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Abstract: Polariton chemistry holds promise for facilitating mode-selective chemical reactions, but the un-
derlying mechanism behind the rate modifications observed under vibrational strong coupling is not well
understood. Using the recently developed quantum transition path theory, we have uncovered a mechanism
of resonant suppression of a thermal reaction rate in a simple model polaritonic system, consisting of a reactive
mode in a bath confined to a lossless microcavity with a single photon mode. We observed the formation of a
polariton during rate limiting transitions on reactive pathways and identified the concomitant rate suppres-
sion as due to hybridization between the reactive mode and the cavity mode, which inhibits bath-mediated
tunneling. The transition probabilities that define the quantum master equation can be directly translated
into a visualisation of the corresponding polariton energy landscape. This landscape exhibits a double funnel
structure, with a large barrier between the initial and final states.

When molecules are confined to a dark microcavity a
vibrational polariton can form from the hybridization be-
tween a molecular vibrational mode and the vacuum pho-
ton mode of the cavity. The rates of ground state bond
breaking reactions of molecules in such cavities have been
shown to be significantly modulated from their values
outside of the cavity.1–3 This phenomenon of polaritonic
chemistry holds promise for selective catalysis, however
the mechanisms of rate enhancement or suppression re-
main unclear. Here, we have applied quantum transi-
tion path theory (QTPT)4 to a simple model in order to
elucidate the underlying quantum mechanical source of
the rate modification. We find that the origin of sharp
rate decreases under cavity resonance conditions is due to
poor bath-mediated tunneling between polariton wave-
functions.

In experimental and theoretical studies, polariton for-
mation has been shown to affect reactive behavior in both
the excited and ground state.1,3,5–9 Of particular inter-
est is the change in rates observed in ground state bar-
rier crossing reactions, when molecules are confined to
a microcavity with a vacuum mode in resonance with
key molecular vibrations.1–3 Attempts to explain the ex-
perimentally observed sharp changes in behavior under
resonance conditions have met with mixed success and
different interpretations. Classical transition state theo-
ries do not support resonance effects.10–13 Other work has
used extensions to transition state theory14–17 to explain
the rate suppression on resonance in terms of dynam-
ical caging effects18 or tunneling effects.16,17 Although
these studies have reproduced rate modifications, they
have tended to reveal broad, shallow rate suppression un-

a)Electronic mail: dlimmer@berkeley.edu

der resonance, which does not agree with experimental
observations that indicate sharp rate modifications.18–20

A full quantum dynamical study using the hierarchical
equations of motion21 carried out by Lindoy and cowork-
ers has recently identified sharp rate modifications un-
der resonance conditions.20 This result lends credence to
the notion that intrinsically quantum mechanical effects
must be modeled in order to observe polaritonic rate en-
hancement or suppression.12,20

To elucidate the source of resonant effects in polari-
tonic systems, we have employed a simple Pauli-Fierz22

quantum electrodynamics Hamiltonian18,23 for a single
photon mode coupled to a reactive proton coordinate
solvated in a bath, and employed QTPT to extract bar-
rier crossing rates and mechanisms. QTPT and related
quantum path sampling techniques have been recently
developed and used to extract mechanistic information
from quantum dynamical processes, including energy
transfer24,25 and nonadiabatic relaxation through coni-
cal intersections.4,26 Here we have used QTPT to extract
the dominant reactive pathways of a thermally induced
proton transfer event under conditions where the proton
was resonantly coupled to a cavity photon mode, whose
natural frequency we could adjust. These pathways are
given by a series of jumps through energy eigenstates of
the combined proton-cavity system. After analyzing this
dominant reactive pathway to determine the committor
eigenstates, which correlate with the classical transition
state, we find the fall in rate is caused by reduced tunnel-
ing matrix elements between the committor eigenstates,
caused by the formation of polaritons. Our key result is
that the poor overlap is due to the formation of polari-
tonic wavefunctions under resonance conditions.

