
UC Berkeley
UC Berkeley Previously Published Works

Title

A comparison of template vs. direct model fitting for redshift-space distortions in BOSS

Permalink

https://escholarship.org/uc/item/7mj6c1w9

Journal

Journal of Cosmology and Astroparticle Physics, 2023(06)

ISSN

1475-7516

Authors

Maus, Mark
Chen, Shi-Fan
White, Martin

Publication Date

2023-06-01

DOI

10.1088/1475-7516/2023/06/005

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7mj6c1w9
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Prepared for submission to JCAP

A comparison of template vs. direct
model fitting for redshift-space
distortions in BOSS

Mark Mausa Shi-Fan Chenc Martin Whitea,b

aDepartment of Physics, University of California, Berkeley, CA 94720, USA
bPhysics Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
cInstitute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540, USA

E-mail: mark.maus@berkeley.edu

Abstract. The growth of large-scale structure, as revealed in the anisotropic of clustering
of galaxies in the low redshift Universe at z<2, provides a stringent test of our cosmological
model. The strongest current constraints come from the BOSS and eBOSS surveys, with
uncertainties on σ8, the amplitude of clustering on an 8 h−1Mpc scale, of less than 10 per
cent. A number of different approaches have been taken to fitting this signal, leading to
discrepancies of up to 1σ in the measurements of the amplitude of fluctuations at late times.
We compare in some detail two of the leading approaches, one based on fitting a template
cosmology whose amplitude and length scales are allowed to float with one based on varying
the underlying parameters of a cosmological model directly, when fitting to the BOSS DR12
data. Holding the input data, scale cuts, window functions and modeling framework fixed we
are able to isolate the cause of the differences and discuss the implications for future surveys.
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1 Introduction

The Universe we observe contains structures on essentially all scales that we can probe, from
the largest superclusters to stellar systems. All of these structures are believed to have arisen
from quantum fluctuations in the primordial Universe that were amplified by gravitational
instability [1–3]. It thus contains information about astrophysics, cosmology and fundamental
physics [4]. Of particular interest to us is the large-scale structure (LSS; on scales larger than
a few Mpc), for which gravity is the dominant force. Such LSS can be mapped in large galaxy
redshift surveys within which the 3D positions of objects are determined by a combination of
angular position and redshift, with the latter affected by both the Hubble flow and peculiar
velocities. The line-of-sight(LOS) component of these peculiar velocities affects the inferred
distances of galaxies, introducing anisotropies in the clustering signal in LSS observations
[5, 6]. These so-called redshift-space distortions (RSD) present both a modeling challenge
and additional information. An accurate measurement of the growth of LSS through RSD is
one of the key science goals of current and future galaxy redshift surveys [7, 8].

Gravitational instability within a (cold) dark matter dominated Universe makes precise
predictions for how much the structures should have grown between the time of the CMB,
when the amplitude is measured to be 1 part in 104, until the present day. How well this
prediction matches observations is currently a vexed issue within cosmology [9]. A problem
currently facing the LSS community is the apparent discrepancy between different analyses
of RSD clustering in the Baryon Oscillation Spectroscopic Survey (BOSS; [10]), and their
comparison with the expectations of ΛCDM conditioned upon the Planck data [11, 12]. Fig. 1
gives an indication of the issue. Though the significance of any discrepancies is modest, it
is of concern that the implied level of agreement with Planck from different analyses of the
same survey seems so dependent upon methodology. It is important to understand what is
driving the differences in order to ensure that we are ready to analyze the significantly more
constraining data sets we expect from the next generation of surveys. Unfortunately the points
in Fig. 1 represent analyses using different summary statistics, data combinations and window
functions, different models of non-linearity, bias and RSD as well as different parameters,
priors and assumptions. One difference that separates the earlier BOSS-collaboration analyses

