
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Integrating multiplexed metaproteomics to discover novel therapeutic avenues targeting 
the IBD microbiota

Permalink
https://escholarship.org/uc/item/7mc8j25m

Author
Mills, Robert Hardie

Publication Date
2020
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7mc8j25m
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO 
 
 

Integrating multiplexed metaproteomics to discover novel therapeutic avenues targeting 
the IBD microbiota 

 
 
 
 

A dissertation submitted in partial satisfaction of the requirements for the degree Doctor 
of Philosophy 

 
 
 
 
 

in 
 

Biomedical Sciences 
 
 

by 
 
 
 
 
 

Robert Hardie Mills 
 
 
 
 
 
 
 
 
 

Committee in charge: 
 

Professor David J. Gonzalez, Co-Chair 
Professor Rob Knight, Co-Chair 
Professor Pieter Dorrestein 
Professor Partho Ghosh 
Professor Larry Smarr 

 
2020 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
	
 
 

Copyright 
 

Robert Hardie Mills, 2020 
 

All rights reserved.  



iii 
	

The Dissertation of Robert Hardie Mills is approved, and it is acceptable in quality and 
form for publication on microfilm and electronically: 

 
 
 

_____________________________________________________________ 
 
 

_____________________________________________________________ 
 
 

_____________________________________________________________ 
 
 

_____________________________________________________________ 
Co-Chair 

 
_____________________________________________________________ 

Co-Chair 
 
 
 

University of California San Diego 
 
 

2020 
 
  



iv 
	

TABLE OF CONTENTS 

Signature Page…………………………………………………………………...……… iii  

Table of Contents………………………………………………………………............... iv 

List of Figures………………………………………………..………………………….. vi 

List of Tables………………………………………………..…………………………. viii  

Acknowledgements……………………………………………………………………… ix  

Vita………………………………………..…………………………………..………... xii 

Abstract of the Dissertation …………………………………………………………… xiv 

Chapter 1 General Introduction...……………….……………………………………….. 1 

1.1 Technology, Human Health, and the Microbiome……….…………………... 2 
1.2 The Use of Meta –omics to Study the Microbiome…………….……………. 6  
1.3 Proteomics and the Microbiome……………………………………………. 15 
1.4 References…………………………………..………………………………. 23 

Chapter 2 Organ level protein networks as a reference for the host effects of the 
microbiome…………………………………………...………………………………… 31 
 
 2.1 Abstract……………………………………………………………………... 32 
 2.2 Introduction…………………………………………………………………. 33 
 2.3 Results………………………………………………………………………. 35 
 2.4 Discussion…………………………………………………………………... 46 
 2.5 Materials and Methods…………………………………………………….... 50 
 2.6 References…………………………………………………………………... 59 
 
Chapter 3 Evaluating Metagenomic Prediction of the Metaproteome in a 4.5 Year Study 
of a Crohn’s Patient…………………………………………...………………………... 64  
 
 3.1 Abstract……………………………………………………………………... 65 
 3.2 Introduction…………………………………………………………………. 66 
 3.3 Results………………………………………………………………………. 69 
 3.4 Discussion…………………………………………………………………... 87 
 3.5 Methods…………………..………………………………………………..... 92 
 3.6 References………………………………………………………………...… 99 
 
Chapter 4 Meta–omics Reveals Microbiome Driven Proteolysis as a Contributing Factor 
to Severity of Ulcerative Colitis Disease Activity……….…...……………………...... 106  
 



v 
	

 4.1 Abstract……………………………………………………………………. 107 
 4.2 Main……...………………………………………………………………... 107 
 4.3 Discussion…………………………………………………………………. 118 
 4.4 Methods.…………………..……………………………………………….. 121 
 4.5 References…………………………………………………………………. 136 
 
Chapter 5 Associations of the fecal microbial proteome composition and proneness to 
diet-induced obesity……………………………..……….…...……………………….. 143  
 
 5.1 Abstract……………………………………………………………………. 144 
 5.2 Introduction………………………………………………………………... 145 
 5.3 Results………………………..……………………………………………. 147 
 5.4 Discussion.………………..……………………………………………….. 163 
 5.5 Methods……………………………………………………………………. 165 
 5.6 References…………………………………………………………………. 177 
 

Chapter 6 Concluding remarks and future direction……..…...……………………….. 184  

 6.1 Summary…..………………………………………………………………. 185 
6.2 Determine the regulation and activity of B. vulgatus proteases relevant to 
UC…………………………………………………………………………....... 186 

 6.3 Interrogate mechanisms of host response to B. vulgatus proteases……….. 196 
 6.4 Determine the impact of protease inhibition in models of IBD……..…….. 200 
 6.5 References…………………………………………………………………. 203 
  



vi 
	

LIST OF FIGURES 

Figure 1.1: Pubmed articles using keywords “Microbiome” or “Metaproteome”……….16  

Figure 1.2: Milestone studies in the human metaproteome………………...……………17 

Figure 1.3: TMT-Metaproteomics decreases the sparsity of metaproteomics 
data……………………………………………………………………………………….22  

 
Figure 2.1: Organ-specific protein networks modulated by microbial 
colonization……………………………………………………………………………....36  

 
Figure 2.2: Functional enrichments associated with microbial colonization within each 
organ system………………...………………………………………………………….. 38  

 
Figure 2.3: Combined organ protein networks modulated by microbial colonization…..41 

Figure 2.4: Organism level protein networks modulated by the microbiome…………...43 

Figure 2.5: Interactive 3D Visualization of Associations to Colonization Status……….46 

Figure 3.1: Study design………………………………………………………………....71  

Figure 3.2	Broad-scale data type comparisons.……………………………..…………...74  

Figure 3.3: Functional categories with strong or weak genomic prediction of proteome 
fluctuation………………………………………………………………………………..78 

 
Figure 3.4	Genus level associations to clinical markers…………………….…………...80 

Figure 3.5: Functional associations to clinical markers………………………....……….84 

Figure 4.1: Bacteroides proteases are correlated to disease severity…………………...111 

Figure 4.2: Bacterial and host proteolysis correlates to disease severity……………….113 

Figure 4.3: Protease inhibition ameliorates Bacteroides vulgatus disruption of epithelial 
cell resistance and in vivo colitis induced by UC patient fecal transplantation………..116 

 
Figure 5.1: Stratification and characterization of mice prone, or resistant, to HFD-induced 
metabolic syndrome…………………………………………………………………….149 

 
Figure 5.2: Associations of inflammatory markers/mediators and proneness to 
obesity…………………………………………………………………………………..151 

 
Figure 5.3: Impact of DIO on fecal metaproteome……………………………………..155 



vii 
	

Figure 5.4: Functional and taxonomic characterization of fecal metaproteome in low- and 
high-responder mice fed the obesogenic diet…………………………………………...157 

 
Figure 5.5: Analysis of mouse fecal proteome…………………………………………159 

Figure 5.6: Analysis of microbiota composition vs. proneness and severity to DIO…..162 

Figure 6.1: Characterizing protease activity in B. vulgatus supernatant……………….188 

Figure 6.2: Prioritizing B. vulgatus proteases by their associations to UC disease 
activity…………………………………………………………………………………..191 
  



viii 
	

LIST OF TABLES 

Table 3.1: Roles of immunological proteins of interest…………………………………69 

 

 

 

  



ix 
	

ACKNOWLEDGEMENTS 

I am truly blessed to be in this position today. Reflecting on my journey towards 

becoming a PhD, there is no path I could have taken to get to this point without the 

support of many people. This work is a tribute and testament to the mentors that have 

trained me, and the support of my friends and family.  

 First of all, I need to thank my thesis advisors, Professor’s David Gonzalez and 

Rob Knight. You both took a chance on me when you decided to take me into your labs, 

believing in my potential to become a scientist. I can’t thank you enough for taking that 

chance and supporting me throughout the past several years. I will not forget the lessons I 

have learned from the both of you and am extremely grateful for this opportunity. 

Throughout my graduate studies I feel that I have had a unique opportunity to truly 

follow my passions and curiosities, and I have the both of you to thank for supporting this 

freedom.  

David, I am particularly grateful for your consistent belief, despite ups and 

downs, that I can excel in science. Thank you for your daily presence and guidance in 

how to navigate and be productive in academia alongside lessons in how to conduct and 

present research. Rob, thank you for your ideas, insight, and fostering of a truly amazing 

multi-disciplinary and collaborative work environment. I could not have asked for a more 

exciting place to pursue graduate research. 

 In the backdrop I have had amazing support from my family and friends. Maddie, 

over this time you have become my closest companion and provided constant support. I 

have somehow found the perfect partner and am so thankful for you. Mom and Dad, I am 

so lucky to have you both as parents, thank you for all that you have done to support me 



x 
		

over this time. Brian, thank you for inspiring me, and providing your guidance and 

support.  

 Finally, I’d like to write a brief acknowledgement of other friends and mentors 

who have made this journey possible. Professor Hiu Chu and Professor Pieter Dorrestein, 

thank you for your guidance and for allowing me to access and work in your laboratories. 

I am very grateful for the collaborative environment that you both have provided that has 

helped make my work stand out. I also would like to acknowledge additional members of 

my thesis committee, Professor Larry Smarr and Professor Partho Ghosh for their input 

and guidance in my development over the past few years. Professor Aleksandra Sikora, 

thank you for inspiring and supporting me as an undergraduate researcher. Last, a thank 

you to all of my friends in the Biomedical Sciences Program. You guys have made these 

past few years immeasurably better. 

 It is an important note that the research contained within this document is the 

result of collaboration between many researchers, without whom this work would not 

have been possible.   

Chapter 2 is a reprint of the material as it appears in Genome Research, 2020, 

Robert H. Mills, Jacob M. Wozniak, Alison Vrbanac, Anaamika Campeau, Benoit 

Chassaing, Andrew Gewirtz, Rob Knight, and David J. Gonzalez. The dissertation author 

played a primary role in all aspects of the work ranging from the study design, data 

acquisition, analysis and writing of the manuscript. 

Chapter 3 is a reprint of the material as it appears in mSystems, 2019, Robert H. 

Mills, Yoshiki Vazquez-Baeza, Qiyun Zhu, Lingjing Jiang, James Gaffney, Greg 

Humphrey, Larry Smarr, Rob Knight and David J. Gonzalez. The dissertation author 



xi 
	

played a primary role in all aspects of the work ranging from the study design, data 

acquisition, analysis and writing of the manuscript. 

Chapter 4 reflects material of a manuscript as it was reviewed by the journal 

Nature, in Jan 2020, Robert H. Mills, Parambir S. Dulai, Yoshiki Vázquez-Baeza, Qiyun 

Zhu, Greg Humphrey, Lindsay DeRight Goldasich, MacKenzie Bryant, Robert A. Quinn, 

Andrew T. Gewirtz, Benoit Chassaing, Hiutung Chu, William J. Sandborn, Pieter C. 

Dorrestein, Rob Knight, and David J. Gonzalez. The dissertation author played a primary 

role in aspects of the work ranging from the study design, data acquisition, analysis and 

writing of the manuscript. 

Chapter 5 is a reprint of the material as it appears in Molecular and Cellular 

Proteomics, 2019, Hao Q. Tran, Robert H. Mills, Nicole V. Peters, Mary K. Holder, 

Geert J. de Vries, Rob Knight, Benoit Chassaing David J. Gonzalez, and Andrew T. 

Gewirtz. The dissertation author played a primary role in aspects of the work ranging 

from metaproteome data acquisition, data analysis and the writing of the manuscript. 

Chapter 6 contains preliminary ideas and writing to form the basis of a grant 

application. The dissertation author played a primary role in the conceptualization and 

writing of this section. This work also contains editing contributions from Carlos 

Gonzalez and David J. Gonzalez. 

 

 

 
  



xii 
	

VITA 

2015 B.S. in Microbiology, Oregon State University, U. S. A. 

2020  Ph.D. in Biomedical Sciences, University of California San Diego, U. S. A. 

 

PUBLICATIONS 

In print 
1. Robert H. Mills, Jacob Wozniak, Alison Vrbanac, Anaamika Campeau, Benoit 

Chassaing, Andrew Gewirtz, Rob Knight and David J. Gonzalez. Organ level 
protein networks as a reference for the host effects of the microbiome (2020). 
Genome Research.  

2. Alan M. O’Neill, Teruaki Nakatsuji, Asumi Hayachi, Michael R. Williams, 
Robert H. Mills, David J. Gonzalez and Richard L. Gallo. Mining human skin 
commensal bacteria for novel antimicrobials that selectively kill Cutibacterium 
acnes (2020). Journal of Investigative Dermatology.  

3. Hao Q. Tran*, Robert H. Mills*, Nicole V. Peters, Mary K. Holder, Geert J. de 
Vries, Rob Knight, Benoit Chassaing, David J. Gonzalez and Andrew T. Gewirtz. 
Associations of the fecal microbial proteome composition and proneness to diet-
induced obesity (2019). Molecular and Cellular Proteomics. Featured on Cover  
*Co-first authorship 

4. Robert H. Mills, Yoshiki Vazquez-Baeza, Qiyun Zhu, James Gaffney, Greg 
Humphrey, Larry Smarr, Rob Knight and David J. Gonzalez. Evaluating 
Metagenomic Prediction of the Metaproteome in a 4.5 Year Study of a Crohn’s 
Patient (2019). mSystems. 

5. Robert A. Quinn, Sandeep Adem, Robert H. Mills, William Comstock, Lindsay 
DeRight Goldasich, Gregory Humphrey, Alexander A. Aksenov, Ricardo da 
Silva, Gail Ackerman, David J. Gonzalez, Doug Conrad, Anthony J. 
O’Donoghue, Rob Knight and Pieter C. Dorrestein. Neutrophilic Proteolysis 
Alters the Cystic Fibrosis Lung Neutrophilic proteolysis in the cystic fibrosis lung 
correlates with a pathogenic microbiome (2019). Microbiome.  

6. John D. Lapek*, Robert H. Mills*, Jacob M. Wozniak, Anaamika Campeau, 
Ronnie H. Fang, Xiaoli Wei, Kristen van de Groep, Araceli Perez-Lopez, Nina M. 
van Sorge, Manuela Raffatellu, Rob Knight, Liangfang Zhang and David J. 
Gonzalez. Defining Host Responses during Systemic Bacterial Infection through 
Construction of a Murine Organ Proteome Atlas (2018). Cell Systems. *Co-first 
authorship 

7. Aleksandra E. Sikora, Robert H. Mills, Jacob V. Weber, Adel Hamza, Bryan W. 
Passow, Andrew Romaine, Zachary A. Williamson, Robert W. Reed, Ryszard A. 
Zielke and Konstantin V. Korotkov. Peptide Inhibitors Targeting the Neisseria 
gonorrhoeae Pivotal Anaerobic Respiration Factor AniA (2017). Antimicrobial 
Agents and Chemotherapy.  



xiii 
	

8. Daniel Petras, Louis-Felix Nothias, Robert Quinn, Theodore Alexandrov, Nuno 
Bandeira, Amina Bouslimani, Gabriel Castro-Falcón, Liangyu Chen, Tam Dang, 
Dimitrios Floros, Vivian Hook, Neha Garg, Nicole Hoffner, Yike Jiang, Clifford 
Kapono, Irina Koester, Rob Knight, Christopher Leber, Tie-Jun Ling , Tal 
Luzzatto-Knaan, Laura-Isobel McCall, Aaron McGrath, Michael Meehan, 
Jonathan Merritt, Robert H. Mills, Jamie Morton, Sonia Podvin, Ivan Protsyuk, 
Trevor Purdy, Kendall Satterfield, Stephen Searles, Sahil Shah, Sarah Shires, 
Dana Steffen, Margot White, Jelena Todoric, Robert Tuttle, Aneta Wojnicz, 
Valerie Sapp, Fernando Vargas, Jin Yang, Chao Zhang and Pieter Dorrestein. 
Mass Spectrometry-Based Visualization of Molecules Associated with Human 
Habitats (2016). Analytical Chemistry. 

 
In preparation 

9. Robert H. Mills*, Parambir Dulai*, Yoshiki Vazquez-Baeza, Qiyun Zhu, Greg 
Humphrey, Lindsay DeRight Goldasich, Robert A. Quinn, Andrew Gewirtz, 
Benoit Chassaing, Hiutung Chu, William Sandborn, Pieter C. Dorrestein, Rob 
Knight and David J. Gonzalez. Meta-omics Reveals Microbiome Driven 
Proteolysis as a Contributing Factor to Severity of Ulcerative Colitis Disease 
Activity. In revision at Nature. *Co-first authorship 

10. Jacob M. Wozniak, Robert H. Mills, Josh Olson, JR Caldera, Marvic Carrillo-
Terrazas, Gregory D. Poore, Chih-Ming Tsai, Fernando Vargas, Rob Knight, 
Pieter C. Dorrestein, George Liu, Victor Nizet, George Sakoulas, Warren Rose 
and David J. Gonzalez. Mortality Risk Profiling of Staphylococcus aureus 
Bacteremia by Deep Multi-omic Serum Analysis Reveals New Predictive and 
Pathogenic Molecular Signatures. In revision at Cell. 

11. Alison Vrbanac, Kathryn A. Patras, Alan Jarmusch, Robert H. Mills, Samuel 
Shing, Robert A. Quinn, Fernando Vargas, David J. Gonzalez, Pieter C. 
Dorrestein, Rob Knight and Victor Nizet. Organism-wide Changes in the 
Metabolome and Microbiome Following a Single Dose of Antibiotic. In Revision. 

12. Anaamika Campeau, Robert H. Mills, Marie Blanchette, Kaja Bajc, Mario 
Malfavon, Roeben Munji, Liwen Deng, Bryan Hancock, Katryn Patras, Joshua 
Olson, Victor Nizet, Richard Daneman, Kelly Doran, and David J. Gonzalez. 
Multi-Dimensional Proteome Profiling of Blood-Brain Barrier Perturbation by 
Group B Streptococcus. In revision. 

13. Robert H. Mills, Marvic Carrillo-Terrazas, Yash Mittal, Brian A. Yee, Christella 
E. Widjaja, Fernando Vargas, Kevin Nguyen, Kelly Weldon, Julia Gauglitz, Gail 
Ackerrmann, Gregory Humphrey, Lindsay DeRight-Goldasich, Tara Schwartz, 
Austin D. Swafford, Corey A. Siegel, Gene W. Yeo, John Chang, Pradipta Ghosh, 
Pieter C. Dorrestein, Rob Knight, David J. Gonzalez, Parambir S. Dulai. Host-
microbiome response to hyperbaric oxygen treatment in ulcerative colitis. In 
preparation. 

  



xiv 
	

 

 

 

ABSTRACT OF THE DISSERTATION 

 

Integrating multiplexed metaproteomics to discover novel therapeutic avenues targeting 

the IBD microbiota 

 

by 

 

Robert Hardie Mills 

 

Doctor of Philosophy in Biomedical Sciences 

 

University of California San Diego, 2020 

 

Professor David Gonzalez, Co-Chair 
Professor Rob Knight, Co-Chair 

 

 We are more than humans. Our mammalian cells are intimately associated with 

roughly an equivalent number of microbial cells, which contain more than 100 times 

more genes than mammalian cells. There is constant cross-communication between our 

cells and these microbial cells through the molecules (i.e. metabolites and proteins) that 

are produced by microbe and man. We are currently amidst a revolution in our 



xv 
	

understanding of these interactions through the use of large-scale systems approaches 

utilizing technological developments in sequencing and mass spectrometry. While 

sequencing and metabolomic profiling are rapidly becoming standard practice in the 

field, the use of mass-spectrometry based proteomics is less commonly applied when 

considering host-microbiome interactions. Given the central role that proteins play in all 

biological organisms, the integration of this field into the wider context of microbiome 

research promises abundant insights.  

This work describes the use of technological improvements in the field of 

quantitative multiplexed proteomics for understanding host-microbiome interactions. In 

the first chapter, I introduce the current state of human microbiome research, what 

diseases it is associated with and the technologies used to study it. Further, I describe the 

use of proteomics to study multispecies communities (metaproteomics). In the second 

chapter, I utilize proteomics to understand the response of different organ systems to a 

lack of microbes in mice. In the third chapter, I evaluate the differences that result from 

using genomic versus proteomic technology when studying the microbiome of a patient 

with a disease strongly connected to the microbiome, inflammatory bowel disease (IBD). 

In the fourth chapter, I study a cohort of IBD patients using a combination of six –omic 

datasets, and through the use of metaproteomics, identify a new therapeutic treatment 

avenue for IBD patients targeting bacterial proteases. I further evaluate this therapeutic 

approach experimentally in colonic epithelial cells and germ-free mice. The fifth chapter 

outlines the potential of quantitative multiplexed metaproteomics to better understand 

other microbiota-associated diseases. Specifically, I observe a potential of the technology 
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to understand and predict obesity outcomes in mice. In the final chapter, I discuss the 

implications of this work. 
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Chapter 1 

 
General Introduction 
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Summary 

 The human microbiome is becoming increasingly recognized to be intertwined 

with human health. Connections between the microbiome and diseases such as obesity 

and inflammatory bowel disease have primarily been described through genomic 

technologies. However, new methods of characterizing complex host-microbiome 

connections are emerging: shotgun metagenomics, metatranscriptomics, metaproteomics 

and metabolomics. This introduction will briefly survey the emerging relationship 

between the microbiome and human health, and the technologies that we use to 

understand these complex systems. I further emphasize the current state of proteomics for 

understanding the microbiome as I highlight this emerging technology throughout the 

dissertation. 

 

1.1 Technology, Human Health, and the Microbiome 

Transformations in our understanding of human health have often been 

accompanied by technological advancements. Our understanding of the microorganisms 

living on and around us stems from innovation in microscopy that Antonie van 

Leeuwenhoek made in 1676. After a series of technological advancements, scientist 

Robert Koch in the 1880’s were able to cultivate isolated microorganisms and show that 

specific microorganisms, including Bacillus anthracis, caused disease. Through these 

observations, germ theory was created and a war on microorganisms began. This 

knowledge of the microbial world transformed public health with life saving 

developments like improved sanitation, antibiotics and vaccines. The impact of these 

technological developments may partially be contributing to a rise in the average life 
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expectancy of a US citizen, which increased from 39 years in 1880 to a current average 

of 79 years. 

The rise in the average lifespan over the past century is undoubtedly an amazing 

human accomplishment; however, with it has come new health complications we are just 

starting to understand. Rates of diseases such as Inflammatory Bowel Disease (IBD), 

diabetes and obesity have all dramatically increased in recent decades, and primarily 

within developed countries. With the entrance of new technologies peering into the 

communities of microorganisms on and inside us, we are now starting to realize that each 

of these conditions may be linked to a “dysbiosis” in our gut microbiome. As laid out by 

Martin Blaser in his book “Missing Microbes”, it could be that the very innovations 

helping extend our lifespan are causing a collapse in our microbial communities and 

leading to these very diseases.  

 Efficient detection and profiling of microbial communities has been a relatively 

recent development that has taken large leaps in technological development. The first 

large-scale efforts to catalog the entire repertoire of microbes associated with different 

locations of the human body was the NIH funded Human Microbiome Project (HMP), 

results of which were published in 2012 (Human Microbiome Project 2012a; Human 

Microbiome Project 2012b)(Human Microbiome Project, 2012a, 2012b). These projects 

were aided by a jump to “next-generation” sequencing platforms like Illumina, which 

have allowed data collection on a massive scale. Perhaps just as important for the rise of 

the microbiome field were advances in bioinformatics. One example is the UniFrac 

distance metric, a widely adopted tool which provided an ecological metric accounting 

for the phylogeny of a given microbial community (Lozupone and Knight 2005). 
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Additionally, bioinformatics software packages like Qiime (Caporaso et al. 2010) and 

Mothur (Schloss et al. 2009), have made analysis of microbiome data reproducible and 

more accessible to a wider audience. 

Once a baseline “healthy” microbial community was established by the Human 

Microbiome Project, associations between an array of health conditions and altered 

microbiota proliferated. The example at the forefront for demonstrating the power of the 

microbiome to shape human health is demonstrated by Clostridium difficile infection 

(CDI). Symptoms of CDI can range from mild diarrhea to severe life-threatening 

inflammation of the colon, and the infection is typically treated through antibiotics. 

However, the bacterium can become extremely resistant to antibiotics, leaving few 

treatment options. With this challenge, physicians turned to augmenting patients’s 

microbiome through fecal microbiota transplant (FMT). Amazingly, studies report 81-

100 % effectiveness for FMT transplant while vancomycin may be only 31 % effective 

(Czepiel et al. 2019). These results demonstrate the importance of a “healthy” 

microbiome in preventing overgrowth of particular pathogens, as is the case in CDI. 

 Another condition for which the microbiome is increasingly becoming recognized 

as a contributing factor to is IBD. Though the disease is speculated to have been present 

in ancient times, it has been found to be primarily associated with industrialized countries 

and has an increasing incidence rate (Mulder et al. 2014). Despite extensive research, the 

underlying etiology of the disease is still unknown today and appears quite variable 

(Zhang and Li 2014). Genetic screens have identified a variety of mutations in certain 

genes that increase the risk for developing of IBD. Many of these genes belong to 

systems involved in host-microbe interactions, some of the most prominent being the 
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NOD2 and ATG16L1 gene (Xavier and Podolsky 2007). Microbiome studies have now 

identified that shifts in the microbial community structure correlate with disease states 

(Frank et al. 2007), that particular taxa appear enriched or depleted in IBD patients 

(Walters et al. 2014), and that an individual patient’s microbiome fluctuates over time 

(Lloyd-Price et al. 2019). Further connecting the gut microbiota and IBD are reports of 

the success of FMT in IBD. Though not as effective as in CDI, the ~30% response rate of 

FMT in IBD further cements the role of the microbiota in IBD (Browne and Kelly 2017). 

Still, many of the molecular mechanisms mediating host-microbe interactions in IBD 

remain unknown.  

To address questions regarding the mechanisms and molecules mediating host-

microbiome interactions, new technologies are needed. The field is currently in a 

transition, shifting from simply profiling the community through techniques like 16S 

rRNA gene amplicon sequencing (16S), to profiling the entire repertoire of genes present 

in a community through shotgun sequencing (metagenomics) and to next integrating the 

analysis of other types of molecules. There is now great interest in the analysis of 

multiple molecular profiles in tandem to better characterize the role of the microbiome 

(Jansson and Baker 2016). To this end we are not only seeing further developments in 

sequencing methods such as metatranscriptomics, but also mass-spectrometry based 

methods to characterize the metabolites and proteins present in a microbiome sample. 

The field’s move in this direction is exemplified in the expansion to the NIH’s HMP, the 

integrative HMP (iHMP), whose results were reported in a series of high-profile 

manuscripts tracking microbiome dynamics in IBD (Lloyd-Price et al. 2019), type-2 

diabetes (Zhou et al. 2019) and preterm birth (Fettweis et al. 2019) in 2019. 
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1.2 The Use of Meta –omics to Study the Microbiome 

Given the importance of systems-scale analyses in the microbiome field today, it 

is critical to understand what can be done with each meta-omic technique, how each data 

type is collected, and the limitations or future directions of the technologies. To date, 

methods are dominated by two main technologies, sequencing and mass-spectrometry, 

whose workflows are modified depending on the particular molecular analysis 

researchers wish to perform. Understanding some basic technical aspects of each of these 

technologies, and the limitations of each are important for understanding how best to 

apply and combine results from each. Sequencing is used for 16S, metagenomic and 

metatranscriptomic data collection, allowing the profiling of the community structure 

through a marker gene analysis (16S), the entire complement of genes present in a multi-

species community (metagenome) or the complement of transcripts present in a complex 

sample (metatranscriptome). Mass spectrometry techniques analyze the molecules of a 

complex community of organisms further down the central dogma through profiling the 

proteins present (metaproteomics) or the metabolites present (metabolomics) in a given 

sample. 

 The principal concept behind modern sequencing technologies are the use of 

fluorescent nucleotides that are sequentially incorporated onto a DNA template strand 

and emitting light that can be detected. Next-generation sequencing technologies were 

introduced in the 2000’s expanding upon this same concept in a highly parallel fashion 

where instead of analyzing one sequence at a time, millions were analyzed. Modern 

technologies include Illumina, Ion torrent and Pacific Biosciences (PacBio). Each of 

these platforms have unique strategies for amplifying DNA related to an early stage of 
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the preparation of sequencing libraries which results in either linear  (Illumina and Ion 

torrent) or circular libraries (PacBio). The technologies are further differentiated by steps 

further into the process related to template generation where libraries will be either 

amplified by bridge amplification (Illumina), emulsion PCR (Ion torrent), or directly 

detected without amplification (PacBio) (Buermans and den Dunnen 2014). Each 

technique has certain advantages and applications, notably the high output of data that 

can be generated with the Illumina platform and the length of sequencing reads using the 

PacBio platform. With rapid progression and decreased cost of these technologies, we 

can efficiently capture more genetic information on living systems than ever before.  

 Mass spectrometry (MS) technology has also been rapidly advancing from its 

initial designs in the early 20th century (Griffiths 2008). MS is based on the ability to 

infer properties of ionized molecules through comparing the mass to charge ratio of a 

given molecule (m/z). This technology becomes ever more useful when applying tandem 

mass spectrometry, where the instrument can perform multiple rounds of MS, breaking a 

parent molecule into smaller parts, and measuring the m/z of each of these fragment ions 

(a process often referred to as MS2). This information is the basis of how researchers can 

identify what molecule is present, as one can compare these MS2 spectra to the spectra of 

how a known molecule fragments.  

After around a century of developments in instrumentation some of the more 

widely used and important MS technologies today include the linear ion trap and orbitrap 

mass analyzers. Linear ion traps allow for capture of ions along a linear track through the 

shifting of electrical frequencies in a set of quadropole rods. Instruments utilizing linear 

ion trap instruments such as the Thermo LTQ can have high sensitivity alongside rapid 
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acquisition of measurements (Eliuk and Makarov 2015). The instruments utilizing 

orbitrap technology provide high-resolution mass measurements by subjecting ions to 

orbital motion and calculating the m/z values through a Fourier transformation (Eliuk and 

Makarov 2015). Notably, a new series of instruments starting with the 2015 Thermo 

Orbitrap Fusion, combines a quadropole mass filter, and Orbitrap and linear ion trap mass 

analyzers to provide a “best of both worlds” scenario where you can concurrently use 

each mass analyzer to simultaneously isolate ions and detect ions (Eliuk and Makarov 

2015). These technologies are at the forefront and provide researchers with 

unprecedented levels of information on peptides, lipids and small molecules present in a 

given sample. 

 From every process between sample selection to final analysis, there are decisions 

to be made which might affect conclusions from a sequencing or mass spectrometry 

experiment. Because many of these concerns have been well summarized and 

documented for sequencing analyses before (Quince et al. 2017; Knight et al. 

2018)(Knight et al., 2018; Quince, Walker, Simpson, Loman, & Segata, 2017)	we	will	

instead	focus on processes that may be important to consider when performing analysis 

of multiple –omic types. Sequencing studies have unique biases in comparison to mass 

spectrometry. Both sequencing and mass spectrometry experiments start with an 

extraction. The choice of extraction protocol is particularly important as it strongly 

influences 16S results (Brooks et al. 2015). As opposed to mass spectrometry, where the 

material one analyzes was present in the beginning of the process, sequencing techniques 

rely on PCR amplification. Various aspects of PCR amplification can result in biases in 

the data (Gohl et al. 2016) including the choice of primers (of particular importance in 
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16S studies (Walker et al. 2015)), the creation of chimera sequences (Haas et al. 2011), 

and host contamination (Marotz et al. 2018). For mass spectrometry experiments, it is 

important to consider that the organic solvent used for extraction can greatly influence 

the metabolite identifications (Want et al. 2006; Dettmer et al. 2011)(Dettmer et al., 

2011; Want et al., 2006), that run-to-run variability can have a very large effect 

(Bittremieux et al. 2018), that instruments and acquisition settings greatly vary, that some 

molecules will not ionize well (Leito et al. 2008), and that the methods used can 

influence how accurate quantitative comparisons are (Pappireddi et al. 2019). 

 The fact that each technique has its own set of advantages and disadvantages 

highlights the potential impact of combining multiple data types.  No method is perfect 

for all scenarios and pulling from the strengths of each approach can lead to stronger 

hypotheses. The following few paragraphs serve as a brief introduction to the 

applications of each data type, starting with DNA based methods and ending on the 

applications of metabolomics in microbiome research. 

 Collection of 16S data is currently an enticing entry point for microbiome studies 

for several reasons. The 16S method uses PCR amplification of the evolutionarily well-

conserved 16S rRNA gene through selection of primers flanking selected regions of the 

gene representative of a large range of bacteria and archaea. Aside from typically costing 

less than the other data types, it also has had a large amount of bioinformatic 

development and better-established standard practices. Software development projects 

like Qiime (Hall and Beiko 2018) and Mothur (Schloss et al. 2009) now make it 

relatively easy to go from raw data to insight. As a testament to this notion, it was even 

shown that it was possible to complete a 16S and metabolomics analysis in less than 48 
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hours (Quinn et al. 2016). Further, thanks to efforts such as the Greengenes, which 

provides reference phylogenies for full-length 16S rRNA genes (McDonald et al. 2012), 

there are well-established methods for microbial community comparison that account for 

phylogeny. The importance of bioinformatics methods including a phylogenetic 

perspective is highlighted in the rise of the UniFrac distance metric. UniFrac is a metric 

for calculating beta-diversity (the between sample differences in community structures), 

that incorporated the evolutionary history of the organisms present in the community. 

The original UniFrac manuscript now has over 4700 citations (Lozupone and Knight 

2005). The importance of a phylogenetic perspective also holds true for measures of 

alpha-diversity, a measure of within sample community structure. Unlike other data 

types, alpha-diversity metrics using a phylogenetic context such as Faith’s PD are now 

routinely implemented in 16S analysis (Faith 1994). Further, the current amount of 16S 

data collected and available for reanalysis through platforms like Qiita (Gonzalez et al. 

