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Heterogeneous Acceleration of HAR Applications

Jose Rodriguez Borbon, Student Member, IEEE, Xiaoyin Ma, Member, IEEE, Amit K. Roy-Chowdhury, Senior
Member, IEEE, and Walid Najjar, Fellow, IEEE

Abstract—Human action recognition (HAR) is an important
field of research that intercepts with areas such as image
processing, computer vision, and the design of fast algorithms,
among others. HAR has several important applications including
healthcare monitoring, security and surveillance, assisted living,
smart homes, and video search and indexing. Despite recent
developments in the field, major challenges remain. For instance,
HAR is computationally expensive. Tasks such as video pre-
processing, feature extraction, feature quantization, and feature
classification require the execution of millions of arithmetic
operations for a video sequence lasting a few seconds. To address
these problems, we propose a heterogeneous approach that is
based on an extensive algorithmic and experimental analysis of
the histogram of gradients (HOG3D) application. We divide the
application into four stages and evaluate each on CPU, GPU,
and FPGA platforms. Our heterogeneous design combines the
strengths of both FPGA and GPU platforms, and achieves a
1.3X speedup compared with a state-of-the-art GPU while being
1.5X more energy efficient than other homogeneous solutions, in-
cluding FPGA-based designs. Moreover, our heterogeneous HAR
design using fixed-point arithmetic has comparable accuracy to
those of HAR algorithms using single precision floating point
arithmetic.

Index Terms—HAR, HOG3D, Accelerators, FPGAs, GPUs.

I. INTRODUCTION

Human action recognition (HAR) algorithms take one or
more video sequences as input, usually a few hundred frames,
and produce one or more output(s) categorizing the possible
action(s) executed by the actor(s) within the video clip(s).
Applications of HAR algorithms include health care, assisted
living, surveillance, automated video indexing, security, au-
tonomous navigation, robotics, mobile computing, etc. Even
though significant progress has recently been made in the
design and implementation of HAR applications, several chal-
lenges remain: higher throughput for handling large video
sequences, lower complexity for real-time applications, highly
parallel implementations for faster response times, and energy
efficient designs for embedded and mobile applications [1],
(2], [3].

HAR algorithms rely on the extraction of video features.
These can be computed at regular positions (called dense
sampling) or at points of interest (sparse sampling). Video
features can be designed by experts in the field, called hand-
crafted features (HCF), such as histogram of gradients (HOG),
or they can be inferred using machine learning techniques
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or learned features, such as convolutional neural networks
(CNNs). Once the video features are extracted, they can be
used to train a classifier, such as a support vector machine
(SVM) or a softmax classifier.

HAR implementations based on CNNs have been shown
to achieve a higher recognition accuracy than HCF HAR
algorithms. However, this advantage comes at a price: lower
throughput, higher computational load and costly energy con-
sumption per frame. Suleiman et al. [4] shows that HCF
HAR algorithms are 311X more energy efficient than their
CNN counterparts. When the features are learned with larger
CNN, the throughput gap grows to the order of the thousands.
Moreover, Zou et al. [5] shows that HAR algorithms based
on learned features with only three convolutional layers have
comparable accuracy and 100X higher energy usage than HCF
HAR algorithms. As the accuracy of the CNN increases, the
energy gap grows dramatically.

The proliferation of video cameras and other forms of image
sensing technologies have pushed a large part of the video
processing tasks to the edge devices and hence have increased
the pressure on achieving high processing rates at low energy
budgets. Our objective is the explore and evaluate the designs
of HOG3D-based HAR that can achieve both high throughput
and low energy consumption while maintaining acceptable
levels of accuracy.

In this paper, we extend the work presented in [6], whose
focus was the performance evaluation of HOG3D HAR algo-
rithm [7] on FPGAs, by evaluating the performance and energy
consumption of HOG3D implementations on FPGAs, GPUs,
and CPUs. We have profiled the performance of the different
HOG3D stages, namely preprocessing, cell descriptor com-
putation, block descriptor computation and video descriptor
computation. Based on this analysis, along with the support-
ing experimental data, we have identified the strengths and
weaknesses of each accelerator for HOG3D. By combining
the strengths of each platform, we propose a high performance
heterogeneous implementation that takes advantage of the
strengths of both FPGAs and GPUs, thereby achieving a higher
throughput as well as a lower energy consumption per frame
than either homogeneous implementation.

For the FPGA, we have implemented the HOG3D appli-
cation on the Micron Wolverine 2000 with a Xilinx Virtex
7 FPGA and 32 GB of local memory [8]. For the GPU, we
have implemented the design on the NVIDIA K20, K40 and
K80 [9]. These implementations are compared to a multi-
threaded software application running on the Intel Xeon-
E5520 quad-core CPU.

Our contributions in [6] includes (1) a comprehensive eval-
uation of HOG3D algorithm using reduced bit-size fixed-point
arithmetic. This reduced bit-size fixed-point algorithm has
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comparable accuracy to that of HAR algorithms implemented
in single or double-precision floating-point arithmetic, and
(2) A high-throughput GPU implementation of the HOG3D
algorithm that achieves 166.8.X speedup over the CPU one as
well as 3.1.X speedup when compared with the FPGA design.
The FPGA implementation achieves a 53.8X speedup over
the CPU. Furthermore, while the energy efficiency of the CPU
implementation is well below one frame/joule, the GPU design
energy efficiency is 5.4 frames/joule.
The new contributions in this work are:

¢ A detailed I/O and computational complexity analysis for
each of the four modules we have identified in our HOG3D
design. Based on this analysis, along with our experimental
measurements of the throughput and energy consumption
per platform, we have identified the strengths and weak-
nesses of both FPGAs and GPUs accelerators.

« We propose and evaluate a heterogeneous design that seam-
lessly combines both FPGA and GPU platforms in a single
system: the video pre-processing is executed on the FPGA
and the video descriptor extraction is executed in the GPU.
This heterogeneous design demonstrates a 1.3X speedup
over the GPU and is 1.5X more energy efficient than
either homogeneous designs when applied on VGA data as
opposed to QVGA data as in [6]

The remainder of this paper is organized as follows: In
Section 2, we cover the relevant background. In Section 3,
we formally introduce the HAR classification problem. In
Section 4, we describe the accuracy of the proposed fixed-point
HOG3D algorithm. In Sections 5, 6, and 7, we describe our
HOG3D design in FPGAs, GPUs, as well as the computational
complexity of the designs. In Section 8, we analyze the
throughput and the energy efficiency results for FPGAs and
GPUs. Additionally, we present a high throughput energy
efficient heterogeneous HOG3D design. Finally, we state our
conclusions and future work is devised.

II. RELATED WORK

Early HAR applications are based on HCF and consist of
four steps: sampling the video signal, computing features per
region of interest, merging these features to get a fixed-size
video feature, and finally, training a classifier. Sampling is
dense or sparse [1]. Techniques to compute the features of a
region include the scale-invariant feature transform (SIFT) [10]
and the histogram of oriented gradients (HOG) [11], [7]. The
features of the regions are usually merged via a bag-or-words
approach [12], [13], and SVMs are commonly used for clas-
sification [14]. Initial work in this field includes a behavioral
recognition system via sparse spatio-temporal features [15].
Similarly, spatio-temporal features, along with local SVMs,
have been proposed [14].

Recent approaches to HAR algorithms are based on learned
features [16]. In this approach, a machine learning algorithm
samples the video at predetermined positions, learns the local
features, aggregates these features, and finally, classifies them.
Early work using learned features includes a biologically-
inspired system for action recognition [17]. This system takes
inspiration from the dual stream organization of the visual

cortex: one stream processes the shapes while the second
stream processes the motion. Also, a CNN containing a
three-dimensional receptive field learns to classify human
actions [18]. This network generates action descriptions and
uses a feed-forward NN in the classification stage.