We address a model similar to the Shin-Metiu
formulation27 employed in several previous studies,18,19
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under the Pauli-Fierz Hamiltonian22,28 in which light
and matter are treated quantum mechanically. In this
model, the long wavelength approximation in the dipole
gauge is followed by the Power-Zienau-Wooley transfor-
mation. The resulting Hamiltonian includes a dipole self-
energy term which, if neglected, will result in an incor-
rect potential.29,30 Since it is convenient for QTPT to
have localized eigenstate wavefunctions on either side of
a barrier to define the reactant and product states, we
added a small linear bias to remove bistability of the orig-
inal Shin-Metiu model. Due to the relatively high mass
of the proton coordinate, the bias magnitude necessary
to localize wavefunctions on either side of the barrier was
very small. The resulting system Hamiltonian, Hs is,

Hs = P 2/(2M) + U(R) + p2c/2

+
ω2
c

2

(
qc +

√
2/(ℏω3

c )χµ(R)
)2

,
(1)

where P and R are the proton momentum and position,
pc and qc are the corresponding photon coordinates, ωc

is the photon frequency, ℏ is Plank’s constant, µ(R) is
the proton dipole operator, U(R) is the potential energy
of the proton coordinate, and χ is a parameter which
controls the coupling strength between light and mat-
ter. The coupling of the cavity to the system dipole
should be interpreted as being dependent on the num-
ber of reactive molecules in the cavity, which under the
assumption that the dipolar molecules’ motion is inde-
pendent and isotropic, can be decoupled.28 The resul-
tant Born-Oppenheimer surface is given by E(R, qc) =
Hs − P 2/(2M) − p2c/2. Note we do not consider the ef-
fects of cavity leakage here, which has been shown to be
important in certain regimes.20,31

The functions used for E(R, qc), U(R) and µ(R) are il-
lustrated in Fig. 1. These potentials are similar to those
employed by Li and coworkers,18 with explicit forms
given in the supporting information (SI). The potential
energy surface, E(R, qc) is shown in Fig. 1 a) for the case
where the system is in resonance and polariton formation
occurs. Note that the bottoms of the wells illustrated in
E(R, qc) are not centered at qc = 0 but displaced to either
side, whereas the surface remains effectively symmetric
about 0 in R. The proton potential in Fig. 1 b) is a sim-
ple double well reflecting two distinct covalently bonded
states of the proton. The form of the position depen-
dent dipole shown in Fig. 1 c) is consistent with the no-
tion that a positively charged proton is moving between
the two metastable states. The resultant eigenstates are
more clearly shown by Fig. 1 d) which displays a free en-
ergy disconnectivity graph32,33 for the quantum master
equation corresponding to an on resonance system. The
symmetric bifurcation corresponds to bistability, where
the resonant states lie at the bottom of distinct funnels
separated by a high barrier.

To address the dynamics of the system, QTPT
was applied to an open system description with full
Hamiltonian,34,35

H = Hs +HB +R⊗B, (2)

FIG. 1. a) Potential energy surface of the proton-photon sys-
tem when ωc = 0.925ωs and ηc = ηs and a polariton is ex-
pected to form. b) The potential energy surface of the proton
coordinate. c) The proton dipole operator. d) Free energy dis-
connectivity graph32,33 corresponding to the quantum master
equation that governs the dynamics. The resonant states lie
at the bottom of distinct funnels separated by a high effective
barrier. The red line indicates a free energy scale of 10 kBT .

in which the total Hamiltonian is broken down into Hs

which operates only on the system, HB , which operates
only on the bath, and a coupling operator R ⊗ B. The
bath is envisioned to include all non-reactive modes of
the system, including molecular and solvent modes. Ad-
ditionally, the bath captures interactions between the re-
active mode of the molecule and other reactive molecules
whose dipoles are aligned with the cavity.28 The bath is
approximated by an infinite set of harmonic oscillators
that relax quickly in comparison to the system dynam-
ics, which allows the bath effects to be addressed pertur-
batively via the Born-Markov approximation.34–36 The
coupling operator involves R, the position operator of
the proton, via the tensor product with B =

∑
k ckRk,

a sum over position coordinates, Rk, of the bath har-
monic oscillators, with coupling strength parameters, ck
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determined by the spectral density,

J(ω) =
π

2

∑

k

c2k
ωk

δ(ω − ωk) = ηωe−|ω|/ωb , (3)

in which ωk is the frequency of bath oscillator k, ωb is the
bath cut-off frequency, and η is the system-bath coupling
strength. To employ QTPT, a further approximation
must be made to obtain secular dynamics, in which the
populations and coherences of the system density ma-
trix are independent. This approximation is justified
when coherences oscillate quickly in comparison to the
timescale of population dynamics, leading to their effects
averaging out.35 Comparisons with non-secular and nu-
merically exact quantum calculations to confirm that the
Born-Markov and secular approximations were appropri-
ate, are found in the SI.

