used for training and 

readout layers used demonstrates 92% accuracy after 2000 digits. (Right) Maximum accuracy of MNIST as a 

function of readout layers used shows a saturation of accuracy with 7 electrodes.  

 

By further probing the dynamics of the Ag2Se network, a technique for assessing the 

quality of each electrode was derived through examining the mutual information (MI) between 

readout electrodes. Mutual information is a dimensionless quantity that measures a relationship 

between two variables which have been sampled at the same time. For a given readout electrode, 

there exists a degree of MI between it and other readout electrode responses to a given input digit. 

The MI between each individual readout relative to an input digit is shown to be directly correlated 

with its classification accuracy. By taking the mean of this MI between electrodes, it becomes 

apparent that electrodes with a higher degree of MI exhibit higher accuracies as shown in Figure 

19. The MI between electrodes directly maps onto the dynamics of the networks as cab seen by 

the MI’s relationship the Lissajous plots of all readout electrodes. 
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Figure 19. (Left) MI between all electrodes showing heat map regions of higher mean mutual information. 

A linear increase in accuracy as a function of MI can be observed from individual readout electrodes suggesting 

more dynamic channels have better accuracies. (Right) The Lissajous plots exhibiting non-linear dynamics from 

Figure X. appear to directly map onto regions of higher MI. 

 

To introduce the handwritten digits into the network, the 28x28 arrays are converted into a 

1x784 array of values ranging from 0-255. The pixel intensity values are then normalized to 

correspond to input voltages ranging from -X to +Y or from 0 to ± X (Figure 20.). These signals 

are then fed into the network 2000 digits at a time and sampled at 10 kHz with each digit 

corresponding to a 784 ms segment of the time-series. The non-linear dynamic responses in 

conjunction with memory of previous inputs can also be directly observed from the readout voltage 

responses of any given digit (Figure 20.). 
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Figure 20. (Top) Input voltage trace of the digit 5 with pixel intensities normalized to a range of 0 to 1 

volts. (Bottom) All 14 readout electrode’s voltage traces as a response to input digit 5. 

 

Unlike the spoken digit recognition tasks, this approach utilizes a shallow online learning 

technique on the output layers which requires only a single epoch to achieve high accuracies as 

shown in Equation 6. 

 

The sample space is denoted by the matrix Λ shown in equation 7 where each column (ai) 

represents a single sample comprising M features. A second matrix Y shown in equation 8 is 

employed for the labels corresponding to the samples with N representing the number of classes 

in the dataset. 
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This method uses Tapson’s modification of Greville’s iterative algorithm to compute a 

pseudoinverse58. This yields a self-supervised, online learning algorithm which generates a 

pseudoinverse solution from the linear system shown in equation 6. The solutions to the algorithm 

are constantly updated with each new sample making this a suitable method for real-time 

computing tasks.  

While this technique employs an algorithm that is traditionally more computationally 

expensive than linear regression, it only requires a single epoch to achieve 92% handwritten digit 

classification accuracy. This both implicates the networks as a suitable framework for in-materio 

RC and also as a potential hardware accelerator for software-based machine learning algorithms.  

The successful implementation of the ASN framework for hand written digit classification 

techniques further demonstrates that neuromorphic nanowires are a promising candidate to be 

implemented in more complex, emergent machine learning tasks while offering lower power 

consumption than traditional software-based algorithms which rely on von Neumann architectures. 

Further classes of memristive materials should be explored in the ASN framework as potential 

alternative candidates for optimizing in-materio based RC applications. 
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6.1 Overview of Critical Dynamics  

There is an abundance of collective systems in nature that demonstrate behaviors which 

appear to behave in an unpredictable manner differing from their individual elements59–61. Such a 

phenomenon is classified as emergent behavior which arises when properties of a collection of 

elements which cannot be predicated from any individual element in the system62. The observation 

of this anomaly has sparked a desire to discern the mechanisms responsible for these complex 

dynamics. One proposed mechanism of interest is that mammalian brains and other complex 

systems are exhibiting criticality63. This theory postulates that the collection of elements exists at 

a critical point in which they operate between disordered and ordered states analogous to a phase 

transition. Critical systems are interesting and unique in that they exhibit spatio-temporal 

interactions over very wide scale ranges. 

