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Abstract 
 
It is shown how quantum mechanical time correlation functions [defined, e.g., in Eq. (1.1)] can be 

expressed, without approximation, in the same form as the linearized approximation of the semiclassical 

initial value representation (LSC-IVR), or classical Wigner model, for the correlation function [cf. Eq. 

(2.1)], i.e., as a phase space average (over initial conditions for trajectories) of the Wigner functions 

corresponding to the two operators. The difference is that the trajectories involved in the LSC-IVR evolve 

classically, i.e., according to the classical equations of motion, while in the exact theory they evolve 

according to generalized equations of motion that are derived here. Approximations to the exact equations 

of motion are then introduced to achieve practical methods that are applicable to complex (i.e., large) 

molecular systems.   Four such methods are proposed in the paper— the full Wigner dynamics (full WD) 

and the 2nd order WD based on “Winger trajectories”, and the full Donoso-Martens dynamics (full DMD) 

and the 2nd order DMD based on “Donoso-Martens trajectories”—all of which can be viewed as 

generalizations of the original LSC-IVR method. Numerical tests of these four versions of this new 

approach are made for two anharmonic model problems, and for each the momentum autocorrelation 



function (i.e., operators linear in coordinate or momentum operators) and the force autocorrelation 

function (non-linear operators) have been calculated. These four new approximate treatments are indeed 

seen to be significant improvements to the original LSC-IVR approximation.  

 

I.  Introduction 

Most quantities of interest in the dynamics of complex systems can be expressed in terms of time 

correlation functions1.  For example, dipole moment correlation functions are related to absorption spectra, 

flux correlation functions yield reaction rates, velocity correlation functions can be used to calculate 

diffusion constants, and vibrational energy relaxation rate constants can be expressed in terms of force 

correlation functions.  The standard real time correlation function is of the form 

 ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ/ / / /1
0

ˆ ˆˆˆTr TriHt iHt H iHt iHt
AB ZC t Ae Be e Ae Beβρ − −= = ˆ −  (1.1) 

or sometimes it is convenient to use the following symmetrized version2 

 ( ) ( )ˆ ˆ ˆ ˆ/ 2 / 2 / /1 ˆ ˆTr H H iHt iHt
AB ZC t e Ae e Beβ β− − −=  (1.2) 

or the Kubo-transformed version3  

 ( ) ( )( )ˆ ˆ ˆ ˆ/ /1 1
0

ˆ ˆTrd H H iHt iHtKubo
AB ZC t e Ae e Beβ λ λβ

βλ − − − −= ∫  (1.3) 

Here  is the (time-independent) Hamiltonian for the system, which we assume to be of standard 

Cartesian form 

Ĥ

 ( )
2ˆ

2
= +H V x

p
m

 (1.4) 

where we have used 1-dimensional notation for simplicity; m  is the mass and , p x  are the momentum 

and coordinate operators, respectively. Also, in Eq (1.1) and (1.2), ( )ˆTr 1/H
BZ e kβ β−= = T

Z

 is the 

partition function, the density operator for the system at equilibrium, and and ˆ
0ˆ /He βρ −= Â B̂  are 

operators relevant to the specific property of interest. For later use we also define the combination of  



operators  and the Boltzmann operator, Â Âβ , as ˆ1ˆ H
ZA eβ β−= Â  for Eq. (1.1), or ˆ ˆ/ 2 / 21ˆ ˆH H

ZA e Aeβ β β− −=  

for Eq. (1.2), or ( ) ˆ ˆ1
0

ˆ d H H
ZA e A

β β λ ˆeβ λ
β λ − − −= ∫  for the Kubo-transformed case in Eq. (1.3). One of the 

practical advantages of the time correlation function approach is that the observable of interest can often 

be obtained from relatively short time information. 

 For complex (large) systems, there are several ways to approximate the quantum dynamical 

correlation function such that the result both approaches its classical limit at high temperature and 

achieves the exact quantum result as . One such approach is the centroid molecular dynamics 

(CMD) method of Voth and co-workers

0t →

4,5, and another is the ring polymer molecular dynamics (RPMD) 

method recently proposed by Manolopoulos and co-workers6. In these approaches the real time dynamics 

is related to a modified classical dynamics of the path integral beads of the quantum Boltzmann operator 

or the centroid of them.  For both of these models, the quantum mechanical equilibrium distribution is 

conserved, i.e., for the case , the correlation function is time independent. Also, both of these 

models give the exact result for harmonic systems if at least one of the operators  and 

ˆ 1A =

Â B̂  is a linear 

function of position or momentum operators; however, they do not give the correct result if both operators 

are non-linear operators, even in a harmonic potential 7.   

 Another class of approaches is based on various initial value representations (IVRs) of 

semiclassical (SC) theory8,9. The SC-IVR provides a way for generating the quantum time evolution 

operator (propagator)  by computing an ensemble of classical trajectories, much as is done in 

standard classical molecular dynamics (MD) simulations.  The simplest, and thus most easily applicable 

of these approaches include the so-called linearized SC-IVR (LSC-IVR) by the Miller group

ˆ /iHte−

10-12and 

others13,14, and the forward-backward semiclassical dynamics (FBSD) approach by the Makri group15-17. 