2018) provides another advantage for 16S. 

 Also residing at the DNA level for microbiome analyses is shotgun 

metagenomics. Here, instead of only amplifying a selected region of DNA, researchers 

will amplify all available DNA in short segments (often around 150 nucleotide). These 

segments can be combined into longer segments called “contigs” or directly mapped to a 

reference database for analysis (Quince et al. 2017). This option provides distinct 

advantages from 16S, namely the potential of getting higher-resolution taxonomic 

annotations and a profile of the functional state of a microbial community. With this 

platform it is also possible to simultaneously analyze viral and eukaryotic genes.  Having 

a functional perspective can provide useful insights such as identifying metabolic 
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differences (Franzosa et al. 2018), antibiotic gene cassettes (Berglund et al. 2019), or 

biosynthetic pathways (Aleti et al. 2019). Of note, there have been tools created to predict 

functional profiles from16S sequences, such as PICRUSt (Langille et al. 2013). Though 

the additional information gained from transitioning from 16S to metagenomic 

sequencing is appealing, the amount of a data generated in a metagenomic sequencing 

run can become cumbersome, require intensive computing power, and fewer standard 

practices make analysis difficult. 

 Given that the identity of transcripts and proteins are encoded within the genome, 

the question arises of whether there is further utility in profiling these molecules. Can we 

not predict levels of transcripts and proteins from identifying the genes present? Research 

has shown that there are fairly strong correlations between metagenomic and 

metatranscriptomic data (Spearman’s r = 0.76), with notable differences in a few 

categories such as bacterial ribosomal and chaperone proteins (Franzosa et al. 2014). The 

relationship between genes and protein abundances, as well as transcript to protein 

abundances have shown much lower correlations with average Spearman correlations at 

or below r = 0.3 (Lloyd-Price et al. 2019; Mills et al. 2019)(Lloyd-Price et al., 2019; 

Mills et al., 2019). However, these relationships are still being investigated and there is a 

need to evaluate these relationships with new statistical methods given that the use of 

traditional statistical methods have inflated false-discovery rates in highly sparse data sets 

often produced in microbiome research (Weiss et al. 2016). 

 Metatranscriptomics has been shown to be of use in several applications. 

Transcripts have the advantage of only being present for actively transcribing organisms, 

while a large amount of reads from metagenomics could be derived from dead cells. 
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However, there are methods being developed to separate out dead cells that can overcome 

this limitation of metagenomics (Marotz et al. 2018). Additionally, one important step 

necessary for metatranscriptomics is the removal of ribosomal RNA which can constitute 

up to 90% of all data when not removed before sequencing (Shakya et al. 2019). Another 

important consideration for metatranscriptomics is the stability of mRNA, which makes 

sample collection and storage an added issue (Reck et al. 2015). Metatranscriptomics 

while not as routinely used, could be used to detect immediate transcriptional 

reprograming upon a perturbation. One example of its successful application when 

compared to in-parallel metagenomic analysis comes from Cullender and colleagues. 

Cullender et al., were able to demonstrate that wild type and TLR5-/- (a gene required to 

produce a response to flagella) mice had distinct differences in metatranscriptomic 

pathways related to flagella while metagenomics showed no difference (Cullender et al. 

2013). Other examples include identifying Faecalibacterium praustniztii as the primary 

contributor to the transcriptional pool of some IBD patients, despite a complex 

community being identified through metagenomics (Franzosa et al. 2018). In total, the 

field has had successful applications of metatranscriptomics ranging from host-microbe 

interactions to characterizing microbial responses to environmental conditions (Shakya et 

al. 2019).  

One transcriptomic technique that aims to close the correlation gap between 

transcripts and proteins is Ribo-seq. This technology reveals short segments of RNA that 

are being translated by ribosomes. Results in the field have shown some examples of 

transcript and protein abundances reaching a Spearman correlation of r = 0.8, though 

there was a limited overlap of the proteins and transcripts identified (Liu et al. 2017). It 



13 
	

must be noted that to date, there have been no known applications of this technology in 

the microbiome field. 

The preferred analytical method for characterizing proteins and metabolites is 

MS. Because proteins have fundamental roles in carrying out most functional processes 

in cells, the proteome component can be thought of as the “functional state” of a 

community, while the metabolome is thought as close to a phenotypic readout given that 

many molecules can have affects in their surrounding environment. Despite both 

typically being analyzed through MS analysis, the metabolomic and proteomic 

workflows are quite distinct. Both workflows typically involve cell lysis, but the 

workflows start to differ after this point. Metabolites are typically extracted using various 

different organic solvents depending on the type of metabolite. Part of this process 

precipitates out the proteins from the sample. Proteomic processing is typically more 

elaborate and involves multiple purification steps, enzymatic digestion, and fractionation.  

The computational methods of identifying a protein and metabolite are also quite 

distinct. Peptides fragment in predictable ways that can be matched to in silico 

predictions. This property affords proteomics the ability to discern high and low quality 

spectra by using false-discovery methods. A popular approach to preventing false 

discoveries is the reverse database search, which computes theoretical spectra from the 

complement sequences of your expected protein database and only allow a controlled 

percentage of spectra to match these unexpected spectra (Elias and Gygi 2010). In 

metabolomics, fragments can be matched to a reference library of previously fragmented 

molecules (Wang et al. 2016). This makes the metabolite molecular identification process 

quite dependent upon previously acquired libraries of the fragmentation of known 
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molecules. Historically, identification rates of MS2 in metabolomics datasets have been 

quite low (>5%), however novel methods for inferring related spectra have shown 

potential to provide estimated molecular classes to around 70% of MS2 (Djoumbou 

Feunang et al. 2016; van der Hooft et al. 2016)(Djoumbou Feunang et al., 2016; van der 

Hooft, Wandy, Barrett, Burgess, & Rogers, 2016)caveat	 -	 _ENREF_4_65e fact that, 

unlike peptides, whose origins can potentially be identified, it is difficult to determine the 

origins of a metabolite. This poses a major challenge in complex microbial communities 

as understanding which microbes are producing which metabolites is important for 

mechanistic insight into host-microbe interactions. A more detailed review of the current 

challenges in metabolomics can be found in Schrimpe-Rutledge et al., 2016 (Schrimpe-

Rutledge et al. 2016). The history, technical challenges and applications of proteomics in 

the microbiome field will be elaborated on further in the next section.  

 There is currently a great amount of interest in the microbiome field regarding the 

identification of molecules created by the microbiome that can influence the host.  

Notably, there have been robust associations between microbial derived trimethylamine-

N-oxide (TMAO) and cardiovascular disease (Tang et al. 2013). Other metabolites of 

interest include microbially modified bile acids, which interact with the FXR receptor 

and might have roles in colorectal cancer and IBD (Jia et al. 2018; Quinn et al. 2020)(Jia, 

Xie, & Jia, 2018; Quinn et al., 2020). The microbiota also digest dietary fibers producing 

short-chain fatty acids, which are both a major nutritional source to colonic epithelial 

cells and can have a variety of physiological effects through mechanisms related to 

histone deacetylases and G-protein coupled receptors (Koh et al. 2016). 
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 The merging of all of these data types is also of great interest, but there are 

currently very few examples of this being performed. Some notable exceptions are the 

large-scale projects of the iHMP, as previously mentioned. The current methods of inter-

correlating different -omic data types have been limited to creating large cross correlation 

networks (Lloyd-Price et al. 2019). Researchers have also performed analyses such as a 

Procrustes analysis, which can be used to compare beta-diversity distributions (Gower 

1975). New methods are currently being developed that utilize machine-learning 

techniques for novel insight and inter-omic relationships (Grapov et al. 2018). For 

example, a tool was recently published which identifies microbe metabolite interactions 

through neural networks (Morton et al. 2019). 

 

1.3 Proteomics and the Microbiome 

The use of proteomics to study the microbiome is still a relatively under-utilized 

approach in comparison to genetic-based microbiome analyses. The microbiome field has 

seen an explosion of research in the past decade with the average number of publications 

per year now over 10,000 (Fig. 1.1A). Given the comparatively limited number of 

research in this area today, progress is needed to adequately benchmark and create 

standard practices in the field (Zhang and Figeys 2019). Despite this, the number of 

publications utilizing metaproteomics to investigate the microbiome is also entering 

exponential growth, and the number of publications per year has recently breached 100 

(Fig. 1.1B). Though there are likely several reasons for the increased interest in the field, 

the gaining traction might be related to recent progress improving upon the limitations of 

the technology identified in early studies. 
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The early history of the metaproteome field highlights challenges related to 

sample size limitations and depth of analysis. One of the earliest metaproteomic studies 

performed was by Klaassens et al. in 2007. Here, the researchers analyzed 6 infant fecal 

samples by 2D gel MALDI-TOF and identified 200 protein spots (Klaassens et al. 2007). 

Researchers soon moved from a gel-based approach toward a broader reaching, 

“shotgun” metaproteomic approach, starting with an n=2 study of human fecal samples in 

2008 where 1534 proteins were identified (Verberkmoes et al. 2009). Other notable early 

studies in the field came in 2012 with the first temporal study (Kolmeder et al. 2012), and 

an early study integrating metagenomic and metaproteomic to study Crohn’s disease 

(Erickson et al. 2012). Another early exploratory study collected 16S, metagenome, 

metatranscriptome, metabolome and metaproteome data on one patient at 6 time points 

before and after antibiotic exposure (Perez-Cobas et al. 2013). Each of these early studies 

was performed with limitations in sample size and identified up to 3,000 proteins (Fig. 

1.2). 

Figure 1.1 Pubmed articles using keywords “Microbiome” or “Metaproteome”. A, Microbiome 
publications has vastly exceeded the number of metaproteome publications. B, Using a logarithmic 
scale reveals that the number of metaproteome publications is exponentially increasing. 
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In the backdrop of these early studies was a need to improve methodology in the 

field. In the preparation before analyzing samples on a mass spectrometer, methods 

needed to be established regarding best practices for cell lysis, and how to enrich or 

deplete human cells from samples. As with genomic based studies, the lysis protocol used 

can bias the taxonomic composition of the proteins you identify given the relative 

difficulty it takes to lyse either gram positive or gram negative bacterial cells (Wang et al. 

2020). To address whether or not to analyze the human component of the metaproteome, 

work has been done to evaluate methods that use differential centrifugation (Tanca et al. 

2015) or filtration approaches (Xiong et al. 2015). Once a sample is ready to analyze, 

there are additional considerations given the complexity of the microbiome. Some early 

Figure 1.2 Milestone studies in the human metaproteome. A timeline of developments in the field of  
human metaproteomics is shown. Each milestone is colored by association to having been an early 
application (black), an important new bioinformatics development (red), or introduction of a new 
multiplexing technology to the field (green). The sample sizes, instrument used for data aquisition and 
number of identified proteins are highlighted for most studies. 
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studies attempted to address this complexity by using extensive fractionation methods 

including a 2-dimensional liquid chromatography approach requiring 22 hours of 

instrument time per sample (Erickson et al. 2012). 

 There are additional areas of consideration for metaproteomic versus proteomic 

studies related to the computational processing of spectral data. In particular, new 

spectral search identification schemes and choices of protein database methodology has 

been an area of much development. Choosing a protein reference database can be roughly 

split into two categories. The two main categories are to take either an untargeted 

approach using a public standardized reference database, or to build a custom database. 

The public standardized reference database is advantageous because of being easily 

accessible for researchers without sequencing data available, and the standardized 

methodology that makes cross-comparisons between studies possible (Zhang and Figeys 

2019).  There are also several bioinformatics tools online to help facilitate searching data 

through one of these approaches (Cheng et al. 2017; Beyter et al. 2018; Blank et al. 

2018)(Beyter, Lin, Yu, Pieper, & Bafna, 2018; Blank et al., 2018; K. Cheng et al., 2017). 

For building a custom refuilding a custom reference database there are several options. It 

is possible to use 16S to identify microbes present in the samples, and then compile the 

genomes of identified species into a reference database. Another strategy is to perform 

shotgun metagenomic sequencing followed by compiling the data into a customized 

database for metaproteomic analysis (Tanca et al. 2016).  

The choice of database methodology can have impacts on downstream results. It 

was recognized early on that the size of some of the databases used in the field was much 

larger than a standard proteomics search, which results in the decoy database (a routinely 
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used strategy for controlling false discoveries (Elias and Gygi 2007)) filling at a faster 

rate. To circumvent this, researchers started to employ a multi-step iterative search 

approach that could increase spectral matches (Jagtap et al. 2013). Further approaches are 

being explored building upon iterative searches from a parallel search approach of 

individual samples (Zhang et al. 2016b), or a partitioned database approach (Beyter et al. 

2018). Tanca and colleagues have been notably important in the early benchmarking 

efforts to understand the effects of database methodology (Tanca et al. 2013; Tanca et al. 

2016)(Tanca et al., 2013; Tanca et al., 2016). 

Further complicating metaproteomic studies is added complexity for properly 

assigning peptides to an array of highly similar proteins. Methods like unipept have 

emerged to analyze peptides for their lowest common ancestors, therefore increasing the 

confidence that a given peptide was not found in other taxa of the same level (Mesuere et 

al. 2015). However, a common approach is to group peptides into proteins and analyze 

the data based on a summed protein abundance. Given the greatly increased possible 

proteins in a metaproteomic study, there is a higher likelihood of having multiple proteins 

containing overlapping peptides. It is standard to group these proteins together, but it may 

be of particular importance to report the unique peptides assigned to each protein group 

for metaproteome studies (Zhang and Figeys 2019). For these approaches, having a 

metagenomic guided database may be preferred as the metagenome can provide a higher 

resolution for annotating proteins and provide a priori evidence that a given protein could 

be present in a given sample. Creating a project-specific database can help constrain and 

define the potential protein identifications, thus making peptide assignment more 

analogous to a traditional proteomics experiment. 
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One technological development in the field that may address both the limited 

sample sizes and sparsity of metaproteome data is multiplexing. Multiplexing is an MS 

approach where multiple samples can be run simultaneously. These approaches consist of 

several strategies of labeling peptides, either by chemical tags, or isotopes that are 

metabolically incorporated which can be later resolved by the MS. The first 

metaproteomic study to incorporate a multiplexed approach came in 2016 using a Stable 

Isotope Labeling with Amino acids in Cell culture (SILAC) method (Zhang et al. 2016a). 

However, there are serious limitations to the SILAC method, notably that these studies 

typically multiplex 2 samples at once, and that it requires the label to be incorporated in 

growing organisms, meaning that biases related to culturing samples might bias results. 

Given these drawbacks an alternative approach might be the use of Tandem Mass Tags 

(TMTs), which can be incorporated to peptides during MS sample preparation 

(Thompson et al. 2003). TMTs can now provide the ability to multiplex up to 16 samples 

in one mass spectrometry run (Li et al. 2020), and have recently been incorporated into 

metaproteomic studies (Liu et al. 2019; Mills et al. 2019). 

Another major advantage to a multiplexing approach for the metaproteome field 

is the ability to decrease sparsity. While label-free approaches may have a larger dynamic 

range than label based approaches, the complexity of the metaproteome results in a lack 

of the statistical power needed to identify significantly changing features given the 

number missing values present, as has been shown for phosphoproteomics (Hogrebe et al. 

2018). Applying further approaches in combination to TMTs like multinotch MS3 for 

quantifying the isotopic labels can also improve the sensitivity of the analysis, while 

retaining more quantitative accuracy from TMT approaches using MS2 (McAlister et al. 
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2014). As a testament to this approach, we analyzed data from two recently published 

metaproteomic datasets that used either a label-free or an MS3-based TMT approach 

(Lloyd-Price et al. 2019; Mills et al. 2019). By taking a subset of 24 samples from each 

dataset and searching the spectra through an identical database search approach, we 

found that the multiplexing approach improved overall protein identifications (Figure 

1.3A), greatly improved the number of proteins identified per sample (Figure 1.3B) and 

dramatically reduced sparsity from 85% missing values to 16.5% missing values (Figure 

1.3C). While other factors including the different study designs, fractionation and 

acquisition settings may also influence these results, the labeling approach may be a key 

component to managing missing values in metaproteomics. 

 Given all of these improvements coming alongside advances in mass 

spectrometry technology in general, we are seeing dramatic increases in what 

metaproteomics can do. The field has come a long way in protein depth from some of the 

earliest studies identifying 200 “protein spots,” to the studies in the early 2010’s which 

identified around 2,000 proteins to recent studies which can quantify over 50,000 proteins 

in a single study (Zhang et al. 2018). With the incorporation of multiplexing technology 

to allow for larger-scale studies, it is likely that these numbers will only grow in the near 

future.  
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 Future directions for the field will be to incorporate information on post-

translational modifications. This remains one of the primary advantages to the proteomics 

field given the known importance of modifications like phosphorylation on signaling 

activity states, glycosylation on the physiochemical properties of cells, and other events 

like acetylation and ubiquitination (Macek et al. 2019). The metaproteomics field has yet 

to incorporate this level of information. However, there are new reports of work toward 

profiling acetylation states (Zhang et al. 2019), and modified bioinformatic workflows for 

PTM identification (Cheng et al. 2020). 

 From observing the early history of the field, it is easy to see why metaproteomics 

was not a preferred method for the early microbiome studies. The lack of depth, amount 

of expense, and need for benchmarked methodologies all made it fall behind genomic 

approaches. However, recent studies in the field give hope that the technology might be 

at a coming-of-age stage and might soon be adopted by the greater microbiome 

Figure 1.3 TMT-Metaproteomics decreases the sparsity of metaproteomics data. A subset of 24 IBD 
patient fecal samples from a label-free study and 24 fecal samples from an IBD patient case study which 
used TMT-based multiplexed metaproteomics were analyzed by identical search parameters. A, The number 
of proteins identified in two metaproteome studies using either label-free methods or TMT-based 
multiplexed proteomics. B, The number of proteins quantified per sample between these two studies. Mean 
and standard deviations are shown. C, The percentage of missing values within each study is shown. 
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community in the near future. Already we are seeing strong applications of the 

technology for identifying bacterial digestive enzymes (Patnode et al. 2019), and 

investigating the host-microbiome interplay in IBD (Zhang et al. 2018). We suspect many 

more important discoveries to be made by investigating the microbiome through 

proteomics, especially when leveraged along side other meta –omic technologies. 
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2.1 Abstract 

Connections between the microbiome and health are rapidly emerging in a wide range 

of diseases. However, a detailed mechanistic understanding of how different microbial 

communities are influencing their hosts is often lacking. One method researchers have 

used to understand these effects are germ-free mouse models. Differences found within 

the organ systems within these model organisms may highlight generalizable mechanisms 

that microbiome dysbioses have throughout the host. Here, we applied multiplexed, 

quantitative proteomics on the brains, spleens, hearts, small intestines and colons of 

conventionally raised and germ-free mice, identifying associations to colonization state in 

over 7,000 proteins. Highly ranked associations were constructed into protein-protein 

interaction networks and visualized onto an interactive 3D mouse model for user-guided 

exploration. These results act as a resource for microbiome researchers hoping to identify 

host effects of microbiome colonization on a given organ of interest. Our results include 

validation of previously reported effects in xenobiotic metabolism, the innate immune 

system and glutamate-associated proteins while simultaneously providing organism-wide 

context. We highlight organism-wide differences in mitochondrial proteins including 

consistent increases in NNT, a mitochondrial protein with essential roles in influencing 

levels of NADH and NADPH, in all analyzed organs of conventional mice. Our networks 

also reveal new associations for further exploration including protease responses in the 

spleen, high-density lipoproteins in the heart, and glutamatergic signaling in the brain. In 

total, our study provides a resource for microbiome researchers through detailed tables 

and visualization of the protein-level effects of microbial colonization on several organ 

systems. 
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2.2 Introduction 

The gut microbiome is emerging as a critical component of human health. It has 

been shown that the microbial communities colonizing our bodies play important roles in 

the immune development of infants(Milani et al. 2017) and the regulation of the innate 

immune system(Thaiss et al. 2016). Further, a dysbiosis of the gut microbiome has been 

correlated with many diseases including Inflammatory Bowel Disease (IBD)(Sartor and 

Wu 2017), diabetes(Tilg and Moschen 2014), obesity(Bouter et al. 2017), cardiovascular 

disease(Ahmadmehrabi and Tang 2017) and mental health disorders(Nguyen et al. 2018). 

Microbial production or modification of metabolites such as bile acids, choline 

derivatives, vitamins and lipids provide some insight into the underlying host-microbe 

interactions in these diseases(Nicholson et al. 2012). However, many mechanisms 

mediating these disease states remain unknown.  

Germ-free (GF) mouse models, wherein a mouse is raised without any exposure 

to microbes, have been an invaluable tool for assessing causal effects in microbiome 

research(Bhattarai and Kashyap 2016). GF models also provide an opportunity to 

understand the fundamental effects of microbial colonization at an organismal scale. 

Systems level analyses of the tissues of GF mice have been performed, but these studies 

have generally highlighted a select few organ tissues. Protein-level studies have shown 

varying responses to colonization along different regions of the gastrointestinal (GI) tract 

(Lichtman et al. 2016), changes in drug metabolizing proteins in livers and kidneys(Kuno 

et al. 2016), and differences in circulating fatty acids from an analysis of serum and 

livers(Kindt et al. 2018). They have also shown that microbial colonization alters post-

translational modifications including histone acetylation and methylation in liver, colon, 
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and adipose tissue(Krautkramer et al. 2016), as well as lysine acetylation in the gut and 

liver(Simon et al. 2012). An important transcriptomic study revealed a strong connection 

between colonization and increased Nnt, a mitochondrial protein that has functions in 

redox homeostasis and biosynthetic pathways through the generation of NADH and 

NADP+(Mardinoglu et al. 2015). The authors found Nnt transcripts increased in several 

conventional mouse tissues including sections of the small intestine, colon and liver, 

which correlated with significant alterations in host amino acid levels and glutathione 

metabolism(Mardinoglu et al. 2015).  Other related studies found transcript differences in 

the brain(Diaz Heijtz et al. 2011), and further highlighted the GI-dependent transcript 

effects of microbial colonization in Myd88 deficient mice(Larsson et al. 2012). 

Here, we sought to further detail the protein effects of microbiota colonization 

occurring both inside and outside of the GI tract as a reference for microbiome 

researchers interested in a given host protein, organ system or protein-network. 

Associations of highly ranked proteins were constructed into protein-protein interaction 

networks for the brain, spleen, heart, small intestine and colon, as well as a global 

network. While the brains and gastrointestinal tract of GF mice have been characterized 

in several studies, other organs such as the heart and spleen may be of interest given the 

emerging roles of the microbiota in atherosclerosis(Karlsson et al. 2012) and immune 

development(Chung et al. 2012). We hypothesized that applying methods for improved 

accuracy in quantitative proteomics (Ting et al. 2011) would further define the influence 

of the microbiota in each of these organs. With this, we hope to reveal microbiota-

induced changes that could underlie disease states. Our results validate a body of 

literature in the field, provide visualization tools for contextualizing the organism-wide 
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effects of microbial colonization, and identify several new host-microbiota associations 

for further investigation.  

 

2.3 Results  

Construction of protein-protein interaction networks 

To determine the protein-level consequences of microbial colonization, three 

biological replicates of five different tissues (brain, small intestine, colon, spleen, heart) 

were analyzed from conventionally-raised or GF mice. Multiplexed proteomic analysis of 

tissue homogenates resulted in the quantification of 7752 proteins overall, of which 4663 

were quantified across all samples. These 4663 proteins were used for downstream 

analysis. A separate pilot study of the brain tissue resulted in the quantification of 6203 

proteins. 

On a per-organ basis, we contrasted the protein abundances of tissue collected 

from conventional mice against tissue from GF mice. We ranked the association of each 

protein to colonization state by accounting for both significance level and fold-change. 

Interaction networks were built in order to identify groups of proteins whose expression 

was modulated by microbial colonization. We first constructed organ-specific protein 

interaction networks containing all the proteins with a highly ranked (|π| > 1) association 

to the colonization state of a given organ (Fig. 2.1). Functional enrichments within these 

organ networks were then assessed by gene-set enrichment analysis (Fig. 2.2). To 
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Figure 2.1 Organ-specific protein networks modulated by microbial colonization. Proteins 
significantly increased in either germ-free or conventional animals were analyzed for interactions through 
String-db. Edges in each node represent the combined score accounting for all interaction sources. The 
edges are sized by the combined score with the minimum threshold being 0.4 (of a maximum confidence 
1).  Nodes represent gene names of significant proteins with a minimum statistical cutoff of |π| >1. Red 
indicates a significantly higher presence in conventional mice and grey indicates the opposite. The nodes 
are sized by the level of significance as assessed by π-score. 
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identify overlapping mechanisms occurring throughout all organs, we compiled all highly 

ranked proteins within each organ (|π| > 1) into a single protein network (Fig. 2.3).  

Colonization state of the mouse appeared to have larger impacts on organs in 

direct contact with the gut microbiota, namely the small intestine and colon. The GI 

organs analyzed had an average of 210 proteins associated with colonization state while 

the three organs outside of the GI tract averaged 52. The brain yielded the lowest number 

of associated proteins with only 22. GI tract organs also displayed a higher percentage of 

interconnectivity, with an average of 71% of associated proteins within GI organs having 

a moderate-confidence connection to another associated protein within the organ, while 

organs outside the GI tract averaged 39% (Fig. 2.1). We hypothesize that the 

interconnectivity and number of associations to colonization is related to the direct 

contact of GI organs with microbiota. However, it is possible that including a higher 

portion of intestinal tissue may have influenced these results. 

Validation of protein-networks through previously reported associations 

Our networks provided support for previously reported broad-scale effects on GI 

organs, as well as abundance shifts from specific transcripts or proteins. As shown in a 

previous proteomic study(Lichtman et al. 2016), the small intestine and colon displayed 

distinct changes as a result of microbial colonization. One example of this was the larger 

portion of proteins associated with GF status within the small intestine (66%) than in the 

colon (42%, Fig. 2.1).  

Other studies identified similar results at a pathway and individual protein level. 

After a literature search for protein or transcript differences within GF models, we 

identified seven publications with related findings. In brief, 
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Figure 2.2 Functional enrichments associated with microbial colonization within each organ 
system. Proteins significantly increased in either germ-free or conventional animals within each organ 
were analyzed for functional enrichments using DAVID. All proteins identified within the experiment 
were used as a background. Displayed are barplots showing the -Log10(adj. p-values) associated with 
selected functional groupings. Benjamini-hochberg correction was applied to account for multiple 
hypothesis testing. The bars are plotted in red if they are associated with the proteins enriched among 
conventional mice and grey if they are associated with germ-free mice. 
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changes in xenobiotic metabolism were reported in the GI, liver and kidney, both at the 

transcriptional level(Fu et al. 2017) and the protein level(Kuno et al. 2016). Our networks 

also highlighted changes in glutamate related proteins which were previously reported at 

the transcriptional level(El Aidy et al. 2013). We also report the regulation of innate 

immune proteins including the antimicrobial peptide REG3G(Larsson et al. 2012), and 

the regulation of NNT(Mardinoglu et al. 2015), which will be discussed further below. 

Organ-specific network results 

Functional enrichment analysis of GI tract organs resulted in stronger and more 

diverse associations to colonization status than organs outside the GI tract. Several 

enrichments emerged with potential links to redox shifts in the small intestine. These 

included disulfide bonds, oxidoreductase activity, NADP, and xenobiotic metabolism 

through cytochrome P450s (Fig. 2.2, Fig. 2.3). Functional differences in the colon 

highlighted pancreatic secretion, immunoglobulins, proteins of the heat shock protein 70 

family, digestion, and stress as the functions increased in conventional mice (Fig. 2.2, 

Fig. 2.3). GF colons had enrichments for transporter activity, Calycin, fatty-acid binding, 

metalloproteases and peroxisome proliferator-activated receptor (PPAR) signaling (Fig. 

2.2). Together, these results may indicate stress response as an important factor mediating 

host-microbiota interactions in the colon and redox states influencing interactions of the 

small intestine. 

 Organs outside of the GI tract have been less studied in regards to their regulatory 

responses to the microbiome. Within the spleen, proteins increased in conventional mice 

were found to be part of a highly connected functional protein network consisting 

primarily of pancreatic digestive enzymes (CELA2A, CELA3B, CELA1, CPA1, CPA2, 
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CTRB1, CTRL, CTSE, TRY5, etc.), iron-binding proteins (FST1, TFRC, STEAP3, 

FECH, LTF and HP) and innate immune mediators (LCN2, S100A9, NGP, ITGAM and 

CHIL3) (Fig. 2.1, Fig. 2.3). Many of the digestive enzymes have roles in the GI tract and 

were similarly associated to colonization state within the small intestine and colon (Fig. 

2.3). Iron-binding and immune proteins were similarly regulated in other organs (Fig. 

2.3), but the differential regulation of LTF (Lactotransferrin) and FSLT1 (Follistatin-

related protein 1) were primarily restricted to the spleen. Given the biological roles of the 

spleen, the influence of these proteins in mediating immune processes may be of 

significant interest. 

The networks associated with the brain and the heart displayed fewer 

interconnected proteins. Only 34% and 27% of proteins had a connection within the heart 

network and brain network respectively. However, a group of primarily GF-associated 

proteins that included APOA1 and APOE was found among the heart proteins (Fig. 2.1). 

These results may suggest changes in lipid profiles in the heart; increased high-density 

lipoproteins (HDL) and chylomicrons in GF compared to conventional mice. The brain 

showed limited functional enrichments. However, both RASGRF1 and RASGRF2 were 

increased among conventional mice. These proteins may be of interest given implications 

in glutamatergic excitatory synaptic signaling, and in facilitating long-term potentiation 

leading to enhanced memory, learning, and synaptic plasticity(Drake et al. 2011; 

Schwechter et al. 2013).  
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Figure 2.3 Combined organ protein networks modulated by microbial colonization. Proteins 
significantly increased in either GF or conventional animals were analyzed for interactions 
through String-db. Edges in each node represent the combined score accounting for all 
interaction sources. The edges are sized by the combined score with the minimum threshold 
being 0.8 (of a maximum confidence 1).  Nodes represent gene names of proteins with a highly 
ranked association (a minimum statistical cutoff of |π| >1) within at least one organ. Nodes are 
sized by the number of organs the protein had a strong association with. The level of association 
of each node to a particular organ is colored according to the fraction of the total |π|-score each 
organ provides. Within each node is a bar plot of the π-scores for each organ within the node. 
Putative functional groupings within the network are highlighted. Select sections are highlighted 
in colored boxes and shown in 2× zoom. 
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Organism-wide network results 

 One prominent finding from our generalized network was a significant increase in 

NNT in all conventional tissues. This protein is a key regulator of generalized 

biosynthetic processes, and is related to glutamate synthesis(Mardinoglu et al. 2015). 

Statistically, NNT was among the strongest relationships found within all organs 

analyzed (π = 3.8, 4, 2.3, 7, and 3.7 for small intestine, colon, spleen, heart and brain 

respectively). We also identified sub-networks related to mitochondrial glutamate 

metabolism and mitochondrial respiratory chain NADH dehydrogenase, with most of the 

related proteins downregulated in the small intestine of conventional mice (Fig. 2.3). In 

addition, proteins relating to the mitochondrial reduction of glutathione, GLUD1 and 

GLS had confirmed associations to previous transcriptomic analysis. While this sub-

network was largely derived from small intestine proteins, there was evidence that this 

system may also be affected in the brain through AMT, which is involved in the 

mitochondrial metabolism of glycine.  

 The protein networks identified generalized differences among all organs related 

to the innate and adaptive immune systems. Proteins related to innate immunity tended to 

be increased in conventional mice, while proteins associated with neutrophil 

degranulation were associated with germ-free mice (Fig. 2.3). REG3G, a protein 

associated with Toll-like receptor (TLR) signaling subsequent to pathogen-associated 

molecular pattern (PAMP) activation in Paneth cells, was increased among conventional 

mice. Additionally, proteins related to antigen processing were moderately enriched in 

GF mice.   
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Figure 2.4 Organism level protein networks modulated by the microbiome. 
A multinomial regression controlling for organ and microbial colonization state of the mice was used 
to assess proteins associated with colonization status. (A) Proteins ranked by regression coefficient; 
proteins with coefficients of the greatest magnitude are most associated with colonization status. 
Proteins with positive coefficients are more abundant in conventional mice, while proteins with 
negative coefficients are more abundant in GF mice. (B) Log abundance of NNT or IGKV5-39 over 
the entire proteome in each organ. (C) Protein-protein interaction networks from the top ranked 
proteins from the multinomial regression associated with both conventional and GF status when 
controlling for organ and mouse. The top 150 proteins associated with both GF and conventional 
status were analyzed (300 proteins total), and proteins with high confidence interactions (0.8) are 
shown. Nodes are sized by the absolute value of the regression coefficient and colored by association 
to GF (grey) or conventional (red) status. Putative functional groupings are indicated.	
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We next evaluated protein relationships to GF status at an organismal-level by 

applying a compositionally aware multinomial regression technique. This technique 

accounts for organ type to assess organism-wide protein associations through ranks. Our 

top ranked protein associated with conventional status was NNT, while the protein with 

the strongest association to GF status was IGKV5-39, a protein involved in immune 

response and immunoglobin production (Fig. 2.4A). As observed from the traditional 

statistical approach, NNT was significantly higher in conventional mice within all organs 

included in the regression (Fig. 2.4B). IGKV5-39 was more strongly associated with the 

spleen, colon and heart than the small intestine (Fig. 2.4B). 

Next we assessed the 150 top and bottom ranked proteins associated with GF 

status from the multinomial regression and created a protein-protein interaction network 

(Fig. 4C). Of interest was a cluster of proteins related to redox states in mitochondria. 