– 1 –



0.6 0.7 0.8 0.9 1.0
8

BOSS Satpathy et al. (2017)
BOSS P Beutler et al. (2017)
BOSS P , Alam et al. (2017)
BOSS Zhang et al. (2022)
BOSS P Chen et al. (2022)
BOSS P Ivanov et al. (2020)
Planck 2018 CMB Aghanim et al. (2020)
ACT+WMAP Aiola et al. (2020)
SPT-3G 2018 Balkenhol et al. (2022)
BOSS Pw Grieb et al. (2017)
BOSS w Sanchez et al. (2016)
BOSS P Yu et al. (2023)
BOSS+eBOSS P Brieden et al. (2022)
eBOSS LRG Bautista et al. (2021)
eBOSS LRG P Gil-Marín et al. (2020)
BOSS Zhai et al. (2022)
BOSS LOWZ Lange et al. (2022)
BOSS P  + B Philcox & Ivanov (2022)

CMB LSS fixed-template LSS CDM

Figure 1. A representative collection of LSS constraints on σ8 from the literature, comparing the
fixed template and direct ΛCDM fitting approaches to the redshift-space distortions of the BOSS
DR12 power spectrum and correlation function multipoles. For completeness, we additionally show
below the dashed line constraints from RSD fits on extensions to the BOSS DR12 dataset, compared
to the inferences from the ΛCDM model conditioned on the Planck CMB data (see text). The
constraints based on CMB analyses are shown in green while the cyan and magenta points come from
LSS measurements with fixed-template and ΛCDM fitting methods, respectively. The starred points
refer to the specific dataset and 2-point functions considered in this paper. For the fixed template
approaches results are usually reported as constraints on fσ8, in which case we divide by the fiducial
value of fD in order to convert to σ8. We also note that the analyses of Lange et al. (2022) and Zhai
et al. (2022) focused on small-scale clustering rather than the large-scale structure growth modeled
in this work. [12, 15, 18, 23–37]

(see ref. [13] and supporting papers) from the more recent reanalyses [14–18] is the assumption
of a fixed template spectrum in order to compress the data for later reuse vs. a direct fit within
the ΛCDM parameter space. To be precise, the BOSS collaboration took several different
approaches to their RSD analyses, including both a fixed template approach and direct fits to
ΛCDM. However for the ΛCDM fits the Planck CMB data were included which very tightly
constrain the shape of Plin such that this is very similar to a template fit. These different
analyses were then reduced to a likelihood involving fσ8, α‖ and α⊥ and combined with
minimum variance weights. For eBOSS template fits were the de facto analysis method.

An investigation of the differences between parameter compression vs. the direct fitting
methods while holding the input data, window functions, priors and other modeling choices
fixed is the purpose of this paper. Aspects of this issue have been investigated before (e.g.
refs. [19–22]), but without a detailed comparison between methods while holding the model
fixed. We leave for future work precise comparisons of direct vs template analyses beyond
the power spectrum (e.g. bispectrum).

To understand the methodological differences, recall that within ΛCDM and its simplest
extensions primary CMB anisotropies constrain well the parameters that affect the shape of
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the matter power spectrum. Thus the CMB provides a “calibrated standard spectrum” that
can be used for cosmological inference [11]. For a galaxy survey, then, the remaining degrees
of freedom are the conversions from angles and redshifts into (comoving) distance — which
depends upon the late-time expansion history — and the amplitude of the spectrum after
the nearly thousand-fold growth since z ' 1100. This motivated the BOSS team to compress
the results of their RSD and BAO fits into three numbers describing distances transverse and
along the line of sight (α⊥ and α‖; see below) and a measure of the amplitude: fσ8 [13]. A
similar compression was performed by eBOSS [38].

Since then interest has grown in fitting to the galaxy survey data excluding (most of)
the constraints from the CMB, with the BOSS data set being the first that was really large
enough to make this approach feasible without significant priors on the model space. In such
an approach the free parameters are those of the underlying model (ΛCDM in our case) and
the predictions of the model are fit directly to the BOSS data [14–18]. This allows a test for
the consistency of the constraints between the high- and low-redshift Universe.