These methods treat the operator Âβ  exactly and approximate the Heisenberg time evolution of operator 

 by assuming that the trajectories used to construct the forward and backward 

propagators, and , respectively, are infinitesimally close to one another. In the limit of a 

( ) ˆ ˆ/ˆ ˆiHt iHtB t e Be−= /

ˆ /iHte− ˆ /iHte



harmonic potential, it is straight-forward to show the LSC-IVR gives the exact quantum correlation 

functions of even nonlinear functions of the position or momentum operator. The accuracy of the 

correlation function can be systematically improved by the forward-backward IVR (FB-IVR) and a more 

recent version—the exact forward-backward IVR (EFB-IVR) developed by Miller and co-workers18, or 

the initial value series representation proposed by Pollak and co-workers19. These more advanced 

semiclassical methods are able to describe true quantum coherence effects quite well, but they are more 

difficult to apply because the integrand of the necessary phase space average has a phase cancellation 

problem that makes Monte Carlo evaluation more difficult.  The LSC-IVR and the FBSD methods have 

the drawback that the distribution generated for the operator Âβ  is not invariant with time for the case 

 (i.e., ˆ 1A =
ˆ1ˆ H

ZA eβ β−= , the Boltzmann operator itself), though Liu and Makri have demonstrated that 

this is in fact not much of a problem in practical calculations of auto-correlation functions17. 

 The purpose of the paper is to present a novel methodology for calculating real time correlation 

functions that is more accurate than the LSC-IVR and the FBSD approaches, but still retains their 

simplicity, i.e., in having no phase cancellation problems in the relevant phase space averages.  Section II 

first shows that it is possible to write the exact real time correlation function in a form identical to the 

original LSC-IVR expression.  Section III then develops several practical approximations to these exact 

expressions, e.g., use of the thermal Gaussian approximation (TGA)20 for the Boltzmann operator, and 

also a particular type of ‘equilibrium distribution approximation’ (EDA). Some numerical 

implementations of the methodology for the symmetrized force and the standard momentum auto-

correlation functions are presented in section IV, including a strongly anharmonic potential and a more 

challenging quartic model system. Finally, some concluding remarks appear in section V. 

II.  Exact Dynamics of the Correlation Function  

 The linearized approximation to the SC-IVR expression for a time correlation function, the LSC-

IVR 10-12 , leads to the following ‘classical Wigner’ model for the correlation function 



 ( ) ( ) ( ) ( )1

0 0 0 02 ,AB w w tC t dx dp A x p B x pβπ −
= , t∫  (2.1) 

where wAβ  and wB  are the Wigner functions21 corresponding to these operators, 

 ( ) Δ /ˆ, / 2 ip x
wO x p d x x x O x x e= Δ − Δ + Δ∫ / 2

)

 (2.2) 

for any operator . Here (Ô 0 0,x p  is the set of initial conditions (i.e., coordinates and momenta) for a 

classical trajectory,  being the phase point at time  along that trajectory.  ( ) (( 0 0 0 0, , ,t tp p px x x ))

/β

ˆ /ˆ

t

 Here we would like to show first that the exact expression for a real time correlation can be cast 

in a form identical to the LSC-IVR in Eq. (2.1), i.e., involving only a single phase space average over the 

initial conditions for trajectories. This will then provide a solid basis for introducing practical 

approximations that will be an improvement of the original LSC-IVR method but still maintain its simple 

structure.   

 We thus define the operator  for systems at equilibrium, or more generally 

 for any initial density 

( ) ˆ ˆ/ˆ ˆiHt iHtA e A etβ −=

( ) ˆ /
0

ˆ ˆiHt iHtA e Aetβ ρ−= 0ρ̂  of the system, and make use of the well-known 

identity for the trace of a product of any two operators  and , P̂ Q̂

 ( ) ( ) ( ) (1ˆˆTr 2 , ,w wPQ dxdpP x p Q x pπ −= ∫ )  (2.3) 

 

to express the exact real time correlation functions of Eqs. (1.1)-(1.3)  as follows 

 ( ) ( )( ) ( ) ( ) ( )1ˆ ˆTr 2 , ; ,AB w wC t A Bt dxdpA x p t Bβ βπ −
= = x p∫  (2.4) 

The time evolution of the operator  is governed by the Heisenberg equation of motion, ( )Â tβ

 ( ) ( )ˆ ˆ ˆ,A A
it t

t
β β∂ H⎡ ⎤= ⎣ ⎦∂

 (2.5) 

  
the Wigner transform of which can be shown to be 

 ( ) ( ) ( ), ; , , ;w
w

ApA x p t J x p A x t d
t m x

β
β

w
βξ ξ

∞

−∞

∂∂
= − + −

∂ ∂ ∫ ξ  (2.6) 



 
where  
 

 ( ) ( ) ( ) /
2 22,

2
y y ipyiJ x p V q V q e dy

π

∞
−

−∞

⎡= + − −⎣∫ ⎤
⎦  (2.7) 

 
For a potential for which the derivatives exist, the right-hand side of Eq. (2.6) can be expanded as  