Several proteins including ECSIT, NDUFS4, NUBPL, NDUFA11, NDUFB6, NDUFA8, 

ATPAF1 are all related to mitochondrial complex 1 of the electron transport chain. Other 

evidence of the organism-wide impact of microbial colonization on mitochondria 

included shifts in mitochondrial ribosomal proteins (MRPS23, MRPL50, MRPS17, 

MRPL49 and MRPL17) and proteins related to mitochondrial heat shock response 

(HSPD1, HSPE1, SOD2, LONP1). The data presented here suggests that microbial 

colonization may have organismal-level impacts on mitochondrial function.  

Interactive 3D Visualization of Associations to Colonization Status 

 To encourage user interaction with our data, we created a web-based display of 

our results projected onto a 3D model of a mouse. This interactive display allows for 

user-guided exploration of the protein and pathway-level associations to colonization 
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status. To access the model, users should access the ‘ili webserver (https://ili.embl.de/), 

then drag-and-drop the texturization file and a supplemental table for either the proteins 

or pathways identified in this study. With this tool users can search for proteins and 

pathways of interest and project the association scores onto all the organs analyzed in this 

study. 

 For the protein-level visualization, each protein is listed by the protein name with 

any Gene Ontology (GO) molecular function terms associated with the protein. With this, 

users are able to search for a protein of interest or identify proteins of interest by 

molecular functions. The ‘ili-compatible table of association scores (Supplemental Table 

S4) uses the π-statistic for conventional/GF status. These scores range from 6.98 

(significantly increased in conventional mice) to -5.11 (significantly increased in GF 

mice). An example use case is displayed in Figure 5A, which depicts the strong 

association to conventional status for NNT within all organs.  

 The pathway-level visualizations help to summarize and explore the gene set 

enrichment analyses. On a per-organ basis, an association to conventional or GF status 

for each functional category was calculated by comparing the statistical strength of gene 

set enrichments. These association scores have been summarized in an ‘ili-compatible file 

in supplemental table.  Pathway association scores ranged from 12.90 (highly associated 

to conventional status) to -7.25 (highly associated with GF status).  We demonstrate the 

use of this tool to visualize the associations to “Oxidoreductase” in Figure 2.5B.  
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2.4 Discussion  

 Our multi-organ analysis was utilized to generate protein interaction maps, and 

3D visualization tools that researchers can use to understand organ-specific and 

organism-wide changes that may underlie host-microbiome interactions. From our 

networks we can identify common themes found from previous analyses of GF tissue. 

For example, we found changes in innate and adaptive immune responses to microbial 

Figure 2.5 Interactive 3D Visualization of Associations to Colonization Status. A 3D mouse 
model was generated for use on the web-based ili platform (https://ili.embl.de/). (A) An example use 
case for the protein-level association visualizations are shown through plotting the π-score 
enrichment for conventional colonization status. (B) An example use case for the pathway level 
association visualizations are shown through highlighting the enrichment scores for 
“Oxidoreductase”. Pathway association scores were generated through –Log10(Benjamini-corrected 
p-values) of the conventional organs minus the GF organs.  
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colonization(Larsson et al. 2012), changes in the glutamine and glutamate pathway(El 

Aidy et al. 2013; Mardinoglu et al. 2015), and changes in xenobiotic degradation 

pathways (Kuno et al. 2016; Fu et al. 2017; Kindt et al. 2018). This study contributes to 

the field by moving toward an organism-wide understanding of host-microbiome 

interactions. Here, we incorporate new statistical and visualization tools for multi-organ 

analysis and include understudied organs from outside of the GI tract. As roles for the 

microbiome are expanding into immunity (Thaiss et al. 2016), cardiovascular 

disease(Ahmadmehrabi and Tang 2017), and mental health disorders(Nguyen et al. 

2018), defining the influence of the microbiome on these tissues may be of importance. 

Indeed, our networks provided several putative organism-level roles for the microbiome. 

Our protein networks highlight the potential of organism-wide redox state 

changes being linked to the microbiome. This is perhaps best highlighted in the distal 

increases of Nnt associated with microbial colonization. NNT is a mitochondrial protein 

with well-described roles in glutathione redox reactions through the conversion of 

NADPH to NADP+(Ronchi et al. 2013). Glutathione is interconverted with glutathione 

disulfide, collectively representing the most abundant redox pair in the body(Circu and 

Aw 2011). Abundances of this redox pair are often used as an indication of the general 

redox state(Circu and Aw 2011), which is involved in a large variety of biological 

processes(Circu and Aw 2011; Birben et al. 2012; Ray et al. 2012). Evidence of intestinal 

redox differences in GF animals has been known since the 1970s(Koopman et al. 1975; 

Celesk et al. 1976)(Celesk, Asano, & Wagner, 1976; Koopman, Janssen, & van Druten, 

1975) and evidence of microbiota-dependent regulation of Nnt in the GI tract has been 

previously described(Mardinoglu et al. 2015). Here we find evidence of increased NNT 
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throughout the entire conventional mouse. Additionally, both the traditional and 

multivariate statistical methods used for the identification of organism-wide effects found 

networks of proteins related to mitochondria, including mitochondrial complex I proteins. 

Mitochondrial complex I activity might also be linked to redox states as complex I 

activity was shown to be dependent on glutathione transport into the 

mitochondria(Kamga et al. 2010). In summary, many of our protein networks may have 

been influenced by redox states, including shifts in mitochondrial proteins, the innate 

immune processes such as neutrophil degranulation, and degradation of xenobiotics 

through cytochrome P450s (Kramer and Darley-Usmar 2015).  

 Though our strongest relationships to microbial colonization were found within 

the GI tract, which was unsurprisingly the focus of most previous GF organ 

analyses(Larsson et al. 2012; El Aidy et al. 2013; Mardinoglu et al. 2015; Lichtman et al. 

2016), the analyses of the brain, spleen and heart did yield several interesting results. 

Within the heart, our analyses indicated a relationship to HDL and the germ-free state. 

Our results within the heart may be of importance given the increasing literature 

regarding microbiota regulation of lipids and lipoproteins including HDL(Nakaya and 

Ikewaki 2018), as well as the microbial links to metabolites leading to 

atherosclerosis(Wang et al. 2011b). Our findings may indicate a mechanism in which 

microbiota influence the makeup of the heart through changes in lipoproteins.  

 The data of the spleen proteomes revealed networks of proteases with similar 

increases within the small intestine and colon in the presence of the microbiota. These 

networks also suggested potential links between the gut microbiota and pancreatic 

secretion. Pancreatic secretion of enzymes is thought to be largely regulated through 
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circulating hormones(Singh and Webster 1978). The gut microbiome has several 

potential links to pancreatitis and pancreatic cancer, which may be mediated through 

sensing of microbial compounds such as lipopolysaccharide through TLR4(Leal-Lopes et 

al. 2015). Here, we have observed a link between microbial colonization and increased 

pancreatic secretion of digestive proteins, which may be of interest for further 

investigation.  

 The organism-wide effects of microbial colonization illustrated in our networks 

may have implications in several disease states. Dysregulation of Complex I has been 

implicated in microbiome related diseases including Ulcerative Colitis(Haberman et al. 

2019) and there is accumulating evidence of mitochondrial dysfunction in Crohn’s 

disease(Mottawea et al. 2016). This association between the microbiome and 

mitochondria are thought to be mediated through three key microbiome metabolites: 

short-chain fatty acids, the urolithins and lactate(Franco-Obregon and Gilbert 2017).  

While speculative, it is possible that the IBD microbiota may influence these interactions. 

Glutamatergic signaling has been suggested as a potential target for treating mood 

disorders(Zarate et al. 2010). Our identification of proteins in the brain related to 

glutamatergic signaling and glutamate (i.e. RASGRF proteins and NNT) may be of 

relevance to the discussions surrounding utilization of the microbiome to treat mood 

disorders(Mangiola et al. 2016). 

 There are likely many unknown mechanisms mediating host-microbiota 

interactions. Our detailed maps and visualization tools for understanding the organ-level 

impacts of microbial colonization give insight into the unique and common protein-level 

changes occurring throughout mice. These networks suggest changes throughout the mice 
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related to mitochondrial dysfunction and redox states. Though fewer changes were found 

in organs apart from the GI tract, our protein networks of the spleen, brain and heart may 

provide insight for researchers establishing connections between the microbiota and 

diseases related to these organ systems. We hope these networks and visualization tools 

may be useful in the microbiome research community to help dissect the specific effects 

that microbial communities have in a given organ-system, protein or protein network of 

interest. In total, we view our study as a step toward better understanding the role of the 

microbiota in health and disease.  

 

2.5 Materials and Methods 

Gnotobiotic Mice 

Three male germ-free C57/BL6 mice were kept under germ-free conditions in a 

Park Bioservices isolator in GSU’s germ-free facility, and three male conventional 

C57/BL6 were kept in regular housing at GSU’s animal facility. At 5 months of age, 

mice were euthanized and organs were collected followed by immediate snap-freezing. 

All mice were bred and housed at Georgia State University, Atlanta, Georgia, USA. 

under institutionally-approved protocols (IACUC # A14033). 

Protein digestion and TMT labeling 

All organ proteome methods were preformed as previously described(Lapek et al. 

2018). Snap frozen organs (stored at -80 ºC beforehand) were suspended in PBS and 

homogenized using a Mini BeadBeater (Biospec). Our final analysis contained 3 

biological replicates of each colonization condition per organ, and no technical replicates 

were collected given strong correlation observed between biological replicates in our past 
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work (Lapek et al. 2018). Organ homogenates were lysed in 1 mL of buffer composed of 

75 mM NaCl (Sigma-Aldrich), 3% sodium dodecyl sulfate (SDS, Thermo Fisher 

Scientific), 1 mM NaF (Sigma-Aldrich), 1 mM beta-glycerophosphate (Sigma-Aldrich), 1 

mM sodium orthovanadate (Sigma-Aldrich), 10 mM sodium pyrophosphate (Sigma-

Aldrich), 1 mM phenylmethylsulfonyl fluoride (PMSF, Sigma-Aldrich), and a Complete 

Mini EDTA free protease inhibitors (1 tablet per 10 mL, Roche) in 50 mM HEPES 

(Sigma-Aldrich), pH 8.5(Wessel and Flugge 1984). To ensure full lysis, homogenates 

were passed through a 21-gauge syringe 20 times. Insoluble debris was then pelleted by 

centrifugation for 5 minutes at 14,000 rpm. Supernatants were transferred to new tubes 

and an equal volume of 8 M urea in 50 mM HEPES, pH 8.5 was added to each sample. 

Samples were then vortexed and further lysed through two 10-second intervals of probe 

sonication at 25% amplitude. 

 Proteins were reduced with dithiothreitol (DTT, Sigma-Aldrich) and alkylated 

with iodoacetamide (IAA, Sigma-Aldrich)(Wessel and Flugge 1984). Proteins were next 

precipitated via methanol-chloroform precipitation(Wessel and Flugge 1984). 

Precipitated proteins were re-solubilized in 300 µL of 1 M urea (Thermo Fisher 

Scientific) in 50 mM HEPES, pH 8.5. Proteins were digested in a two-step digestion 

process. First, 3 µg of LysC (Wako) was added to each sample, and samples were 

digested overnight at room temperature. Next, 3 µg of trypsin was added, and samples 

were digested for six hours at 37 ºC. Digests were acidified with trifluoroacetic acid 

(TFA, Pierce) to quench the digestion reaction. Peptides were desalted with C18 Sep-

Paks (Waters) as previously described(McAlister et al. 2014). Concentration of desalted 

peptides was determined using a Pierce Quantitative Colorimetric Peptide Assay (Thermo 
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Fisher Scientific), and peptides were aliquoted into 50 µg portions. Aliquots were dried 

under vacuum and stored at -80 ºC until they were labeled with TMT reagents. 

 Peptides were labeled with 10-plex TMT reagents (Thermo Fisher Scientific) 

(Thompson et al. 2003; McAlister et al. 2014) as previously described(Wang et al. 

2011a). TMT reagents were reconstituted in dry acetonitrile (Sigma-Aldrich) at 20 µg/µL. 

Dried peptides were re-suspended in 30% dry acetonitrile in 200 mM HEPES, pH 8.5, 

and 7 µL of the appropriate TMT reagent was added to peptides. Reagents 126 and 131 

(Thermo Fisher Scientific) were used to label peptide aliquots composed of an equal 

concentration of every sample within all mass spec runs. These composite samples acted 

as a reference within all mass spec runs for data normalization purposes described later. 

Remaining reagents were used to label samples in random order with no bias regarding 

animal of origin, organ or colonization status. This randomization was performed to 

prevent known batch-effects in mass-spectrometry experiments(Brenes et al. 2019). The 

brain samples were analyzed as a pilot experiment before the other organs. For brains, all 

procedures were performed as above, though the TMT experiment was separate from 

other organs. Within the brain TMT experiment, one channel, 129C, consisted of a 50 µg 

average of all peptides from brain samples. Labeling was carried out for 1 hour at room 

temperature, and was quenched by adding 8 µL of 5% hydroxylamine (Sigma-Aldrich). 

TMT-labeled peptides from each of the organ samples were acidified by adding 50 µL of 

1% TFA and subsequently combined into a composite sample per TMT 10-plex 

experiment. During the pilot experiment with the brains, the pooled samples were 

desalted and fractionated using a High pH Reversed-Phase Peptide Fractionation Kit 

(Pierce) per manufacturer instructions. For the larger studied, samples were pooled per 
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10-plex experiment, desalted with C18 Sep-Paks, and further fractionated as described 

below. 

Collection of LC-MS2/MS3 spectra for protein identification and quantification 

Data acquisition methods were performed as previously described(Lapek et al. 

2018). Sample fractionation for excluding the brains, was performed by basic pH reverse-

phase liquid chromatography with concatenated fractions as previously described(Wang 

et al. 2011a). Briefly, samples were re-suspended in 5% formic acid/5% acetonitrile and 

separated over a 4.6 mm × 250 mm C18 column (Thermo Fisher Scientific) on an 

Ultimate 3000 HPLC fitted with a fraction collector, degasser and variable wavelength 

detector. The separation was performed over a 22% to 35%, 60-minute linear gradient of 

acetonitrile in 10 mM ammonium bicarbonate (Thermo Fisher Scientific) at 0.5 mL/min. 

The resulting 96 fractions were combined as previously described(Wang et al. 2011a). 

All fractions were dried under vacuum and re-suspended in 5% formic acid/5% 

acetonitrile and analyzed by liquid chromatography (LC)-MS2/MS3 for identification and 

quantitation. 

All LC-MS2/MS3 experiments were carried out on an Orbitrap Fusion (Thermo 

Fisher Scientific) with an in-line Easy-nLC 1000 (Thermo Fisher Scientific) and chilled 

autosampler. Home-pulled, home-packed columns (100 µm ID × 30 cm, 360 µm OD) 

were used for analysis. Analytical columns were triple-packed with 5 µm C4 resin, 3 µm 

C18 resin, and 1.8 µm C18 resin (Sepax) to lengths of 0.5 cm, 0.5 cm, and 30 cm 

respectively. Peptides were loaded at 500 bar and eluted with a linear gradient of 11% to 

30% acetonitrile in 0.125% formic acid over 165 minutes at a flow rate of 300 nL/minute, 

with the column heated to 60 ºC. Nano-electrospray ionization was performed by 
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applying 2000 V through a stainless-steel T-junction at the inlet of the microcapillary 

column. 

 The mass spectrometer was run in data-dependent mode, where a survey scan was 

performed over 500-1200 m/z at a resolution of 60,000 in the Orbitrap. Automatic gain 

control (AGC) was set to 2×105 for MS1 with a maximum ion injection time of 100 ms. 

The S-lens RF was set to 60 and centroided data was collected. Top-N mode was used to 

select the most abundant ions in the MS1 scan for MS2 and MS3 with N set to 10. 

 The decision tree option was used for MS2 analysis, using charge state and m/z 

range as qualifiers. Ions carrying 2 charges were analyzed from the m/z range of 600-

1200, and ions carrying 3 and 4 charges were selected from the m/z range of 500-1200. 

An ion intensity threshold of 5×104 was used. MS2 spectra were obtained using 

quadrupole isolation at a 0.5 Th window and fragmented using Collision Induced 

Dissociation with a normalized collision energy of 30%. Fragment ions were detected 

and centroided data collected in the linear ion trap using rapid scan rate with an AGC 

target of 1×104 and maximum ion injection time of 35 ms. 

 MS3 analysis was performed using synchronous precursor selection (SPS) enabled 

to maximize TMT quantitation sensitivity(McAlister et al. 2014). A maximum of 10 MS2 

precursors was specified for the SPS setting, which were simultaneously isolated and 

fragmented for MS3 analysis. Higher-Energy Collisional Dissociation fragmentation was 

used for MS3 analysis with a normalized collision energy of 55%. Resultant fragment 

ions (MS3) were detected in the Orbitrap at a resolution of 60,000 with a low mass cut-off 

of 110 m/z. AGC for MS3 spectra was set to 1×105 with a maximum ion injection time of 
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100 ms. Centroided data were collected, and MS2 ions between the range of 40 m/z 

below and 15 m/z above the precursor m/z were excluded by SPS. 

Data processing and normalization 

 Data were processed using Proteome Discover 2.1 (Thermo Fisher Scientific). 

MS2 data were searched against UniProt mouse databases (downloaded 7/2/2018 and 

5/11/2017 for the brain analysis and other organs respectively) using the Sequest 

algorithm(Huttlin et al. 2010). A decoy search was also conducted with sequences in 

reverse order(Huttlin et al. 2010) was specified and 0.6 Da tolerance for MS2 fragments. 

Static modification of TMT 10-plex tags on lysine and peptide n-termini (+229.162932 

Da) and carbamidomethylation of cysteines (+57.02146 Da) were specified. Variable 

oxidation of methionine (+15.99492 Da) was also included in search parameters. Data 

were filtered to 1% peptide and protein level false discovery rates with the target-decoy 

strategy through Percolator (Xiao et al., 2014). 

 TMT reporter ion intensities were extracted from MS3 spectra for quantitative 

analysis, and signal-to-noise values were used for quantitation. Spectra were filtered and 

summed as previously described(Xiao et al. 2014). Data were normalized in a multi-step 

process, whereby they were first normalized to the pooled standards (TMT-126 and -131) 

for each protein, and then to the median signal across the pooled standards from all 

experiments(Xiao et al. 2014). An average of these normalizations was used for the next 

step. As the brain samples did not contain a composite bridge channel for normalization, 

raw signal/noise ratios were normalized by the average signal of the given protein 

divided by the median of all protein averages. To account for slight differences in 

amounts of protein labeled, these values were then normalized to the median of the entire 
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dataset and reported as final normalized summed signal-to-noise ratios per protein per 

sample. 

Statistical analysis 

Bioinformatic analysis was performed in Python (version 3.5.1) and records are 

available online in Jupyter Notebooks (https://github.com/rhmills/Germ-free-organ-

proteomics). To prevent statistical artifacts generated due to the various methods of 

dealing with missing values, only proteins with quantification in all samples were used. A 

Student’s t-test with unequal variance was performed through the package, SciPy 

(https://www.scipy.org). For ranking purposes, we evaluated associations to colonization 

state through π–score, which accounts for both fold change and p-value(Xiao et al. 2014). 

A statistical cutoff of |π| > 1 was chosen based on previous work(Tran et al. 2019). This 

statistical measure corresponds to a significance level of α ~ 0.05, and allowed for 

moderate stringency while including an adequate number of proteins for protein network 

construction and functional enrichment analysis. 

 Protein-protein interaction networks were created through STRING-db(Shannon 

et al. 2003). Associations between proteins were determined through default settings, 

accounting for textmining, experiments, databases, co-expression, neighborhood, gene 

fusion and co-occurrence. Connections were restricted to interactions between proteins 

within the query list only. Networks were subsequently visualized through Cytoscape 

(version 3.5.1)(Shannon et al. 2003). Edges within protein networks were based on the 

combined evidence scores, with thicker edges indicating higher confidence. Per-organ 

networks were performed with a medium minimum confidence (0.4) to visualize 
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connectivity through maximizing potential connections, while combined organ networks 

utilized a high minimum confidence (0.8) to identify putative functional groupings. 

Functional enrichment analysis was performed through the DAVID server(Huang 

da et al. 2009) to identify significant groups of proteins per organ, split between Germ-

free and colonized states. Parameters were set as previously described(Tran et al. 2019). 

Benjamini-hochberg corrected p-values were reported for the most significant groupings. 

Barplots were visualized through GraphPad Prism (version 7.0b). 

Songbird(Morton et al. 2019) was used to implement the multinomial regression 

analysis with organ, mouse, and colonization status used in the regression formula. 

Model parameters were as follows: 10,000 epochs, batch size of 5, differential prior of 

1.0, learning rate of 0.001, gradient clipping size of 10, and proteins with >5 counts were 

included. As the brain tissue was processed as an independent pilot study, we could not 

include this data as part of the multinomial regression analysis given the independent 

normalization used in each experiment. 

3D Mouse Model 

 The 3D Mouse model was generated as described previously(Quinn et al. 2019). 

In brief, MRI images were acquired at the UCSD Center for Functional MRI from a 

euthanized 8-week-old female C57BL/6 mouse with a Bruker 7T/20 MRI scanner using a 

quadrature birdcage transceiver.  MRI Parameters were as follows: 3D FLASH protocol 

with TE/TR=6 ms/15 ms and matrix size 128×64×156, field of view prescribed to match 

the body size. InVesalius (https://link.springer.com/chapter/10.1007/978-3-319-27857-

5_5) was used to trace individual organs in each MRI slice to generate the 3D model. The 

model was then processed with Blender (https://www.blender.org/) for smoothing. 
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 Interactive display of associations can be done through the following steps: 1) 

Accessing the ‘ili-web browser (https://ili.embl.de) (Protsyuk et al. 2018). 2) Uploading 

the 3D mouse model visualization file 3) Uploading either the protein-based associations 

table or the pathway-based associations table.  

 Pathway-level association scores were determined by comparing the –

Log10(Benjamini-Hochberg corrected p-values) for each functional enrichment in 

Supplemental Table S2. The statistical strength of the functional enrichment in 

conventional tissue was subtracted from the statistical strength of the functional 

enrichment in the GF tissue. The following formula summarizes the calculation: 

Association Score = (-Log10(Adj. p-value for conventional status) – -Log10(Adj. p-value 

for GF Status)) 

Data Access 

The proteomic data generated in this study have been submitted to the Mass 

Spectrometry Interactive Virtual Environment (MassIVE) Repository 

(https://massive.ucsd.edu) under the study ID MSV000083874. Code is available through 

GitHub (https://github.com/rhmills/Germ-free-organ-proteomics), and as Supplemental 

Code. 

 

Chapter 2 is a reprint of the material as it appears in Genome Research, 2020, 

Robert H. Mills, Jacob M. Wozniak, Alison Vrbanac, Anaamika Campeau, Benoit 

Chassaing, Andrew Gewirtz, Rob Knight, and David J. Gonzalez. The dissertation author 

played a primary role in all aspects of the work ranging from the study design, data 

acquisition, analysis and writing of the manuscript. 
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3.1 Abstract 

Although genetic approaches are the standard in microbiome analysis, proteome-

level information is largely absent. This discrepancy warrants a better understanding of 

the relationship between gene copy number and protein abundance, as this is crucial 

information for inferring protein level changes from metagenomic data. As it remains 

unknown how metaproteomic systems evolve during dynamic disease states, we 

leveraged a 4.5-year fecal time series of a single patient with colonic Crohn’s disease. 

Utilizing multiplexed quantitative proteomics and shotgun metagenomic sequencing of 

eight time points in technical triplicate, we quantified over 29,000 protein groups and 

110,000 genes and compare them to five protein biomarkers of disease activity. Broad-

scale observations were consistent between data types, including overall clustering by 

Principal Coordinates Analysis and fluctuations in Gene Ontology terms related to 

Crohn’s disease. Through linear regression, we determined genes and proteins fluctuating 

in conjunction with inflammatory metrics. We discovered conserved taxonomic 

differences relevant to Crohn’s disease including a negative association of 

Faecalibacterium and a positive association of Escherichia to calprotectin. Despite 

concordant genera associations, the specific genes correlated with these metrics were 

drastically different between metagenomic and metaproteomic datasets. This resulted in 

the generation of unique functional interpretations dependent on the data type, with 

metaproteome evidence for previously investigated mechanisms of dysbiosis.  One such 

example was a connection between urease enzymes, amino acid metabolism and the local 

inflammation state within the patient. This proof-of-concept approach prompts further 
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investigation of the metaproteome and its relations to the metagenome in biologically 

complex systems such as the microbiome. 

 
3.2 Introduction 

Due to the growing evidence for a connection between microbial communities 

and human health, exploration of the microbiome has rapidly expanded in the past 

decade. To date, the primary avenue for studying the microbiome has been through 

genomic technologies (Turnbaugh et al. 2007; Thompson et al. 2017; McDonald et al. 

2018)(Turnbaugh et al. 2007; Thompson et al. 2017; McDonald et al. 2018)(McDonald et 

al., 2018; L. R. Thompson et al., 2017; Turnbaugh et al., 2007). These techniques help 

gain an understanding of who and how abundant the microbial constituents are and can 

define their associated metabolic potential. However, gene copy numbers are not 

representative of protein levels due to the complex systems governing when and how 

much of a given protein should be present (Pandey and Mann 2000). Further, RNA 

expression has been well documented to have limited correlation to protein abundance 

within many eukaryotes and bacteria (Liu et al. 2016). These relationships have not been 

thoroughly investigated in the context of the complex communities inhabiting the human 

gut microbiome, thus limiting the utility of DNA (or even RNA)-based analyses for 

understanding microbiome function.  

Metaproteomics is an emerging technique that directly characterizes proteins from 

multi-species matrices. There has been over a decade of development of the field 

(Klaassens et al. 2007; Verberkmoes et al. 2009; Kolmeder and de Vos 2014; Zhang et al. 

2017), though most studies have been limited in scope due in part to complex technical 

hurdles: lack of proteome coverage (Zhang et al. 2017), sample sizes typically below 20 
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samples (Kolmeder and de Vos 2014), limited reference database selection (Tanca et al., 

2013; Tanca et al., 2016; Zhang et al., 2016), and peptide assignment to proteins of 

similar identity (Tanca et al. 2013). The introduction of new methods and mass 

spectrometers have dramatically increased the number of quantifiable peptides and 

proteins, allowing for a greater than 20 fold increased coverage of the metaproteome in 

the past few years (Zhang et al., 2017; Zhang et al., 2018). Here, we leverage Tandem 

Mass Tag (TMT) technology, allowing higher throughput by combining up to 11 samples 

within one mass spectrometry (MS) experiment, without the necessity of culturing 

(Thompson et al. 2003). In addition, TMT workflows utilize Synchronous Precursor 

Selection (SPS), LCMS2/MS3-based quantitation workflow to increase accuracy and 

reduce the sparsity associated with label-free proteomics (Ting et al. 2011). This 

combination has enabled unprecedented, deep characterization of proteomes at large 

scales (Lapek et al., 2017; Lapek et al., 2018; Weekes et al., 2014). In comparison to 

current metagenomic technology, the metaproteome field is still limited in depth of 

coverage and throughput. Nevertheless, performing direct protein-level analysis through 

advances in MS may allow for new insights into complex biological systems. 

Here we utilized these technical advances to better understand the relationship 

between fluctuations in microbiome protein expression and fluctuations in microbiome 

gene content. Crohn’s disease (CD), a subtype of Inflammatory Bowel Disease (IBD), 

represents a chronic, autoimmune condition associated with large fluctuations in the 

microbiome (Gevers et al., 2014; Halfvarson et al., 2017; Manichanh, Borruel, Casellas, 

& Guarner, 2012; Walters, Xu, & Knight, 2014). A study in 2012 was the first to 

integrate the metagenome and metaproteome in the context of IBD (Erickson et al. 2012). 
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The results indicated that in six Crohn’s patients, Ileal Crohn’s Disease (ICD) had a 

unique metaproteome from colonic Crohn’s disease (CCD) (Erickson et al. 2012). 

Subsequently, a meta-analysis of human single nucleotide polymorphisms from 30,000 

IBD patients corroborated the split between ICD and CCD (Cleynen et al. 2016). While 

further metaproteome studies have been conducted on the human gut microbiome of IBD 

(Presley et al. 2012; Juste et al. 2014; Zhang et al. 2018), few integrate and compare 

results from metagenome and metaproteome data.  

A distinguishable aspect of our study is a shift from contrasting IBD cohorts with 

healthy subjects to exploring a time series perspective from a single patient. Previous 

studies investigated metaproteome stability in the context of healthy subjects (Kolmeder 

et al. 2012; Kolmeder et al. 2016), however these studies were limited to time periods at 

or below one year. Herein, we tracked the disease activity of our patient through the 

abundances of several sub-components of the immune system, which form the basis of 

several clinical tests used to monitor IBD disease activity (Chang, Malter, & Hudesman, 

2015; Iskandar & Ciorba, 2012; Mosli et al., 2015; Vermeire, Van Assche, & Rutgeerts, 

2004). These proteins include C-Reactive Protein (CRP), lysozyme, Secretory 

Immunogloblin A (sIgA), calprotectin, and lactoferrin (Table 3.1). Our experimental 

design contains one patient and eight time points, with a focus on the comparisons 

between metagenomic and metaproteomic data. By tracking IBD episodic dynamics 

through the metagenome and metaproteome, we identified a set of bacterial taxa, and 

functional groups that are time-correlated with immunological biomarkers in our patient. 

Further we evaluate metagenomic prediction of the metaproteome, and identify unique 

aspects of function accessible through metaproteomics.  
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Table 3.1 Roles of immunological proteins of interest. IL-6, interleukin-6; TNF-α, tumor necrosis factor 
alpha. 
 

 
Protein 

 
Role 

 
CRP 

An acute phase response protein produced by the liver upon stimulation by IL-6, 
TNF-α and IL-1-β and a common clinical marker of general inflammation 
(Vermeire et al. 2004). It is found both in human blood serum and stool. 

 
Lysozyme 

A glycoside hydrolase used in the innate immune system for hydrolysis of Gram-
positive bacterial cell walls (van der Sluys Veer et al. 1998). Measurements of 
lysozyme in the stool of patients with IBD have shown some correlation to disease 
activity in colonic IBD (van der Sluys Veer et al. 1998). 

 
Secretory IgA 

The most abundant antibody in the human colon and helps tightly control the 
relationship between commensal microbes and the host by delaying or abolishing 
the ability of microbes to adhere to the epithelium (Corthesy 2013). 

 
Calprotectin 

An antimicrobial protein that sequesters manganese to prevent the growth of 
pathogenic microbes that require these metals (Brophy and Nolan 2015).  
Consisting of two subunits, S100A8 and S100A9, calprotectin is an important 
molecule to the innate immune system constituting 40% of the cytoplasmic proteins 
in neutrophils (Brophy and Nolan 2015). Fecal calprotectin levels have been 
described as a stronger indicator of endoscopic activity than CRP, and has potential 
for identifying endoscopic remission (Chang et al. 2015; Mosli et al. 2015; Joy et 
al. 2017; Dai et al. 2018). 

 
Lactoferrin 

An antimicrobial glycoprotein, and a major component of the secondary granules 
of neutrophils (Dai et al. 2018). lactoferrin’s antimicrobial properties are a result of 
iron sequestration, and has potential for both discriminatory and activity tests in the 
clinic (Mosli et al. 2015; Dai et al. 2018). 

 

3.3 Results 

Patient Information 

The N=1 patient was a non-smoker male. He was diagnosed in 2011, at age 63, 

with CCD by Dr. William J. Sandborn at the University of California Health System. The 

inflamed region of the colon was determined, via colonoscopy and abdominal MRIs, to 

be confined to 6-8" of the sigmoid colon. Specifically, a 2012 colonoscopy revealed that 

this region had extensive diverticulosis and inflammatory focal ulceration, inflammatory 



70 
	

pseudopolyps, and patchy friability not associated with the diverticular orifices.  During 

the time interval covered in this work (12/28/2011 to 5/22/2016), the patient had one 

period of antibiotic therapy, ciprofloxacin 500 mg administered twice daily and 

metronidazole 250 mg administered three times daily for one month starting 

1/31/2012.  During that period, the patient was also taking 40 mg Prednisone daily. In 

another 4-month period from August through November, 2013, the patient had a 

simultaneous course of Lialda (anti-inflammatory) and Uceris (budesonide) administered 

at 9 mg daily. During the reported period, the patient had episodic symptoms of rectal 

bleeding, abdominal cramps, bloating, and malaise. Lastly, there was no surgery 

performed on the patient during the time period covered by this work. 

Selection of Immunological Proteins of Interest 

The immunological proteins, fecal C-Reactive Protein (CRP), lysozyme, sIgA, 

calprotectin, and lactoferrin were selected for their unique properties and clinical 

applications in IBD. We observed similar expression patterns over time for calprotectin, 

lactoferrin, and sIgA (Fig. 3.1a). Lactoferrin and sIgA abundances were the most strongly 

correlated to calprotectin (Pearson r = 0.96, 0.50 respectively), which led to overlapping 

results in downstream analysis. Because calprotectin is more widely used for the 

assessment of IBD (Chang et al. 2015), we focus primarily on relationships to 

calprotectin over those found with lactoferrin and sIgA.  
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Technical comparisons between –omic types and protein database methodology 

As discussed above, eight fecal samples from our patient were collected over a 

time period from 2011 to 2016 representing a wide range of disease activity. Samples 

were processed in technical triplicate through shotgun metagenomic sequencing and a 

Figure 3.1 Study design. a, Immune markers associated with samples. Mass spectrometry based 
relative abundances of fecal calprotectin, CRP, Lysozyme, lactoferrin, and secretory IgA are plotted 
on the left y-axis for each of the eight time points in this study. b, Workflow schematic describing 
omic methods. Shotgun sequencing and metaproteomic methods were performed in parallel for the 
analysis of eight selected samples. Both methods were performed in technical triplicate for evaluation 
of technical variability. Tandem Mass Tag (TMT) labeling of tryptic peptides was performed for 
three mass spectrometry experiments. Green and purple hexagons represent composite samples used 
as controls, while other colors represent the random labeling of samples using the remaining TMT 
reagents. Shotgun sequencing reads were combined and assembled into a shared reference database 
(Personal Database Assembly) for assigning gene counts (in counts per million, CPM) and protein 
abundances. Not shown is MS1, which was used for precursor selection. 
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proteomic workflow using TMT mediated liquid chromatography triple-stage MS (LC-

MS3) (Fig. 3.1b).  

