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nulla! E possono attendere bravamente e prender gusto alla loro commedia e amare

e tener se stesse in considerazione e in pregio, senza soffrir mai vertigini o capogiri,
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The traditional approach for the control of dynamical systems relies on the avail-

ability of a model describing the system to be controlled. Typically, a model is derived

from first principles; however the feasibility of this strategy is threatened as the scope of

controller design is expanding to increasingly complex domains. Alternatively, data can be

used to identify a system’s model when this is unavailable and challenging to derive from

first principles. A pipeline for control design then becomes a two-step process: (i) use data

to identify a model of the system, (ii) synthesize a controller for the identified model.

Recently, there has been a growing interest in exploring control strategies for un-

modelled systems that directly leverage data in one-step approach, with the expectation

that this will improve the efficiency and performance of the overall process. The interest

for this direct approach to data-driven control was a consequence of the streak of successes

of machine learning for tasks such as classification, image generation and token prediction.

Such a remarkable progress by the machine learning community came at the price of for-

mality: in fact, a true understanding of the drawbacks and limitations of this modeling

viii



approach is missing. While failures might pose a minor risk in some consumer applications,

these become unacceptable and potentially life-threatening in control applications. The

challenge for modern data-driven control is therefore to capitalize on these advancements

while grounding any result in a formal framework, where performance metrics, robustness

concerns and system-theoretic properties are all first-class citizens.

This thesis introduces a comprehensive approach for designing controllers from

data. Specifically, it formalizes a methodology that yields closed-form and robust solutions

for a variety of control problems. Traditional control problems are re-examined through a

data-driven lens, from establishing a system’s observability, to designing optimal controllers

for network systems. In practical terms, given a desired control objective and (possibly)

noisy data from the system, the desired control action can be determined by feeding the

data directly into the proposed expression, bypassing system identification. The result of

this approach is a straightforward controller design technique with formally characterizable

robustness bounds.
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Chapter 1

Introduction

“Anything that is in the world when you’re born is normal and ordinary and is just

a natural part of the way the world works. Anything that’s invented between when

you’re fifteen and thirty-five is new and exciting and revolutionary and you can

probably get a career in it. Anything invented after you’re thirty-five is against the

natural order of things.”

— Douglas Adams, The Salmon of Doubt (2002)

1.1 Data, modeling and control: a short long history

Leveraging data in science and technology is not a novel concept. In fact, data

collection and analysis are at the very core of the scientific process as testified, for example,

by Galileo Galilei and his legendary experiments in the late 1500s in Pisa, Italy. Galileo

sought to identify a mathematical model to explain the space-time evolution of a free-falling

object. To do so, he dropped objects of different masses from his hometown’s belltower, the

Leaning Tower of Pisa, and recorded the time it took them to reach the ground. His goal was

1



to demonstrate that the dynamic of a free-falling object is independent of the object’s mass.

Performing experiments and collecting an appropriate data-set was then a crucial step of the

broader process aimed at validating or disproving some theory. In recent years, a notable

shift has occurred, wherein data has assumed a more central role, largely attributed to

the unprecedented abundance of data and a widespread democratization of data processing

capabilities. Galileo (or more probably his grad students) had to climb up a tower multiple

times to perform a sufficiently large number of experiments, and consequently process the

collected data for hours on end to come up with a model of the observed phenomenon.

Meanwhile, today data can be collected semiautomatically, and are automatically processed

by cluster (or even personal) computers (while a grad student is probably comfortably

scrolling their favorite social media app).

Whereas modeling a system is useful to predict how a system will evolve, con-

trol theory goes a step beyond: not only is a control scientist interested in the evolution

of a system that is left free to interact with its environment (e.g., the falling of a body

from 50 meters above ground) but on how the system will react as a consequence of some

exogenous stimulation, known as control input. This is how, through human ingenuity, a

free falling body becomes an aircraft. Clearly, this introduces numerous new challenges.

In order for the control scientist to confidently characterize the degree by which an aileron

needs to move to ensure that a plane can navigate through a certain turbulence, a near-

prefect model of the input (aileron angle) to output (aircraft configuration) description is

needed. In this context, this description can be made available to the control scientist

by an aerospace engineer, through first principles. Modeling from first principles involves

2



developing a mathematical model of a system based on fundamental physical principles,

laws, and relationships governing the system’s behavior. Instead of relying on empirical

data or experimental observations, this approach aims to derive the model directly from

the underlying physics. In the context of aircraft configuration, modeling from first princi-

ples would involve understanding and applying the fundamental principles of aerodynamics,

mechanics, and other relevant physical laws.

A common way to describe the model of a system is the so-called state-space

representation. The main idea behind this approach it to represent the system’s dynamics

through a set of variables, namely the internal state (x), input (u), and output (y), whose

evolution in time is described as a set of first-order differential or difference equations, e.g.,

ẋ(t) = Ax(t)+Bu(t) and y(t) = Cx(t)+Du(t), where we refer to the state-space model of the

input-output dynamics as Σ = (A,B,C,D). The end goal for a control scientist is to design a

function fcontrol, usually referred to as control law, with u(t) = fcontrol(Σ, ŷ, t) and such that

the output y(t) of the system is as close as possible to some desired output ŷ(t).1 The state-

space representation was developed starting from the 1960s, following the groundbreaking

works of Rudolf E. Kalman [Kalman, 1960]. The state-space approach became popular as

it provided a unified framework for modeling linear time-invariant systems, making it easier

to analyze and design controllers through formal tools such as linear algebra and convex

optimization. The result of this is a streamlined theory that allows to study a system’s

properties, and that provides the tools to predict and control its behavior while formally

characterizing the convergence and robustness properties of a given control law fcontrol.
2

1Here, t ≥ 0 is time, x, u and y are real or complex valued vectors, and A, B, C, D are real or complex
valued matrices. Notice that here we are restricting the class of systems under investigation to the linear
and time invariant. This will be introduced formally in Chapter 2.

2In the context of control theory, convergence and robustness are key concepts. At a high level, a control
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First-principles modeling, i.e., finding Σ = (A,B,C,D) for a given system from

fundamental physical laws, is the focus of an extensive cross-fields scientific effort, from

engineering to the life sciences, and integrating data in this process has always been con-

templated and necessary. However, as mentioned, lately data have been gaining an ever

increasing role in system modeling. Maybe not surprisingly, Kalman himself, together with

his student Bin-Lun Ho, started formalizing an approach for finding Σ when successfully

rich experiments D could be collected for the system under investigation. Briefly, the Ho-

Kalman approach to system identification and control [Ho and Kalman, 1966, Katayama,

2005] is a two step approach: (i) identify a model (Σ) of the system through the available

data (D), then (ii) base the design of the control law (fcontrol) on the model identified in step

one. This was an important contribution, at a time where data collection and elaboration

was expensive compared to today’s standards, and where a model would ensure “backwards

compatibility” with those approaches already developed for a model-based-first world. Ul-

timately, however, the goal of a control engineer is to control a system, so a model is not

technically needed if enough information could be extracted from data. The question then

naturally arises: why not basing the design of the control strategy fcontrol directly on D?

The arguments in favor of this mind-shift are multiple, but are importantly moti-

vated by the progress achieved by computer scientists over the better part of the last decade

in machine learning and related artificial intelligence applications.3 The promise of machine

law fcontrol is said to converge if y(t) gets closer to the desired output ŷ(t) as time t increases. The study
of the robustness of fcontrol, instead, aims at characterizing how this convergence holds (or breaks) if some
uncertainty is present in the process, e.g., when the model Σ is not perfect.

3The taxonomy of machine and deep learning, and broadly of artificial intelligence, is diverse and in
constant evolution. The reader is referred to monographs [Russell and Norvig, 2021,Goodfellow et al., 2016]
and the references therein for a more accurate description of this fascinating filed than the one offered in
this work.
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learning is that, given a problem to solve (e.g., binary classification) a proper architecture

(e.g., a deep neural network) and enough data samples, a solution can be automatically

found by minimizing a loss function. Of course, this is not a one-size-fits all solution and

many hours of human ingenuity go into the process of finding the right architecture and

data labeling strategy for the problem of interest. Once the right approach is found, how-

ever, this results in a fairly automated process, with more data generally implying better

results. Unfortunately, this solution-driven strategy comes with some downsides for control

applications. In fact, while there is plenty of anecdotal evidence for the successes of ma-

chine learning, there is little understanding by the scientific community on why and how

this approach actually achieves this remarkable performance. Most crucially, its is by now

common knowledge that these architectures, including neural networks, are brittle: per-

turbing the inputs might (and will) affect the outcome of a neural network, with potentially

catastrophic consequences [Szegedy et al., 2014]. A famous example of this phenomenon is

how a neural network used to classify road signs can be easy fooled to classify a “STOP”

sign as a “45 mph” sign when this is just partially covered by some tape, in a way that

would fool no human [Eykholt et al., 2018].

Therefore, while machine learning solutions offer a promising way to automate

the design of a controller, the cost of loosing the structured framework typical of control

theory and the possibility to formally prove results, for example, about the convergence

and robustness of the approach is a downside that a control scientist cannot afford. This

is the context in which, at the end of the 2010s, the momentum for a modern approach to

direct data-driven control suddenly arose [Baggio et al., 2019,Coulson et al., 2019,De Persis
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and Tesi, 2020] (these works will be discussed in detail throughout this work, together with

other important papers from the community). The end goal of the pioneers that kickstarted

this sub-field of control theory is to capitalize on the successes and advances of the machine

learning community while preserving the formal sandbox of control theory. Great progress

has ben made since then. The design of a control law directly from data has, in less than

a decade, graduated to a filed of its own. This is suggested for example by the fact that at

the 62th IEEE Conference on Decision and Control, held in Singapore in December of 2023,

four out of the eighty sessions were specifically dedicated to data-driven control, and about

70 papers mentioned the word “data-driven” in their title (or 5% of the venue’s total). This

thesis sits comfortably in this category and offers a framework to approach this problem

from a control-theoretic data-first point of view.

1.2 Statement of contributions and thesis overview

Throughout this thesis we develop strategies for the design of direct data-driven

controllers for discrete-time, linear, and time-invariant systems. Whenever possible we

focus on solutions resulting in closed-form expressions, as opposed to optimization-based

expressions. In practice, we begin by developing the framework at the core of the approach,

which is based on a data-driven formulation of the state-space approach to modeling and

control (Chapter 2). Building on this framework we develop closed-form expressions for both

open-loop (Chapter 3) and closed-loop (Chapter 4) optimal controllers, and include formal

bounds for the robustness properties of these controllers to noise in the data. To show the

versatility and applicability of the proposed framework to a broad spectrum of problems, we
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suggest a strategy to design feedback controllers for (possibly sparse) pole placement and

eigenstructure assignment problems (Chapter 5). Interestingly, this framework naturally

leads to a geometric interpretation of control theory based on data (Chapter 6). Finally,

we discuss how to distribute this framework in a networked scenario (Chapter 7).

Our main premise is that, especially for systems with linear time-invariant dynam-

ics, system-theoretic properties and control methods are well-understood and have been de-

veloped over the years, ranging from tests and algorithms in the frequency domain [Åström

and Murray, 2010] to methods using state-space [Kailath, 1980] and geometric computa-

tions [Basile and Marro, 1991], among others. The analysis, design and synthesis of control

methods based on the system behaviors [Willems and Polderman, 1997] is certainly possible

and interesting, but perhaps most useful only if complemented with an understanding of

when a specific problem should be solved within a specific domain (e.g., frequency, state

space, behaviors) and using a specific algorithm. This type of questions, which has been

present, for instance in the machine learning research to characterize the tradeoffs between

generative and discriminative models [Ng and Jordan, 2001], has instead received only

scarce attention in the context of data-driven control. As we shall see, while data-driven

and model-based methods are theoretically equivalent in the absence of noise and assum-

ing perfect computations, in practice, the methods can differ considerably in the way they

propagate uncertainties thus leading unexpectedly to different results. Furthermore, even

within the data-driven framework, different formalisms can lead to expressions with dif-

ferent complexity, interpretability and performance, thus motivating careful analysis and

comparisons. We refer the interested reader to [Markovsky and Dörfler, 2021] for a more
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comprehensive survey of data-driven control methods and the behavioral framework.

The main contributions for each chapter of this thesis are detailed below.

Chapter 2 In this chapter we introduce the problem setting for data-driven control and

review the existing literature on the topic. We also introduce some preliminary definitions

and discuss the foundational results of this work, which will be used throughout the thesis.

Chapter 3 In this chapter we develop upon the results presented in Chapter 2 and show

how these can be used to solve a series of optimal control problems. In particular, we

discuss the solutions to the open-loop linear-quadratic control problem, as well as simplified

formulas for the particular case of minimum energy control. We further show how these

results can be extended to deal with datasets of heterogeneous length, and discuss how this

approach compares to alternative methods in the literature.

Chapter 4 The contribution of this chapter is twofold. First, we give a closed-form solution

to design quadratically optimal controllers for an unknown linear system. The solution is

based on the assumption that sufficient data can be collected and used to directly compute

the controller of interest. No further assumption is imposed on the data, namely, it does

not have to be optimal. Differently from other direct data-driven solutions, the approach

presented in this work is in closed-form. Second, we leverage the data-driven controls from

above to compute a feedback of the state which asymptotically converges to the Linear

Quadratic Regulator (LQR) gain. We show through simulations how our approach offers a

good tradeoff between numerical accuracy and computational efficiency.

Chapter 5 This chapter presents novel results on pole placement and eigenstructure as-

signment with sparse feedback achieved by using (possibly direct) data-driven formulas.
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Specifically, we characterize (i) the allowable eigenvector subspace and (ii) the set of feed-

back gains which solve the pole placement problem, both as a function of data. From these,

we derive (iii) a closed-form expression of the gain that solves the eigenstructure assignment

problem. Additionally, we (iv) discuss strategies for computing sparse feedback controllers

for the pole placement problem, by incorporating our data-driven expressions into non-

linear optimization problems. Finally, numerical simulations demonstrate the effectiveness

of the proposed approach.

Chapter 6 This chapter aims at linking the geometric approach to control design with data-

driven methods, with numerous contributions. First, for the linear, discrete, time-invariant

systems described by the triple (A,B,C), we derive explicit, closed-form data-driven expres-

sions of (i) V∗, the largest (A, Im(B))-controlled invariant subspace contained in Ker(C),

(ii) S∗, the smallest (A,Ker(C))-conditioned invariant subspace containing Im(B), (iii)

the feedback gain F such that (A+BF )V∗ ⊆ V∗, and (iv) the invariant zeros of (A,B,C).

Since V∗ and S∗ are the basis of the geometric approach developed in [Basile and Marro,

1991], our data-driven formulas constitute the basis of a data-driven and model-free theory

of geometric control. Second, our results show that the fundamental invariant subspaces of

the geometric approach, which are often computed recursively when operating in the state

space, have a simple and direct interpretation in the higher-dimensional data space, where

they can be computed by solving appropriately defined sets of linear equations. Third, we

demonstrate the utility of our formulas to design undetectable data-driven attacks.

Chapter 7 In this chapter we leverage the tools developed thought this thesis to develop

a data-driven and distributed algorithm to learn optimal controls in a multi-agent environ-
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ment. This approach is data-driven as the control design relies exclusively on prerecorded

input-state trajectories of an unknown linear system, and it is distributed as it assumes that

the recorded trajectories are not available to any single agent, but are partitioned through-

out the network. The goal of the agents is to compute the control action which globally

minimizes a given quadratic cost function of the states and inputs, from a given initial

condition. To do this, we leverage an algorithm based on iterative projections in order to

distribute the computation of the control in a network of agents with partial access to data.

This work builds upon and significantly expands the approach presented in previous chap-

ters of this thesis and departs from the cited literature in a number of ways. First, it does

not require data from past recordings to be shared (at least directly) among the networks’

nodes, offering an implicit layer of privacy. Moreover, it relies on a closed-form expression

that provably converges to a solution, with a prescribed distance from optimality, after a

finite number of iterations of the algorithm bounded by the diameter of the network.

1.3 Notation

The mathematical notation used in this thesis is summarized below.

(i) We let R and N denote the set of real and non-negative integer numbers, respectively.

(ii) Given a matrixA ∈ Rn×m, we let Rank(A), Basis(A), Ker(A), AT, σmin(A), σmax(A)

denote the rank, a basis of the column space, the kernel, the transpose, and the

smallest and largest singular values of A, respectively.

(iii) We use {0} to denote the trivial subspace containing only the origin. Given a matrix
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A and a subspace V of appropriate dimensions, A−1V denotes the pre-image of V by

the, possibly singular, matrix A.

(iv) V = Basis(V) denotes any full-column rank matrix such that Im(V ) = V.

(v) We let blkdiag(A1, . . . , An) be the block diagonal matrix with blocks Ai ∈ Rni×mi .

(vi) We denote the Moore-Penrose pseudoinverse of matrix A with A†.

(vii) The Kronecker product between matrices A and B is denoted by A ⊗ B [Bernstein,

2009].

(viii) We indicate the 2-norm of a matrix or vector with ‖·‖2.

(ix) We let A � 0 (A � 0) denote a positive definite (positive semidefinite) matrix.

(x) We let vec(A) be the vectorization of matrix A.

(xi) For a positive semidefinite matrix W ∈ Rn×n and vector x ∈ Rn, we let ‖x‖W =

√
xTWx. In and 0n,m denote the n × n identity matrix and n × m zero matrix,

respectively (subscripts will be omitted when clear from the context).

(xii) For a random vector x : Ω → Rn, we let P[x ∈ S] and E[x] be the probability that x

takes on a value in a set S ⊆ Rn and the expected value of x, respectively. We let a.s.

denote almost surely, and
a.s.−−→ almost sure convergence.
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Chapter 2

Background

In this chapter we introduce the technical framework upon which lies the entirety

of this thesis. In particular, we introduce the class of system under investigation and the

assumptions we make for the data collection phase. We further introduce some of the

foundational results of our approach, namely how to compute a data-based representation

of the free and the forced response of a system, from data. We then briefly discuss how our

framework compares with alternative approaches in the literature for data-driven control

design.

2.1 Linear, discrete, time-invariant systems and data

Throughout this work, we study the problem of designing control inputs for linear

time-invariant systems with the aim to solve a variety of optimal control and robustness

problems. We do this without knowing the system dynamics and by, instead, leveraging a

set of pre-recorded input-output trajectories, together with state trajectories when needed.
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In particular, we consider systems with linear, discrete-time, time-invariant dynamics of the

form

x(t+ 1) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),

(2.1)

where x ∈ Rn, u ∈ Rm and y ∈ Rp are the state, input and output vectors at time t ∈ N,

respectively, and the matrices A, B, C and D are unknown. We assume that inputs U ,

states X, and outputs Y are available from a set of N ∈ N control experiments with finite

horizon T ∈ N:

U =

[
u1
T · · · uNT

]
∈ RmT×N ,

X0 =

[
x1(0) · · · xN (0)

]
∈ Rn×N ,

X =

[
x1
T · · · xNT

]
∈ RnT×N ,

Y =

[
y1
T · · · yNT

]
∈ RpT×N .

(2.2a)

(2.2b)

(2.2c)

(2.2d)

In (2.2), uiT , xiT , and yiT are the vectors containing the inputs, states, and outputs of the

i-th experiment:

uiT = vec(ui(0), . . . , ui(T − 1)), (i-th input trajectory)

xiT = vec(xi(1), xi(2), . . . , xi(T )), (i-th state trajectory)

yiT = vec(yi(0), . . . , yi(T − 1)). (i-th output trajectory)

We remark that the full input-state-output dataset (2.2) is not always needed to solve the

problems described throughout this work; the subset of required data will be specified based

on the problem at hand. Further, when convenient, we will use the following matrices, which
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can be extracted from (2.2):

XF =

[
x1(T ) · · · xN (T )

]
∈ Rn×N ,

YF =

[
y1(T − 1) · · · yN (T − 1)

]
∈ Rp×N .

(2.3a)

(2.3b)

For the noiseless system (2.1), knowledge of the system matrices A, B, C and D is

equivalent to the availability of a (sufficiently rich) dataset (2.2). In fact, any dataset (2.2)

can be generated with the matrices A, B, C and D using (2.1), and, in turn, such matrices

can be reconstructed uniquely (under mild data rank conditions) using the dataset (2.2):1

X+
m =

[
A B

]


X−m

Um


 , and Ym =

[
C D

]


X−m

Um


 ,

where

Um =

[
u1(0), . . . , u1(T − 1), . . . , uN (0), . . . , uN (T − 1)

]
,

Xm =

[
x1(0), . . . , x1(T ), . . . , xN (0), . . . , xN (T )

]
,

X−m =

[
x1(0), . . . , x1(T − 1), . . . , xN (0), . . . , xN (T − 1)

]
,

X+
m =

[
x1(1), . . . , x1(T ), . . . , xN (1), . . . , xN (T )

]
,

Ym =

[
y1(0), . . . , y1(T ), . . . , yN (0), . . . , yN (T − 1)

]
.

Clearly, the system matrices can be computed uniquely whenever the matrix



X−m

Um


 is full

row rank. While this analysis seems to discourage the pursuit of data-driven methods, since

sufficiently-rich datasets are effectively a model of the system dynamics, in this thesis we

will show that, instead, data-driven computations allow for alternative and sometimes more

1Similar formulas are contained also in [De Persis and Tesi, 2020], among others.
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insightful, direct, and computationally-favorable solutions to classic control problems, thus

contributing to the theory of systems and enriching our control tools. We remark that a de-

tailed analysis of the tradeoffs between direct data-driven methods and classic identification-

based approaches in noisy settings is much more nuanced [Krishnan and Pasqualetti, 2021],

deserves a dedicated treatment, and will not be addressed here. Rather, we will show how

our direct solutions obtained with noiseless data can be used to study, and modified to

counteract, the effect of noise and perturbations on the collected datasets.

2.2 Data-based free and forced responses

We begin by stating and proving a technical result.

Lemma 1 (Rank of block matrices). Let A ∈ Rn1×m and B ∈ Rn2×m, with m ≥

n1 + n2. Let KA = Basis(Ker(A)) and KB = Basis(Ker(B)). The following statements

are equivalent:

(i) Rank






A

B





 = n1 + n2 ;

(ii) Rank(AKB) = n1 and Rank(BKA) = n2.

Proof.

((ii) implies (i).) We will show that statement (ii) is violated when statement

(i) is violated. Let vectors vA and vB satisfy vAA + vBB = 0, with [vA vB] 6= 0. Then,

vAAKB + vBBKB = vAAKB = 0, which implies that either vA = 0 or Rank(AKB) <

n1. Similarly, vAAKA + vBBKA = vBBKA = 0, which implies that either vB = 0 or
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Rank(BKA) < n2. Since vA and vB cannot be simultaneously zero, we conclude that

statement (ii) implies (i).

((i) implies (ii).) Notice that

Rank






A

B





 = Rank






A

B


C


 ,

with C any invertible matrix of appropriate dimension. Let C = [KB BT]. Then,

n1 + n2 = Rank






A

B





 = Rank






A

B



[
KB BT

]



= Rank






AKB ABT

0 BBT





 ,

which implies that Rank(AKB) = n1. Repeating the reasoning with C = [KA AT] con-

cludes the proof.

Going back to the problem at hand, a powerful result underlying most data-driven

approaches is Willems’ Fundamental Lemma [Willems et al., 2005], which, loosely speaking,

gives a sufficient conditions under which any T -long trajectory of the system (2.1) can be

constructed as linear combinations of those in an appropriately constructed input-output

dataset [Markovsky and Dörfler, 2021]. We next state a reformulation of Willems’ Fun-

damental Lemma that uses the dataset (2.2) and that allows us to distinguish between

the trajectories of (2.1) obtained with and without a control input. This result will be

instrumental for our derivations.