There are five fundamental properties which should be exhibited by a critical system. (i) A 

critical system should follow a power law relationship (equation 9) between its order and control 

parameters in addition to the size of the system. Power law scaling had previously thought to be a 

sole criterion for criticality, though that has since been challenged64,65. 

 

 (ii) There should be a finite size scaling of the order parameter’s susceptibility relative to 

its correlation length. (iii) There must exist a mathematical relationship between the exponents of 

the power-law across different parameters in a dynamic system66,67. (iv) The system should 

demonstrate evidence of shape collapse such that multiple events across varying scales exhibit 

similar properties66. (v) The control parameters of the system must be capable of tuning the system 
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into or out of critically dynamic regimes67. These notable criteria have become a major point of 

focus on recent experimental studies concerning critical systems68. 

It has been hypothesized that criticality is a driving factor in the emergent properties of 

neuromorphic nanowire networks. Characteristic properties of criticality had previously been 

observed in Ag2S networks26. Notably they have exhibited variable modulations in conductance 

over long time scales with power-law fittings of the networks power spectral density spanning 

over multiple decades of frequencies. Recent experiments with silver-polyvinylpyrrolidone based 

networks have also demonstrated that they exhibit properties of avalanche criticality69. The 

properties of the Ag2Se networks were also recently explored beyond their RC applications and 

implicated as an abiotic system for studying tunable critical dynamics. 

6.2 Critical Dynamics in Neuromorphic Ag2Se Networks  

The observation of memristive behavior is consistently exhibited by Ag2Se networks across 

numerous cycles (Figure 21.). Certain intervals throughout the network demonstrate the occasional 

presence of hard switching events which correspond to sharp, abrupt changes in conductance. 

Notably, each cycle exhibits its own unique non-linear response to the input signal as a 

consequence of its fading memory properties and the non-equilibrium dynamics inherent to the 

system. Through repeated cycles the current-voltage response of the network begins to occupy a 

localized phase-space. This property of the networks suggests that chaotic attractor dynamics are 

present within these dynamic frameworks and consequently, the noise inherent to this system is 

amplified and may even act as a driving force within the network69. Further experiments employing 

Lyapunoc exponent analysis are warranted to determine if these non-linear, dynamic responses are 

the result of an edge-of-chaos state.  
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Figure 21. Current-voltage response of the network under a 1 V, 1 Hz triangle wave exhibits characteristic 

memristive switching properties in addition to chaotic attractor dynamics as more cycles are fed into the network. 

(Left) Cycles 10-20. (Right) Cycles 1-100. 

 

 Going beyond the non-linear dynamics in response to an AC signal, the networks also 

exhibit a modulation of conductance under a DC stimulus across large time scales. The network’s 

unique response to a simple DC signal suggests that while the networks appear to approach a 

steady state, they never fully achieve a thermodynamic equilibrium. Current fluctuations in 

response to a DC signal often exhibit avalanches, or current fluctuations beyond a defined 

threshold of 5% of the mean. The power spectral density of these current traces exhibit a power-

law trend as can be observed in Figure 22.  
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Figure 22. (Left) Current time-series of the Ag2Se network stimulated under a 5 V DC bias for 10 hours still exhibits 

persistent conduction fluctuations from switching events. The inset shows regions in which the deviation in current 

exceeds a set 5% threshold (Right) Power-spectral density of the network and its power law fit (blue line). 

  

The avalanche events of the network under a DC bias are further probed and determined to 

fit within power-law scaling. The avalanches probability distributions were calculated as a function 

of size (S), avalanche duration (T) and the average avalanche size ⟨S⟩. The exponents of the 

maximum likelihood of a certain power-law were determined for P(S) and P(T) and were τs = 1.89 

± .002 and τT = 2.21 ± .04 respectively. The exponent of ⟨S(T)⟩ was calculated to be γ = 1.23 ± 

0.04 and is consistent with the predicted values for a crackling noise dynamic scaling relationship 

(Figure 23.). These properties confirm avalanche criticality within the network with the critical 

exponent γ = 1.23 differing from the power spectral density exponent β = 1.7 which further 

confirms the inhomogeneous nature of these neuromorphic networks. 
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Figure 23. Probability distributions (triangles) and power-law fitting of DC stimulated avalanches (line) from the 

current time series. (Left) Size of avalanches. (Middle) Duration of avalanches. (Right) Average avalanche size as a 

function of T.  

