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Atomistic molecular dynamics simulations of biomolecules are critical for generating narratives
about biological mechanisms. The power of atomistic simulations is that these are physics-based
methods that satisfy Boltzmann’s law, so they can be used to compute populations, dynamics, and
mechanisms. But physical simulations are computationally intensive and do not scale well to the
sizes of many important biomolecules. One way to speed up physical simulations is by coarse-
graining the potential function. Another way is to harness structural knowledge, often by imposing
spring-like restraints. But harnessing external knowledge in physical simulations is problematic
because knowledge, data, or hunches have errors, noise, and combinatoric uncertainties. Here,
we review recent principled methods for imposing restraints to speed up physics-based molecular
simulations that promise to scale to larger biomolecules and motions. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4936911]

INTRODUCTION

An important source of insight into the structures and
mechanisms of proteins and other biomolecules is atomistic
computer simulations.1–7 To design drugs or to create
narratives of how the intricate mechanisms of proteins are
encoded within their molecular structures often requires
capturing fine spatial and temporal detail. Experimental
science alone generally provides only information that is
too coarse to tell the stories of the hundreds of thousands
of structures and mechanisms of the protein universe.
Metaphorically, you cannot explain the workings of a car
engine from seeing a few distant snapshots. At present,
molecular modeling is the only way to fill in the Angstrom-
by-Angstrom and picosecond-by-picosecond details needed
to provide complete narratives of biological mechanisms.8,9

In broad terms, computer simulations of biomolecules
draw from two sources of insights. First, atomistic simulations
draw upon knowledge of the energetics of the intra- and
inter-molecular interactions, which is encoded within semi-
empirical forcefields.10–12 Second, some computer modeling
of proteins draws upon structural knowledge, either of similar
proteins, such as in the Protein Data Bank (PDB)13—
a database of more than 100 000 structures known at
atomic detail—or from experimental studies by NMR,14

EPR,15,16 or electron microscopy, or from knowledge of
related amino acid sequences.17–19 In the long run, it is
important to develop methods that combine the advantages
of energetic and structural modeling. Forcefield modeling
alone is computationally expensive and does not scale well
to larger systems. Structure-based methods alone do not give
proper Boltzmann populations, and so are not amenable to

constructing narratives about mechanisms, or of how those
mechanisms are encoded within structures and dynamics.
There is great value in joining together structural and energetic
approaches to biomolecule modeling. However, in practice,
this has been challenging.

The field called integrative structural biology20–23

attempts this synthesis, but falls short in one critical way:
it does not attempt to provide proper free energies (said
differently, it does not provide proper populations, give the
proper Boltzmann distribution, or satisfy detailed balance
at equilibrium). Without proper free energies, we cannot
obtain physically plausible dynamics or mechanisms. The
two most prominent methods satisfying detailed balance for
the study of macromolecules are molecular dynamics (MD)1

and Monte Carlo (MC)24 techniques. The approach called
coarse-graining25,26 seeks to give proper free energies but
makes other crucial trade-offs. Coarse-graining reduces the
numbers of degrees of freedom, based upon choices that must
be made in advance depending on what properties are to be
captured in modeling and which can be sacrificed. But for
many problems of biomolecules, it is not clear in advance
which degrees of freedom are important and which are not.

Here, we summarize a different general approach to
targeted searching. These approaches keep the fine-grained
detail at all stages of the atomistic simulation, by harnessing
external structural knowledge or insights. So, these methods do
not lose the detailed information from the atomistic forcefield,
they preserve Boltzmann populations, and they explore states
of interest with high efficiency. In addition, these approaches
are fairly robust against noise, errors, and uncertainties of the
supplied external knowledge, and promise to scale to larger
systems.