Lemma 2 (Data-based free and forced representation) Let (2.2)-(2.3) be the data
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generated by the system (2.1). Assume that

Rank






X0

U





 = mT + n. (2.4)

Let KU = Basis(Ker(U)) and K0 = Basis(Ker(X0)). Then, for any initial state x0 and

input uT , there exist vectors α and β such that x0 = X0KUα and uT = UK0β. Moreover,




xT

yT


 =



XKU XK0

Y KU Y K0






α

β


 (2.5)

are the state and output trajectories of length T of (2.1) generated by x0 and uT .

Proof. Using (2.4) and Lemma 1, the matrices X0KU and UK0 are full-row rank. Hence,

for every x0 and uT there exist α and β such that x0 = X0KUα and uT = UK0β. Notice

that the data matrices satisfy the relations



X

Y


 =



OXT FXT

OYT F YT






X0

U


 , (2.6)

where

OXT =




A

A2

...

AT




, FXT =




B · · · 0 0

AB · · · 0 0

. . .

AT−1B · · · AB B




,

OYT =




C

CA

...

CAT−1




, F YT =




D · · · 0 0

CB · · · 0 0

. . .

CAT−2B · · · CB D




.

17



Notice that
XKU = OXT X0KU + FXT UKU = OXT X0KU ,

XK0 = OXT X0K0 + FXT UK0 = FXT UK0.

Then, the state trajectory xT of (2.1) with input uT = UK0β and initial state x0 = X0KUα

can be written as

xT = OXT x0 + FXT uT = OXT X0KUα+ FXT UK0β

= XKUα+XK0β.

The claimed expression for yT is obtained similarly using the matrices OYT and F YT , thus

concluding the proof.

Lemma 2.5 states that any trajectory of the system (2.1) can be written as a linear

combination of a collection of previously-recorded trajectories. Yet, Lemma 2.5 provides

a more granular decomposition of the trajectories of the system (2.1) given data, as it

identifies the free response of the system from the initial condition x0, namely XKUα, and

the forced response of the system from the input uT , namely XK0β.

2.3 Data-based system-theoretic properties

In addition to being of general interest, the formulas that we discussed thus far

allow for the recorded data to be used to predict the system trajectories given the initial

condition and input sequence, rather than just as a description of the system dynamics,

and to analyze certain system-theoretic properties in a purely data-driven manner without

requiring the identification of the system dynamics (see also [Celi and Pasqualetti, 2022b]).
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Lemma 3 (Data-driven reachability and observability). Let the data matrices X0

and U satisfy (2.4). Then

Rank(OYT ) = Rank(Y KU ), (2.7)

where OYT =

[
CT (CA)T · · · (CAT−1)T

]T
, is the T -steps observability matrix of (2.1).

Similarly,

Rank(CT ) = Rank(XFK0), (2.8)

where CT =

[
AT−1B · · · AB B

]
is the T -steps controllability matrix of (2.1) and XF

is as in (2.3).

Proof. Notice from (2.6) that Y KU = OYTX0KU . From [Bernstein, 2009, Fact 2.10.2],

Im(OYTX0KU ) = Im(OYT ) since X0KU is full row-rank (cif. (2.4) and Lemma 1). Hence,

Rank(OYT ) = Rank(Y KU ). Similarly, XFK0 = CTUK0 and UK0 is full row-rank, thus

implying that Rank(CT ) = Rank(XFK0), which concludes the proof.

Lemma 3 relates the rank of the T -step observability matrix OYT to the data-

driven matrix Y KU . Clearly, when T ≥ n, the system (2.1) is observable if and only if

Rank(Y KU ) = n. Similar comments hold in (2.8) for the reachability subspace of (2.1).

Remark 4 (Single vs multiple data trajectories) A single experimental trajectory may

be sufficient to obtain a data-driven representation of the system dynamics. A single tra-

jectory, in fact, is used in Willems’ Fundamental Lemma and in several reformulations of

this result, e.g., [Willems et al., 2005, Yu et al., 2021, Verhoek et al., 2021, Schmitz et al.,

2022,Lopez and Müller, 2022]. We remark that the use of multiple trajectories, as we do in

Lemma 2, carries some advantages. First, the formulas in Lemma 2 remain valid if only a
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single, long, trajectory is available. In fact, the case of a single, long trajectory organized as

a Hankel matrix is a special case of our formalism. To see this, using the notation in [van

Waarde et al., 2020b], the data collected from a single trajectory of length τ is organized as

H1(x) =

[
x(0) x(1) · · · x(τ − T )

]
,

HT (u) =




u(0) u(1) · · · u(τ − T )

...
...

...

u(T − 1) u(T ) · · · u(τ − 1)



.

Clearly, one can set X0 = H1(x) and uiT equal to the i-th column of HT (u) to equivalently

express the data as in our framework. Thus, considering multiple, short trajectories as in

(2.2) effectively generalizes and includes the case of a single, long trajectory. Second, the

use of multiple trajectories is convenient when the dynamics are unstable, since the system

needs to be simulated for a shorter time horizon compared to the case of a single trajectory.

More generally, using multiple trajectories produces data matrices that are numerically better

conditioned and yield more reliable computations. Finally, the use of multiple trajectories

is convenient from a statistical perspective when the collected data is corrupted by noise [Tu

et al., 2022]. �

Remark 5 (State vs output measurements) We assume here that the state of the sys-

tem (2.1) can be directly measured. Notice, however, that this is not a restrictive assumption

since a state measurement can be replaced with a finite window of inputs and outputs to solve

appropriate control problems. In fact, the dynamics of (2.1) can be equivalently written us-

ing only inputs and outputs as done, e.g., in [Al Makdah et al., 2022] for the data-driven

LQG control problem. �
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Chapter 3

Expressions for optimal open-loop

input-output data-driven control

The possibility of expressing the free and forced responses of a dynamical system as

a direct function of data, as shown in the previous chapter, unlocks the possibility to design

control algorithms based entirely on this data-centric representation. We begin our journey

by solving a typical problem in control, that is: “given a dynamical system in some initial

condition, which is the most efficient way to take it to a different desired condition?”. As

should be clear by now, the novelty of our approach stems from solving the above question

when data should be leveraged in place of a system’s model.

3.1 Introduction

Optimal control is among the most successful and diverse sub-fields at the inter-

section of control theory and mathematics, and has been credited with enabling numerous
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societal breakthroughs, e.g., the Moon Landing [Taylor, 2019, Miller et al., 2022]. While

keeping our eyes on the stars, in this chapter we will humbly keep our feet on the ground by

introducing a general framework for solving optimal control problems through the lenses of

a data-driven approach. In particular, we will focus on a minimization problem of the form

minimize some cost function over input u and output y

subject to u and y trajectories being compatible with observed data.

(3.1)

We will restrict the above cost function to a quadratic function of the inputs and

outputs, weighted according to some desired metric. For example, one could decide to

minimize the energy consumed by a system, in which case the cost function could simply

be ‖u‖22 (cf. Section 3.3). We remark that minimizing ΣT−1
t=0 u(t) would also be technically

correct, and the two problems have indeed the same solution. However the quadratic nature

of the cost function offers some mathematical advantages by making the above problem

convex. Naturally, one could consider a maximization problem when substituting the cost

function with some performance metric. In fact, the two are effectively the same problem,

except for a minus sign in front of the cost function / performance metric. Given the

quadratic nature of the cost function and the linear relationship between the system’s inputs

and outputs, this problem is usually referred to as a Linear-Quadratic optimization problem.

Of course, optimal control is this and much much more. We refer the interested reader to

the references in [Zhou et al., 1996, Boyd and Vandenberghe, 2004] for a more exhaustive

list of problems and relevant work at the intersection of control and optimization.
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3.2 Data-driven formulas for open-loop LQ control

Following [Celi et al., 2023a], we start by studying the LQ control problem

minimize
u, x, y

T−1∑

t=0

(
‖y(t)‖2Qt

+ ‖u(t)‖2Rt

)

subject to x(t+ 1) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),

x(0) = x0, y(T − 1) = yf ,

(3.2)

where Qt � 0 and Rt � 0 are the (time-varying) output and input weighting matrices,

x0 is the initial state, and yf the desired value of the output at time T − 1. Throughout

this chapter, we assume that (2.1) is output controllable in T − 1 steps1 to guarantee

feasibility of (3.2) for any choice of x0 ∈ Rn and yf ∈ Rp, and that the rank condition (2.4)

holds. Problem (3.2) generalizes the classic (open-loop) linear-quadratic control framework

by including the possibility of minimizing a linear function of the state (as opposed to the

whole state) in addition to the control input. Let uT = vec(u(0), . . . , u(T − 1)) be the

vector of inputs, and

Q = blkdiag(Q0, . . . , QT−1),

R = blkdiag(R0, . . . , RT−1).

(3.3)

Using the notation from Chapter 1.3, we now present a closed-form solution to the LQ

control problem (3.2) that relies only on the data collected in (2.2). First, we notice that

the cost in (3.2) can be written in vector form as

T−1∑

t=0

(
‖y(t)‖2Qt

+ ‖u(t)‖2Rt

)
= yT

TQyT + uT
TRuT .

1System (2.1) is output controllable in T steps if
[
CAT−1B · · · CAB CB D

]
has full row rank.

We remark that Lemma 3 can be adapted to verify whether a system is output controllable directly from
data, substituting XF with YF .
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Second, from Lemma 2 we have yT = Y KUα + Y K0β and uT = UK0β, for some vectors

α and β. Then, by letting K =

[
KU K0

]
, the input and output trajectories can be

equivalently written as

yT = Y K



α

β


 and uT = UK



α

β


 ,

respectively, and the cost in (3.2) becomes



α

β




T

(
(Y K)TQ(Y K) + (UK)TR(UK)

)


α

β


 .

Similarly, the equality constraints in (3.2) can be written as



X0

YF


K



α

β


 =



x0

yf


 .

The above reasoning allows us to reformulate the LQ control problem (3.2) as the data-based

problem

minimize
γ

‖Lγ‖22

subject to Wγ = z,

(3.4)

where

γ =



α

β


 , L =



Q1/2Y K

R1/2UK


 , W =



X0

YF


K, z =



x0

yf


 ,

which admits the solution

γ? = (I −KW (LKW )†L)W †z,

with KW = Basis(Ker(W )). This leads to the following data-driven solution to Problem

(3.2).
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Theorem 6 (Data-driven LQ control). The input u∗T that solves the LQ control prob-

lem (3.2) is

u∗T = UK (I −KW (LKW )†L)W †



x0

yf




︸ ︷︷ ︸
γ∗

. (3.5)

With the additional assumption that Rank(Q1/2OYT ) = n,2 an alternative expres-

sion for u∗T that does not require the computation of kernel matrices is extracted from



x0

u∗T


 = P−

1
2






X0

YF






X0

U




†

P−
1
2




† 

x0

yf


 , (3.6)

where

P =


Y



X0

U




†


T

Q


Y



X0

U




†
+




0 0

0 R


 . (3.7)

Proof of Equation (3.6): Problem (3.2) can be equivalently rewritten as

minimize
uT

∥∥∥∥∥∥∥∥
P

1
2



x(0)

uT




∥∥∥∥∥∥∥∥

2

2

subject to


I 0

OYF F YF






x(0)

uT


 =



x0

yf


 ,

(3.8)

where OYF and F YF denotes the last p rows of the matrices OYT and F YT , and

P =

[
OYT F YT

]T
Q

[
OYT F YT

]
+




0 0

0 R


 (3.9)

2This is a mild condition that is satisfied, for instance, when (2.1) is observable and Q � 0.

25



From the assumptions R � 0 and Rank(Q1/2OYT ) = n, it follows that P � 0 (see [Celi

et al., 2023c, Theorem III.1] for a proof of this fact). Then, by defining

v = P
1
2



x(0)

uT


 ,

we can rewrite (3.8) as

minimize
v

‖v‖22

subject to


I 0

OYF F YF


P

− 1
2 v =



x0

yf


 .

(3.10)

The minimizer of (3.10) is

v∗ =






I 0

OYF F YF


P

− 1
2




† 

x0

yf


 .

Thus, the solution u∗T to (3.8) satisfies



x0

u∗T


 = P−

1
2 v∗ = P−

1
2






I 0

OYF F YF


P

− 1
2




† 

x0

yf


 .

To conclude, note that, under assumption (2.4), P in (3.9) equals (3.7) and



In 0

OYF F YF


 =



X0

YF






X0

U




†

,

from which (3.6) follows.

We remark that (3.5) and (3.6) rely on assumption (2.4). In practice, this imposes

a lower bound on the number N of trajectories recorded in (2.2), i.e., N ≥ mT + n. In

fact, when this condition is not satisfied, then the Problem (3.4) may be infeasible or not
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return the desired optimal control for some choices of the initial condition x0 and target

output yf .

Remark 7 (Closed-form solutions vs iterative and optimization-based solutions).

The distinctive aspect of the above results lies in the utilization of a closed-form formula,

as shown in Theorem 6 and in most of the results discussed in this thesis. While exceptions

do exist, such as those in [da Silva et al., 2018, Pellegrino et al., 2023a, Pellegrino et al.,

2023b], it is noteworthy that much of the existing literature on data-driven control pre-

dominantly revolves around iterative and optimization-based methodologies. It is essential

to acknowledge that certain problems necessitate optimization-based approaches, often those

involving nonlinear systems or input-output constraints. Nevertheless, when the opportunity

for closed-form solutions arises, closed-form expressions provide not only valuable insights

into problem solutions but also confer numerical advantages over alternative methods, see

e.g., [Celi et al., 2022] for a discussion on the computational advantages of closed-form for-

mulas over optimization-based solutions. Further, closed-form formulas have been recently

used in the context of data-driven control to solve a set of diverse problems, such as the

computation of the Kalman Filter and of the Linear Quadratic Gaussian regulator [Al Mak-

dah and Pasqualetti, 2023], the identification of geometric invariant subspaces [Celi and

Pasqualetti, 2022b], and the solution of the eigenstructure assignment problem [Celi et al.,

2023b].

Example 8 We now apply the result from Theorem 6 to control a simplified model of a

quadcopter. The quadcopter is dimensioned after a Crazyflie drone, with data (2.2) collected

using Matlab simulations. For more details on the model of the system, we refer the reader
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to [Wang et al., 2016]. The state of the system is

x =

[
x ẋ θ θ̇ y ẏ φ φ̇ z ż ψ ψ̇

]T
,

where (x, y, z) and (ẋ, ẏ, ż) are the coordinates and linear velocities, respectively, and (θ, φ, ψ)

and (θ̇, φ̇, ψ̇) are the roll, pitch and yaw angles and their respective velocities. The measured

outputs are limited to the coordinates (x, y, z) and the asset angles (θ, φ, ψ). The system is

simulated in Fig. 3.1, where uT is obtained from (3.5). �

3.3 Minimum energy control

The minimum-energy control problem (ME) is obtained from (3.2) by letting Qt =

0 and Rt = I. It reads as [Kailath, 1980,Pasqualetti et al., 2014]

min
u

T−1∑

t=0

‖u(t)‖22

s.t. x(t+ 1) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),

x(0) = x0, y(T − 1) = yf .

(3.11)

Clearly, a solution to this problem can be obtained from Theorem 6 by simply letting

L = UK. An insightful instance of the minimum energy control problem (3.11) is when

x0 = 0 and X0 = 0, that is, the initial conditions of the experimental data and of the

control problem are all equal to zero. In this case, although Lemma 2 cannot be used for a

data-based representation of the system trajectories since X0 is not full-row rank, a direct

expression for the minimum energy input can readily be obtained.

28



x y z

θ φ ψ

position
(a)

0 50 100 150

0

1

2

t

(b)

0.5 1 1.5 2 0

1

20

1

2

x
y

z
Figure 3.1: This figure shows the output trajectory of the system in Example 8 with uT
computed through (3.5). Data is collected as described in (2.2), with X0 and U random ma-
trices with i.i.d. entries. The experiment is run with Qt = blkdiag(10, 10, 10, 100, 100, 100),
Rt = Im, for all t = {1, . . . , T}, and T = 150. Panel (a) shows the trajectories of the posi-
tion (solid lines) and the orientation angles (dashed lines). Panel (b) shows the trajectory
of the position in 3-D space (circle: initial position, cross: final position).

Theorem 9 (Data-driven ME control [Baggio et al., 2019]). Let X0 = 0 and

Rank(U) = mT . Then, the input u∗T that solves the minimum energy control problem

(3.11) is

u∗T = U(I −KYF (UKYF )†U)Y †F yf , (3.12)

where YF are the final states of the recorded trajectories (2.3) and KYF = Basis(Ker(YF )).

Equation (3.12) is obtained from (3.5) leveraging the simplifications due to X0 = 0.

Along the lines of the derivation of (3.6), the following alternative minimum-energy control

expression holds:

u∗T = (YFU
†)†yf . (3.13)

When C = I and D = 0 this formula offers a data-driven way to compute the T -step
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Figure 3.2: Panels (a)-(b) show the norm of the minimum energy control com-

puted through: (i) the model-based formula uT = C†T (xf − ATx0), where CT is the
controllability matrix defined in Lemma 3, (ii) the controllability Gramian with u(t) =

BT(AT)T−t−1W †T (xf − ATx0), (iii) the exact data-driven expression (3.13), and (iv) the
asymptotically correct expression (3.16). The underlying system is generated randomly,
with n = 20, m = 2, T = 40, xf = [1 1 · · · 1]T and N is specified on the x-axis. The
curves represent the average over 100 experiments with input data generated as random
i.i.d. normal entries. Notice that, in accordance with the conditions imposed by Lemma
2, the expression (3.12) becomes exact once N = n + mT = 80 linearly independent ex-
perimental trajectories have been collected. Further, notice that (3.16) returns a feasible
(the control satisfies the constraint) yet suboptimal (the cost achieved by the control is not
optimal) solution for finite values of N . Panels (c)-(d) show the norm of the inputs uT
computed as above, and the corresponding errors in the final state, as a function of the
system dimension n. We note that while the Gramian-based solution is technically exact,
it is effectively less robust than the exact data-driven formulas in (3.13) and (3.16) for
systems with a large number of states. This loss of numerical precision is a consequence
of the computational process involved in computing and manipulating the controllability
Gramian. We let m = 2, T = n, N = mT + 20, and xf = [1 1 · · · 1]T. The matrices A and
B are generated randomly.
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Gramian and its eigenvalues. In fact, it can be seen that in this case equation (3.13) can

be written as a function of XF and3 the controllability matrix in (2.8) equals CT = XFU
†.

Consequently, the Gramian satisfies

WT = CTC
T
T = XFU

†U †
T
XT
F . (3.14)

Similarly, since the smallest (resp. largest) eigenvalues of the Gramian identify the states

that require largest (resp. smallest) input energy, these can also be computed as

σ−1
min(WT ) = max

‖xf‖2=1
‖(XFU

†)†xf‖22 = σ2
max((XFU

†)†),

σ−1
max(WT ) = min

‖xf‖2=1
‖(XFU

†)†xf‖22 = σ2
min((XFU

†)†).

(3.15)

Finally, when the entries of U are i.i.d. random variables with zero mean and

nonzero finite variance, one can obtain simplified expressions of the minimum energy control

input. For instance, the simplified expression

ûT = UX†Fxf , (3.16)

converges to the minimum-energy input u∗T almost surely, as the number of trajectories

N increases [Baggio et al., 2019]. Since the minimum energy input is unique and for any

finite value of N it generally holds ûT 6= u∗T , it follows that (3.16) is a suboptimal input

for the minimum energy problem (3.11). In particular, the input (3.16) drives the system

to the desired final state xf with non-minimum energy, while requiring fewer numerical

operations for its computation when compared with (3.12), (3.13). This property can be

useful when dealing with large (network) systems, for which these calculations are generally

ill-conditioned [Baggio et al., 2019,Baggio et al., 2021,Pasqualetti et al., 2014]. In support

3In this case the terminal constraint for (3.11) becomes x(T ) = xf .
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of these claims, in Fig. 3.2 we perform a series of numerical experiments, where we asses

the numerical robustness and accuracy of direct data-driven controls. We notice that the

accuracy in computing the minimum-energy control input using the data-driven expression

(3.13) is comparable to that achieved when using the model-based counterpart, yet numer-

ically more accurate than the model-based Gramian formula. Further, in Fig. 3.2(c)-(d)

we notice that the accuracy of the Gramian-based control input decreases as n increases,

while the data-driven expressions of the minimum-energy control inputs remain accurate

for systems of considerably larger dimension.

As we progress through this work, the closed-loop expressions outlined in this

section will form the foundational building blocks for deriving novel closed-form solutions

to a variety of problems. Among these, throught this thesis we will cover the infinite-horizon

linear quadratic regulator problem [Celi et al., 2022], the linear quadratic Gaussian control

problem [Al Makdah and Pasqualetti, 2023], the distributed data-driven linear quadratic

control problem [Celi et al., 2023c]. Further, we will answer several robustness questions

related data-driven control [Celi et al., 2023c,Anguluri et al., 2020].

3.4 Datasets with heterogeneous control horizons

The results presented thus far assume that the experimental trajectories have

the same length. In practice, however, it may be more convenient to collect data from

heterogeneous experiments with different control horizons. The first question that we answer

is whether the trajectories of the system can be represented as a linear combination of

trajectories of different lengths, and for which control horizon. Is it possible to represent
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trajectories of length greater than those of the control experiments? Ultimately, this analysis

leads to an extension of Lemma 2.

To formalize the discussion, assume that the control experiments are performed

using M distinct horizons Ti ∈ N, i ∈ {1, . . . ,M}, and that the available data is organized

as (Ui, X0,i, Xi, Yi) , i ∈ {1, . . . ,M}, where the i-th set contains Ni experiments, and X0,i ∈

Rn×Ni , Ui ∈ RmTi×Ni , Xi ∈ RnTi×Ni , and Yi ∈ RpTi×Ni denote the matrices containing the

initial states of the experiments, and the input, state, and output sequences with horizon

Ti. Finally, let XF,i contain the last n rows of Xi and DH = {(Ui, X0,i, Xi, Yi)}Mi=1 be the

set of heterogeneous data. See Fig. 3.3 for an illustration of the heterogeneous dataset.

DH = {(Ui, X0,i, Xi, YF,i)}Mi=1

· · ·U1 =

1 2 N1
m
T
1







...

· · ·
UM =

1 2 NM

m
T
M







}

...

u
(0

)
u
(1

)

∣∣∣∣∣∣∣∣∣∣∣∣

mTM

u(t) y(t)

x(t)

Σ

· · ·Y1 =

1 2 N1

p
T
1







...
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· · · nX0,1 =

1 2 N1[ ]

· · ·

n
T
1X1 =






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Figure 3.3: This figure conceptually shows the data collection phase with heterogeneous
datasets.

We now present an extension of Lemma 2 that allows us to represent trajectories
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of (2.1) of length T using the heterogeneous data DH , where the horizon T is an integer-

weighted combination of the experimental horizons Ti (e.g., if T1 = 2, T2 = 3, and T3 = 8,

we could take T = T2 + 2T3 = 19). The main ideas behind this result are that a trajectory

of length T can be broken up in multiple sub-trajectories, where the initial state of each

sub-trajectory equals the final state of the previous sub-trajectory, and each sub-trajectory

admits a data-based representation as in Lemma 2 (see also Fig. 3.4). We remark that the

decomposition of a trajectory into multiple parts of a certain length may not be unique,

thus leading to potentially multiple data-driven representations of the same trajectory when

using heterogeneous data (for instance, if T1 = 2, T2 = 3, and T3 = 8, then we could take

T = 19 = 8T1 + T3 = T2 + 2T3 = T3 + T2 + T3).