To address the lack of standardized database methodology (Tanca et al., 2013; 

Tanca et al., 2016), two different protein reference database approaches were used for 

analysis of LC-MS3 data. Our first approach utilized the shotgun metagenomic reads 

generated within the study to create a personalized database (pDB) containing 1.3 million 

protein coding regions (Erickson et al. 2012). Through alignment of our protein coding 

regions to taxonomic and functional databases, the pDB provided genera level 

annotations for 80% of genes, and functional annotations to KEGG Orthologous (KO) 

groups in 15% of genes.  The pDB approach was crucial for comparison between 

metagenomic and metaproteomic data types as it allowed for a shared reference for gene 

and protein abundances. For comparison, we separately performed a two-step search 

method (Zhang et al. 2016) of the MS data using a public database of gut microbial genes 

(Integrated Gene Catalog, IGC) (Li et al. 2014). Our methods resulted in 123,806 

predicted open reading frames (ORFs) from the pDB with DNA quantification and 

29,370 with protein quantification. A search through both databases yielded a similar 

number of peptides and proteins with 113,373 total unique peptides and 72.5% of 

peptides shared between pDB and IGC database methodology. The degree of overlap in 

peptides was consistent with previous findings (Zhang et al. 2016).  

Notably, a lack of shared sequences between samples is a known trait of 

microbiome studies (Tsilimigras and Fodor 2016). We observed that the TMT-based 

metaproteomic methods provided quantification measurements within all samples for a 

larger percentage of proteins (52% of proteins identified from the pDB, 65% of proteins 
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identified from the IGC) than the metagenomic techniques provided for gene 

quantifications (4%). This increased overlap is likely a result of TMT multiplexing 

methods, which are known to reduce sparsity when compared to label-free MS (Rosa 

Viner 2013). Our methods also allowed for in parallel quantification of nearly 1000 

human proteins. Human protein quantification is an important advantage of 

metaproteomics, especially in light of recent results showing the ability of human 

proteins to distinguish IBD patients from controls (Zhang et al. 2018). It is important to 

note that the database used for protein assignment can result in different functional 

annotations. For example we observed that the IGC approach identified 83% more unique 

KEGG Orthologous (KO) groups than the pDB approach. This discrepancy in peptide 

matching is an ongoing area of investigation in computational biology (Tanca et al. 2013; 

Tanca et al. 2016; Zhang et al. 2016; Xiao et al. 2018). 

The technical and biological variability within each dataset was assessed through 

Principal Coordinates Analysis (PCoA) using the Bray-Curtis distance metric (Caporaso 

et al. 2010). To overcome structural artifacts from the missing values within TMT 

experiments, only the proteins common to all samples were used in this analysis. After 
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Figure 3.2 Broad-scale data type comparisons. a, Procrustes analysis comparing clustering of the 
metaproteome and metagenome. Bray-Curtis distance metric was used on both the metagenome and 
metaproteome (only proteins common to all samples, pDB database) to assess technical and biological 
variability within and between datasets. Samples are colored by calprotectin relative abundances. b, 
Distribution of Spearman correlations comparing metagenomic and metaproteomic fluctuations. The x-
axis displays the Spearman correlation (ρ) and the y-axis displays the number of gene-protein pair 
within a range of Spearman correlation values. c, Dynamic range comparison. Histograms fitted with a 
Gaussian kernel density estimate are displayed at the gene and protein level. The Log10 of the 
maximum value for each protein or gene divided by the minimum value is plotted on the x-axis. The 
number of proteins corresponding to each max/min range are plotted on the y-axis. d, Variability 
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categories with largest fluctuations. Proteins and genes were summed according to their GO categories 
and the maximum to minimum were compared. The highest metagenomic fluctuations are recorded on 
the top and the highest metaproteomic fluctuations are displayed on the bottom. 
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this adjustment, a comparison between our datasets was performed using Procrustes 

analysis and a Mantel test (Fig. 3.2a). The Procrustes analysis transforms two distance 

matrices from corresponding samples to compare distributions. These tests showed 

minimal technical variability and a strong association between the two data types (Mantel 

test p < 0.001). We also observed clustering based on high or low inflammation state 

(Fig. 3.2a). Group differences between high and low inflammation state were not 

statistically significant, likely a result of the small number of samples analyzed. Though 

not significant, the metaproteome showed a stronger association to inflammation state 

than the metagenome (Pseudo-F = 1.54 for metaproteome, Pseudo-F = 1.19 for 

metagenome).   

To investigate the relationship between gene and protein level fluctuations, the 

data was subset to the 3598 ORFs with both copy number and protein abundance data. 

Spearman correlations were assessed between the protein and gene abundances in each of 

the samples. Overall, the Spearman correlations were normally distributed around ρ = 

0.317 (Fig. 3.2b). This limited correlation highlights the added value a metaproteomic 

approach can have in cases such as CD, where disease severity is associated with 

fluctuations in the microbiome (Gevers et al. 2014).  We next investigated data type 

comparisons from a functional perspective by summing abundances by Gene Ontology 

(GO) and KO annotations and performing Spearman correlations between the genes and 

protein abundances. This analysis resulted in an approximately normal distribution near ρ 

= 0.140 for both annotation types. These weak correlations might have been expected 

given that our approach was based on comparing DNA to protein, as even RNA 

abundances are often weakly correlated to protein abundance (Maier et al. 2009). 
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We further investigated data type differences by comparing the distribution of 

dynamic ranges and standard deviations. Ratios of maxima to minima showed that both 

data types demonstrate a normal distribution centered around 4.4 for proteins and 11 for 

gene copy numbers (Fig. 3.2c). The maximum to minimum ratios reached up to 9,400 for 

proteins and 129 million for gene copy number (Fig. 3.2c), indicating a much greater 

dynamic range in the latter. These dynamic ranges may indicate the extent to which 

microbial genes and proteins can change over time within an individual. However, this 

result may be influenced by the differences in depth of coverage, in which the 

metagenome is approaching more complete coverage than the metaproteome, and the less 

abundant genes only detected by the metagenomic methods may have a greater dynamic 

range. The standard deviations of the genes and proteins were normally distributed but 

displayed differences in averages and variances (Fig. 3.2d). The metagenome had larger 

variance in the distribution of standard deviations, potentially indicating more variability 

within that platform (variance = 0.36, 0.074 for MG and pDB). Still, this result may also 

be influenced by the differences in the depth of coverage. Distribution of the maxima to 

minima for GO and KO sums shared similar distributions between data types. The largest 

fluctuations in GO terms were greater than 100-fold for proteins and 1000-fold for genes 

(Fig. 3.2e). Large changes were observed in categories of interest such as drug binding 

for proteins and methanogenesis (Scanlan et al. 2008) for genes. This was likely the result 

of the presence then absence of two archaeal methanogens, Methanobrevibacter smithii 

and Methanosphaera stadtmanae (Gaci et al. 2014), whose genes were on average, 15 

times more abundant in the first collected time point (12/28/2011) than any other sample. 
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These results give some indication of the fundamental dynamics of genes and proteins, 

but are surely influenced by the techniques used in the study design.  

Copy number prediction of protein abundances by functional categories 

 Because proteins have consistent roles (Toyama and Hetzer 2013), we expected 

that certain functional categories would have a stronger correlation between gene content 

and protein expression. We tested this hypothesis using several different functional 

databases for a comprehensive analysis. After removing human proteins and subdividing 

individual genes by Evolutionary Genealogy of Genes: Non-supervised Orthologous 

Groups (eggNOG) functional category, the distribution of gene to protein Spearman 

correlations was largely consistent with the overall mean ρ ~ 0.3 (Fig. 3.3a). Categories 

with the largest number of features shared, such as “Energy production and conversion”, 

“Carbohydrate transport and metabolism” and “Translation, ribosomal structure and 

biogenesis” all had distributions centered near Spearman ρ ~ 0.3. Other categories with 

fewer features had more variability in their average correlation values. Less abundant 

categories included “Cell cycle control”, which had a lower average correlation and 

“Inorganic ion transport and metabolism” which had a higher average correlation (Fig. 

3.3a). This indicates that there were not broad-scale functional group differences 

distinguishable from the overall low, but positive correlation observed between all genes 

and proteins. 

 In addition to individual gene correlations, we also evaluated inter-omic 

relationships between the abundances of entire gene categories. We assessed these 

relationships through summing protein and gene abundances by GO annotation and 

performing Spearman correlations. There was large variability (σ = 0.445) in the 
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correlations of different functional groupings with an average Spearman ρ = 0.135. 

Despite the low overall correlation, themes of GO categories with similar correlations 

were present. Several GO terms related to polysaccharide, formate, and anaerobic 
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Figure 3.3 Functional categories with strong or weak genomic prediction of proteome 
fluctuation. a, Box plots demonstrating the distribution of Spearman correlations per gene which 
have an associated eggNOG functional category. Spearman correlation (ρ) between the summed 
metagenomic CPM per time point with the average relative abundance of associated metaproteomic 
protein is displayed. Summary statistics for this data can be found in Supplementary Table 1. b, 
Summed GO categories with strong genomic and proteomic correlation. c, Summed GO categories 
with weak genomic and proteomic correlation.	
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respiration all had strong positive correlations above ρ = 0.6 (Fig. 3.3b). Other categories 

had consistently low, or even negative, correlations below ρ = 0.2. Cell wall and 

membrane proteins, metal binding proteins and chaperones were among the categories 

with poor correlations (Fig. 3.3c). These results suggest that there are some categories of 

genes that better represent protein expression levels, which may be the result of 

constitutive versus inducible expression. However, the techniques used also influence 

particular categories, such as membrane proteins, whose hydrophobic nature presents a 

challenge to MS workflows (Chandramouli and Qian 2009). All of the described 

categories had greater than 200 proteins and genes contributing to these relationships, 

which indicates that this was not related to differences based on high or low abundance 

proteins. 

Taxonomic correlations with inflammatory markers are largely shared at the protein and 

gene level 

We next sought to determine whether fluctuations related to inflammatory 

markers were conserved between genes and proteins. Taxonomic assignments for the 

pDB database were assigned based on the protein sequences to ensure consistent 

assignments for both datasets. Genus level compositions were significantly different in 

the metagenome but not in the metaproteome (Friedman test p = 8.9e-5 and 0.69 

respectively) (Fig. 3.4a, Fig. 3.4b). Dominant genera included Escherichia, Bacteroides, 

Faecalibacterium and Alistipes (Fig. 3.4a). The metaproteome composition was 

intentionally not adjusted for lowest common ancestor of peptides (Mesuere et al. 2015) 

for easier interpretation of the abundances used for metagenome comparisons. 

Metaproteome taxonomic composition plots adjusted for lowest common ancestor also 
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Figure 3.4 Genus level associations to clinical markers. a, Genera level barplot displaying the 
fractional composition of the most abundant genera (> 0.03) in the metagenome and (b) the 
metaproteome in each of the samples analyzed. c, Comparison of genes and proteins significantly 
associated to each clinical marker. Venn diagrams are displayed showing the number of genes and 
proteins with a large effect size (|r| > 0.7) to clinical markers based on linear regression. d, Genera 
associated with clinical markers. The associated proteins with genus level taxonomy from (c) were 
compared by the log ratio of the composition of positive and negative proteins. The log ratio is plotted 
on the x-axis for each clinical marker and bars represent the association of each genus. Metaproteome 
values are plotted in red and metagenome values are plotted in black. 
	



81 
	

displayed stable compositions, though certain genera, such as Blautia, had a notably 

different composition after the adjustment. 

 To evaluate the relationship between species related to inflammation in CD and 

our biomarkers of interest, we evaluated each immune protein against a previously 

defined microbial dysbiosis index (Gevers et al. 2014). This index was developed using 

hundreds of samples from both Crohn’s patients and healthy controls to predict CD 

severity through log ratios of the species increased and decreased within CD (Gevers et 

al. 2014).  Nineteen of the species defined in the index were found in our dataset. These 

included Escherichia coli and Fusobacterium nucleatum, which are increased in CD, and 

Faecalibacterium prausnitzii, Eubacterium ractale, and Bacteroides vulgatus, which are 

decreased in CD. After summing gene and protein abundances and determining the 

relationship between log ratios and each biomarker, fecal calprotectin had the strongest 

association with the microbial dysbiosis index in both the metagenome and 

metaproteome. This result was not statistically significant, which was likely a result of 

either the small sample size, or extrapolating methods developed from hundreds of 

patients onto a single subject.  

Linear regressions against inflammatory markers were performed on each gene 

and protein. To evaluate our results, we compared the positively and negatively 

associated genes with large effect sizes (Cohen 1988) (correlation coefficient, |r| > 0.7). 

Interestingly, the individual genes and proteins associated with each of the inflammatory 

markers were largely unique with only 0.5% (188/34,836) of associations shared between 

data types (Fig. 3.4c). When accounting for only the genes and proteins quantified in both 

datasets, 10% (188/1,814) of the strong associations were shared between datasets. 
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Despite the lack of overlap in the individual identities of the genes and proteins 

correlated with each clinical marker, we observed consistent trends in the taxonomic 

annotations among the correlated genes and proteins. With over 800 genes and proteins 

strongly correlated to each marker (|r| > 0.7), we contrasted the taxonomic composition of 

the positive and negative correlations. Several genera had >30-fold difference between 

compositions (Fig. 3.4d). Genera-level differences were largely conserved between data 

types in both direction and magnitude of association (Fig. 3.4d). Akkermansia and 

Anaerostipes had the strongest pro-inflammatory relationship, while Faecalibacterium 

and Butyricicoccus had the largest anti-inflammatory relationship as assessed through the 

number of proteins positively or negatively correlated to calprotectin (Fig. 3.4d). Several 

genus level trends were conserved between CRP and calprotectin such as Alistipes, 

Anaerostipes, Faecalibacterium and Lachnospira, while lysozyme had largely different 

associated genera. Contextually, the number of proteins and genes used to generate these 

associations is important for the interpretation of these results as some associations were 

based on very few observations.  

Lysozyme is a component of the innate immune response that targets Gram-

positive cell walls. Interestingly, proteins and genes correlated with lysozyme levels had 

large phylum-level changes. Bacteroidetes is a Gram-negative phylum, while Firmicutes 

is largely Gram-positive (Winter et al. 2013). The Gram-positive Firmicutes were 1.4 

fold enriched among negative associations to lysozyme in both gene and proteins, while 

the Gram-negative Bacteroidetes were 4.3-fold and 8.9-fold enriched among positively 

correlated proteins and genes, respectively. Even though there were more than 800 genes 

and proteins from Firmicutes and Bacteroidetes that were correlated to lysozyme, very 



83 
	

few from other phyla, such as the Gram-negative Proteobacteria, and Gram-positive 

Actinobacteria were observed. To validate these observations at the genus level, Gram-

stain information was cross referenced (Markowitz et al. 2012). Although there were 

genera with both Gram-negative and Gram-positive species, the genus level associations 

to lysozyme largely reflected the phylum level observations. 

Comparing functional interpretations of the genes and proteins associated with 

immunological biomarkers 

 Using the same identifications from linear regressions that provided the genus 

level results, we next compared broad-scale functional groupings. The broad scale 

functional associations were weaker in comparison to the genus associations. This 

observation may represent a broad versus fine scale categorization. Illustrating this point, 

the largest difference among the genera associations was 90 fold, while the largest 

difference between functional groupings using assignments to the eggNOG database was 

12 fold (Fig. 3.4d, Fig. 3.5a). Analyzing a broader taxonomic category, we observed that 

the maximum difference among phyla was 8.9 fold, considerably closer to the 12 fold 

maximum for eggNOG categories. An additional consideration for this result is the 

annotation rate for functional assignments. Only 15% of observed ORFs had an 

identifiable function and this lower annotation rate may bias the results.   

 Despite the weaker associations of functional categories, several functional 

relationships to the disease markers were of interest. In total, 19 eggNOG (12 from the 

metaproteome, 7 from the metagenome) had differences of 3 fold or greater (Fig. 3.5a). 

Comparing the categories with associations to different immune markers provided insight 
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into how different data types might influence functional interpretation. For example, 

metagenomic data had several strong functional associations that were not confirmed by 

protein abundances. One such category, “Nucleotide transport and metabolism”, had 147 

genes positively correlated with CRP, and 0 negatively correlated genes, indicating a 

Figure 3.5 Functional associations to clinical markers. a, Functions associated with clinical 
markers. Linear regressions to clinical markers were performed and the number of proteins or genes 
derived from each functional group with a large effect size (|r| > 0.7) were compared. The log ratio of 
the composition of positive and negative proteins is plotted on the x-axis for each clinical marker. 
Metaproteome values are plotted in red and metagenome values are plotted in black. b, Time series 
plots of selected proteins of interest. Protein abundances of one finding from each clinical marker are 
shown. A legend describing the protein names and associated genus is shown below each graph. 
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positive association to CRP. The metaproteome data for this category had almost no 

association to CRP (Fig. 3.5a), with 6 proteins negatively correlated and 38 proteins 

positively correlated. We suspect that nucleotide metabolism undergoes protein 

expression independent of inflammatory conditions. The underlying reasons for this 

observation need to be further investigated. 

 Biologically relevant relationships were observed in the metaproteome that were 

not detectable in the metagenome. Free amino acids and urease enzymes have previously 

been associated with gut dysbiosis and Crohn’s disease (Ni et al. 2017). Interestingly, the 

metaproteome data identified a functional association of amino acid metabolism proteins 

to calprotectin, while this observation was absent in the metagenomic data (Fig. 3.5a). 

This observation included several urease proteins, and transporters for free amino acids, 

many of which were derived from the genera that had positive associations with 

inflammation (Fig. 3.5b). These ureases and transporters thus represent interesting targets 

for further investigation, and provide further evidence of a previously established 

connection (Ni et al. 2017). 

 Another observation that was exclusively related to the metaproteome data was 

the relationship of chaperone proteins to several of the inflammatory metrics. There were 

15 chaperone proteins with similar trends in expression to CRP (Fig. 3.5b). This 

corresponded to post-translational modification and chaperone proteins having a 3.2 fold 

higher representation in positively associated proteins, and a 1.9 fold lower representation 

in genes (Fig. 3.5a). This unique observation from our patient’s fecal metaproteome is a 

potential indication of microbial stress occurring in response to the acute phase response, 

and may indicate a need for the microbiome to refold proteins. 
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 Because lysozyme targets Gram-positive cell walls, we expected correlated genes 

and proteins to be influenced by taxonomy and to have functions related to cell walls or 

membranes. However, cell wall proteins were under-represented in the metaproteomic 

dataset relative to their occurrence in the metagenomic dataset. Of the cell wall proteins 

associated with lysozyme, two were related to cell wall biosynthesis (COG1088, 

COG0463), a Glycosyl transferase and a dTDP-glucose 4-6-dehydratase. In this case, the 

binding of lysozyme to peptidoglycan may disrupt the binding of these cell 

wall/membrane/envelope biogenesis proteins leading to the observed negative 

correlation. Even though we were not able to detect many membrane or cell wall proteins 

related to lysozyme, 15 negatively correlated proteins from the butyrate producing (Sitkin 

and Pokrotnieks 2018), Gram-positive genera Faecalibacterium and Butyrivibrio were 

identified (Fig. 3.5c).  These proteins included 5 ribosomal proteins, which may indicate 

decreased translation occurring in the presence of lysozyme. 

 In addition to analyzing calprotectin, CRP and lysozyme levels, we also evaluated 

sIgA and lactoferrin. Secretory IgA is secreted in large quantities in the intestine for 

maintaining favorable microbial compositions (Corthesy 2013) and lactoferrin sequesters 

iron as an antimicrobial response (Dai et al. 2018). We observed similar expression 

patterns of lactoferrin, sIgA and calprotectin. The similar expression resulted in minimal 

differences in both genus and functional relationships between calprotectin, lactoferrin 

and sIgA. Proteins positively associated with lactoferrin (|r| >0.7) had a larger portion of 

GO terms related to iron (15.5% of 470 positive associations, 10% of 233 negative 

associations). Many of these proteins were pyruvate oxidoreductases, which are used in 

anaerobic bacteria for forming acetyl CoA from pyruvate (Chabriere et al. 1999). These 
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are crucial enzymes for certain anaerobic bacteria, and have been suggested as potential 

drug targets (Chabriere et al. 1999).  This result suggests that a connection exist between 

iron sequestering host proteins and microbial proteins in our patient that are dependent on 

iron as a cofactor. 

 

3.4 Discussion 

Our investigation of the fundamental relationship between changes in the 

metagenome and the metaproteome reveal important considerations for interpreting these 

data types. Currently, studies using shotgun metagenomics to dissect the functions of the 

microbiome are becoming more prevalent (Quince et al. 2017), and this study shows that 

differences at the gene level may not reflect differences at the protein level. Though 

discordance between RNA and protein expression is widely acknowledged for individual 

species (Pandey and Mann 2000), the relationships between DNA and protein content in 

the complex ecology of the microbiome is less understood. As these systems have rarely 

been studied in parallel, it is possible that communities of microbes influence 

fundamental relationships between genes and proteins that have been previously 

established in monoculture settings. Although the metaproteomics field is improving in 

depth of coverage (Zhang et al. 2017) and scope (Zhang et al. 2018), the technical hurdles 

MS presents often make DNA based studies a more practical, higher throughput solution. 

That being the case, functional insight from metagenomic studies requires a consideration 

of the relationship between protein abundances and metagenomic copy numbers.  

Our results, although limited to a single patient, suggest that there is a degree of 

general agreement between changes in the metagenome and changes in the 
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metaproteome. However, the relationship is overall weak for individual genes/proteins 

(our average Spearman ρ = 0.3). In single species context, bacterial systems have 

generally shown correlations between mRNA and proteins to range from ρ = 0.5 – 0.6 

(Maier et al. 2009). Our experimental estimates place DNA to protein correlations in 

complex microbial systems to be notably lower. These associations do not appear to have 

obvious biases between large-scale functional groupings, but have certain trends in finer-

resolution functional groupings such as individual GO terms. An important notion in the 

field of IBD, formate- and nitrate-related categories had large fluctuations and consistent 

trends between the two data types. Formate oxidation has been implicated as a metabolic 

signature of inflammation-associated dysbiosis (Hughes et al. 2017), indicating that 

metagenomic studies may predict protein abundances within this system. We do not 

expect the consistency between formate oxidation genes and proteins is a result of 

constitutive expression as, at least in E. coli, related genes such as formate hydrogenases 

are regulated by the presence of formate (Bohm et al. 1990). Nitrate based anaerobic 

respiration is implicated in promoting the growth of facultative anaerobes such as the 

Enterobacteriaceae, which can lead to microbial dysbiosis and intestinal inflammation 

(Winter et al. 2013). Tables of the identified eggNOG and GO terms are provided, which 

describe how well metagenomic copy number predicted protein abundances within each 

identified category. 

Identifying the genes and proteins with similar expression trends to certain 

inflammatory and immune markers revealed that there were large differences in genus 

level associations that were biologically relevant and generally consistent between data 

types. Faecalibacterium is a genus depleted in IBD (Gevers et al., 2014; Takahashi et al., 
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2016), which appears to have anti-inflammatory effects, possibly mediated by butyrate 

production (Sokol et al. 2008). Both data types had a strong negative correlation in 

numerous Faecalibacterium proteins to our biomarker for local inflammation, 

calprotectin. While it was previously shown that there were consistent trends between 

these data types showing increased Faecalibacterium in healthy patients (Erickson et al. 

2012), our results show these relationships can occur within a patient through time 

corresponding to the current level of inflammation. Other trends were also found for 

well-documented genera with inflammatory roles in IBD (Gevers et al. 2014), including 

E. coli, which is of particular interest because of its adherent-invasive properties in CD 

(Barnich & Darfeuille-Michaud, 2007; Palmela et al., 2018). Interestingly, these shared 

trends were found from almost entirely different genes. This may potentially indicate that 

the underlying bacterial abundance influences both of these data types, while the 

individual proteins expressed at certain times are not directly associated with the amount 

of corresponding genetic material present. If this is the case, it is possible that functional 

associations made through some broad-scale categories, such as eggNOG, may have 

different results depending on the data type. This concept is supported by our results that 

indicate smaller and less consistent associations to broad-scale groupings than 

associations at the genera level. 

Our analysis of clinical biomarkers was useful for understanding the biology 

associated with each immune component. As calprotectin had the strongest association to 

the microbial dysbiosis index (Gevers et al. 2014), it suggests that calprotectin may be a 

better indication of microbial imbalances. Interestingly, CRP has been reported to be a 

less useful diagnostic than fecal calprotectin for intestinal inflammation (Chang et al. 
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2015). CRP levels may be a better indication of systemic inflammation, and here we have 

observed that many bacterial chaperone proteins may be increased in correspondence. 

With the abundances of lysozyme, we observed taxonomic trends consistent with its 

biological function of acting upon cell walls. In general, predominately Gram-positive 

genera and phyla had a larger portion of anti-correlated genes and proteins, while Gram-

negative bacteria had an opposite association. 

 Our observed discrepancies between gene and protein levels may have large 

implications for data interpretation, but it is important to replicate these results in a larger 

cohort of IBD patients. As certain GO categories present strong correlation between data 

types, it suggests that it may be possible to develop a metagenomic-metaproteomic 

reference guide for creating stronger functional hypotheses. This guide may be used to 

outline which groups of genes have strong or weak association to protein abundances.  

The relationship between genes and proteins may be influenced by several factors. 

Correlation between DNA and protein abundances might be reflecting DNA from 

dormant or dead cells (Jansson and Baker 2016), which may lead to a higher correlation 

because the cells are not actively producing or secreting proteins. Other factors may 

include constitutive versus inducible genes or the stability of the proteins. For example, 

chaperone proteins were found in high abundance which may be a result of their high 

stability, and stable concentrations within the cell (Henderson et al. 2006). Ultimately, the 

associations between -omic datasets are influenced by the nature of the data collection 

techniques and normalization, and further benchmarking is necessary. Although, there are 

significant challenges in integrating multi-omic data types (Palsson and Zengler 2010), 
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further understanding these relationships is of paramount importance as the microbiome 

field progresses. 

Our study presents several technical findings of interest. Leverage of the modern 

TMT based LC-MS3 quantification platform provided a highly accurate quantification 

method for comparison with gene counts. Our workflow for mediating comparisons 

between metagenomic and metaproteomic data expands upon our knowledge of data type 

differences and acts as a bioinformatic and technological update to previous studies 

(Erickson et al. 2012). Additionally, the use of technical triplicates validates the 

reproducibility of these methods and helped increase our confidence in the quantification 

values at both the metagenomic and metaproteomic level. However, outside validation 

from other technological pipelines may be necessary to further understand these 

biological systems. Our results are also derived from a small number of samples from one 

patient, and the time points are spread out over large time spans. This design provided 

unique opportunities, but limit our interpretation of the data to a single individual.  

From a biological perspective, our results provide evidence that certain proteins 

and genera are correlated or anti-correlated with immunoprotein markers of 

inflammation. While the taxonomic insights we observed were conserved between data 

types, our functional interpretations differed. This personalized perspective also 

demonstrates the extent of variability occurring within an individual, an important 

consideration to control for in studies with larger cohorts. In total, our study investigates 

the relationships between metagenomic and metaproteomic methods and highlights 

important considerations for interpretation of meta –omic data.  
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3.5 Methods 

Longitudinal sample collection 

Naturally passed fecal samples were collected and immediately stored without 

buffer at -80 °C. Eight samples were selected. A personal symptom log was generated at 

the time each fecal sample was passed. Additionally, the weight and BMI of the patient 

was determined on the day associated with each sample.  

Generation of metagenomic reads 

Samples were extracted according to the Earth Microbiome Project (Thompson et 

al. 2017) protocol using the QIAGEN MagAttract PowerSoil DNA Kit as previously 

described (Marotz et al. 2017). Briefly, swabbed fecal material was plated into 96-well 

PowerBead® DNA Plates containing garnet beads. DNA extraction was performed once 

on each of the eight samples according to the manufacturer's instructions, with an 

additional incubation at 65°C for 10 minutes following the addition of lysis solution and 

immediately prior to shaking (QIAGEN® TissueLyser® II; QIAGEN® catalogue: 

85300). Magnetic DNA purification was performed using the KingFisher™ Flex™ 

Purification System. Then, whole-genome shotgun libraries were made using the Nextera 

DNA Library Prep Kit (Illumina, San Diego, CA, USA), at a 1:10 miniaturized reaction 

volume. Unique barcodes were used per triplicate totaling 24 metagenomic samples. 

Median insert size by sample ranged from 183 bp to 366 bp. Libraries were sequenced 

using Illumina MiSeq paired-end (2 × 250 bp) sequencing, filling a total of one lane. 

Processing of metagenomic reads for a shared reference library (pDB) 

Because typical metagenomics and metaproteomics workflows require a reference 

database, it was necessary to create from scratch using a minimal approach a single 
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reference database that could be used for both metagenomics and metaproteomics from 

the individualized data. All reads from the technical triplicates of each sample were 

concatenated. Next the MEGAHIT alignment program (Hyatt et al. 2010) was utilized for 

assembling short reads into larger contigs. Assembled contigs were searched for possible 

coding regions through the program Prodigal (Hyatt et al. 2010). Next, the program 

Diamond (Buchfink et al. 2015) was used for gene alignment to the uniref50 database 

(Suzek et al. 2015). Finally, the most likely uniref50 entry, determined through bitScore, 

was used for the functional annotations. KEGG orthology annotations were cross-

referenced using GhostKOALA (Kanehisa et al. 2016).  Taxonomic assignments were 

determined by Diamond alignment (Buchfink et al. 2015) to an in-house library of 

microbial genomes.  Taxonomy was assigned from the amino acid translated sequence of 

each predicted ORF in the pDB. This database was used as a reference database for both 

mass spectrometry data and sequencing data. Scripts used for data processing are 

available online (https://github.com/knightlab-analyses/Crohns-MG-MP-Comparisons). 

Generating copy numbers of metagenomic genes 

The program Salmon (Patro et al. 2017) was applied to determine the reads 

present for each gene from the pDB. First, an index was created with Salmon inputting 

the pDB fasta file. Next, reads were aligned to this index in quasi-mapping mode for each 

of the 24 metagenomic samples. The results were represented in counts per million 

sequences, with missing values padded as zeroes.  

Protein abundances from the shared reference library (pDB) 

The generation of mass spectra data is described below. Spectral data was 

searched against the pDB with a concatenated human reference library (uniprot.org, 
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accessed 11-28-16) using Proteome Discoverer 2.1 (Thermo Fisher Scientific). Further 

data processing is described below. 

Protein digestion and TMT labeling  

Fecal samples were measured out to ~0.5 g and suspended in 10 mL of ice-cold, 

sterilized TBS. Samples were suspended through vortexing and homogenized through a 

blender apparatus. A 20 µM vacuum, steriflip (Milipore) filter was used to remove 

particulate from the samples. Cells were pelleted through centrifugation at 4000 rpm for 

10 min. Next, cells were lysed in 2 mL of buffer containing 75 mM NaCl (Sigma), 3% 

sodium dodecyl sulfate (SDS, Fisher), 1 mM NaF (Sigma), 1 mM beta-glycerophosphate 

(Sigma), 1 mM sodium orhtovanadate (Sigma), 10 mM sodium pyrophosphate (Sigma), 1 

mM phenylmethylsulfonyl fluoride (PMSF, Sigma), and 1X Complete Mini EDTA free 

protease inhibitors (Roche) in 50 mM HEPES (Sigma), pH 8.5(Wessel and Flugge 1984). 

An equal volume of 8M Urea in 50 mM HEPES, pH 8.5 was added to each sample. Cell 

lysis was achieved through two 10 second intervals of probe sonication at 25% 

amplitude. Proteins were then reduced with dithiothreitol (DTT, Sigma), alkylated 

through iodoacetamide (Sigma), and quenched as previously described (Wessel and 

Flugge 1984). Proteins were then precipitated via chloroform-methanol precipitation and 

protein pellets were dried (Wessel and Flugge 1984). Protein pellets were re-suspended in 

1M urea in 50 mM HEPES, pH 8.5 and digested overnight at room temperature with 

LysC (Wako) (Lapek et al. 2018). A second, 6-hour digestion using trypsin at 37 ºC was 

performed and the reaction was stopped through addition of 10% trifluoroacetic acid 

(TFA, Pierce). Samples were then desalted through C18 Sep-Paks (Waters) and eluted 

with a 40% and 80% Acetonitrile solution containing 0.5 % Acetic Acid (Lapek et al. 
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2018). Concentration of desalted peptides was determined with a BCA assay (Thermo 

Scientific). 50 µg aliquots of each sample were dried in a speed-vac, additional bridge 

channels consisting of 25 µg from each sample were created and 50 µg aliquots of this 

solution were used in duplicate per TMT-10 plex as previously described (Lapek et al. 

2018). These bridge channels were used to control for labeling efficiency, inter-run 

variation, mixing errors and the heterogeneity present in each sample(Thompson et al. 