0021-9606/2015/143(24)/243143/10/$30.00 143, 243143-1 © 2015 AIP Publishing LLC

http://dx.doi.org/10.1063/1.4936911
http://dx.doi.org/10.1063/1.4936911
http://dx.doi.org/10.1063/1.4936911
http://dx.doi.org/10.1063/1.4936911
http://dx.doi.org/10.1063/1.4936911
http://dx.doi.org/10.1063/1.4936911
http://dx.doi.org/10.1063/1.4936911
http://dx.doi.org/10.1063/1.4936911
http://dx.doi.org/10.1063/1.4936911
http://dx.doi.org/10.1063/1.4936911
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4936911&domain=pdf&date_stamp=2015-12-09


243143-2 Perez et al. J. Chem. Phys. 143, 243143 (2015)

One longstanding method for restraint-based targeted
sampling of conformational space is umbrella sampling,27

where restraints are imposed to drive the sampling of a
conformational transition that would otherwise not happen
or take too long to simulate. In umbrella sampling, the
simulation is guided along a path from one state to another.
When the overlap of sampled populations is good enough,
reweighting techniques such as the weighted histogram
analysis method (WHAM)28 can then be used to compute
the free energy change for the overall process. Another
approach is metadynamics29–32—which uses an adaptive
biasing potential to guide simulations. In this method, the
conformations are described by collective variables. While
sampling conformational space, history-dependent Gaussian
penalties are added to make conformations already visited
less likely, increasing the sampling of rare events. When
the sampling is converged, the free energy change can be
recovered from the Gaussian penalties. These methods are
successful and widely used, but they require a well-defined
starting and ending state, and they can be slow if the endstate
is very different from the starting state. The methods described
below have somewhat broader applicability.

We describe three different restraint methods here that
can speed up otherwise computationally costly searching and
sampling processes.33,34 One is MELD35 (Modeling Employ-
ing Limited Data). It uses a Bayesian inference approach
within MD to harness external constraint information that
can be fuzzy, incomplete, or inconsistent to search different
possible beginning or end states. Another is CCR (Confine-
Convert-Release).36–38 CCR is a method for computing the
free energy of a conformational transition of a biomolecule
from state A to B, by variable constraints, where A and B can
be very different conformations. And third, we describe AIKC
(Algebraic Inverse Kinematics Closure) for efficiently model-
ing loops and macrocycles and large conformational spaces of
molecules that have known, but sparse, structural constraints.

SPRING-LIKE RESTRAINTS HELP TO SPEED
UP MD SIMULATIONS

Biomolecular energy landscapes are large and rugged.
The energy landscape for the conformational space of a protein
can be approximated by a forcefield energy, Effi (r), where r
represents one conformation of the chain. Boltzmann’s law
gives the state population pi (r) and partition function Z as

p (r) = exp[−βEff (r)]
Z

; Z =


exp
�
−βEff (r)� , (1)

where p is the probability of a particular microstate, r is
the full conformational vector, Z is the partition function,
and β = 1/(kBT). Our goal is usually to find the most highly
populated states, such as a protein’s native structure.

A standard way of introducing structural information
into molecular simulations is by using “spring-like” forces—
usually either parabolic or flat-bottomed restraining potentials.
If we want to enforce that residues i and j are nearby
to each other in space in some molecular structure being
simulated, then a term is added to the standard potential
energy function that drives i towards j. On the one hand,

FIG. 1. The standard way to impose structural information within MD
simulations. Spring-like potentials are imposed as restraints to enforce the
knowledge that residues i and j are in close proximity, and a spring-constant
imposes a variance, or uncertainty, in our knowledge.

this might seem ad hoc. On the other hand, it is fully in the
spirit of the modern interpretations of statistical mechanics as
an inference procedure for choosing an optimal model given
limited information.39

Figure 1 illustrates the standard inference made in
the canonical ensemble of statistical mechanics, where
minimizing a free energy is equivalent to maximizing an
entropy subject to satisfying an experimental observable,
such as the temperature (or equivalently, the average energy,
⟨E⟩ = i j pi jεi j). Statistical physics gives a procedure for
inferring the full distribution function pi j(r), given only a
single given first-moment experimental observable. In this
context, adding springs is simply equivalent to enforcing
structural information. A spring enforces an estimated average
distance ⟨di,j⟩ between i and j. At the same time, the spring
constant essentially enforces a measure of our uncertainty
of that knowledge, by fixing the variance (⟨dij

2⟩ − ⟨dij⟩2).
Knowledge of multiple constraints can readily be enforced by
multiple such spring-like potentials.