Lemma 10 (Data-based free and forced response representation with heteroge-

nous data [Baggio and Pasqualetti, 2020]) Let DH be the set of heterogeneous data

and assume that

Rank






X0,i

Ui





 = mTi + n. (3.17)

Let `1, . . . , `p be a sequence of indices such that T =
∑p

i=1 T`i. Further, let K0,i = Basis(Ker(X0,i)),

KU,i = Basis(Ker(Ui)),

Vi = (X0,`i+1
KU,`i+1

)†XF,`iKU,`i

Zi = (X0,`i+1
KU,`i+1

)†XF,`iK0,`i .

Then, for any initial state x0 and input uT , there exist vectors α and β such that

x0 = X0,`1KU,`1α, and

uT = blkdiag(U`1K0,`1 , . . . , U`pK0,`p)β.

Moreover, xT and yT in (3.18) are the state and output trajectories of length T of (2.1)

generated by x0 and uT .
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Figure 3.4: This figure shows an example of decomposition of a input-state trajectory in
sub-trajectories: a trajectory of length T = 10 is divided in three sub-trajectories of lengths
T1 = 4, T2 = 2, T3 = 4.

Proof. From Lemma 2, there exist vectors α and β1 such that x0 = X0,`1KU,`1α and

uT1 = U`1K0,`1β1, and the corresponding state trajectory in the interval [1, T`1 ] is

xT`1 = X`1KU,`1α+X`1K0,`1β1.

In particular, it holds

x(T`1) = XF,`1KU,`1α+XF,`1K0,`1β1,
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Next, since X0,`2KU,`2 has full row rank, we have

x(T`1) = X0,`2KU,`2γ,

where
γ = (X0,`2KU,`2)†(XF,`1KU,`1α+XF,`1K0,`1β1)

= V1α+ Z1β1.

Thus, using Lemma 2 again, there exist a vector β2 such that the input in the interval

[0, T`1 + T`2 − 1] can be written as

uT`1+T`2
=



U`1K0,`1 0

0 U`2K0,`2






β1

β2


 ,

and the corresponding state trajectory in [1, T`1 + T`2 ] as

xT`1+T`2
=



X`1KU,`1α+X`1K0,`1β1

X`2KU,`2γ +X`2K0,`2β2




=




X`1KU,`1α+X`1K0,`1β1

X`2KU,`2V1α+X`2KU,`2Z1β1 +X`2K0,`2β2




=



X`1KU,`1 X`1K0,`1 0

X`2KU,`2V1 X`2KU,`2Z1 X`2K0,`2







α

β1

β2



.

The expression of xT in (3.18) follows by iterating the previous argument p times and

collecting all βi as β = [βT1 · · ·βTp ]T. A similar reasoning holds for the output trajectory yT .

Intuitively, the data-based representation of the T -steps state and output trajecto-

ries of Lemma 10 is obtained by suitably “gluing” together the data-based representations
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of system trajectories of lengths {T1, . . . , TM}. Note in particular that the horizon T can

be longer than the horizons of the experimental trajectories, thus allowing for the represen-

tation of trajectories that have never been observed during the experiments. As a special

case, when the experimental trajectories have the same horizon, that is M = 1, it is possible

to reconstruct from data system trajectories with horizons equal to any multiple integer of

T1. This is illustrated in the next example.

Example 11 (Data-based representation of trajectories longer than the experi-

mental data as in Lemma 10) Consider the scalar system

x(t+ 1) = ax(t) + u(t), a ∈ R,

and the dataset with horizon T = 2

U1 =




0 1 0

0 0 1


 , X0,1 =

[
1 0 0

]
, X1 =



a 1 0

a2 a 1


 .

It holds

KU,1 =




1

0

0



, K0,1 =




0 0

1 0

0 1



, V1 = a2, Z1 =

[
a 1

]
.

From Lemma 10, for any x0 and u4, there exist α and β such that

x0 = X0,1KU,1α = α, and

u4 = blkdiag(U1K0,1, U1K0,1)β = β,

and the state trajectory with initial condition x0 and input sequence u4 in the interval [1, 4]
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is given by

x4 =



X1KU,1 X1K0,1 0

X1KU,1V1 X1KU,1Z1 X1K0,1






α

β




=




a 1 0 0 0

a2 a 1 0 0

a3 a2 a 1 0

a4 a3 a2 a 1






α

β


 .

�

In addition to providing a new data-based representation of the trajectories of

(2.1) that allows for multiple heterogeneous experiments, Lemma 10 can also be used to

derive data-driven formulas that solve LQ control problems, among others. For instance,

under the assumption of Lemma 10, the data-driven LQ control expression in (6) remains

valid when the dataset DH is used by redefining L and W as follows:

L =



Q1/2Y`1:p

R1/2U`1:p


 , W =



X0,`1KU,`1

Y`1:p,F


 ,

where U`1:p = blkdiag(U`1K0,`1 , . . . , U`MK0,`p), and Y`1:p and Y`1:p,F denote the matrices

consisting of the last pT and p rows, respectively, of the matrix in (3.18).

Remark 12 (Alternative approaches to using heterogeneous datasets) Alterna-

tive data-based representations of system trajectories with heterogenous datasets have been

proposed in [Baggio and Pasqualetti, 2020, van Waarde et al., 2020b]. In [Baggio and

Pasqualetti, 2020], the experimental data consist of inputs, initial and final state recordings

with different time horizons Ti. The resulting data-based representation of state trajectories
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is given in sampled form and exploits a data-based reconstruction of ATi. In [van Waarde

et al., 2020b] a generalization of Willems’ Fundamental Lemma to the case of multiple

trajectories is presented. Differently from the approach proposed in this chapter, the one

in [van Waarde et al., 2020b] does not seem to allow for the computation of trajectories

longer than the experiments. �

3.5 Robustness of data-driven open-loop LQ control

One of the main advantages of the direct data-driven approach with explicit formu-

las presented thus far is the possibility to analytically explore the impact of perturbations

on these formulas and easily compute their sensitivity to parameter variations. In fact, such

an analysis yields a way to quantify and improve the robustness of the direct data-driven

approach to noisy and corrupted datasets. We consider two cases, which differ in the avail-

able knowledge of the statistics of the perturbations affecting the data. Let the perturbed

dataset be

Ũ = U + ∆U ,

X̃0 = X0 + ∆0,

X̃ = X + ∆X ,

Ỹ = Y + ∆Y ,

(3.19a)

(3.19b)

(3.19c)

(3.19d)

where U , X0, X, Y denote the ground truth values as in (2.2) and ∆U , ∆0, ∆X , ∆Y contain

stochastic perturbations. For the purpose of this discussion, we focus on the data-driven

control in (3.6). However, the analysis that follows can be adapted to other data-driven

control expressions.
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3.5.1 Data-driven LQ control with known noise statistics

We start with the standard scenario of i.i.d. perturbations characterized by known

second-order statistics. In particular, we assume that ∆U , ∆0, ∆Y are random matrices

consisting of i.i.d. entries with zero mean and variance σ2
U , σ2

0, and σ2
Y , respectively. In this

setting, the data-driven control (3.6) is not consistent; that is, it does not converge to the

true optimal control input even when the amount of available data grows to infinity. This

lack of consistency is due to the pseudoinverse operation



X̃0

Ũ




†

=



X̃0

Ũ




T





X̃0

Ũ






X̃0

Ũ




T



†

,

which contains quadratic terms (namely, X̃0X̃
T
0 , Ũ ŨT) that, by the law of large numbers,

introduce variance-dependent biases (namely, σ2
0NI and σ2

UNI) as N grows. However, since

the noise variances are known, we can include correction terms in (3.6) that compensate for

these biases and achieve asymptotically accurate data-driven formulas. Specifically, (3.6)

can be modified as follows:



xc0

ucT


 = (P †c )

1
2







In 0

ỸF



X̃0

Ũ




†

c




(P †c )
1
2




†



x0

yf


 , (3.20)
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where

Pc =


Ỹ



X̃0

Ũ




†

c




T

Q


Ỹ



X̃0

Ũ




†

c


+




0 0

0 R


 ,



X̃0

Ũ




†

c

=



X̃0

Ũ




T





X̃0

Ũ






X̃0

Ũ




T

−



σ2

0NIn 0

0 σ2
UNImT







†

,

and the following consistency result holds.

Theorem 13 (Asymptotic consistency of (3.20)). Assume that

(i) the columns of X0 and U are i.i.d. and satisfy the condition (2.4) almost surely as

N →∞, and

(ii) the entries of ∆U , ∆0, and ∆Y are i.i.d. with zero mean and variances σ2
U , σ2

0, σ2
Y .

Then, ucT in (3.20) converges almost surely to u∗T as N →∞.

Proof. By the strong law of large numbers [Van der Vaart, 2000] and the assumptions

(i)-(ii) on the experiments and noise, as N grows, the entries of 1
NX0∆T

0 , 1
NX0∆T

U , 1
NU∆T

0 ,

1
NU∆T

U , 1
N∆0∆T

U tend to zero almost surely, while 1
N∆0∆T

0 and 1
N∆U∆T

U tend to σ2
0I, σ2

UI

almost surely. This implies that, as N →∞,

1

N



X̃0

Ũ






X̃0

Ũ




T

a.s.−−→ 1

N



X0

U






X0

U




T

+



σ2

0In 0

0 σ2
UImT


 , (3.21)

Similarly, by the strong law of large numbers, the entries of 1
N Y∆T

0 , 1
N Y∆T

U , 1
NU∆T

Y ,

1
NX0∆T

Y , 1
N∆U∆T

Y , 1
N∆0∆T

Y tend to zero almost surely with N , so that, as N →∞,

1

N
Ỹ



X̃0

Ũ




T

a.s.−−→ 1

N
Y



X0

U




T

. (3.22)
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Equations (3.21) and (3.22) imply that, as N →∞,

Ỹ



X̃0

Ũ




†

c

=
1

N
Ỹ


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X̃0

Ũ


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T
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1

N


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X̃0

Ũ






X̃0

Ũ




T

−



σ2

0In 0

0 σ2
UImT







†
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

X0

U




T




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X0

U





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X0

U




T



†

= Y



X0

U




†

.

Since the map in (3.20) is a continuous function of Ũ , X̃0, Ỹ at ∆U = ∆0 = ∆Y = 0,

from the previous equation and the continuous mapping theorem [Van der Vaart, 2000],

as N →∞,



xc0

ucT




a.s.−−→P− 1
2





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In 0

YF
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X0

U




†



P−

1
2




†



x0

yf




= P−
1
2






X0

YF






X0

U




†

P−
1
2




† 

x0

yf


 =



x0

u∗T


 ,

where we used the identity X0



X0

U




†

=

[
In 0

]
, which holds when



X0

U


 has full row

rank, and the fact that (2.4) is satisfied almost surely as N →∞.

Fig. 3.5 shows the asymptotic consistency of (3.20), as predicted by Theorem 13,

for a randomly generated system.
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3.5.2 Data-driven LQ control with unknown noise statistics

In the more general case of (possibly correlated) perturbations with unknown

second-order statistics, the robustness of (3.6) can be assessed through a local sensitivity

analysis. Here, we assume for simplicity that the noise acts on the output measurements

only, that is ∆0 = ∆U = 0. However, an analysis similar to the one that follows can be

carried out also for noisy inputs and states. Let

F (U,X0, Y ) =(P †)
1
2






X0

YF






X0

U




†

(P †)
1
2




†

x0

yf


 (3.23)

denote the data-driven control map (3.6) with P as in (3.7), and supp(∆Y ) = {i : δY,i 6=

0}, with δY,i = vec(∆Y )i, denote the set of corrupted entries of Y . Since F is Fréchet-

differentiable with respect to Y at the ground truth data, we can write it through its

Taylor expansion as

F (U,X0, Ỹ ) = F (U,X0, Y ) +∇FY (U,X0, Y )vec(∆Y )

+ r(U,X0, Y,∆Y ), (3.24)

with lim‖∆Y ‖2→0 ‖r(U,X0, Y,∆Y )‖2/‖∆Y ‖2 = 0 and where ∇FY (U,X0, Y ) is the Jacobian

matrix of F with respect to Y calculated at the ground truth data. If the expected norms

of the perturbations are sufficiently small, then (3.24) can be well approximated as (see the

Appendix)

F (U,X0, Ỹ ) ≈ F (U,X0, Y ) +∇FY (U,X0, Y )vec(∆Y ). (3.25)

For notational convenience, let ∇FY,i be the i-th column of ∇FY (U,X0, Y ), and let

∆yf = ‖ỹf − yf‖2
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measure the error induced by the noisy data on the final output ỹf when using the data-

driven control input in (3.25). We next investigate how the sensitivity of the data-driven

map, as quantified by the norm of the Jacobian matrix ∇FY , is related to the data size N .

Lemma 14 (Properties of ‖∇FY ‖2 as a function of N). Assume that the entries of

X0, U are independent4 of N and that σ2
min([XT

0 UT]T) ≥ cN where c > 0 is a constant

independent of N . Then, for all i ∈ supp(∆Y ), ‖∇FY,i‖2 ≤ kY,i/N , where kY,i > 0 are

constants independent of N .

The proof of the above lemma is rather involved and is deferred to the appendix.

The condition σ2
min([XT

0 UT]T) ≥ cN is typically satisfied for random i.i.d. initial conditions

and inputs.5 Thus, Lemma 14 shows that all ‖∇FY,i‖2 typically converge to zero as the

number of experiments N increases. Under this scenario, as additional data become avail-

able, the map F becomes increasingly more robust against corrupted data. This conclusion

is instrumental for the following result, whose proof is postponed to the Appendix.

Theorem 15 (Asymptotic robustness for sublinear number of perturbations).

In addition to the assumptions in Lemma 14, assume also that the entries of ∆Y are in-

dependent of N . Then, if the cardinality of supp(∆Y ) grows sublinearly6 with N , for any

τ > 0,

lim
N→∞

P [∆yf ≥ τ ] = 0. (3.26)

4We say that a random variable x is independent of a deterministic parameter α if the distribution of x
is not a function of α.

5If U and X0 have i.i.d. entries with zero mean and variance σ2, 1
N
σ2

min([XT
0 UT]T) tends almost surely

to σ2 as N tends to infinity by the law of large numbers.
6A sequence {xn} grows sublinearly with n if limn→∞ xn/n = 0.
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Theorem 15 guarantees that the error in the final output decreases to zero when

N increases, regardless of ∆Y (see Fig. 3.6 for a numerical example). This ensures the

robustness of the data-driven control action for small, possibly adversarial, perturbations.

Remark 16 (Comparison with existing approaches). Numerous studies have focused

on developing data-driven controllers that can effectively handle disturbances generated by

worst-case or stochastic noise models. Most of the existing approaches rely on robusti-

fied versions of data-based optimization problems, typically achieved through suitable reg-

ularizations (e.g., see [Coulson et al., 2021, De Persis and Tesi, 2021, Berberich et al.,

2020b,Dörfler et al., 2023,Breschi et al., 2023]) or by leveraging classic robust control tools

(e.g, see [van Waarde et al., 2020a,Bisoffi et al., 2021,Bisoffi et al., 2022,Berberich et al.,

2022]). The distinctive feature of the approach of this chapter lies in the use of closed-

form expressions which allows to asymptotically compensate the influence of noise and to

explicitly characterize the sensitivity of data-driven controls. �

3.6 Conclusions

In this chapter we presented a framework to solve a variety of linear quadratic

control problems for linear systems using a dataset of input, state, and output trajectories

collected offline, and we analyzed the robustness of these solutions to noise and arbitrary

perturbations of the data. Differently from approaches relying on system identification, op-

timization, and policy iteration, in this chapter we proposed a set of closed-form expressions

for optimal and sub-optimal control sequences, which are computationally efficient, insight-

ful, and enable a direct sensitivity analysis of data-driven control. In fact, in some cases,
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these formulas display favorable computational properties even when compared to classic

model-based solutions, while also avoiding the solution of typically implicit and recursive

Riccati equations. This chapter, together with the remaining of this thesis, shows that the

data-driven approach to control may offer solutions that are computationally advantageous

with respect to classic methods in the state-space, frequency, or geometric approaches. How-

ever, a detailed analysis of when data-driven methods should be preferred to classic ones,

a comprehensive comparison of direct and indirect methods, the extension beyond linear

quadratic control, among others, remain outstanding timely questions and potentially in-

teresting research avenues.

3.7 Appendix

The following result, whose proof follows from [Anguluri et al., 2020, Lemma 1],

confirms that when the expected norm of the perturbation ∆Y is small so is the residual r

of the expansion (3.24).

Lemma 17 (First-order approximation of F (U,X0,Ỹ )) Let ∇FY,i be the i-th column

of ∇FY and

Σ = F (U,X0, Ỹ )− F (U,X0, Y )−
∑

i∈supp(∆Y )

δY,i∇FY,i(U,X0, Y ).

Then, for any τ > 0,

lim
E[‖vec(∆Y )‖2]→0

P
[
‖Σ‖2 ≥ τ

√
E[‖vec(∆Y )‖2]

]
= 0.
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Proof of Lemma 14: Let

G =



X0

YF






X0

U




†

and rewrite (3.23) as

F (U,X0, Y ) = P−
1
2

(
GP−

1
2

)†


x0

yf




= P−1GT
(
GP−1GT

)−1



x0

yf


 .

Let yi denote the i-th element of vec(Y ), it holds

∇FY,i=
∂F (U,X0, Y )

∂yi

=
∂P−1

∂yi
GT
(
GP−1GT

)−1



x0

yf




+ P−1∂G
T

∂yi

(
GP−1GT

)−1



x0

yf




+ P−1GT∂
(
GP−1GT

)−1

∂yi



x0

yf


 .

(3.27)

(3.28)

(3.29)
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Notice that

P =


Y



X0

U




†


T

Q


Y



X0

U




†
+




0 0

0 R




=

[
OYT F YT

]T
Q

[
OYT F YT

]
+




0 0

0 R


 ,

G =



In 0

OYF F YF




(3.30)

(3.31)

since (2.4) holds by assumption.

Let ∇F (1)
Y,i denote the matrix in (3.27). This matrix can be written as in (3.32),

where Γi is a nT × N matrix with one entry (corresponding to the element yi) equal to

one and zeros otherwise, and where we used that ∂P−1

∂yi
= P−1 ∂P

∂yi
P−1 (e.g., see [Bernstein,

2009]). From (3.32),

‖∇F (1)
Y,i ‖2 ≤ `

(1)
Y,i

∥∥∥∥∥∥∥∥∥
Γi



X0

U




†
∥∥∥∥∥∥∥∥∥

2

≤ `(1)
Y,i

∥∥∥∥∥∥∥∥∥
Γi



X0

U




T





X0

U






X0

U




T



−1∥∥∥∥∥∥∥∥∥
2

≤ `(1)
Y,i

∥∥∥∥∥∥∥∥∥
Γi



X0

U




T
∥∥∥∥∥∥∥∥∥

2

σ−2
min






X0

U







≤ `(1)
Y,i

∥∥∥∥∥∥∥∥∥
Γi



X0

U




T
∥∥∥∥∥∥∥∥∥

2

1

cN
, (3.35)
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where

`
(1)
Y,1 =2‖P−1‖22‖Q‖2‖

[
OYT F YT

]
‖2·

·

∥∥∥∥∥∥∥∥
P−1GT

(
GP−1GT

)−1



x0

yf




∥∥∥∥∥∥∥∥
2

does not depend on N because of (3.30), (3.31). In the first step of (3.35) we used the

submultiplicativity of matrix 2-norm, in the second step the fact that A† = AT(AAT)−1

when A is full-row rank, the third step follows from the fact that
∥∥A−1

∥∥
2

equals the recip-

rocal of the minimum eigenvalue of A if A is positive definite, and the fourth step from the

assumption on σ2
min([XT

0 UT]T) ≥ cN . Finally, since the matrix Γi

[
XT

0 UT

]
has only one

row different from zero and the entries of such row are independent of N by assumption,

(3.35) implies that ‖∇F (1)
Y,i ‖2 ≤ k

(1)
Y,i/N , where k

(1)
Y,i > 0 is a constant independent of N .

Next, let∇F (2)
Y,i denote the matrix in (3.28). We can write∇F (2)

Y,i as in (3.33), where

Ξi is a matrix with one entry set to one and all other entries set to zero, if yi corresponds

to an entry of YF , and the zero matrix, otherwise. Similarly as before, we have

‖∇F (2)
Y,i ‖2 ≤ `

(2)
Y,i

∥∥∥∥∥∥∥∥∥
Ξi



X0

U




T
∥∥∥∥∥∥∥∥∥

2

1

cN
, (3.36)

where

`
(1)
Y,2 =‖P−1‖22

∥∥∥∥∥∥∥∥

(
GP−1GT

)−1



x0

yf




∥∥∥∥∥∥∥∥
2

does not depend on N . Since the matrix Ξi

[
XT

0 UT

]
is either the zero matrix or has only

one row different from zero and the entries of such row are independent of N by assumption,

(3.36) implies that ‖∇F (2)
Y,i ‖2 ≤ k

(2)
Y,i/N , where k

(2)
Y,i > 0 is a constant independent of N .
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Finally, let ∇F (3)
Y,i denote the matrix in (3.29). We can write ∇F (3)

Y,i as in (3.34).

From the triangle inequality of the 2-norm and along the same lines that led to the upper

bounds on ‖∇F (1)
Y,i ‖2 and ‖∇F (2)

Y,i ‖2,

‖∇F (3)
Y,i ‖2 ≤ `

(3,1)
Y,i

∥∥∥∥∥∥∥∥∥
Γi



X0

U




T
∥∥∥∥∥∥∥∥∥

2

1

cN
+ `

(3,2)
Y,i

∥∥∥∥∥∥∥∥∥
Ξi



X0

U




T
∥∥∥∥∥∥∥∥∥

2

1

cN

≤ k(3)
Y,i/N (3.37)

for suitable positive constants `
(3,1)
Y,i , `

(3,2)
Y,i , k

(3)
Y,i independent of N .

To conclude, from the triangle inequality and the above upper bounds on ‖∇F (1)
Y,i ‖2,

‖∇F (2)
Y,i ‖2, ‖∇F (3)

Y,i ‖2,

‖∇Fy,i‖2 ≤ ‖∇F (1)
Y,i ‖2 + ‖∇F (2)

Y,i ‖2 + ‖∇F (3)
Y,i ‖2 ≤

kY,i
N

where kY,i > 0 is independent of N .

