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aDepartment of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA

bDepartment of Statistics and Data Sciences and Department of Women’s Health, University of 
Texas at Austin and Dell Medical School, Austin, TX

cUniversity of California Riverside, Riverside, CA

Abstract

In anticipation of the expanding appreciation for air quality models in health outcomes studies, we 

develop and evaluate a reduced-complexity model for pollution transport that intentionally 

sacrifices some of the sophistication of full-scale chemical transport models in order to support 

applicability to a wider range of health studies. Specifically, we introduce the HYSPLIT average 

dispersion model, HyADS, which combines the HYSPLIT trajectory dispersion model with 

modern advances in parallel computing to estimate ZIP code level exposure to emissions from 

individual coal-powered electricity generating units in the United States. Importantly, the method 

is not designed to reproduce ambient concentrations of any particular air pollutant; rather, the 

primary goal is to characterize each ZIP code’s exposure to these coal power plants specifically. 

We show adequate performance towards this goal against observed annual average air pollutant 

concentrations (nationwide Pearson correlations of 0.88 and 0.73 with SO4
2 − and PM2.5, 

respectively) and coal-combustion impacts simulated with a full-scale chemical transport model 

and adjusted to observations using a hybrid direct sensitivities approach (correlation of 0.90). We 

proceed to provide multiple examples of HyADS’s single-source applicability, including to show 

that 22% of the population-weighted coal exposure comes from 30 coal-powered electricity 

generating units.
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1. Introduction

Millions of people worldwide die prematurely and/or suffer from diseases associated with 

exposure to polluted air. Besides being tragic in their own right, deaths and diseases impart 

vast costs on the world and United States economies [1, 2].

Developed and developing nations alike have reacted over recent decades by instituting 

policies intended to curb their citizens’ exposure to air pollution; recent policies target 

particulate matter with aerodynamic diameter less than 2.5 μm (PM2.5). Many of these 

policies regulate point air pollution sources, which comply with regulations through discrete 

actions such as switching fuels, installing emissions controls, and/or changing their usage 

patterns [3, 4]. Recent evaluations have shown that these approaches have been beneficial to 

both air quality and health [5, 6, 7]; however, future policies will rely on finer margins for 

improving air quality in developed countries, and cost-effective policies will require targeted 

emissions reductions at sources that have the highest potential to impact human health. 

Similarly, air quality management in developing countries would benefit from identifying 

sources that contribute disproportionately to adverse impacts to human health.

Recent studies have quantified source-specific impacts on air quality and health [8, 9, 10, 11, 

12]. One approach used by these studies, observation-based source apportionment methods, 

offers the benefits of using measured air quality concentrations and allowing of formal 

statistical uncertainty quantification in the estimates. Recent developments in multivariate 

receptor modeling approaches offer the added ability to estimate source contributions at 

locations that do not have monitors [13, 14]. Observation-based approaches, however, are 

limited in their ability to reflect spatial variability in sources [15, 16] and rely on source 

profiles that are variable between locations [17] or require researcher judgment linking 

principal-component-type rotated variables with known source profiles in factor analytical 

methods [18, 19, 20]. Further, the methods have difficulty parsing impacts on secondary 

pollutant species such as sulfate (SO4
2 −) and nitrate (NO3

−) and do not distinguish individual 

sources within source categories, which limits the methods’ applicability to comparisons of 

interventions implemented on individual sources.

Chemical transport models (CTMs), which simulate atmospheric constituent transport, 

diffusion, deposition, and reactions across a 3-D grid and over time, have been adapted to 

estimate impacts from source-specific emissions on air quality [21]. Researchers have 

applied brute force calculations of source impacts [22], direct calculation of sensitivities [12] 

and adjoint [23, 24] approaches to quantify air quality and health impacts of emission 

sources. These methods benefit from detailed chemistry and physics parameterizations that 

allow for the apportionment of secondary species and fine resolution (typically on the order 

of 4-36 km); however, they require extensive computing resources to run, making them 

impractical for investigating single source-receptor relationships for a large number of 

sources over multi-year time periods.

Plume dispersion models offer an alternative to observation-based source apportionment 

methods and CTMs [25, 26]. While more limited in their abilities to fully capture complex 
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atmospheric processes such as chemical transformation and deposition, these models are 

useful for determining spatial impacts of large numbers of sources because of their reduced 

computational burden and scalability. Models of this type have been applied to many 

problems involving the linking of individual sources and receptors, including real-time 

forecasting of radioactive emissions impacts from Japan’s Fukushima nuclear facility in 

2011 [27, 28] and impacts of emissions from the 2010 Eyjafjallajökull volcano eruption in 

Iceland [29].

Recent development in so-called “reduced-form” or “reduced-complexity” models offers 

expanded practicality of source-specific studies by intentionally simplifying some of the 

complexity of full-scale CTMs in exchange for a computational scalability that supports 

estimation of fine-scale (e.g., ZIP code-level) impacts from a large number of individual 

sources over long periods [30, 31, 32, 33]. These models typically rely on plume dispersion 

models and/or CTM outputs to approximate pollution transport and chemistry. The ability to 

model individual source impacts using atmospheric chemistry tools has the potential to 

improve on approaches taken in recent health and population studies that have employed 

much simpler approaches to estimating population exposure, such as power plant proximity 

[34, 35].