 

 The Ag2Se neuromorphic nanowire networks exhibit the requisite properties for avalanche 

criticality in addition to its intrinsic memristive properties. The observation of these properties 

implicate the ASN framework as an abiotic system which can be employed to study the properties 

of critical systems. Additionally, chaotic attractor dynamics have been observed to be present 

within the networks over large time scales spanning across days. The unique properties inherent 

to these networks warrants further investigations to discern how and why these critical properties 

may relate to the intrinsic computational capabilities of ASN frameworks. 
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7.1 History of 3D Printing Techniques  

The advent of 3D printing, a form of additive manufacturing, is still relatively new and was 

first proposed by Murray Leinster’s novel First Contact in 1945. It wasn’t until 26 years later when 

Teletype Corporation first invented inkjet technology in 1971 which was able to extract material 

through a nozzle70. This was the first rendition of printing technology as a whole and pioneered 

the development of modern day desktop printers. That same year, Johannes F. Gottwald patented 

the liquid metal recorder which would use melted wax driven through a nozzle to pave way towards 

the printing of materials other than inks71. The advent of this technology stagnated for a decade 

until Hideo Kodama filed for a patent in 1981 that envisioned using a photosensitive plastic which 

could harden in the presence of light72.  

A year later Raytheon filed a patent for the use of metal powders as a means of combining 

layers of materials. In 1984 the term 3D printing was first coined in a patent by Bill Masters where 

he foresaw the use of computer automated systems to drive 3D printing technology73. The same 

year Chuck Hull developed the first 3D printer dubbed the stereolithographic apparatus which 

greatly improved the throughput over cruder attempts to realize 3D printing and was 

commercialized in 198974. Unfortunately, this emerging technology was cost prohibitive and only 

industrial facilities could typically afford them. The next decade saw an explosion in patents filed 

for 3D printing technologies and various models of 3D printers were explored, though they were 

difficult to print with high fidelity75. It was in 1997 when the first metal materials were 3D printed 

by AeroMat through a technique called laser additive manufacturing in which a laser was 

employed to melt titanium alloy powders76. The Wake Forest Institute of Regenerative Medicine 

grew the first 3D printed organ, a bladder which was implanted into a human test subject in 199977. 

In 2005 RepRap was conceived as an open source initiative to develop more affordable 3D printers 
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and the first commercial printer was released in 2008 under the RepRap initiative78. It wasn’t until 

2009 that commercial products like the MakerBot Cupcake CNC and its successor the Thing-O-

Matic became more commonplace78. That same year saw the birth of online crowdfunding 

platforms which resulted in a steep rise in the development of these technologies as hobbyists and 

researchers alike began funding and fabricating newer printers like the Form 1 in 2021 or the 

Buccaneer in 201378. Two years later Cellink produced the first standardized, commercial 3D 

printer capable of using a seaweed based bio-ink for printing tissue cartilage and this technology 

is still utilized in modern day research79,80.  

Researchers have been meticulously studying the applications of 3D printing in parallel to 

their historical development as there is an insurmountable demand for the use 3D printers in the 

manufacture of biological specimens, metallic materials, electronic devices and other potential 

commercial materials81–84. 

7.2 3D Printing Techniques in Modern Manufacturing  

 The allure of being able to fabricate and manufacture materials with the utmost of freedom 

has garnered a large amount of interest within the industrial and medical communities. The idea 

that a machine could print an organ viable for transport, complex geometry-based components for 

spacecraft and even intricate concrete structures was once nothing short of science fiction. The 

continued research and development of 3D printing technologies has grown in parallel with 

researchers and manufacturers ever increasing demands85,86.   

As of 2019, the aerospace industry accounts for a whopping 18.2% of the additive 

manufacturing market87. This is a consequence of their high demand for materials which 

necessitate complex geometries to facilitate air flow and heat dissipation. Additionally, many of 
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the ceramic and alloy-based materials implemented into spacecraft are incredibly difficult to 

machine88. Recent advances have made the fabrication of metallic components easier, though 

ceramics and other materials derived from nanostructures still pose a notable difficulty due to the 

environments influence on finished products89. Current studies envision the realization of on-

demand fabrication of parts within a space ship in addition to the automated repairing of 

materials88.  