Proof of Theorem 15: By definition of ∆yf ,

∆yf = ‖ỹf − yf‖2 =

∥∥∥∥∥∥
∑

i∈supp(∆Y )

δY,i

[
OYT F YT

]
∇FY,i

∥∥∥∥∥∥
2

,

≤
∑

i∈supp(∆Y )

|δY,i|
∥∥∥∥
[
OYT F YT

]
∇FY,i

∥∥∥∥
2

= ∆yf . (3.38)

By the monotonicity of probability measures, for any τ > 0, the set inclusion {∆yf ≥ τ} ⊆

{∆yf ≥ τ} holds, which implies P [∆yf ≥ τ ] ≤ P
[
∆yf ≥ τ

]
. Note that |δY,i| are non-negative

random variables. Thus, by Markov’s inequality [Van der Vaart, 2000] and the linearity of
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the expected value, for any τ > 0,

P [∆yf ≥ τ ] ≤ P
[
∆yf ≥ τ

]

≤ 1

τ


 ∑

i∈supp(∆Y )

∥∥∥∥
[
OYT F YT

]
∇FY,i

∥∥∥∥
2

E[|δY,i|]




≤ c

τ


 ∑

i∈supp(∆Y )

‖∇FY,i‖2 E[|δY,i|]




≤ c

τ
|supp(∆Y )|max

i
{‖∇FY,i‖2}max

i
{E[|δY,i|]} (3.39)

where c = ‖
[
OYT F YT

]
‖2 and |supp(∆Y )| stands for the cardinality of supp(∆Y ). Since

the distributions of δX,i are independent of N so are E[|δX,i|]. Hence, by (3.39) and Lemma

14, it follows that

P [∆yf ≥ τ ] ≤ kY
τ

|supp(∆Y )|
N

where kY > 0 is a constant independent of N . This concludes the proof.
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σU = 0.5 σU = 1 σU = 2

||uc
T − u∗

T ||
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N

Figure 3.5: This figure shows the asymptotic consistency of equation (3.20) for problem
(3.2). The left panel shows how the controller computed with a noisy dataset with noise
compensation in (3.20) (solid lines) asymptotically converges to the optimal controller u∗T
for (3.2), as opposed to the non-compensated expression in (3.6) (dashed lines), for varying
noise statistics. The experiment is performed over a randomly generated system with n = 5,
m = 3, p = 2 and T = 15. Finally, σ0 = σY = 0.1, while different values of σU are shown
in the legend. The right panel further supports this result by showing how the difference
between P and Pc evolves as the number of experiment increases and the noise in the data
is appropriately accounted for as shown in Theorem 13 (here, σU = 0.5).
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||∆yf||
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Figure 3.6: This figure shows the convergence results of Theorem 15. As implied by the
theorem, although the noise statistics remain unknown, the difference between the desired
final output and that computed with a noisy dataset approaches zero as the number of
experiments increases. The experiment is performed over a randomly generated system
with n = 5, m = 3, p = 2 and T = 15. The noise on the output is additive, gaussian, and
with distribution N (1, 0.5).
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Chapter 4

Estimation of the optimal

state-feedback control from data

When dealing with unknown systems, data can be used to directly learn controllers

with desirable features, thus bypassing system identification, as previous chapters of this

thesis have shown. In this chapter we go a step further and we present strategies to identify

optimal feedback gains of the state for unknown linear systems directly trough closed-form

functions of the data. In particular, when data is sufficiently informative, (i) we find the

control input that minimizes a finite-horizon quadratic function of the states and inputs

and (ii) we show how these inputs enable the estimate of the static feedback controller

that minimizes an infinite-horizon quadratic function, i.e., the Linear Quadratic Regulator.

Our formulas are closed-form, making them computationally efficient and of straightforward

interpretation.

56



4.1 Introduction

Consider once again the dynamical system in (2.1). In this chapter we will focus

on its state evolution, i.e.,

x(t+ 1) = Ax(t) +Bu(t), x(0) = x0, (4.1)

together with the quadratic cost function

J = x(T )>Qx(T ) +

T−1∑

t=0

x(t)>Qx(t) + u(t)>Ru(t), (4.2)

where Q � 0 and R � 0 are the cost matrices associated with the states and controls,

respectively. We assume that (A,B) is controllable and (A,Q
1
2 ) observable. A standard

problem in optimal control is to compute the control sequence u∗T that minimizes J subject

to (4.1). Notice that this problem is a particular instance of the one in discussed in Chapter

3. However, how we shall see, in this chapter we develop an alternative solution which is

better suited for the problem of estimating the LQR gain.

Solutions to the above problem are well known in the model-based setting [Lan-

caster and Rodman, 1995]. For instance, for any finite horizon (T < ∞), the control

sequence minimizing (4.2) can be found through the dynamic feedback of the state

u(t) = K(t)x(t), (4.3)

with

K(t) = −(R+B>P (t+ 1)B)−1B>P (t+ 1)A, (4.4)

and where P (t) is computed backwards in time as

P (t) = Q+A>P (t+ 1)A − A>P (t+ 1)B(R+B>P (t+ 1)B)−1B>P (t+ 1)A, (4.5)
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with terminal condition P (T ) = Q.

When dealing with infinite horizon (T = ∞), the time varying controller (4.3)

reduces to a static feedback

u(t) = K∗x(t), (4.6)

where the LQR gain K∗ is defined as

K∗ = −(R+B>P ∗B)−1B>P ∗A, (4.7)

and where P ∗ is the (unique) positive definite solution to the discrete time algebraic Riccati

equation

P ∗ = Q+A>P ∗A−A>P ∗B(R+B>P ∗B)−1B>P ∗A. (4.8)

In this chapter we seek to compute uT = vec(u(0), . . . , u(T − 1)), with u(t) as in

(4.6) for every time t, for an unknown system with data collected as detailed in Chapter 2.

4.2 Related work

The design of optimal controllers for linear systems has been the focus of extensive

research [Lancaster and Rodman, 1995, Zhou et al., 1996]. From the early days, strategies

to compute quadratically optimal controllers for a known linear system have usually relied

on the iterative computation of Riccati Equations [Kleinman, 1968,Vit, 1972]. Connections

between the open-loop and closed-loop solutions of quadratic optimal controls appeared

in [Diem and Anderson, 1976,Lewis, 1981,Furuta and Wongsaisuwan, 1993].

Recently, data-driven controls have experienced an increasing popularity. With

some notable exceptions [Ziegler and Nichols, 1942], early data-driven controls relied on a
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two-step approach: (i) use data to identify the underlying system’s model [Gevers, 2005]

and (ii) design a controller for the identified system with traditional model-based tools.

Lately, however, this two-steps approach has been challenged by the direct data-driven

approach, in which the system identification step is bypassed by using data to directly

design a controller with desired properties [Willems et al., 2005,Brunton and Kutz, 2019]. A

number of works in this area have proposed data-based solutions to several control problems

for linear systems, including open-loop optimal control [Baggio et al., 2019, Baggio et al.,

2021, Baggio and Pasqualetti, 2020, Monshizadeh, 2020], closed-loop and robust control

[da Silva et al., 2018, van Waarde and Mesbahi, 2020, Markovsky and Rapisarda, 2008, De

Persis and Tesi, 2020, van Waarde et al., 2020, Berberich et al., 2020a, Rotulo et al., 2020],

distributed [Allibhoy and Cortés, 2020, Jiao et al., 2021, Celi et al., 2021], and predictive

control [Coulson et al., 2019, Berberich et al., 2020b]. Differently from most of the cited

literature, e.g., [De Persis and Tesi, 2020,Coulson et al., 2019], the results proposed in this

chapter offer closed-form solutions which have some benefits, for example with respect to

the computational time needed to obtain the solution. Recently, a closed-form data-driven

strategy to find optimal controls appeared in [da Silva et al., 2018]. Differently from [da Silva

et al., 2018] we use data to compute a closed-form solution without identifying the system’s

Markov parameters.

4.3 Closed-form state-output data-driven controls

We rewrite J in (4.2) in compact form as

J = x>T Q̂xT + u>T R̂uT , (4.9)
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for uT = vec(u(0), . . . , u(T − 1)), xT = vec(x(0), . . . , x(T − 1)), and with Q̂ = IT+1 ⊗ Q,

R̂ = IT ⊗ R. We refer to the unique, optimal, control input minimizing J as u∗T for given

initial condition x(0) = x0.

Theorem 18 (Data-driven optimal control) Let X0, X and U be as in (2.2). Let

K0 = Basis(Ker(X0)) and KU = Basis(Ker(U)). Then, given x0, Q � 0 and R � 0, the

control input u∗T minimizing (4.2) is

u∗T = −UK0S
†(XK0)>Q̂XKU (X0KU )†x0, (4.10)

with

S = (XK0)>Q̂(XK0) + (UK0)>R̂(UK0). (4.11)

Moreover, the corresponding optimal state trajectory is

x∗T = X(KU −K0S
†(XK0)>Q̂XKU )(X0KU )†x0. (4.12)

Proof. Notice that, by virtue of Lemma 2, there always exist α and β such that

J =



α

β




> 


(XKU )>Q̂(XKU ) (XKU )>Q̂(XK0)

(XK0)>Q̂(XKU ) S






α

β


 ,

where S is as in (4.11). We now show that the following hold

S � 0

Ker(S) ⊆ Ker
(

(XKU )>Q̂(XK0)
)
.

(4.13)

(4.14)
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Clearly, S � 0 holds by construction. Then, rewrite S =



XK0

UK0




> 

Q̂ 0

0 R̂






XK0

UK0


 and

notice that if v ∈ Ker(S) then v>Sv =

∥∥∥∥∥∥∥∥



Q̂1/2XK0

R̂1/2UK0


 v

∥∥∥∥∥∥∥∥

2

2

= 0. Therefore it must hold

that Q̂1/2(XK0)v = 0 and that (XKU )>Q̂(XK0)v = 0, concluding that v also belongs to

Ker
(

(XKU )>Q̂(XK0)
)

. When (4.13)-(4.14) hold, by Lemma [Furuta and Wongsaisuwan,

1993, Lemma A.2], J admits a minimum in β and J can be further decomposed as

J =



α

β




> 

I Γ>

0 I







Π 0

0 S






I 0

Γ I






α

β


 (4.15)

where

Γ = S†(XK0)>Q̂(XKU ),

Π = (XKU )>Q̂(XKU )− (XKU )>Q̂(XK0)Γ. (4.16)

From (4.15), J = α>Πα + (β + Γα)>S(β + Γα), which yields minβ J = α>Πα and hence

the β minimizing J is

β = −Γα = S†(XK0)>Q̂(XKU )α. (4.17)

By substituting α = (X0KU )†x0 and uT = UK0β (cf. Lemma 2) back into (4.17) one

obtains equation (4.10). Finding x∗T in (4.12) follows an equivalent reasoning.

Theorem 18 shows how to compute the optimal control u∗T through data alone.

We remark that (4.10) is a closed-form solution which relies solely on data gathered from

independent and non-optimal experiments of (4.1). This is an extension of the results

in [Baggio et al., 2021] as here we do not assume x0 = 0 and we do not impose a desired

final condition in (4.2). For the sake of simplicity, we assumed that data (2.2) is collected
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without noise. It is natural to ask how (4.10) would perform with noisy data. If some

prior knowledge about the noise is available, such as its distribution, expression (4.10) can

be modified to obtain asymptotically correct data-driven formulas. A strategy to achieve

this has been shown in [Baggio et al., 2021] and its extension to (4.10) is straightforward.

A closed-form data-driven procedure for u∗T appeared recently in [da Silva et al., 2018].

However, the solution proposed in [da Silva et al., 2018] requires the identification of the

Markov parameters of (4.1) (i.e., of matrices OXT and FXT ). On the contrary, the approach

proposed in Theorem 18 bypasses the identification step altogether thanks to the formulation

of Lemma 2.

4.4 Convergence to the LQR gain

We now show how to estimate the LQR gain from a set of finite experiments. We

do this by designing a gain thanks to the results of Theorem 18, and by showing that it

converges exponentially fast to the LQR gain (4.7).

Theorem 19 (Data-driven estimate of the LQR gain I) Let X0, X and U be as

in (2.2). Given x0 6= 0, Q � 0 and R � 0, let u∗T and x∗T be as in (4.10) and (4.12),

respectively. Let UT =

[
u(0) · · · u(T − 1)

]
and XT =

[
x(1) · · · x(T )

]
, and assume

that XT is full-row rank for some t̄ ≤ T . Then

lim
T→∞

UTX
†
T = K∗. (4.18)

where K∗ is in (4.7). Moreover, there exist c > 0 and 0 < ρ < 1 independent of T such

62



that

∥∥∥UTX†T −K∗
∥∥∥ ≤ cρT . (4.19)

Proof. From ut = Ktxt in (4.3) (were for simplicity we let u(t) = ut) we can rewrite

UTX
†
T =

[
K0x

∗
0 · · · KT−1x

∗
T−1

]
X†T . Then, for ∆Kt = Kt −K∗ we can write, ∀ T ≥ t̄

UTX
†
T −K∗ = [K0x

∗
0 · · · KT−1x

∗
T−1]X†T −K∗

= K∗XTX
†
T+∆TX

†
T −K∗ = ∆TX

†
T , (4.20)

where ∆T = [∆K0x
∗
0 · · · ∆KT−1x

∗
T−1] and where we used the fact that XTX

†
T = I since

XT is full-row rank. We now study the convergence of the above two terms ∆T and X†T .

We now show that norm of the first term of (4.20) converges exponentially fast

‖∆T ‖2 ≤
T−1∑

i=0

‖∆Ki‖2 ‖x∗i ‖2

≤
T−1∑

i=0

(c2
1µ

2(T−i−1))(c2
2λ

2i)

= (c1c2)2µ2(T−1)
T−1∑

i=0

(
λ

µ

)2i

= (c1c2)2µ2(T−1) 1− (λ/µ)2T

1− (λ/µ)2

=
(c1c2)2

1− (λ/µ)2

[
µ2(T−1) − λ2(T−1)

µ2

]

≤c̄1(max{µ, λ})2T

for a suitable c̄1 ∈ R+ independent of T and for λ, µ such that 0 < λ < 1, 0 < µ < 1.1

In the second inequality we used the fact that ‖∆Kt‖ (resp. ‖x∗i ‖) converges exponentially

fast according to Lemma 24 (resp. Lemma 25). Further, the norm of the second term in

1We implicitly assumed that λ 6= µ. When λ = µ it can be shown that ‖∆T ‖2 ≤ c̄1(λ + ε)2T , for c̄1
independent of T and ε > 0 arbitrarily small.
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(4.20) is bounded by ∥∥∥X†T
∥∥∥

2
=
∥∥∥X>T (XTX

>
T )−1

∥∥∥
2

≤
∥∥∥X>T

∥∥∥
2 ∥∥∥(XTX

>
T )−1

∥∥∥
2
≤ c̄2

with c̄2 ∈ R+ is independent of T , and where we used the fact that ‖XT ‖2 ≤
∑T

i=0 ‖x∗i ‖2 ≤
∑T

i=0 c
2
2µ

2i ≤ c2
2

1
1−µ2 and

∥∥(XTX
>
T )−1

∥∥2 ≤ 1
λmin(XTX

>
T )2 ≤ 1

λmin(Xt̄X
>
t̄

)2 , which are both

constant and not time-dependent.

Therefore

∥∥∥UTX†T −K∗
∥∥∥

2
=
∥∥∥∆TX

†
T

∥∥∥
2
≤ c̄2c̄1(max{µ, λ})2T ,

which concludes the proof.

Theorem 19 shows how the gain

KCF = UTX
†
T , (4.21)

which is computed through a closed-form direct-data driven formula, converges exponen-

tially fast to the LQR gain.

Next, we propose an alternative approach to the same problem. The next results

allows further to explicitly compute the any element of the sequence of dynamic feedback

controller (4.4).

Theorem 20 (Data-driven estimate of the LQR gain II). Let Ut and Xt be the

submatrices of U and X in (2.2) obtained by selecting only the inputs and states at time t,
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Figure 4.1: This figure shows the convergence of KCF in (4.21) to K∗ in (4.7). The under-
lying system is that of Example 22. For each choice of time horizon T we plot ‖K∗ −KCF‖
on a logarithmic scale.

and define the matrices L =

[
(Q1/2XK)T (R1/2UK)T

]T
, and

Ut = UtK(IN −KW (LKW )†L)W †,

Xt =





I, t = 0,

XtK(IN −KW (LKW )†L)W †, t > 0,

(4.22)

(4.23)

with W = X0K and KW = Basis(Ker(W )). Then,2

Kt
LQR = Ut(Xt)

−1. (4.24)

Proof. First, we provide a data-driven solution to the problem in (4.2). Following a

procedure similar to the proof of Theorem 6, the above can be written as in (3.4), with

γ = β, L =



Q1/2X

R1/2U


 , W = X0K, and z = x0.

2We assume here that the matrix A is invertible, which guarantees that Xt is also invertible. When Xt

is not invertible, the gain Ut(Xt)
† generates the input sequence that solves the LQ problem at hand, but it

may differ from the gain Kt
LQR.
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Then, the optimal input and state trajectories of for a given x0 can then be computed as

u∗T = UK(IN −KW (LKW )†L)W †x0,

x∗T = XK(IN −KW (LKW )†L)W †x0.

Let Ut and Xt be as in (4.22). Notice that the i-th column of Xt equals the state at time

t of the optimal state trajectory for (4.2) with initial state given by the i-th column of the

identity matrix. Then, Ut = Kt
LQRXt. To conclude, we show that if A is invertible then

Xt is invertible. To this end, let At = A+BKt
LQR denote the (time-varying) state matrix

of the closed-loop system and notice that

At = (I −B(Rt +BTPt+1B)−1BTPt+1)︸ ︷︷ ︸
Ht

A, (4.25)

where Pt � 0 satisfies the Riccati equation (4.5). Using the push-through identity (I +

XY )−1X = Y (I + Y X)−1, which holds for any matrices X, Y such that (I + XY ) is

invertible [Bernstein, 2009, Fact 2.16.16], Ht can be written as

Ht = I −B(Rt +BTPt+1B)−1BTPt+1

= I −BR−1
t (I +BTPt+1BR

−1
t )−1BTPt+1

= I −BR−1
t BTPt+1(I +BR−1

t BTPt+1)−1.

From the last identity it follows that

Ht(I +BR−1
t BTPt+1) = I,

which implies that Ht is invertible with inverse H−1
t = I + BR−1

t BTPt+1. Finally, observe

that, for t ≥ 1,

Xt = At−1At · · ·A0 = Ht−1AHt−2A · · ·H0A.

Since the product of invertibile matrices is invertible, it follows that if A is invertible then

Xt is invertible.
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Figure 4.2: This figure supports the results of this chapter. In particular, we compute
K0
LQR using Theorem 20 for increasing T . As expected from (4.26) the distance between

U0 and KLQR, computed as the 2-norm of their difference, decreases as T grows. The
experiment is performed over a randomly generated system with n = 5 and m = 2.

The above result allows us to compute any element of the sequence of time-varying

controllers Kt
LQR as long as t ≤ T , where T is the horizon of the available dataset (2.2).

Interestingly, Theorem 20 only uses forward trajectories of the system and provides a closed-

form, explicit expression of the LQR gains, thus avoiding the use of recursive, implicit

Riccati equations or backward-in-time dynamic programming. We highlight that K0
LQR

converges to the steady state gain KLQR as T increases (see also Fig. 4.2). In particular,

we have

‖U0 −KLQR‖2 ≤ cρT , (4.26)

where c > 0 and 0 < ρ < 1 are suitable constants independent of t [Lancaster and Rodman,

1995].

Remark 21 (Related work on data-driven LQ control) Linear quadratic control

has received the most attention in the recent data-driven control literature. As opposed

to the direct and closed-formulas discussed in this chapter and, e.g., in [Pellegrino et al.,

2023a, Pellegrino et al., 2023b], most approaches in the literature rely on indirect schemes
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[da Silva et al., 2018, Aangenent et al., 2005], where a model of the system is first iden-

tified, optimization-based schemes [De Persis and Tesi, 2020, Coulson et al., 2019, Rotulo

et al., 2020, Dörfler et al., 2022], or iterative schemes inspired by reinforcement learn-

ing approaches [Recht, 2019, Abbasi-Yadkori et al., 2019, Bradtke et al., 1994, Fazel et al.,

2018,Gravell et al., 2020,Dean et al., 2020,Mohammadi et al., 2019], among others. Alter-

native data-driven approaches to Theorem 20 to compute feedback gains can be found, among

others, in [De Persis and Tesi, 2020, Celi and Pasqualetti, 2022b, Al Makdah et al., 2022]

and [Celi et al., 2023b, Bianchin, 2023], which solve the general eigenstructure assignment

problem via static feedback in a purely data-driven manner. �

4.5 Numerical analysis

We now analyze the results from this chapter by means of numerical simulations.

We begin by implementing Theorem 18 for a reference system.

Example 22 (Finite-time optimal control) We consider the discretized version of a

batch reactor system (with sampling time of 0.1s), as in [De Persis and Tesi, 2020], where

A =




1.178 0.001 0.511 −0.403

−0.051 0.661 −0.011 0.061

0.076 0.335 0.560 0.382

0 0.335 0.089 0.849



, B =




0.004 −0.087

0.467 0.001

0.213 −0.235

0.213 −0.016



,

which is open-loop unstable. We set T = 15 and perform a series of N = n + mT = 34

experiments such that X0 and U satisfy 2.4. For x0 = 1>, Q = I, R = I, we let J∗CF be the

cost obtained by letting the system evolve according to the optimal control (4.10), and J∗MB
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be the cost obtained by solving (4.2) numerically (model based). We find that J∗CF = 22.593,

with ‖J∗MB − J∗CF‖ ≤ 10−12. �

Next, we implement the result from Theorem 19 and compare it to the recent data

driven LQR solution proposed in [De Persis and Tesi, 2020]. We remark once more the key

conceptual difference between the two approaches: while both methods are based on data,

the approach presented here is closed-form, whereas the one in [De Persis and Tesi, 2020]

is based on an optimization problem solved through LMIs.

Example 23 (Estimating the LQR gain) Consider the system of Example 22, now

with the goal of estimating the optimal LQR gain (4.7). We let KCF be as in (4.21), KDD

be the result of [De Persis and Tesi, 2020, Theorem 4], and K∗ be (4.7) obtained through

the model (we use idare in MATLAB). For T = 15 we find ‖K∗ −KCF‖ ≈ 10−2 (resp

‖K∗ −KDD‖ ≈ 10−7) obtained with a computational time in the order of 10−2s (resp 1s).

All computations were performed on an Apple M1 - 3.2 GHz - 8 cores processor. �

We remark two notable outcomes: (i) solution (4.21) is faster to compute, since

it is explicit and it does not rely on the solution of an optimization problem. However,

(ii) it is less precise, since it only holds asymptotically. This can be improved by increasing

the time horizon T . Repeating Example 23 for T = 35 we obtain ‖K∗ −KCF‖ ≈ 10−6 (see

Fig. 4.1) and ‖K∗ −KDD‖ ≈ 10−7, with computational times in the order of 10−2s and

1s, respectively. This shows that for big enough values of T the two methods achieve a

comparable precision in estimating the LQR feedback K∗. At the same time, the method

proposed in this chapter is computationally more efficient.
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T = 15, T = 20, T = 25, T = 30,

Figure 4.3: In this figure we show the performance of (4.21) when concatenating multiple
trajectories as proposed in Section 4.5. The underlying system is generated randomly, with
n = 16, m = 4. For each combination of time horizon T and number of concatenated
trajectories r we plot ‖K∗ −KCF‖ on a logarithmic scale, where K∗ is the LQR gain (4.7).

We now discuss how Theorem 19 performs when estimating the optimal feedback

K∗ for systems of increasing size n. Although Theorem 19 holds for any n, there are practical

implementation issues that need addressing. Intuitively, larger systems will require a longer

horizon T to obtain an accurate estimate of K∗. At the same time, the optimal state

trajectory x∗t vanishes exponentially fast, causing XT in (4.21) to become ill-conditioned.

This, in practice, renders the estimation of K∗ imprecise for large n. One could mitigate this

numerical issue by using higher precision when computing the optimal controller. However,

this is not always practical. To overcome this issue, we propose a strategy to overcome

these numerical issues arising for large values of n (see Fig. 4.3 for a numerical validation

of this approach).