In this paper we address in some detail whether there is any discrepancy between the
“ΛCDM” and “template” approaches and if so from what it arises. We use the same input
data and theoretical model in the two approaches. We begin by describing the data employed
in Section 2. The theory and RSD modeling approaches are discussed in Section 3. We
describe our analysis and results in Section 4, where we identify two primary effects causing
the discrepancy in fσ8, namely a degeneracy with background geometry and prior volume
effects. We summarize our conclusions in Section 5.

Throughout we shall follow the modeling, parameter and data choices of ref. [18], ex-
cept that for most of our fits we use only the pre-reconstructed power spectrum and do
not include the post-reconstruction correlation function multipoles. We use CLASS [39] to
compute linear power spectra and background observables including distances. In order to
model non-linearity, bias and RSD we use the 1-loop Lagrangian perturbation theory code
velocileptors described in refs. [40, 41]. We perform MCMC using Cobaya [42]. The
inclusion of the post-reconstruction correlation function does not qualitatively change our
conclusions (see Table 2), but it slightly obscures the cause of the differences.

2 Data

To illustrate the differences in the context in which they originally arose, we analyze the clus-
tering of galaxies drawn from the final data release of the BOSS galaxy redshift survey [10],
part of the Sloan Digital Sky Survey III [43]. The final BOSS sample comprises 1,198,006
galaxies in total over 10,252 square degrees of sky. We use the low and high redshift sub-
samples, z1 and z3, covering 0.2 < z < 0.5 and 0.5 < z < 0.75 respectively [22, 25] and
further divide each bin into galaxies observed in the Northern (NGC) and Southern (SGC)
Galactic caps. Our analysis builds upon the pipeline developed in ref. [18], and we refer the
reader to that paper for details. We make use of the power spectra, and briefly the correlation
function multipoles measured in refs. [24, 44, 45] with a theoretical model based upon 1-loop
Lagrangian perturbation theory [40, 41]. Fig. 2 shows the power spectrum monopole and
quadrupole moments for the NGC data in the z1 and z3 redshift slices, along with model
fits that shall be described later. The level of agreement is qualitatively similar for the SGC
data and for the post-reconstruction correlation function data [18].

The BOSS two-point function measurements were computed by converting angles and
redshifts into distances assuming a flat ΛCDM cosmology with present-day matter density
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Figure 2. The BOSS pre-reconstruction power spectrum multipole data for the NGC (orange points)
along with the best-fit power spectra from the template (cyan, dashed) and ΛCDM (magenta, dashed)
analyses (see text). The left panels show the z1 data, while the panels on the right show z3.

ΩM,fid = 0.31. This implies that the reported redshift-space power spectrum is related to its
value in the coordinates of the true cosmology by

P obs
s (kobs) = α−2

⊥ α−1
‖ Ps(k) , kobs

‖,⊥ = α‖,⊥ k‖,⊥ ,

where the Alcock-Paczynski (AP) parameters1 are defined as [46, 47]

α‖ =
Hfid(z)

H(z)
, α⊥ =

DA(z)

Dfid
A (z)

. (2.1)

with DA is the comoving angular diameter distance to redshift z. The equivalent relations
for the correlation function are simply the Fourier transforms of the above equations. We will
find it convenient to use a “dilation” and “warping” parameterization, rather than α‖ and α⊥
directly, as in general the isotropic component is much better constrained than the anisotropic
with the latter more correlated with the constraints on the amplitude. Specifically we define
[47]

α =
(
α‖α

2
⊥
)1/3

, ε =
(
α‖/α⊥

)1/3 − 1 . (2.2)