Likewise, the biomedical industry also must deal with the burden of trying to manufacture 

incredibly complex drugs and organs suitable for transplant into humans88,90. The desire to print 

organs is of notable interest as current transplant patients are required to wait for other human 

organ donors. Various human tissues have successfully been printed including skin tissues, livers 

and gall bladders88. However, vascular systems which facilitate blood flow have posed great 

difficulties in the 3D organ printing paradigm91. The successful realization of 3D printing 

techniques for the aforementioned applications necessitates the development of more rigid and 

precise tools which can be readily applied to both biological and inorganic frameworks. 

7.3 Towards Atomically Precise Manufacturing  

The first STM was developed by Gerd Binning and Heinrich Rohrer and it achieved 

molecular resolution of silicon atoms in 1981 and their first publication of surface images from 

CaIrSn4 (110) and Au(110) was released a year later92. The operating principle of STM takes 

advantage of quantum mechanics, specifically electron tunneling as a consequence of wave-

particle duality. Eight years after the first STM was developed, Don Eigler demonstrated that 

atoms could be manipulated laterally on a substrate. This was first demonstrated by the spelling of 

IBM out of 35 xenon atoms in 198993. In 1996 James K. Gimzewski created an operational abacus 
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using C60 molecules on a Cu(111) substrate94. In-situ polymerization has also performed as a 

means of chemical soldering in 2011, implicating the STM as an atomically resolved medium to 

facilitate chemical reactions95. A stop motion movie titled A Boy and His Atom was even created 

at IBM using carbon monoxide molecules which was released to the public in 2013. Recent 

advances in the automation of scanning probe microscopes has led to the development of atomic 

silicon logic gates in 201896. While the lateral manipulation of atoms and molecules has been 

repeatedly demonstrated throughout the years in conjunction with STM facilitating chemical 

reactions, to date there have been no successful techniques developed which are capable of also 

manipulating atoms in the Z direction to create 3D objects97.  

Atomically precise manufacturing aims to leverage scanning probe microscopy techniques 

to develop additive (or subtractive) manufacturing of 3D materials with atomic precision98. The 

realization of APM will require the development of surface bound molecular tools to act as additive 

and subtractive mediums. An ideal molecular tool should exhibit three key components. First, the 

molecule should rigidly adhere to the surface employed. This can be achieved by synthesizing 

tripodal legs onto a molecular framework. Second, the molecule should possess a rigid cage-like 

structure to host the legs, ideally in a tetrahedral symmetry such that a bridgehead position is 

available. Third, the bridgehead position of the molecular cage should contain a reactive headgroup 

which can be manipulated either electrochemically and/or mechanically. The headgroup will act 

as the essential defining element of any unique molecular tool. This headgroup should possess a 

chemically weak, reactive bond which can generate a surface bound radical. The radical should be 

tailored such that it will bind to the tip when they are brought into a close proximity together and 

the bond formed will be stronger than the bond to be broken. Based on the desired task this can be 

utilized to either abstract or donate atoms and molecules to or from the tip to the molecular tool.  
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Gold surfaces are commonly employed as a substrate for STM experiments and the 

characterization of molecules deposited onto its surface. Consequently, the packing and properties 

of thiol-based molecules have been extensively explored on single gold crystal surfaces99,100. 

Unlike most molecules which are weakly adsorbed to unreactive gold surfaces by van der Waals 

forces in STM, thiols are also capable of chemisorbing to unoccupied high energy sites101,102. This 

is a highly desirable property which can be leveraged when developing the “feet” of the molecular 

tool’s tripods and will be employed in the development of the tool’s anchoring properties. 

Adamantane cages are the simplest building blocks of diamond and nanodiamond 

structures103. They are comprised entirely of covalent hydrocarbon bonds and form a rigid, 

relatively inert cage structure. The rigid nature of this structure in conjunction with its tetrahedral 

symmetry implicate adamantane as a suitable candidate for the cage structure of the molecular 

tools. The tetrahedral symmetry enables the formation of tripodal legs with a bridgehead position 

vacant for the addition of the reactive headgroup and thiolated variants of these molecules have 

been extensively studied within STM experiments104.  

Carbon-halide bonds (other than fluorine) are relatively weak and easy to break. They also 

have a rich history of being used in substitution reactions within the field of organic chemistry105. 