In order to improve the accuracy of traditional CNNs,
one stream CNNs, researchers have studied two-streams
CNNs [19], [20], [21], [22], [23], [24]. In a typical con-
figuration, the first stream learns the spatial features while
the second stream learns the temporal features. Variations
on this model set one of the streams to learn the features
of the optical flow, the motion flow, or the context of the
scene, among others. Moreover, the outputs of the streams
are usually fused via a fully connected feed-forward neural
network. Further, to reduce the computational complexity
of two-streams CNNs, factorized CNNs are proposed [25].
Factorized CNNs using spatial convolutional kernels along
with temporal convolutional kernels are designed to reduce
the complexity of the CNNs while maintaining the recognition
accuracy.

Hybrid methods using HCF and learned features have been
studied as well. In this approach, the fusion of HCFs boost
the performance of the CNNs. Likewise, the fusion of learned
features boost the performance of HCF-based classifiers. These
designs include a method for recognizing human actions
via the fusion of HCF features, based on dense trajectories,
and deep-learned features [26]. Also a system for human
detection and tracking that uses learned features and SVM
classifiers [27]. Further, to save computations, it has been
evaluated whether features extracted from CNNs can be re-
purposed for related tasks [28].

Hou et al. [29] proposes an FPGA real-time HAR system
operating at 600 fps. It has a recognition rate of 93.2% when
working with a human gesture database with four actions. The
recognition rate drops to 80.8% when a few additional gestures
are added. Although this system has a competitive throughput,
its recognition rate is nontrivial to predict when working with
challenging benchmarks having a larger number of classes.
Conversely, our system achieves competitive accuracy with
benchmarks having over 50 classes. Additionally, our design
has a larger throughput ranging from 455 fps to 1,304 fps.

III. PROBLEM DESCRIPTION

The four stages of the HOG3D algorithm are as follows':
(a) Preprocessing: In this step, the algorithm computes the
partial derivatives along the x, y, and ¢ axes

dx :p[.’IJ + 17y7t] —p[.%',y,t]
dy = plz,y + 1,t] — pla,y,1] (D

Next, the algorithm computes the integral of the derivatives

Voz|T, Y, t] = Z Z dx[z’ )y, 1] 2)

y'<yz'<z

'In this work, the terms features and descriptors are used interchangeably.
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vaylz,y,t] and vae[z,y,t] are computed in a similar fashion.
Finally, the routine computes the integrals videos

waslz,y,t] = Y voalr,y,t' 3)

<t

tvaylx,y,t] and ivg[z, y,t] are computed similarly.

(b) Cell Descriptor Computation: HOG3D considers the set
of integral videos as a spatiotemporal volume. Volumes are
sampled using a 3D block. Blocks are further divided into
r x r x r cells. In addition, cells are divided into s X s X s
sub-blocks. For each sub-block, the algorithm computes the
mean gradient vector gy = [Gbou Jvoys Jvor) - - The component
Jbox 18 computed as

Gvoe =J(t+1) — J(¢) 4

where J(t) = ivgz [z, y, t] +ivez [ +w, y+h, t] —iva [z, y+
h,t] — ivaz [z + w,y,t]. Here, w, h and ! are implementation
parameters. Similar equations are used to compute gyg, and
Jvot- Subsequently, the algorithm quantizes each vector g,
using a regular icosahedron. To quantize gy, the routine centers
the icosahedron at its origin in a three dimensional space. Let
Py 3 be the matrix where each row contains the icosahedron
coordinates of the central point of face 7

Pio P11 P12
Physz = P20 P21 P22
Pko  Pk1  DPk2

HOG3D calculates the normalized quantization vector g, by

computing

- P x gb
|gol]2
Next, the algorithm thresholds the elements of vector g

using a given parameter ay. If g is the resulting vector after

the threshold operation (if §y[j] < a1 then ¢/y[j] = O else

¢'ulj] = a1 — gu[4]) then, the routine uses a scaling factor to
obtain the sub-block descriptor

) ®)

gl
192

Then, HOG3D computes the vector ¢’ by adding, element by

element, the s x s x s sub-block descriptors inside the cell

gb (6)

sXsxs—1

> aulil i=0,.

=0

dlj] = k=1 @)
In addition, the routine normalizes ¢’. The resulting vector is

the cell descriptor

c/

= TeTh ®
(c) Block Descriptor Computation: HOG3D calculates the
block descriptor h by concatenating the cell descriptors inside
the block

h = {crxrxr—la-'vclacO} (9)

Here h € R? a d-dimensional space. The result of this step
is a set of block descriptors H = {h;};—0..n—1-

(d) Video Descriptor Computation: Because the number
of descriptors changes from video to video, a technique for
aggregating varying size descriptors into a fixed-size descriptor
has to be implemented [13]. In here, a vocabulary D =
{d;}j=0..m-1 with d; € R? is given. To compute fixed-
size descriptors, HOG3D computes the distances between
each block descriptor h; and each visual word d;. Next, the
algorithm increments by one the histogram slot of the visual
word dj, i.e. z[j], that is closest to h;. The resulting histogram
x € R™ is used as the video descriptor. Finally, the routine
uses the video descriptor « as input of a classifier. Notice that
J(t+1) — J(t) is the sum of the pixels between ¢ and ¢ + [,
excluding ¢, in the area of rectangle (x, y, w, h). In our design,
l is always two, and as a result, our design gets simplified.
First, the integral video images are computed between adjacent
integral images only

ivaz[%y,t] = U@m[zvyat/} +Uaz[$ay;tl - 1] (10)

Second, because the computation of J(¢ + 1) — J(¢) excludes
t, grax 1s computed as

Gooa =J (L +1) (1)

Further, gyo, and gpo; are computed similarly.

As shown above, the implementation of the HOG3D algo-
rithm requires the normalization of a number of low dimen-
sional vectors, see (5), (6), and (8). As a result, the Euclidean
norm has to be computed. To optimize hardware resources,
the Euclidean norm can be approximated as proposed in [30]

lullz & (1 = \)Maz([uli]izo,..,—1) + XD [uli]
=0

12)

with A < 1. As shown in this equation, this method is
inexpensive to implement in hardware as it does not require the
implementation of the resource-hungry square root operation.

IV. FIXED-POINT HOG3D HAR

In this section, we report on the evaluation of the fixed-point
HOG3D recognition accuracy using four benchmarks:

e The KTH benchmark is a collection of 599 videos with six
actions [14].

e The UCF11 benchmark is a collection of 1,600 videos
with 11 action categories including basketball shooting,
horseback riding, swinging among others [31], [32].

e The UCF50 benchmark is a collection of 6,680 videos with
50 actions [33]. This benchmark includes all the actions in
UCF11, plus 39 additional actions. As with UCF11, this
dataset is challenging due to its diverse conditions as well
as the number of actions.

o The UCF101 benchmark [34], a collection of 101 human ac-
tions containing 13,320 video clips. This benchmark extends
the UCF50 by adding additional actions. This benchmark is
particularly challenging due to the diverse set of conditions
including illumination, viewpoint, scale, camera motion,
backgrounds, etc.

Our fixed-point HOG3D implementation is based in the
double-precision floating-point implementation described
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in [7]. Starting from this source code, we added dense
sampling, fixed-point arithmetic, and half-precision floating
arithmetic. To sample the input video, our routine uses a 3D
block. The overlapping between adjacent blocks is 50%. While
our routine keeps the temporal scale fix, the spatial scale is
increased by a factor of v/2 until the size of the block is larger
than the size of the image. Our algorithm divides each 3D
block into 64 cells, four cells per dimension. Furthermore it
divides each 3D cell into eight sub-blocks, two sub-blocks per
dimension. As a result, the size of the block descriptor is 640
elements: 64 = 4 x 4 x 4 cell descriptors and ten elements per
cell descriptor when the algorithm uses half of the icosahedron
orientations. For each of the HOG3D stages, we set the input
bit-width as well as the output bit-width; if m is the number
of integer bits and n is the number of fractional bits, the total
bit-width is m + n. To minimize overflows and underflows,
the operands have been normalized whenever possible. The
maximum bit-width is set to 27 bits and the minimum to eight
bits. For further details refer to our previous work [6].