We present and evaluate a method for quantifying individual source impacts on populations 

with the ultimate goal of informing future intervention and health analyses with ZIP code 

level estimates of exposure to coal power plant emissions in the United States. The 

development follows a spirit similar to that of reduced-complexity CTMs, wherein we 

combine an intentionally simplified characterization of pollution transport via the HYSPLIT 

trajectory model with recent advancements in parallel computing to model ZIP code-level 

impacts from individual power plants in the U.S. The method was developed to have 1) 

broad spatial coverage at fine spatial resolution, 2) the ability to estimate contributions of 

hundreds of individual point sources to exposure, and 3) the ability to simulate changing 

exposure over time with changing emissions and meteorology. These goals are motivated by 

the desire to advance downstream health-impact evaluations of pollution intervention studies 

that require links between point sources and affected populations. We evaluate the model’s 

ability to capture spatial and temporal variability in exposure attributable to emissions from 

individual coal-fueled electricity generating units operating in the United States in 2005 and 

2012, and we provide example applications to identify sources that impart the largest 

impacts on populations.

2. Methods

We define coal exposure as the influence of emissions from coal electricity generating units 

(EGUs) on ZIP codes, and distinguish it from total exposure, which refers to pollutants from 

all sources. The definition is sufficiently broad so as to avoid referring to specific pollutant 

species (e.g., SO2, PM2.5, etc.) in anticipation of informing health studies that seek to 

establish links between adverse health outcomes and air pollution sources. ZIP code level 

estimates are the target of this analysis because databases used in air pollution epidemiology 

studies are often structured on ZIP codes or larger administrative units (e.g., county, state, or 

province).
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2.1. HYSPLIT average dispersion

We simulate exposure to coal power plants in the continental United States using a method 

called the HYSPLIT average dispersion (HyADS) approach. HYSPLIT is an air parcel 

trajectory and dispersion model maintained by the National Oceanic and Atmospheric 

Administration (NOAA) Air Resources Laboratory [25, 26]. HYSPLIT uses wind fields to 

trace air parcel transport through the atmosphere [25, 26]. In its forward mode, HYSPLIT 

estimates air parcel trajectories emanating from single point sources defined by horizontal 

and vertical coordinates.

For years 2005 and 2012, we used the SplitR [36] package in R to simulate the dispersion of 

100 parcels emitted every six hours (12:00 a.m., 6:00 a.m., 12:00 p.m., and 6:00 p.m.—each 

release constitutes an “emissions event”) from each coal electricity generating unit using 

HYSPLIT—100 was chosen to balance computational efficiency and model complexity. 

Starting positions for each emissions event were based on each source’s stack location and 

height. Parcel locations were calculated for 10 days after each emissions event based on 

NCEP reanalysis wind speeds and directions [37]. Hourly parcel locations were discarded in 

three instances: 1) in hours 0 and 1 to limit unrealistic near-source ground-level impacts, 2) 

after they reached a height of zero (no resuspension), and 3) at altitudes above the planetary 

boundary layer. Monthly gridded boundary layer heights were retrieved from 20th Century 

Reanalysis data [38].

Retained hourly air parcel locations were summed by month over a fine (0.19°×0.19°; 

approximately 22 km latitude×16 km longitude in the center of the country) grid. Parcel 

concentrations were calculated in each grid cell as the number of parcels per volume, where 

area was assigned the nominal value of one (all grid cells had the same area) and height was 

the monthly boundary layer height. Gridded concentrations were spatially averaged over ZIP 

codes using the over command in the sp R package [39].

The resulting unit-less concentration metrics link individual coal units directly with particle 

concentrations in ZIP codes and form a transfer coefficient matrix (TCM; also called a 

source-receptor matrix) of the form TCMi,j,t, where (i,j) refer to the receptors and sources in 

the matrix, and t refers to time at which the matrix was calculated.[27, 30, 40]. Thus, 

TCMi, j, t
HyADS, the transfer coefficient matrix for HyADS, constitutes a numerical 

representation of pollutant transport from each power plant j to each ZIP code i in each 

month t. Annual HyADS exposure from each unit is defined as:

Ei, j
HyADS = ∑

t = 1

12
emissionst, j × TCMi, j, t

HyADS
(1)

Where t represents months and emissionst,j is the monthly SO2 emissions from coal EGU 

unit j. Total exposure to emissions from all units at each location i is defined as:

Ei
HyADS = ∑

j = 1

J
Ei, j

HyADS
(2)

Henneman et al. Page 4

Atmos Environ (1994). Author manuscript; available in PMC 2020 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Where J is the total number of sources. HyADS calculates exposure as the summed 

influence of thousands of parcel trajectories to capture the sum of 6-hourly impacts and 

counter potential biases stemming from uncertainty in individual wind fields and parcel 

starting points [38]. The model can be run entirely from the R package hyspdisp [41], which 

contains functions that parallelize functions in SplitR and spatially allocate HyADS 

exposures to ZIP codes. The approach yields units of emissions-weighted parcel 

concentrations, and we refer to the outputs Ei, j
HyADS and Ei

HyADS as HyADS relative coal 

exposure. HyADS exposure fields quantify each area’s exposure to emissions, and do not 

represent estimates of exposure to any single atmospheric constituent such as PM2.5, SO4
2 −, 

or SO2.