Within ΛCDM the warp, ε, is a function of Ωm and is independent of h. It is related to (the
inverse of) the parameter FAP = DAH/c that is sometimes referred to as the AP parameter
and it causes a mixing of the monopole and quadrupole. For small ε [47]

P0 → P0 −
2ε

5

dP2

d ln k
− 6ε

5
P2 , P2 →

(
1− 6ε

7

)
P2 −

4ε

7

dP2

d ln k
− 2ε

dP0

d ln k
. (2.3)

In our case the two corrections to the monopole approximately cancel, but this is not true for
the quadrupole whose amplitude is modified by changing ε. Since both ε and fσ8 modulate
the amplitude of P2, we expect them to be correlated. Note also that a non-zero ε modifies

1We do not include a factor of the sound horizon at the drag epoch, rdrag, in our definition of αi in contrast
to e.g. the αi defined in ref. [25]. Our αi thus isolate the purely ‘geometric’ information. The equivalent scaling
including the rdrag factor will be denoted α̃.
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the BAO signal in P2 due to the inclusion of an out-of-phase component (dP`/d ln k) from
the monopole and quadrupole.

When we do the template fitting we follow ref. [25] and (implicitly) scale k by a further
factor of rdrag, under the assumption that the bulk of the information on the scale comes
from the BAO feature and not from the broad-band shape of the power spectrum (for further
discussion see ref. [18]). The value of ε is clearly independent of rdrag. This scaling largely
accounts for the cosmology dependence of BAO feature in the template, and can be simply
implemented by interpreting our α in the template fit as including an additional (rfid

drag/rdrag),
i.e.

α̃ = α

(
rfid

drag

rdrag

)
(2.4)

This aligns our template-fitting procedure with the one most commonly used (e.g. refs. [25,
48]). We also quote α̃ rather than α from the ΛCDM fits for a more meaningful comparison.

3 Model and analysis methods

3.1 LPT and the Redshift space Power Spectrum

We model the formation of structures in the universe within a Lagrangian Perturbation The-
ory (LPT) framework, in which fluid elements are mapped from their initial Lagrangian
coordinates, q, to their observed positions, x, via the displacement field Ψ(q, τ), such that
x = q + Ψ(q, τ). Nonlinear evolution is handled by expanding the displacements pertur-
batively (Ψ = Ψ(1) + Ψ(2) + Ψ(3)...) in the equation, Ψ̈ + HΨ̇ = −∇xΦ, which describes
the dynamics of the displacement under Newtonian gravity and expanding spacetime. Since
redshift-space distortions are caused by the LOS component of velocities, the transformation
to redshift-space in LPT is performed by boosting the displacement field by the velocity u
along the LOS direction n̂:

Ψs = Ψ +
(n̂ · u)n̂

H
. (3.1)

In the plane-parallel approximation, we assume that the LOS vector n̂ is constant. Number
conservation requires that the initial and final galaxy densities are related by ρg(x)d3x =
ρg(q)d3q, which in Fourier space corresponds to

1 + δg(k) =

∫
d3q eik·(q+Ψ)F (q). (3.2)

The bias functional F (q) relates the galaxy density ρg(q) to the initial conditions δ0, and can
be perturbatively expanded to

F (q) = 1 + b1δ0 +
1

2
b2(δ0(q)2 −

〈
δ2

0

〉
) + bs(s

2
0(q)−

〈
s2
〉
), (3.3)

where δ0 is the initial Lagrangian overdensity and s0 is the initial shear tensor, given by
s0 = (∂i∂j/∂

2 − δij/3)δ0. The power spectrum can now be expressed as

Ps(k) =

∫
d3q

〈
eik·(q+∆s)F (q1)F (q2)

〉
q=q1−q2

, (3.4)

where ∆s = Ψs(q1)−Ψs(q2). An important aspect of the LPT model we use in this work is
the resummation of long-wavelength displacements, which is necessary to properly model the
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ΛCDM Template Bias Stoch/Counter
H0 fσ8 (1 + b1)σ8 α0