A key point, however, is that enforcing a constraint (i,j) in
a MD simulation only works if that constraint is truly present
and accurately represented by the spring model, placement,
and variance. But, enforcing a wrong constraint (i,j) will just
misdirect a MD simulation to search wrong structures. A
common reality is that external knowledge comes with some
right information and some wrong information and does not
tell us which is which. Solving this problem is the essence of
the MELD method,35 described below.

MELD: COMBINING SUBSETS OF INFORMATION
WITH MOLECULAR SIMULATIONS

Because the energy landscape of a folding protein is
large and rugged, finding the states of high population can
be prohibitively slow. Ideally, we want to sample only near
high-population regions. This can be done by adding focusing
restraints. Applying restraints changes the expressions for the
populations and partition function,

pi ′ (r) = exp[−βEff (r) − βErest (r)]
Z ′

;

Z ′ =


exp[−βEff (r) − βErest(r)],
(2)



243143-3 Perez et al. J. Chem. Phys. 143, 243143 (2015)

where Erest(r) is the restraint energy. Conformations that are
compatible with the restraints will have Erest(r) = 0, and
those that are not compatible will have Erest(r) > 0. So,
conformations that are compatible with the restraints will be
more populated than in unrestrained simulations. The goal is to
choose a set of restraints that is compatible with the native state
(or any particular state of interest). Flat-bottomed potentials
add no restraint energy near the targeted conformation but
increase the energy everywhere else,

Erest(r) =



1
2

k(r − r1)2 if r < r1

0 if r1 ≤ r ≤ r2
1
2

k(r − r2)2 if r > r2

, (3)

where Erest is the restraint energy and k is the force constant.
But typically, the external knowledge that is supplied is

corrupted in various ways, limiting our ability to convert it
into inference springs that can accelerate a MD simulation.
Here are three forms of corruption: (1) Information is too
sparse. Some experiments, such as solid state NMR, provide
accurate distances, but just not enough of them to fully
determine a protein structure. (2) Information is ambiguous.
Some experiments, such as EPR, indicate that residues i and
j are in proximity of each other but does not tell us whether
they are within 5 or 35 Å. (3) Information is uncertain.
Some information, such as from databases of sequences or
structures, tells us only what might be true, not what is
exactly true. For example, in the homology modeling of one
protein from another, we do not know exactly which residues
of our query protein correspond to which residues of some
known target protein. Recently, a method called MELD has
been developed that can leverage this corrupted knowledge to
speed up population-preserving MD simulations for finding
target states.

To describe the MELD method, we first reformulate the
problem in terms of Bayes’ relationship,

p(r|D) = p(D|r)p(r)
p(D) ∼ p(D|r)p(r), (4)

FIG. 2. The basic idea of MELD, shown on an energy landscape. Different
molecular conformations “choose” which subsets of knowledge restraints are
imposed within different regions of the space, indicated as two deep wells
here. Adapted with permission from A. Perez, J. L. MacCallum, and K. Dill,
Proc. Natl. Acad. Sci. U. S. A. 112, 11846 (2015). Copyright 2015 National
Academy of Sciences, USA.

where D represents the experimental data and r is the chain
conformation. Here, p(r) is the prior probability distribution of
r, given in our case by the Boltzmann distribution of conforma-
tions from the underlying force field. p(D|r) is the likelihood
of observing the external data, given the structure r. P(D) is a
normalization factor that can be ignored for our purposes. In
MELD, rather than using the full set of data, we use subsets (see
Figure 2), recognizing that some of the data might by noisy or
ambiguous. We specify a degree of reliability.

For example, suppose we want to use NMR data to refine
a protein structure in molecular simulations. Suppose we know
that roughly 80% of the identified peaks in the experiment are
correct (but we do not know which ones). Then, we take these
data as having a reliability of 0.8. The problem is that different
NMR peaks can be mapped to different possible contacts be-
tween residues, but we do not know the mapping. So each peak
is a different “group,” one collection of all possible restraints
that could explain that peak. We require one “explanation” of
each peak, so one restraint from the group must be satisfied.
These groups then are combined into a single collection, where
80 percent of the restraints must be satisfied.