2.1.1. Coal facility emissions—The HYSPLIT-based approach for quantifying coal 

exposure leverages emissions measured at the source and detailed information about 

individual source stacks. Daily unit-level SO2 emissions magnitudes were downloaded from 

US Environmental Protection Agency’s (EPA) Air Markets Program Database (AMPD) and 

summed to monthly emissions [42]. Stack heights were retrieved from the EPA’s 2005 and 

2011 National Emissions Inventories [43] and matched to AMPD units. In 2005 (2012), the 

matched inventory contained 780 (818) units, leaving 256 (191) unmatched. Unmatched 

units were assigned the average stack height of the matched units (150 m). The use of 

average stack height has little impact on the overall spatial distribution of emissions impacts 

from individual facilities, but has larger impacts on ZIP codes in close proximity to stacks 

(see SI for further discussion). The 1,036 (1,009) units in operation in 2005 (2012) 

comprised 505 (478) facilities (Fig. 1)

2.2. Exposure metric evaluations

HyADS, designed to establish links between sources and receptors, outputs coal exposure in 

relative concentrations. Relative exposure metrics are useful for certain types of public 

health studies [44], but may be difficult to interpret in relation to observed ambient 

measurements. HyADS’s coal impacts spatial distributions can nonetheless be evaluated 

using observed pollutant concentrations and coal impacts modeled with chemical transport 

models. Keeping in mind the anticipated use of these exposure fields in health outcomes 

analyses, we present comparisons of correlations between HyADS and multiple metrics 

across the entire domain and in specific regions. While this evaluation is limited by the 

availability of national estimates of spatially refined coal power plant emissions exposure, 

elevated spatial and temporal correlations between HyADS and the metrics described below 

provide evidence that the HyADS model captures variability found in these approaches. 

Relatedly, spatial agreement between changes in these metrics between 2005 and 2012 

provides evidence the model captures variability in the change over a period with large 

emissions change.

2.2.1. CMAQ-DDM Coal Impacts—HyADS’s 2005 exposure field is evaluated against 

coal emission exposure derived from the Community Multiscale Air Quality model equipped 

with the direct decoupled method (CMAQ-DDM), which simulates first-order model 

sensitivities to emissions. In this case, CMAQ-DDM (v5.0.2) was used to estimate model 
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sensitivities of total PM2.5 to coal burning emissions. Coal sources were identified in the 

National Emissions Inventory (NEI) by the first six digits of the assigned eight- or ten-digit 

EPA source classification code (SCC). SCCs designate equipment, fuel, facility type, and 

process. While coal burning sources were not limited in this case to power plants in the 

CMAQ-DDM application, electricity generation accounted for the overwhelming majority 

(89%) of coal SO2 emissions in 2005. The results presented here were corrected for bias 

using both a hybrid optimization approach for improving trace metals concentrations [11] 

and a correction for improving secondary PM2.5 estimates (SO4
2 −, NO3

−, NH4
+, and secondary 

organic carbon)[45]. The results of this observation-adjusted metric for coal exposure were 

originally presented by Ivey et al., 2015, and we refer to them here as HYBRID-DDM.

The two adjustment methods are briefly described here. First, the hybrid optimization makes 

use of sequential quadratic programming to minimize the squared error (X2) of the objective 

function (Eq. 3) while optimizing the source impact adjustment factors Rj:

X2 = ∑
i = 1

N [ci
obs − ci

CMAQ − ∑ j = 1
J SAij

base(R j − 1)]2

σi, obs
2 + σi, CMAQ

2 + Γ ∑
j = 1

J ln(R j)
2

σln(R j)
2 (3)

where ci
obs are observed concentrations of speciated PM2.5 (i species), ci

CMAQ are CMAQ 

modeled concentrations, SAij are CMAQ-DDM estimates of the impact of source j on 

species i, σ are uncertainties, and Γ is a weighting constant. In Ivey et al. 2015, this function 

was applied at every monitor in the U.S. with valid PM2.5 speciation data[45]. The 

optimized Rj at each monitoring site were spatially interpolated using kriging, which 

provided entire spatial fields of source impact adjustments. The spatial hybrid application 

was evaluated using 10-fold cross-validation for the kriging step. The accuracy of hybrid-

adjusted concentrations for PM2.5, when compared with observations, was improved by 

approximately 20% across all monitors. High bias in metals concentrations estimates were 

greatly reduced after hybrid adjustment.

Secondly, while the hybrid adjustment is targeted towards PM2.5 species concentrations that 

are vulnerable to emissions biases (e.g., primary constituents), the correction for secondary 

PM2.5 components addresses model uncertainties in gas-particle partitioning and oxidation 

processes. The chemical species most affected by these modeled processes include SO4
2 −, 

NO3
−, NH4

+, and secondary organic carbon. The secondary species adjustment distributes the 

impact-weighted bias (Di, Eq. 4) in total modeled concentrations of the components across 

the source impacts [45].

Di = ci
obs − ci

CMAQ for i = 1…4 (4)

The adjustments (SCij, Eq. 5) are calculated at each monitoring location with available 

speciated data, then kriged to create spatial fields of adjustment over the entire CMAQ 

domain.
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SCij =
SAijR j

∑ j = 1
J SAij + R j

∗ Di (5)

Since source impacts on secondary species can be negative due to the non-linearities in the 

sensitivity calculation, negative source impacts do not receive the adjustment. Note that 

negative source impacts do not indicate negative total concentration. The prediction 

performance of the corrected concentrations improves significantly, and new biases are near-

zero. Readers are referred to the referenced manuscripts for the supplementary equations.