 ( ) ( ) ( )
32

(3)
3, ;

24
w w w

w
A A ApA x p t V x V x

t m x p p

β β β
β ∂ ∂ ∂∂ ′= − + − +

∂ ∂ ∂ ∂
 (2.8) 

 
Furthermore, if ( ) ( ), ,t tx p x p= follows some trajectory, i.e., in the Lagrangian picture,  

 ( ) (, ; , ;w w
w t t t t w t t

t t

A Ad A x p t x p A x p t
dt x p t

β β
β ∂ ∂ ∂

= + +
∂ ∂ ∂

)β  (2.9) 

 
and if the dynamics of the trajectory is chosen to satisfy 

  ( ), ; 0w t t
d A x p t
dt

β =  (2.10) 

i.e., the initial value of the distribution function remains invariant along the trajectory, then Eq. (2.8) and 

Eq. (2.9) imply that the equations of motion of these trajectories are as follows    

 
( ) ( ) ( )

32
(3)

3 / ,
24

t
t

w w
t t t eff t

t t

px
m

A A ;tp V x V x V x p t
p p

β β

=

∂ ∂′ ′= − + + = −
∂ ∂

 (2.11) 

 
This new dynamics is similar to classical dynamics except that the classical force is replaced by an 

effective force . More discussions about the new dynamics as an analogue to classical dynamics are 

presented in Appendix A.  

effV ′−

 The continuity equation, 

 ( ) ( )0 0 0 0, ,w w tA x p dx dp A x p dx dpβ β= t t t  (2.12) 
 
still applies for this new dynamics, which means that the phase space average in Eq (2.4) can be taken 

over  ( 0x , 0p ), so that Eq. (2.4) for the exact real time correlation function has precisely the same form 



as Eq. (2.1) for the LSC-IVR correlation function, except that now ( ) ( )( )0 0 0 0, , ,t tp p px x x  is the phase 

point at time t  along the trajectory which evolves according to Eq. (2.11).  

 Interestingly, Eq. (2.8) can be rewritten as  

 ( ) ( ) ( )
22

(3)
2

1, ;
24

w
w w w

w

ApA x p t A A V x V x
t x m p A p

β
β β β

β

⎡ ⎤⎛ ⎞∂∂ ∂ ∂⎛ ⎞ ′− = + − + +⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎢ ⎥⎝ ⎠⎣ ⎦
 (2.13) 

By making analogy to the classical continuity equation in the form 

 
t
ρ∂

− = ⋅
∂

j∇  (2.14) 

where ρ=j v and ( , )x p=v , one can generate another version of the dynamics, i.e., 

 
( ) ( ) ( )

22
(3)

2

1 , ;
24

t
t

w
t t t eff t

w t

px
m

A
tp V x V x V x p t

A p

β

β

=

∂′ ′= − + + = −
∂

 (2.15) 

Although the equations of motion governed by Eq. (2.15) do not satisfy Eq. (2.10) and Eq. (A.1), this 

kind of dynamics has its own merit as we shall see below. Since the continuity equation Eq. (2.12) always 

holds, the exact real time correlation function also has the same form as Eq. (2.1), the original LSC-IVR 

method, with the trajectory now evolving according to Eq. (2.15).   

 The exact quantum correlation function thus has the same form as the LSC-IVR approximation in 

Eq. (2.1), both being given by a single phase space over the initial conditions for trajectories. The only 

difference is the evolution of the trajectories: in the LSC-IVR they are governed by classical mechanics, 

while that in the exact case they are governed by the dynamics specified by Eq. (2.11) or (2.15). As is 

clear from Eq. (2.11) or (2.15), the original LSC-IVR method can be viewed as the limit of the exact 

correlation function as  , or the limit of a harmonic potential.  In other words, the exact dynamics 

that of Eq. 

0→

(2.11) or (2.15) enables us to improve the real time dynamics in the LSC-IVR method.  

 When  or ˆ 1A = ( ) ( )ˆ ˆ/ /
0

ˆ ˆ ˆiHt iHtA e etβ tρ ρ−= = , Eq. (2.6) and (2.8) reduce to the conventional 

equations of motion for the Wigner distribution function of the density operator21,22, and trajectories 



governed by Eq. (2.11) become “Wigner trajectories”23 in the literature, and those governed by Eq. (2.15) 

become what we term here Donoso-Martens (DM) trajectories24. Since in practice the equations of motion 

described by Eq. (2.11) or (2.15) are usually truncated at order of , DM trajectories obey Ehrenfest’s 

theorem 

2

( )( ) ( )ˆ ˆTrp p t V xρ ′= = − , so that the average energy ( )( )ˆ ˆTrE H tρ=  is invariant with 

time24, but Wigner trajectories do not have this desirable property.  