In particular, we propose the following strategy: (i) collect data , (ii) choose a fam-

ily of initial conditions xi0 with i = {1, . . . , r}, and find ({u(t)i}T−1
t=0 ) = {u∗T in (4.10) | x0 =

xi0} (resp. ({x(t)i}T−1
t=0 ) = {x∗T in (4.12) | x0 = xi0}), (iii) let Ui =

[
u(0)T · · · u(T − 1)T

]T
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Figure 4.4: This figure shows the performance of the approach described in Theorem 19
(direct) to estimate the LRQ gain K∗ for systems of increasing size. In the top panel we
plot the error of the estimated KCF (4.21) as ‖K∗ −KCF‖ when one optimal trajectory is
used (upwards triangles) and when five optimal trajectories are used (downwards triangles),
see Section 4.5. In the bottom panel we plot the computational time to run the algorithm
(in seconds). We compare this to the strategy proposed in [De Persis and Tesi, 2020]
(dots). We notice how our approach scales comparatively when estimating K∗, at least
when multiple trajectories are used. At the same time (4.21) offers a more computationally-
efficient strategy, especially for larger values of n. The simulation parameters are m = 5,
T = 150, N = mT + n. The system matrices are generated randomly for each n.

(resp. Xi =

[
x(0)T · · · x(T − 1)T

]T
), for all i, and UT = [U1 · · · Ur] (resp. XT =

[X1 · · · Xr]), and finally, (iv) compute K∗ as in (4.21), through the concatenated values of

UT and XT .

We notice that the above strategy does not require the collection of more experi-

mental data, but simply to compute a collection of optimal trajectories through the already

available data. Moreover, inputs xi0 do not have to satisfy any particular requirement and

can be chosen randomly. Fig. 4.4 shows a numerical implementation of this idea and com-

pares it to [De Persis and Tesi, 2020]. We show how (4.21) works for small systems, but

quickly starts underperforming with respect to [De Persis and Tesi, 2020] when n increases.
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However, when 5 trajectories are concatenated as discussed above, our approach achieves

a level of precision comparable to that of [De Persis and Tesi, 2020], while maintaining

efficient computational times.

4.6 Conclusions

In this chapter we discussed a novel solution to the problem of computing optimal

controllers directly from sampled data of an unknown linear system. When sufficient data

are available, we show that this approach finds the exact solution minimizing a quadratic

control objective of the states and inputs. This result can also be used to estimate a static

feedback controller that converges to the LQR gain exponentially fast. Finally, we validate

these findings through a series of numerical simulations and highlight the computational

efficiency of the approach. In the next chapter we will study another classical problem in

control theory, i.e., eigenstructure assignment. We will also propose an approach for pole

placement with sparsity constraints on the feedback gain.

4.7 Appendix

With a slight abuse of notation, in this appendix we refer to the entry at time t

of a sequence xT as xt instead of x(t).
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4.7.1 Convergence to static optimal controller

Lemma 24 (Convergence of (4.4) to (4.7)) For given T , let Kt and K∗ be as in (4.4)

and (4.7), respectively. Then,

‖KT−t −K∗‖ ≤ c1µ
t, (4.27)

for 0 < µ < 1 and finite c1 ∈ R+.

Proof. For fixed T , let Pt be as in (4.5) with PT = Q, and let P ∗ be as in (4.8). It is

known [Kailath et al., 2000, Theorem 14.5.1] that

‖PT−t − P ∗‖ ≤ η2tp, (4.28)

0 < η < 1 and finite p ∈ R+. Let FT−t = B>PT−tB + R (resp. F = B>P ∗B + R) and

GT−t = B>PT−tA (resp. G = B>P ∗A), and from (4.4) notice that KT−t = F−1
T−tGT−t. It

follows that
‖GT−t −G‖ ≤ η2tp ‖B‖ ‖A‖ = η2tp1

∥∥F−1
T−t − F−1

∥∥ ≤
∥∥F−1

T−t
∥∥ ‖F − FT−t‖

∥∥F−1
∥∥

≤
∥∥F−1

T−t
∥∥
∥∥∥B>

∥∥∥ η2tp ‖B‖
∥∥F−1

∥∥ = η2tp2,

for some positive, finite, scalars p1, p2. Now consider H = (F−1
T−t − F−1)(G + GT−t) and

notice that ‖H‖ ≤ η2tp3, for some positive finite scalar p3. We find the following

F−1
T−tGT−t − F−1G = F−1GT−t − F−1

T−tG+H

= F−1GT−t − F−1
T−tG+H−

− F−1G+ F−1G

= F−1(GT−t −G)−

(F−1
T−t − F−1)G+H.
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Finally, we can derive

‖KT−t −K∗‖ =
∥∥F−1

T−tGT−t − F−1G
∥∥

≤ ‖H‖+
∥∥F−1

T−t − F−1
∥∥ ‖G‖+

+
∥∥F−1

∥∥ ‖GT−t −G‖

≤ c1µ
t,

where 0 < µ < 1, and c1 ∈ R+ <∞.

4.7.2 Exponential convergence of the state

It is easy to see that for the optimal feedback K∗ in (4.7), and for any initial

condition, xt+1 = (A+BK∗)xt converges to zero exponentially fast [Lancaster and Rodman,

1995]. We now show an equivalent result for xt+1 = (A + BKt)xt, controlled through the

time varying Kt in (4.4).

Lemma 25 (Exponential convergence of x(t) with dynamic feedback) Let the

initial condition be x0 and let xt+1 = (A+BKt)xt, with Kt in (4.4). Then

‖xt‖ ≤ c2λ
t, (4.29)

for 0 < λ < 1 and finite c2 ∈ R+.

Proof. We write
xt+1 = (A+BKt)xt

= (A+BK∗)︸ ︷︷ ︸
F

xt +B(Kt −K∗)︸ ︷︷ ︸
Gt

xt,

where F is stable andGt is a vanishing perturbation. In fact, from Lemma 24, ‖B(Kt −K∗)‖ ≤

‖B‖ ‖Kt −K∗‖ ≤ c1µ
T−t. Then, for any arbitrarily small ε > 0 there exist sufficiently large
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T ∗ and t̄ < T ∗ such that ‖Gk‖ ≤ ε for k = {0, . . . , T − t̄}, ∀T ≥ T ∗. We can then write the

state at any time t = {t̄, . . . , T} as

xt =
t−1∏

k=0

(F +Gk)x0

=
t∏

k=T−t̄

(F +Gk)
T−t̄−1∏

k=0

(F +Gk)x0,

and hence

‖xt‖ ≤ q ‖xT−t̄‖ ,

where q ∈ R+, and where we used the fact that
∏t
k=T−t̄(F +Gk) is bounded in norm since

it is a product of finite terms. To show the exponential convergence of ‖xt−t̄‖ consider the

quadratic Lyapunov function V (x) = x>Px, with P � 0. Then,

∆V (x) = V (xt+1)− V (xt)

= x>t+1Pxt+1 − x>t Pxt

= x>t (F>PF − P )xt + 2x>t FPGtxt

+ x>t GtPGtxt

≤ λmax(F>PF − P ) ‖xt‖2 +

2 ‖F‖ ‖P‖ ‖Gt‖ ‖xt‖2 + ‖Gt‖2 ‖P‖ ‖xt‖2

≤ (−q + 2ε ‖F‖ ‖P‖+ ε2 ‖P‖) ‖x‖2

where we used the fact that
∥∥F>PF − P

∥∥ ≤ λmax(F>PF − P ) < −q < 0 and from which

we can conclude that (−q+2ε ‖F‖ ‖P‖+ε2 ‖P‖) ‖x‖2 < 0 for ε small enough, which always

exists for large enough T . When ε is small enough, therefore, ∆V (x) < 0, for all x 6= 0,

ensuring the exponential stability of xt, i.e., ‖xt‖ ≤ c2λ
t [Khalil, 2002].
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Chapter 5

Data-driven eigenstructure

assignment & sparse pole

placement

In this chapter we present a novel approach for solving the pole placement and

eigenstructure assignment problems through data-driven methods. By using open-loop data

alone, we show that it is possible to characterize the allowable eigenvector subspaces, as well

as the set of feedback gains that solve the pole placement problem. Additionally, we propose

a closed-form expression for the feedback gain that solves the eigenstructure assignment

problem. Finally, we discusses a series of optimization problems aimed at finding sparse

feedback gains for the pole placement problem.
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5.1 Introduction

As shown so far in this work, data-driven control has been applied extensively in

optimal control. However, despite the popularity of data-driven control, the problems of

data-driven pole placement and eigenstructure assignment have not enjoyed the same de-

gree of attention, and have remain unexplored until recently [Celi et al., 2023b,Mukherjee

and Hossain, 2022, Bianchin, 2023]. The traditional (i.e., model-based, non-sparse) pole

placement and eigenstructure assignment problems have a rich history, including in prac-

tical applications [Innocenti and Stanziola, 1990, Andry et al., 1983]. The pole placement

(eigenstructure assignment) problem consists in finding a static feedback gain that produces

a closed-loop system where the state matrix has a pre-specified set of eigenvalues (eigen-

values and eigenvectors) [Liu and Patton, 1998]. We refer to the seminal works [Wonham,

1967,Wonham and Morse, 1970,Moore, 1976,Klein and Moore, 1977,Kautsky et al., 1985]

and to the recent papers [Padula et al., 2021,Teoh et al., 2022], which highlight the ongoing

interest in these topics.

In general, the feedback gain which solves the pole placement problem is not

unique, adding a certain degree of freedom on its choice. This can be leveraged to enforce

further control objectives, for example, by imposing a sparsity pattern on the feedback

gain itself. By using a feedback with predefined sparsity patterns, or by maximizing the

overall number of zero entries of the feedback gain, the number of feedback signals can be

reduced while still achieving the desired closed-loop behavior. This can be advantageous in

applications where the number of sensors or feedback signals is limited as, for example, in

complex network systems [Lin et al., 2011].
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In this chapter, we address these problems and show that it is possible to place

the closed-loop eigenvalues exactly at any desired location by designing a static feedback

gain through open-loop data alone, i.e., without explicit knowledge of the system matrices.

Further, we show that the static gain for eigenstructure assignment can be found through a

closed-form data-driven expression. Finally, we apply these results to the design of sparse

feedback gains.

5.2 Related work

Despite the recent advancements in data-driven control theory [Baggio et al., 2019,

Coulson et al., 2019, De Persis and Tesi, 2020], to the best of our knowledge, the only

works discussing data-driven strategies for pole placement and eigenstructure assignment

are [Mukherjee and Hossain, 2022] and [Bianchin, 2023]. Both [Mukherjee and Hossain,

2022,Bianchin, 2023] are based on the behavioral approach [Polderman and Willems, 1997]

and rely on the Fundamental Lemma [Willems et al., 2005] to characterize the behavior

of a linear system from a single, long, experimental trajectory. In contrast, our approach

collects data from multiple trajectories, which has proven advantageous, e.g., when dealing

with unstable systems, since shorter trajectories can be leveraged. A detailed analysis of

the benefits of using multiple (shorter) trajectories over a single trajectory in control and

reinforcement learning can be found in [Tu et al., 2022]. It is worth noting that [Mukherjee

and Hossain, 2022] uses Linear Matrix Inequalities to solve the problem of pole placement

and it does not offer any closed-form solution, while [Bianchin, 2023] does not discuss

a characterization of the set of static feedbacks for pole placement. Additionally, neither
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[Mukherjee and Hossain, 2022] nor [Bianchin, 2023] provide any insights on designing sparse

feedback gains, which is a relatively unexplored topic even in the model-based framework

[Lin et al., 2011, Katewa and Pasqualetti, 2021]. This knowledge gap further motivates

our interest in this problem. In [Eising and Cortés, 2022], the authors propose a data-

driven approach to designing sparse stabilizing feedback gains, however this method does

not assign specific eigenvalues/eigenvectors as we do in this chapter. Recently, the System

Level Approach to Controller Synthesis has proposed a set of tools for designing constrained

robust, sparse, and optimal controllers, see [Wang et al., 2019]. However, the System

Level Approach is based on designing a dynamic compensator, while the problems of pole

placement and eigenstructure assignment are based on static feedback gains [Liu and Patton,

1998].

5.3 Pole placement and eigenstructure assignment

We focus on the dynamical system in (2.1), and in particular, on its state evolution

x(t+ 1) = Ax(t) +Bu(t), x(0) = x0, (5.1)

where x(t) ∈ Rn and u(t) ∈ Rm are the state and input vectors, respectively, at time t ∈ N,

with A ∈ Rn×n and B ∈ Rn×m, and where we assume that Rank(B) = m. In this chapter

we study the problem of computing a controller K ∈ Rm×n which shapes the closed loop

trajectory

x(t+ 1) = (A−BK)x(t) (5.2)
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according to some design objectives. We assume that the model of the dynamical system,

i.e., matrices A and B, is not available and, instead, we leverage a series of offline open-loop

trajectories as described in Chapter 2.

In the following we let L = {λ1, . . . , λn} be the set of desired closed-loop eigenval-

ues and V = {υ1, . . . , υn} be the set of desired closed-loop eigenvectors, with λi ∈ C and

υi ∈ Cn, for all i ∈ {1, . . . , n}.1

Assumption 26 (Properties of closed-loop eigenvalues and eigenvectors) We as-

sume that the set of desired eigenvalues L of A−BK is closed under complex conjugation,

and that, for each eigenvalue, the geometric multiplicity matches the algebraic multiplicity.

Eigenvectors corresponding to complex conjugate eigenvalues are complex conjugate. �

We leave the problem of generalizing the results of this chapter to eigenvalues with

different geometric and algebraic multiplicity as the focus for future research, and note that

the condition on the multiplicity of the eigenvalues in Assumption 26 is met when the

elements of L are distinct.

A well-known limitation of the eigenstructure assignment problem is that it does

not allow for arbitrary selection of eigenvalue/eigenvector pairs through feedback gain K.

Instead, the choice of each eigenvector is constrained to a specific subspace within the

system’s state space. This restriction is formally expressed in the following theorem.

Theorem 27 (Feasibility of eigenstructure assignment [Liu and Patton, 1998])

Using the control law u(t) = −Kx(t) for system (5.1) n eigenvalues of A − BK may be

assigned and m entries of each corresponding eigenvector can be chosen freely. �
1Although both left and right eigenvectors can be considered, in this chapter we shall refer to the right

eigenvectors.
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Theorem 27 ensures that the eigenvalues in L = {λ1, . . . , λn} can be freely as-

signed, but restricts the choice of each eigenvector υi ∈ Rn in V = {υ1, . . . , υn} to a

subspace Pi ⊆ Rn, termed the allowable eigenvector subspace [Liu and Patton, 1998]. We

recall a second fundamental result which ensures the existence and uniqueness of K un-

der certain conditions.

Theorem 28 (Uniqueness of feedback for eigenstructure assignment [Moore,

1976]) Let L = {λ1, . . . , λn} and V = {υ1, . . . , υn}, with υi ∈ Pi, be the set of desired

closed-loop eigenvalues and eigenvectors, with Rank(

[
υ1 · · · υn

]
) = n. Let Assumption

26 hold, and let Rank(B) = m. Then, the matrix K such that A−BK has eigenvalues in

L and eigenvectors in V exists and is unique. �

In the pole placement problem, the set of desired closed-loop eigenvectors is not

specified. This leaves some degrees of freedom in the selection of the columns of V, as long

as υi ∈ Pi (cf. Theorem 29). In general, the matrix K in the pole placement problem

is, therefore, not unique. In the next section we give a data-driven expression for Pi, as

well as a data-driven characterization of the set of matrices K such that ρ(A − BK) = L.

Further, we show that the unique K can be found as a closed-form function of the data

for the eigenstructure assignment problem. In Section 5.5 we leverage the flexibility on K

for the pole placement problem, by introducing additional design goals, i.e., by enforcing

sparsity constraints on K.
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5.4 Data-driven pole placement and eigenstructure assign-

ment

We begin with a data-driven expression to compute Pi, the allowable eigenvector

subspace associated with eigenvalue λi for system (5.1). That is, we wish to find the

subspace Pi such that (A−BK)υi = λiυi, for all υi ∈ Pi, and some K. We remark that Pi

is independent of K [Liu and Patton, 1998], and in this work we compute Pi without any

explicit knowledge of system matrices A and B, but by leveraging only offline data (2.2).

Throughout this chapter, given λi ∈ L, we define

Λi =

[
I λiI λ2

i I · · · λT−1
i I λTi I

]>
∈ Rn(T+1)×n, (5.3)

and matrices Z =

[
InT 0nT×n

]
(i.e., the matrix that extracts the first nT rows from Λi)

and W =

[
0nT×n InT

]
(i.e., the matrix that extracts the last nT rows from Λi).

Theorem 29 (Data-driven allowable eigenvector subspace) Let λi be a desired

closed-loop eigenvalue. The eigenvector associated with λi belongs to the following subspace:

Pi = X0KU

[
I 0

]
Ker

([
XKU −WΛiX0KU XK0

])
. (5.4)

Proof. First, we notice that if λi and υi are an eigenvalue and the corresponding eigenvector

of A−BK, then the following must hold

(A−BK)υi = λiυi. (5.5)

Further, only a trajectory xT starting in υi will always remain in υi when evolving according

to (5.2). That is, if and only if x(0) = υi ∈ Pi, then x(t) ∈ Im(υi) for all times t, and
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x(t+ 1) = λix(t). For a trajectory of length T , this can be written as

xT =




λiI

λ2
i I

...

λTi I




x(0) =

[
XKU XK0

]


α

β


 (5.6)

if and only if x(0) ∈ Pi. From the rightmost equality in (5.6) and by noticing that x(0) =

X0KUα (cf. Lemma 2) one can conclude that x(0) ∈ Pi if and only if α and β verify



α

β


 ∈ Ker

([
XKU −WΛiX0KU XK0

])
. (5.7)

Extracting α from (5.7) and recalling that

x(0) = υi = X0KUα, (5.8)

concludes the proof.

Through Theorem 29 one can write the allowable eigenvector subspace associated

to eigenvalue λi for a closed-loop dynamics (5.2) as a function of the open-loop data (2.2).

However, Theorem 29 cannot be used to compute a static feedback controller K. In fact,

simply imposing uT = UK0β with β as in (5.7) might result in an input generated by a

non-static feedback. Next, we give a condition that restricts the choice of β so that uT is

the result of a static feedback of the state, i.e., u(t) = −Kx(t). Specifically, in Theorem

30 we characterize the set of all static feedback K that precisely place the eigenvalues of

A−BK to the desired set L.

Theorem 30 (Data-driven pole placement) Let L = {λ1, . . . , λn} be the set of desired
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closed-loop eigenvalues. Then, ρ(A−BK) = L if and only if K ∈ K, where

K =

{
K :

n⋂

i=1

Ker

([
(I ⊗K)ZΛiX0KU UK0

])
6= 0

}
. (5.9)

Proof. Let λi be a desired closed loop eigenvalue and let x(0) ∈ Pi. Then x(t + 1) =

λix(t) = λt+1
i x(0). From u(t) = −Kx(t) = −Kλtix(0) we write

uT = −




K

K

K

. . .

K







I

λiI

λ2
i I

...

λT−1
i I




x(0). (5.10)

We recall that uT = UK0β and x(0) = X0KUα in (5.10) (cf. Lemma 2) and therefore we

can write

UK0β = (IT ⊗−K)ZΛiX0KUα, (5.11)

for all i ∈ {1, . . . , n}. Equation (5.11) needs to be verified for every Λi and therefore the

vectors α and β need to satisfy



α

β


 ∈

n⋂

i=1

Ker

([
(I ⊗K)ZΛiX0KU UK0

])
. (5.12)

That is, K is a static feedback (cf. (5.10)) such that ρ(A − BK) = L if and only if there

exist a non-zero vector [α> β>]> satisfying (5.12). From this conclusion, the condition (5.9)

on K is directly derived.

Through Theorem 30 we can characterize the set of feedback gains such that

ρ(A−BK) = L, that is, all the feedback gains which solve the pole placement problem for
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a given set L. This condition will be used in Section 5.5 with the aim of extracting matrices

K from K which satisfy some desired sparsity pattern.

We conclude this section by leveraging Theorem 29 and 30 to find a closed-form

expression for the eigenstructure assignment problem, i.e., when both L and V are given. For

simplicity, and without affecting the generality of the approach, we limit the data collection

phase in (2.2) to T = 1.

Theorem 31 (Closed-form expression of the feedback gain for eigenstructure

assignment) Let L = {λ1, . . . , λn} and V = {υ1, . . . , υn}, with υi ∈ Pi, be the set of

desired closed loop eigenvalues and eigenvectors. Let


αi

βi


 = Basis

(
Ker

([
XKU − λiX0KU XK0

]))
γi, (5.13)

where X, X0, and U are as in (2.2) with T = 1, and γi satisfies Basis(Pi)γi = υi. The

closed-loop matrix A−BK, with

K = −UK0

[
β1 · · · βn

](
X0KU

[
α1 · · · αn

])−1

, (5.14)

has eigenvalues L and eigenvectors V. �

Proof. From condition (5.12), we seek the K such that


αi

βi


 ∈ Ker

([
KX0U UK0

])
, ∀i = {1, . . . , n}, (5.15)

with αi, βi defined in (5.13), and where (IT ⊗ K)ZΛi = K from T = 1. We can write

condition (5.15) on K as

[
KX0KU UK0

]


α1 α2 · · · αn

β1 β2 · · · βn


 = 0, (5.16)
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from which we find that

KX0KU

[
α1 · · · αn

]
= −UK0

[
β1 · · · βn

]
.

We notice that X0KU

[
α1 · · · αn

]
is invertible since both X0KU and

[
α1 · · · αn

]
are

square matrices with full rank.2 This ensures the existence and uniqueness of K and con-

cludes the proof.

Thanks to Theorem 31 a closed-form solution for the eigenstructure assignment

problem is found. When needed, Theorem 31 can be also used to find a solution for the pole

placement problem by simply selecting any arbitrary V such that υi ∈ Pi, by leveraging

Theorem 29. As we have discussed, fixing L while leaving more freedom on the choice of

eigenvectors V renders K not unique. This allows for more interesting problems to be solved,

for example, by imposing some sparsity constraints on matrix K. In the next section we

explore strategies to leverage Theorem 29 and Theorem 30 to find a sparse K ∈ K. These

solutions are not closed-form but rather based on the solution of bilinear optimization

programs.

5.5 Data-driven pole placement with sparse feedback matri-

ces

Consider the pole placement problem with desired closed-loop eigenvalues L. As

previously discussed, each eigenvector υi corresponding to eigenvalue λi must belong to a

2The fact that X0KU is full rank is a direct consequence of the assumption in (2.4), see also [Celi
and Pasqualetti, 2022b]. The fact that Γ =

[
α1 · · · αn

]
is full rank can be proved by contradiction.

Assume, without loss of generality, that {δ1, · · · , δn−1}, δi ∈ R, exist such that αn =
∑n−1

k=1 δkαk, i.e.,
αn is a linear combination of the remaining columns of Γ, and therefore Γ is singular. Then, from (5.8),
υn = X0KUαn = X0KU

∑n−1
k=1 δkαk =

∑n−1
k=1 δkυk. This would imply that the elements in V are not linearly

independent, contradicting Assumption 26.

86



subspace Pi. Let K in (5.9) be the set containing all matrices K such that ρ(A−BK) = L.

Then, we can look for a pair of K and V = {υ1, . . . , υn} that satisfy

arg min
K,V

f1(K)

subject to K ∈ K,

υi ∈ Pi, ∀i ∈ {1, . . . , n},

f2(K) = 0,

(5.17)

where f1(K) : Rm×n → R and f2(K) : Rm×n → Rq are some functions of K. We notice

that (5.17) is a bilinear optimization problem in the variables K and V, which follows from

the definition of K in (5.9). Different choices of f1(K) and f2(K) lead to the solution of

different problems, as will be detailed next.