Directly calculated sensitivities, such as those on which HYBRID-DDM are based, are 

calculated alongside pollution concentrations in chemical transport models. Unlike HyADS 

and other reduced-complexity approaches, these models include detailed parameterizations 

for advective and diffusive transport, reactions, and deposition. Therefore, we utilize coal 

impacts fields from HYBRID-DDM (unit: μg m−3) as a qualified ground truth for the 

HyADS metric, treated as such because it is an estimate of coal emissions exposure. The 

comparison, however, is limited because it 1) measures PM2.5 coal exposure (as opposed to 

total coal exposure simulated by HyADS), and 2) contains a small number of coal emissions 

sources that are not power plants.

2.2.2. Total exposure—ambient pollution observations—We used annual average 

PM2.5 and SO4
2 − measurements at EPA’s Air Quality System (AQS) sites (AQS parameter 

codes 88101 and 88403) as observed metrics for total exposure [46]. The two pollutants 

have been linked historically to negative health outcomes and are the major particulate air 

pollutants resulting from coal burning emissions in the United States. Ambient 

concentrations at each monitoring location were assigned to ZIP codes within 10 km, and 

ZIP code areas that contained multiple monitors were assigned the average of encompassed 

monitors.

2.2.3. Spatial distribution—We focus on the year 2005 for the base evaluation of 

HyADS, and subsequently estimate the change in exposure over a period of major 

nationwide emissions changes between 2005 and 2012. Evaluations are made on the ZIP 

code level to align with recent health outcomes studies [47, 48]. We use two metrics for 

correlation: linear (Pearson) and rank-ordered (Spearman), both of which range from −1 to 

+1. Quantitative comparisons are grouped by regions and restricted to ZIP codes with 

centroids east of 110° longitude (Fig. SI-1) because of the sparse spatial distribution of coal 

facilities in the West.

As HyADS offers the ability to estimate coal exposure changes between years, we calculate 

correlations of the spatial distributions of changing coal exposure and PM2.5 and SO4
2 −

exposures between 2005 and 2012. We chose these years because the United States saw 

large emissions decreases from its coal power plants between these years (coal power plant 

SO2 emissions decreased 64%). HYSPLIT dispersion fields were re-run for each facility 

using 2012 wind fields. HYBRID-DDM estimated with a consistent approach is not 

presently available for years after large emissions changes—the latest year available is 2006.
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We present multiple examples of HyADS’s ability to identify locations impacted by 

individual sources. To illustrate how the method might identify impacts of a select number 

of sources, we computed the HyADS impacts for the 30 units that had the highest SO2 

emissions in 2005. Finally, we present of an example approach for rank-ordering individual 

power plant impacts by estimating each facility’s total population-weighted exposure.

2.2.4. Population-weighted exposure—As a policy-relevant metric of the influence 

of coal emissions from individual emission sources on populations, we calculate population-

weighted exposure (pE) estimates of 2006 population (2005 estimates were not available; 

2006 population was used as a proxy for 2005) at each ZIP code (populationi) retrieved from 

Esri Business Analyst Demographic Data (Esri, Redlands, CA). We calculate each facility’s 

population-weighted exposure in all ZIP codes (pEi,j), each facility’s total population-

weighted exposure (pEj) over all locations I, and total population-weighted exposure from a 

subset of M facilities (pEM).

pEi, j = populationi × Ei, j (6)

pE j = ∑
i = 1

I
populationi × Ei, j (7)

pEM = ∑
j = 1

M
∑
i = 1

I
populationi × Ei, j (8)

While equations for population-weighted metrics traditionally involve normalizing by, for 

instance, total population, we forgo this step because the units for Ei,j need not be preserved 

in applications that rely exclusively on spatial variability.

2.2.5. Scaling HyADS to μg m−3—HyADS source-receptor linkages are useful to 

establish relationships between adverse health outcomes and emissions from individual 

sources, however, situations may arise for which future researchers prefer impact estimates 

in physically observable units (example applications and limitations discussed in detail in 

the Limitations section). In this vein, we present a scaling technique to scale HyADS 

concentration units to a scale mimicking μg m−3 using region-specific linear relationships 

with HYBRID-DDM that maintains local variability simulated by HyADS. We apply 

region-specific conversions of HyADS concentrations to units [μg m−3] using linear 

relationships with HYBRID-DDM (Fig. 5 and Tab. SI-3):

Ei
HYBRID−DDM = m × Ei

HyADS + b + ε (9)

Where m is the slope, b is the intercept, and ε is the error term. Applying this conversion 

creates a new metric, HyADSadj, that is calibrated to HYBRID-DDM to have the same units 

[μg m−3]:
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Ei
HyADSadj

=
(Ei

HYBRID−DDM − b)
m

(10)

Note that while such a rescaling may be advantageous in some situations, it is not strictly 

required for the HyADS approach to provide useful insights on spatial variability and 

relative ranking of sources-specific impacts. Furthermore, such rescaling requires either the 

concurrent availability of a physically-interpretable output (in this case, HYBRID-DDM) to 

anchor the rescaling or the ability to extrapolate relationships such as those in eq. 9 across 

other time periods when such physically-interpretable outputs are unavailable. We revisit 

this point in the discussion on limitations (section 4.1).