2003). Each sample or bridge channel was resuspended in 30% dry acetonitrile in 200 

mM HEPES, pH 8.5 for TMT labeling with 7 µL of the appropriate TMT reagent 

(Thompson et al. 2003). Reagents 126 and 131 (Thermo Scientific) were used to bridge 

between mass spec runs. Remaining reagents were used to label samples in random order. 

Labeling was carried out for 1 hour at room temperature, and quenched by adding 8 µL 

of 5% hydroxylamine (Sigma). Labeled samples were acidified by adding 50 µL of 1% 

TFA. After TMT labeling each 10-plex experiment was combined and desalted through 

C18 Sep-Paks and dried in a speed-vac. 

Basic pH reverse-phase liquid chromatography sample fractionation  

Sample fractionation was performed by basic pH reverse-phase liquid 

chromatography with concatenated fractions as previously described (Wang et al. 2011). 

Briefly, samples were re-suspended in 5% formic acid/5% acetonitrile and separated over 

a 4.6 mm x 250 mm C18 column (Thermo Scientific) on an Ultimate 3000 HPLC fitted 

with a fraction collector, degasser, and variable wavelength detector. The separation was 

performed over a 22% to 35%, 60-minute linear gradient of acetonitrile in 10 mM 

ammonium bicarbonate (Fisher) at 0.5 mL/min. The resulting 96 fractions were 

combined as previously described(Wang et al. 2011). Fractions were dried under vacuum 
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and re-suspended in 5% formic acid/5% acetonitrile and analyzed by liquid 

chromatography (LC)-MS2/MS3 for identification and quantitation. 

LC-MS2/MS3 for protein identification and quantitation 

All LC-MS2/MS3 experiments were carried out on an Orbitrap Fusion (Thermo 

Fisher Scientific) with an in-line Easy-nLC 1000 (Thermo Fisher Scientific) and chilled 

autosampler. Separation and acquisition settings were as previously defined (Huttlin et al. 

2010). 

Proteomic data processing 

Data was processed using Proteome Discoverer 2.1 (Thermo Fisher Scientific). 

MS2 data was searched against the pDB and Uniprot human database (uniprot.org, 

accessed 11-28-16). The Sequest searching algorithm(Huttlin et al. 2010) was used to 

align spectra to database peptides. A precursor mass tolerance of 50 ppm(Huttlin et al., 

2010) was specified and 0.6 Da tolerance for MS2 fragments. Included in the search 

parameters was static modification of TMT 10-plex tags on lysine and peptide n-termini 

(+229.162932 Da), carbamidomethylation of cysteines (+57.02146 Da), and variable 

oxidation of methionine (+15.99492 Da). Raw data was searched at a peptide and protein 

false discovery rate of 1% using a reverse database search strategy (Gupta & Pevzner, 

2009). 

 TMT reporter ion intensities were extracted from MS3 spectra for quantitative 

analysis and signal-to-noise values were used for quantitation. Additional stringent 

filtering was used removing any moderate confidence peptide spectral matches (PSMs), 

or ambiguous PSM assignments. Additionally, any peptides with a spectral interference 

above 25% were removed, as well as any peptides with an average signal to noise ratio 
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less than 10.  Proteins matching only one high confidence PSM were not removed in 

accordance with false discovery rate benchmarking (Gupta and Pevzner 2009). As 

metaproteome data contains a high degree of similarity in identity between proteins, 

several decisions were made to reduce false assignments. Standardized methods in 

Proteome Discoverer (Version 2.1) preferentially assign peptides to proteins that 

previously had peptides reported. If this does not resolve the assignment, the peptide is 

assigned to the longest protein. Additionally, a duplicate peptide filter was applied 

according to the Proteome Discoverer report. Normalization occurred as previously 

described (Zhang et al. 2016). Briefly, relative abundances are normalized first to the 

pooled standards for each protein and then to the median signal across the pooled 

standard. An average of these normalizations was used for the next step. To account for 

slight differences in amounts of protein labeled, these values were then normalized to the 

median of the entire dataset and reported as final normalized summed signal-to-noise 

ratios per protein per sample.  

 Use of integrated gene catalog for reference library comparison 

The integrated reference catalog was downloaded from 

http://meta.genomics.cn/meta/home (accessed 12-22-2016). A two-step database search 

method was utilized (Zhang et al. 2016). Briefly, the full database was used as a first pass 

screen. Second, both forward and reverse database identifications were used to create a 

study specific database. This database was used to search mass spectrometry data and 

identifications were filtered at a 1% peptide and protein FDR. 

Data analysis 
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Data analysis was performed in python version 3.5 (www.python.org), and 

records of the code are available in corresponding Jupyter Notebooks for this project 

(https://github.com/knightlab-analyses/Crohns-MG-MP-Comparisons). All displayed 

metaproteomic data was generated using the pDB metaproteomic data unless otherwise 

specified. Qiime was used for Principle Coordinates Analysis (Caporaso et al. 2010). 

Spearman correlations were performed through the python package, pandas 

(http://pandas.pydata.org/). Linear regressions were performed on metagenome sums and 

metaproteome averages against the metaproteome abundances of each of the biomarker 

abundances. Protein and gene associations were ranked by the associated coefficient of 

correlation, and taxonomic and functional annotations of the top associated genes and 

proteins (|r| < 0.7) were compared. Linear regressions were performed using the python 

package scipy (https://www.scipy.org). Friedman tests were also performed through 

scipy, comparing genus compositions within the metagenome and metaproteome between 

samples.  

Ethics Statement 

The patient had stool samples collected under the consent of two protocols: HRPP 

#141853 American Gut Project and HRPP #150275 Evaluating the Human Microbiome. 

Both protocols were approved by University of California San Diego’s Human Research 

Protection Program (HRPP). Written informed consent on dissemination of the result and 

scientific publication are also included in the approved protocols, and as obtained from 

the patient. 

Data availability 
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(study ID MSV000082113). Metagenomic data is available through EBI 

https://www.ebi.ac.uk/ena under the study identifiers PRJEB28712 (ERP110957). 
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Chapter 4 
 

Meta–omics Reveals Microbiome Driven Proteolysis as a 
Contributing Factor to Severity of Ulcerative Colitis 

Disease Activity 
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4.1 Abstract 

Ulcerative colitis has a significant global burden(Fumery et al. 2018), and is 

characterized by an aberrant immune response directed towards the gut microbiota(Sartor 

and Wu 2017). Current treatment options exclusively target host inflammatory pathways 

and are often ineffective in managing disease(Dulai et al. 2014). To better understand 

host-microbiome interactions governing ulcerative colitis (UC), we collected and 

analyzed six fecal or serum based –omic datasets from 40 UC patients displaying a wide 

range of clinical, endoscopic, and histologic disease activity. All meta-omics displayed 

large-scale shifts related to disease activity, with the metabolome and metaproteome best 

predicting disease severity. After broad-scale analyses, metaproteomics identified a 

striking association between Bacteroides proteases and disease severity. Increased 

peptide fragments in the metapeptidome of active UC patients further implicated bacterial 

proteolysis. Bacteroides vulgatus, enriched in the metagenomic analysis, disrupted 

intestinal epithelial permeability in vitro, and protease inhibition was sufficient to restore 

epithelial barrier. Furthermore, transplantation of fecal material from UC patients into 

germ-free mice resulted in increased colitis, and oral administration of protease inhibitors 

attenuated disease severity. Our findings highlight the potential   therapeutic approach for 

UC by targeting microbial proteases to ameliorate intestinal barrier dysfunction and 

restore mucosal integrity. 

 

4.2 Main 

Ulcerative colitis (UC), an inflammatory bowel disease (IBD), is characterized by 

chronic inflammation of the colon, with severity of mucosal inflammation being 
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associated with a higher risk of work disability, hospitalization, colorectal cancer, and 

colectomy(Fumery et al. 2018). Non-specific immunosuppressive agents targeting the 

host, such as steroids, thiopurines, and/or biologics, are used to offset the natural history 

of disease in patients with moderate-severe inflammation. These therapies are, however, 

associated with significant risks and often ineffective in adequately managing 

disease(Dulai et al. 2014). Genomic technologies have identified associations between 

microbial dysbiosis, or temporal shifts in composition, and UC severity(Sartor and Wu 

2017; Schirmer et al. 2018; Shen et al. 2018). While recent efforts extended profiling of 

microbiota in UC beyond genomics(Lloyd-Price et al. 2019), it remains poorly 

understood if these shifts are causal or associative in nature, and which mechanisms 

govern pathogenic roles of the microbiome in UC. Metaproteomics is a developing mass 

spectrometry (MS) method for the comprehensive analysis of the proteins expressed by a 

community of organisms(Verberkmoes et al. 2009). We predict that the integration of a 

contemporary metaproteomics platform with other technologies could allow for a more 

in-depth understanding of host-microbiome interactions governing UC severity and the 

identification of novel microbial therapeutic targets(Erickson et al. 2012; Jansson and 

Baker 2016; Franzosa et al. 2018; Zhang et al. 2018).  

 In the study herein, we recruited 40 UC patients from a single academic IBD 

center (UC San Diego) who underwent extensive phenotyping with clinical disease 

activity indices and blinded assessments of endoscopic and histologic severity(Lewis et 

al. 2008; Dulai et al. 2015; Narula et al. 2018). Individual patient matched serum and 

fecal samples were subset for genomic, metabolomic, serum proteomic, and 

metaproteomic analyses, and previously established methods for shared database 
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assembly and quantification were used for integration(Mills et al. 2019). Notably, 

application of our multiplexing metaproteomic methods provided increased depth and a 

greater than 10-fold increase in proteins quantified per sample in comparison to the 

proteome data available from the Human Microbiome Project’s IBD multi-omics 

database (Li et al. 2014; Zhang et al. 2016; Lloyd-Price et al. 2019).  

Meta-omic associations with UC severity 

All meta-omics displayed large-scale shifts related to disease activity, with the 

metabolome and metaproteome best predicting UC disease. No distinct taxonomic shifts 

were observed with increasing disease severity. Using linear regression we identified 

3,636 proteins and 62,982 genes that were moderately associated to clinical disease 

severity (Cohen 1988). The metagenome demonstrated the largest genera level pro-

inflammatory relationships with Escherichia and Veillonella, and the metaproteome 

demonstrated human and Bacteroides proteins dominated the positive associations. There 

were 528 Bacteroides proteins that positively correlated to disease severity, which 

constituted nearly 60% of the positively associated, non-human proteins. The 

metagenome largely reflected the direction and magnitude of the genera associations 

identified in the metaproteome, however, Bacteroides genes showed a much weaker 

relationship to high disease severity relative to the metaproteome (Fig. 4.1a). 

Interestingly, positive correlations to Bacteroides contrasted Faecalibacterium, which 

plays protective roles in IBD(Sokol et al. 2008). The relationship between Bacteroides 

and Faecalibacterium was supported in amplicon sequencing data (Fig. 4.1b), but 

unrelated to the changes observed in community structure (Fig. 4.1c). The most abundant 

Bacteroides species included B. vulgatus, B. dorei, B. uniformis, B. ovatus, B. 
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thetaiotaomicron and B. fragilis (Fig. 4.1d), which are among the most prevalent 

Bacteroides species isolated from healthy human subjects(Kulagina et al. 2012). 

Functionally, Bacteroides enzymes correlated to disease activity while Faecalibacterium 

membrane transporters correlated to remission (Fig. 4.1e-f). The enzymes identified 

largely had protease activity, so we further searched for proteins with Gene Ontology 

(GO) annotations containing “protease” or “peptidase” terms. We found that 78% 

(132/169) of Bacteroides proteases had a positive correlation (r > 0) to the partial Mayo 

score. There were 45 distinct proteases derived from 34 species of Bacteroides. These 

proteases were grouped, revealing 10 serine, 9 metallo, and 4 cysteine peptidases with a 

range of activities including 5 di-peptidases, an endopeptidase, sialidase and signal 

peptidase (Fig. 4.1g). As serine and metalloproteases largely function in the extracellular 

space(Vergnolle 2016), we hypothesized these proteases may play roles in extracellular 

proteolysis. 
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Figure 4.1 Bacteroides proteases are correlated to disease severity. a, Comparison of metagenomic 
and metaproteomic genera associations to severity. Linear correlation to partial Mayo clinical severity 
was performed on genes and proteins in the microbial metagenome and metaproteome and the genera of 
moderately associated (|r| > 0.3) genes and proteins were compared. Each bar represents the Log2 ratio 
of positively associated to negatively associated genes or proteins per genus. b, Ratios of microbes of 
interest correlate to severity. Sctterplots of the Log10 ratio of 16S reads per sample are plotted by 
partial Mayo severity. Reads associated with Faecalibacterium prausnitzii as well as a sequence 
associated with the Bacteroides genus are shown with a best fit line, a 95% confidence interval and the 
associated R2 and p-values. c, Evenness does not correlate to ratios of microbes of interest. A scatter 
plot is shown with the 16S based Pielou Evenness on the x-axis and the Log10 ratio of Bacteroides to 
Faecalibacterium prausnitzii 16S reads. Samples are sized according to their associated partial Mayo 
score. d, Bacteroides species profile. The total CPM (counts per million) of genes derived from each 
Bacteroides species was determined and the most abundant species are displayed. e, Comparison of 
metagenomic and metaproteomic KEGG functional associations to severity. An identical analysis to (a), 
binned by KEGG functional group assignments. f, Genera composition of KEGG categories of interest. 
Stacked barplots displaying the composition of genera within the significantly associated proteins 
corresponding to KEGG categories of interest. Negatively correlated proteins with KEGG annotations 
for membrane transport are shown with a bias for Faecalibacterium. Positively correlated proteins with 
annotations for enzyme families are shown to have bias for Bacteroides.  g, Correlation of Bacteroides 
proteases to disease severity. Correlation of Bacteroides proteases to disease severity. A heatmap is 
displayed showing the correlation of the metaproteome abundance of proteases identified from the most 
abundant Bacteroides species to the partial Mayo clinical scoring. Pearson correlation (r) is represented 
on a red (high correlation) to blue (low correlation) scale. Proteases not found in the metaproteome are 
colored gray. Proteases are clustered by gene ontology categorization. 
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Evidence of proteolysis at high disease severity 

 Using de novo identification of short peptide fragments, we observed an increased 

presence of peptides among high severity samples (Fig. 4.2a, (Zhang et al. 2012)). 

Network analyses of human proteins in serum and fecal samples showed a functional 

enrichment for peptidase activity and inhibition, including neutrophil proteases (Fig. 

4.2b). The known cleavage patterns of Neutrophil elastase and Proteinase-3(O'Donoghue 

et al. 2013) were not strong signals in the metapeptidome data (Fig. 4.2c), indicating 

neutrophil proteases may not be the primary drivers of proteolysis. As we observed a 

strong correlation between Bacteroides proteases and severity, it is possible that the host 

peptide fragments (Fig. 4.2d) were a result of cleavage from bacterial proteases. Serum to 

fecal comparisons of Serpin A1 ratios demonstrated a highly significant association with 

disease activity even among patients with apparent endoscopic healing (Fig. 4.2e, 

(Strygler et al. 1990)), highlighting the importance of proteolysis in UC pathology across 

all spectrums of disease state. We identified several Bacteroides proteases, including 

dipeptidyl peptidase IV, which has orthologs in P. gingivalis and cleaves X-Pro or X-Ala 

dipeptides from N-terminal polypeptides(Kumagai et al. 2000). Supporting the activity of 

these proteases was four dipeptides which significantly correlated to disease severity, 

including two X-Pro species. We also observed an abundance of Bacteroides TonB 

related proteins that correlated to disease severity (Fig. 4.1g) and lack of histologic 

remission despite apparent endoscopic healing (Fig. 4.2f). TonB recruits proteins to the 

outer membrane, and related proteins from Bacteroides have been described as 

immunogenic(Wei et al. 2001) and suggested as a biomarker for Crohn’s disease(Juste et 

al. 2014).  SusC is a TonB-dependent porin that Bacteroides species use for the binding 
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and degradation of complex carbohydrates(Reeves et al. 1996; Martens et al. 2009). 

TonB-dependent proteins have also been shown to mediate binding of Bacteroides to 

extracellular matrix proteins, including collagen(Pauer et al. 2009).  

Figure 4.2 Bacterial and host proteolysis correlates to disease severity. a, Peptide fragments are 
more abundant at high severity. The number of peptides identified is represented on the y-axis and the 
partial Mayo clinical score is represented on the x-axis. Significance and Pearson correlation of the 
linear relationship is shown with a 95% CI drawn surrounding the best-fit line. b, Neutrophil proteases 
are significantly correlated to disease severity. The proteome relative abundance is illustrated on the y-
axis with the partial Mayo scoring on the x-axis. *** Indicates a p < 0.001 for the linear relationship 
between each protease. c, Peptide termini indicate unique proteolysis of human and microbial proteins. 
The frequency of each amino acid within the N and C terminus of human and de-novo peptides was 
compared to either the human proteome or the total amino acid content of de novo peptides. The Y-axis 
represents the percent difference of each residue and the letter indicates the amino acid associated with 
the difference. The N and C terminus are shown separately and each residue is colored by chemical 
property (Green = polar, Black = Hydrophobic, Red = Acidic, Blue = Basic, Purple = Neutral). d,  The 
number of peptide fragments from human proteins indicates potential targets of proteolysis.   The gene 
symbol for the human proteins with the most short peptides present are shown on the y-axis and the 
quantity of peptides is shown on a log10 transformed x-axis. The proteins are colored by the observed 
dominant categories. Proteins fitting into multiple categories have both colors represented. e, SerpinA1 
fecal to serum ratios correlate to disease severity. The ratio of proteome relative abundances of 
SerpinA1 in the fecal and serum are plotted on the y-axis with the partial Mayo severity plotted on the 
x-axis. Significance and Pearson correlation of the linear relationship is shown with a 95% CI drawn 
surrounding the best-fit line. f, The metaproteome of patients with mucosal healing have large 
fluctuations associated with histological remission. A volcano plot depicting the Log2(fold change) and 
log10(p-value) for each protein in the metaproteome. Significance was determined by a |π|(Xiao et al. 
2014) > 1, and protein groups of interest are highlighted in the legend. 
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Protease inhibition prevents B. vulgatus disruption of human intestinal epithelial barrier 

 Given the enrichment of Bacteroides proteases from our meta-omics analyses, we 

assessed the six most abundant Bacteroides species for effects on intestinal barrier using 

in vitro Caco-2 epithelial monolayers. Our results showed a significant decrease in 

transepithelial electrical resistance (TEER) after 38 hours of incubation with the two most 

abundant Bacteroides species, Bacteroides vulgatus and Bacteroides dorei, while other 

species increased TEER. We next assessed the contribution of protease activity in 

disruption of epithelial permeability through the addition of a protease inhibitor cocktail 

to the B. vulgatus incubated cells, and found a dramatically increased TEER at both 22 

and 38 hours post infection (Adjusted p-value < 0.0001, Fig. 4.3a). The phenotype was 

not due to effects on bacterial growth or viability, as colony forming units (CFUs) were 

not significantly different between the B. vulgatus wells treated with or without protease 

inhibitor cocktail (Adjusted p-value  = 0.98, Fig. 4.3b). 

Confocal microscopy of the intestinal monolayers revealed dramatic impact on 

the B. vulgatus treated epithelial cells, with apparent degradation of tight-junction 

proteins, Zo-1 and Occludin (Fig. 4.3c). The protease inhibitor cocktail treatment may 

have specificity for B. vulgatus’s degradation of Occludin, as visible restoration of Zo-1 

was not observed with protease inhibitor treatment. Imaging studies also demonstrated 

potential impacts on cell morphology and actin networks of the Caco-2 cells treated with 

B. vulgatus. Further studies are needed, but our results suggest a pathological effect of B. 

vulgatus on intestinal cells dependent upon protease activity. 
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Protease inhibition prevents colonic inflammation from patient derived fecal transplants 

in germ-free mice 

 Next we sought to confirm the efficacy of protease inhibition in a germ-free 

mouse model. We cross-referenced the metagenome with the metaproteome and 

metapeptidome to identify fecal samples with the lowest and highest B. vulgatus and B. 

dorei related protease activity. Notably, we observed limited association between 

protease abundance and metagenome frequency of B. vulgatus and B. dorei. A single 

high severity (H19) and low severity fecal sample (L3) were selected based on several 

metrics; B. vulgatus protease abundance, number of peptide fragments (59 versus 14), 

male donor status, partial Mayo score (0 versus 7) and Bacteroides composition. An 8-

week fecal transplant colonization study in 4-week-old male IL10-/- gnotobiotic mice was 

performed (Fig. 4.3d). Through the duration of the study, mice were fed either water 

containing a protease inhibitor cocktail or water alone (n=3 per group), after which time 

mice were sacrificed and macroscopic measurements were taken (Fig. 4.3e-l). The high 

severity sample induced an average 19% reduction in colon length (p = 0.008, Fig. 4.3f), 

a 24% increase in colon weight/length (p = 0.072, Fig. 4.3g), and a 50% increase in 

spleen weight (p = 0.026, Fig. 4.3j), without significant impact on fat pad weight (p = 

0.324, Fig. 4.3i), liver weight (p = 0.309, Fig. 4.3h), caecum weight (p = 0.217, Fig. 4.3k) 

or total body weight (p = 0.442, Fig. 4.3l). Interestingly, the measurements most 

impacted by the high severity fecal sample significantly shifted toward the low severity 

groups in the protease inhibitor group (colon length p = 0.020, Fig. 4.3f; colon 
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Figure 4.3 Protease inhibition ameliorates Bacteroides vulgatus disruption of epithelial cell 
resistance and in vivo colitis induced by UC patient fecal transplantation. a, Protease inhibitor 
cocktail significantly reduces the Caco-2 resistance reduction when co-culturing Bacteroides 
vulgatus. Caco-2 cells were grown in monolayers on a transwell for 2.5 weeks before inoculating 
Bacteroides vulgatus or Bacteroides thetaiotamicron at a multiplicity of infection (MOI) of ~5. 
Transepithelial electrical resistance (TEER) was measured at the given hours post inoculation. 
Shown are representative barplots and standard error of the mean (SEM) from 3 biological 
replicates containing 3 technical replicates within each experiment. b, Protease inhibitor cocktail 
does not significantly influence the number of colony forming units during Caco-2 co-culturing 
with Bacteroides vulgatus. Colony forming units from above the transwell insert were estimated 
through serial dilution and plating onto BHI-S plates under anaerobic conditions. Plotted are the 
mean CFUs from each experimental condition from three biological replicates containing 3 
technical replicates per experiment. c, Representative images from confocal microscopy of the 
transwell experiments. Following 38 hours of co-culturing, the Caco-2 transwell inserts were fixed 
and stained for immunofluorescence of tight junction proteins, Zo-1 and Occludin. A representative 
image from untreated Caco-2 cells, Caco-2 cells co-cultured with Bacteroides vulgatus, and Caco-2 
cells co-cultured with Bacteroides vulgatus and a protease inhibitor cocktail are shown. d, 
Experimental design of humanized IL10-/- mouse study. Fecal samples from one high severity 
patient and one low severity patient were transplanted into 6x gnotobiotic mice per patient sample. 
During 8-weeks of colonization, a protease inhibitor cocktail was continuously administered 
through the drinking water of 3 mice per patient sample. Mice were sacrificed after 8-weeks and 
macroscopic organ measurements were taken. e-l Barplots showing the mean and standard error of 
the mean are shown for colon weight (e), colon length (f), colon weight/length (g), liver weight (h), 
fat pad weight (i), spleen weight (j), ceacum weight (k), and body weight (l). * p-value < 0.05, ** 
p-value < 0.01, *** p-value < 0.001, **** p-value < 0.0001.	
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weight/length p = 0.023, Fig. 4.3g; spleen weight p = 0.055, Fig. 4.3j). These studies 

reveal that the microbiome derived from severe UC patients who express high 

Bacteroides protease activity may induce pathological changes through protease activity, 

and that protease inhibition may have potential as a therapeutic intervention in severe 

UC. 

 

4.3 Discussion 

Here, we effectively collect and translate one of the most comprehensive meta-

omic profiles of UC patients to date into a hypothesis of biological and therapeutic value. 

Through integrating fecal metaproteomics, metabolomics, 16S gene amplicon 

sequencing, shotgun metagenomic sequencing, metapeptidomics, and serum proteomics, 

in addition to in vitro and in vivo validation, we demonstrate that certain members of the 

microbiome, such as Bacteroides vulgatus, may contribute to exacerbating disease 

activity through protease activity. Further, given the promise of our in vitro and in vivo 

experiments, this study sets the stage for further investigation of protease inhibition as a 

novel therapeutic approach in UC. 

 To generate our hypothesis, we utilized several innovative -omic advances that 

may be of broad interest. The core of our findings stemmed from our previously 

developed integrated approach for comparing metagenomic and metaproteomic 

data(Mills et al. 2019). This allowed the identification of discrepancies between the more 

traditionally collected metagenomic and multiplexed metaproteomic data sets. Given that 

previous high profile IBD data sets that included metaproteomic data(Lloyd-Price et al. 

2019) used methods that generated an order of magnitude more missing values (i.e. 
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sparsity), we had high confidence and interest in further investigating findings absent in 

these studies(Lloyd-Price et al. 2019). One striking observation uniquely highlighted in 

our study was that ~60% of microbial proteins correlating to disease activity were 

derived from Bacteroides. While metapeptidomic data is rarely collected in microbiome 

studies, this data provided an important complementary tool for identifying that 

proteolysis, potentially derived from Bacteroides proteases, was correlated to severity. 

By integrating metagenomic data, we provided a genomic context to our findings and 

identified Bacteroides species of interest for our in vitro studies. Other -omic profiles 

(serum proteomics, metabolomics, and 16S) further corroborated and contextualized the 

core hypothesis of Bacteroides derived proteolysis as a contributing factor to UC 

severity.  

Our novel findings on Bacteroides were derived in the backdrop of several 

previously described observations. An early metaproteomic study identified Bacteroides 

proteins as markers of CD(Juste et al. 2014), although genomic approaches only 

occasionally implicate Bacteroides(Schirmer et al. 2018; Vich Vila et al. 2018), and 

Bacteroides functional role in IBD was not well established(Wexler 2007). Bacteroides 

typically reside in the outer mucosal layer of the colon(Donaldson et al. 2016), and are 

described as decreased in IBD(Zhou and Zhi 2016). There is some evidence that 

commensal Bacteroides species can induce colitis in mouse models(Bloom et al. 2011), 

although they are typically beneficial unless outside of the gut(Wexler 2007). As the in 

vitro studies found a disruptive phenotype for only Bacteroides vulgatus and Bacteroides 

dorei (which are highly related species(Bakir et al. 2006)), and that this phenotype was 

only ameliorated through certain protease inhibitors, it may be that only a few 
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Bacteroides species and proteases are related to inducing severity. This is highlighted by 

cross-referencing the metagenome with metaproteomics and metapeptidomics where 

even among the high severity UC patients, only a sub-set were noted to have high 

Bacteroides vulgatus or dorei protease activity despite having comparable frequency. 

Interestingly, Bacteroides protein expression was strongly correlated to clinical 

severity while Bacteroides DNA showed only modest correlation. One possible 

explanation for this difference would be the production of Bacteroides outermembrane 

vesicles. Supporting this were many correlated outermembrane proteins including 

variants of SusC, a membrane protein with potential roles in binding mucus 

glycans(Wexler 2007). Bacteroides are thought to produce membrane vesicles abundant 

in proteases(Elhenawy et al. 2014), further strengthening this hypothesis. Recently, 

extracellular vesicles were linked to IBD, with Bacteroides proteins being the majority of 

bacterial extracellular proteins(Zhang et al. 2018). Our data suggests that further studies 

into the links between Bacteroides membrane vesicles and IBD may be of interest. 

  Extracellular matrix remodeling(Shimshoni et al. 2015) and protease 

activity(Vergnolle 2016) are known molecular events in IBD, but current treatments are 

focused on targeting host inflammatory pathways(Ordas et al. 2012). Bacterial protease 

inhibition may present a novel therapeutic strategy that prevents downstream tissue 

destruction and influx of immune cells(Shimshoni et al. 2015; Vergnolle 2016).  Protease 

studies within IBD have predominately focused on host derived proteases, although some 

have recognized the potential contribution of bacterial proteases(Steck et al. 2012). The 

most efficacious approach in our studies involved broad-spectrum protease inhibition, 

targeting serine and cysteine proteases. The positive outcomes may be a combination of 
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preventing both host and bacterial based proteolysis. However, the phenotypes observed 

specific to Bacteroides vulgatus and our fecal transplant studies suggest that the bacterial 

contribution to proteolysis may be of high importance. 

 The multidimensional meta-omic integration shown here serves as a landmark 

study in comparative –omics and the development of hypotheses from large-scale data 

integration. Starting with broad-scale analysis and further refining our studies according 

to an observation of interest led to important findings within each dataset. The efficacy of 

protease inhibition in vitro and in vivo validates the utility of our approach and opens new 

areas of investigation into UC pathology and treatment. 

 

4.4 Methods 

Patient population and clinical diagnostics 

UC patients were selected from a convenience sampling biobank at the University 

of California at San Diego (UCSD: PI Dulai). In this biobank patients consent to 

longitudinal data collection on patient demographics (age, gender, ethnicity), disease 

characteristics (prior surgeries, disease-related complications, phenotype classification 

according to Montreal sub-classifications), current and prior treatments (corticosteroids, 

immunomodulators, biologics), and clinical disease activity (patient reported outcomes 

using the partial Mayo score and endoscopic scores). Alongside this data collection 

patients agree to stool, serum, and mucosal biopsy collection. When endoscopy is 

performed as part of routine practice, stool is collected within 24 hours prior to 

endoscopy and serum is collect the day of endoscopy. At each endoscopy a physician 

with advanced training in IBD performs a detailed endoscopic disease activity assessment 
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using the Mayo endoscopic sub-score and the Ulcerative Colitis Endoscopic Index of 

Severity (UCEIS), without knowledge of the clinical disease activity score or biomarker 

data. Routine standard of care biopsies are scored using the Geboes score by a pathologist 

with training and expertise in IBD, who is blinded to clinical, biomarker, and endoscopic 

data and scores. Further information regarding clinical, endoscopic and histologic activity 

scoring have been previously discussed(Dulai et al. 2015). All serum and stool samples 

are aliquoted within 24 hours of collection to avoid future freeze-thaw cycles, and 

samples are stored at -80 ºC until future analyses.  

DNA extraction 

Frozen samples were thawed and transferred into 96-well plates containing garnet 

beads and extracted using Qiagen MagAttract DNA kit adapted for magnetic bead 

purification as previously described(Marotz et al. 2017). DNA was eluted in 100 μl 

Qiagen elution buffer. 

16S gene amplicon sequencing 

16S rRNA gene amplicon sequencing was performed according to the Earth 

Microbiome Project. Briefly, the V4 region of the 16S rRNA gene (515f/806r) was 

amplified from 1 ul DNA per sample in triplicate(Caporaso et al. 2012; Thompson et al. 

2017). Amplicons were quantified with Quant-iT™ PicoGreen™ dsDNA Assay Kit, and 

240 ng, or maximum 15 ul, of each sample was pooled into a final library and cleaned 

using the QIAquick PCR Purification Kit. Paired-end sequencing was performed on the 

Illumina MiSeq using MiSeq Reagent Kit v3 (300-cycle). 

Shotgun metagenomic sequencing 
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Extracted DNA was quantified with PicoGreen™ dsDNA Assay Kit, and 1 ng of 

input, or maximum 3.5 μl, gDNA was used in a 1:10 miniaturized Kapa HyperPlus 

protocol. Per sample libraries were quantified and pooled at equal nanomolar 

concentration. The pooled library was cleaned with the QIAquick PCR Purification 

Kit and size selected for fragments between 300 and 700 bp on the Sage Science 

PippinHT. The pooled library was sequenced as a paired-end 150-cycle run on an 

Illumina HiSeq4000 v2 at the UCSD IGM Genomics Center. 

Processing of metagenomic reads for a shared reference library 

Because typical metagenomics and metaproteomics workflows require a reference 

database, it was necessary to create from scratch using a minimal approach a single 

reference database that could be used for both metagenomics and metaproteomics from 

the individualized data. All reads from each sample were concatenated. Next the 

MEGAHIT alignment program(Li et al. 2015) was utilized for assembling short reads 

into larger contigs. Assembled contigs were searched for possible coding regions through 

the program Prodigal(Hyatt et al. 2010). Next, the program Diamond(Buchfink et al. 

2015) was used for gene alignment to the uniref50 database. Finally, the most likely 

uniref50 entry, determined through bitScore, was used for the functional annotations. 

KEGG orthology annotations were cross-referenced using GhostKOALA(Kanehisa et al. 

2016).  Taxonomic assignments were determined by Diamond alignment(Buchfink et al. 

2015) to an in-house library of microbial genomes. This database was used as a reference 

database for both metaproteomic data and shotgun sequencing data. Scripts used for data 

processing are available online (https://github.com/knightlab-analyses/uc-severity-

multiomics). 
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Unweighted UniFrac analysis of shotgun metagenomic data 

Taxonomic profiling of shotgun sequences was performed using Centrifuge 1.0.3 

with default parameter settings against the aforementioned in-house microbial genome 

database. The numbers of reads mapped to individual reference genomes per sample were 

summarized into a BIOM table. Genomes mapped by less than 0.01% reads per sample 

were dropped. The beta diversity of samples was assessed using the unweighted UniFrac 

metric as implemented in QIIME(Caporaso et al. 2010), with reference to the 

phylogenetic tree of the microbial genomes (also available at: 

https://github.com/biocore/wol). The resulting distance matrix was visualized with PCoA, 

and the hypothesis was tested using PERMANOVA and Adonis as implemented in 

QIIME(Caporaso et al. 2010). 