5.5.1 Data-driven minimum-gain pole placement with sparse static feed-

back

Problem (5.17) can be cast as a data-driven optimization problem thanks to the

results of Section 5.4. In particular, the condition on υi ∈ Pi can be imposed through

Theorem 29, while K is characterized in Theorem 30. We now propose an optimization-

based strategy to compute a static feedback K with sparsity constraints, directly from

data.

Let S ∈ {0, 1}m×n be the binary matrix that specifies the sparsity structure of
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feedback K. That is, we wish to find K such that

Kij =





0 if Sij = 1,

? if Sij = 0.

(5.18)

Now, consider the following optimization problem to find a K ∈ K which has sparsity

constraints as specified by S

arg min
K

{γ1,...,γn}

1

2
‖K‖2F

subject to

∥∥∥∥
[
(IT ⊗K)ZΛiX0KU UK0

]
wi

∥∥∥∥ = 0,

wi = Ker

([
(X −WΛiX0)KU XK0

])
γi,

∀i ∈ {1, . . . , n},

S ◦K = 0m×n.

(5.19)

The above is a data-driven implementation of (5.17), with f1(K) = ‖K‖2F and f2(K) =

S ◦K. Minimizing the norm of the gain in f1(K) reduces the overall control effort, while

f2(K) imposes the desired sparsity pattern on K. We notice that υi depends on the choice

of γi, since υi = X0KU

[
I 0

]
wi, as a direct consequence of (5.4).

Remark 32 (Feasibility of (5.19)) There is no known procedure to determine the feasi-

bility of (5.19), i.e., if K ∈ K exists such that S ◦K = 0. In general, assessing the existence

of a sparse static feedback K is an NP-hard problem even when (A,B) are known [Katewa

and Pasqualetti, 2021]. Therefore, in the following, we shall assume the feasibility of (5.19).

We refer the interested reader to [Katewa and Pasqualetti, 2021] for a detailed analytical

characterization of the locally optimal solution of (5.17) in terms of the eigenvector matrices

of the closed-loop system. �
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Remark 33 (Fixed modes of (A−BK) [Sezer and Šiljak, 1981]) We recall that the

fixed modes of (A,B) with respect to the sparsity constraints S are the eigenvalues of A that

cannot be changed using a sparse state feedback. When the fixed modes of (A,B) do not

belong to L, problem (5.19) becomes unfeasible and a different sparsity constraint S must

be selected. �

We now discuss a numerical implementation of (5.19).

Example 34 (Data-driven sparse feedback) We consider the discretized version of a

batch reactor system [Walsh and Ye, 2001] (with sampling time of 0.1s), with

A =




1.178 0.001 0.511 −0.403

−0.051 0.661 −0.011 0.061

0.076 0.335 0.560 0.382

0 0.335 0.089 0.849



, B =




0.004 −0.087

0.467 0.001

0.213 −0.235

0.213 −0.016



,

which is open-loop unstable with σ(A) = {1.2200, 1.0049, 0.4206, 0.6025}. We set T = 10

and collect a series of N = n + mT = 24 experiments (2.2) satisfying the assumption in

(2.4). We select the desired closed-loop eigenvalues L = {−0.3, 0.2, 0.5, 0.7} and the sparsity

pattern

S =




1 0 0 0

0 0 1 0


 .

Problem (5.19) is implemented in MATLAB and solved using the fmincon routine. A stabi-

lizing K, satisfying the conditions required by L and S is found, with

K =




0.0000 2.7633 2.7324 0.4122

−2.3621 1.2654 −0.0000 1.1906


 , (5.20)
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and

V =




0.0475 −0.1938 −0.2007 −0.5204

0.9606 −0.8211 −0.6873 0.3220

−0.2581 0.5266 0.5699 −0.2354

0.0914 0.1046 0.4032 −0.7550




, (5.21)

where V =

[
υ1 · · · υn

]
. We remark that K and V are not unique, in general. �

5.5.2 Data-driven maximally sparse feedback

As a second example of the application of the results of Section 5.4 to the data-

driven design of sparse controllers, we consider the problem of finding the maximally sparse

feedback K. In this scenario we are not seeking for a feedback with a defined sparsity

pattern, as specified in S, but rather the one which has the most number of entries at

zero. This is done by removing the specification on the sparsity pattern and by minimizing

∑
ij |Kij | which is often used as a proxy for the L0-norm of a matrix. In this case, problem

(5.17) can be written as

arg min
K

{γ1,...,γn}

∑

ij

|Kij |

subject to

[
(IT ⊗K)ZΛiX0KU UK0

]
wi = 0,

wi = Ker

([
(X −WΛiX0)KU XK0

])
γi,

∀i ∈ {1, . . . , n}.

(5.22)

This is, again, a bilinear optimization problem. We now show a numerical imple-

mentation of this approach.
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Example 35 (Data-driven maximally sparse feedback) Consider the same problem

setting as in Example 34. We let L = {−0.3, 0.2, 0.5, 0.7} be sets of the desired closed-loop

eigenvalues. By running (5.22) we find

K =




0.0000 1.6901 0.0000 4.4741

−1.9515 0.0000 −1.0042 0.0000




and

V =




0.7460 0.5153 0.0752 −0.0053

0.1892 0.4018 0.9439 0.9901

−0.6318 −0.7451 −0.2829 0.1127

−0.0922 −0.1332 −0.1532 0.0834




.

Despite the non-convexity of (5.22) we obtain a sparse controller with a total of 4 entries

at zero. �

5.6 Conclusions

In this chapter we consider a data-driven strategy for the design of, possibly sparse,

feedback gains for pole placement and eigenstructure assignment. Given a set of desired

closed-loop eigenvalues L, we characterize the allowable eigenvector subspaces of the dy-

namical system described by unknown (A,B), as well as the set K of feedback gains such

that ρ(A − BK) = L for all K ∈ K. For the eigenstructure assignment problem, we give

a closed-form data-driven expression for the gain K which assigns the desired closed-loop

eigenvalues L together with the associated desired eigenvectors V. Further, we discuss

optimization-based strategies to find a sparse gain K ∈ K when a desired sparsity struc-

ture needs to be imposed on K, or when the overall sparsity of K (i.e., the number of

91



zero elements of K) needs to be maximized. Numerical simulations complement our anal-

ysis. Future work includes a characterization of the performance of these tools when data

is collected with noise, together with a comparison with model-based methods based on

system identification from data. In the next chapter we take a step further: instead of

studying a specific problem to solve through the lenses of data, we propose a framework

for a data-driven approach to geometric control. As we will see, this will unlock a collec-

tion of problems (and their respective solutions) especially in security, e.g., designing and

mitigating attacks on systems.

92



Chapter 6

A data-driven approach to

geometric control

Studying structural properties of linear dynamical systems through invariant sub-

spaces is one of the key contributions of the geometric approach to system theory. In

general, a model of the dynamics is required in order to compute the invariant subspaces of

interest. In this chapter we overcome this limitation by finding direct data-driven formulas

for some of the foundational tools of the geometric approach. We use our results to (i) find

a feedback gain that confines the system state within a subspace, (ii) compute the invariant

zeros of the unknown system, and (iii) design attacks that remain undetectable.

6.1 Introduction

The geometric approach is a collection of notions and algorithms for the analysis

and control of dynamical systems. Differently from the classic methods in the frequency
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and state space domains [Åström and Murray, 2010], the geometric approach offers an

intuitive and coordinate-free analysis of the properties of dynamical systems in terms of

appropriately defined subspaces, and synthesis algorithms based on subspace operations,

such as sum, intersection, and orthogonal complementation. The geometric approach has

been successfully used to solve a variety of complex control and estimation problems; we

refer the interested reader to [Basile and Marro, 1991] for a detailed treatment of the main

geometric control notions and their applications.

Similarly to the frequency and state-space approaches to control, the geometric

approach assumes an accurate, in fact exact, representation of the system dynamics. To

overcome this limitation and in response to an ever-increasing availability of sensors, his-

torical data, and machine learning algorithms, the behavioral approach, and more generally

a data-driven approach, has seen a rapid increase in popularity. Here, system analysis and

control synthesis do not require a model of the dynamics and are instead obtained directly

from experimental data reflecting the system dynamics [Markovsky and Rapisarda, 2008].

While analysis, control and estimation problems can often be solved equivalently

using different methods, the frequency, state-space, geometric, and data-driven approaches

all offer complementary insights into the structure and properties of the system dynamics,

and together contribute to forming a comprehensive theory of systems. In this chapter we

create the first connections between the geometric and data-driven approaches to system

analysis and control. In particular, we derive data-driven expressions of the fundamental

sets used in the geometric approach to solve a variety of control and estimation problems,

and show how these sets have an even more insightful and straightforward interpretation
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when analyzed in the higher-dimensional data space as compared to their geometric view

in the lower-dimensional state space.

6.2 Related work

From the first definitions of controlled and conditioned invariant subspaces, the

geometric approach to control has evolved over the last decades into a full theory and a

set of algorithms for linear [Basile and Marro, 1991] and nonlinear [Isidori, 1995] systems.

Applications of the geometric approach include the disturbance decoupling [Wonham and

Morse, 1970] and fault detection [Massoumnia et al., 1989] problems, the characterization

of stealthy attacks in cyber-physical systems [Pasqualetti et al., 2013], and the secure state

estimation problem [Fawzi et al., 2014].

The data-driven approach to system analysis and control is receiving renewed and

increased interest. While traditional indirect data-driven methods use data to identify a

model of the system [Gevers, 2005] and proceed to synthesize a controller in a second

step, direct data-driven methods bypass (at least apparently [Krishnan and Pasqualetti,

2021,Dörfler et al., 2021,van Waarde et al., 2020]) the identification step and design control

actions directly from data. In this framework, recent results tackle various problems for

linear systems, including optimal [Baggio et al., 2021,Monshizadeh, 2020], robust [De Persis

and Tesi, 2020] and distributed [Allibhoy and Cortés, 2020, Celi et al., 2021, Garrabé and

Russo, 2021, Jiao et al., 2021] control, as well as unknown-input estimation [Turan and

Ferrari-Trecate, 2021]. We refer the reader to [Markovsky and Dörfler, 2021] for a recent

survey on data-driven control. The intersection of geometric and data-driven control has
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remained relatively unexplored, with the remarkable exception of [Eising, 2021]. Next

we recall some of the key tools of the geometric approach to control, namely controlled

invariants and conditioned invariants.

6.3 Controlled and conditioned invariant subspaces

The notions of controlled and conditioned invariant subspaces are the basis of the

geometric approach for the analysis and control of linear systems. We now recall their

definition and basic properties. We refer the interested reader to [Basile and Marro, 1991,

Wonham, 1985,Trentelman et al., 2001] for a detailed treatment of this subject.

Definition 36 ((A,B)-controlled invariant) Given a matrix A ∈ Rn×n and a subspace

B ⊆ Rn, a subspace V ⊆ Rn is an (A,B)-controlled invariant subspace if

AV ⊆ V + B. (6.1)

When B = Im(B), the notion of controlled invariance refers to the possibility

of confining the state trajectory of the system (2.1) within a subspace. Specifically, the

subspace V is an (A, Im(B))-controlled invariant subspace if, for every initial state in V,

there exists a control input such that the state belongs to V at all times. Of particular

interest is V∗, the largest (A, Im(B))-controlled invariant subspace contained in Ker(C).

The subspace V∗ contains all trajectories of (2.1) that generate an identically zero out-

put. Hence, it holds that V∗ = {0} if and only if the system (2.1) features no invariant

zeros, a notion that is at the basis of the analysis of stealthy attacks and unknown-input

observers [Pasqualetti et al., 2013], among others.
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Definition 37 ((A, C)-conditioned invariant) Given a matrix A ∈ Rn×n and a subspace

C ⊆ Rn, a subspace S ⊆ Rn is an (A, C)-conditioned invariant subspace if

A(S ∩ C) ⊆ S. (6.2)

When C = Ker(C), the notion of conditioned invariance arises in the context

of state estimation. Specifically, the subspace S is an (A,Ker(C))-conditioned invariant

subspace if it is possible to design an (asymptotic) observer that reconstructs the state up

to a canonical projection onto Rn \S by processing the initial condition, the input, and the

measurements of the system (2.1). Of particular interest is S∗, the smallest (A,Ker(C))-

conditioned invariant subspace containing Im(B). In fact, the orthogonal complement of

S∗ is the largest subspace that can be estimated with a dynamic observer in the presence

of an unknown input.

The subspaces V∗ and S∗ can be conveniently computed using simple recursive

algorithms [Basile and Marro, 1991]. Further, these subspaces can be used to characterize

important properties of the system (2.1). For instance, the system (2.1) is right invertible

if and only if V∗ ∪S∗ = Rn, and left invertible if and only if the subspace R∗ = V∗ ∩S∗ is

the trivial subspace [Basile and Marro, 1991]. It should be noticed that R∗ coincides with

the largest subspace that can be reached from the origin with trajectories that belong to

V∗ at all times (hence, generating an identically zero output).

The definition of the subspaces V∗, S∗ and R∗, as well as the algorithms to com-

pute them, assume the exact knowledge of the system matrices. Instead, in the remainder

of the chapter we derive purely data-driven expressions of these subspaces, which also offer

an alternative interpretation of them. Similarly to how V∗, S∗ and R∗ are used in the geo-
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metric approach, our data-driven formulas can also be used to solve a variety of estimation

and control problems.

6.4 Data-driven geometric control

We begin with finding a data-driven expression of the subspace V∗ for the system

(2.1), the largest (A, Im(B))-controlled invariant subspace contained in Ker(C).

Theorem 38 (Data driven formula for V∗) Let X0 and Y be as in (2.2), with T ≥ n.

Then,

V∗ = X0Ker(Y ). (6.3)

Notice that (6.3) requires only the knowledge of the initial state X0 and the out-

put trajectory Y of N experiments . To prove Theorem 38, recall that V∗ is the set of

initial states for which there exists a control input such that the resulting state trajectory

generates an identically zero output. Since the system is linear, under our assumption of

persistently exciting experimental inputs, any system trajectory can be expressed as an

appropriate linear combination of the experimental trajectories. This has been formalized

for our framework in Lemma 2.

The following instrumental Lemma shows that it is sufficient to consider trajec-

tories of any finite length T ≥ n to compute V∗, and is instrumental to the proof of

Theorem 38.

Lemma 39 (Computing V∗ from trajectories of finite length) For the system (2.1),

any initial state x0, and any finite horizon T ≥ n, the following statements are equivalent:
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(i) x0 ∈ V∗;

(ii) there exists an input sequence u(0), . . . , u(T − 1) such that y(t) = 0 for all t ∈

{0, . . . , T − 1}.

Proof.

(i) ⇒ (ii) Follows from the definition of V∗.

(ii) ⇒ (i) Notice that y(T − 1) = Cx(T − 1) = 0. Thus, x(T − 1) ∈ Ker(C) = V0.

Similarly, x(T − 2) satisfies

x(T − 1) = Ax(T − 2) +Bu(T − 2), and

y(T − 2) = Cx(T − 2) = 0.

This implies that
x(T − 2) ∈ A−1(x(T − 1)−Bu(T − 2))

⊆ A−1(V0 + Im(B)) ∩Ker(C) = V1

Iterating this procedure yields

x(T − 1) ∈ V0 = Ker(C), and

x(T − i) ∈ Vi = A−1(Vi−1 + Im(B)) ∩Ker(C).

(6.4a)

(6.4b)

Since Vi converges to V∗ is at most n steps [Basile and Marro, 1991], we have that x(T−τ) ∈

V∗ for all τ ≥ n, which concludes the proof.

We now prove Theorem 38 using Lemma 2 and 39.

Proof of Theorem 38: From Lemma 39 we seek all initial conditions x0 for which the

output can be maintained at zero for T ≥ n steps. From (2.5), the vectors α and β that

identify state trajectories with identically zero output must satisfy


α

β


 ∈ Ker

[
Y KU Y K0

]
. (6.5)
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The initial condition corresponding to such trajectories is x0 = X0KUα (cf. Lemma 2).

Thus, using (6.5), V∗ becomes V∗ =

[
X0KU 0

]
Ker

[
Y KU Y K0

]
= X0Ker(Y ). The

last equality follows from some algebraic manipulations, that are here omitted. �

We next find a data-driven expression for S∗, the smallest (A,Ker(C)) conditioned

invariant containing Im(B).

Theorem 40 (Data driven formula for S∗) Let X0, XF and Y be as in (2.2), with

T ≥ n. Then,

S∗ = XFK0Ker (Y K0). (6.6)

To prove Theorem 40, we first show that, similarly to the case of V∗, the subspace

S∗ can be computed from a collection of trajectories of finite length T ≥ n.

Lemma 41 (Computing S∗ from trajectories of finite length) For the system (2.1)

and any finite horizon T ≥ n, the following statements are equivalent:

(i) x(T ) ∈ S∗;

(ii) there exists an input sequence u(0), . . . , u(T − 1) such that y(t) = 0 for all t ∈

{0, . . . , T − 1} and x(0) = 0.

Proof.

(i)⇒ (ii) Follows from the definition of S∗. In fact, let u(t) = 0, for t ∈ {0, . . . , T−

2} and u(T − 1) 6= 0. Then x(T ) = Ax(T − 1) +Bu(T − 1) = Bu(t− 1) ∈ Im(B) ⊆ S∗.

(ii) ⇒ (i) Because x(1) = Bu(0) and y(1) = Cx(1) = 0, we have x(1) ∈ Im(B) ∩

Ker(C) = S1 ∩Ker(C). Similarly,

x(2) ∈ A(S1 ∩Ker(C)) + Im(B) = S2,
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and x(2) ∈ Ker(C) since y(2) = Cx(2) = 0. Recursively:

x(1) ∈ S1 = Im(B), and

x(i) ∈ Si = A(Si−1 ∩Ker(C)) + Im(B).

(6.7a)

(6.7b)

Since Si converges to S∗ in at most n steps [Basile and Marro, 1991], we have that x(τ) ∈ S∗

for all τ ≥ n, which concludes the proof.

We are now ready to prove Theorem 40.

Proof of Theorem 40: From (2.5), when x(0) = 0, any state trajectory of length T that

generates an identically zero output of length T can be parametrized with α = 0 and

β ∈ Ker(Y K0). Using Lemma 41, the set S∗ can be equivalently written as the final states

reached by such trajectories, that is, S∗ = XFK0Ker(Y K0), which concludes the proof.

�

Remark 42 (Obtaining R∗ from V∗ and S∗) The combined knowledge of V∗ and S∗

allows us to find R∗ as [Basile and Marro, 1991]

R∗ = V∗ ∩ S∗. (6.8)

�

Remark 43 (Direct vs indirect invariant subspaces computation) A direct compar-

ison between our formulas and classic indirect data-driven approaches is not straightforward.

First, our formulas for V∗ and S∗ use data that is not sufficient to estimate the system

matrices (e.g., the inputs U and the state trajectories X are not used in Theorems 38 and

40). Second, when inputs and outputs are available, system identification only provides the
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system matrices up to a similarity transformation. Hence, the subspaces computed with

the identified matrices would not match the original subspaces since the similarity transfor-

mation remains unknown without state information. Third, system identification methods

make assumptions (such as controllability and observability) that are not required for our

approach. For example, let A =




0.5 0

0 1


, B =




1

0


, C1 =

[
3 −5

]
, and C2 =

[
3 4

]

where (A,B) is not controllable. We notice that Σ1 = (A,B,C1) and Σ2 = (A,B,C2)

share the same input-output relationship, i.e., there exist input-output trajectories which

are compatible with both systems. However, Σ1 and Σ2 do not share the same V∗, in fact

V∗
Σ1 =




1.00

0.60


 , V∗

Σ2 =




1.00

−0.75


 .

System identification using input-output data cannot distinguish between Σ1 and Σ2 and, as

a consequence, fails at estimating the correct invariant subspaces. Instead, our data-driven

formulas work also in this situation.

Although a formal discussion of how noise affects the identification of subspaces

is beyond the scope of this work, in Fig. 6.1 we offer a qualitative comparison of how our

approach performs with respect to a traditional system identification followed by a model

based geometric approach. We observe that the tools presented in this chapter are robust

to noise. We refer to the image caption for the implementation details and to [Celi and

Pasqualetti, 2022a] for the code to reproduce this result. �
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Figure 6.1: This figure shows a comparison for computing V∗ with two different data
driven approaches for minimal system [Katayama, 2005, Example 6.6]. Outputs Y are
collected with noise, i.e., Y = Ŷ + ∆Y , where Y is the measured data and ∆Y is the noise
matrix with i.i.d. entries, zero mean, and variance σY . In blue (dashed) we show the result
obtained trough the MOESP algorithm (see [Katayama, 2005]). In red (solid) we show the
result obtained trough the approach proposed in this chapter (DDA). State trajectories X
are assumed to be known only by MOESP, while DDA requires only X0. For every approach
and for every value of σY we perform a total of 100 Montecarlo simulations and plot the
mean value of the angle between the estimated and the model based V∗ (true subspace).
T = 50 for MOESP, and T = 3, N = 20 for DDA.

6.5 Data-driven feedbacks for invariant subspaces and invari-

ant zeros

The state of a system can be confined within a subspace V through a state-feedback

controller if and only if V is a controlled invariant subspace. We continue this chapter with

the data-driven design of such state-feedback controller, that is, the data-driven design of

a matrix F such that

(A+BF )V ⊆ V. (6.9)
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For a trajectory XT and input UT , let

X0,T =

[
x(1) x(2) · · · x(T − 1)

]
,

X1,T =

[
x(2) x(3) · · · x(T )

]
, and

U0,T =

[
u(0) u(1) · · · u(T − 1)

]
.

(6.10a)

(6.10b)

(6.10c)

Theorem 44 (Data-driven feedback for invariant subspace) Let XT be the trajectory

of (2.1) with input UT and some initial condition. Let V = Im(V ) be an (A, Im(B))-

controlled invariant subspace, and let

F = U0,T (X†0,T +Kγ), (6.11)

with K = Ker(X0,T ) and

γ = −((I − V V †)X1,TK)†(I − V V †)X1,TX
†
0,TV V

†. (6.12)

If [U>0,T X
>
0,T ]> is full-row rank,1 then (A+BF )V ⊆ V.

Proof. From [De Persis and Tesi, 2020, Theorem 2], for any state-feedback gain F , the

closed loop matrix can be written as

A+BF = X1,TG,

where the matrix G satisfies X0,TG = I and U0,TG = F . Further, F renders the subspace

V invariant if and only if (A+BF )V = X1,TGV ⊆ V, or, equivalently,

(I − V V †)X1,TGV = 0,

1This condition requires the trajectory to be sufficiently informative and is related to the notion of
persistency of excitation [Willems et al., 2005,De Persis and Tesi, 2020,Markovsky and Dörfler, 2021].
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where V = Basis(V) and (I − V V †) is a projector onto V⊥. From X0,TG = I we obtain

G = X†0,T +Kγ, where γ is any matrix verifying the equality

(I − V V †)X1,T (X†0,T +Kγ)V = 0.

Solving for γ (a solution γ exists because V is an (A,B)-controlled invariant subspace and

[U>0,T X
>
0,T ]> is full-row rank) and using U0,TG = F concludes the proof.

Theorem 44 details the computation of a feedback matrix that renders a subspace

invariant, from sufficiently informative state and input trajectories. It should be noticed

that Theorem 44 does not guarantee the internal, nor external, stability of the subspace,

which imposes additional constraints on γ. This is left as a topic of future investigation.

To conclude this section we present a strategy to identify the invariant zeros of

(2.1) from data. We make the assumption that (2.1) is such that R∗ is the trivial subspace.