Halides of particular interest are bromine and iodine as they form the weakest carbon-halide bonds 

and their bond enthalpies are lower than any other bonds present in the adamantane cage. A C-Br 

bond is selected for the bridgehead position to act as an abstraction tool.  

The electrochemical and/or mechanical manipulation of the molecule should enable the 

removal of bromine and the generation of a surface bound radical at the bridgehead position of the 

adamantane cage. This adamantane radical has been demonstrated to be stable at lower 
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temperatures (77 K) and unreactive to oxygen106. The atom to be abstracted from the STM tip will 

then be brought within close proximity of this radical and used to form a C-Au bond, breaking the 

Au-Au bonds present in the tip, ultimately extracting a single gold atom. With these properties in 

mind, the molecular tool 1-Bromo-3,5,7-tris(mercaptomethyl)adamantane (BATT) was 

synthesized and employed as abstraction tool (Figure 24.).  

 

 

 

 

Figure 24. Workflow for atomically resolved abstraction. (Left) Constant current regulation is turned off 

and the tip with defects is driven 300 pm towards the surface with an increased gap voltage of -3 V to generate a 

surface bound radical. (Middle) The tip defect is positioned over the surface bound radical and driven towards it 

without regulation. (Right) Simulations suggest upon reaching a distance of 3.2 Å the tip defect will jump from the 

tip to the surface bound radical, terminating it with the abstracted defect. 
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7.4 Preliminary Results of APM Experiments  

The packing of molecular tools can be observed in Figures 25-27, where submonolayer 

coverage shows the BATT preferentially sitting on the high energy kinks in the herringbones of 

the gold surface. The BATT molecules also decorate the entirety of atomic steps and all observed 

monolayers appeared to emerge from atomic steps.  

 

 

Figure 25. Zoomed out 150 nm scan showing both submonolayer and monolayer packing of the BATT molecules at 

78 K with monolayers emerging from BATT decorated atomic steps and individual molecules packing at the 

herringbone kinks (tunnel conditions It = 150 pA, Vgap = -850 mV).  



51 
 

 

Figure 26. Zoomed in 50 nm scan showing submonolayer coverage of BATT along herringbone kinks and packing 

along the atomic steps (tunnel conditions It = 200 pA, Vgap = -800 mV). 

 

 

Figure 27. (Left) 10 nm scan of the BATT shows its molecular packing in a monolayer (tunnel conditions I t = 200 

pA, Vgap = -1.3 V). (Right) FFT spectrum of the monolayer. 
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The debromination of the BATT was reproducibly carried out by changing the gap voltage 

of the system and Z driving the tip towards the apex of the molecule. The gap voltage is temporarily 

modified to -3 volts and the tip is driven 300 pm towards the molecule without current regulation 

to remove the bromine atoms. This approach leverages the electro-mechano breaking of a 

relatively weak C-Br bond in the BATT in conjunction with the relative stability of adamantane 

radicals.  

Experimental results directly align with theoretical calculations as can be seen in Figures 

28 and 29. While it is difficult to characterize surface bound radicals in an STM environment, 

theoretical calculations suggest that these electrochemical, mechanosynthetic approaches should 

yield highly reactive molecules for the abstraction or donation of desired atoms/molecules. Further 

experiments demonstrating the abstraction of atoms from the tip using the BATT molecules are 

warranted.  

 

 

Figure 28. (Top, left to right) Experimental sequential debromination of BATT molecules demonstrates the 

reproducible removal of bromine atoms (tunnel conditions It = 100 pA, Vgap = -700 mV). (Bottom, left to right) Line 

profiles of the apparent height of BATT prior to and after debromination show a reproducible apparent height 

difference. 
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Figure 29. Theoretical calculations of the apparent height of the BATT molecule (orange line, 384.8 pm) 

and the debrominated BATT (blue line, 254.6 pm) directly align with experimental observations of the apparent 

height from BATT (359.8 pm) and debrominated BATT (253.8 pm). 

 

 

Future work aims to selectively positon tip defects over the surface bound radical for 

atomically resolved abstraction. Consequently, the tall protrusion of the C-Br bond relative to the 

surface has been demonstrated to act as a molecular probe capable of imaging scanning probe tips. 