U [60, 80] U [0, 2] U [0.5, 3.0] N [0, 100]

Ωm α‖ b2 α2

U [0.2, 0.4] U [0.5, 1.5] N [0, 10] N [0, 100]

log(1010As) α⊥ bs SN0

U [1.61, 3.91] U [0.5, 1.5] N [0, 5] N [0, 1000]

SN2

N [0, 50000]

Table 1. Priors on parameters used in the ΛCDM and template fitting methods. The ΛCDM model
involves H0, Ωm, log(1010As) and all of the bias, stochastic, and counterterms. The template method
fits fσ8, α‖ and α⊥ as well as the same bias, stochastic and counterterms. The entries U [min,max]
and N [µ, σ] refer to uniform and Gaussian normal distributions, respectively.

damping of the BAO peak. To do so, the linear part of the pairwise displacement is split into
long- and short-wavelength contributions separated by an infared scale kIR, with the former
kept resummed in the exponent using the cumulant theorem.

In addition to the above, effective-theory contributions must be included to control the
sensitivity of our PT model to small-scale physics, so that the complete power spectrum in
our parametrization is given by

Ps(k) = PPTs (k) + (α0 + α2µ
2)PZel(k) + (SN0 + SN2k2µ2), (3.5)

including counterterms α0,2 and stochastic contributions, SN0,2. Here PZel refers to the linear
matter power spectrum with infrared linear displacements resummed.

The theory code that we employ, velocileptors, computes the 1-loop LPT predictions
for the power spectrum multipoles, including the bias, RSD, counter and stochastic terms
listed above and infrared (IR) resummation as described earlier. A more detailed description
of this code and validation with N-body simulations can be found in refs. [40, 41], which also
contain references to the broader literature detailing the various physical effects described
above. In the analysis presented in this paper, we refer to {(1+b1)σ8, b2, bs, α0, α2, SN0, and
SN2} as "nuisance" parameters which are allowed to differ between NGC and SGC subsamples
in our joint fits. Table 3.1 lists the priors applied to these parameters.

3.2 Fitting approaches

We concern ourselves with two approaches to fitting the RSD 2-point functions, which we re-
fer to hereafter as the “template” and “ΛCDM” methods. In the template approach, a fiducial
ΛCDM cosmology is chosen that determines the shape of the linear power spectrum. This
template power spectrum is kept fixed while the observed data is compressed into three pa-
rameters to be varied (in addition to the bias, stochastic, and counterterms); namely the two
distance scalings, α‖ and α‖, and the amplitude given by the product fσ8. More specifically,
the growth rate of structures, f , controls the monopole-to-quadrupole ratio and is approxi-
mately given by f ' Ω0.55

m . σ8 is the total amplitude of the power spectrum at 8 h−1Mpc
scales. The “standard” template procedure is to hold σ8 fixed to σfid

8 while varying f , and then
interpreting the result as fσ8. This is the method that we follow when discussing template
fits in this paper. An alternative approach would be to vary both f and σ8 and reporting the
product as fσ8; these two methods can lead to a difference of up to 0.5σ in fσ8 constraints.
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However, when letting σ8 vary in addition to fσ8, regions of parameter space with very low
σ8 are explored — if we demand a reasonable σ8 (such as a lower bound as generous as
σ8 > 0.5) we get the same result as the standard method. That being said, the low values of
σ8 (implying unphysically high f > 1 and by extension Ωm > 1) could be an issue with the
template method. This will be explored further and reported on in future papers.

The alternate method of fitting RSD correlation functions or power spectra involves a
direct fit of the parameters underlying the cosmological model, in our case ΛCDM. In this
method the shape of the linear power spectrum is free to vary, and the ratio of high-to-low
k amplitude depends on Ωm and h. In general, the ΛCDM parameters are {h, Ωcdm, Ωb, As,
ns, Mν}; however, ns, Mν , and Ωb are much more tightly constrained by Planck and/or BBN
than is currently achievable with LSS observations, and thus we restrict our parameter space
to only h, As and Ωm, while fixing (ns,Mν ,Ωb = 0.9665, 0.06, 0.02242). The parameters and
priors of the ΛCDM and template fit methods are also listed in Table 3.1.