Generating copy numbers of metagenomic genes 

The program Salmon (Patro et al. 2017) was applied to determine the reads 

present for each gene from the shared reference library described above. First, an index 

was created with Salmon inputting the shared reference library’s fasta file. Next, reads 

were aligned to this index in quasi-mapping mode for each of the 40 metagenomic 

samples. The results were represented in counts per million sequences, with missing 

values padded as zeroes.  

Serum collection, depletion and analysis 

Seppro human depletion kits were used according to manufacturer protocols for 

depletion of highly abundant proteins. After thawing samples on ice, 14 uL of serum was 

applied to columns following the depletion protocol, and the wash and elution fractions 

were combined to increase the total protein content. After depletion, protein was 
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processed as described below, with the exception of a TCA precipitation(Koontz 2014) 

being used in place of chloroform methanol extraction. After data collection and 

processing, large variability was observed dependent on serum coloring, and 7 samples 

with study identifiers L7, L15, L13, L8, L18, L6 and H17 (which were colored red likely 

because of the presence of blood in the serum) were removed for PCoA visualization. 

Protein preparation 

Fecal samples were measured out to ~0.5 g and suspended in 5 mL of ice-cold, 

sterile TBS. Samples were vortexed until completely suspended. Two 20 µM vacuum, 

steriflip (Milipore) filters were used per sample to remove particulate. Cells were pelleted 

through centrifugation at 4000 rpm for 10 min at 4 ºC. Next, cells were lysed in 2 mL of 

buffer containing 75 mM NaCl (Sigma), 3% sodium dodecyl sulfate (SDS, Fisher), 1 mM 

NaF (Sigma), 1 mM beta-glycerophosphate (Sigma), 1 mM sodium orhtovanadate 

(Sigma), 10 mM sodium pyrophosphate (Sigma), 1 mM phenylmethylsulfonyl fluoride 

(PMSF, Sigma), and 1X Complete Mini EDTA-free protease inhibitors (Roche) in 50 

mM HEPES (Sigma), pH 8.5(Villen and Gygi 2008). An equal volume of 8M Urea in 50 

mM HEPES, pH 8.5 was added to each sample. Cell lysis was achieved through two 15-

second intervals of probe sonication at 25% amplitude. Proteins were then reduced with 

dithiothreitol (DTT, Sigma), alkylated through iodoacetamide (Sigma), and quenched as 

previously described(Haas et al. 2006). Proteins were next precipitated via chloroform-

methanol precipitation and protein pellets were dried(Wessel and Flugge 1984). Protein 

pellets were re-suspended in 1M urea in 50 mM HEPES, pH 8.5 and digested overnight 

at room temperature with LysC (Wako)(Van Rechem et al. 2015). A second, 6-hour 

digestion using trypsin at 37 ºC was performed and the reaction was stopped through 
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addition of 10% trifluoroacetic acid (TFA, Pierce). Samples were then desalted through 

C18 Sep-Paks (Waters) and eluted with a 40% and 80% Acetonitrile solution containing 

0.5% Acetic Acid(Tolonen 2014). Concentration of desalted peptides was determined 

with a BCA assay (Thermo Scientific). 50 µg aliquots of each sample were dried in a 

speed-vac. Additionally bridge channels consisting of 25 µg from each sample were 

created and a 50 µg aliquots of this solution were used in duplicate per Tandem Mass Tag 

(TMT) 10 plex MS experiment as previously described(Lapek et al. 2018). These bridge 

channels were used to control for labeling efficiency, inter-run variation, mixing errors 

and the heterogeneity present in each sample(Tolonen et al. 2011). Each sample or bridge 

channel was resuspended in 30% dry acetonitrile in 200 mM HEPES, pH 8.5 for TMT 

labeling with 7 µL of the appropriate TMT reagent(Thompson et al. 2003). Reagents 126 

and 131 (Thermo Scientific) were used to bridge between mass spec runs. Remaining 

reagents were used to label samples in random order. Labeling was carried out for 1 hour 

at room temperature, and quenched by adding 8 µL of 5% hydroxylamine (Sigma). 

Labeled samples were acidified by adding 50 µL of 1% TFA. After TMT labeling each 

10-plex experiment was combined and desalted through C18 Sep-Paks and dried in a 

speed-vac. 

Generation and processing of proteomic data through LC- LC-MS2/MS3 

Basic pH reverse-phase liquid chromatography (LC) followed by data acquisition 

through LC-MS2/MS3 was performed as previously described(Lapek et al. 2018).  

Briefly, 60-minute linear gradients of acetonitrile were performed on C18 columns using 

an Ultimate 3000 HPLC (Thermo Scientific). Subsequently, 96 fractions were combined 

as previously described(Wang et al. 2011), and further separation of fractions was 
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performed with an in-line Easy-nLC 1000 (Thermo Fisher Scientific) and a chilled 

autosampler. LC-MS2/MS3 data acquisition and separation setting were as previously 

defined(Lapek et al. 2017). 

Data was processed using Proteome Discoverer 2.1 (Thermo Fisher Scientific). 

MS2 data was searched against the shared metagenomic database and Uniprot Human 

database  (uniprot.org, accessed 5/11/2017). The Sequest searching algorithm(Eng et al. 

1994) was used to align spectra to database peptides. A precursor mass tolerance of 50 

parts per million (ppm)(Beausoleil et al. 2006; Huttlin et al. 2010) was specified and 0.6 

Da tolerance for MS2 fragments. Included in the search parameters was static 

modification of TMT 10-plex tags on lysine and peptide n-termini (+229.162932 Da), 

carbamidomethylation of cysteines (+57.02146 Da), and variable oxidation of methionine 

(+15.99492 Da). Raw data was searched at a peptide and protein false discovery rate of 

1% using a reverse database search strategy(Peng et al. 2003; Elias et al. 2005; Elias and 

Gygi 2007). 

 TMT reporter ion intensities were extracted from MS3 spectra for quantitative 

analysis and signal-to-noise values were used for quantitation. Additional stringent 

filtering was used removing any moderate confidence peptide spectral matches (PSMs), 

or ambiguous PSM assignments. Additionally, any peptides with a spectral interference 

above 25% were removed, as well as any peptides with an average signal to noise ratio 

less than 10. As metaproteome data contains a high degree of homology between 

proteins, several decisions were made to reduce false assignments for the metaproteome 

dataset. The standardized methods in Proteome Discoverer (Version 2.1) preferentially 

assign peptides to proteins that previously had peptides reported. If this does not resolve 
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the assignment, the peptide is assigned to the longest protein. After the first search, all 

proteins reported in forward or reverse datasets were filtered into a smaller database for a 

second search as previously described(Zhang et al. 2016). This method effectively 

decreased the search space from a database of 748 mb to 21.8 mb. Any PSMs assigned to 

proteins from the reverse databases were removed. Additionally, a duplicate peptide filter 

was performed according to the Proteome Discoverer report. Relative abundances are 

normalized first to the pooled standards for each protein and then to the median signal 

across the pooled standard. An average of these normalizations was used for the next 

step. To account for slight differences in amounts of protein labeled, these values were 

then normalized to the median of the entire dataset and reported as final normalized 

summed signal-to-noise ratios per protein per sample. When indicated, a lowest common 

ancestor approach was used for taxonomic bar plots accounting for only peptides unique 

to a particular taxa(Mesuere et al. 2015). 

Metabolite extraction and LC-MS2  

Metabolites were extracted by adding a 1:5 weight to volume solution of 70% 

methanol infused with a 5 µM internal standard sulfamethoxine. The samples were 

briefly vortexed to mix and stored at 4°C overnight. Extracts were then centrifuged at 

4000 rpm for 5 minutes to pellet particulate matter and the supernatant was removed for 

MS analysis. The extracts were diluted 1:4 in a 96 well plate in pure methanol prior to 

injection. 

 LC-MS/MS was performed on a Bruker Daltonics® Maxis qTOF mass 

spectrometer (Bruker, Billerica, MA USA) with a ThermoScientific UltraMate 3000 

Dionex UPLC (Fisher Scientific, Waltham, MA USA). Metabolites were separated using 
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a Kinetex 2.6 µm C18 (30 x 2.10 mm) UPLC column with a guard column. Mobile 

phases were A 98:2 and B 2:98 ratio of water and acetonitrile containing 0.1% formic 

acid and a linear gradient from 0 to 100% for a total run time of 840 s at a flow rate of 0.5 

mL min-1 were used. The mass spectrometer was calibrated daily using Tuning Mix ES-

TOF (Agilent Technologies) at a 3 mL min-1 flow rate. For accurate mass measurements, 

lock mass internal calibration used a wick saturated with hexakis (1H,1H,3H- 

tetrafluoropropoxy) phosphazene ions (Synquest Laboratories, m/z 922.0098) located 

within the source. Full scan MS spectra (m/z 50 – 2000) were acquired in the qTOF and 

the top ten most intense ions in a particular scan were fragmented using collision induced 

dissociation at 35 eV for +1 ions and 25 eV for +2 ions in the collision cell. Data 

dependent automatic exclusion protocol was used so that an ion was fragmented when it 

was first detected, then twice more, but not again unless its intensity was 2.5x the first 

fragmentation. This exclusion method was cyclical, being restarted after every 30 

seconds.  

Metabolite annotation through GNPS 

Data was converted to the .mzXML format using the Bruker Data Analysis 

software and uploaded to GNPS through the MassIVE server under ID MSV000082457. 

Molecular networking was performed as follows: precursor and fragment ion mass 

tolerance 0.03 Da, minimum cosine score of 0.65, minimum matched fragment ions of 4, 

and minimum cluster size of 2. GNPS library searching was performed with the same 

minimum matched peaks and cosine score. All library hits were inspected for quality with 

the mirror plot feature in GNPS. Area under the curve feature abundances were 

calculated to produce a metabolome buckettable with the mzMine software. Parameters 
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were as follows: MS1 noise level of 5000 counts, MS2 noise level of 150 counts, m/z 

tolerance of 0.03 Da for chromatogram building with a minimum time span of 0.1 min, 

isobaric peaks were deconvoluted with a minimum height of 5000 counts and using the 

base-line cutoff algorithm, peaks were deisotoped with the same mass tolerance, a 0.1 

min retention time tolerance and a maximum isotopic peak pattern of 4, peaks were 

aligned with the same mass tolerance and retention time tolerance and filtered for at least 

3 peaks in a sample and gap filling was performed to produce the final buckettable for 

statistical analysis. 

Generation of metapeptidome data 

LC-MS/MS .mzXML formatted files were loaded into PEAKS Studio 8.5(Zhang 

et al. 2012) for de novo identification and searching against the Uniprot human protein 

database.  De novo error tolerance parameters were used according to PEAKS default 

qTOF settings, 0.1 Da parent mass error tolerance, 0.1 Da fragment mass error tolerance. 

The search settings included no added restriction enzymes, variable dehydration, 

Acetylation (N-Term), Oxidation (M), and Ubiquitination. The max variable post-

translational modifications per peptide was set to 3. De novo sequences were filtered to 

keep only those with an average local confidence above 85% 

For human peptides, Label free quantification was run through PEAKS Studio 

8.5(Zhang et al. 2012). A 1% FDR cutoff was used integrating peaks with a 20 ppm mass 

error tolerance and a 6 min retention time window. Peptides were searched against the 

human protein database (uniprot.org, accessed 05/11/2017) for identification. 

Quantification was normalized to the total ion chromatograph.	

Meta -omic data analysis 
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Data analysis was performed in python (version 3.5), and records of the code are 

available in corresponding Jupyter Notebooks for this project 

(https://github.com/knightlab-analyses/uc-severity-multiomics). Beta-diversity plots were 

performed using QIIME 2(Bolyen et al. 2019) (Version 2018.4) using the “qiime 

diversity core-metrics” command. All ADONIS and PERMANOVA statistical analyses 

of Beta-diversity was performed using the QIIME 1(Caporaso et al. 2010) “compare 

categories.py” command.  

16S fastq were split, demultiplexed, trimmed to 150 base pairs, demultiplexed and 

processed through deblur using QIITA(Gonzalez et al. 2018) (Study ID 11549). A 

denovo phylogenetic tree was formed for 16S data using the reference hits through 

QIIME 2(Bolyen et al. 2019) (version 2018.4) commands “qiime alignment mafft”, 

“qiime alignment mask”, “qiime phylogeny fasttree” and “qiime phylogeny midpoint-

root”. 16S alpha-diversity was generated using QIIME 2(Bolyen et al. 2019) (Version 

2018.4) through the command “qiime diversity core-metrics-phylogenetic”. Kruskal-

Wallis significance tests for alpha diversity were performed in QIIME 2(Bolyen et al. 

2019) (Version 2018.4) using the “qiime diversity alpha-group-significance” command. 

Linear regressions between alpha diversity scores and quantitative categories were 

performed using the linregress command from the python package scipy 

(https://www.scipy.org). 

 Linear regression of metagenome and metaproteome to partial Mayo were also 

performed using the linregress command as above. Before performing regression, 

missing values from the metagenome were padded with zeros and the minimum value per 

protein was used for missing values in the metaproteome. 
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 The program iceLogo’s web application(Colaert et al. 2009) was used for 

consensus sequence analysis. The first and last amino acids from peptides with an 

average local confidence over 85% were analyzed against a background using the 

percentage scoring system. For metapeptidome consensus sequences, all residues from 

peptides with over 85% average local confidence were used as background. For human 

consensus sequences, the precompiled Homo sapiens Swiss-Prot database was used. 

Random forest regressions were performed using QIIME 2(Bolyen et al. 2019) 

(Version 2018.11) using the sample-classifier regress-sample command. The test size was 

set to 0.1.  Statistics and importance scores for each feature within the 100 independent 

analyses were compiled. 

Caco-2 transwell studies 

 Caco-2 cell transwell studies were conducted essentially as previously 

described(Wang et al. 2005). Briefly, Caco-2 cells (passage number ranging from 14-30) 

were plated into collagen coated 6.5 mm inserts with 0.4 µm pores (Fisher Scientific). 

Cells were then cultured for 2.5 weeks prior to bacterial inoculation, changing media 

every 2 days. A day before inoculation, media was changed to media without antibiotics 

and when indicated, protease inhibitors were dissolved at a given concentration. TEER 

was measured prior to inoculation of bacteria, and measurements at each following 

timepoint referenced the original TEER measurement prior to inoculation. Transwell 

plates were allowed to equilibrate to room temperature for 20 minutes before each TEER 

timepoint. CFU estimates were performed through serial dilution of 10 µLs of media 

from inside of the transwell insert. Mammalian cell culture media consisted of DMEM 

with L-Glutamine (Corning) with 10% heat-inactivated fetal bovine serum, 100 µM 
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sodium pyruvate (Corning), 0.75% sodium bicarbonate, 1X Insulin-Transferrin-Selenium 

(Gibco), 238.3 µM HEPES, and 1x Penicillin Streptomycin (Thermo). An antibiotic free 

version of the media consisted was used during bacterial inoculation containing the same 

contents with the exception of 2% heat-inactivated fetal bovine serum. A day prior to 

inoculation media was switched to the antibiotic free version, with or without protease 

inhibitors at the given concentrations. Protease inhibitors tested included Roche 

cOmplete EDTA-free protease inhibitor cocktail (Sigma). 

 Bacteroides strains derived from ATCC were used for vulgatus, fragilis, 

uniformis, and ovatus. Bacteroides dorei was derived from the Human Microbiome 

Project strain #717, Bacteroides dorei CL02T00C15. For inoculation, Bacteroides 

cultures were grown overnight in Brain-heart-infusion (BHI) broth supplemented with 

Vitamin K and Hemin. Cultures were spun down at 8000g, and resuspended in DMEM. 

Inoculations were performed through normalization by OD600 at an estimated 

multiplicity of infection of 5. 

Confocal microscopy 

At the end point of transwell studies (38 hours post bacterial innoculation), cells 

were fixed and prepared for immunofluorescence as follows. Caco-2 cells were fixed on 

the transwell membrane at 37 °C for 10 minutes in 1 mL 4% Paraformaldehyde (Thermo) 

in PHEM (60 mM Piperzine-1,4-bis[2-ethanesulfonic Acid] Monosodium Salt, pH 6.9 

[TCI Chemicals], 25 mM HEPES (Tremelling et al.), 10 mM EGTA [Oakwood 

Chemical], 2 mM MgCl2 x 6H2O (Tremelling et al.)). Cells were next permeabilized for 

5 minutes in PHEM with 0.5% Triton X-100 (Fisher) at room temperature. Next, 3x 5-

minute washes were performed in PHEM containing 0.1% Triton X-100 at room 
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temperature. Cells were next blocked for 30 minutes in 1 mL AbDil (150 mM NaCl 

(Tremelling et al.), 20 mM Tris-HCl, pH 7.4 [JT Baker], 0.1% Triton X-100 (Tremelling 

et al.), 2% Bovine serum albumin [Gemini Bioproducts]) at room temperature. After 

blocking, primary antibodies for Occludin (Thermo, catalog number 33-1500, 0.5 µg/mL) 

and ZO-1 (Thermo, catalog number 61-7300, 1.5 µg/mL) were added into AbDil and left 

in a humidified chamber overnight at 4 °C. Cells were next washed 4x in PHEM 

containing 0.1% Triton X-100 for 5 minutes at room temperature. After washing, 

secondary antibodies, Rhodamine Red Donkey Anti-Rabbit (Jackson ImmunoResearch, 

Code Number 711-295-152), and Alexa Fluor 488 Donkey Anti-Mouse (Jackson 

ImmunoResearch) were diluted to 3 µg/mL in AbDil containing a 1:1000 dilution of 

Phalloidin-iFluor 647 (abcam, ab176759) and 1 µg/mL DAPI (Thermo). Secondary 

antibodies were incubated for 1 hour at room temperature in a humidified chamber. 

Following secondary antibody incubation, cells were again washed 3x in PHEM 

containing 0.1% Triton X-100 for 5 minutes at room temperature. Finally, cells were 

rinsed in PHEM, removed from transwell insert and fixed onto microscope slides for 

imaging. 

 Cells were imaged using a Nikon A1R HD confocal with a four-line (405nm, 

488nm, 561nm, and 640nm) LUN-V laser engine and DU4 detector using bandpass and 

longpass filters for each channel (450/50, 525/50, 595/50 and 700/75), mounted on a 

Nikon Ti2 using an Apo 60x 1.49 NA objective, or a C2 Plus confocal with a similar 

four-line LUN-4 laser engine and a DUV-B detector operating in virtual bandpass mode. 

Images stacks were acquired with the galvo scanning mode on both confocals, and Z-

steps of 0.2 µm. To avoid cross-talk between channels, Z-stacks were acquired of the 
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DAPI and Rhodamine Red channels first, and the AlexaFluor 488 and Phalloidin-iFluor 

647 channels were acquired subsequently. The laser powers used were 1.5% for the 405 

nm laser 2% for the 488 nm laser, 1.5% for the 561 nm laser and 1.5% for the 640 nm 

laser.    

Gnotobiotic mouse fecal transplant studies 

Germ-free C57BL/6 IL10-/- male mice (C57BL/6NTac-Il10em8Tac; Taconic model 

GF-16006) were maintained in isolated ventilated cages Isocages (Techniplast, West 

Chester, PA, USA) (Hecht et al., 2014). At 5-6 weeks of age, mice were orally 

administered with 200 µL of fecal suspension from a patient with a high disease severity 

and a high proteolysis activity (H19) or from a patient with a low disease severity and a 

low proteolysis activity (L3). Transplanted mice were housed in isolated ventilated cages, 

Isocages and fed autoclaved Purina Rodent Chow # 5021. All mice were housed at 

Georgia State University (Atlanta, Georgia, USA) under institutionally approved 

protocols (IACUC # A18006). Mice were then weighted, euthanized, and colon length, 

colon weight, spleen weight, liver weight, adipose weight and ceacum weight were 

measured.  

Data availability 

Metabolomic data, Proteomic data and supplementary files are available online at 

https://massive.ucsd.edu (study ID MSV000082094). Genomic data is being uploaded 

through EBI https://www.ebi.ac.uk/ena. 
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5.1 Abstract 

Consumption of refined high-fat, low-fiber diets promotes development of obesity 

and its associated consequences. While genetics play an important role in dictating 

susceptibility to such obesogenic diets, mice with nearly uniform genetics exhibit marked 

heterogeneity in their extent of obesity in response to such diets. This suggests non-

genetic determinants play a role in diet-induced obesity. Hence, we sought to identify 

parameters that predict, and/or correlate with, development of obesity in response to an 

obesogenic diet. We assayed behavior, metabolic parameters, inflammatory 

markers/cytokines, microbiota composition, and the fecal metaproteome, in a cohort of 

mice (n=50) prior to, and the 8 weeks following, administration of an obesogenic high-fat 

low-fiber diet. Neither behavioral testing nor quantitation of inflammatory markers 

broadly predicted severity of diet-induced obesity.  Although, the small subset of mice 

that exhibited basal elevations in serum IL-6 (n=5) were among the more obese mice in 

the cohort. While fecal microbiota composition changed markedly in response to the 

obesogenic diet, it lacked the ability to predict which mice were relatively prone or 

resistant to obesity. In contrast, fecal metaproteome analysis revealed functional and 

taxonomic differences among the proteins associated with proneness to obesity. Targeted 

interrogation of microbiota composition data successfully validated the taxonomic 

differences seen in the metaproteome. While future work will be needed to determine the 

breadth of applicability of these associations to other cohorts of animals and humans, this 

study nonetheless highlights the potential power of gut microbial proteins to predict and 

perhaps impact development of obesity.  
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5.2 Introduction 

Obesity is an emerging 21st century epidemic. Obesity, and the disease states it 

drives, including type 2 diabetes, cardiovascular disease, and liver disease threaten to 

overwhelm healthcare systems(Apovian 2016). Thus, obesity is a contemporary medical 

concern that poses a grave public health crisis in dire need of a solution. The increased 

incidence in obesity is thought to have been driven by broad societal changes that have 

resulted in reduced physical activity and increased availability of palatable low-cost 

energy-rich foods(Stelmach-Mardas et al. 2016). Yet the extent to which individuals 

develop obesity in such an environment is highly heterogeneous. Variations in individual 

genetics contribute to, but are insufficient to fully explain, such heterogeneity. For 

example, studies characterizing weight-discordant monozygotic twins has shown that 

individuals with shared environmental, physical activity, and genetic factors display 

heterogeneity in adiposity(Naukkarinen et al. 2014). Similarly, rat-based studies show 

marked heterogeneity in weight gain and adiposity in response to obesogenic diets even 

when using highly inbred animals in a well-controlled environment(Archer et al. 2003; de 

La Serre et al. 2010). Better understanding non-genetic factors that influence proneness to 

obesity might aid the identification of individuals at-risk for development of obesity and 

can yield modifiable factors to ameliorate this disease state.  

A number of factors that are at least partially independent of genetics are 

proposed to influence proneness to diet-induced obesity (DIO). One potential central 

nexus of such factors is inflammation, impacting metabolic signaling pathways including 

insulin and leptin(Hotamisligil 2017), which have well-established roles in feeding 

behavior. Inflammation is also suggested to promote behavioral patterns such as anxiety-
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like and anti-social behaviors that can impact food consumption(Jeon and Kim 2018). 

While numerous elements impact inflammation, one increasingly appreciated factor is the 

gut microbiota(Ley et al. 2006; Turnbaugh et al. 2006; Turnbaugh et al. 2008; Turnbaugh 

et al. 2009; Turnbaugh 2017), which is the collective term for the large diverse 

community of microorganisms that inhabit the gastrointestinal tract. Indeed, in humans, 

gut microbiota composition is associated with obesity. One way microbiota composition 

influences metabolic signaling is via lipopolysaccharide (LPS), which activates pro-

inflammatory signaling via Toll-like receptor 4 (TLR4) resulting in production of 

molecules including tumor necrosis factor alpha (TNF-α), and interleukin-6 (IL-6). These 

molecules interfere with leptin and insulin signaling, wherein LPS derived from gamma-

proteobacteria is a particularly potent activator of TLR4(Aygun et al. 2005). Another 

host-microbiota interaction implicated in inflammation and obesity is the sensing of 

flagella through TLR5, which keeps motile bacteria in-check by a range of mechanisms 

including production of antimicrobial peptides and promoting production of anti-flagella 

immunoglobulins that help regulate the microbiota in the healthy gut(Cullender et al. 

2013). In addition to its impacts on inflammation, microbiota composition is also 

reported to influence energy harvest from ingested food(Turnbaugh et al. 2006; El 

Kaoutari et al. 2013). Hence, in light of its ability to impact inflammation, metabolism, 

and behavior, gut microbiota composition might provide a means of identifying host 

proneness to obesity when presented with an obesogenic diet.  

Here, we sought to identify microbiota-based markers that might predict 

proneness to diet-induced obesity, specifically exposing mice to a western-style, low-

fiber high fat diet (HFD). Both targeted and untargeted approaches were utilized 
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including 16S rRNA gene amplicon sequencing for microbial community profiling and a 

Tandem Mass Tag (TMT) based multiplexed mass spectrometry (MS) approach for 

analysis of the fecal metaproteome. Additionally, we measured behavior, inflammatory 

markers, and metabolic parameters. Notably, we show that the fecal metaproteome 

appears to be a promising candidate for distinguishing mice with differential responses to 

obesogenic diets. Collectively, this study provides insight into potential mechanisms 

regarding the host-microbiota interactions mediating response to HFD exposure, and 

highlights putative biomarkers for predicting DIO. 

 

5.3 Results 

Stratification and characterization of mice prone, or resistant, to HFD-induced metabolic 

syndrome 

 The primary goal of this study was to elucidate factors that predict and possibly 

govern, susceptibility to developing obesity in response to administration of an 

obesogenic diet. Hence, we designed a prospective study wherein 50, 3-week old female 

C57BL/6 mice, housed 5 mice per cage, were subjected to metabolic monitoring, 

including behavior analysis and sample collection over a 3-week period. During this time, 

the mice were fed standard grain-based chow (GBC), which is comprised of relatively 

unrefined ingredients. The cohort of mice was then switched to a diet compositionally 

low in fiber (5%) and high in fat (35% by mass, 60% by calories), herein referred to as an 

obesogenic diet or high-fat diet (HFD) for an 8-week period. Prior to, during and after 

administration of the high-fat diet, sample collection and monitoring was performed as 

outlined in Fig. 5.1A. In accord with our previous rodent-based studies(de La Serre et al. 
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2010), the extent of obesity following the obesogenic diet was quite heterogeneous with 

many mice weighing between 20-25 grams, which is the approximate weight of age-

matched GBC-fed mice of this strain/gender. In contrast, some mice appeared to 

dramatically gain weight over the course of the experiment with final weights over 30 

grams. Therefore, based on their final body weight, mice were stratified into tertiles as 

being prone, intermediate, or relatively resistant to being obese following exposure to an 

obesogenic diet (Fig. 5.1B). First, we examined if mice prone or resistant to DIO 

clustered within cages but did not observe a distribution pattern to support this possibility 

(Fig. 5.1C). Nor were these groupings significantly related to the initial weight of the 

mice (Fig. 5.1D). The total weight gain over the period of exposure to the obesogenic diet 

for resistant mice was about 40%. This observation is approximately the expected age-

related weight gain of GBC-fed mice during this period, while prone mice increased in 

weight by about 70% during this period (Fig. 5.1E). Fat mass, as determined by magnetic 

resonance imaging (MRI), prior to, during, or at the end of exposure to HFD, was highly 

correlated with body weight within the cohort (Fig. 5.1F). Accordingly, post-euthanasia 

weight of the periovarian fat pad, which has classically been used to assess adiposity in 

mice correlated closely (r2 = 0.8229) with final body weights confirming our 

stratifications reflected degree of adiposity (Fig. 5.1G). Final body weights were also 

correlated with fasting glucose concentration (r2 = 0.2218), suggesting mice that were 

prone to diet-induced obesity were also prone to its downstream consequences (Fig. 

5.1H). Lastly, in light of the appreciation that low-grade intestinal inflammation can 

promote adiposity and its consequences, we measured weight/length ratio of the 

colon(Vijay-Kumar et al. 2010; Carvalho et al. 2012). This measurement was also 
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correlated with final body weight (r2 = 0.2781; Fig. 5.1I), supporting the notion that the 

obese mice were in a state of low-grade gut inflammation. 

Figure 5.1 Stratification and characterization of mice prone, or resistant, to HFD-induced 
metabolic syndrome. (A) 3-5-week old, female C57BL/6 mice were purchased from The Jackson 
Laboratory and housed for three weeks before high-fat diet administration in order to favor microbiota 
stabilization. Subsequently, animals were treated with high-fat diet (60% kcal from fat) for 8 weeks. 
Serum collection occurred on days -7, 0, and 56. Body weight measurements occurred prior to every 
flagellin administration. Fecal collection occurred on days -21 and -7, then every other week starting on 
day 0. (B) Mice were identified as low, intermediate, or high responders based on if their final body 
weight fell within the first, second, or third tertile, respectively. (C) Final body weights of mice by 
cage. (D) Initial weights of mice. (E) Body weights were measured weekly and expressed as relative 
values, day 0 (pre high-fat diet treatment) being defined as 100%. Final body weights were correlated to 
(F) fat mass by MRI, (G) epididymal adipose weight, (H) day 56 fasting blood glucose, and (I) colon 
weight/length ratio. Data are the means +/- S.E.M. (N=50). Significance was determined using linear 
regression analysis (*p≤0.05). 
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Associations of inflammatory markers/mediators and proneness to obesity. 

Low-grade inflammation is reported to associate with, and promote obesity(Cani 

et al. 2007; Vijay-Kumar et al. 2010). Accordingly, we investigated levels of pro-

inflammatory mediators to determine if they might mark mice that would be prone to 

becoming obese following exposure to an obesogenic diet. Hence, we measured levels of 

fecal lipocalin-2 (Lcn-2), which is a broadly dynamic marker of gut 

inflammation(Chassaing et al. 2012). Levels of fecal Lcn-2 did not correlate with final 

body weights when measured 14 days prior (r2 = 0.0156) to exposure or 4 weeks after the 

initiation of the diet (r2 = 0.0074; Fig. 5.2A, B). Additionally, the levels of serum pro-

inflammatory cytokines CXCL1 and IL-6 when measured 7 days prior to administration 

of the obesogenic diet were also not correlated to final body weight (r2 = 0.0177, 0.022 

respectively, Fig. 5.2C, D). However, 4 of the 5 mice that displayed detectable serum IL-

6 at this time point were in the top tertile of obesity following the diet suggesting the 

subset of mice displaying this parameter might be more prone to DIO. To further 

investigate this subset of mice, we tested for differences within various parameters 

associated with diet-induced obesity between the subsets of mice with or without 

detectable IL-6. At day -7, several of these parameters were consistent with the 

possibility that detection of IL-6 can discriminate high or low responders, but ultimately, 

none reached statistical significance. Nevertheless, such elevations in IL-6 were not 

maintained when assayed after 8-weeks of diet (Fig. 5.2E). Other findings supporting the 

notion that obesity is associated with low-grade inflammation included a modest 

correlation after 8-weeks of diet between body weights and CXCL1, which is a 

chemokine expressed by many cell types and often used as a general serum marker of 
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low-grade inflammation (r2 = 0.0352, Fig. 5.2F). In contrast, there was no correlation 

between final body weights and levels of intestinal myeloperoxidase (MPO), which is a 

widely used marker of classic inflammation in the intestine(Masoodi et al. 2012) (Fig. 

5.2G). 

Figure 5.2 Associations of inflammatory markers/mediators and proneness to obesity. Final 
body weights correlated to fecal lipocalin-2 at (A) day -14 and (B) 28, analyzed using ELISA kits. 
Additionally, final body weights were correlated to serum cytokines CXCL1 and IL-6 at (C-D) day 
-7 and (E-F) day 56, analyzed using ELISA kits. Final body weights were also correlated to (G) 
colonic myeloperoxidase levels, as well as, fecal flagellin and lipopolysaccharide at (H-I) day -21 
and (J-K) day 28 using HEK 293 cells expressing mTLR5 or mTLR4 measuring bioactive flagellin 
and lipopolysaccharide, respectively. Serum anti-flagellin IgG and IgA were also quantified using 
ELISA techniques at days 0 (L-M) and 56 (N-O). (N=50). Significance was determined using 
linear regression analysis (*p≤0.005). 
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Gut bacterial components, flagellin and lipopolysaccharide (LPS), are well known 

for their inflammatory properties(Hayashi et al. 2001; Jones et al. 2001). Fecal levels of 

each were measured 3 weeks prior to administration of the obesogenic diet with neither 

correlating with final body weight (Fig. 5.2H, I). However, flagellin, but not LPS, were 

modestly correlated with final body weight when measured 4 weeks following initiation 

of the obesogenic diet (r2 = 0.0984, 0.0151 respectively, Fig. 5.2J, K). Moreover, there 

was a correlation in levels of anti-flagellin antibodies at the time of diet administration 

(for IgG but not IgA) and 8 weeks following exposure to obesogenic diet (Fig. 5.2L-O). 

Levels of anti-flagellin antibodies likely reflect exposure of the immune system to this 

molecule, which can be influenced by both levels of flagellin in the gut, bacterial-

epithelial distance, and intestinal permeability(Sanders et al. 2006; Ziegler et al. 2008). 

Together, these studies did not reveal a reliable predictive marker of proneness to diet-

induced obesity but suggest exposure to bacterial products, such as flagellin, might have 

some predictive power. 