III.  Equilibrium Distribution Approximations 

 Though we have expressed the exact quantum time correlation function in the same form as the 

LSC-IVR approximation, Eq. (2.1), the dynamics (i.e., the trajectories) which go into it are now 

determined by Eq. (2.11) or (2.15), rather than by the classical equations of motion. To evaluate the 

effective force  that determines these trajectories, however, requires that the function effV ′− ( ), ;w t tA x p tβ  

be known.  Furthermore, Eq. (2.11) or (2.15) requires many (in fact, generally an infinite number of) 

terms containing derivatives of the potential and those of ( ), ;w t tA x p tβ  (though the truncation of the 

effective force  at order  may sometimes be a good approximation).  The direct calculation of 

 via Eq. 

effV ′− 2

( , ;w t tA x p tβ ) (2.8) requires the propagation of an ensemble of trajectories of the system which are 

entangled through the effective force effV ′− , making the approach unfeasible for anharmonic systems with 

many degrees of freedom. A better strategy, an analog of the approach proposed by Liu and Makri25 in 

Bohmian dynamics, is to make the trajectories independent of one another by using their stability 

properties to update  and its derivatives along the trajectory,  thus making it possible for 

Monte Carlo (MC) simulations of higher dimensional systems. Such an approach, however, is still 

probably not feasible for condensed phase systems. 

( , ;w t tA x p tβ )

 For systems at equilibrium, when ˆ 1A =  the operator ( ) ( ) ( )ˆ1ˆ ˆ ˆ 0H
ZA t t eβ βρ ρ−= = =  is time-

independent, which means that the Wigner transform of the density operator and its derivatives are time 

invariant, i.e., 



 ( ) ( ) ( )0, ; , ;0 ,w w wx p t x p x pρ ρ ρ= ≡  (3.1) 

and  

 
( ) ( ) ( )

( ) ( ) ( )

0

0

, ; , ;0 ,

, ; , ;0 ,

w w w

w w w

x p t x p x p
x x x

x p t x p x p
p p p

ρ ρ ρ

ρ ρ ρ

∂ ∂ ∂
= ≡

∂ ∂ ∂
∂ ∂ ∂

= ≡
∂ ∂ ∂

 (3.2) 

 
and so on. Motivated by this observation, we introduce the ‘equilibrium distribution approximation’ 

(EDA) as follows: for any operator , we approximate the ratios of the quantities in Eqs. Â (2.11) and 

(2.15) by what they would be with , i.e., ˆ 1A =

 ( ) ( )3 0 03 3

3 3 3ˆ 1

,
/ lim / /w t t w t tw w w w

A
t t t t t t

,x p xA A A A
p p p p p p

β β β β ρ ρ
→

∂ ∂∂ ∂ ∂ ∂
≈ =

∂ ∂ ∂ ∂ ∂ ∂
p

 (3.3) 

and so on in the equations of motion in Eq. (2.11), and 

 
( )

( )2 02 2

2 2 0ˆ 1

,1 1 1lim
,

w t tw w

A
w t w t w t t t

2

x pA A
A p A p x p p

β β

β β

ρ
ρ→

∂∂ ∂
≈ =

∂ ∂ ∂
 (3.4) 

and so on in the equations of motion in Eq. (2.15). This leads to great simplification in the practical 

aspects of integrating the generalized equations of motion, as will be seen below, and will also be seen to 

be correct in various limits. 

 If the effective force  in Eq. effV ′− (2.11) is truncated at the order of , then the equations of 

motion become 

2

 
( ) ( ) ( ) ( ) ( )3 0 02

(3)
3

,
, ; /

24

t
t

w t t w t t
t eff t t t t

t t

px
m

,x p x
p V x p t V x V x

p p
ρ ρ

=

∂ ∂
′ ′= − = − +

∂ ∂
p

 (3.5) 

which we term ‘2nd order Wigner dynamics’ (2nd order WD). Similarly the truncation of the effective 

force  in Eq. effV ′− (2.15) at the order of  leads to 2



 
( ) ( ) ( ) ( )

( )2 02
(3)

0 2

,1, ;
24 ,

t
t

w t t
t eff t t t t

w t t t

px
m

x p
p V x p t V x V x

x p p
ρ

ρ

=

∂
′ ′= − = − +

∂

 (3.6) 

which is termed ‘2nd order Donoso-Martens dynamics’ (2nd order DMD).  Both the 2nd order WD and the 

2nd order DMD can be viewed as a lowest order perturbation correction to classical dynamics by adding 

quantum effects to order . 2

 Quite remarkably, however, the EDA enables us to include all higher orders of  into the 

effective force .  Notice that the left-hand side of Eq. 

2

effV ′− (2.8) or (2.13) goes to zero in the limit , 

so that the equations of motion in Eq. 

ˆ 1A→

(2.11) with the EDA become   

 
( ) ( ) ( )0 0,

, ; /

t
t

w t t w t tt
t eff t t

t t

px
m

,x p xpp V x p t
m x p

ρ ρ

=

∂ ∂
′= − = −

∂ ∂
p

 (3.7) 

which we term ‘full Wigner dynamics’ (full WD), and those in Eq. (2.13) with the EDA lead to 

 
( ) ( )

( )0

0

,1, ;
,

t
t

w t tt
t eff t t

w t t t

px
m

x pp
tp V x p t dp

x p m x
ρ

ρ

=

∂
′= − = −

∂∫
 (3.8) 

which we refer to as ‘full Donoso-Martens dynamics’ (full DMD). Here the integral is an indefinite 

integral, which can be integrated analytically with the approximations to ( )0 ,w t tx pρ  that we describe in 

next section. 