As another example, suppose our external knowledge
comes from web servers of secondary structures.41,42 Such
predictions are known to be about 70% accurate. So, we take
the degree of reliability in this case to be 70%. It means that
when MELD is choosing subsets of experimental knowledge,
each subset is taken to be one particular collection of 70% of
the possible secondary structure constraints. Or, if we want
a computer simulation to form a hydrophobic core from all
possible hydrophobic pairings, we know that only about 8% of
all possible hydrophobic pairings will be correct for any given
native structure. Different types of knowledge have different
reliabilities.

MELD satisfies detailed balance. To do this, MELD takes
the minimum restraint energy restraints for the conformation
it is sampling. MELD calculates all of the possible restraint
energies for a given structure, sorting the restraints in each
group by energy and choosing ones having the lowest free
energy, until we reach the reliability count number.

In order to hop over energy barriers, MELD samples using
replica exchange (REMD) of both the Hamiltonian and the
temperature; see Fig. 2. In this way, at high replica index the
restraint force constant is 0 and the temperature high, allow-
ing simulations to sample broadly. At lower replica indices,
the force constant increases and the temperature decreases,
so conformations are forced to sample where the springs are
active. As noted above, where Erest = 0, the relative populations
sampled will be the same as in an unbiased simulation.

In some respects, MELD is designed to tackle problems
much like those that are being explored in the new field of
“computational rationality,” which considers how people and
computerscanmake rapidchoices incomplexdecisionenviron-
ments43 and how people make decisions in complex games.44

MELD IS USEFUL FOR PROTEIN-STRUCTURE
REFINEMENT

Here, we summarize how MELD can be useful in protein-
structure determination, for different sources of experimental
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data including solid state NMR (sparse data set), EPR
(ambiguous and sparse), or evolutionary restraints (noisy and
sparse) on a set of proteins ranging from 56 to 166 residues.

Figure 3 shows that MELD can utilize troublesome
external information of these various types, and when coupled
with REMD simulations, obtain excellent native structures.
Because these particular structures were also already known
from independent studies, this just illustrates how MELD
can find correct structures when the constraining data
are problematic. The MELD method improves upon prior
methods, such as X-plor, that are less robust to troublesome
data.

A wide variety of types of data can be utilized within
MELD for structure determination or structure prediction.
Proofs of principle now exist35 for solid-state NMR,14 double
electron-electron resonance (DEER),15,45,47 and evolutionary

data.18 Further development is needed to incorporate data from
other experimental techniques such as SAXS,48 cryoEM,49 or
molecular electron tomography.50 MELD can be used with
any kind of data that can be modeled as a set of restraints, and
to which an accuracy value can be assigned. Of course, if we
incorrectly instruct MELD to believe that the data reliability
is better than it actually is, there is no guarantee it will give
reliable structures.

MELD + CPI (COARSE PHYSICAL INSIGHTS)
IS USEFUL FOR PROTEIN-STRUCTURE PREDICTION

Here is another challenge that benefits from the MELD
approach. Currently, predicting the native structure of a
protein from the fully denatured state using brute-force
atomistic simulations is largely out of reach of present

FIG. 3. MELD is useful for refining
protein structures under different types
of problematic information: too sparse,
too ambiguous, or too uncertain. The
following sources of data were used:
solid state NMR for ubiquitin,14 EPR
data for Crystallin15 and Lysozyme,45

EvFold18 for Thioredoxin, Ras, CheY,
and Calponin, and a user-defined min-
imum set for protein G. Best refers to
the lowest RMSD to native of the se-
lected number of residues (below the
PDB name) in the whole ensemble. C1,
C2, and C3 are the centroids of the three
most populated clusters in the ensem-
ble.46 Adapted with permission from
J. L. MacCallum, A. Perez, and K. Dill,
Proc. Natl. Acad. Sci. U. S. A. 112,
6985 (2015). Copyright 2015 National
Academy of Sciences, USA.
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FIG. 4. The MELD method applied
with Coarse Physical Insights (CPI) to
find native structures. In this toy illus-
tration, the method instructs the sim-
ulation to seek two hydrophobic con-
tacts, within the combinatoric problem
that 7 hydrophobic contacts are possi-
ble. Adapted with permission from A.
Perez, J. L. MacCallum, and K. Dill,
Proc. Natl. Acad. Sci. U. S. A. 112,
11846 (2015). Copyright 2015 National
Academy of Sciences, USA.