The population dynamics from the quantum master
equations are assembled into a finite time Markov state
model for QTPT. The transition rates between eigen-
states in QTPT are equivalent to a jump process, which
provides a physical interpretation for the treatment of the
eigenstates as distinct elements in a Markov process. The
dynamics modeled are those that would be observed in
the case that the energy of the bath in contact with the
system was continuously monitored.35,37–40 Within the
quantum master equation, the tensor element describing
the contribution of eigenstate j to the change in popula-
tion of eigenstate i is41

Diijj = |Ri,j |2
∫ ∞

0

dt e−iωi,jt⟨B(0)B(t)⟩B

+ |Ri,j |2
∫ ∞

0

dt e−iωj,it⟨B(t)B(0)⟩B ,
(4)

where ⟨...⟩B indicates the average of an operator over
the bath degrees of freedom in equilibrium and |Ri,j |2 =
|⟨i|R|j⟩|2. The states |j⟩ and energies Ei used to calculate
frequencies, ωi,j = (Ei −Ej)/ℏ, correspond to the eigen-
states and eigenvalues of Hs in the absence of coupling
to the bath. The rate of population transfer depends on
the system coupling operator element and the one-sided
Fourier transform of the bath correlation functions. The
population dynamics define the transition matrix with
elements

Tij = (eτDσii)jj , (5)

meaning population j following propagation under the
operator D for time τ , taken small, given the system was
initialized in σii, a density matrix in which all population
is in energy eigenstate i.

The above formulation of the quantum master equa-
tion can be used to visualise the polariton energy land-
scape directly, by translating the equilibrium occupation
probabilities and transition matrix into the equivalent
relative free energies.42 Hence we obtain the free energy
disconnectivity graph32,33 in Fig. 1d. In this represen-
tation the vertical scale is the effective free energy, the

bottom of each line corresponds to an eigenstate, and the
eigenstates are connected together at a regular series of
free energy thresholds when they can interconvert by any
sequence of transition states that lies below the thresh-
old. Hence this construction provides a faithful account
of the effective barriers and the organisation of the land-
scape.
The central quantity of transition path theory is the

committor probability, Pb|a(i), derived from the system

of equations43,44

Pb|a(i)−
∑

jϵI

TijPb|a(j) =
∑

jϵb

Tij , (6)

which gives the probability for a system in eigenstate i
to visit eigenstate b (the product state) before eigenstate
a (the reactant state) where I is the set of all states
that are neither a nor b. Note that Pb|a(b) = 1 and

Pb|a(a) = 0.43,44 Here we take the reactant and prod-
uct states to be the lowest energy eigenstates localized
on either side of the double well potential. Classically,
the phenomenological transition state of a reaction is
defined by a committor value of 1/2.45,46 However, for
complex kinetic transition networks the productive paths
and reactive visitation probabilities need to be consid-
ered together with committor values to diagnose the key
dynamical bottlenecks.47,48 In QTPT we determine the
pair of energy eigenstates where the probability changes
from greater than to less than 1/2, defining a separa-
trix, as commitor eigenstates or transition eigenstates,
whose role is analogous to a classical transition state in
that they indicate a change of likely fate for the reactive
pathway and are generally the bottle-neck states that
limit the reactive flux.
From the committors, we found the barrier crossing

rate, k,4,43,44 as a function of ωc/ωs, where ωs is the ap-
proximate harmonic frequency of the proton, to look for
resonance rate modification effects. In Fig. 2 a), the
barrier crossing rate relative to a reference k0(ηc) is pro-
vided for three different light-matter coupling strengths,
ηc. The light matter coupling strength is defined as,49

ηc =
∂µ(R)