 In the high temperature limit, 0β → , the Wigner transform of the equilibrium density operator 

reduces to the classical Boltzmann distribution, i.e.,  

 ( ) ( )
2

0 1, exp
2w Z
px p
m

ρ β V x
⎡ ⎤⎛ ⎞

→ − +⎢ ⎥⎜
⎝ ⎠

⎟
⎣ ⎦

 (3.9) 

  
and in this limit it is straight-forward to verify that all the proposed equations of motion in Eq. (3.5), (3.6)

, (3.7) or (3.8)  reduce to classical mechanics. Also, in the limit of a harmonic potential, when ( )(3)V x  



and higher derivatives vanish, these proposed equations of motions are exact. Hence the real time 

correlation function in Eq. (2.1), with the generalized equations of motion in Eq. (3.5), (3.6), (3.7) or (3.8)

, is exact in three important limits (as is the original LSC-IVR method): (i) the classical (or high-

temperature) limit, (ii) the limit of a harmonic potential, and (iii) the short-time limit . What is more 

important, however, is that they are expected to give a better approximation to the correlation for longer 

time than the original LSC-IVR method. These four proposed methods can thus be thought of as 

improved LSC-IVR methods, since they have the same form as Eq. 

0t →

(2.1), differing only in the equations 

of motion which generate the trajectories.  The full WD and the full DMD methods, in particular conserve 

the distribution generated for the operator Âβ  for the case ˆ 1A = , which the original LSC-IVR method 

fails to do.  

IV.  Thermal Gaussian approximation 

Calculation of the Wigner function for operator B̂  in Eq. (2.1) is usually straight-forward; in fact, 

B̂  is often a function only of coordinates or only of momenta, in which case its Wigner function is simply 

the classical function itself.  Calculating the Wigner function ( )0 0,wA x pβ  or (0 ,w t t )x pρ , however, 

involves the Boltzmann operator with the total Hamiltonian of the complete system, so that carrying out 

the multidimensional Fourier transform to obtain it is far from trivial.  Furthermore, it is necessary to do 

this in order to obtain the distribution of initial conditions of momenta 0p  for the real time trajectories. A 

rigorous way to treat the Boltzman operator is via a Feynman path integral expansion, but it is then in 

general not possible to evaluate the multidimensional Fourier transform explicitly to obtain the Wigner 

function  or ( )0 0,wA x pβ (0
0 0,w )x pρ , as discussed by Liu and Miller12. The inability to calculate the 

Wigner function of Âβ  exactly is in fact the reason for the various harmonic and local harmonic 

approximations to the Boltzmann operator10,12,14. These approximations have been successfully applied to 

some complex systems12,26.   



With such approximations for the Boltzmann operator, all four approximate methods proposed in 

section III for the real time dynamics can readily applied. Here we use the thermal Gaussian 

approximation20 (TGA) that we have implemented into the LSC-IVR calculation recently12. In the TGA, 

the Boltzmann matrix element is approximated by a Gaussian form: 

 
( )( )

( )( ) ( ) ( )( ) ( )
3 / 2

ˆ 1
1/ 2

1 1 1exp
2 2det

N
THx e q x q G x q

G
τ τ τ τ γ

π τ
− −⎛ ⎞ ⎛= − − −⎜ ⎟ ⎜

⎝ ⎠ ⎝
0 τ ⎞+ ⎟

⎠
 (4.1) 

where ( )G τ  is an imaginary-time dependent real symmetric and positive-definite matrix,  ( )q τ  the 

center of the Gaussian, and ( )γ τ  a real scalar function. The parameters are governed by the equations of 

motion: 

 

( ) ( ) ( )( ) ( )

( ) ( ) ( )( )

( ) ( )( ) ( )( ) ( )( )

2 1

1
4

T

T

d
G G V q G

d
d

q G V q
d
d

Tr V q G V q
d

mτ τ τ τ
τ

τ τ τ
τ

γ τ τ τ τ
τ

−= − ∇∇ +

= − ∇

= − ∇∇ −

 (4.2) 

with the notation 

 ( )
( )( )

( )( ) ( ) ( )( )( ( )
3 / 2

1
1/ 2

1 1

det

N
Th q dx x q G x q h x

G
τ τ τ

π τ

∞
−

−∞

= − −⎛ ⎞
⎜ ⎟
⎝ ⎠ ∫ )−  (4.3) 

The initial conditions for the imaginary time propagation are  

 ( ) ( ) ( ) ( )2 1
00 ; 0 ; 0q q G m Vτ τ τ γ τ τ−= = = − 0q

)

 (4.4) 
 
The Wigner function  with the TGA can then be expressed as follows ( 0 0,wA x pβ



 

( )
( )

( )( )
( )

( )
( )( ) ( ) ( )( )( )

( )
( )

( )( )

( )( )