To evaluate the accuracy of our HAR recognition method,
our algorithm uses reduced fixed-point arithmetic along with
a modified version of the SVM library LIBSVM [35]. Here,
we added a x? kernel. In addition, our algorithm observes
the experimental settings described in [7]. In particular, we
use leave-one-group-out cross validation. Since the videos in
every dataset are grouped, said N groups, we train a SVM
with N — 1 groups and make predictions about the videos in
the left-out-group. If the left-out-group has k£ videos and p
predictions are correct, the recognition accuracy is p/k. We
repeat this process for all the groups and report the average
recognition accuracy for both floating point and fixed-point
precision.

The results are shown in Fig. 1. The 'half’ and 'single’
results are from our modified HOG3D implementation work-
ing in half and single precision floating point. The ' fxp27’
down to ' fxp& results correspond to the fixed-point HOG3D
implementation when working with 27 down to eight bits.
For the UCF101 benchmark, we only report the recognition
accuracy for single precision floating point and for ' fzp27,
'fxpl6’, and ' fap8’ fixed-point precision.
® x2KTH ®mx2UCF11

X2 UCF50 X2 UCF101 e MSEKTH

S

y

Recognition Accuracy (%)
Mean-Squared Error of HOG3D

single fxp-27 fxp-24 fxp-18 fxp-16 fxp-14 fxp-12 fxp-10 fxp-8 half

Fig. 1. On the left, the reduced fixed-point recognition accuracy using x?2
kernel versus bit-width. On the right, the mean-squared error (MSE) of the
video descriptors for the KTH dataset.

The accuracy of the original double-precision floating point
implementation [7], and our ’single’ precision floating point
implementation are comparable for all the benchmarks [6].
Moreover, the recognition accuracy for the KTH benchmark
is high, it decreases for the UCF101 benchmark for all
fixed-point precisions. This is consistent with the fact that
the UCF101 is the hardest benchmark to recognize. The
recognition accuracy behavior is significant for reduced fixed-
point arithmetic. As show in the figure, as the bit-width
decreases from 27 bits to eight bits, the recognition accuracy is
comparable to that of the single precision floating point albeit
small fluctuations. The half-precision implementation has the
lowest overall recognition accuracy. This behavior is mostly
due to the characteristics of the range and the precision of
half-precision floating point numbers. In the case of reduced
fixed-point arithmetic, the range and precision are dynamic;
they change from stage to stage while the range and precision
of the half-precision floats remain static [6].

Moreover, we compute the mean-squared error (MSE) by
comparing the values of the fixed-point video descriptor with
those of the double-precision video descriptors, the ground
truth. In Fig. 1, we only report the MSE of the KTH dataset
because it has the largest value. As shown in the plot, the MSE
is well below 1 x 10~2 for twelve bits and above. For ten bits
and eight bits, the MSE increases, although it always remains
below 5 x 1072, In brief, these results show it is feasible to
implement HOG3D in reduced fixed-point arithmetic without
compromising its accuracy.

V. FPGA IMPLEMENTATION

In this section, we describe the implementation of HOG3D
in FPGAs. In this design, all arithmetic operations use re-
duced fixed-point operands. Operations such as multiplications
and divisions have been implemented in Xilinx fixed-point
cores [36]. When the result of an arithmetic operation over-
flows the result is saturated on-the-fly. Due to the design of
the DSP units in the Virtex-7 FPGAs and to minimize logic
usage, the result of operations including multiplications and
divisions are always truncated [37].

The input of the algorithm are streams of gray-scale videos
consisting of 97 images. The output is the video descriptor
vector x with 1000 elements. Unless otherwise described, four
videos are moved from the CPU to the FPGA off-chip memory
for processing. Then four engines process each video. The
description of each engine is given in what follows.

A. Preprocessing Engine

This engine is responsible for computing the integral videos.
Fig. 2 shows the modules responsible for computing the
integral videos along the z, y, and ¢ axes. In this design,
all communications between modules are implemented via
FIFOs [38]. As shown in Fig. 2, the computation of the integral
videos is straightforward. The read image module reads three
images at a time from off-chip memory, the images at indexes
t,t+1, and t+2, in a row by row fashion. Next, the gradients
module computes the derivatives of the input pixels along the
z, y, and t axes. The integral image module computes the
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Read Image Read Image Read Image
(t) ) (t+1) (t+2)

m[———T—— [

Gradients Gradients Gradients
dx(t), dx(t+1) L dy(t), dy(t+1) dt(t), dt(t+1)
[H]/[H] [H ][9] [E][H]
Integral Image Integral Image Integral Image
L Vi (1), vy, (t+1) IR vay(t), vay(t+1) ] Vyi(t), v (t+1) )
[E]/[H] [E]/[H] [E][H]
N N N
Integral Video Integral Video Integral Video
ivy, (1) ivay(t) iV, (1)
[y (] 4 (] v

-

Fig. 2. Preprocessing engine: Four modules are responsible for the compu-
tation of the integral videos along the x, y, and t axis.

integrals of the gradients. To do so, for each input array, it
calculates the integral of the current row in a register. Also,
this module maintains an on-chip copy of the integral of
the previous row. By adding these two integrals, this module
obtains an integral image. The integral video module takes as
input two integral images per axis, adds them together, and
writes the integral video into a FIFO. Finally, the resulting
integral videos are written to the off-chip memory.

Notice that in our design, the use of FIFOs facilitates the
communication between modules as well as the modulariza-
tion of the design. Each module reads from inputs FIFOS,
execute the required computations, and write results to the
output FIFOs. In summary, this design reads 97 gray-scale
images per video and outputs 144 = 48 x 3 pairwise integral
videos with two bytes per element. On-chip computations are
performed in reduced fixed-point arithmetic with either 8 or 16
bits operands. To improve throughput, we replicate this engine
eight times. As a result, this engine can process eight videos
in parallel.

B. Cell Descriptor Engine

Fig. 3 shows the modules responsible for the computation
of the cell descriptors. The read integral videos module reads

Read Integral Videos
iv,, (1), |v s vy (t)

[ Cell Descriptor }_@[
c

V[H]

‘:{ Mean- grad|ent J

| l \ 1]
Sub-block }

Normalization g,

Fig. 3. Components of the cell descriptor engine.

the integral videos from off-chip memory as required in
the computation of the mean gradient vector g,. The mean-
gradient module computes vector g, along with its norm.
The sub-block normalization module computes the sub-block
descriptor g, by executing the matrix vector multiplication P x
gp- Matrix Pjgx3 is stored on-chip.

The cell descriptor module computes the normalized vector
c;. Since the computation of the sub-block descriptors pro-
ceeds in a cell by cell order, each time a sub-block descriptor
is computed, the unnormalized cell descriptor is updated as
described in (7). Next, this module computes the normalized
cell descriptor and writes the results into a FIFO. Finally, the
normalized cell descriptors are written to the off-chip memory.

To take advantage of the FPGA resources, we replicate
this engine four times. Hence, our design processes four
videos in parallel. For each incoming integral video and
for each cell descriptor, this engine computes two sub-block
descriptors in parallel. Furthermore, parallel calculations have
been implemented when feasible. In the case of the operation
P x gy, thirty multiplications are executed in parallel. In the
case of vector normalizations, divisions and multiplications
are executed in parallel as well. In brief, for each incoming
video, this engine reads the pairwise integral videos, computes
the sub-block descriptors, and outputs the normalized cell
descriptors vectors. While the inputs to this module are 2-bytes
arrays, the outputs are ten-element vectors. On-chip operations
are executed in 16 bits. After vector normalizations, the width
of the elements in the output vector reduces to eight bits.

C. Block Descriptor Engine

This engine reads the normalized cell descriptors, computes
the block descriptors, transposes the block descriptors, and
writes the results to the off-chip memory. This engine is
composed of three modules, as shown in Fig. 4.