∂R

∣∣∣
R0

√
ℏ

2ωsM

χ

ℏωc
, (7)

where R0 is the equilibrium position of R in the reactant
well. The coupling strength is held constant by modify-
ing χ in proportion to ωc. For convenience, in this work
the default light-matter coupling is defined by ηs where
ηs = 0.02 and all coupling strengths will be defined rel-
ative to this value. This coupling strength is similar to
that addressed by Lindoy and coworkers in their recent
work.20 It is much smaller than the coupling strengths
often employed in classical theoretical treatments, how-
ever, it is still relatively very strong coupling compared
to experiments. Note that we are considering a single
molecule coupled to the cavity, and thus the relevant cou-
pling strength is related to the polaritonic splitting by a
factor dependent on the number of solutes.28



4

FIG. 2. a) Rates of barrier crossing from eigenstate 1 to 2 at
three light-matter coupling strengths as a function of ωc/ωs.
See the Table 2 in the supporting information for values of
k0(ηc), the reference values taken at ωc/ωs = 1.38 for each
coupling strength in order to plot them on the same axes. b)
Transmission coefficient for the dominant reactive pathway
as a function of ωc/ωs. See Table 2 in the SI for values of
κ0(ηc), the reference values taken at ωc/ωs = 1.38 for each
coupling strength in order to plot them on the same axes. c)
Path entropy for the three light-matter coupling strengths as
a function of ωc/ωs.

Although the rates have been normalized for visual
comparison, the absolute barrier crossing rates in Fig. 2
a) decrease with increasing ηc. This change can be ex-
plained by regarding the photon coordinate as an extra
degree of freedom imposing friction on the proton coordi-
nate and indicates the system is in the high friction limit.
This interpretation is qualitatively consistent with previ-
ous classical theories;49,50 it does not imply a high friction
limit for the quantum bath and only explains relations
between coupling strength and rate for the two degrees of
freedom explicitly modeled in the system. However, we
find a clear resonance rate suppression near ωc/ωs = 0.9.
The observed resonant rate suppression does not occur
exactly at ωc/ωs = 1 because the system is anharmonic
and the energy gap between proton vibrational states

prior to coupling to the photon coordinate is below ωs

for the higher energy states involved in barrier crossing
reactions. Higher ηc values result in stronger resonances
with multiple peaks.
To identify reactive pathways and glean mechanistic

insight into the rate suppression, we first calculated the
reactive flux between eigenstates. In a detailed balance
system, the reactive flux between any two eigenstates for
the reaction a → b is given by

fa,b
i,j = πiPa|b(i)Ti,jPb|a(j) i ̸= j, (8)

where πi is the equilibrium population of i and Pa|b(i) =
1−Pb|a(i). The net fluxes between eigenstates are treated
as edge weights in a graph with all of the eigenstates
as vertices. The maximum flux pathway between a and
b is then extracted with Dijkstra’s algorithm.44,51 This
procedure is repeated to obtain a reactive path ensemble.
The committor eigenstates are defined as the last state
along a reactive pathway with Pb|a(i) < 1/2 and the first
state along a reactive pathway with Pb|a > 1/2. These
states characterize the system immediately before and
immediately after it has committed itself to completing
the reaction.
We inspected the dominant barrier crossing pathways

extracted by QTPT as a function of photon frequency
and studied their effectiveness in the vicinity of resonant
rate suppression. A useful decomposition of the rate is
given by defining κ = k1/ exp[−β∆E†], where k1 is the
rate associated with the dominant reactive path and ∆E†

is the activation energy, computed as a difference between
the ground state energy and the largest energy visited
on the dominant path. This is smaller than the classical
barrier height due to zero point energy and tunneling
through the barrier.

The decrease in κ in Fig. 2 b) corresponds closely to
the observed resonant fall in rates in Fig. 2 a) indicating
that a lack of transmission rather than a change in activa-
tion energy in the dominant pathway is at least partially
responsible for the resonant rate decrease. Indeed, for the
range of ωc considered, the activation energy of the domi-
nant path varies rather little. This behavior is consistent
with observations that the change in the barrier height
due to coupling to the cavity is not the primary mecha-
nism for rate suppression.2 At the frequencies where we
observe a suppression in the rate, we also find that the
number of reactive pathways participating in the reaction
increases. This effect is quantified by the path entropy,