2.3. Model availability

All models and data used in this analysis are publicly available for application to sources, 

locations, and periods outside those investigated here. HyADS runs through an R interface—

SplitR—and is parallelized by the hyspdisp R package, which can be used to link dispersion 

particles to ZIP codes [41, 36]. CMAQ-DDM is available open source through the EPA at 

https://github.com/USEPA/CMAQ, and scripts for the HYBRID-DDM procedure are 

available upon request.

3. Results and discussion

3.1. Coal facility emissions

The vast majority of coal facilities in the United States are located in the eastern half of the 

country, and most eastern states contain several facilities (Fig. 1). The distribution of EGU 

SO2 emissions by unit is highly right-skewed—of the original 1,036 units, the 30 with the 

highest emissions in 2005 emitted 21% of the national total. A majority of these largest 

plants are in the Ohio River Valley; this region contains both the densest group of electricity 

generating units and most of the largest.

3.2. Spatial exposure distributions

Ambient 2005 concentrations and HyADS and HYBRID-DDM coal exposure metrics are 

higher in the East and lower in the West; between PM2.5 and SO4
2 − spatial distributions (Fig. 

2), SO4
2 − exhibits a greater disparity between concentrations in the East and West (Fig. 3). 

HyADS and HYBRID-DDM coal exposure metrics display two distinct bands of elevated 

influence in the eastern US, both extending to the south and west originating from 

Pennsylvania. One band travels down the Ohio River Valley, and the other extends through 

the Southeast into Alabama. The metrics show elevated exposure over eastern Texas. 

Observed PM2.5 and SO4
2 − exhibit elevated concentrations in southern California that are 

absent in the coal exposure metrics, reflecting established elevated contributions from non-

coal sources in the region, such as automobiles, industry, and marine vessels [45, 49]. 

Similar spatial patterns of air pollution related to coal power plant emissions, particularly the 

east-west gradient, have been reported in the literature [10, 50, 51, 52, 53].
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3.2.1. Cross-metric evaluations—Correlations between all metrics are generally high 

(most are greater than 0.70), and most comparisons have similar rank-ordered and linear 

correlations (Fig. 4, values in Tabs. SI-1 and SI-2). HyADS is highly correlated with 

HYBRID-DDM—Pearson and Spearman correlations are all equal to or above 0.87 in each 

of the regions except for the Southwest. The majority of this region is very low exposed with 

the exception of localized impacts of three large facilities in northeastern Texas. Lower 

correlations between HyADS and HYBRID-DDM in the Southwest, therefore, are likely 

more attributable to sparse localized impacts than an inability to capture overall spatial 

patterns in this region.

HyADS (Pearson: 0.88, Spearman: 0.90) and HYBRID-DDM (Pearson: 0.86, Spearman: 

0.89) exposures are similarly correlated with SO4
2 − observations in the All Regions and most 

of the individual region comparisons. That HYBRID-DDM tends to be slightly more 

correlated with observed total exposure metrics—particularly SO4
2 −—than HyADS is 

expected because the method uses these same SO4
2 − observations to adjust raw CMAQ-

DDM coal emissions sensitivities. Thus, the fact that HyADS exhibits strong correlations 

with SO4
2 − (and HYBRID-DDM) without making explicit use of SO4

2 − observations is 

interpreted as strong evidence that HyADS accurately reflects the spatial distribution of coal 

exposure.

In All Regions, HyADS is more highly correlated with SO4
2 − than PM2.5 (Pearson: 0.73, 

Spearman: 0.75), a pattern which is repeated in all regions except the Southeast, where 

HyADS correlations with SO4
2 − and PM2.5 are similar. Elevated correlations between all 

modeled metrics and observed sulfate across All Regions and in most individual regions 

supports the models’ abilities to capture spatial variability in SO4
2 −, an important PM2.5 

component formed in the atmosphere from SO2 emissions. In 2005, 72% of nationwide SO2 

emissions came from electric utilities [43].

Differences in correlations between observed pollutant species and coal exposure metrics 

between regions highlight important differences in regional characteristics that impact the 

abilities of each model to capture spatial variability in coal exposure. For example, 

correlations between observations and HYBRID-DDM and HyADS coal exposures in the 

Industrial Midwest and Southwest regions are lower than in other regions. Previous studies 

have identified contributions of industrial activity and coal mining in the Industrial Midwest 

as important contributors to ambient pollution and health effects variability [54, 55, 48]. In 

the Southwest, much of the PM2.5 comes from crustal material and organic matter [56], 

suggesting that the low correlations are a result of observed spatial variability being driven 

by sources other than coal-fired power plants. These comparisons underscore the lack of a 

true gold standard for comparison against the HyADS outputs that model only power plant 

impacts.