The apparent geometry of the molecule changes in appearance after tip forming procedures as can 

be seen in Figure 30. To confirm this phenomenon, the data was post-processed through full blind 

tip deconvolution methods using Mountains SPIP 9 software. The tip deconvolution algorithm 

uses distorted features from the STM image to approximate in the tip geometry. Across all samples 

of BATT, SPIP tip deconvolution implicates the scanning probe tip as looking identical to the 

“molecule” on the surface. The ability of the BATT molecule to image scanning probe tips in real-

time is another added benefit that will aid in streamlining the process of sequentially removing tip 

defects and could be paired with machine learning algorithms towards automation of this 

technique. 



54 
 

 

Figure 30. (Top row) Post-processed full blind tip deconvolutions of the BATT molecule with different tip 

geometries directly align with (Bottom row) experimental images of the “BATT molecule” demonstrating BATT’s 

capability of performing real-time tip imaging.    
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7.5 STM Methodology  

All STM measurements were carried out using a commercially purchased LT STM III and 

its corresponding vacuum chamber from Scienta Omicron. Custom preparation chambers and load 

locks were designed to interface with the microscope chamber. Each chamber comprises a 

roughing line, turbo pump and ion pump, though the load lock doesn’t employ an ion pump. The 

custom load lock enables for sample transfer in a UHV environment while the custom preparation 

chamber allows for in-situ cleaning of substrates. Tungsten tips were etched in 0.6 M KOH and 

characterized under an optical microscope prior to introduction into the vacuum environment. 

Clean gold samples were prepared by repeated ion gun Ar+ sputtering (1.5 kV, 5E-5 Torr) and 

indirect heating anneal cycles (350o C) and was confirmed by STM imaging using a freshly etched 

W tip. For deposition of BATT, the molecule was isolated by a gate valve and preheated to 80o C 

for 5 minutes to purify the sample. The gate valve was then opened and the sample was exposed 

to the subliming BATT for 40 seconds. STM images confirmed this technique offers a reproducible 

deposition of submonolayer coverage onto the gold substrate. 
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Chapter 8: 

Conclusions 
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Neuromorphic nanowires networks composed of AgI and Ag2Se have been implicated as 

suitable physical substrates for in-materio RC. Both materials exhibit the requisite properties for 

RC frameworks including the non-linear transformation of input signals into higher 

dimensionality, separable readout layers and fading memory properties. The ASN framework is a 

promising candidate towards implementing hardware capable of performing memory and logic 

operations in parallel. The utilization of a physical materials intrinsic capacity to perform 

computational tasks greatly alleviates the burden of training costs in conventional ANN algorithms 

while also significantly reducing the energy consumed during training. 

 The ASN has successfully performed spoken digit classification tasks through in-materio 

RC with accuracies of up to 95% across two different memristive materials. Silver selenide 

networks were also employed for hand written digit classification tasks and achieved accuracies 

of up to 92%. The high accuracies achieved in these proof-of-concept experiments strongly suggest 

that the ASN framework may be a suitable low power alternative to traditional natural language 

processing and computer vision-based machine learning tasks. 

 The dynamics of the ASN were further probed to elucidate the origins of its emergent non-

linear properties. The ASN’s dynamic, non-linear response to input signals have been 

experimentally discerned to be the consequence of avalanche criticality. The critical properties of 

these networks is strongly believed to be an influencing factor on the ASN’s intrinsic capacity to 

perform computational tasks. However, it is still unclear as to why the critical nature of the 

neuromorphic networks corresponds to its suitability for in-materio RC applications and further 

investigation into this phenomenon is warranted.  
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 Scanning probe microscopy techniques have also been explored and implicated as a 

potential system for enabling APM. Through the meticulous design of molecular tools, we 

demonstrate that a reactive headgroup of a molecular tool can be reproducibly removed through 

electro-mechanochemistry. Consequently, the BATT molecule has demonstrated its capability to 

perform real-time tip imaging tasks which will enable confirmation of atomic abstraction in real-

time. The successful realization of molecular tripods with rigid adamantane cages suggests various 

different head groups could be designed for the donation or abstraction of atoms or molecules 

between the STM tip and the tool. Future studies on this subject are warranted to fully develop a 

platform capable of achieving 3D printing techniques with atomic precision.  
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