S = −∑
α f̂α ln(f̂α) , where fα = mini,j [f

a,b
i,j ] for i and

j along unique reactive paths and f̂α = fα/
∑

α fα. The
spikes of S seen in Fig. 2 c) correspond with the res-
onant rate decreases, revealing that a larger variety of
reactive pathways contribute to the ensemble under res-
onance conditions. This result indicates that the domi-
nant pathway is being rendered less effective and other
pathways are more important.
The origin of the resonant effect that decreases the ef-

fectiveness of the dominant pathway is apparent when we
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FIG. 3. a) Overlap element squared for the committor eigen-
states of the dominant pathway as a function of ωc/ωs for the
case where ηc/ηs = 0.5. b) Spatial distribution of the real
part of the pre-committor (left) and post-committor (right)
eigenstate wavefunctions for ηc/ηs = 1.0 at ωc/ωs = 0.74
(top), ωc/ωs = 0.916 (middle) and ωc/ωs = 1.02 (bottom)
with energy contours spaced 0.01 au apart.

inspect the jump between the pre and post-committor
eigenstates for the dominant pathway under resonance
conditions. The dominant pathway, in all cases, is
a tunneling pathway as both pre and post-committor
eigenstates have energies below the potential barrier.
The square coupling operator elements, |Ri,j |2, linking
the committor eigenstates of the dominant pathway for
ηc/ηs = 0.5 in Fig. 3 a), are directly proportional to
inter-eigenstate transfer rates in the quantum master
equations, and show the same double-peaked pattern of
resonance suppression in the overall rates observed for
this coupling strength in Fig. 2 a). Poor overlap at
the committor jump results in resonant rate suppression.
The resonance effect observed in |Ri,j |2 is stronger than
that observed in the rates themselves, but this contribu-
tion to the rate is offset by the modest increase in other
reactive pathways in the system which contribute to the
rate in larger amounts on resonance.

Interrogation of the spatial distribution of the com-

mittor eigenstate wavefunctions in Fig. 3 b) explains the
source of the poor overlap for the dominant path under
resonance conditions. At ωc/ωs = 0.74 and ωc/ωs =
1.02, below or above resonance, the wavefunctions of the
pre and post-committor eigenstates closely resemble con-
ventional harmonic oscillator wavefunctions. However,
on resonance at ωc/ωs = 0.916, the committor wavefunc-
tions do not resemble harmonic oscillator wavefunctions,
instead exhibiting mode hybridization. These polaritonic
wavefunctions appear to be rotated relative to the coor-
dinate R by which the system is coupled to the bath,
explaining the poor overlap.

Resonance with the cavity resulting in the formation of
polaritonic states along the critical reactive pathways in
the barrier crossing reactions results in a sharp decrease
in barrier crossing rates. This phenomenon agrees with
the sharp resonance effects observed experimentally1–3

and observed by Lindoy and coworkers using fully quan-
tum dynamical simulations.20 The simulations by Lin-
doy and coworkers indicated sharp rate increases or de-
creases depending on their choice of cavity loss and bath
structure, an effect they similarly attributed to changes
in bath interactions upon light-matter hybridization. In
contrast to this work, Lindoy and coworkers did not ob-
serve rate modifications for lossless cavities. However, we
note that Lindoy and coworkers employed models mostly
in the energy diffusion regime. As the observed resonant
suppression effect depends on the dominance of deep-
tunneling mechanisms, which depend on a weakly cou-
pled environment and many well-localized energy eigen-
states below the barrier, it is unsurprising that dynamics
in the lossy cavity of Lindoy and coworkers differ from
those we have observed.

The resonant suppression observed here is a fundamen-
tally open quantum system phenomenon that will dis-
appear in the high temperature, classical limit, where
tunneling mechanisms do not play a role, or when the
cavity coupling becomes sufficiently weak as to no longer
form a polariton with a single molecule. Any theory that
is unable to explicitly account for the hybridization of
light-matter states to form polaritons, or is unable to ac-
count for the interactions of the bath with polaritonic
states consistently, will not reproduce these resonant ef-
fects. This observation explains the failure of Grote-
Hynes theory to uncover the sharp resonance effects,10–13

even though it correctly identifies the origin of suppres-
sion being an altered reactive flux, rather than a change
in activation energy. We suggest that further studies
into the potential of polaritonic effects, in selective bond-
breaking reactions and other applications, should make
use of methods that explicitly address the formation of
polaritons and their interaction with environmental fluc-
tuations.