Read Cell
Descriptor ¢

Computation h

O

Fig. 4. Components of the block descriptor engine.

Block Descriptor J

Block Descriptor
Transposition h”

The read cell descriptor module reads the normalized cell
descriptors ¢; from the off-ship memory. Next, the block
descriptor module concatenates sixty-four cell descriptors and
writes the resulting vector, h size 64 x 10, into a FIFO.
Then, the transposition module transposes the descriptors.
In this process, the output of the block descriptor module
is written into eight FIFOs, with each FIFO containing one
block descriptor. Finally, this module pops the eight FIFOs
and writes the results of the off-chip memory, one column per
FIFO, i.e. the transpose operation.

To gain performance, we replicate this engine four times,
and as a result, four videos are processed in parallel. For each
incoming video and for each block descriptor, this engine reads
and writes four cell descriptors in parallel. In short, the input
of this module is an array of cell descriptors and the output
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is an array of block descriptors. All operands in this module
are one-byte wide.

D. Video Descriptor Engine

The next step is to compute the video descriptors. This
engine takes two inputs; the first input is the set of block
descriptors H, and the second input is a set of pre-computed
cluster centers D. The goal of this module is to find for
each element in H the nearest neighbor in D, and finally,
to find the distribution of the block descriptors per each given
center. In this design, the set D is mapped to the reference
matrix R,,xq4, and the set H is mapped to the query matrix
Qdxn- As aresult, nearest neighbor problem can be formulated
as a matrix multiplication problem ie. Cpxn = R X Q
with cfi, j] = Y _ . q_1(r[i, k] — g[k, j])?. Thus, matrix C
contains all the distances between the given m centers and the
n query points.

Matrix multiplications on FPGAs has been studied exten-
sively [39], [40]. In this work, we have followed the directions
of the design proposed in [41] with modifications. The com-
putation of matrix C' is blocked. For illustration purposes, let
us assume that the size of every block Cj; is p X p, moreover,
that m = k % p and n = s * p. Matrix C' can be written as

ClO Cll Cls
Covn = Cy Ca Cas
Cro Cks

The computation of sub-matrices C;; is from top to bottom
and from left to right. In this work, matrix R has n x 640
elements. The reference centers have been normalized off-line.
The components of this engine are shown in Fig. 5.

Read Matrices H Matrix Multiplication I
(I C;=Ry"Qy

{\[E

Nearest J

R, and de

Vid
ot o]
[E]

Center

Fig. 5. Components of the video descriptor engine.

The read matrices module is responsible for reading the
columns of sub-matrix R;; one at the time into a FIFO, in
addition, the rows of sub-matrix ()4; one at the time into p FI-
FOs. The matrix multiplication module executes the multipli-
cation C;; = R;qQq;. The layout of this component is shown
in Fig. 6. At the beginning, this module reads the first element
in the FIFO containing [0, 0] and it also reads the p FIFOs
containing ¢[0, 0], ¢[0,1],..,¢[0,p — 1]. Next, p subtraction-
and-multiplications are executed in parallel. The results are
stored in p BRAM accumulators with each accumulator having
p addresses and 16 bits per address. This process continues
until the last element, r[p — 1, 0], of the first column in R;4
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Fig. 6. Matrix multiplication component . The top p FIFOs contain the
elements rows of matrix Q. The left-most FIFO contains the elements of
the columns of matrix R. In the center, the distances are computed and
accumulated.

is multiplied by the current row ¢|0, 0], ¢[0, 1], .., ¢[0,p — 1].
Next, this module executes the outer-product between the
elements in the second column of R;; and the second row
of Q4;. This module continues to execute outer-products until
the calculation of the sub-matrix Cj; is complete. Results are
written into p FIFOs. We notice that by incrementing the
number of operation executed in parallel, the parameter p, we
can take advantage of the DSPs present in the FPGA: the
larger is p, the greater the performance.

The nearest center module finds the nearest center for every
object in (. Each time a sub-matrix Cj; is computed, this
module reads from p FIFOs. For every FIFO, i.e. for every
object g; € (@, this module keeps track of the minimal distance
and the associated center thus far. Since the sub-matrices Cj;
are computed top-to-bottom and left-to-right, each time that
a bottom sub-block is computed i.e. Cyg,Cki, .., Cks, this
module outputs the centers associated with gq;. These centers
are written to p FIFOs.

The video descriptor module reads the outputs of the
previous module. Every time that this module reads a center,
the BRAM memory address associated with that center is
incremented by one. When all the nearest centers are found,
this module outputs the video descriptor vector x, to the off-
chip memory. Notice that the computation of vector & can
potentially harm the throughput as the nearest center module
outputs as many as 320 centers per cycle. To speed up the
computation of x, we use a reduction tree with ten nodes
at the top level. Each of those node computes local video
descriptor by processing 32 inputs. In the next level of the
tree, the local video descriptors are merged into pairs. This
reduction continues until the final video descriptor is found.

To improve throughput, we replicate this engine four times
such that four videos are processed in parallel. For each
engine, the parameter p has been steadily increased until the
resources in the FPGA are nearly exhausted. In this design,
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we set p to 320 such that 1,280 multiplications are executed
in parallel. While all input elements are one byte, the output
elements are two bytes. On-chip computations are executed in
two bytes.

VI. GPU IMPLEMENTATION

In this section, we describe the implementation of HOG3D
in GPUs. We use 32-bit integer arithmetic and single precision
floating point arithmetic. Our implementation processes eight
videos in parallel by taking advantage of CUDA streams [9],
[42]. In this scenario, each stream is responsible for processing
one video. Moreover, kernel calls are issued in a breadth-first
fashion across all the running streams. For the purpose of
illustration, let us assume that eight CUDA streams 51,..,58
are running in parallel and each stream has two kernels K1
and K2. The GPU executes kernel K on all eight streams:
S1(K1), .., S8(K4) followed by S1(K3),..,S8(K3). In our
design, the GPU executes eight streams. For each stream, one
video having 97 gray-scale images is transferred from the host
main memory to the GPU off-chip memory. Eventually, the
HAR algorithm is executed using four engines as described
below.

A. Preprocessing Engine

The preprocessing engine computes the pairwise integral
videos along the x, y, and ¢ axis. Fig. 7 shows the kernels
used in this engine. The image gradients kernel computes the

(" Gradients Kernel ,// ( h
dx(t) , dx(t+1) Integral Columns
— dy(t) , dy(t+1) ‘ Kernel
L dit) | dit+1) L
Integral Video i | Integral Row Kernel
] Kemel T V) vatH1)
WV, (0, V5 0, 1,0 | < V) () |
| y dy H
g \\\ Va‘(t)r Va‘(t+1) ///'

Integral Images

Fig. 7. Components of the pre-processing engine.

gradients along the z,y, and ¢ axis. In this step, each image
is divided in tiles of size 16 x 16. The partition of an image
into tiles facilitates coalesced I/O operations. Each tile is then
loaded into shared memory along with the halo elements. For
every tile, the kernel computes the gradients along the z, y
and ? axis.

Subsequently, the integral images kernel, the right hand side
of Fig. 7, reads the gradients and computes the integrals of the
images. Calculating the integral of the images is challenging
for GPUs due to the presence of thread divergences [43], [44].
Our design is similar to the work presented in [44], with
modifications.

In the first step, the integral columns kernel reads the
gradients, using one CUDA thread per column, integrates the
values of the columns, and writes the resulting integrals to

the off-chip memory. While the first step can be executed
efficiently by one CUDA thread, the computation of integrals
along the rows requires synchronization between the threads
in a CUDA block. In the second step, the integral row kernel
reads the computed column integrals into shared memory. The
algorithm computes the row integrals in two phases: the up-
sweep phase and the down-sweep phase. In the up-sweep
phase, the kernel computes the prefix-sum for all odd elements.
In the down-sweep phase, the kernel computes the prefix-sum
for all even elements. In our work, because the rows of the
input images are no larger than 640, the prefix-sum per row
can be implemented in shared memory; the routine sets the
row size to N = 1024 and pads the data as necessary. After
padding, the kernel uses N/2 threads, takes 2Loga(N) — 1
steps, and executes 2(N — 1) additions [44]. The resulting
array integrals are then written to the off-chip memory.
Finally, the integral video kernel reads two integral images
per axis, adds their values, and writes the results back to the
off-chip memory. In this kernel, threads are mapped to the
columns such that we achieve coalesced memory accesses.