2

3 / 2 1/ 2

2

1
0 02 2 21/ 23 / 2

2

1/ 2

2 2
0 023 / 22

0 0 2

0 0 0

exp 21 1

4 det

1
exp

det

det
exp /

, ,

, N

T

N

T
N

TGA

A

w dq
Z G

x q G x q
G

G
p G p

f x p q

A x p

β

β

β

β β β

β

β
β

β

β γ

π

π

π

−⋅ − −

⋅ −

⋅

= ∫

−
 (4.5) 

where  

 ( )( ) ( )0 0 2 0, ,TGA

A
f x p q A qβ

β =  (4.6) 

for local operators with  (notice ( )ˆ ˆ/ 2 / 2ˆ ˆHA e A exβ β β−= H− ( ) ( )0 , ,w wx p A x pβρ =  for ), and ˆ 1A =

 ( )( ) ( ) ( )( )0 0 02
1

0 2, ,TGA

A
f x p q x qp i Gβ

β β−= − − 2
β  (4.7) 

for the momentum operator  with ˆ ˆA p=
ˆˆ ˆHA e pβ β−= , etc. 

 The TGA enables one to calculate the effective force effV ′−  explicitly in the equations of motion 

for the four methods described in Section III, and hence real time correlation functions based on Eq. (2.1). 

V.  Example calculations 

 In order to test how well the four types of generalized dynamics described in Section III perform 

within the framework of Eq. (2.1), we have carried out calculations for two 1-dimensional models, at a 

high temperature 1β =  and a low temperature 8β = , comparing the results to the classical, the original 

LSC-IVR, and the exact quantum results. The symmetrized force autocorrelation (a nonlinear local 

operator) and the standard momentum autocorrelation function are calculated at both temperatures to 

investigate how well the EDA performs for different operators  and for the four different versions of 

the dynamics.  

Â

(a) Anharmonic oscillator 

 The first model we consider is an asymmetric anharmonic oscillator 



 ( ) 2 2 3 41
2 0.10 0.10V x m x x xω= − +  (5.1) 

with , 1m = 2ω =  and . This quite anharmonic potential has been used as a test and discussed 

previously with the LSC-IVR and the FBSD methods

1=

12,15,27. Results for the force autocorrelation 

functions are shown at two different temperatures in Figs. 1 and 3, while those of the momentum 

autocorrelation functions are shown in Figs. 2 and 4. At both temperatures, we use 21 imaginary 

trajectories (to generate the Boltzmann operator via the TGA) with the imaginary time step of 0.1, and a 

large number of real time trajectories generated from each imaginary trajectories with a real time step of 

0.02. The velocity Verlet integrator was used for both real and imaginary time dynamics.  

 Consider first the higher temperature case ( 1β = ), Figs. 1 and 2, for the force-force and 

momentum-momentum autocorrelation functions, respectively.  Even at this temperature, however, the 

classical results still deviate somewhat from the quantum results with regard to both the initial value at 

 and the dephasing for longer times. The LSC-IVR method and various improved versions proposed 

in section III are able to describe the correct result for approximately the first two vibrational periods 

( 1 ). The original LSC-IVR method dephases more rapidly than the quantum result due to coherence 

effects. The full WD and the full DMD methods dephase the least, but there is a noticeable frequency 

shift at long times (after three vibrational periods). The 2

0t =

0t <

nd WD method is even worse regarding the 

frequency shift but the 2nd DMD method seems to correct this error.  In the very high-temperature regime 

( 0.1β = ), the correlation function calculated by all methods and the exact quantum correlation function 

approach the classical result (figures not shown here), as discussed in section IV.  

 Results for the much lower temperature ( 8β = ) are shown in Figs. 3 and 4, and here the classical 

results depart from quantum results with regard to both amplitude of the oscillation (drastically) and 

frequency (noticeably). The original LSC-IVR method provides a good description for the first vibrational 

period and is semi-quantitative over several more periods. The 2nd DMD method improves the results 

systematically in both amplitude of the oscillation and frequency for longer times over the original LSC-

IVR results, while 2nd WD method does similarly for the amplitude of the oscillation but with a noticeable 



frequency shift. The full WD and full DMD methods match the exact quantum result almost perfectly  

except for a slight frequency shift after quite long time ( ).  25t >

  It can be seen that the EDA behaves similarly for both the symmetrized momentum and the force 

autocorrelation functions despite the fact that the operators are linear in the former case and non-linear in 

the latter, and the difference between the standard and the symmetrized correlation functions.  

(b) Quartic potential 

 The next model potential studied is the following pure quartic potential 

 ( ) 40.25V x x=  (5.2) 

with  and . This is a more challenging case since no harmonic term is involved and hence 

represents a severe test whether the various approximate methods proposed in section III can describe the 

purely quantum coherent collisions of a broad thermal wave packet against the quartic potential wall. This 

model has been studied by the CMD and the RPMD dynamics only for the position auto-correlation 

function

1m = 1=

5,6.   

 The results for the symmetrized force (a very nonlinear operator) autocorrelation functions are 

shown at two different temperatures in Figs. 5 and 7, while those of the momentum autocorrelation 

functions are shown in Figs. 6 and 8. The simulation details for this model are the same as those for the 

previous potential. 