Systems with R∗ 6= {0} are intrinsically vulnerable to, e.g., undetectable malicious attacks

with unstable state trajectories. On the other hand, when R∗ = {0}, the existence of

unstable invisible trajectories depends on the modulo of its invariant zeros. In fact, the

knowledge of the number and magnitude of the invariant zeros when R∗ = {0} is essential

when studying problems such as noninteracting control [Basile and Marro, 1991] and attack

detection [Pasqualetti et al., 2013], motivating our interest in their identification.

Theorem 45 (Data-driven invariant zeros I) Let X and V∗ be as in (2.2) and (6.3),

respectively, with T ≥ n. Let V = Basis(V∗) and assume that R∗ = {0}. Then, z ∈ C is

an invariant zero of (2.1) if and only if the matrix

[
XX†(I ⊗ V ) −

(
[z z2 · · · zT ]⊗ I

)>]
(6.13)
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has a nontrivial kernel.

Proof. When V∗ 6= {0} and R∗ = {0}, there exists a trajectory x(t) = ztx(0),

with x(t) ∈ V∗ for all t ≥ 0 and z an invariant zero of (2.1) [Basile and Marro, 1991]. We

write such trajectory as

XV
T = [(zI)> · · · (zT I)>]v =

(
[z · · · zT ]⊗ I

)>
v. (6.14)

With assumption in (2.4), any trajectory belongs to the image of the data matrix X. Then,

when the trajectory XV
T above exists, there also exists a vector w̄ ∈ X†(I ⊗ V ) such that

Xw̄ = XV
T . The condition on w̄ imposes that the trajectory is compatible with (2.1) while

evolving inside V∗. Both vectors v 6= 0 and w̄ = X†(I ⊗ V )w 6= 0 exist if and only if

XX†(I ⊗ V )w =
(
[z z2 · · · zT ]⊗ I

)>
v (6.15)

i.e., the kernel of [XX†(I⊗V ) −
(
[z z2 · · · zT ]⊗ I

)>
] is non-empty, concluding the proof.

The invariant zeros of the system (2.1) can be equivalently characterized using

data collected as in (6.10).

Lemma 46 (Data-driven invariant zeros II) Let V∗ be as in (6.3) and assume that

R∗ = {0}. Let T =

[
T1 T2

]
, with T1 = Basis(V∗), and T2 chosen such that T is

nonsingular. Finally, let G = X†0,T +Kγ, with γ defined as in (6.12). Then, the invariant

zeros of (2.1) are the eigenvalues of A11, where

T−1(X1,TG)T =



A11 A12

0 A22


 . (6.16)
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Figure 6.2: An example of consensus network. On the left, agents are numbered from 1
through 14, where nodes {12, 13, 14} (in black) are the leaders and nodes {4, 11} (square) are
the network monitors. On the right, the weighted adjacency matrix for the follower nodes
{1, . . . , 11} is shown, together with the input and output matrices (the numerical values of
the entries of the matrices are color coded and belong to the set {0, 0.2, 0.4, 0.6, 0.8}).

Proof. This result derives from the facts that (i) the closed loop system with the state

feedback u = Fx satisfies

A+BF = X1,TG, (6.17)

(ii) the subspace V∗ is invariant for the closed-loop matrix A+BF , and (iii) the invariant

zeros of (2.1) are the eigenvalues of the closed-loop matrix A+BF contained in V∗.

6.6 Malicious attacks: an illustrative example

To illustrate a possible use of the theory we developed, consider the leader-follower

consensus network in Fig. 6.2.

The network is equipped with two monitoring nodes, specifically, nodes 4 and 11.

The state of the monitoring nodes is used to detect any anomalous behavior of the network

from its nominal dynamics (see also [Pasqualetti et al., 2011]). We let an attacker take

control of the leader nodes, and seek for an attack strategy that remains undetectable from

the monitoring nodes, and leverages only historical data of the network dynamics. The

attacker strategy is designed as follows: (i) compute V∗ and S∗ using Theorems 38 and 40,
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respectively, and find R∗ = V∗ ∩S∗; (ii) for R = Basis(R∗), and X, U and K0 defined as

in (2.2), compute P1 6= 0 as

[
XK0 I ⊗R

]


P1

P2


 = 0; (6.18)

and (iii) choose the attack input AT as AT ∈ Im(UK0P1). Then, for any initial state x(0)

and nominal control input UT , the output of (2.1) with input UT is indistinguishable from

the output with input UT +AT . As can be seen in Fig. 6.3 from time t = 10s, the attacker

strategy perturbs the state of the network but does not affect the monitoring nodes, thus

remaining undetectable. In fact, it can be shown that any input AT ∈ Im(UK0P ) moves

the state trajectory within the controlled invariant R∗ ⊆ Ker(C), thus affecting the state

of the system but not its output.
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Figure 6.3: In this figure we show an attack on the network of Fig. 6.2. The systems
initial condition is chosen randomly and the leaders impose u = [−2 2 4]>. The attacker
waits for the system to reach its equilibrium and then, at time t = 10s, injects an attack AT
as proposed in Sec 6.6. We notice how the system state its perturbed from the equilibrium,
while the output of the system remains unaffected by the attack, rendering the attack
action effectively invisible at the output. We use the following parameters: time horizon
T = 49 > n, and number of experimental trajectories N = n+mT = 158, with X0 and U
satisfying assumption in (2.4).
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6.7 Conclusions

In this chapter we have shown how experimental data can be used to learn key

invariant subspaces of a linear system. In particular, we derived data-driven expressions for

V∗, the largest (A, Im(B))-controlled invariant contained in Ker(C), and S∗, the smallest

(A,Ker(C))-conditioned invariant containing Im(B). Being able to identify these sub-

spaces from data suggests that much of the results and intuitions of the geometric approach

to control can be conveniently reworked in a data-driven framework. To support this point,

we leveraged the identified invariant subspaces to design a data-driven feedback controller

to force the state inside a desired controlled invariant subspace, and to compute the in-

variant zeros of the system. Finally, as an example of the theoretical results, we designd

a data-driven undetectable attack. Applications and extensions of the proposed results are

numerous, and are left as the subject of future investigation.
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Chapter 7

Distributed data-driven control for

network systems

In this chapter we discuss a strategy to directly learn control actions when data

from past system trajectories is distributed among multiple agents in a network. The

approach we develop provably converges to a suboptimal solution in a finite number of

steps, bounded by the diameter of the network, and with a sub-optimality gap that can be

characterized as a function of data, and that can be made arbitrarily small.

7.1 Introduction

Networks and multi-agent systems have been studied extensively in the control

community in the context of formation control [Pallottino et al., 2007,Oh et al., 2015], con-

sensus algorithms [Ren and Beard, 2005], and coordination of multi-agent systems [Mesbahi

and Egerstedt, 2010], to cite a few. These results have seen application in various real-world
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scenarios including robotics [Moore et al., 2004, Bullo et al., 2009, Celi et al., 2019], power

grids [Molzahn et al., 2017,Swartz et al., 2022] and brain networks [Nozari et al., 2023,Celi

et al., 2020,Allibhoy et al., 2022]. Together with its opportunities, modeling the interaction

between possibly heterogeneous systems through networks presents practical challenges.

In fact, building accurate models of large networks is a burdensome task and modeling

errors (e.g., missing or extra links, incorrect link weights) are often unavoidable [Butts,

2003,Amaral, 2008]. Network models can be built either through first principles or via sys-

tem identification. In the former, a dynamical model is deduced from the physical properties

of the system, which are often not fully characterized. Alternatively, system identification

can be used when data are available [Ljung, 1987, Katayama, 2005]. Unfortunately, this

approach, too, has limitations and has returned a set of mixed results in application to

modern network systems [Angulo et al., 2017, Achlioptas et al., 2009, Jung et al., 2010].

This is especially problematic when the end goal of system identification is to provide the

basis for controller design since errors in the modeling phase can compound in the controller

design phase. In this chapter, we discuss a model-agnostic control approach for a network

system. That is, we bypass the system modeling phase altogether by using data to directly

learn suitable control actions.

7.2 Related work

The direct data-driven control literature leverages data to design controllers in a

one-step solution, as opposed to the indirect approach, where data are used to identify a

model that is then used to design a controller. Although direct data-driven controls can
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be dated as far back as [Ziegler and Nichols, 1942], they have recently been the subject

of renewed interest from the control community. As detailed throughout this thesis, a

modern approach to designing direct data-driven controls includes data-driven open-loop

optimal control [Baggio et al., 2019, Baggio et al., 2021, Monshizadeh, 2020], closed-loop

and robust control [Markovsky and Rapisarda, 2008,De Persis and Tesi, 2020,van Waarde

et al., 2020, Berberich et al., 2020a], and predictive and nonlinear control [Coulson et al.,

2019, Berberich et al., 2020b, Tabuada et al., 2017, Coulson et al., 2021, van Waarde et al.,

2022]. The problem of learning optimal controls in network systems has remained, however,

relatively unexplored. To the best of our knowledge, the first result in this direction is

[Allibhoy and Cortés, 2020], soon followed by [Celi et al., 2021] and [Alonso et al., 2022]. In

[Allibhoy and Cortés, 2020], the authors propose a modified version of the DeePC algorithm

[Coulson et al., 2019] to stabilize a network system through a primal-dual flow (while

minimizing a quadratic function of the inputs and the states). This strategy is based on

a Model Predictive Control approach (MPC) where a behavioral systems representation

built upon a recorded system trajectory is used in place of the system’s model. A limit

of this approach is that it assumes that input-state data from past trajectories, as well

as the current state, can be freely shared among neighboring agents. In addition, the

distribution of the primal-dual flow among the agents in the network requires a substantial

number of messages to be shared [Cherukuri et al., 2017]. This assumption is limiting

because it presupposes that the time scales of communication and computation processes

are significantly shorter than that of the controller action. An alternative approach appeared

in [Alonso et al., 2022], where the same problem is tackled through the system level synthesis
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framework (SLS) [Wang et al., 2019]. SLS parameterizes closed-loop system responses

directly from collected open-loop trajectories. The result of [Alonso et al., 2022] reduces

to a distributed computation of a dynamic state-feedback controller via the alternating

direction method of multipliers (ADMM) [Boyd et al., 2011]. This approach shares much

of the limitations of [Allibhoy and Cortés, 2020], namely the necessity of high frequency

communication between nodes in the network, and the need to share input-state trajectories

among the networks’ nodes. Further recent results on the control of interconnected systems

include [Eising and Cortés, 2022,Jiao et al., 2021,Wang et al., 2023,Li et al., 2022]. However,

these works focus on finding stabilizing controllers, and do not include optimization over

an objective function, robustness bounds, nor explicit data-driven formulas.

7.3 Setup for multiagent learning

We here study the state evolution of the controllable linear system in (2.1)

x(t+ 1) = Ax(t) +Bu(t), (7.1)

where x ∈ Rn and u ∈ Rm are the state and the input vectors at time t ∈ N+, respectively,

and with A ∈ Rn×n and B ∈ Rn×m. Similarly to Capter 3, we seek to compute the input

sequence uT = col(u(0), . . . , u(T −1)) that minimizes the following finite-horizon quadratic

objective function:

arg min
uT

x>TQxT + u>TRuT

subject to x(t+ 1) = Ax(t) +Bu(t),

x(0) = x0,

(7.2)
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where Q ∈ Rn(T+1)×n(T+1) � 0, R ∈ RmT×mT � 0 are the state and input weighting

matrices, respectively, and xT = col(x(0), . . . , x(T )). However, differently from previous

chapters of this thesis, here we assume that data are not centrally available. Instead, past

data will be distributed among different actors in a network. We next detail how data

is collected and distributed among agents, and propose a strategy to leverage this sparse

structure to achieve a (sub)-optimal controller for the above problem.

Let G = (V, E) be the graph associated with the matrix A in (7.1), where V =

{1, . . . , n} and (i, j) ∈ E if and only if Aji 6= 0. Let V be partitioned as V = V1 ∪ · · · ∪ VM ,

with |Vi| = ni. Then, after reordering the nodes, the matrix A reads as

A =




A11 . . . A1M

...
...

...

AM1 . . . AMM



.

We assume1 that the input matrix in (7.1) can be written as

B = blkdiag(B1, . . . , BM ). (7.3)

Then, system (7.1) can equivalently be written as the interconnection of M subsystems of

the form

xi(t+ 1) = Aiixi(t) +
M∑

j=1, j 6=i
Aijxj(t) +Biui(t), (7.4)

where xi ∈ Rni and ui ∈ Rmi are the states and inputs, respectively, of the nodes in Vi.

We assume the presence of M agents, each one responsible for one subsystem (see

also Fig. 7.1). In particular, agents are interconnected according to a directed communica-

1Although some of our results hold also for general input matrices, this assumption simplifies the pre-
sentation and is also common in distributed data-driven studies [Allibhoy and Cortés, 2020, Alonso et al.,
2022].
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Figure 7.1: In this figure we show a visual depiction of the data collection phase. N
experiments of length T are carried out over a network system. Each agent i ∈ {1, . . . ,M}
collects input-state trajectories of a subset of the network nodes, i.e., the initial state xj0,i,

the state trajectory xjT,i, and the input trajectory ujT,i, for each experiment j.

tion graph Gc = (Vc, Ec), and agent i selects the input ui to the ith subsystem using local

data and information exchanged with neighboring agents Ni = {j : (i, j) ∈ Ec}. The local

data available to agent i are

Xi =

[
x1
T,i · · · xNT,i

]
,

Ui =

[
u1
T,i · · · uNT,i

]
,

X0,i =

[
x1

0,i · · · xN0,i

]
,

(7.5a)

(7.5b)

(7.5c)

that is, the components indexed by Vi of the state trajectories, control inputs, and initial
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conditions of the N experiments. Thus, after a possible reordering of the system states,

X =




X1

...

XM



, U =




U1

...

UM



, and X0 =




X0,1

...

X0,M



.

Agents cooperate to collectively compute the local inputs that solve the minimization prob-

lem (7.2). A naive solution to this problem requires the agents to share all their local

experimental data with all other agents, and then employ centralized data-driven formulas

for the solution of the minimization problem (7.2) (see [De Persis and Tesi, 2020, Coulson

et al., 2019, Celi et al., 2022] and Theorem 47 below). Instead, we will develop algorithms

that require the agents to exchange reduced information to compute, in finite time, a solu-

tion to the minimization problem (7.2) in a distributed manner.

7.4 Multiagent learning of optiamal controls

We start by providing a data-driven solution to the minimization problem (7.2)

when there is only one agent. This solution is general, and appeared previously in [Celi

et al., 2022]. In particular, the optimal control u∗T minimizing (7.2) can be computed in

closed form as

u∗T = −UK0S
†(XK0)>QXKU (X0KU )†x0, (7.6)

with

S = (XK0)>Q(XK0) + (UK0)>R(UK0),

and K0 = Basis(Ker(X0)) and KU = Basis(Ker(U)), highlighting the dependency of the

optimal controls on the data. We now give an alternative formula to compute u∗T in closed
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form. This formula requires a stronger assumption on Q, but is more compact and holds in

most scenarios.

Theorem 47 (Single-agent data-driven solution (7.2)) Let X0, X and U be as in

(2.2) and satisfying assumption in (2.4). Define P ∈ R(n+mT )×(n+mT ) as

P =


X



X0

U




†


T

Q


X



X0

U




†
+




0n×n 0

0 R


 . (7.7)

If Q1/2OT has full column rank the matrix P is invertible, then the solution u∗T to (7.2) can

be extracted from 

x0

u∗T


 = P−

1
2

([
I 0

]
P−

1
2

)†
x0, (7.8)

with x(0) = x0, �

Proof. Consider the following problem

arg min
γ

∥∥∥P 1
2γ
∥∥∥

2

subject to

[
I 0

]
γ = x0.

(7.9)

where P is as in (7.7). Note that, the solution to the above problem is γ∗ = col(x0,u
∗
T )

with u∗T being the solution to (7.2). This follows from (2.6) and the fact that

P =


X



X0

U




†


T

Q


X



X0

U




†
+




0 0

0 R




=

[
OT FT

]T
Q

[
OT FT

]
+




0 0

0 R


 (7.10)
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when condition (2.4) holds. If P is invertible, letting v = P 1/2γ problem (7.9) becomes

arg min
v

‖v‖2

subject to

[
I 0

]
P−1/2v = x0.

(7.11)

whose solution is v∗T = (

[
I 0

]
P−1/2)†x0. Thus, the solution to (7.9) is

γ∗ =



x0

u∗T


 = P−1/2v∗T = P−1/2(

[
I 0

]
P−1/2)†x0. (7.12)

We show that if Q1/2OT has full column rank, then P � 0, which in turn implies

that P is invertible. To this end, notice that, from (7.10),

P =



OT
TQOT OT

TQFT

FT
T QOT FT

T QFT




︸ ︷︷ ︸
P1

+




0 0

0 R


 .

Since OT
TQOT � 0 (which directly follows from the assumption that Q1/2OT has full col-

umn rank) and P1 � 0, the Schur complement of the block OT
TQOT of P1 must be positive

semidefinite [Zhang, 2005, Theorem 1.12], namely S = FT
T QFT−FT

T QO
T
T (OT

TQOT )−1OT
TQFT �

0. Next, since S � 0 and R � 0, the Schur complement of the block OT
TQOT of P , namely

S+R, is positive definite. Since the block OT
TQOT of P and its Schur complement are both

positive definite, follows that P � 0 [Zhang, 2005, Theorem 1.12].

We complement the proof by noticing that, for P not invertible, and for any Q � 0,

problem (7.9) becomes

arg min
vT , w

‖vT ‖2

subject to

[
I 0

]
((P 1/2)†vT +KPw) = x0,

(7.13)
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where w is a vector of appropriate size, from which a solution alternative to (7.12) can be

found.

Theorem 47 provides a data-driven expression of the optimal control input for

the minimization problem (7.2) alternative to (7.6). The assumption that Q1/2OT has full

column rank is required to ensure the invertibility of P and is typically satisfied in practice.

For instance, it is satisfied when Q � 0, or, in the case of block diagonal Q with diagonal

blocks Qd ∈ Rn×n (standard LQR setup), when the pair (A,Q
1/2
d ) is observable. This

assumption on Q1/2OT is made in order to keep expression (7.6) more compact, which helps

simplifying notation in the rest of this chapter. Both expressions (7.8) and (7.6) require the

knowledge of all the experimental data, as well as the knowledge of the cost function, which is

undesirable for interconnected and possibly large systems. While a distributed data-driven

solution to the minimization problem (7.2) could be obtained using standard techniques for

distributed optimization, e.g., see [Allibhoy and Cortés, 2020,Alonso et al., 2022], we follow

a different approach that will lead to an algorithm with finite-time convergence guarantees.

To this aim, we define the following auxiliary problems:

arg min
α, β

∥∥∥∥∥∥∥∥



Q

1
2X Q

1
2X

0 R
1
2U






α

β




∥∥∥∥∥∥∥∥

2

subject to




X0 0

U 0

0 X0






α

β


 =




x0

0

0




(7.14)
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and

arg min
α, β, v, w

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥




α

β

v

w




∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

subject to




X0 0 0 0

U 0 0 0

0 X0 0 0

Q
1
2X Q

1
2X εIX 0

0 R
1
2U 0 εIU







α

β

v

w




=




x0

0

0

0

0




,

(7.15)

where ε ∈ R+ is a tunable parameter, with IX = In(T+1), IU = ImT and therefore α ∈ RN ,

β ∈ RN , v ∈ Rn(T+1), w ∈ RmT . We now characterize the feasibility and optimality

properties of (7.14) and (7.15).

Lemma 48 (Relationship between the solution of (7.2) and (7.14)) If α∗ and β∗ are

minimizers of problem (7.14), then u∗T = Uβ∗ is the minimizer of problem (7.2). �

Proof. From Lemma 2 we can write

xT =

[
XKU XK0

]


ᾱ

β̄


 ,

with x0 = X0KU ᾱ and uT = UK0β̄. Equivalently, we can write

xT =

[
X X

]


α

β



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where α = KU ᾱ (i.e., Uα = 0), and β = K0β̄ (i.e., X0β = 0), and consequently x0 = X0α,

uT = Uβ and the cost function of (7.14) equals that of (7.2). When u∗T is the solution to

(7.2) and α∗, β∗ is the solution to (7.14), it is then straightforward to see that u∗T = Uβ∗.

We can further derive an explicit form of the optimal vectors α∗ and β∗ instru-

mental to other results in this work. By substituting the constraints of (7.14) into the cost

function, and for H, Y , and x̄0 as in (7.23), problem (7.14) can be written as

arg min
w

∥∥∥H
(
Y †x̄0 +KY w

)∥∥∥
2
, (7.16)

where KY = Basis(Ker(Y )). The minimizers to (7.16) define the set of optimal vectors

α∗, β∗ via 

α∗

β∗


 = Y †x̄0 +KY w

∗

=
(
I −KY (HKY )†H

)
Y †x̄0 + r (7.17)

where r ∈ Ker(H) ⊆ Ker(U). The resulting, unique, optimal control uT = Uβ∗ is the

solution to (7.2).

Lemma 49 (Relationship between the solution of (7.2) and (7.15)) The minimiza-

tion problem (7.15) is feasible and admits a unique solution when ε > 0. Furthermore, if

α∗(ε), β∗(ε), v∗(ε) and w∗(ε) are minimizers of problem (7.15), then

lim
ε→0+

Uβ∗(ε) = u∗T , (7.18)

where ε > 0, and u∗T is the minimizer of problem (7.2). �

Proof. From the constraints in (7.15) it holds, for all ε > 0,

v = −1

ε
Q

1
2X(α+ β), w = −1

ε
R

1
2Uβ.
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Substituting these equations in the cost function, and for H, Y and x̄0 as in (7.23), problem

(7.15) can be rewritten as

γ∗(ε) =



α∗(ε)

β∗(ε)


 = arg min

α,β
ε2

∥∥∥∥∥∥∥∥



α

β




∥∥∥∥∥∥∥∥

2

+

∥∥∥∥∥∥∥∥
H



α

β




∥∥∥∥∥∥∥∥

2

s.t. Y



α

β


 = x̄0.

(7.19)

If γ∗(ε) is bounded as ε → 0+, then γ∗(ε) converges to the (minimum norm) solution to

problem (7.14) as ε→ 0+, and (7.18) holds. Thus, it remains to prove the boundedness of

γ∗(ε) as ε→ 0+. To this end, we note that by writing γ∗(ε) = γ1(ε) + γ2(ε) with

γ1(ε) ⊥ KerH ∩KerY and γ2(ε) ∈ KerH ∩KerY,

the cost of (7.19) evaluated at γ∗(ε) reads as

C(γ∗(ε)) = ε2 ‖γ1(ε)‖2 + ε2 ‖γ2(ε)‖2 + ‖Hγ1(ε)‖2 , (7.20)

since γ2(ε) ∈ KerH. Further, the vector γ1(ε) satisfies Y γ1(ε) = Y γ∗(ε) = x̄0 since

γ2(ε) ∈ KerY . From the latter fact and (7.20), it follows that it must be γ2(ε) = 0, ∀ε > 0,

for γ∗(ε) to be optimal. Further, from (7.20) and the fact that there always exists a γ (e.g.,

γ = Y †x̄0) which is independent of ε and satisfies the constraint in (7.19) (thus yielding a

cost which is bounded ∀ε > 0), it follows that γ1(ε) = γ∗(ε) must be bounded as ε → 0+.