B. Cell Descriptor Engine

In this engine, the algorithm computes the cell descriptors
c;. Fig. 8 shows the kernels involved in this computation.

Sub-block Cell Descriptor .
Descriptor Kernel g, Kernel ¢

Fig. 8. Cell descriptor engine. Two kernels are responsible for the computation
of the cell descriptors.

The sub-block descriptor kernel computes the mean-
gradient vector gp. In this design, a thread is responsible for
computing the mean-gradient. To improve the performance,
the matrix Pjgx3 is stored in constant memory and the mean-
gradient is stored in shared memory. The cell descriptor
kernel computes the vector c. Specifically, a thread reads the
normalized sub-block descriptors inside the cell, adds their
values, executes vector normalization, and finally, writes the
resulting vector to the off-chip memory. In this design, a thread
is responsible for computing the normalized cell descriptors
using shared memory.

C. Block Descriptor Engine

The block descriptor engine computes the block descriptors
using two kernels as shown in Fig. 9. The block descriptor

A -

Fig. 9. Block descriptor engine. Two kernels are responsible for computing
the block descriptors.

Block Descriptor
Transposition
Kernel h"

Block Descriptor
Kernel h

kernel reads the cell descriptors ¢ and computes the block
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descriptor h. Results are written to the off-chip memory. Be-
cause this kernel is I/O bounded, its performance is improved
by increasing the number of threads executing off-chip reads
and writes. In this work, a thread is responsible for reading
and for writing each element in h. The block transposition
kernel reads, transposes, and writes an array size 640 x 10, 240.
Matrix transposition using tiles is a well-studied kernel [45],
[46], [44].

D. Video Descriptor Engine

In this engine, the video descriptor is computed via a nearest
neighbor clustering algorithm. Given two vectors & € R and
y € R?, their Buclidean distance is given by

p(x.y)? = (z—y) (z—y) = llz|* + |lyl]* - 22"y (13)
Furthermore, distances between vectors can be computed
via matrices [47]. Let R and () be two matrices size d X m
and d x n respectively. R represents m reference centers and
Q represents n block descriptors. Let p?(R, Q) be a m x n
matrix containing the distances between the reference centers
and the block descriptors. Then p?(R, Q) can be computed as

p*(R,Q) = Ng + N — 2R"Q (14)

In this equation, the elements of the jth row of Ng are all
equal to Y'=0! (R[i7j])2; The elements of the j*" column
of Ng are all equal to Zzzg_l (Qli, 4])2. To save memory,
in this design, we represent Nr and Ng as vectors. Further,
because the reference centers are predefined, N and RT are
computed off-line. Fig. 10 shows the kernels involved in the

computation of the video descriptors.
Multiplication

Compute Norms
Kernel Ny Kernel RTQ
J
~
’_{Video Descriptor Membership
Kernel x
)

Matrix

Distances
Kernel ¢?(R,Q)

Kernel q,

Fig. 10. Video descriptor engine. Kernels used in the process of computing
the video descriptors.

The norms kernel computes vector Ng. In this design,
a CUDA thread is responsible for computing Ng[j]. This
assignment makes it possible to optimize off-chip memory
bandwidth. The matrix multiplication kernel executes RTQ
by means of the CUBLAS library [45]. The distances kernel
calculates the matrix p?(R, Q). In this work, a CUDA thread is
responsible for computing the distances between the reference
centers and the block descriptors i.e. p*(R,Q)[i,j]. To do
so, it reads elements Ng[i| and Ng[j] along with element
p*(R,Q)[i, j]. Next, it computes the distance, as shown in
(14), and writes the values to off-chip memory.

The membership kernel finds the membership of every
object in ). To optimize the bandwidth, a CUDA thread is
responsible for computing the membership of g; by means of
scanning column j in matrix p?(R, Q). Results are written to

the off-chip membership vector. Finally, the video descriptor
kernel computes vector x in two steps. In the first step, the
privatized step, threads read the elements of the membership
vector. As the coalesced reads are executed, the video descrip-
tor is computed, in shared memory, by means of atomic adds.
In the second step, the global step, threads write atomically to
the shared video descriptor vector in the off-chip memory [48].

VII. COMPLEXITY ANALYSIS

In this section, the complexity of the FPGA and the GPU
design per engine is given. We assume the HOG3D algorithm
takes as inputs 97 gray-scaled images having M rows and
N columns. Also, we assume that each sub-block descriptor
contains K elements, each cell descriptor contains eight sub-
block descriptors, and each block descriptor contains 64 cell
descriptors. Moreover, the design processes C cell descriptors,
n block descriptors, and m reference centers. Each block
descriptor and each reference center vector has 64 x K ele-
ments. Moreover, the matrix multiplication RT x Q) operation
is blocked, and the size of the block is p. Without loss of
generality, we assume that m/p and n/p are integers.

A. Preprocessing Engine

Table I shows the results of the complexity analysis.

TABLE 1
PREPROCESSING ENGINE COMPLEXITY ANALYSIS

/O operations FPGA | MN(97 + 144)
GPU MN(97 4 144 + 144 x 8)
Arithmetic Operations | FPGA | 144(7TMN — 4M — 2N)
GPU 144(9MN — 6M — 2N)

In FPGAs, the preprocessing engine requires the reading of
97 images and the writing of 144 integral video images, 48 for
each dimension. In GPUs, the preprocessing engine requires
8M N additional I/O operations per integral video image:
2M N writes due to computation of the gradients, 2M N reads
and 2M N writes due to the computation of the integral of the
derivatives, and 2M N reads due to the computation of the
integral video image.

In FPGAs the computation of the integral videos is executed
in three steps. (a) The computation of the derivatives per input
image takes M (NN — 1) operations. (b) The integral of the
derivatives, takes 2M N — M — N operations. Hence, the
computation of the integrals of the gradients for two images
requires 2(3M N —2M — N) operations. (c) The computation
of the pairwise integral videos requires M N additions. In
GPUs, steps (a) and (c) are as in the case of FPGAs. Step
(b) takes 3M N — 2M — N operations: the integrals along the
columns require (M — 1)N operations and integrals along the
rows require 2M (N — 1) operations. Hence, the computation
of the integrals of the gradients for two images requires
2(4MN — 3M — N) operations.

Taking into consideration the complexity analysis and the
proposed design for FPGAs and GPUs, we observe that this
engine is I/O bounded. In the case of FPGAs, the bound
applies despite the larger number of arithmetic operations. This
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engine computes three integral videos in parallel. In addition,
the computation of the gradients, the integral of the gradients,
and the pairwise integral videos is pipelined.

B. Cell Descriptor Engine

The complexity analysis is given in Table II.

TABLE 11
CELL DESCRIPTOR COMPLEXITY ANALYSIS

/O operations FPGA | C(8(12) + K)
GPU | C(8(12) + 8K + 9K)
Arithmetic Operations | FPGA | C(8(11K) + 11K +¢)
GPU | C(8(11K) + 11K + c)

In FPGAs, the computation of one sub-block descriptor
takes twelve reads, see (11), and the computation of the
cell descriptor takes K writes. In GPUs, the computation of
each sub-block descriptor takes K additional writes and the
computation of the cell descriptors takes 8 K additional reads.
In FPGAs, as well as GPUs, the computation of the sub-block
descriptor g, takes 11K operations®. The computation of the
cell descriptor c¢; requires 11K operations>.