Supporting Information Available. Detailed de-
scription of the model system, specification of parame-
ters, additional disconnectivity graphs and background,
mean first passage time comparisons on and off reso-
nance, Redfield theory background, comparison of secu-
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lar Redfield, non-secular Redfield and numerically exact
quantum calculations.

Data Availability. Data and code supporting
this study are available in Zenodo at 10.5281/zen-
odo.8002313.
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System Setup

The full Hamiltonian of the open system is H = Hs + HB + R ⊗ B where B =
∑

k ckRk.

Operator R is the proton position operator and Rk are positions of harmonic bath modes with

the parameter ck a coupling strength parameter. The value of h̄ is taken as 1 throughout.

The system Pauli-Fierz1 Hamiltonian describing a Shin-Metiu2 model has proton mode (R)

and photon mode (qc) giving,

Hs = P 2/(2M) + U(R) + p2c/2 + ω2
c/2

(
qc +

√
2/(h̄ω3

c )χµ(R)
)2

(1)

where pc and qc are photon momentum and position operators, M is the proton mass, R

and P are the proton position and momentum operators, ωc is the photon frequency, χ is a

coupling strength parameter, the dipole operator is

µ(R) = −1.90249 tanh(1.26426R) + 0.37044R, (2)

the potential energy surface is

U(R) = −0.021088R2 + 0.0033108R4 + 0.033161 + 3.6749× 10−6R +Hls(R), (3)

and the negligibly small renormalization of the system energy levels imposed by the bath is

Hls = ωbηR
2/(Mπ), (4)

with ωb representing the cutoff frequency for the bath oscillators in the spectral density

description and η being the system-bath coupling strength. The dipole is assumed to align

perfectly along R. The bath Hamiltonian,

HB =
∑

k

P 2
k /2 + ω2

kR
2
k/2, (5)
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is an unstructured, infinite set of harmonic oscillators with momenta Pk, position Rk, fre-

quency ωk, and β = 1/(kBT ) describing the temperature, T, where kB is Boltzman’s constant.

The coupling operator links the system and bath modes along their position coordinates.

The spectral density describing the distribution of the harmonic oscillators in the bath is

J(ω) = π/2
∑

k

c2k
ωk

δ(ω − ωk) = ηωe−|ω|/ωb , (6)

an Ohmic exponential form.

Table 1: Parameters employed during simulation of the polariton model

Parameter value (atomic units unless specified)

β 1052.584413

ωs 0.00677687

ωb 0.006269431

M 1836

χ0
∗ 0.002535471

η 0.0018228 (unitless)

∗Note that χ0 is the value of χ when ωc/ωs = 1 and ηc/ηs = 1.

Table 2: Parameters employed in rate and transmission constant specifications

ηc k0(ηc)/au
−1 κ0(ηc)/ au−1

ηs 7.643× 10−17 1.667× 10−8

ηs/2 9.782× 10−17 2.180× 10−8

ηs/4 1.042× 10−16 2.331× 10−8

Our results are sensitive to the magnitude of the applied linear bias that breaks the

symmetry of the double well system. A bias that is too large can fundamentally alter the

system and change the eigenstructure and hence locations of resonance between the photon

and proton mode, whereas an insufficient linear bias will not sufficiently break the symmetry.

The bias was selected to be as small as possible. Doubling or halving the linear bias did not
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change the trend in the observed resonant behavior, although it did change absolute rates

and relative magnitude of the resonant rate decrease. Decreasing the linear bias further

resulted in lack of localization of relevant eigenstates.

To check that the imposed linear bias had not changed the structure of the system in an

unexpected way, we prepared disconnectivity graphs3,4 for several relative frequencies and

light matter coupling strengths.5

To obtain the free energy disconnectivity graphs, we translate the equilibrium probabil-

ities of each eigenstate πa, and the transition rates Dbbaa, to effective free energies of the

eigenstates ga, and the transition states connecting them, g†ab,

g̃a(T ) = −kBT ln(πa), (7)

g†ab(T ) = ga(T )− kBT ln(Dbbaa) + kBT ln(kBT/h), (8)

where h is the Planck constant, and the subscript ab refers to a transfer from eigenstate a

to b.6 Disconnectivity graphs are a visualization tool that illustrate how eigenstates are con-

nected. The branching structure of the graphs reflect the structure of the potential energy

surface, in this case the double well potential. The double funnel structure observed here is

well known for molecular systems that feature competition between alternative morpholo-

gies.4,7–9

Disconnectivity graphs generated below and above resonance are displayed in Fig. 1 a)

and c), with the graph for on-resonance in 1 b). The symmetric double well is evident in the

symmetric split of the branches at the bottoms of both disconnectivity graphs, indicating

that the linear bias has not appreciably altered the fundamental structure of the system.