 Figs. 5 and 6 show that at the temperature 1β =  the classical result fails to describe the long-time 

oscillations in the exact quantum results; the LSC-IVR method does little to correct this, and neither do 

the four new methods that we test in this paper. We expect that the truncated methods (2nd order WD and 

2nd order DMD methods) are not able to capture quantum coherences because “quantum coherences are 

reflected in the Winger function as ‘sub-Planckian’ oscillations” 28 and any lower order truncations of the 

propagation of the Winger function fail to describe such effects29. The failures of the full WD and the full 

DMD methods indicate that the EDA that we introduced in section III, i.e., Eq. (3.3), is not capable of 

describing  quantum coherence of the real time correlation function. However, in many cases for complex 



systems in the condensed matter phase, such long time coherence effects shown in one-dimensional 

models are expected to be quenched by coupling among the various degrees of freedom9,30, and most 

important is the short time dephasing behavior which can be accurately described by the various methods 

in this paper. 

 At the much lower temperature ( 8β = ) in Figs. 7 and 8, the classical results depart drastically 

from quantum results with regard to both the amplitude of the oscillation and the frequency even from the 

very beginning. The original LSC-IVR method provides reasonably good results for the first vibrational 

period, but dephases too quickly afterwards and completely vanishes after almost two periods. The 2nd 

order DMD method is a significant improvement over the original LSC-IVR method in amplitude of the 

oscillation and reproduces the frequency best, although there is still dephasing. The 2nd order WD method 

improves the amplitude of the oscillation but generates a pronounced frequency shift. The full WD and 

full DMD methods behave similarly, giving the amplitude of oscillation quite well (the small remaining 

error being due to error generated by the TGA treatment) and with slightly more frequency shift than the 

2nd order DMD method.  

 The better behavior at the low temperature is understandable:   quantum statistical effects in the 

correlation functions show their importance for longer time (as the thermal time β  is longer) and the 

EDA also reflects that in the equations of motion of the various methods listed in section III. It is clearly 

demonstrated that in both the anharmonic model and the quartic potential, the full WD, the full DMD, and 

the 2nd order DMD methods improve the original LSC-IVR method to (much) longer times at low 

temperatures.  

 The 2nd order DMD method works systematically better in all cases than the 2nd order WD 

method. This is because of the merit of the 2nd order DMD method that is mentioned before, i.e., that the 

ensemble of all DM trajectories obey Ehrenfest’s theorem, which is not true for the 2nd order WD method.   



 Again, we notice that the EDA behaves similarly for both the symmetrized force and momentum 

autocorrelation functions; i.e., how the EDA performs seems to be independent of the operator  and the 

version of the real time correlation function. Notice that the force operator is very nonlinear.  

Â

VI.  Concluding remarks 

 In this paper we have first shown that the exact time correlation function [Eqs. (1.1)-(1.3)] can 

be written in the form of the LSC-IVR/classical Wigner approximation given by Eq. (2.1), i.e., as a phase 

space average over initial conditions for trajectories, with the Wigner function for Boltzmannized 

operator, Âβ , evaluated at the initial phase point and that for operator B̂  evaluated at the time evolved 

phase point. The difference is that for the LSC-IVR the dynamics (i.e., the time evolution of the 

trajectories) is that given by the classical equations of motion, while the trajectories in the exact theory are 

determined by generalized equations of motion. This exact formulation serves as a basis for making 

approximations to obtain practical methods for application to real molecular systems. 

 For systems at equilibrium, the EDA provides a feasible and reasonably good approximation. In 

these examples it is seen to perform similarly for different versions of the autocorrelation function and for 

different operators . Four approximate methods based on the EDA were proposed and tested—the full 

WD, the full DMD, the 2

Â

nd order WD and the 2nd order DMD methods—which can all be viewed as 

improvements to the original LSC-IVR approximation. The overall results can be summarized as follows. 

All four methods account for appreciable quantum effects in the correlation functions for short times, for 

all temperatures, as does the original LSC-IVR. The full WD, the full DMD, the 2nd order DMD methods 

are good for (much) longer time in low temperature regime than the original LSC-IVR. The 2nd order WD 

method gives a better description of dephasing effects than the original LSC-IVR method, but it also 

causes a pronounced frequency shift in the correlation function and is not as good as the former three 

proposed methods; we attribute this behavior to the fact that it does not obey Ehrenfest’s theorem. 



  Combined with the TGA or other harmonic or local harmonic approximations for the Boltzmann 

operator, all four methods proposed here can be applied to condensed phase systems in realistic situations, 

since they do not involve oscillatory factors in the necessary phase space averages. Work is in progress to 

see how much these new methods improve the LSC-IVR for realistic molecular systems. It will also be 

interesting in future work to see if one can construct a better approximation than the EDA, e.g., by taking 

account of  operator  (rather than taking the limit ) in Eq. Â ˆ 1A→ (3.3) or (3.4). 