The computation of the cell descriptors in FPGAs is I/O
bounded despite the larger number of arithmetic operations.
While the arithmetic operations are parallelized and pipelined,
at least K operations are executed in parallel per pipeline, the
reading of the integral videos is serial. Moreover, in GPUs,
the performance of this engine is bounded by the number of
arithmetic operations as a CUDA thread is responsible for the
computation of each sub-block and cell descriptor.

C. Block Descriptor Engine

In FPGAs, the computation of each block descriptor in-
volves the reading and writing of 64 cell descriptors i.e.
2n(64C) = 2n(d) VO operations. In GPUs, additional 2nd
I/O operations due to transpositions must be executed. For
both FPGAs and GPUs, this engine is I/O bounded.

D. Video Descriptor Engine
Table III shows the results of the complexity analysis.

TABLE III
VIDEO DESCRIPTOR COMPLEXITY ANALYSIS

1/0 operations FPGA | 2(dmn/p) +m

1/0 operations GPU 2(dmn/p) + mn +
n(d+2) + 2mn +
mn+n

Arithmetic Operations | FPGA | (3d — 1)(mn) + nm

Arithmetic Operations | GPU (2d —1)ymn +
3mn+n(2d—-1) +
(m—1)n+n

In the FPGA, the computation of each sub-matrix C}; size
p X p takes 2dp reads. Moreover, writing the video descriptor

25K operations due to P x gy, K divisions, K comparisons, 3K operations
due to squared roots, plus K multiplications.

37K operations are due to additions and 4K operations are due to
normalizations. The constant ¢ accounts for few additional operations.

vector x takes m writes. Computing each element c[¢, j] takes
d subtractions, d multiplications, and d — 1 additions. As a
result, the total number of operations per sub-matrix Cj; is
(3d—1)(p?). Finding the membership of each block descriptor
takes (m — 1) comparisons. Moreover, the computation of the
video descriptor vector takes n additions.

The computation of the video descriptor in GPUs is de-
scribed in three steps. First, the computation of matrix RTQ
takes 2pd * (mn/p?) reads, mn writes, dmn multiplications,
and (d—1)mn additions. Second, the computation of p?(R, Q)
is executed in two parts. (a) Computing Ng requires dn
reads, n writes, dn multiplications and (d — 1)n additions.
(b) Computing p?(R, Q) requires n reads and the reading and
writing of a matrix size mn. Moreover mn multiplications
and 2mn additions are required. Third, the computation of the
video descriptor @ requires mn reads, n writes, (m — 1) xn
comparisons, and n additions. Finally, this engine is computed
bounded.

VIII.

In this section, we discuss the throughput and the energy
efficiency of the HOG3D design in FPGAs and GPUs. At the
end, we propose a heterogeneous HOG3D (HHAR) algorithm.

RESULTS

A. FPGA Synthesis Results

In this part, we describe the results of the synthesis, placing,
and routing. The testbed is composed of two Intel Xeon
CPUs E5-2640 and two Virtex-7 FPGAs [8]. Each FPGA
has 32 memory channels. To achieve maximum bandwidth
per channel, 1.25 GB/s, a 64-byte exclusive request has to
be issued. Otherwise, a channel can handle request sizes of
1,2,4, or 8 bytes at the expenses of decreasing the effective
bandwidth. While we implemented all the engines in Verilog
HDL, the synthesis is executed in Vivado 16.4. First, simula-
tions are executed to attest the accuracy of the results. Next,
we addressed timing errors until the design meets the timing
requirements (166 MHz). Table IV shows the percentage of
utilization of the resources in the FPGA per module.

TABLE IV
FPGA RESOURCE UTILIZATION PERCENTAGES PER ENGINE - IMAGE
S1ZE 320 x 240

Available Preprocessing Cell Block Video
Resources (%) Desc (%) | Desc (%) | Desc (%)
Registers (2443K) 15.49 17.33 14.26 21.22
LUTs (1221K) 2091 24.79 17.96 25.06
LUTRam (344K) 19.87 16.80 16.41 25.20
Block Rams (1.2K) 40.21 42.52 39.36 87.41
DSPs (2.1K) 0.00 20.00 1.48 59.44
Memory Channels (32) 100.00 100.00 100.00 75.00

To analyze the resource utilization per engine, we split
the engines into two groups taking as the dividing factor the
utilization of memory channels. Group one, the preprocessing,
the cell descriptor and block descriptor engine, uses 100% of
the memory channels while the second group, the video de-
scriptor engine, uses 75% only. By inspection of the resource
utilization table, we notice that engines in the first group have
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high I/O utilization and lower on-chip resource utilization
whereas engines in the second group have high on-chip
resource utilization and low I/O utilization. In other words,
the number of I/O operations constrains the performance of
the first group of engines, whereas the number of arithmetic
operations constrains the performance of the second group of
engines.

B. FPGA Throughput Results

In this section, we describe the performance of the FPGA
design. The performance per engine is shown in Table V. In
this table, the time to move the data from the host to the FPGA
and back is not reported.

TABLE V
VIRTEX-7 FPGA THROUGHPUT PER ENGINE - IMAGE SIZE 320 x 240

Engine Videos Processed | Throughput (fps)
Preprocessing 8 11,184
Cell Descriptor 4 3,110
Block Descriptor 4 11,186
Video Descriptor 4 3,036
[ Overall Throughput (fps) | 4 [ 1,088 |

Table V shows that the preprocessing and the block de-
scriptor engines have the highest throughput while the other
two engines have the lowest. The high performance of the
preprocessing engine is the result of two factors. First, it con-
tains eight kernels with each kernel processing three images
in parallel. Second, it benefits of the high I/O performance
offered by WX-2000 memory system due to data locality
during reads and writes [8]. The use of pipelining increases
the throughput further. The block descriptor engine has a high
performance as well. Notice this engine is fully constrained
by the off-chip bandwidth. In this regard, this engine partially
benefits from contiguous memory reads since cell descriptors
are represented as 16 contiguous bytes. Writes are always
issued in eight-byte chunks.

The cell descriptor engine has the next best performance.
The performance of this engine is limited by the sparsity
of the off-chip reads. Although the number of I/O opera-
tions the engine issues is low, memory requests are issued
to non-contiguous memory regions. In addition, because the
design uses 100% of the memory channels, further gains in
performance by means of increasing the processing pipelines
is not feasible. The video descriptor engine has the lowest
performance. The performance of this engine is limited by
the computational complexity of the matrix multiplication
operation, see Table I. Further gains in performance are not
feasible as resources have been nearly exhausted, see Table IV.

Overall, when working with images size 320 x 240, the
maximum throughput in steady state is 3,036 fps when four
FPGAs are used. In steady state engine one processes four
videos. Moreover, not considering reconfiguration time, the
maximum throughput achieved by one FPGA is 1,088 fps.
This calculation accounts for the time it takes for an image to
move across each engine.

C. GPU Throughput Results

In this section, we analyze the performance of the GPU
design. The first testbed consists of an Ubuntu workstation
equipped with an Intel 17-860 processor, 8GB of RAM, and
a K20 GPU. The second testbed consists of an Ubuntu
workstation equipped with an Intel Xeon E5-520 processor,
24GB of RAM, and a K40 GPU. Finally, the third testbed
consists of a CentOS workstation equipped with an Intel Xeon
E5-2680 processor, 32GB of RAM and a K80 GPU. The
code is compiled with the CUDA compiler release 7.5 and
the Basic Linear Algebra Subroutines. In all the experiments,
the error correction capabilities (ECC) are disabled. Table VI
shows the throughput per engine for each GPU. The discussion
that follows applies to the K20 GPU. Similar analysis applies
to the K40 and K80 GPUs as these devices share the same
architecture.