computations—with a few exceptions.5,6 Imagine, instead,
instructing a REMD simulation to find the native structure
by finding the state of lowest free energy in an atomistic
simulation at the same time as “finding a good hydrophobic
core” or “finding good secondary structures.” The aim is
to accelerate the discovery of the native structure, while
preserving free energies. We refer to such heuristics as CPIs.
MELD is a useful tool for such problems; see Fig. 4.

Figure 5 shows the predictions of MELD of the folded
states of 20 small proteins,40 based on 4 CPIs: (1) secondary
structure web server predictions, (2) globular proteins have
hydrophobic cores, (3) beta-strands pair up, and (4) globular
proteins are compact. We run REMD for 500 ns with these
heuristic constraints. We can measure performance in various
ways. First, we ask how well MELD + forcefield gives the
native structures. In 11 out of 20 cases, MELD identifies the

FIG. 5. MELD+CPI makes excellent predictions of the structures of 20 small proteins, starting from the fully extended state. It combines the CPI of a
hydrophobic core, good secondary structures, and a compact state with REMD simulations in implicit water. All simulations were run for 500 ns, allowing to
sample native states (RMSD of best structure in the ensemble below 4 Å, see non-bold numbers in the figure) in all cases. When clustering46 and using the
centroid of the top 5 clusters by population, the native state can be identified in 15/20 cases (left of vertical line). Adapted with permission from A. Perez, J. L.
MacCallum, and K. Dill, Proc. Natl. Acad. Sci. U. S. A. 112, 11846 (2015). Copyright 2015 National Academy of Sciences, USA.
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best (highest population) structure; in 15 out of 20, the native
structure is one of the top five. Some of the wrong predictions
are forcefield errors. More importantly for a sampling method
like MELD, we ask how well MELD samples the correct
native state. We find that it samples all 20 native states well.

MELD SCALES BETTER THAN BRUTE-FORCE MD

Figure 6 compares the performance of MELD + CPI
for folding proteins, relative to brute-force MD. Two things
matter for the performance of a sampling method: how closely
the sampling focuses on important structures and how fast it
reaches them. Both can be captured by using the performance
metric, P = ffolded/t, where ffolded is the fraction of structures
closer than 4 Å RMSD from the native structure, and t is
the total simulation time (including all replicas). Fig. 6(a)
compares the performance better performance of MELD,
due to the effective harnessing of the coarse physical insights,
compared to the brute-force folding simulations of Simmerling
et al.6

Fig. 6(a) compares the scaling of P to longer chains
of MELD + CPI vs. brute-force MD. Fig. 6(b) shows how
the computer time needed to find native structures depends
on protein chain length, for a given convergence radius. It
indicates that to fold a 200-mer protein, MELD would require
millisecond simulations with the current CPIs, which is nearly
achievable with today’s computational resources. In contrast,

FIG. 6. The expected scaling of MELD for protein folding vs. brute-force
MD. (a) Fit to data from MELD or unrestrained simulations and (b) ex-
trapolation to larger proteins. Adapted with permission from A. Perez, J. L.
MacCallum, and K. Dill, Proc. Natl. Acad. Sci. U. S. A. 112, 11846 (2015).
Copyright 2015 National Academy of Sciences, USA.

it indicates that brute-force MD would require about 109

greater computational resources, given current methods and
forcefields.