Quantitative measures of behavior did not predict obesity proneness 

The gut-brain axis is increasingly appreciated to play a role in the pathogenesis of 

many neurological and metabolic diseases(Dinan and Cryan 2017). Hence, we 

investigated the extent to which certain behavioral parameters are able to predict 

proneness to weight gain. Compulsive behavior and activity level were measured in a 

home cage behavior test, and time spent digging, time spent grooming, and total distance 

travelled were quantified. Additionally, anxiety-like behavior was assessed using the 

open field test, represented by time spent in the center zone and distance travelled in the 

center of the open field arena. Ultimately, none of these measures had a significant ability 
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to predict extent of obesity in response to the obesogenic diet.  

Impact of DIO on fecal metaproteome. 

We next turned to a contemporary metaproteomics approach to study the fecal 

protein composition of our cohort of mice. While administration of an obesogenic diet is 

well known to rapidly alter gut microbiota species composition(Hildebrandt et al. 2009), 

whether it might also impact the fecal metaproteome, let alone whether the fecal 

metaproteome might predict responsiveness to such a diet, has not been described. While 

metaproteomic analysis presents the challenges of discriminating host and bacterial 

proteins from potentially millions of proteins, the field is an area of rapid growth 

currently developing standard methodology(Zhang and Figeys 2019). 

To this end, we applied our recently developed TMT-based metaproteomic 

methods(Mills et al. 2019), in combination with a two-step database search 

method(Zhang et al. 2016) on feces from mice that developed the highest and lowest 

degree of obesity (n= 4 mice per condition). Our analysis included specimens collected 

before (day 0) and after 56 days of exposure to the obesogenic diet. The final data 

included quantitation of 13,975 proteins of which 1,108 were derived from mice. 

For a broad scale perspective of the data, an unsupervised Principle Coordinates 

analysis of the metaproteome data using the Bray-Curtis distance metric exhibited clear 

separation of samples before and after diet administration, reflecting a dramatic impact of 

the obesogenic diet on the overall fecal metaproteome (Fig. 5.3A). This analysis also 

exhibited clustering at the 56 day time point discriminating high and low response to diet 

(Permanova pseudo-F = 1.99, p = 0.058). Using K-means clustering, we identified 6 

protein clusters, some of which were associated with increased representation of 
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particular taxa and functions (Fig. 5.3B). These groupings include Group 4, which 

appeared to show an increased presence of Clostridiales and lipid transport and 

metabolism proteins in high responder mice after exposure to HFD (Fig. 5.3B). These 

groupings provide putative taxonomic associations to the functional differences observed 

before and after administration of HFD.  

Comparing all samples before and after HFD exposure made evident that there 

were widespread changes in the fecal metaproteome. By using a statistical ranking 

method accounting for both fold change and t-test p-values, π-score (Xiao et al. 2014), 

we observed that 58% (3670/6311) of proteins displayed a high level of association to 

diet exposure (|π| > 1, Fig. 5.3C). The proteins associated with the dietary intervention 

contained large differences in their taxonomic and functional annotations. Taxonomic 

differences included a larger portion of proteins from Clostridiales and Bacteroidales 

before HFD exposure while a large portion (~40%) of proteins enriched after 8-weeks 

exposure were derived from Lactobacillales (Fig. 5.3D).  

Functional categorization of the proteins associated to the dietary intervention was 

performed through the Evolutionary Genealogy of Genes: Non-supervised Orthologous 

Groups (eggNOG) database.  These studies revealed a very strong association between 

proteins related to motility and HFD exposure as expression levels of 141 proteins were 

reduced following exposure to HFD with only 3 proteins increased after HFD, resulting 

in a 32-fold difference (Fig. 5.3E).  In accord, we note that, on average, levels of fecal 

flagellin decreased by about 5-fold when measured 21 days preceding or 4 weeks 

following administration of the obesogenic diet (Fig. 5.2H, J). Further, when subsetting 

all 680 flagellin proteins from the metaproteome dataset, we observed statistically 
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significant decreases in abundance for both high and low responding mice (p < 0.0001). 

Functional assessment of the proteins enriched after HFD exposure resulted in weaker 

associations, the strongest of which was a 1.5-fold increased representation of 

Figure 5.3 Impact of DIO on fecal metaproteome. (A) Principal coordinates analysis (PCoA) of  
metaproteome data using the Bray-Curtis distance metric (B) Protein relative abundance heatmap. 
Samples are clustered by 1-Pearson correlation and proteins are grouped using KMeans clustering. 
Relative abundances per protein are colored on a spectrum with red as row maxima and blue as row 
minima. Functional and taxonomic bias within each KMeans cluster is displayed on the right. (C) 
Volcano plot of metaproteome response to HFD. Fold change and t-test significance of each protein are 
plotted. Overall significance was set at |π-score| > 1. (D) Taxonomic composition of significant 
proteins. (E) Functional bias in significant proteins. Compositions of eggNOG annotations between 
proteins enriched in the final and initial time points were compared and the log ratio of high abundance 
categories (>10 proteins) is shown. Sample names in (A-B) are annotated H for High Responder, L for 
Low Responder, then I for Initial time point, F for Final time point, with 1,2, 3, or 4 for replicate 
number. 
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Transcription proteins (Fig. 5.3E).  

Functional and taxonomic characterization of fecal metaproteome in low- and high-

responder mice fed the obesogenic diet. 

We next focused the analysis on discovering patterns in the fecal metaproteome 

that might have preceded or accompanied degree of responsiveness to the obesogenic 

diet. Toward this end, we examined the broad-scale functional composition of each 

sample’s metaproteome through the eggNOG database. This revealed only modest 

variance amongst the samples (Fig. 5.4A). In contrast, viewing the composition of 

taxonomic orders in this manner revealed differences, both preceding and following diet 

exposure, that associated with a high- and low-response to the diet (Fig. 5.4B). There 

were 424 highly ranked proteins (|π| > 1) differentiating high and low responders at the 

initial time point (Fig. 5.4C). These proteins had large differences in their taxonomic 

origins with all proteins distinguishing the low responders belonging to Clostridiales 

while high responders had over 50% of proteins derived from Bacteroidales and 

Lactobacillales (Fig. 5.4D). Functionally, the proteins distinguishing high responders had 

a 14-fold enrichment in “Posttranslational modification, protein turnover, and 

chaperones” proteins, and a 5.6-fold enrichment in “Cell motility” proteins (Fig. 5.4E). 

Many of the posttranslational modification, protein turnover, and chaperone proteins with 

the largest differences between high and low responders were chaperone proteins, a 

potential indication of a microbial stress response. The increased representation of cell 

motility proteins was a result of a subset of flagella, mostly derived from the order 

Clostridiales, that were significantly increased in high responders (p < 0.0001).   

We also noted unique sets of carbohydrate metabolism and transport proteins 
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differentially expressed at the initial time point. High responders had increased 

expression of Bacteroidale metabolism proteins including isomerases, kinases and 

aldolases, while Clostridiales uniquely had an increased expression of sugar transporters 

within low responders. This could be an indication of unique energy harvesting capacities 

in the microbiome present before the onset of HFD treatment(Turnbaugh et al. 2006). 

Figure 5.4 Functional and taxonomic characterization of fecal metaproteome in low- and high-
responder mice fed the obesogenic diet. (A) Functional Composition. (B) Taxonomic Composition. 
(C-E) Comparison of significant proteins from high and low responders at the initial timepoint. (C) 
Volcano plot displaying the fold change and t-test significance of each protein in the metaproteome. 
Significance was set at |π-score| > 1. (D) Taxonomic composition of significant proteins. (E) Barplots 
demonstrating the functional bias in significant proteins. Compositions of eggNOG annotations were 
compared between high and low responders and the log ratios of the high abundance categories (>10 
proteins) are shown. (F-H) Comparison of significant proteins from high and low responders at the final 
timepoint. Same analysis as (C-E) for the final time point. Sample names in (A-B) are annotated H for 
High Responder, L for Low Responder, then I for Initial time point, F for Final time point, with 1,2, 3, 
or 4 for replicate number. 
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  In the samples collected following administration of the obesogenic diet, there 

were 970 proteins distinguishing high and low responders (Fig. 5.4F). In contrast to 

proteins discriminating responses at the onset of HFD exposure, the proteins 

corresponding to high response were derived entirely from Clostridiales, while nearly 

60% of proteins in low responders were derived from Lactobacillales (Fig. 5.4G). 

Changes following the obesogenic diet associated with a high response to the diet 

included an 11-fold increased representation of lipid transport and metabolism proteins 

(Fig. 5.4H). It is possible that the increase in lipid metabolism proteins from Clostridiales 

mediates more efficient harvesting of energy from lipids in high responding mice.  

Analysis of fecal mouse proteins. 

 In addition to analyzing microbial proteins from the metaproteome, we next 

subset the data to determine associations within the fecal mouse proteome. In total, 699 

host proteins were quantified within all samples and therefore included in the statistical 

analyses. A large portion (77%) of mouse proteins were strongly influenced by HFD 

exposure, and 92% of those proteins were increased after HFD (Fig. 5.5A). Using 

DAVID functional enrichment(Huang da et al. 2009), we identified significant 

(Bonferroni adjusted p-values < 0.05) enrichment of digestion and myosin proteins 

before HFD treatment and mitochondrial proteins after HFD. Notably, myosin proteins 

occupied 6 of the top 10 proteins associated with the initial samples (Fig. 5.5B). 

Phosphorylated myosin light chains have previously been linked to intestinal 

permeability after HFD exposure(de La Serre et al. 2010). Thus, our observed decrease in 

heavy chain myosin proteins may be related to changes in intestinal permeability. In 

regards to the increase of mitochondrial proteins, it was shown that HFD results in 
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mitochondrial dysfunction(Miotto et al. 2018), and our data likely reflects this 

phenomena. 

We next looked for mouse fecal proteins that might discriminate high and low 

responders prior to HFD administration. Here, 109 mouse proteins strongly differed 

between the groups, all of which were enriched in the DIO prone mice (Fig. 5.5C). Of 

these proteins, 40 (37%) were related to immunoglobulin. This strong enrichment for 

immunoglobulin genes was confirmed through DAVID, which showed a significant, 3-

fold enrichment (Bonferroni p-value = 7.0E-11) for Immunoglobulin V-set proteins. This 

enrichment of immunoglobulin variable domains was also illustrated in the top 20 

proteins associated with a heightened response to HFD (Fig. 5.5D). These findings 

Figure 5.5 Analysis of mouse fecal proteome. After sub-setting the mouse derived proteins from the 
metaproteome data, differentially expressed proteins were determined using a statistical cut-off of |π-
score| > 1. Volcano plots are shown demonstrating the log2 fold change (x-axis) and log10 p-value (y-
axis) for (A) differences between final and initial samples, (C) differences between high and low 
responders and the initial time point, and (E) differences between high and low responders at the final 
time point. The π-score of the most significant proteins from each analysis are shown below each 
volcano plot in bar plots (B,D,F). 
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further illustrate the link between low-grade inflammation and DIO, as this is a potential 

indication of increased immune activity in high responder mice, before administration of 

HFD. 

Applying the same analysis to samples collected after 8-weeks exposure to HFD 

also revealed interesting insight into proneness to HFD exposure. After the dietary 

intervention, 63 mouse proteins were highly ranked in their ability to discriminate 

between high and low responders. All but two of these proteins were enriched within the 

low responders (Fig. 5.5E). Functional analysis showed a significant 6-fold enrichment 

(Bonferroni p-value = 4.0E-8) for keratin within the proteins enriched within low 

responders. This increase of keratin could be an indication of greater colonic 

stress(Helenius et al. 2016) in low responders at the final time point. High responders at 

this time had several immunoglobulin proteins within the top discriminatory proteins, 

though most were only modestly associated (Fig. 5.5F). Of note, many of the 

immunoglobulin proteins were among the strongest discriminatory proteins in high 

responders at both the initial and final day.  

Analysis of microbiota composition vs. proneness and severity to DIO. 

Lastly, we examined the potential of fecal microbiota composition, as analyzed by 

16S rRNA gene sequencing to identify and/or reflect proneness to DIO. Visualization of 

fecal microbiota composition of all 50 mice at all time points by unweighted UniFrac 

revealed the expected dramatic difference in microbiota composition before and 

following administration of the obesogenic diet (p = 0.001; Fig. 5.6A). This analysis also 

showed clear, but much more modest differences between the 5 and 8-week post-dietary 

change time points (Fig. 5.6A). In contrast, using this approach to examine differences in 
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beta diversity did not identify differences in microbiota composition in high or low-

responders either prior to (p = 0.977; Fig. 5.6B), or following administration of the 

obesogenic diet (p = 0.323; Fig. 5.6C). Rather, in accord with other diets, 8-week 

administration of the diet, which provided mice an additional 8 weeks to share their 

microbiota with their cage-mates, we observed strong cage clustering of microbiota 

compositions (p = 0.001; Fig. 5.6D). Nonetheless, levels of alpha-diversity, prior to 

administration of the obesogenic diet were moderately but significantly correlated (r2 = 

0.0873, p = 0.0394) with final body weights (Fig. 5.6E) suggesting that microbial 

community structure had some ability to predict proneness to DIO. An analogous but not 

significant trend was observed 8-weeks post-dietary change (Fig. 5.6F).  

That overall assessment of microbiota composition lacked ability to identify high- 

and low- responder mice does not preclude the possibility that select OTUs might provide 

such power. Hence, we selected specific OTUs whose abundance was enriched or 

depleted at time 0 in the mice that developed the greatest degree of obesity in response to 

HFD. This yielded an array of bacterial groups, those of which had the ten lowest p 

values represented here. However, determining whether these differences are 

reproducible and/or biologically significant will require further experimentation. 



162 
	

Additionally, we examined the ability of bacterial candidates generated by the 

metaproteomic analysis to predict (day 0), or reflect (day 56), proneness to the 

obesogenic diet. Of the 12 taxa analyzed in the day 0, 3 groups showed correlations 

predicted by the proteomic analysis with p values lower than 0.1 (Fig. 5.6G-I) while 9 did 

not. Regarding the taxa proteomic analysis identified as correlating with extent of obesity 

in the day 56 samples, 2 taxa correlated as determined with p-values lower than 0.1 (Fig. 

5.6J-K) while the 10 others analyzed did not meet this criteria. Thus, overall, while 

Figure 5.6 Analysis of microbiota composition vs. proneness and severity to DIO. Fecal microbiota 
composition was analyzed using Illumina sequencing of the V4 region of 16S rRNA genes. Principal 
coordinates analysis (PCoA) was performed using the unweighted UniFrac distance metric (A) over the 
course of HFD administration, (B) day 0, (C-D) day 56. Final body weights were correlated to alpha 
diversity at (E) day 0 and (F) day 56. Final body weights were correlated to bacterial groups found at 
the start of HFD administration: (G) Clostridiales, (H) Coriobacteriaceae, and (I) Bacteroidales. Final 
body weights were also correlated to bacterial groups found at the end of HFD administration: (J) 
Bacteroidales and (K) Campylobacterales. (N=50). In A-D, categories were compared and statistical 
significance of clustering were determined via Permanova. In E-K, significance was determined using 
linear regression analysis (*p≤0.005). 
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development of approaches to predict proneness to obesity via analysis of the fecal 

proteome and/or microbiome remains a work in progress, these findings support its 

potential to contribute to such prognostications. 

 

5.4 Discussion 

 The goal of this study was to improve understanding of non-genetic determinants 

of DIO, focusing on parameters that might be impacted by gut microbiota, which is 

known to play a role in dictating severity of DIO. As obesity is promoted by low-grade, 

systemic inflammation, which can be driven by exposure to microbiota products(de La 

Serre et al. 2010), we hypothesized that inflammatory and microbial factors might impact 

behavior and/or metabolism and thereby predict the extent of DIO displayed by 

individual hosts. However, the behavioral measures of general activity and anxiety in 6 – 

8 week old mice were not predictive of susceptibility to HFD-induced obesity while the 

inflammatory markers IL-6, MPO, CXCL1, and LCN-2 showed only very limited ability 

in discriminating proneness to DIO when measured before, during, or after administration 

of HFD. From a microbial perspective, research has shown roles for LPS and flagellin in 

inflammation and obesity (Musso et al. 2010; Cullender et al. 2013; Ley and Gewirtz 

2016). However, while measuring flagellin levels showed promise for predicting weight 

after administration of HFD, it was less successful prior to administration. Our results 

revealed new evidence of host-microbial interactions underlying differential weight gain. 

 To find microbial factors that may correlate to DIO, we next turned to an 

untargeted metaproteomic approach. Our results confirm prior research showing large 

shifts in the overall structure of the metaproteome after administering HFD (Daniel et al. 
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2014). These broad shifts seem to be driven by proteins derived from Clostridiales and 

Bacteroidales, which decreased upon exposure to HFD, while the composition of 

Lactobacillales proteins expands. Interestingly, this difference was not observable in our 

analysis of the microbiota by 16S sequencing. One possible explanation is the known 

discrepency between genomic and proteomic technologies(Mills et al. 2019) which is 

supported by the notion that differences in protein abundance are not directly associated 

with species composition due to complex regulatory processes. However, other DNA 

sequence-based studies have also shown significant alterations in Clostridiales and 

Bacteroidales upon exposure to HFD (de La Serre et al. 2010; Martinez-Guryn et al. 

2018), further suggesting a role for these taxonomies in HFD response.  

Functionally, the most striking shift with HFD was the decreased abundance of 

flagella after administration of HFD. Flagellin proteins can be targeted in several ways by 

the host, including the release of anti-flagellin IgA and anti-flagellin IgG. The levels of 

Anti-flagellin IgA are anti-correlated with total flagellin load, and are a key mechanism 

for down regulating motility-related genes (Cullender et al. 2013). While the overall 

levels of anti-flagellin IgG and IgA in general did not significantly correlate with the 

obesogenic outcomes, we did see a distinct immune signature within the fecal proteome 

of the high responder mice. This data may suggest that the mice that gain the most weight 

have a baseline immune reaction occurring before treatment. Possible antigens of this 

immune reaction were also identified from the metaproteome data including a subset of 

flagellin proteins that effectively discriminate high and low responders. However, as 

most of the identified immunoglobulin subunit regions could be a result of either IgA or 

IgV (Gemenetzi et al. 2016), it is not clear whether this potential reaction is mediated 
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through TLR5, NOD-like receptor 4, or other mechanisms (Ley and Gewirtz 2016).  

Taxonomic differences were also consistent with the idea that flagellin directed 

immunoglobulin may be shaping the gut of high responders before the onset of HFD. The 

majority of flagellin proteins identified were derived from Clostridiales, and 

Bacteroidales do not contain flagella (Lozupone et al. 2012). Here we observed a 

dominance of Clostridiales proteins enriched in low responders at the onset while 

Bacteroidales proteins contained a large portion of the high responder metaproteome. If 

the observed immunoglobulin proteins from the metaproteome were targeting flagella, it 

may be expected that the portion of Clostridiales proteins would be shifted in favor of 

Bacteroidales.  

In total, our results suggest the ability of host and microbial proteomics to discern 

subjects particularly prone to developing DIO. Our results indicated significant 

metaproteome differences between high and low responding mice despite the limited 

number of samples analyzed. In addition, the taxonomic origins and functional roles of 

these discriminatory proteins suggested new evidence that host-microbiota interactions 

may be underlying proneness to DIO. While larger studies are needed to confirm our 

results, the fecal metaproteome appears to be a promising tool for identifying hosts at risk 

of weight gain upon exposure to an obesogenic diet.  

 

5.5 Methods 

Mice and high-fat diet administration 

Female, 3-5 week old C57BL/6 mice were purchased from Jackson Laboratory 

(Bar Harbor, ME) and maintained at Georgia State University, Atlanta, Georgia, USA 
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under institutionally approved protocol under approved protocols (IACUC # A14033), 

housed 5 mice per cage, were subjected to metabolic monitoring, including behavior 

analysis and sample collection over a 3-week period. During this time, the mice were fed 

standard grain-based chow (GBC), which is comprised of relatively unrefined 

ingredients. The cohort of mice was then switched to a diet composed of 60% kcal from 

fat (Research Diet, D12492) for 8 weeks. Mice were then euthanized, and colon length, 

colon weight, spleen weight and adipose weight were measured. Serum, feces, and organs 

were collected for downstream analysis. 

Fecal metaproteome data acquisition 

Fecal samples were measured out to ~0.2 g and suspended in 10 mL of ice-cold, 

sterilized TBS. A 20 µM vacuum, steriflip (Milipore) filter was used to remove 

particulate from the samples. Cells were pelleted through centrifugation at 4000 rpm for 

10 min. Next, cells were lysed in 2 mL of buffer containing 75 mM NaCl (Sigma), 3% 

sodium dodecyl sulfate (SDS, Fisher), 1 mM NaF (Sigma), 1 mM beta-glycerophosphate 

(Sigma), 1 mM sodium orhtovanadate (Sigma), 10 mM sodium pyrophosphate (Sigma), 1 

mM phenylmethylsulfonyl fluoride (PMSF, Sigma), and 1X Complete Mini EDTA free 

protease inhibitors (Roche) in 50 mM HEPES (Sigma), pH 8.5(Villen and Gygi 2008). 

An equal volume of 8M Urea in 50 mM HEPES, pH 8.5 was added to each sample. Cell 

lysis was achieved through two 10-second intervals of probe sonication at 25% 

amplitude. Proteins were then reduced with dithiothreitol (DTT, Sigma), alkylated 

through iodoacetamide (Sigma), and quenched as previously described(Haas et al. 2006). 

Proteins were then precipitated via chloroform-methanol precipitation and protein pellets 

were dried(Wessel and Flugge 1984). Protein pellets were re-suspended in 1M urea in 50 
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mM HEPES, pH 8.5 and digested overnight at room temperature with LysC (Wako)(Van 

Rechem et al. 2015). A second, 6-hour digestion using trypsin at 37 ºC was performed 

and the reaction was stopped through addition of 10% trifluoroacetic acid (TFA, Pierce). 

Samples were then desalted through C18 Sep-Paks (Waters) and eluted with a 40% and 

80% Acetonitrile solution containing 0.5 % Acetic Acid(Tolonen 2014). Concentration of 

desalted peptides was determined with a BCA assay (Thermo Scientific). 50 µg aliquots 

of each sample were dried in a speed-vac, additional bridge channels consisting of 25 µg 

from each sample were created and 50 µg aliquots of this solution were used in duplicate 

per TMT 10-plex (Thermo Scientific) as previously described(Lapek et al. 2018). These 

bridge channels were used to control for labeling efficiency, inter-run variation, mixing 

errors and the heterogeneity present in each sample(Tolonen et al. 2011). Each sample or 

bridge channel was resuspended in 30% dry acetonitrile in 200 mM HEPES, pH 8.5 for 

TMT labeling with 7 µL of the appropriate TMT reagent(Thompson et al. 2003). 

Reagents 126 and 131 (Thermo Scientific) were used to bridge between mass spec runs. 

Remaining reagents were used to label samples in random order. Labeling was carried 

out for 1 hour at room temperature, and quenched by adding 8 µL of 5% hydroxylamine 

(Sigma). Labeled samples were acidified by adding 50 µL of 1% TFA. After TMT 

labeling, each 10-plex experiment was combined and desalted through C18 Sep-Paks and 

dried in a speed-vac. Each 10-plex experiment was fractionated using a High pH 

Reversed-Phase Peptide Fractionation Kit (Pierce) per manufacturer instructions.  All 

LC-MS2/MS3 experiments were carried out on an Orbitrap Fusion (Thermo Fisher 

Scientific) with an in-line Easy-nLC 1000 (Thermo Fisher Scientific) and chilled 

autosampler. Separation and acquisition settings were as previously defined(Lapek et al. 
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2017). 

Metaproteome data processing 

Data was processed using Proteome Discoverer 2.1 (Thermo Fisher Scientific). 

MS2 data was searched against a catalog of mouse gut genes(Xiao et al. 2015) (accessed 

02/12/2017) containing 2,569,907 entries along side the Uniprot mouse proteome 

(www.uniprot.org, access date 11/14/2016) which contained 53,374 entries. The Sequest 

searching algorithm(Eng et al. 1994) was used to align spectra to database peptides. A 

precursor mass tolerance of 50 ppm(Beausoleil et al. 2006; Huttlin et al. 2010) was 

specified and 0.6 Da tolerance for MS2 fragments. Included in the search parameters was 

static modification of TMT 10-plex tags on lysine and peptide n-termini (+229.162932 

Da), carbamidomethylation of cysteines (+57.02146 Da), and variable oxidation of 

methionine (+15.99492 Da). The search parameters included trypsin as the enzyme used 

to generate peptides with a maximum of 2 missed cleavages permitted. A two-step 

database search method was utilized(Zhang et al. 2016) wherein proteins identified in 

either the forward or reverse database were included in a second search containing 14,368 

entries from the original mouse gut gene catalog, and annotations derived from this 

database were used for downstream analysis of microbial proteins(Xiao et al. 2015). A 

peptide and protein false discovery rate of 1% was enforced using a reverse database 

search strategy(Peng et al. 2003; Elias et al. 2005; Elias and Gygi 2007).  

 TMT reporter ion intensities were extracted from MS3 spectra for quantitative 

analysis and signal-to-noise ratios were used for quantitation. Additional stringent 

filtering was used removing any moderate confidence peptide spectral matches (PSMs), 

or ambiguous PSM assignments. Additionally, any peptides with a spectral interference 



169 
	

above 25% were removed, as well as any peptides with an average signal to noise ratio 

less than 10. Normalization occurred as previously described(Lapek et al. 2017). Briefly, 

relative abundances are normalized first to the pooled standards for each protein and then 

to the median signal across the pooled standard. An average of these normalizations was 

used for the next step. To account for slight differences in amounts of protein labeled, 

these values were then normalized to the median of the entire dataset and reported as 

final normalized summed signal-to-noise ratios per protein per sample.  

Behavioral analysis 

Three weeks after arrival in the animal facilities, behavior in the open field and in 

the home cage was assessed in a counter-balanced fashion over the course of two days. 

Behavioral testing occurred within the last 4 h of the light and quiescent phase and was 

conducted under illumination of overhead white lighting (between 300-400 lux). Open 

field arenas were cleaned with 70% ethanol between trials, and home cage bedding was 

changed after each trial. Behavioral tests were videotape using a Sony camcorder for later 

analysis by The Observer version XT11 (Noldus Information Technology Inc., 

Wageningen, The Netherlands). An experiment blinded as to the treatment conditions 

scored behavioral tests in the Observer.  

Open Field Test 

Locomotor behavior was assessed in a 43.2 X 43.2 X 30.5cm (WxLxH) Plexiglas 

arena (Med Associates, Inc., St. Albans, VT) containing 2 arrays of infrared transmitters 

strips (16 beams each) located on the bottom of the arena (in the X and Y plane). The 

center zone of the arena was defined as square containing the center 8 beams (e.g., beams 

4-12) in the X and Y plane. Each mouse was placed into the arena with its nose facing the 



170 
	

wall and allowed to freely investigate for 10 min. The total distance traveled, the total 

time spent in the center of the arena, and circling behaviors, which are defined as 

movements below a preset ambulatory threshold, were calculated by Activity Monitor 

(Med Associates, Inc.) on a computer connected to the open field arenas. 

Home Cage Behavior 

 Mice were placed into a clean housing cage containing 2 cm deep Alpha-dri 

bedding (Shepherd Specialty Paper, Fibercore, Cleveland, OH, USA) and video recorded 

for 10 min. An experimenter blinded as to condition scored the occurrence and duration 

of i) the time spent walking, as defined by locomotion along the bottom of the enclosure, 

around the arena, ii) grooming, as defined by stroking or scratching the face of body iii) 

digging, as defined as using the fore- or hind paws to displace the bedding, and iv) the 

rears, as defined by standing on the hind legs with either the forepaws unsupported or 

when the forepaws were supported by the walls of the enclosure, were quantified using 

the Observer.  

Fasting blood glucose measurement and body composition measurement. 

For fasting blood glucose tolerance test, mice were fasted for 5 hours, and 

baseline blood glucose were measured by using a Nova Max plus Glucose meter and 

expressed in mg/dL. Measurement of percent fat mass and lean mass was performed via 

MRI (Bruker MiniSpec) at day 0, prior to diet treatment, and day 28 and 56, after diet 

treatment. 

Fecal sample preparation for immunoglobulin quantification. 

Fecal sample preparation of enzyme-linked immunosorbent assay (ELISA) has 

been previously described(Cong et al. 1998). 100 mg of fecal pellets were homogenized 
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in 3 mL of collection media consisting of 0.05 mg soybean trypsin inhibitor per ml of a 

3:1 mixture of 1X PBS and 0.1 M EDTA, pH 7.4. Following centrifugation at 1800 rpm 

for 10 minutes, the supernatant was centrifuged again at 14,000 rpm for 15 minutes at 

4°C, and final supernatant was collected and stored with 20% glycerol and 2 mM 

phenylmethylsulfonyl fluoride (Sigma, P-7626) at -20°C until analysis. 

Fecal and serum anti-flagellin IgA/IgG 

Quantification of anti-flagellin- specific IgA and IgG has been previously 

described(Sitaraman et al. 2005; Ziegler et al. 2008; Fedirko et al. 2017). Briefly, 96-well 

microtiter plates (Costar, Corning, New York) were coated with 100 ng/well of 

laboratory-made flagellin in 9.6 pH bicarbonate buffer overnight at 4° C. Serum samples 

from mice were then applied either pure or at a 1:100 dilution for 1 hour at 37° C. After 

incubation and washing, the wells were incubated with either horseradish peroxidase-

linked anti-mouse IgG (GE Healthcare Life Sciences, Pittsburgh, Pennsylvania) or 

horseradish peroxidase-linked anti-IgA (Southern Biotech, Birmingham, Alabama). 

Quantification of immunoglobulin was then developed by the addition of 3,3’,5,5’-

Tetramethylbenzidine and the optical density was calculated by the difference between 

readings at 450nm and 540nm.  

Fecal Lcn-2 quantification 

As previously described(Chassaing et al. 2012), frozen fecal samples were 

reconstituted in PBS containing 0.1% Tween 20 at 100 mg/ml and vortexed for 20 min. 

The homogenate was then centrifuged at 12,000 rpm for 10 min at 4°C. Clear 

supernatants were collected and stored at −20°C until analysis. Lcn-2 levels were 

measured in the supernatants using Duoset murine Lcn-2 ELISA kit (R&D Systems, 
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Minneapolis, MN). 

Myeloperoxidase quantification 

Tissue samples were homogenized in 100 mg/mL of 0.5% 

hexadecyltrimethylammonium bromide (Sigma, St. Louis, MO) in 50 mM PBS, pH 6.0, 

as previously described(Chassaing et al. 2012). Following 3 cycles of freeze-thaw at -

80°C and 37°C, samples were sonicated and centrifuged at 14,000 rpm for 15 min at 4°C. 

Supernatants were stored at −20°C until analysis. Myeloperoxidase (MPO) was assayed 

in the supernatant by adding 1 mg/mL of dianisidine dihydrochloride (Sigma, St. Louis, 

MO) and 5×10−4% H2O2 and the change in optical density measured at 450 nm. 

Serum CXCL1 and IL-6 quantification 

Serum chemokine (C-X-C motif) ligand 1 (CXCL1) and Interleukin-6 (IL-6) 

concentrations were determined using Duoset cytokine ELISA kits (R&D Systems, 

Minneapolis, MN) according to manufacturer’s instructions(Chassaing et al. 2012). 

Fecal flagellin and lipopolysaccharide load quantification 

We quantified flagellin and lipopolysaccharide (LPS) as previously 

described using human embryonic kidney (HEK)-Blue-mTLR5 and HEK-BluemTLR4 

cells, respectively (Invivogen, San Diego, California, USA)(Chassaing et al. 2015; 

Chassaing et al. 2017). We resuspended fecal material in PBS to a final concentration of 

100 mg/mL and homogenized for 10 s using a Mini-Beadbeater-24 without the addition 

of beads to avoid bacteria disruption. We then centrifuged the samples at 8000 g for 2 

min, serially diluted the resulting supernatant, and applied to mammalian cells. 

Purified E. coli flagellin and LPS (Sigma, St Louis, Missouri, USA) were used for 

standard curve determination using HEK-Blue-mTLR5 and HEK-Blue-mTLR4 cells, 
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respectively. After 24 h of stimulation, we applied cell culture supernatant to QUANTI-

Blue medium (Invivogen, San Diego, California, USA) and measured alkaline 

phosphatase activity at 620 nm after 30 min. 

Microbiota analysis by 16S rRNA gene sequencing using Illumina MiSeq technology 

16S rRNA gene amplification and sequencing were done using the Illumina 

MiSeq technology following the protocol of Earth Microbiome Project with their 

modifications to the MOBIO PowerSoil DNA Isolation Kit procedure for extracting 

DNA (www.earthmicrobiome.org/emp-standard-protocols). Bulk DNA were extracted 

from frozen extruded feces using a PowerSoil-htp kit from MoBio Laboratories 

(Carlsbad, California, USA) with mechanical disruption (bead-beating). The 16S rRNA 

genes, region V4, were PCR amplified from each sample using a composite forward 

primer and a reverse primer containing a unique 12-base barcode, designed using the 

Golay error-correcting scheme, which was used to tag PCR products from respective 

samples(Caporaso et al. 2012). We used the forward primer 515F 5’-

AATGATACGGCGACCACCGAGATCTACACTATGGTAATTGTGTGCCAGCMGCCG

CGGT AA-3’: the italicized sequence is the 5’ Illumina adapter B, the bold sequence is 

the primer pad, the italicized and bold sequence is the primer linker and the underlined 

sequence is the conserved bacterial primer 515F. The reverse primer 806R used was 5’-

CAAGCAGAAGACGGCATACGAGAT XXXXXXXXXXXX AGTCAGTCAG CCGGAC

TACHVGGGTWTCTAAT-3’: the italicized sequence is the 3’ reverse complement 

sequence of Illumina adapter, the 12 X sequence is the golay barcode, the bold sequence 

is the primer pad, the italicized and bold sequence is the primer linker and the underlined 

sequence is the conserved bacterial primer 806R. PCR reactions consisted of Hot Master 
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PCR mix (Five Prime), 0.2 µM of each primer, 10-100 ng template, and reaction 

conditions were 3 min at 95°C, followed by 30 cycles of 45 s at 95°C, 60s at 50°C and 90 

s at 72°C on a Biorad thermocycler. Four independent PCRs were performed for each 

sample, combined, purified with Ampure magnetic purification beads (Agencourt), and 

products were visualized by gel electrophoresis. Products were then quantified (BIOTEK 

Fluorescence Spectrophotometer) using Quant-iT PicoGreen dsDNA assay. A master 

DNA pool was generated from the purified products in equimolar ratios. The pooled 

products were quantified using Quant-iT PicoGreen dsDNA assay and then sequenced 

using an Illumina MiSeq sequencer (paired-end reads, 2 × 250 bp) at Cornell University, 

Ithaca. 