TABLE VI
K20, K40 AND K80 THROUGHPUT PER ENGINE WHEN PROCESSING
EIGHT VIDEOS IN PARALLEL -IMAGE SIZE 320 x 240

K20 (fps) | K40 (fps) | K80 (fps)
Preprocessing 3,310 4,044 5,306
Cell Descriptor 13,241 17,143 23,594
Block Descriptor 118,154 128,000 243,810
Video Descriptor 9,458 11,294 16,203

[ Overall Throughput(fps) | 2,033 ] 2,487 | 3,370 |

From the table, we notice the K20 is very fast at computing
the block descriptors, engine three, and very slow at prepro-
cessing the videos, engine one. Two elements provide insight
on the performance of engine three. First, the performance
of this engine is purely I/O bounded. Second, the K20 off-
chip memory bandwidth is high, i.e. 208 GB/s. The engine
computing the cell descriptors, has the next best performance.
Close inspections of the performance of this engine shows the
kernel computing the sub-block(cell) descriptors taking 66(34)
% of the running time. The performance of this engine is
limited by the amount of work the engine must execute and by
the uncoalesced nature of the reads during the computation of
the sub-block descriptors. Thread divergences present during
vector normalizations limit the performance as well.

The performance of engine four, namely the computation
of the video descriptors, has the next best performance.
Inspecting the performance of this engine reveals that about
60% of the time is spent executing the matrix multiplication.
The remaining time is spent in nearly equal parts in the kernels
responsible for computing Q x, p(R, Q)? and x. In this engine,
elements limiting gains in performance include the complexity
of the matrix multiplication (see Table III in Section VII), the
use of block barriers, and the use of atomic primitives during
the computation of the video descriptor vector .

Notably, the preprocessing engine has the lowest perfor-
mance. The preprocessing complexity analysis (see Table I in
Section VII), explains in part this behavior. When compared
with the FPGA complexity, the GPU executes M N (144 x 8)
additional I/O operations. Moreover, while the number of the
arithmetic operations per integral video in FPGAs is propor-
tional to 7M N, this complexity is proportional to 9M N in
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GPUs. On closer inspection, the GPU running times show that
engine one spends 55.0%, 28.9%, 12.2%, and 3.8% computing
the row integrals, the columns integrals, the image gradients,
and the integral videos respectively. Issues affecting the per-
formance of the row integrals kernel include the presence
of control flow divergences, the presence of synchronization
primitives, and the effective amount of work that a thread
executes per step.

Bialas [49] shows that block thread divergences on Kepler
GPUs cost as much as 116 clock cycles. Letrendre [50] shows
that the extra cost of using block synchronization primitives
in the presence of global memory reads ranges from few
hundreds up to a thousand cycles. Likewise, the cost of global
memory writes in the presence of synchronization primitives
is comparable, although it tops at about 700 cycles. The extra
cost of using block synchronization primitives in the presence
of shared memory reads is near 350 clock cycles. Similarly,
when synchronization primitives are used, the cost of shared
memory writes is near 220 cycles. Furthermore, the row
integral kernel executes 2(N — 1) additions in 2Loga(N) — 1
steps when N/2 threads are used. If N = 512, the number of
additions per step is 61 ~ 1022/17. In this case, the amount
of work per thread per step is 0.24 ~ 61/256. In other words,
during row integration threads do not execute any useful work
76% of the time.

In addition, we notice that, although recent GPU architec-
tures include novel software and hardware optimizations [51],
in our work, those optimizations do not increase the through-
out of the row integral kernel notwithstanding the expected
gains in performance due to the new architecture. While the
single instruction multiple thread (SIMT) execution model
supports independent thread scheduling, this model does not
increase the performance of the kernel under analysis because
synchronization between the collaborating threads during the
up-sweep and the down-sweep is still required i.e. in the
best scheduling scenario, the integral row kernel still requires
2Log(N) — 1 steps. Further research reveals that the low
performance displayed by the row integral kernel is part of
a broader set of performance challenges faced by GPUs when
processing workloads with irregularities as shown in [52], [53],
[54].

We notice that, although the K20 GPU can process fifteen
videos in parallel, the gains in performance are diminishing
as the number of videos increases. The peak performance is
achieved when the number of videos processed is ten. Above
ten videos, the performance remains constant. Below seven
videos, the throughput drops by 30 fps and below. In brief,
when working with images size 320 x 240, the throughput
of the K20, K40, and K80 is 2,033 fps, 2,487 fps, and
3,370 fps respectively. The K80 speedup is 1.3X (1.6X ) when
compared with the K40(K20). The K80 implementation
takes advantage of the dual GPU design.

D. Heterogeneous HAR

Based on the throughput results obtained for the K20
GPU and the Virtex-7 FPGA, in this Section, we develop
a heterogeneous HAR (HHAR) design. In this design, the

preprocessing is executed in the FPGA. The data is then moved
from the FPGA to the host and from the host to the GPU, and
finally, the cell, block, and video descriptors are computed
in the GPU. Fig. 11 shows the steps required by our HHAR
design.

Fig. 11. Heterogeneous HAR desing. (1) The transferring of data from the
host to the FPGA (2) The execution in the FPGA (3) The transferring of data
from the FPGA to the CPU (4) The transferring of data from the CPU to the
FPGA (5) The execution in the GPU (6) The transferring of data from the
GPU to the CPU.

Table VII shows the execution times of the steps involved
in the algorithm for images size 640 x 480.

TABLE VII
HETEROGENEOUS HAR DESIGN EXECUTION TIMES PER TASK - IMAGE
S1ZE 640 x 480

Step Resource Time (ms)
(1) Host to FPGA Data Transfer | PCle G3 x16 65.24
(2) Preprocessing Virtex 7 274.70
(3) FPGA to Host Data Transfer | PCle G3 x 16 379.16
(4) Host to GPU Data Transfer PCle G2 x16 225.84
(5) Cell, Block and Video Desc. K20 591.50

Table VII shows the times it takes to process eight videos
in parallel. In this design, 776 = 97 x 8 gray-scale images are
transferred from the host to the FPGA. Next, the preprocessing
engine is executed in the FPGA. The resulting 8 x 144 2-byte
integral videos are then transferred from the FPGA to the host
and from the host to the GPU. Finally, the GPU executes the
cell, block, and video descriptor engines. The time to transfer
the video descriptor back to the CPU, step six, is below one
millisecond, and as a result, it is not reported.

By inspection of Table VII, we notice that the execution
of the block, cell, and video descriptor engines on the GPU
takes the longest time followed by the time it takes to transfer
data from the FPGA to the host. Moreover, it is possible to
overlap the movement of data from the host to the FPGA (and
vice versa) with the execution of the kernel in the FPGA; the
call wdm_dispatch in the Convey Development Kit is non-
blocking [55]. Likewise, it is possible to overlap the movement
of data between the host and the GPU with the execution
of a kernel in the GPU given that several practices are
observed [42]. Considering these overlaps, the communication
time between the host and the FPGA dominates the FPGA
execution time. Similarly, the execution time in the GPU
dominates the communication time between the host and the
GPU.

Based on these observations, we propose a host controlled
four stage pipeline, see Fig. 12. In this plot, the notation Bx, Rx
and B*x, R*x identifies the set of double buffers used in the
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Step 1 Step 2 Step 3 Step 4 Step 5 Step 6
H-FPGA(B1) | FPGA(B1,R1) FPGA(B2,R2) H-GPU(B*1) GPU(B*1,R*1) GPU(B*2,R*2)
H-FPGA(B2) H-FPGA(B1) FPGA(B1,R1) H-GPU(B*2) H-GPU(B*1)
FPGA-H(R1)

H-FPGA(B2) | FPGA(B2,R2) = FPGA(B1,R1)

FPGA-H(R2)
H-FPGA(B1) H-FPGA(B1)
FPGA-H(R1) | FPGA-H(R1)

Fig. 12. Heterogeneous HAR Pipeline. The pipeline has four steps: (a) the
transferring of data from the host to the FPGA (H-FPGA) and from the
FPGA to the host (FPGA-H); (b) the execution in the FPGA (FPGA); (¢)
the transferring of data between the host and the GPU (H-GPU); and (d) the
execution in the GPU (GPU).