The region-specific scatter-plot in Fig. 5 provides further insight into the relationship 

between HyADS and HYBRID-DDM. The two models have similar slopes among All 
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Regions, the Northeast, the Industrial Midwest, and the Southeast, with HyADS finding 

higher concentrations in the Northeast relative to other regions. Slopes are lowest in the 

Southwest and Upper Midwest, suggesting lower HyADS exposures relative to HYBRID-

DDM. An investigation into a set of data points that are causing this lower slope—i.e., the 

areas in which HYBRID-DDM finds concentrations above 2.8 μg m−3 and HyADS finds 

impacts greater than 2 × 106 [unitless]—finds that they are primarily concentrated around a 

few discrete areas (Fig. SI-2). These areas likely highlight sources that are included in the 

CMAQ emissions inventory for HYBRID-DDM and not for HyADS, potentially including 

non-utility industry sources. Sources that are included only in the CMAQ emissions 

inventory are more important in the Upper Midwest and Southwest regions because of the 

relative scarcity of coal power plants in these regions.

3.2.2. Converting HyADS units to μg m−3 using HYBRID-DDM—The linear 

relationships observed in Fig. 5 provide an opportunity to transform raw HyADS to the scale 

of HYBRID-DDM, which may be useful for some applications. As expected when using a 

model to predict data on which it is trained, normalized mean bias in all regions is less than 

3% and error is less than 20% (Tab. SI-3). The 10%, 50%, and 90% quantiles of HyADSadj 

(0.51, 1.99, and 3.76 μg m−3) and HYBRID-DDM (0.50, 2.08, and 3.78 μg m−3) are similar 

for locations east of −110° longitude.

Recall that the above conversion relies on contemporaneously-available output with which to 

rescale the raw HyADS, in this case, HYBRID-DDMin 2005. To evaluate the potential of 

employing these estimated relationships in 2005 to estimate HyADSadj in years for which 

HYBRID-DDM is not available, we simulated Ei
HyADS for an additional year (2006) and 

calculated Ei
HyADSadj

 for 2006 using Eq. 10. As HYBRID-DDM results are available for this 

year, we evaluated 2006 Ei
HyADSadj

 against 2006 Ei
HYBRID−DDM (evaluation presented in 

Supplemental Information). In all regions, the evaluation produces a normalized mean bias 

of 10%, a normalized mean error of 21.5%, and a mean bias of 0.19 μg m−3 (Tab. SI-6). 

Region-specific normalized mean biases range from −4.1% in the Southwest and 23.7% in 

the Industrial Midwest.

Application and interpretation of HyADSadj should consider the greater uncertainty in the 

Upper Midwest and Southwest regions and should interpret results using raw HyADS in 

addition to HyADSadj. This is suggested because of the previously discussed disparities 

between the sources included in HYBRID-DDM and HyADS.

3.3. Exposure change over time

HyADS benefits over HYBRID-DDM in that the HYSPLIT dispersion fields can be trivially 

run at different points in time based on concurrent meteorology—which can be downloaded 

through the R interface—and emissions from other sources. Characterizing exposure change 

over multiple years for HYBRID-DDM without fixing other conditions requires additional 

year-long chemical transport model simulations.
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Areas of largest exposure change between 2005 and 2012 (Fig. 6) are located in the eastern 

United States, similar to areas of greatest coal exposure in 2005 (Fig. 2). HyADS estimates 

the largest reductions near areas of densest emissions, such as along the Ohio River Valley 

and Pennsylvania.

As HYBRID-DDM coal impacts are unavailable after 2006, we evaluate HyADS-simulated 

exposure changes between 2005 and 2012 using observed SO4
2 − concentrations. HyADS 

changes between 2005 and 2012 are highly correlated with SO4
2 − changes over the same 

period (0.84 (Pearson), 0.87 (Spearman), Fig. SI-3 and Tabs. SI-4 and SI-5). In each 

individual region, Pearson correlations between HyADS and SO4
2 − are all between 0.77 

(Industrial Midwest) and 0.97 (Upper Midwest).

Observed SO4
2 − concentrations fell by 56%, whereas HyADS exposure declined by 71% 

across All Regions, which aligns with observed reductions in coal fired power plant 

emissions of 65%. The larger percentage reduction in coal exposure than observed SO4
2 − is 

consistent with (but not conclusive evidence of) the fact that HyADS only measures 

exposure attributable to coal power plant SO2 emissions. Further dampening of the response 

of SO4
2 − to SO2 emissions reductions has been reported previously, and has been attributed 

to the multiple factors that determine SO4
2 − concentrations, including SO2 emissions from 

other sources, emissions of other species, seasonal meteorology, and cloud pH [57, 58].

3.4. Applying HyADS

After running HYSPLIT dispersion fields for each individual source and aggregating their 

impacts to ZIP codes, HyADS’s transfer coefficient matrix allows for policy-relevant 

calculations to identify sources that expose populations to their emissions. As in traditional 

air quality models, two options are available—forward and backward (adjoint) sensitivities. 

From a forward perspective, facilities can be ranked by their total emissions, and their 

impacts on populations can be compared spatially. From an adjoint perspective, we start with 

each facility’s impacts and estimate population-weighted exposure, which can be compared 

between facilities.

3.4.1. Population-weighted exposure from the top 30 emitting units in 2005—
The top 30 emitting units elevate ZIP code exposures throughout the Eastern United States 

(Fig. 7). HyADS’s 2005 total population-weighted exposure attributable to the top 30 

emitting units as a fraction of population-weighted exposure from all units 

(pEM = 30
HyADS ∕ pEM = 1, 036

HyADS ) is 22%, similar to the 21% of total SO2 emissions from these 

facilities.