 Finally, we note that though the Wigner transformation was used as the starting point in this 

paper [Eq. (2.4)], the methodology can in principle be generalized to any quantum phase space 

transformation, such as the Husimi distribution function31 , or the Glauber-Sudarshan P and Q functions32, 

etc.   
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Appendix A   

 In light of Eqs. (2.10) and (2.12), one sees that the volume element in phase space is invariant, 

i.e., the volume of infinitesimal phase space obeys 

 0 0 t tdx dp dx dp=  (A.1)   

Eqs. (2.10) and (A.1) reveal the dynamics governed by Eq. (2.11) is an analogue to classical dynamics. 

An interesting and perhaps useful derivation based on this is that the ensemble average can be replaced by 

the time average as long as the system is assumed to be ergodic.  

 To show this, we first define the ensemble average of some physical property ( ),B x p on the 

probability surface ( )( ),x pδ = 0P P  as 

 
( ) ( ) ( )( 0

0

1 , ,
ens

B dxdpB x p x pδ=
Σ ∫ P
P

)=P  (A.2) 

where ( )0Σ P  is the area of the surface, i.e, 

 ( ) ( )( )0 ,dxdp x pδΣ = =∫P P 0P  (A.3) 

 
Eq. (A.2) is in fact a generalized definition from classical dynamics: in classical mechanics, the 

probability distribution is actually a function of energy ( ) ( )( ), ,x p E H x p= =P P , the probability 

surface ( )( )0,x pδ =P P  coincide with the energy surface ( )( )0,H x p Eδ = and the ensemble average 

on the probability surface ( )( )0,x pδ =P P is just the microcanonical ensemble. Any trajectory has to be 

on some probability surface as long as the dynamics satisfies Eq. (2.10), i.e., here, 

 ( ), ; 0t t
d x p t
dt

=P  (A.4) 

 
 We then define the time average of the physical property ( ),B x p  along some trajectory as 

 ( )0

0

1lim ,
t T

t tT tT
B B x p dt

T
+

→∞
= ∫  (A.5) 



If the ergodicity holds in the system, the ensemble average on the probability surface equals to the time 

average along some trajectory on that probability surface, i.e.,  

 
ens T

B B=  (A.6) 

which is a familiar argument for the molecular dynamics (MD) community.  

Thus, the analogues of the new dynamics presented in Eq. (2.11) to classical dynamics listed in Eqs. 

(2.10) and discussed in this appendix opens the gate to introduce some techniques similar to those of the 

conventional MD simulation into the calculation of the exact formulation of the real time correlation 

function Eq. (2.1) associated with Eq. (2.11). For example, for the canonical ensemble, one might replace 

the phase space integral in Eq. (2.1) by a time average, if the dynamics in Eq. (2.11) is modified in a 

similar way in which classical dynamics is modified in the Anderson thermostat33 or the Nosé-Hoover 

thermostat34 to describe the classical Boltzmann distribution. 
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Figure Captions 

Fig. 1  (Color online). The symmetrized force autocorrelation function for the one-dimensional anharmonic oscillator given in 

Eq. (5.1) for 1β = . Black solid line: Exact quantum result. Cyan dotted line: Classical result. In the following results, 

the Boltzmann operator is treated by the TGA. Purple dot-dashed line: LSC-IVR result. Green solid circle: Full WD 

result. Red triangle: Full DMD result. Brown dashed line: 2nd order WD result. Blue solid line: 2nd order DMD result.  

Fig. 2  (Color online). The real part of the standard momentum autocorrelation function for the one-dimensional anharmonic 

oscillator given in Eq. (5.1) for 1β = . Black solid line: Exact quantum result. Cyan dotted line: Classical result. In the 

following results, the Boltzmann operator is treated by the TGA. Purple dot-dashed line: LSC-IVR result. Green solid 

circle: Full WD result. Red triangle: Full DMD result. Brown dashed line: 2nd order WD result. Blue solid line: 2nd 

order DMD result.  

Fig. 3  (Color online). As in Fig. 1, but for a much lower temperature 8β = . Panel (b) and (c) show a blowup of the curves 

shown in (a).  

Fig. 4  (Color online). As in Fig. 2, but for a much lower temperature 8β = .  

Fig. 5  (Color online). The symmetrized force autocorrelation function for the one-dimensional quartic potential given in Eq. 

(5.2) for 1β = . Black solid line: Exact quantum result. Cyan dotted line: Classical result. In the following results, the 

Boltzmann operator is treated by the TGA. Purple dot-dashed line: LSC-IVR result. Green solid circle: Full WD result. 

Red triangle: Full DMD result. Brown dashed line: 2nd order WD result. Blue solid line: 2nd order DMD result.  

Fig. 6  (Color online). The real part of the standard momentum autocorrelation function for the one-dimensional quartic 

potential given in Eq. (5.2) for 1β = . Black solid line: Exact quantum result. Cyan dotted line: Classical result. In the 

following results, the Boltzmann operator is treated by the TGA. Purple dot-dashed line: LSC-IVR result. Green solid 

circle: Full WD result. Red triangle: Full DMD result. Brown dashed line: 2nd order WD result. Blue solid line: 2nd 

order DMD result.  

Fig. 7  (Color online). As in Fig. 5, but for a much lower temperature 8β = . Panel (b) and (c) show a blowup of the curves 

shown in (a).  

Fig. 8  (Color online). As in Fig. 6, but for a much lower temperature 8β = .  
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