FGPA and the GPU. In steady state, reached at step six, the
maximum latency of the pipeline is 591.50 ms. This is the time
it takes the GPU to process eight videos in parallel. Based
on these considerations, the HAR design has a cumulative
throughout of 1,311 fps; 163 fps per input video.

E. Energy Efficiency Comparison

Next, we compare the energy efficiency of each platform.
For the GPUs, the power is measured using the NVidia
Management Library [42]. Once the power plot is drawn,
corrections have been made to have an accurate power estima-
tion [56]. The FPGA power consumption is measured using
the Convey Development Kit [55]. This API allows the user
to query the power usage of the FPGA as the application
is executed. In all platforms, the computed power accounts
for the idle power and the dynamic power consumption. The
energy usage and energy efficiency per platform and per
engine are shown in Table VIII. Although our heterogeneous
HAR design works with any GPU, we report the results with
the K20 GPU.

TABLE VIII
ENERGY USAGE (JOULES), ENERGY EFFICIENCY (FRAMES/JOULE), AND
THROUGHPUT (FPS) PER PLATFORM - IMAGE SIZE 640 x 480

HHAR | K20 K40 K80
Preprocessing (J) 17.2 74.0 80.3 125.2
Cell Desc (J) 41.0 144 13.8 20.5

Block Desc (J) 4.8 1.7 1.4 2.0
Video Desc (J) 98.9 3477 35.7 35.6
Total Energy (J) 161.9 124.8 | 131.2 | 183.3
Efficiency (F/J) 8.0 3.6 3.9 5.4
Throughput (FPS) 1,304 455 517 998

For the preprocessing stage in the HHAR design, we report
the energy measured via the Convey Development Kit and
for all other stages, we report the energy measured via the
NVidia Development Kit. To obtain the throughput and energy
efficiency of the preprocessing engine in the FPGA, we
have synthesized its design for VGA images (640 x 480)
and measured the throughput and power consumption. The
resource usage is shown in Table IV. Eight engines processing
gray-scale images have a cumulative throughput of 2,796 fps
while requiring about 36.8 joules i.e. 13.1 mJ/F.

Moreover, the HHAR energy calculation shown in Ta-
ble VIII does not takes into account the energy used by the
host or the PCle buses. Our HHAR design requires additional
energy to move 707.8 M B from the FPGA memory to the host
memory and from the host memory to the GPU memory. Our
research indicates this additional energy is minor compared
to the energy used by a kernel running in either the FPGA
or the GPU. It is estimated that DDR3 memories dissipate
approximately 1.5 W/GBit on average and close to 2.5 W/GBit
at peak usage [3], [57]. In the case of memory reads, the
reading of 32 bits requires close to 620 pJ [3]. Using these
figures, we estimate the energy required for reads and writes
707.8M B is below one joule. In addition, our experiments
reveal that the transfer of 5.6 GBits from the host to the GPU
requires about a dozen Watts, as reported by the sensor in the
GPU, although precise measures of the energy required bit the
PCle links is challenging. More importantly, adding few joules
to the energy consumption of our HHAR design will not alter
the overall results.

From this, we notice that the HHAR design has the highest
throughout, in frames per second (fps), and it is the most
energy-efficient design, in frames per joules (F/J), followed
by the K80. Our HHAR design has a cumulative throughput
of 1,311 fps: 163 fps for each incoming video. In addition,
it achieves 2.0X (2.2X) higher energy efficiency when com-
pared with the K40(K20). The K20 and K40 GPUs have
comparable comparable energy efficiency and the K80 is more
energy efficient by a factor of 1.5 and 1.4 respectively. Notice
that if our HHAR design uses the K40 or K80, instead of the
K20 GPU, our design will further increase both the energy
efficiency and the throughout.

FE. Comparison With Other Works

Prior work on HOG has focused mostly on two dimensions
(HOG2D) for object recognition. Instead, we use histogram of
gradients in three dimensions (HOG3D), which is particularly
important for HAR. Working with the temporal dimension
adds to the complexity of the algorithm in all its stages.

Previous research of HOG2D for object recognition in
GPUs includes the work presented in [58], [59], [60]. When
processing images size 640x480, as in this work, these designs
achieve throughputs ranging from 16 fps up to 38 fps. While
the focus of the work in [58] is the identification of vehicles
in real time, the work in [59], [60] focuses in the identification
of pedestrians using batch approaches. In addition, these
researchers focus their attention on achieving high throughput
and high energy efficiency using well-establish algorithms.

Research of HOG2D for object detection in FPGAs includes
[61], [62], [63], [64], [65], [66]. When processing images size
640 x 480, these designs achieve throughputs ranging from 30
fps up to 526 fps although the work in [64] processes higher
resolution images at the expense of lower throughput. As in
the case of GPUs, the focus of this work is in achieving high
throughput. In addition, lowering the computational complex-
ity of the design without sacrificing the recognition accuracy
is paramount.

The acceleration of HOG3D has not received the same
attention as that of HOG2D. The work in [29] targets HAR
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applications in FPGAs although it operates at 600 fps while
using images size 320 x 240. This design has a recognition rate
of 93.2% working with a small set of actions. Its recognition
drops to 80.8% when a few more actions are added. In
comparison, our work achieves a throughput of 1,311 fps on
640 x 480 images when eight videos streams are processed in
parallel. Also, while the work in [67] and [29] target datasets
having few classes, our work targets datasets having over 50
classes.

Furthermore, although our work is orthogonal to those
focused into improving the accuracy of HAR applications, we
state that our HCF design, with multiple scale support, has
recognition accuracy comparable to state-of-the-art CNNs. In
the case of the HMBD-51* [68], the recognition accuracy of
CNNs [20] is 59.4% when two-stream CNNs are used. When
only the temporal or spatial stream is used, the recognition
accuracy drops to 54.6% and 40.5% respectively. When hybrid
approaches are used [26], the recognition accuracy reaches
65.9%. Our 16-bits reduced fix-point HHAR design achieves
60.1% recognition accuracy in the UCF50.

Finally, the higher accuracy demonstrated by CNNs on HAR
applications [69], [19], [70] comes at the cost of higher power
consumption and lower throughput. The results in [4] show
that feature extraction using HOG is 311X and 13,486 X more
energy efficient and has 34.7X and 1,562.X higher throughput
than AlexNet [69] and VGG-16 [71] respectively. The work
in [5] shows that a five-layer CNN has comparable accuracy to
those of HOG designs while consuming 100X more energy.
In addition, our experiments show that our hybrid design
is 44.7X more energy efficient and achieves 13.4X higher
throughput than AlexNet on the Titan X GPU [72].

IX. CONCLUSIONS

In this paper, we have investigated the throughput and
energy efficiency of HOG3D-based HAR applications accel-
eration on FPGAs and GPUs for edge computing where high
performance and energy economy are at a premium. We have
identified four stages in this application and have explored the
design constraints of each stage on the target platforms. We
have developed a detailed I/O and computational complexity
analysis of each of these stages and used this insight to
guide our heterogenous implementation. Our results show
that a heterogeneous implementation where the first stage,
the video pre-processing, is implemented on the FPGA and
the other three stages are implemented on the GPU achieves
the highest throughput and energy efficiency. Specifically, the
heterogeneous HAR algorithm achieves 1.3X speedup when
compared with the K80 GPU, 2.5X when compared with the
K40 GPU, and 2.8X when compared with the K20 GPU.
Similarly, our heterogeneous HAR design is 1.5X and 2.0X
more energy efficient when compared with the K80 and K40
GPUs. We have shown that HOG3D can be implemented via a
reduced fixed-point processing pipeline without compromising
the recognition accuracy. Additionally, our design has compa-
rable accuracy to those of HAR design using five-layer CNNs
while been more energy efficient.

4This benchmark is comparable to the UCF50 benchmark. It has 51 action
categories and 7,000 video clips
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