CCR COMPUTES FREE ENERGIES OF LARGE
CONFORMATIONAL CHANGES

Another problem of interest is to calculate the free energy
of a large change, say from conformation A to B, of a
protein. A method called CCR36,38 is useful. Fig. 7 shows
its thermodynamic cycle. This method entails selectively
tightening and weakening constraints: (1) Take the ensemble
of conformation A. Tighten the constraints until you have
squeezed A into A′, a single microstate that is the average
structure of A. Compute the free energy of that step. (2)
Perform the same process on B, converting it from an ensemble
B to an average microstate B′. Compute the free energy.
(3) Use normal-mode analysis and single point energies to
compute microstate A′ to microstate B′. Since this process
is microstate-to-microstate, there is no ensemble entropy, so
the free energy of this process approximately equals the
normal-mode energy difference. Now, compute the full free
energy change, ∆GAB using the thermodynamic cycle,

∆GAB = ∆GConfine + ∆GConvert + ∆Grelease

= ∆GAA′ + ∆GA′B′ − ∆GBB′. (5)

The confinement and release steps are based on using
thermodynamic integration over different spring strengths.
Similar approaches have been used for ligand binding.51,52

Figure 8 shows one useful application of the CCR
methodology. In the community-wide blind protein-structure
prediction event called CASP (Critical Assessment of
Structure Prediction),56,57 different research groups use
different models to try to predict the native structure of a
protein. Each group is allowed to submit the 5 predicted
structures it believes might best model the unknown protein
structure. While sometimes, a good “needle” is found in this

FIG. 7. The confinement convert and release thermodynamic cycle. An
ensemble (A) is confined to a single microstate (A′). The free energy of
conversion into B′ is calculated based on molecular mechanics and entropic
contributions from normal modes. Finally, the microstate B′ is released to the
ensemble of conformations B.
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FIG. 8. CCR can order structures according to free energy. Research groups
in CASP are allowed to submit 5 models for what they believe is the native
structure. A common problem is that groups seldom know which of their
5 models is the best one. Here, we use CCR to compare 5 models from
Rosetta server of a former CASP target. This image shows that CCR correctly
picks out the best model.36 CCR is also useful for other purposes, such as
discriminating chameleon proteins.53–55 Reprinted with permission from Roy
et al., Structure 22, 168–175 (2013). Copyright 2013 Elsevier.

“haystack” of 5 possible options, very few research groups
are typically able to know which of their 5 submissions is
the closest to the true native structure.58 Researchers can
rarely rank order their predictions because their methods
do not predict Boltzmann populations from a consistent
energy model. Figure 8 shows that CCR can help. We rank-
ordered predictions from different research groups using CCR-
calculated free energies. In most cases, CCR correctly rank-
orders by free energies the structures that are geometrically
closer to the native state.36

LOOPS CAN BE MODELED USING THE AIKC METHOD
OF KINEMATIC GEOMETRY

Computer modeling of loops and flexible regions
in proteins has been challenging because of the large
conformational spaces that must be sampled. However, when
constraints are known, such as the fixed endpoints of mobile
regions, algebraic methods can provide highly effective tools
for searching the important parts of conformational space.

Recent successes in loop modeling are based on Inverse
Kinematics (IK) methods of robotics, which were developed
for the motions of systems having some fixed (rigid) parts
connected through flexible joints. An example is when a robot
moves a hand through multiple arm-like linkages. Inverse
Kinematic Closure (IKC) in engineering and biochemistry
deals with finding all the possible conformations of the
arm that are compatible with having the end points at fixed
positions and orientations.33,34,59–70

Kinematic geometry methods differ from more general
distance geometry methods in that the former focus on
torsional degrees of freedom, rather than on distances. A

distinguishing feature of fully algebraic kinematic geometry
methods is that by focusing on allowable motions through
explicitly and rigorously accounting for the constraints
imposed by ring closure, they produce descriptions having
much lower dimensionalities. So, they can be fast and efficient.
For example, conformational sampling for cyclo-octane can
be reduced to a two-dimensional search.71,72

Computing protein loop ensembles is challenging because
the energy surface is quite flat and the conformational spaces
to be sampled are large. IK is well suited because the ends
of protein loops are fixed in space (they are attached to the
rest of the protein, whose structure is known) and we want
to know the conformations of the loop amino acids. Previous
efforts solve iteratively,63,64,67,68 based on methods that seek a
common zero of a set of objective functions, typically end-triad
distances. As these objectives are non-convex transcendental
functions of the loop torsions, it becomes very difficult to
design iterative methods capable of finding all the zeros.