3.4.2. Population-weighted exposure by facility—HyADS’s transfer coefficient 

matrix approach allows for simple estimation of facility-level population-weighted exposure 

(pEi,j). Each facility’s pEi,j can be compared with other facilities, allowing a ranking of each 

facility in terms of its impacts on populations. The ZIP codes for which the highest-ranked 
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value of pEi,j was one of these six most influential facilities are depicted in Fig. 7. 7,732 ZIP 

codes are colored in Fig. 7 representing homes to 78.1 million people, or 26% of the 

population of the continental United States in 2005. The capability of HyADS to identify the 

most important point sources for any given area in the modeling domain has direct policy 

relevance.

4. Implications

The evaluations presented above show consistency between a reduced complexity approach 

for estimating fine-scale spatial distributions of coal impacts in the United States with 

observations and chemical-transport modeled coal exposure. The HyADS model has various 

strengths and weaknesses that should dictate its future applications and evaluations.

4.1. Limitations

An initial limitation is the challenge associated with finding a perfect comparison metric for 

validating HyADS and HyADSadj. Measurements, receptor modeling, and chemical 

transport modeling approaches each have uncertainties and are limited in their capacities to 

identify individual source contributions to exposure. Each, therefore, presents an imperfect 

point of comparison for the nationwide HyADS approach developed here. The previously 

published HYBRID-DDM results employ the hybrid adjustment using observations to 

reduce errors in raw chemistry and transport modeled source impacts, but, while coal 

impacts adjustment factors were small compared to other sources categories [11], 

uncertainties remain. The present evaluation of HyADS with HYBRID-DDM is limited by 

the necessary inclusion of all coal emissions sources in HYBRID-DDM. 89% of emissions 

from coal sources came from power plants in 2005, and we identified geographic areas 

where the inclusion of non power-plant sources in comparison metrics was likely to have 

most impact on the evaluation (Fig. SI-2). Future developments of nationwide coal impacts 

fields using improved chemical transport and receptor modeling techniques (e.g., 

multivariate receptor modeling) will enable more complete uncertainty quantification.

A second limitation of HyADS is its unit-less relative concentration outputs. While relative 

units are useful for identifying exposure distributions and generating contrasts in exposure 

[44], they are difficult to interpret relative to familiar metrics for ambient concentrations. 

One possible approach outlined here is to conduct a regression-based calibration between 

HYBRID-DDM and HyADS to convert the unitless metric into HyADSadj, interpretable in 

μg m−3. While this rescaling is limited by the availability of modeled quantities to scale 

against, this conversion can be important for contextualizing model outputs in interpretable 

units and for comparison of health impact estimates [44]. The converted HyADSadj values 

simulated here have low bias and error compared to HYBRID-DDM simulated in a separate 

year, indicating the possibility of using rescaling parameters from one year to provide 

HyADSadj in years where no CTM output is available. Evaluation of HyADS and HyADSadj 

changes using alternative exposure metrics across temporal scales is an important ongoing 

endeavor that will inform future potential applications to health studies.

A third limitation of this implementation of HyADS is that the exposure metric is based only 

on SO2 emissions. Coal-fueled power plants emit other species (e.g., NOx and mercury) that 
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have been linked to increased air pollution concentrations and adverse health outcomes and 

have been the focus of regulatory action over recent decades. Future applications and 

evaluations of HyADS may opt to employ these pollutants as additional exposure metrics.

4.2. Reduced complexity modeling for source-specific exposure studies

HYBRID-DDM and other approaches that employ chemical transport models are powerful 

tools for simulating air pollution concentrations and source impacts; however, their 

frameworks are far less flexible for quantifying individual impacts of large numbers of 

individual sources. HyADS has the ability to quantify impacts from single sources, and the 

model is relatively fast to set up run using new tools entirely accessible from within R, a 

widely used computational platform.

The HyADS reduced complexity model is designed in particular for use in health-outcomes 

studies focusing on specific point sources and on the policies impacting those sources. These 

studies have the potential to address a different—albeit related—question than the typical 

epidemiological study that establishes increasing damages with increasing concentrations. 

The model provides an opportunity for future work that may investigate total exposure to air 

impacted by emissions from a single source instead of limiting epidemiological evidence to 

observable pollution species. For example, using HyADS, researchers will be able answer 

questions such as What impacts do increased exposure to emissions from individual coal 
power plants have on health? This primary intended use of the method motivated the 

evaluations focusing on relative ranking of ZIP code exposures, which is distinct from a 

more traditional evaluation restricted to predictions of ambient concentrations (e.g., of 

PM2.5), which might be of interest in a different type of study. Early advances in the use of 

HyADS for this type of investigation appear in Henneman et al., (2018) [44]. While 

HyADS’s relative units do not allow for a quantification of bias or error relative to ambient 

concentrations, high spatial correlations (Fig. 4) and visual inspection of the spatial 

distributions (Fig. 3) along with its reliance on the HYSPLIT model provide strong evidence 

that HyADS captures transport patterns that align closely with those produced by HYBRID-

DDM’s more complex accounting of chemistry and transport.