The higher free energy placement of the transition state linking eigenstates 1 and 2 for the

on resonance case in Fig. 1 b) is small but still significant, indicating a decrease in transition

rate.

The observed resonant behavior was not sensitive either to the precise form of the bath
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Figure 1: Disconnectivity graphs for ηc/ηs = 1 light-matter coupling strength with a)
ωc/ωs = 0.74, b) ωc/ωs = 0.916 c) ωc/ωs = 1.39. The vertical axis corresponds to free
energy in units of kBT , with a scale bar of 10kBT . The branches ending at each eigenstate
are positioned on the horizontal axis to highlight the organisation of the landscape.

spectral density or to the bath cutoff or coupling strength. Resonant suppression was ob-

served with η and ωc both increased by a factor of 10, and when a Debye10 rather than

Ohmic exponential bath was implemented with η selected so as to keep the absolute values

of the rates approximately equal when off resonance.

Provided that the barrier height remained large in comparison to the thermal energy,

kBT , the observed resonant rate suppression was preserved. Doubling the temperature did

not eliminate the observed resonance. However, increasing the temperature by a factor of

ten resulted in a classical limit, in which a great deal of density was not concentrated in the

lowest energy eigenstates in either well and the majority of reactive pathways passed above

the barrier, eliminating resonance effects that are fundamentally characteristic of quantum

tunneling.

We calculated the first passage time distributions11,12 at several key resonance and off-

resonance ωc values at the three different coupling strengths in 2. We start from the master
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Figure 2: First passage time distributions for passage from the lowest to the second lowest
energy eigenstate, a) ηc/η0 = 1 b) ηc/η0 = 0.5 c) ηc/η0 = 0.25, showing larger passage
times for on resonance systems. Dashed lines indicate off-resonance and solid lines indicate
on-resonance.

equation for the eigenstate populations,

∂σ

∂t
= Dσ, (9)

with rate matrix D formed from the block diagonal elements of the Redfield tensor, (D)ij =

Djjii. We decompose the matrix D = K−A into a matrix K with elements Kij representing

the transition rate from i to j, and a diagonal rate matrix A of total escape rates, Aij =

δij
∑

γ ̸=j Kjγ. The time dependent population vector σ is formed from the diagonal of the

density matrix in the eigenstate representation, (σ)i = σii. To compute the first passage

time distribution between eigenstates a and b, we work in the reduced state space S, which

contains all states, apart from the product state b. The transition matrices are reduced to

DS and KS , and only contain the transitions between states in S. The escape rates to b

are only retained in the diagonal entries of AS , which is the corresponding subset of A. By

writing DS in terms of its eigenvalues −λℓ and its left and right eigenvectors wL
ℓ and wR

ℓ ,

we can write the first passage time distribution from eigenstates a to b as

p(θ) =
∑

ℓ

λℓe
−λℓθ1

(
wR

ℓ ⊗wL
ℓ

)
σS(0), (10)
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where 1 is a row vector of ones and σS(0) is the initial eigenstate occupation probability.

To aid with visualization we transform to a probability distribution in y = ln(θ),11

P(y) =
∑

ℓ=1

λℓe
y−λℓe

y

1
(
wR

ℓ ⊗wL
ℓ

)
σS(0). (11)

Our open source program PATHSAMPLE,13 was used to perform the first passage time

calculations, and the results are shown in Fig. 2. The first passage time distribution is

shifted to longer times at resonance, indicating that all barrier crossing reactions are slowed

considerably under resonance effects.