16S rRNA gene sequence analysis 

Forward and reverse Illumina reads were joined using the fastq-join 

method(Aronesty 2011; Aronesty 2013), sequences were demultiplexed, quality filtered 

using Quantitative Insights Into Microbial Ecology (QIIME, version 1.8.0) software 

package(Caporaso et al. 2010). QIIME default parameters were used for quality filtering 

(reads truncated at first low-quality base and excluded if: (1) there were more than three 

consecutive low quality base calls (2), less than 75% of read length was consecutive high 

quality base calls (3), at least one uncalled base was present (4), more than 1.5 errors 

were present in the bar code (5), any Phred qualities were below 20, or (6) the length was 

less than 75 bases). Sequences were clustered to operational taxonomic units (OTUs) 

using UCLUST algorithm(Edgar 2010) with a 97% threshold of pairwise identity 

(without the creation of new clusters with sequences that do not match the reference 

sequences), and taxonomically classified using the Greengenes reference database 
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13_8(McDonald et al. 2012). A single representative sequence for each OTU was aligned 

and a phylogenetic tree was built using FastTree(Price et al. 2009). The phylogenetic tree 

was used for computing the unweighted UniFrac distances between samples(Lozupone 

and Knight 2005; Lozupone et al. 2006), rarefaction were performed and used to compare 

abundances of OTUs across samples. Principal coordinates analysis (PCoA) plots were 

used to assess the variation between experimental group (beta diversity). Alpha diversity 

curves were determined for all samples using the determination of the number of 

observed species. LEfSE (LDA Effect Size) was used to investigate bacterial members 

that drive differences between groups(Segata et al. 2011). Unprocessed sequencing data 

are deposited in the European Nucleotide Archive under accession number PRJEB33328. 

Experimental Design and Statistical Rationale: 

Study design 

The overall study included 50 mice which were followed longitudinally for 

monitoring of weight gain and other measures. The sample size was determined for 

statistical power based on previous publications(Archer et al. 2003; de La Serre et al. 

2010) and experience. The metaproteome analysis included four mice with the highest 

weight gain and the lowest weight gain. These samples sizes were determined to be 

sufficient based on previous reports of strong differences in related animal models with 

similar sample sizes (Daniel et al. 2014).  

Metaproteome analysis 

Metaproteome analysis was performed using python (version 3.5) and records are 

available online (https://github.com/rhmills/High-Fat_Diet_Metaproteomics_analysis). 

Extra files associated with the analysis within the notebooks are deposited as 
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supplementary files in the MassIVE (https://massive.ucsd.edu) repository for this study 

(Study ID: MSV000083891). All analysis was performed on the proteins identified in 

both TMT 10-plex experiments. Qiime2, version 2019.1 (https://qiime2.org/), was used 

for principle coordinates analysis through the command “qiime diversity core-metrics” as 

well as for determining significance of beta-diversity clustering through the command 

“qiime diversity beta-group-significance”. K-means clustering was performed through 

Morpheus (https://software.broadinstitute.org/morpheus). Enriched and depleted proteins 

were determined by π–score, which accounts for both fold change and p-value(Xiao et al. 

2014). A statistical cutoff for highly ranked associations was set to |π| > 1 (α ~ 0.05), 

which provided an adequate number of proteins for functional and taxonomic 

assessment(Mills et al. 2019) while maintaining a moderate stringincy. Volcano plots 

were visualized using GraphPad Prism (version 7.0b). Mouse protein gene functional 

enrichment analysis was performed using DAVID(Huang da et al. 2009), with all mouse 

proteins identified as a background list. The python package, Seaborn (version 0.9.0) was 

used for boxplots, swarmplots, and catplots. Statistical analysis between groups within 

the boxplots was performed using ANOVA with Dunnett corrected p-values through 

GraphPad Prism (version 7.0b). 

Statistical analysis 

Significance was determined using unpaired two-tailed t-test or linear regression 

analysis (GraphPad Prism software, version 6.01). Differences were noted as significant 

*p≤0.05 for t-test or linear regression analysis. For clustering analyzing on principal 

coordinate plots, categories were compared and statistical significance of clustering was 

determined via Permanova(Caporaso et al. 2010). 
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Availability of data and materials.  

All data generated or analyzed during this study are included in this published 

article. Metaproteomic data is available through massive (massive.ucsd.edu) under study 

ID MSV000083891. The data is also available through Proteome Xchange 

(http://proteomecentral.proteomexchange.org) under the study ID PXD014128. 
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Concluding remarks and future directions 
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6.1 Summary 

The work in this dissertation outlines the potential impact that multiplexed 

metaproteomics might have for our understanding of host-microbiome interactions. As 

shown in Chapter 2, the microbiome has an organism-wide impact on animal physiology. 

The human microbiome is now associated with a wide-range of diseases and the 

technology developed herein may reveal new, actionable insights regarding the nature of 

these associations. The work in Chapter 3 developed a methodological pipeline and 

evaluated multiplexed metaproteomics against conventionally collected metagenomic 

data.  In Chapter 4, we see the true potential of the technology to provide novel and 

translationally relevant insights, which might lead to novel therapeutic treatments in IBD. 

Further we were able to integrate these data and evaluate them in the broader context of 

meta- omic data, comparing results between shotgun metagenomics, amplicon 

sequencing, metabolomics, and metaproteomics. Further emphasizing the potential of this 

technology are the results of Chapter 5, which highlight that multiplexed metaproteomics 

proved to be a breakthrough technology when trying to find molecular markers that might 

predict obesity outcomes. 

Beyond the promise of the emerging technology were several emerging 

hypotheses that serve as future research directions. In Chapter 4, we identified a striking 

association between Ulcerative Colitis disease activity and Bacteroides proteins. After 

further investigation, we identified Bacteroides vulgatus proteases as a potential 

therapeutic target. To date, there remains very little known about Bacteroides proteases. 

The genera are cornerstone stone members of the gut, needed for the commensal 

degradation of complex-carbohydrates(Foley et al. 2016). It is also known that they have 
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membrane vesicles tightly packed with proteases (Elhenawy et al. 2014). However, it 

remains unknown how the proteases are regulated. Does a shift in nutrient availability 

prompt increased production and secretion of proteases? Does the inflammatory state of 

the gut of someone with Ulcerative Colitis induce the expression of Bacteroides 

proteases? And ultimately, are Bacteroides vulgatus proteases a viable therapeutic target 

for treating Ulcerative Colitis? The remainder of this chapter will outline an experimental 

design to further investigate these pertinent questions. 

 

6.2 Determine the regulation and activity of B. vulgatus proteases relevant to UC 

Characterize B. vulgatus protease activity relevant to UC 

Our preliminary research shed light on a potential role for B. vulgatus proteases as 

contributors to UC pathology. PubMed searches of ‘Bacteriodes vulgatus proteases and 

Ulcerative colitis’ yields 0 articles. Thus, our proposed studies are pioneering given that 

the role of the microbiome in UC disease etiology is highly understudied and is likely to 

play a crucial role. This subaim will be a first step in validating the identity of these 

proteases, their proteolytic characteristics, and the conditions that elicit their expression. 

We will answer questions including how protease abundance is altered by bacterial 

culturing conditions, what are the cleavage sites of B. vulgatus proteases, and how 

comparable is the proteolysis of UC fecal sample supernatant and cultured B. vulgatus 

supernatant? A detailed biochemical characterization of B. vulgatus proteases will surely 

aid successive studies that detail proteolytic mechanisms associated with UC disease 

severity. 



187 
	

Experiment 1.1.1 – Defining proteases unique to B. vulgatus and their abundances 

in different growth conditions: The role of nutrient broth conditions on B. vulgatus 

protease production has not been established. To answer this, we will collect the 

supernatant of B. vulgatus grown under standard anaerobic growth conditions (BHI-S 

liquid media), aerobic growth in mammalian cell culture media (DMEM +CO2), as well 

as minimal media broth, all in triplicate. After all supernatant is collected, we will 

leverage our highly-developed quantitative multiplexed proteomics platform to 

quantitatively compare all detected Bacteroides proteases. The proteomics experiments 

will be cross-validated with sample matched RNAseq. 

Experiment 1.1.2 – Quantifying and characterizing B. vulgatus protease activity in 

culture supernatants: In order to quantify proteolytic potential of B. vulgatus, we will first 

grow B. vulgatus under the same conditions previously described in subaim 1.1.1. We 

will then measure extracullar protease activity in these conditions using standard 

proteolytic activity assays (EnzCheck Protease activity assay, Molecular Probes)(Popov 

et al. 2005). To more fully characterize proteases present, we will also compare 

supernatant proteolytic activity when one (or a combination) of several major protease 

inhibitor classes to that of uninhibited supernatant. These inhibitors will include a serine 

protease inhibitor 4(2-Aminoethyl)benzenesulfonyl Fluoride (MP Biomedicals),  an 

aspartic acid proteinase inhibitor Pepstatin A (MP Biomedicals), a metalloprotease 

inhibitor GM6001 (EMD Millipore), and a cysteine protease inhibitor E-64 (Sigma). 

Preliminary results have been gathered suggesting primarily serine protease activity of B. 

vulgatus supernatant in overnight cultures using BHI-S broth and anaerobic growth (Fig. 

6.1). 
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Experiment 1.1.3 – Determine the preferred cleavage sites of B. vulgatus 

supernatant proteolysis: While the previous aim will determine the type and conditions 

eliciting B. vulgatus protease activity, identifying the patterns of sequences surrounding 

B. vulgatus proteolysis sites will provide a fingerprint to determine B. vulgatus 

proteolysis in patients. In order to determine this, we will catalog the cleavage patterns 

present in B. vulgatus supernatant by utilizing technology our group recently developed 

to characterize protease activity(Lapek et al. 2019). We will first add B. vulgatus 

supernatant to beads containing a library of bound but proteolytically cleavable peptide 

substrates. After incubation, we will determine the identity of the peptides present. This 

will allow us to describe in detail B. vulgatus’ di-peptidase, exo-, and endopeptidase 

activity. We will compare these results to those of the same peptides incubated with B. 

dorei or B. thetaiotamicron.  
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Figure 6.1 Characterizing protease 
activity in B. vulgatus supernatant. 
Supernatant from overnight cultures of B. 
vulgatus were concentrated and tested for 
protease activity in the presence of 
different protease inhibitors. 
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Experiment 1.1.4 – Determine patient extracellular proteolysis potential: To test 

whether B. vulgatus supernatant-resident proteases are packaged in outer-membrane 

vesicles (OMVs), we will first isolate outer membrane vesicles (OMVs) from UC patient 

fecal samples with high or low levels of B. vulgatus proteases as well as control subject 

stool samples. These OMVs will be characterized via our quantitative TMT-labeled mass 

spectrometry pipeline. In parallel, we will isolate a second set of OMVs from the stool 

samples and their activity type will be evaluated using our previously described assays 

from subaims 1.1.2 and 1.1.3.  

We expect this experimental outline will provide a foundational framework for 

our understanding of what proteases are present in B. vulgatus, alongside the conditions 

eliciting B. vulgatus protease secretion and the most common type of protease activity. 

However, as shown by our preliminary data, we fully expect the conditions listed in 

subaim 1.1.1 to reveal protease activity. It is possible that the protease activity we 

identify in vitro will not match the protease activity of UC samples. In this case, we will 

consider other factors that influence protease expression, such as the presence of other 

microbes or input from a host-like environment. To this end we can consider multiple-

microbe cultures, as well as alternative mammalian culturing systems such as intestinal 

organoids, which our collaborators have extensive experience with. Additionally, while 

we fully expect subaim 1.1.3 will allow us to determine the cleavage patterns of proteases 

expressed by B. vulgatus as well as potential inhibitors, one potential confounder is that 

B. vulgatus proteases may not abide by canonically predicted cleavage patterns and thus 

our designed peptides could be cleaved multiple times or cleavage patterns could be 

attributed to the incorrect protease(s). In order to control for this, we would test them 
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individually to ascertain their proteolytic cleavage patterns. To ensure experimental rigor, 

we will perform the above described experiments in Aim 1 with at minimal two other B. 

vulgatus strain types (additional ATCC strains or clinical isolates banked by our team). 

Determining functional outputs of B. vulgatus protease mutants in vitro. 

A combination of quantitative measures obtained from our multi-omics data sets 

and in vitro investigations into protease inhibitor classes has pinpointed a set of proteases 

that we predict are responsible for B. vulgatus intestinal epithelium penetration. Based on 

our strong preliminary data, we leverage our expertise in Bacteriodes genetics to now 

generate deletion mutants and their associated complemented strains to determine how 

specific B. vulgatus proteases contribute to UC pathology. Several fundamental questions 

will be addressed: Is one protease sufficient for inducing a disease phenotype or are 

several needed? What is the specific pathology associated with each B. vulgatus 

protease? Through the generation of B. vulgatus mutant strains, as well as strains of B. 

thetaiotaomicron containing expression vectors encoding B. vulgatus proteases, we can 

start to answer these important mechanistic questions in a controlled and rigorous 

fashion. 

Experiment 1.2.1 – Generation of B. vulgatus protease mutant strains and 

controls: To further evaluate the correlations between B. vulgatus proteases and UC 

disease activity, we have performed a metaproteomic analysis on a second cohort of UC 

pateint fecal samples and summarized the overlapping correlations to disease activity in 

Figure 6.2. In this experiment we have selected five proteases for mutagenesis based 

upon the preliminary results and a thorough literature review.  First, we chose dipeptidyl 

peptidase IV, our top ranked peptidase, consitently found correlated to UC activity (Fig. 
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6.2). Further, it is an ortholog to a virulence factor in P. gingivalis and cleaves dipeptides 

ending in proline or alanine from N-terminal polypeptides(Kumagai et al. 2000). 

Supporting the activity of this protease were four dipeptides which significantly 

correlated with disease severity, including two X-Pro species. Conversely, given the 

specificity of previous results implicating B. vulgatus in UC pathology, we aim to create 

deletion mutants of a protease within the M28 family as the MEROPS database 

(https://www.ebi.ac.uk/merops/) identifies these proteins to be lineage specific. Mutants 

will be created using the ATCC B. vulgatus strain. We will isolate genomic DNA using 

manufacture recommended methods (Promega Wizard Genomic DNA Purification kit). 

Gibson assembly will be used (NEB HiFi DNA assembly master mix) to create vectors. 

The E. coli DC10B strain will be used to generate plasmids to introduce into B. vulgatus 

via electroporation. Mutant strains will be sequenced to ensure no off-target effects 

occurred during the strain generation process. As B. thetaiotaomicron did not induce any 

pathogenic phenotypes in our preliminary studies, we will additionally generate strains of 

B. thetaiotaomicron containing or not containing one of five B. vulgatus protease 

expression vectors to determine the individual effects of each protease. 

Figure 6.2 Prioritizing B. vulgatus proteases by their associations to UC disease activity. a, B. 
vulgatus or B. dorei enzymes or peptidases correlated with UC disease activity (r > 0.3), were 
compared by name between two separately collected UC patient cohorts. b, The correlation values for 
each protein from (a) were summed and the top 10 peptidases are shown according to the class of 
peptidase. 
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Experiment 1.2.2 – Determine the effect of protease mutants in Caco-2 transwell 

assays: In order to test the role of B. vulgatus proteases in intestinal barrier penetration, 

we will use a classic model of epithelial integrity, the Caco-2 transwell assay. We will 

first collect B. vulgatus cells or supernatant grown under conditions tested in 

experimental section 1.1 and incubate Caco-2 monolayer cell cultures with either the 

supernatant or the microbes. We will then test for Caco-2 monolayer barrier integrity 

using transepithelial electrical resistance. In parallel, we will test whether B. vulgatus-

protease-expressing B. thetaiotaomicron strains engineered in experiment 1.2.1 can 

reduce epithelial integrity similar to that of B. vulgatus. All measurements will be done in 

triplicate using methodology established in our preliminary results (Chapter 4). 

Experiment 1.2.3 – Determine the effect of B. vulgatus protease mutants in patient 

derived colonic organoid models: In order to better understand the role of B. vulgatus 

proteases on a more complex and physiologically relevant experimental system, we will 

co-culture B. vulgatus WT, protease mutants and previously described B. thetaiotamicron 

engineered strains with patient derived enteroids.  

Our team has ample experience in bacterial genetics and therefore we do not 

anticipate any major hurdles with making the deletion mutants. We anticipate that these 

experiments will provide a library of Bacteroides mutants that will guide our 

understanding of the mechanistic effects of specific proteases in the context of UC 

models. Genetic modifications of B. vulgatus will be rigorously investigated to define any 

off-target effects and experimental reagents will be authenticated prior to use. If positive 

results are obtained, we will make mutants in two other Bacteriodes strains to validate 

our results. In the case of potential issues with patient derived organoid experiments, our 
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collaborative team also has established mouse-derived enteroids which provide an 

alternative approach. 

Elucidating phenotypes of Bacteroides vulgatus proteases in vivo. 

Results from our lab previously revealed germ-free (GF) mice inoculated with 

fecal material from UC patients with high levels of B. vulgatus proteases exhibited 

colitis. While cell culture models (monolayers and organoid) are often useful to test 

initial conditions, they do not capture the complexity of an entire host. This aim is 

designed to determine a direct correlation between how specific B. vulgatus proteases 

contribute to animal models of colitis. We will use a combination of outputs related to 

tight-junction integrity, cytokine profiles and histological disease scoring, which allow 

for a detailed investigation of pathological phenotypes. 

Experiment 1.3.1 – Determine the role of Bacteroides protease mutants in a 

monocolonization mouse model. Previous work has shown that strains of B. vulgatus can 

induce colitis phenotypes in genetically susceptible mice(Bloom et al. 2011). Using this 

mouse model, we will test colitis phenotypes of our genetically engineered strains of B. 

vulgatus containing deletions in proteases of interest. Common metrics such as macro 

and microscopic damage scores, colon thickness, granulocyte infiltration will be collected 

alongside stool pellets for confirmation of protease expression. We will also perform 

FITC-Dextran-based gut permeability assays to evaluate intestinal epithelial integrity. 

This experiment will help evaluate if proteases of interest have in vivo relevance. 

Experiment 1.3.2 – Determine the role of Bacteroides protease mutants in an 

IL10-/- monocolonization model: The role of IL-10, a canonical anti-inflammatory 

cytokine, in UC has been established in the literature. In order to test the role of B. 
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vulgatus proteases in an IL-10 knockout mouse model, we will inoculate GF IL10-/- mice 

(n=3) with protease mutants. To confirm the specificity of these findings, we will 

introduce gain of function B. thetaiotaomicron strains expressing or not expressing B. 

vulgatus mutants into a separate set of GF IL10-/- mice and perform the same tests as 

described above. Similar to the previous aim, we will record physiological metrics as 

well as FITC-Dextran-based gut permeability assays. 

We anticipate this subaim will be a step forward in determining the host immune 

response against B. vulgatus proteases. We have experience in animal models and have 

the proper infrastructure to perform experiments in the discussed mouse models. 

However, it is possible that a deletion of one protease will not be sufficient to induce 

significant results in vivo. In this instance, we will thoroughly characterize the 

Bacteroides and protease content of UC patient fecal samples and apply fecal 

transplantation studies as previously shown (Chapter 4). 

Determine how nutrient availability impacts the expression patterns of B. vulgatus 

proteases.  

One critical gap in our knowledge of the role that B. vulgatus proteases play in 

UC pathology is the environmental signal that promotes increased protease production in 

severe cases of UC. While Bacteroides are known to play roles in digesting a large 

number of carbohydrates, their role in the breakdown of proteins is largely unexplored. 

Mounting evidence suggests that there is a strong link between the fluctuation in gut 

microbiome communities and diet. Therefore, we hypothesize B. vulgatus increases the 

secretion/production of proteases due to changes in nutrient (microbe accessible 

carbohydrates, fats, or proteins) availability. As such, the goal of this aim is to determine 
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whether a change in environmental availability of nutrients induces increased expression 

or activity of B. vulgatus protease production.  

Experiment 1.4.1 – Monitoring protease expression related to broth protein 

content in vitro: While Bacteroides are traditionally thought to rely heavily on 

carbohydrates in vivo, traditional BHI-S broth contains a significant amount of protein. 

Here we aim to characterize the effect that peptone content in BHI-S broth has on 

protease activity in B. vulgatus. While traditional broth contains 14.5 g/L casein peptone, 

we will additionally test the protease activity in supernatant of B. vulgatus cultures when 

a BHI-S broth contains 0, 5, 20, and 25 g/L peptone. Cells will be normalized by optical 

density before testing protease activity as previously shown (Fig. 6.1).  

Experiment 1.4.2 – Identify how protein availability influences Bacteroides 

protease expression in vivo: Given the increase in protease abundance we noted in our 

previous research, we will also compare mice on standard rodent diets to a separate 

cohort (n=8) on a high-protein content diet. Similar to the previous aim, mice will be kept 

on a high protein diet for 2 weeks and, similar to the previous aim, stool pellets will be 

collected throughout the experimental timeline. From these samples, we will monitor for 

expression changes in B. vulgatus proteases through metatranscriptomics. 

Experiment 1.4.3 – Establish the effect of dietary fat content on protease 

abundance in vivo: Prior research has suggested that a high fat diets (HFD) are a risk 

factor for the development of UC, and can alter protease activity. To test how HFD 

affects B. vulgatus protease expression, we will subject one group of GF mice colonized 

with a moderate complexity community (n=8) to a HFD and another group of mice (n=8) 

to standard chow (same group from 1.4.2). Stool pellets will be collected over the course 
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of two weeks. Changes in the stool proteome of all these conditions, including B. 

vulgatus protease abundance will be characterized via quantitative multiplexed mass 

spectrometry.  

We expect that in at least one of these experiments we will observe differential 

expression of protease production and/or activity, leading to conditions that will impact 

disease outcomes. However, it may be that the experimental design chosen does not elicit 

the robust protease response from B. vulgatus. If this is the case, we will further 

investigate the proteome and transcriptome of B. vulgatus to identify any putative 

transcriptional regulators that are co-expressed with our targeted proteases. If we find 

highly correlated genes that are putative transcriptional regulators, we will use a genetic 

approach to delete the genes of interest and functionally test the mutants for protease 

expression. 

6.3 Interrogate mechanisms of host response to B. vulgatus proteases 

Identify B. vulgatus proteases with mucin or collagen degrading activity.  

Our prior results identified several B. vulgatus proteases that may act on host 

protein substrates. However, the host targets and downstream effects of specific B. 

vulgatus proteases remain unknown. This aim will reveal, in detail, how these proteases 

act on epithelial barriers including tight-junction proteins, mucin-family proteins and 

collagens. We will do so by leveraging readily available commercial kits that can 

characterize B. vulgatus protease activity against substrates we previously identified to be 

degraded, and by the use of innovative mass-spectrometry based peptidomic approaches 

developed by our team. 

Experiment 2.1.1 – Determine B. vulgatus proteases with collagenase activity: We 
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hypothesize that B. vulgatus contains proteases that degrade collagen present in the colon, 

potentially leading to increased intestinal permeability and immune cell infiltration. To 

test this, supernatent of B. vulgatus mutants from subaim 1.2 will be collected from liquid 

cultures. The group of mutants includes all B. vulgatus protease mutants (n=5) as well as 

B. thetaiotaomicron supernatant with and without plasmid-based expression of all B. 

vulgatus proteases (n=5). These cultures will be grown in triplicate and sufficient 

supernatant will be collected to run each condition in triplicate. This supernatant will be 

used to screen for proteolytic activity against collagen using the EnzCheck Collagenase 

assay kit (Molecular Probes)(Popov et al. 2005). 

Experiment 2.1.2 – Determine B. vulgatus proteases with activity against mucins: 

Similar to the previous subaim, we hypothesize B. vulgatus contains proteases that 

degrade mucus present in the colon, potentially leading to increased intestinal 

permeability and immune cell infiltration. To test this, supernatant of B. vulgatus mutants 

from subaim 1.2.1 will be collected from liquid cultures. This group of mutants includes 

all B. vulgatus protease mutants as well as B. thetaiotaomicron supernatant with and 

without plasmid-based expression of all B. vulgatus proteases. Sufficient supernatant will 

be collected to run each condition in triplicate. This supernatant will be used to screen for 

proteolytic activity against mucin family proteins commonly expressed in the colon 

including MUC-2, 13, 20, and 21. This using purified mucins and previously established 

protocols(Desai et al. 2016). To account for non-specific proteolytic activity and protein 

degradation, we will also include a media only incubation condition. 

We expect this subaim will reveal how B. vulgatus proteases interact with host 

proteins critical for epithelial defense from microbial invasion. One potential issue we 
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may encounter is whether or not B. vulgatus mutant strains will produce sufficient levels 

of the protease of interest in order to make a detectable impact on host targets. In this 

case, molecular cloning will be undertaken for expression and purification of proteins to 

be used in these assays.  

Identification of host targets of B. vulgatus proteases through a peptidomic approach. 

Our previous results using UC patient fecal samples identified several potential 

host targets of B. vulgatus proteases. These included barrier proteins like mucins and 

collagens. Additionally, our in vitro results with Caco-2 cells suggested an effect of B. 

vulgatus proteases on tight-junction proteins. In this subaim, we will further elucidate the 

proteolytic landscape associated with B. vulgatus proteases through our previously 

established peptidomic approach(Quinn et al. 2019a).  

Experiment 2.2.1 – Determine the mammalian proteolytic fragments within in 

vitro studies: Our lab has repeatedly found utility in adopting novel mass-spectrometry 

based peptidomic approaches, either for the identification of novel peptide virulence 

factors(Gonzalez et al. 2012; Gonzalez et al. 2014; O'Neill et al. 2020), or for inferences 

regarding proteolysis(Quinn et al. 2019b). While our results from UC patients provided 

several interesting potential targets, a more direct profiling of the proteolytic targets of B. 

vulgatus is still needed. Here, we will adapt our metapeptidomic methods utilized to 

identify proteolysis in UC patient samples (Fig. 4.2) to our in vitro studies with Caco-2 

cells. The supernatant from five replicates of Caco-2 transwells co-cultured with B. 

vulgatus, B. thetaiotaomicron, and media controls will be collected for peptide extraction 

and mass-spectrometry analysis. Host-derived peptides will be compared with UC patient 

results to find overlapping and novel targets of B. vulgatus derived proteolysis. 
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Experiment 2.2.2 – Elucidating time-resolved dynamics of B. vulgatus mediated 

proteolysis in vitro: Building upon Experiment 2.2.1 we aim to further our understanding 

of B. vulgatus mediated proteolysis of Caco-2 proteins in a time-dependent manner. Our 

preliminary results showed that 36-hours post inoculation, B. vulgatus exerts significant 

proteolysis on Caco-2 cells. Here we will expand this result and profile peptide fragment 

dynamics present in B. vulgatus-Caco-2 transwell supernatant at 12, 24, 28, 32, 36, and 

40 hours post-innoculation using our previously described peptidomic approach 

(Experiment 2.2.1). With this approach, we aim to determine the order and speed at 

which B. vulgatus can degrade host barriers. 

Experiment 2.2.3 – Determine the mammalian proteolytic fragments within in 

vivo studies: This experiment will use metapeptidomic methodology used in UC patient 

fecal samples in our proposed in vivo studies. Here we aim to tie together the peptide 

results of in vitro experiments (2.2.1, 2.2.2) and our preliminary results in UC patient 

samples to our proposed in vivo experiments (1.3, 3.2). Peptide extraction and mass-

spectrometry analysis will be performed alongside PEAKS de-novo peptide 

identification(Zhang et al. 2012), lowest common ancestor analysis(Mesuere et al. 2015), 

and cleavage site analysis. We expect these approaches to provide a benchmark for how 

well the proteolysis of our experimental models fits the proteolysis occurring in UC 

patients. 

 Our experimental design aims to answer key questions regarding how well our 

models of B. vulgatus induced proteolysis mimic what is actually occurring in patients. 

Additionally, the untargeted nature of these experiments may identify additional host-

targets of proteolysis for B. vulgatus proteases. However, the untargeted nature of the 
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peptidomic approaches proposed may result in challenges in the consistent identification 

of important peptide fragments. An alternative approach would be to develop a targeted 

mass-spectrometry approach for detecting known peptide fragments of interest. Further, 

the limit of detection and peptides present in media may present further obstacles to the 

proposed techniques that might be overcome by enrichment, depletion or targeted mass-

spectrometry techniques. 

 

6.4 Determine the impact of protease inhibition in models of IBD  

Identify protease inhibitors that prevent B. vulgatus epithelial monolayer 

disruption/penetration. 

Our preliminary research suggests that protease inhibition can prevent B. vulgatus 

induced epithelial monolayer penetration. However, the protease inhibitor used in these 

studies contained a proprietary blend of serine and cysteine protease inhibitors, making it 

less useful for identifying specific inhibitors with therapeutic potential or isolating a 

protease’s unintended consequences to host-health. As such, the goal of this subaim is to 

further characterize classes of protease inhibitors that inhibit B. vulgatus proteases, with 

the hope that a novel therapeutic approach of protease inhibition may one day be used for 

the treatment of UC. 

Experiment 3.1.1 – Determine protease inhibitors most effective at preventing B. 

vulgatus induced epithelial penetration: We previously showed the efficacy of the Roche 

cOmplete EDTA-free protease inhibitor cocktail (Sigma) to prevent B. vulgatus epithelial 

monolayer penetration. We aim to expand our experiments to include a serine protease 

inhibitor, 4(2-Aminoethyl)benzenesulfonyl Fluoride (MP Biomedicals),  an aspartic acid 
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proteinase inhibitor, Pepstatin A (MP Biomedicals), a metalloprotease inhibitor, GM6001 

(EMD Millipore) and a cysteine protease inhibitor, E-64 (Sigma). Using this preliminary 

data, we will further priortize and expand the use and testing of protease inhibitor classes 

identified as active in B. vulgatus supernatant (Experiment 1.1.2). 

Experimental 3.1.2 – Evaluate the host effects of protease inhibitors in vitro: After 

identifying the most effecacious protease inhibitor class in experimental 3.1.1, we will 

test 5 additional protease inhibitors of the same class. These protease inhibitors will be 

selected based on potential toxicity in mammalian cells. To evaluate the potential toxicity 

to mammalian cells, we will monitor growth rates of mature polarized Caco-2 monolayer 

cells as well as transcriptional profiles with or without the addition of each selected 

protease inhibitor. Each experimental condition will be done in triplicate in order to 

increase measurement robustness. 

We expect this aim will further elucidate the most efficacious inhibitor class as 

well as determine the inhibitor’s ability to impact the in vitro system’s viability. 

However, similar to prior aims, one potential issue is that the use of these inhibitors will 

likely only allow for a low-resolution understanding of what B. vulgatus proteases are 

active during the experiments, limiting their usefulness. In this case, after the general 

efficacy of inhibitor class is analyzed, B. vulgatus proteases that fall into this category 

can be either expressed in lab strain E. coli and collected, or synthesized and tested 

individually if E. coli expressed protein yields are low.     

Evaluate the efficacy of newly selected inhibitors to prevent colitis in vivo.  

Our preliminary research suggests that protease inhibition can prevent colitis 

phenotypes in UC patient fecal transplant studies in germ-free IL10-/- mice. However, 
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these inhibitor cocktails were  proprietary blends of serine and cysteine protease 

inhibitors, and may have unintended consequences to host-health. We aim to further 

characterize classes of protease inhibitors that inhibit B. vulgatus proteases, with the hope 

that a novel therapeutic approach of protease inhibition may one day be used for the 

treatment of UC. 

Experiment 3.2.1 – Evaluation of protease inhibitors in a fecal transplant model: 

Our preliminary research showed the capacity of fecal samples from UC patients with 

high clinical severity scores to induce colitis in IL10-/- gnotobiotic mice. We aim to use 

these methods to evaluate the efficacy of two additional protease inhibitors selected from 

our in vitro experiments described in experimental 2.1.2. Our experiments will be 

performed as previously described with additional measurements taken to evaluate side-

effects of each protease inhibitor. 

Experimental 3.2.2 – Evaluate the host effects of protease inhibitors in vivo: 

Given that the expense of IL10-/- gnotobiotic mice is a limiting factor, we will evaluate 

the effect of protease inhibitors on host health using conventional mice. This will allow 

for a greatly expanded capacity to elucidate any host-related effects of a large number of 

protease inhibitors for their host effects. 

We hypothesize that these experiments will help inform the design of future 

therapeutics targeting B. vulgatus proteases. Given that the methods have been previously 

established, we do not anticipate major problems. However, it is possible that protease 

inhibitors chosen will not be efficacious, in which case new inhibitors within the same 

family will be selected. 
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Chapter 6 contains preliminary ideas and writing to form the basis of a grant 

application. The dissertation author played a primary role in the conceptualization and 

writing of this section. This work also contains editing contributions from Carlos 

Gonzalez and David J. Gonzalez. 
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