Since the constraints in the minimization problem (7.15) can be partitioned row-

wise in a way that each row depends only on the data available to a single agent (see below),
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Algorithm 1: Distributed data-driven optimal control

Input: x0,i, Wi, d

γi = W †i col(x0,i, 0)

Ki = Basis(Ker(Wi))

Until convergence

for j ∈ Ni do

Receive: γj , Kj

γ+
i = γi +

[
Ki 0

] [
−Ki Kj

]†
(γi − γj)

Ki = Basis(Im(Ki) ∩ Im(Kj))

γi = γ+
i

end

Transmit: γi, Ki

end

Return: βi = [γi]N+1:2N

a distributed algorithm can be readily obtained. Further, given the equivalence between

the minimization problems (7.2), (7.14), and (7.15) as stated in Lemma 48 and Lemma 49, a

distributed solution to (7.2) can be obtained by solving (7.15) in a distributed manner. Our

distributed algorithm for the agents to solve the minimization problem (7.2) via distributed

computation is in Algorithm 1, where Wi is defined in (7.21) and d denotes the diameter of

Gc.2 We now provide an informal description of the algorithm:

(S1) Initially, each agent i computes the minimum norm solution to

Wiγi = col(x0,i, 0mT , 0n, 0n(T+1), 0mT ),

2The diameter of a graph G is the maximum distance between any two nodes of G.
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where Wi ∈ R(ni+miT+ni+ni(T+1)+miT )×(N+N+n(T+1)+mT )

Wi =




X0,i 0 0 0

Ui 0 0 0

0 X0,i 0 0

Q
1
2
i Xi Q

1
2
i Xi εIiX 0

0 R
1
2
i Ui 0 εIiU




, (7.21)

and Ki = Basis(Ker(Wi)). Here, IiX (resp. IiU ) is a matrix whose rows are the rows

of InT (resp. ImT ) corresponding to the indices that extract Q
1
2
i Xi (resp. R

1
2
i Ui) from

Q
1
2X (resp. R

1
2U). From the notation in (7.15), let γi = col(αi, βi, vi, wi)∈ RN+N+n(T+1)+mT

be such solution.

(S2) At each iteration, each agent i transmits γi and Ki to its neighboring agents j, and

receives γj and Kj from each neighbor j.

(S3) At each iteration, each agent i updates γi and Ki as

γ+
i = γi +

[
Ki 0

] [
−Ki Kj

]†
(γi − γj),

Ki = Basis(Im(Ki) ∩ Im(Kj)).

(S4) Convergence of this iterative procedure is guaranteed after a number of steps equal

to the diameter of communication graph (see below). Upon convergence, each agent

returns the vector βi = [γi]N+1:2N , extracted from γi at the algorithm’s final iteration.

A high level walkthrough of the algorithm is in order. Step (S1) is simply the initialization

step, in which we compute a preliminary solution γi = W †i col(x0,i, 0) which uses only local

data and is feasible for agent i. In step (S2) neighboring agents share the information
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that is needed to update the provisory solution γi. In step (S3) γi is updated to γ+
i with

information from its neighbors in such a way that γ+
i is a feasible solution for agent i and

its neighbors. More specifically we find the new γ+
i to satisfy

γ+
i = W †i col(x0,i, 0) +Kiκi

= W †j col(x0,j , 0) +Kjκj ,

(7.22a)

(7.22b)

for all j ∈ N , where κi and κj are vectors of appropriate dimension. In the proof we show

how κi and κj such that γ+
i satisfies (7.22) always exist, and show how this can be computed

through the procedure described in (S3). Finally, (S4) gives one condition for ending the

algorithm once it converges, which is also detailed in the proof.

Theorem 50 (Distributed learning of data-driven optimal controls) Let Gc be a

strongly connected communication graph. Let βi(ε) be the value returned by Algorithm 1

when Wi is as in (7.21), and let α∗(ε), β∗(ε), v∗(ε), w∗(ε) be minimizers of problem (7.15),

for some ε > 0. Then, for all i ∈ {1, . . . ,M}, βi(ε) = β∗(ε). �

Proof. The proof follows an argument similar to the one of [Pasqualetti et al., 2012,

Theorem 3.3]. Let γi be the estimate of agent i, Wi be defined as in (7.21), and Ki =

Basis(Ker(Wi)). Observe that γi = W †i col(xi,0, 0, 0, 0, 0) ⊥ Ker(Wi). Let i and j be

two neighboring agents, i.e, (i, j) ∈ Ec, then there exist two vectors κi and κj such that

γi +Kiκi = γj +Kjκj . In particular, such vectors can be chosen as



κi

κj


 =

[
−Ki Kj

]†
(γi − γj).
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Substituting κi back in γi we have that the vector

γ+
i = γi +

[
Ki 0

] [
−Ki Kj

]†
(γi − γj)

is such that col(x0,i, 0, 0, 0, 0) = Wiγ
+
i and col(x0,j , 0, 0, 0, 0) = Wjγ

+
i . Moreover, we have

that γ+
i ⊥ (Im(Ki) ∩ Im(Kj)), since



κi

κj


 ⊥Ker(

[
−Ki Kj

]
).

We notice that Kiκi ⊥ Im(Kj); by contradiction, if Kiκi 6⊥ Im(Kj), then one can find

κi = κ̃i+κ̄i, where Kiκ̃i ⊥ Im(Kj) and Kiκ̄i ∈ Im(Kj). Let κ̄j = K†jKiκ̄i and κ̃j = κj−κ̄j .

Then col(κ̄i, κ̄j) ∈ Ker(

[
−Ki Kj

]
) and hence col(κ̄i, κ̄j) 6⊥ Ker(

[
−Ki Kj

]
), which

contradicts the hypothesis. We conclude that

[
Ki 0

] [
−Ki Kj

]†
(γi − γj) ⊥ Im(Kj),

and, since γi ⊥ Im(Ki), we can conclude that γ+
i ⊥ (Im(Ki) ∩ Im(Kj)). The theorem

follows by noticing that after a number of steps equal to the diameter of Gc, each vector

γi verifies all the measurements, since we will have that γi ⊥
⋂M
j Im(Kj). Finally, we

remark that the solution we are interested in involves only the second N elements of γi,

corresponding to βi.

From Theorem 50, Algorithm 1 returns in a finite number of steps the solution

of the minimization problem (7.15). Due to Lemma 49, such solution yields the minimizer

of (7.2) as the parameter ε decreases to zero. In fact, for any finite value of ε, the sub-

optimality gap between the minimizer of (7.2) and the input Uβ∗(ε) reconstructed from the
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minimizer of (7.15) can also be quantified. Let

Y =




X0 0

U 0

0 X0



, H =



Q

1
2X Q

1
2X

0 R
1
2U


 , x̄0 =




x0

0

0



. (7.23)

Lemma 51 (Optimality gap of (7.18) for finite ε) Let β∗(ε) be the minimizer of Prob-

lem (7.15), and let δ(ε) = ‖u∗T − Uβ∗(ε)‖. Then,

δ(ε) ≤
∥∥∥∥U
[
0N,N IN

]
KY Z(ε)K>Y H

>HY †x0

∥∥∥∥ , (7.24)

where Z(ε) = (K>Y (ε2I +H>H)KY )† − (K>Y H
>HKY )†, and KY = Basis(KerY ). �

Proof. For H, Y and x̄0 as in (7.23), problem (7.15) can be rewritten as



α∗(ε)

β∗(ε)


 = arg min

α,β

∥∥∥∥∥∥∥∥



εI

H






α

β




∥∥∥∥∥∥∥∥

2

s.t. Y



α

β


 = x̄0.

(7.25)

The solution to (7.25) is Y †x̄0 −KY w
∗(ε) with

w∗(ε) = arg min
w

∥∥∥∥∥∥∥∥



εI

H



(
Y †x̄0 −KY w

)
∥∥∥∥∥∥∥∥

2

=






εI

H


KY




† 

εI

H


Y

†x̄0

=
(
K>Y (ε2I+H>H)KY

)†
K>Y (ε2I+H>H)Y †x̄0

=
(
K>Y (ε2I+H>H)KY

)†
K>Y H

>HY †x̄0, (7.26)
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where in the last-but-one step we used that A† = (A>A)†A> for any matrix A, and in

the last step K>Y Y
† = 0. Similarly, we can rewrite any minimizer to Problem (7.14) as

(cf. (7.17)) 

α∗

β∗


 =

(
I −KY (HKY )†H

)
Y †x̄0 + r

=

(
I −KY

(
K>Y (H>H)KY

)†
K>Y H

>H

)
Y †x̄0 + r, (7.27)

where r ∈ Ker(H) ⊆ Ker(U) and r ∈ Ker(H) ⊆ Ker(X0). From (7.26) and (7.27) and

from the fact that ‖col(α, β)‖ ≥ ‖β‖ for any α and β, it follows that ‖U(β∗ − β∗(ε))‖ =

‖u∗T − Uβ∗(ε)‖ is bounded as in (7.24).

Using Lemma 51, Algorithm 1 can be used to compute a sub-optimal solution to

(7.2) in a finite number of distributed calculations and within any desired sub-optimality

guarantee. In fact, once βi is computed by each agent i, the sub-optimal and local control

at each agent is simply uT,i = Uiβi.

Remark 52 (Convergence of Algorithm 1) Algorithm 1 converges after d iterations,

where d is the diameter of Gc. When d is not available the algorithm can be stopped after

n iterations, since n is always available to each agent through the size of the vector vi, and

d ≤ n always holds.

7.5 Numerical results and illustrative examples

We now provide numerical validations of the results presented in this chapter.

First, we show how Algorithm 1 and Theorem 50 can be used to solve the problem in (7.2)

when the system (7.1) is unknown but data (7.5) are available. We further discuss how
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our formulas can be used directly, for a fixed-window control, in a receding horizon fashion.

Finally, we compare and discuss our approach to alternative approaches in the literature.

7.5.1 An application to scaling ring networks

We assess the results of this chapter by analyzing the convergence of Algorithm

1 for networks of varying diameter. We consider randomly generated ring networks, with

communication graph Gc as in Fig. 7.2a, here shown for a ring network with M = 6 and

d = 3. In Fig. 7.2b we plot the error between the solution of (7.2) and the result of

Algorithm 1. For the kth iteration of Algorithm 1, subnetwork i computes its own control

inputs as ui[k] = Uiβi[k], where βi[k] is the interim value of βi at iteration k. The dynamics

of (7.1) when ui[k] is injected to all i ∈ {1, . . . ,M} is compared to the one induced by the

model-based optimal control (7.8). As discussed in Theorem 50, Algorithm 1 converges to

the solution in a number of steps equal to the diameter of the communication graph Gc.

(a)

1 2 3 4 5 6 7 8
iteration [k]

10-10

100

op
ti
m

al
it
y

er
ro

r

Convergence of Algorithm 1

d = 3
d = 4
d = 5
d = 6
d = 7
d = 8

(b)

Figure 7.2: This figure shows the results associated with the experiment of Section 7.5.1.
In panel (a) we show the communication graph of an example network, with M = 6 and
d = 3. All other networks in this example are similar in structure (ring network), with
varying diameters d ∈ {3, . . . , 8}. All experiments shown in panel (b) are performed with
T = 5, ε = 10−3 and the tolerance for the pseudoinverse operation is set to tol = 10−8.
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Figure 7.3: This figure shows the results associated with the experiment of Section 7.5.2.
In panel (a) we show a randomly generated Watts-Strogats network with M = 30 agents.
In panel (b) we show the convergence of Algorithm 1, comparing it to the model-based
centralized solution of (7.2). Additional simulation parameters are T = 5, ε = 10−3 and
the tolerance for the pseudoinverse operation is set to tol = 10−8.

7.5.2 An application to Watts-Strogatz networks

To prove the effectiveness of this approach in more complex network structures,

we test Algorithm 1 on a Watts-Strogats network of larger size [Watts and Strogatz, 1998].

In Fig. 7.3 we run Algorithm 1 over a randomly generated Watts-Strogats network with

M = 30, mean node degree 4 and rewiring probability of 0.15, ref. the WattsStrogatz

function in MATLAB [MathWorks, 2023]. The particular realization of Fig. 7.3a is a

network with diameter 5, as testified by the convergence of Algorithm 1, see Fig. 7.3b.

7.5.3 Receding horizon implementation

Theorem 47 assumes that T is the control horizon of problem (7.2) as well as of

the dataset (7.5). It is possible to lift this requirement by implementing Algorithm 1 in a

receding horizon fashion. That is, once Algorithm 1 is executed, each agent applies only
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Algorithm 2: Receding horizon Algorithm 1

Input: Tsim, {X1, . . . , XM}, {U1, . . . , UM}, {XF,1, . . . , XF,M},

{X0,1, . . . , X0,M}, ε, Q, R, {x0,1, . . . , x0,M}, h

set t = 0

for Tsim times do

run Algorithm 1, where each agent computes uT,i = Uiβi

let each agent apply h steps of the computed control, i.e.,

ui(t) = uT,i(1 : mi)

set t to t+ 1 and x0,i to the updated state xi(t+ 1), for all i = {1, . . . ,M}

end

a finite horizon h ≤ T of the computed controller uT,i = Uiβi. After h time steps, then,

Algorithm 1 is executed again, and a new controller is found for the subsequent horizon

h. This approach is formally described in Algorithm 2. Clearly, there is no limit to the

number of times that this algorithm can be run, i.e., we can use this approach to design an

arbitrarily long controller. A receding horizon implementation is common throughout the

literature, often termed Model Predictive Control (MPC), and is also implemented in related

works [Allibhoy and Cortés, 2020,Alonso et al., 2022]. Comparison of these approaches with

our method are discussed next.

7.5.4 Comparison with splitting methods

Several strategies have been proposed to solve MPC problems in a distributed

fashion. Among these, splitting methods [Cherukuri et al., 2017, Clason and Valkonen,

131



2020] have been explored in a model-based [Farokhi et al., 2014] and data-driven [Allibhoy

and Cortés, 2020] setting. These consist in splitting one optimization problem in a family of

smaller optimization problems. In the context of the problem setup (7.2), each agent needs

to solve a local optimization problem, while iteratively exchanging information with other

agents in order to properly converge to the global optimal solution. The accuracy of the

approach is closely related to the number of iterations of the algorithm, a higher number

of them leading to a more accurate solution. A known downside of these approaches is

their slow convergence; typically, a large number of iterations is needed to converge to an

acceptable solution (measured as its distance from the exact optimal solution). Recently

[Allibhoy and Cortés, 2020] proposed splitting (7.2) trough a primal-dual flow. In Fig. 7.4

we compare the convergence properties of Algorithm 2 with a primal-dual algorithm based

on [Allibhoy and Cortés, 2020]. In particular, we keep the problem formulation and data-

collecting phase of [Allibhoy and Cortés, 2020], while modifying the cost function through

the Augmented Lagrangian method, which is known to improve the convergence speed

of the flow. As a standard practice, we distribute the Augmented Lagrangian through

the Alternating Directions Method of Multipliers (ADMM), see [Clason and Valkonen,

2020, Chapter 8]. As highlighted in Fig. 7.4, Algorithm 2 returns a stabilizing controller

even for higher noise values.

7.5.5 Comparison with [Alonso et al., 2022] with noisy data

We now compare the performance of our approach to [Alonso et al., 2022], when

data are collected with noise. We consider the same system used in [Alonso et al., 2022,
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Figure 7.4: This figure shows a comparison between the approach in Algorithm 2 and
a distributed data-driven solver based on [Allibhoy and Cortés, 2020] (splitting method).
The experiments are performed with noiseless data from the same system, a randomly
generated network with M = 3 agents, and diverse state size. This comparison highlights
the computational time to accuracy tradeoff that the approaches have with respect to a
particular design parameter, namely the number of iterations of the splitting method, and
the parameter ε for Algorithm 2. The runtime is reported in seconds (lower is better),
and the distance from the optimal input is computed as the norm of the difference of the
solution and the exact optimal control computed through a model-based LQR solver (lower
is better). Additional simulation parameters are T = 5, tol = 10−8.
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Sec. VI], a ring network with M = 4 subsystems, i.e., Ec = {(i, i + 1), (i + 1, i), i =

1, . . . ,M} ∪ {(1,M), (M, 1)}. Each subsystem (7.4) is a two-dimensional linearized and

discretized (∆t = 0.2) swing dynamics, with

Aii =




1 ∆t

− ki
mi

∆t 1− di
mi

∆t


 , Aij =




0 0

kij
mi

∆t 0


 ,

and Bii =

[
0 1

]T
. The design parameters are drawn randomly from continuous uniform

distributions mi ∼ U [0, 2], di ∼ U [0.5, 1], and kij ∼ U [1, 1.5], with ki =
∑

j∈Ni
kij . We run

the same experiment three times with Q = I and R = I, the first assuming that ∆X = 0

(i.e., noiseless case), the second that ∆X ∼ N (0, σ2I), with σ2 = 0.1, and finally with the

same noise distribution but with σ2 = 5.0. We run our algorithm with the receding horizon

implementation described in Algorithm 2, with h = 1. We notice from Fig. 7.5 that our

method and that of [Alonso et al., 2022] perform well when ∆X = 0. Crucially, however,

the convergence of [Alonso et al., 2022] to a stabilizing controller is significantly slower than

Algorithm 2, when data are corrupted by noise.

7.6 Conclusions

In this final chapter we build on our results on data-driven optimal control design

discussed throughout this work and propose an algorithm to distributedly learn optimal

controllers for a network system with data. Our approach provably converges to a subopti-

mal solution in a finite number of steps, with a subopotimality gap that can be characterized

as a function of the available data. Moreover, although data are distributed among multiple
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Figure 7.5: Comparison of the robustness of two different distributed data driven
controllers with noisy data. The underlying model is a chain of four interconnected bi-
dimensional oscillators, as discussed in [Alonso et al., 2022, Sec. VI]. Problem (7.2) is
considered with Q = 1, R = 1, and random initial condition. The top panel shows the
difference between the reference state evolution and the solution of Algorithm 2 (left) and
of [Alonso et al., 2022] (right) when data are collected without noise. As expected, both
methods converge to the equilibrium (T = 10). In the middle panel the same comparison
is shown when data are collected with noise (each input and state trajectory is perturbed
with an additive i.i.d. disturbance with zero mean and variance σ2 = 0.1). In the bottom
panel we run the same simulation for data collected with variance σ2 = 5. ε = 0.01 and
tol = 10−8.
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agents in the network, and communication between agents is therefore necessary to find a

globally optimal control, this approach does not require to directly share trajectory data

between agents. We discuss how these features are attractive, especially when compared to

alternative approaches in the literature. Finally, we characterize the robustness properties

of our approach and show that we can bound, in probability, the error on the cost function

of the control computed with corrupted data.
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Chapter 8

Conclusions

In this thesis we proposed a framework to systematically design closed-form ex-

pressions for the data-driven control of unknown systems. We restricted our analysis to the

class of linear, time-invariant, discrete-time systems. We further made some assumptions

on the nature of the noise affecting the experimental data we collect, which allowed us to

study some notions of robustness for our approach. Within this framework, we covered a

diverse set of problems, including open-loop input-output optimal control and minimum

energy control (cf. Chapter 3), closed-loop state-feedback control design (cf. Chapter 4),

eigenstructure assignment and sparse pole placement (cf. Chapter 5). In Chapter 6 we

studied how data can be used to rethink the geometric approach to control, discovering new

ways to link system’s properties and data. Further, we proposed a strategy to apply our

approach in network systems and showcased how this can be efficiently applied to a variety

of complex network structures (cf. Chapter 7). Crucially, we complemented the discussion

by studying the robustness properties of our approach, through formally provable bounds
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that characterize how noise in the datasets might affect the approach’s convergence to the

desired controller (cf. Chapter 3). Here, we discovered that our closed-form expressions

can be appropriately modified to account for the system noise, at least asymptotically as

the number of experiments increases. When no information about the noise distribution is

known, we can still guarantee some degree of convergence of our approach, with the general

conclusion that more data equal better results, as one would expect.

Naturally, there are numerous avenues to expand over the present work. Some

authors have already proposed solutions to new problems based on this framework or build-

ing directly over the seminal work in [Baggio et al., 2019], including the study of Imita-

tion and Transfer Learning [Guo et al., 2023], attack detection [Krishnan and Pasqualetti,

2020, Gadginmath et al., 2022b], as well as the design of the Kalman-filter and the LQR

controller [Al Makdah and Pasqualetti, 2023]. These works deal with various problems and

different working assumptions, but all rely on the assumption that the underlying dynamics

are linear.

Lifting the assumptions on the linearity of the underlying unknown system would

be a logical next step. The study of linear systems is common practice in control systems,

and it is often the starting point when developing new theories. At the same, this is a

rather limiting assumption in practical applications and expanding these ideas to nonlinear

systems is a natural next step. Some preliminary work in the direction of direct data-driven

control for nonlinear systems has been done, for example, in [Gadginmath et al., 2022a,De

Persis et al., 2023]. As with the model-based case, it seems that there is not a one-size-fits-

all strategy to deal with nonlinear systems and therefore one can anticipate a fertile area
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of research in this direction.

Another interesting research avenue is to rekindle the link between the originally

motivating machine learning framework and our control theoretic approach. In fact, in this

thesis we started from a control theoretical setting to study data-driven techniques. This

comes with a formal framework which introduces all the benefits that we throughly discussed

throughout the thesis, but which falls distant from being truly applicable to modern machine

learning applications. At the same time, very recent and promising architectures such as

Transformers [Vaswani et al., 2017] and Structured State Space Model [Gu et al., 2021,Gu

and Dao, 2023], seem to suggest an ever stronger link between machine learning, state space-

based control theory and system analysis [Fu et al., 2022,Du et al., 2023,Goel and Bartlett,

2023]. The study of these modern architectures with a control-theoretic focus should be a

major focus for future research directions. Truly leveraging the power of machine learning

in control science in a reliable, provably safe and robust fashion is one of the great challenges

of our time. The prospect of merging the strengths and benefits of both fields is an exciting

opportunity with potentially disruptive consequences for the future of science.
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approach to design of structured optimal state feedback gains. IEEE Transactions on
Automatic Control, 56(12):2923–2929.

[Liu and Patton, 1998] Liu, G. P. and Patton, R. J. (1998). Eigenstructure assignment for
control system design. John Wiley & Sons, Inc.

146



[Ljung, 1987] Ljung, L. (1987). System Identification: Theory for the User. Prentice Hall.

[Lopez and Müller, 2022] Lopez, V. G. and Müller, M. A. (2022). On a continuous-time
version of willems’ lemma. In 2022 IEEE 61st Conference on Decision and Control
(CDC), pages 2759–2764. IEEE.

[Markovsky and Dörfler, 2021] Markovsky, I. and Dörfler, F. (2021). Behavioral systems
theory in data-driven analysis, signal processing, and control. Annual Reviews in Control,
52:42–64.

[Markovsky and Rapisarda, 2008] Markovsky, I. and Rapisarda, P. (2008). Data-driven
simulation and control. International Journal of Control, 81(12):1946–1959.

[Massoumnia et al., 1989] Massoumnia, M. A., Verghese, G. C., and Willsky, A. S. (1989).
Failure detection and identification. IEEE Transactions on Automatic Control, 34(3):316–
321.

[MathWorks, 2023] MathWorks (2023). Build Watts-Strogatz small world graph
model. [Online]. Available: https://www.mathworks.com/help/matlab/math/build-
watts-strogatz-small-world-graph-model.html (Accessed: Jan. 16, 2023).

[Mesbahi and Egerstedt, 2010] Mesbahi, M. and Egerstedt, M. (2010). Graph Theoretic
Methods in Multiagent Networks. Princeton University Press.

[Miller et al., 2022] Miller, L. J., Grauer, J. A., Pei, J., and Nelson, S. L. (2022). Re-
construction of the Apollo 11 Moon landing final descent trajectory. Technical Report
TM-20220007267, NASA.

[Mohammadi et al., 2019] Mohammadi, H., Zare, A., Soltanolkotabi, M., and Jovanović,
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