Various methods have been developed to quantify individual-source impacts on regional 

and/or national scales, including APEEP[30], InMAP[31], and EASIUR[32]. All three of 

these models have been shown to reproduce output from chemical transport models at levels 

similar to accepted performance standards. These models rely on different approximations of 

chemistry and transport—APEEP employs Gaussian Plume models, InMAP uses annualized 

meteorological outputs from a chemical transport model, and EASIUR uses average plumes 

calibrated to chemical transport model outputs. Each of these models has strengths and 

weaknesses, but all three ultimately do not satisfy all of the goals of the present modeling, 

i.e., to provide 1) broad spatial coverage at fine spatial resolution, 2) the ability to estimate 

contributions of individual point sources to exposure, and 3) the ability to simulate changing 

exposure over time with changing emissions and meteorology—as all three rely on base-

year model runs, none meet requirement #3. For 2005, HyADS outputs are highly correlated 

with those from InMAP for the same set of sources, with HyADS showing better 
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correspondence with observed SO4
2 − and HYBRID-DDM in most regions (Supporting 

Information).

HYBRID-DDM and other chemical transport models simulate coal emissions impacts in 

physically observable units (e.g. μg m−3). HyADS uses an approximate concentration 

scheme to simulate impacts that produces units that are not directly related to observed 

concentrations, although this work has shown their comparability on a relative scale. 

Previous studies using HYSPLIT [57, 59], complex chemical transport models [60, 61], and 

observations [62, 51] have established nonlinear relationships between emissions and air 

pollution concentrations that depend on meteorology, concentrations of other atmospheric 

constituents, and other factors. Further, interactions between fresh emission sources and 

existing atmospheric constituents may suppress or enhance certain pollutants (e.g., PM2.5), 

and nonlinear impacts may be different in areas of the country with varying meteorology or 

air quality [63]. However, these studies note that long-term trends in concentrations of major 

constituents such as sulfur-containing compounds have declined linearly with emissions, 

aligning with results reported here.

HyADS benefits in that it does not require annual chemical transport model runs and only 

requires readily available wind fields to set up and run. Our comparison between HyADS 

and HYBRID-DDM exposure fields was limited by the unavailability of HYBRID-DDM 

fields in 2012. Other reduced complexity models such as InMAP require a year-long 

chemical transport model simulation as an input. Fig. 7 highlights the importance of 

incorporating daily meteorological variability in annual spatial impacts estimates. ZIP codes 

with highest exposure from facilities ranked by their HyADS population-weighted exposure 

extend outward from each facility in multiple directions, contrasting the assumptions in 

InMAP that employ an annual average wind direction. HYBRID-DDM has been applied and 

evaluated at daily time scales, whereas HyADS employs long-term averaging of many 

emissions events impacts to limit biases from single dispersion approximations. While finer 

temporal scale applications of HYSPLIT have been evaluated in the past, only annual 

averages are evaluated here [27, 28, 29]. Future applications of HyADS at finer temporal 

scales should consider the implications of seasonal differences in chemistry—e.g., the 

conversion rate of SO2 to SO4
2 −, which can be approximated by HYSPLIT, but was not 

considered here.

Exposure distributions from the simplified HyADS model are highly correlated with 

observations and HYBRID-DDM, which does include nonlinear chemistry and is adjusted to 

more closely align with observed pollutants. Overall, the HyADS approach performs well 

enough that it is appropriate for use as a metric for exposure to emissions from individual 

sources. Future users will benefit from the ability to access and run the model for individual 

sources from R, but should consider the strengths and weaknesses of the model described 

above as they apply to the intended application.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

1. New HyADS model quantifies spatial impacts of emissions from hundreds of 

individual sources

2. Applicable to many sources, spatial domains, periods, and counterfactual 

scenarios

3. National and regional agreement with chemical transport model-based 

approach
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Figure 1: 
2005 coal electricity generating units sized by SO2 emissions; orange dots denote the 30 

units with greatest SO2 emissions in 2005.
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Figure 2: 
2005 annual average coal exposure metrics with scales set from 0 to the 95th percentile of 

each metric. HyADS relative concentrations are unitless and correspond to Ei
HyADS

calculated in equation 2.
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Figure 3: 

Annual average PM2.5 (left) and SO4
2 − (right) observations in 2005 assigned to ZIP codes 

with centroids within 10 km of each AQS monitor.
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Figure 4: 
Pearson (linear) and Spearman (rank-ordered) correlations between 2005 annual average 

coal exposure metrics and monitoring data. Boxed numbers beside each point denote the 

number of pairs of ZIP codes included in each comparison. Values are reported in Tabs. SI-1 

and SI-2.
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Figure 5: 
Scatter plots comparing regional HyADS and HYBRID-DDM concentrations and each 

region’s linear fit. The linear fit for all regions (grey line) provides context for each region’s 

deviation from the national average. Fit parameters are reported in Tab. SI-3.
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Figure 6: 
Decreases in HyADS coal exposure between 2005 and 2012. The legend upper limit is set to 

the 95th percentile of the decrease.
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Figure 7: 
Top: HyADS coal exposure attributable to 30 largest SO2 emitting units in 2005, with the 

upper legend limit set to the 95th percentile. Bottom: ZIP codes whose maximum 

population-weighted exposure originates from facilities that have the highest population-

weighted exposure. Facility numbers corresponding to FacilityID in the AMPD database are 

included to aid in the comparison.
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