Secular Redfield Theory

Secular Redfield theory was employed to describe the dynamics of the system.10,14,15 The

Redfield tensor,

Dijkl = Γ+
ljik + Γ−

ljik − δlj
∑

m

Γ+
immk − δik

∑

m

Γ−
lmmj (12)

is formed from elements of the system component of the coupling operator and one-sided

Fourier transforms of the bath correlation functions giving

Γ+
ljik = RljRik

∫ ∞

0
dte−iωi,kt⟨B(0)B(t)⟩ (13)

and

Γ−
ljik = RljRik

∫ ∞

0
dte−iωl,jt⟨B(t)B(0)⟩ (14)

with components of R defined as

Rlj = ⟨l|R|j⟩. (15)
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In secular Redfield theory, the change of population of the energy eigenstates of the density

matrix is described as,

∂σii(t)

∂t
=

∑

j

Diijjσjj(t) (16)

whereas the coherences,

σij(t) = σij(0)e
(−iωij+Dijij)t, (17)

are completely decoupled from the populations and undergo exponential decay. Provided

the initial condition, σ0, is incoherent, no coherences will exist in the system evolution. This

is the fundamental justification for QTPT, as it allows us to conceptualize reactive pathways

through a quantum system as a series of jumps between eigenstates where the probability of

the jump depends only on the populations of other eigenstates.

The photon coordinate is described by a harmonic oscillator basis of dimension 70. The

proton coordinate is described by a Colbert-Miller DVR basis16 with dimension of 101 and

δ = 0.1 au. The basis was trimmed following diagonalization and secular Redfield propaga-

tion was carried out on the lowest 200 energy eigenstates only.

QTPT and Simulation Details

Committor probabilities provide reactive fluxes between each eigenstate. From the reactive

fluxes, the full rate of reaction,

F =
∑

j ̸=a

fa,b
a,j =

∑

j ̸=b

fa,b
j,b , (18)

is found by summing all reactive flux leaving a or entering b. The reaction rate in a detailed

balance system,

k =
F

τΠa

, (19)
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Figure 3: Comparison of rate estimates from hierarchical equation of motion, Redfield and
secular Redfield calculations for the committor jumps as a function of ωc/ωs around the
resonance for ηc/ηs = 1.0 with a Debye bath, ks = 1 ∗ 10−9, k10000 indicating the estimate
from a 10000 au length calculation of each method and k2500 indicating the estimate from a
2500 au length calculation for each method.

is found by dividing the flux by τ , the time over which the MSM was generated, and the

probability for the system to be moving forward from a to b, Πa =
∑

i πiPa|b(i).17,18 The

Markov state models were generated from secular Redfield10,14,19 computations beginning

with all density in each eigenstate in turn and lasting for 2500 au with timesteps of 5 au.

Committors (Pb|a(i)) and reverse committors (Pa|b(i)) were solved independently and then

detailed balance was imposed such that Pa|b(i) = 1 − Pb|a(i) with the smaller of the values

used to correct the larger value. The code to perform these calculations and accompanying

data is available in a repository.20

Comparison With Non-secular Dynamics

To validate the performance of secular Redfield14 theory, which depends on several strong

assumptions which can be in question in a system with near-degeneracies in the energy eigen-

spectrum,15,21 we estimated and compared the rates of population transfer for the committor

jumps around the resonance for Redfield,10,19 secular Redfield and the formally exact hier-

archical equations of motion (HEOM) method using the [N/N] Padé decomposition of the

bath correlation functions with N=30 and two layers (L=2).22–25 This treatment required
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truncation to 50 eigenstates and modification of the form of the spectral density to a Debye

form,10

J(ω) = π/2
∑

k

c2k
Mkωk

δ(ω − ωk) = ηω/
(
ω2 + ω2

b

)
, (20)

with ωb given in Table 1 and η = 6.601876175∗ 10−8, which maintained similar off resonance

rates to those observed under the Ohmic exponential bath description. In cases where

the secular approximation is not applicable, it may overestimate tunneling rates between

states with similar energies, a phenomenon which would be immediately apparent in short-

time propagation comparison between the three methods. Secular Redfield theory is known

to overestimate tunneling rates26 in comparison to Redfield and formally exact HEOM,

however, rates estimated from cumulative population transfed, meaning the rate estimate

is the population following propagation divided by the propagation time, for these critical,

rate-limiting jumps were in very good agreement at 2500 au, the time used to generate the

Markov matrices for QTPT, and at 10000 au, as demonstrated in Fig. 3, indicating that the

secular approximation is applicable to this system.
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