The advantage of AIKC methods33,60,65,66,73 is that the
objective has a simple analytical expression: it is a 16th degree
polynomial in the half-tangent of one of the loop torsions.
That can be formulated as a generalized eigenproblem of order
16 or as its characteristic polynomial whose real roots must
be determined. Although these must be solved numerically,
that can be done by efficient and robust algorithms. This

FIG. 9. Ensembles of loop structures using AIKC. Equilibrium simulations
using MC sampling for proteins with PDB ID: (a) 1H2O, (b) 1XWE, and
(c) 1Q9P sampled at T= 600 K (left) and T= 300 K (right). The sampled
flexible loops, which have large fluctuation in the NMR models, are shown
in red and the rigid loops with very small fluctuations are in blue. The
structures in yellow are taken from MODEL 1 of the PDB file. Reprinted
with permission from Nilmeier et al., J. Chem. Theory Comput. 7, 1564–1574
(2011). Copyright 2011 American Chemical Society.
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algorithm has been incorporated into the Rosetta suite and the
BRIKARD package.

Here is the basic mathematical framework for the AIKC
algorithm. At the heart is the problem in inverse kinematics
known as a 6R-6bar linkage. Consider a closed kinematic
chain of N rotor links, bi, i = 1,...,N. We fix the lengths bj
and pair-wise angles θi of the links. We let Ri be the position
vector of the joint (“atom”) between links bi−1 and bi with
respect to some fixed reference frame and Γi the unit vector
along bi. Consider now a concerted change of all the torsions
between the endpoints of a loop ti → ti + dti that keeps the
ends of the chain invariant (i.e., with respect to which the
ends of the chain maintain geometrically correct attachments
to rigid molecular frames). If we consider a frame attached
rigidly to the first three atoms, then the effect of a change dti to
the torsion ti about axis Γi is to rotate all subsequent atoms at
locations Rj, j ≥ i + 2 by dRj = Γi ×

�
Rj − Ri

�
. Then, at any

point in space R located past the end of the chain the net effect
of the concerted move cancels, and we have that

0 = dR =
N
i=1

Γi × (R − Ri) dti

⇒ *
,

N
i=1

Γidti+
-
× R − *

,

N
i=1

Γi × Ridti+
-
= 0.

Since this must be true for arbitrary R, both expressions in
parentheses above must vanish independently. Basic analysis
(the implicit function theorem) guarantees that six of the

variables may be expressed as differentiable functions of the
remaining ones provided the 6 × N matrix S is of full rank,
i.e., if S has six independent columns.

Let their indices be ik, k = 1,2, . . . ,6; the corresponding
variables are called the pivots, and the remaining variables
are called the drivers (indexed by jk, k = 1, . . . ,N − 6).
Introduce pk B tik, k = 1, . . . ,6 for the pivots and qk
B t jk, k = 1, . . . ,N − 6 for the drivers. Then, the changes
in the pivots are given in terms of the changes in the drivers
by

J
*....
,

dp1
...

dp6

+////
-

= −
N−6

k=1
Pjkdqk C Qdq,

J B
�
Pi1 Pi2 · · · Pi6

�
; Pi = *

,

Γi

ΓixRi.
+
-
.

The columns of the 6 × 6 Jacobian J are the Plücker
coordinates74,75 of the six pivot axes.

The closure conditions giving the pivots in terms of the
drivers are polynomials in the sines and cosines of the pivots.
We introduce uk = tan(pk/2), k = 1,. . . ,6, for the half-tangents
of the pivots. The drivers qk are sampled and set to fixed values.
Then, the 6R-6bar problem may be formulated in principle as
a system of polynomial equations Fi (u; q; α) = 0, i = 1, . . . ,6
where α is the parameter vector of bond lengths and bond
angles. Using the theory of resultants,33,65,73 this system may
be reduced to a single polynomial of degree 16 in one of the

FIG. 10. Performance of KIC loop re-
construction protocol on three com-
mon datasets. (a) Representative set of
12-residue loop reconstructions (blue)
(data set as in (b-middle)). PDB codes
and r.m.s.d to crystallographic loop
(cyan) are shown. (b) Box-plot compar-
ison of the standard and KIC Rosetta
protocols (left), both Rosetta protocols
with the molecular mechanics method
(middle), and the KIC Rosetta protocol.
(c) KIC reconstruction of conforma-
tional changes in the Rac switch I loop
when bound to ExoS toxin. Reprinted
with permission from D. J. Mandell,
E. A. Coutsias, and T. Kortemme, Nat.
Methods 6, 551–552 (2009). Copyright
2009 Macmillan Publishers Ltd.
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pivot variables. Multiple solutions for the pivots are possible
for a given set of drivers; choosing values for the qk, there
are at most 16 real solution sets


u(i)
k

6

k=1
; i = 1, . . . ,16. The

speed and robustness of modern polynomial real root finders
enables the AIKC approach to explore conformational space
in parallel. If the drivers are used as coordinates of the shape
space, then there may be as many as 16 alternative branches,
one for each set of pivots. Points on all alternative branches are
generated simultaneously, in sharp contrast to trajectory-based
searches that explore a single conformation at a time, and may
not find all alternatives even after extensive simulation.

This equation may be written in the form

dp = −J−1Qdq

giving the differential of the pivot torsions in terms of the
differentials of the drivers and involving the inverse Jacobian.
This expression may be used for planning concerted motions
of the loop or ring. It may also be used to construct concerted
Monte Carlo move sets that obey detailed balance,62,64,66,68,69

Figure 9. Where the inverse Jacobian J−1 exists, we say that
the IK problem is well posed. Where the determinant of
the Jacobian vanishes, we have kinematic singularities. Move
sets preserving closure for single or multiple, independent
loops using more general Jacobians or other tangent space
approaches including also angle and bond length perturbations
are also possible.76–79 However, such techniques have not
been yet developed for multiply constrained systems, such as
multicyclic peptides or other complex macrocycles.

RESULTS FROM THE AIKC METHOD

Inverse kinematic closure was coupled with the structure
prediction algorithm Rosetta34,80 and was used via the
Rosetta Kinematic Closure (KIC) protocol to predict the
structures of a standard test set (Fig. 10). Although the
method performed extremely well, resulting in sub-Angstrom
accuracy in predicting the structures of the test set of 12-
residue loops, as the loop length increases the complexity of
the sampling problem grows both in dimensionality as well as
in the topological complexity of the space. Several powerful
algorithms have been proposed recently for reducing the size
of the conformational space available to long protein loops.
Typically, additional information on the torsional propensities
has been incorporated and combined with either kinematics
inspired or other direct methods that seek to build the loops
one residue at a time while seeking to minimize a distance
function81–83 or Jacobian guided kinematic closure.84–86

Manifold learning and dimensionality reduction72 techniques
can be helpful; however, such techniques must be extended to
be able to handle the singularities that distinguish constrained
molecular conformation spaces as algebraic varieties rather
than smooth manifolds.71,72,87

CONCLUSIONS

We have reviewed here some approaches to applying
constraints within free-energy simulations of biomolecules.
First, MELD is able to harness troublesome or heuristic
external information to speed up free-energy simulations.

It does this by using different subsets of the external
knowledge that are compatible with different stable states in
conformational space. MELD is useful for determining native
structures from experimental data, and when given heuristic
constraints for finding native structures from unfolded states in
REMD simulations. Second, CCR is a method for computing
the free energy differences between conformations—even
large conformational changes—in a biomolecule. And, third,
we describe AIKC methods for fast and efficient sampling
of the conformations of loops and flexible regions in
biomolecules. There is considerable value in harnessing
external information—in whatever form is available—within
REMD simulations, because it can speed up and scale up free-
energy simulations for targeted states and actions, ultimately
for bigger biomolecules and bigger actions than can be
presently simulated.
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