One of the differences between the two methods is that the template fit is model-
independent whereas in direct fitting approaches a specific cosmological model (e.g. ΛCDM) is
chosen that determines the parameters being varied. The advantage of the template fit in this
regard is that the compressed parameters (fσ8, α‖, α⊥) can be interpreted within the param-
eter space of any model of choice (satisfying the assumptions). In addition, the compressed
parameters of the template fit only depend on the late-time geometry and dynamics of the
universe while the dependence on the physics of earlier epochs that enters the transfer func-
tion is fixed by the chosen template. The ΛCDM method does not separate the dependence of
the early-time physics through the shape of the transfer function and late-time geometry, and
the additional information from the shape of the tranfer function results in tighter constraints
on parameters such as Ωm and h that also affect the geometrical properties of the late-time
universe. In this sense, the model-independence of the template method sacrifices some of its
constraining power when compared to the ΛCDM fit.

The improvement in constraints on cosmological parameters in the ΛCDMmethod comes
at a cost. This approach requires a Boltzmann code such as CLASS or CAMB to compute the
transfer function for the linear power spectrum at every step of an MCMC, making the
fit more computationally expensive compared to the template method. However, we can
alleviate this problem by using an emulator to approximate both the transfer function and
the LPT computations from velocileptors for any given set of parameters. Our emulator
is based on a Taylor series in the model parameters centered around a reasonable set of
values, (Ωm, h, σ8 = 0.31, 0.68, 0.739). We refer readers to Appendix A of ref. [18] for more
details about this Taylor series emulator and its accuracy. We train a similar emulator for
the template method, centered around reference values of (fσ8, α‖, α⊥ = 0.46, 1.0, 1.0). As a
result, the template and ΛCDM fits converge in approximately equal times.

Finally, an extension to the standard template fit has been proposed that attempts to
preserve the extra information captured by the ΛCDM method while still being a model-
independent fit through compressed physical parameters [19]. This “ShapeFit” method in-
volves a modification to the linear power spectrum via the ansatz

P ′lin(k) = Plin(k) exp

{
m

a
tanh

[
a ln

(
k

kp

)]
+ n ln

(
k

kp

)}
, (3.6)

that depends on a scale-dependent slope parameter, m, and the scale-independent slope, n.
The pivot scale, kp ≈ π/rfid

d ≈ 0.03h−1Mpc is the scale at which the slope of the hyperbolic
tangent is maximum. Since the scale-independent slope, n, is fully degenerate with the spec-
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Figure 3. Marginalized posteriors (dashed) and profile likelihoods (dotted) of fσ8 for the z1 (left)
and z3 (right) redshift bins of BOSS. All of the curves have been normalized to peak at unity for ease
of comparison. The results from the template fit are shown in cyan and the ΛCDM results are shown
in magenta. While the template constraints are in good agreement between the two methods (cyan
dashed and dotted lines), the ΛCDM results show an offset with the marginal likelihood (magenta
dashed line) peaking at lower fσ8 than the profile likelihood (magenta dotted line).

tral tilt, ns, and we fix ns in our fits, in practice we set n = 0 and only vary m. The ShapeFit
method does improve on the constraining power achieved by the template fit; however, it suf-
fers from the same issue mentioned earlier of exploring unphysical regions of parameter space
when fitting f and σ8 independently. For the remainder of this paper we restrict our attention
to the standard template and direct fitting ΛCDM methods, but a more detailed comparison
that includes the ShapeFit method will be left for future work using simulated data. Finally,
we note that the three methods agree in their constraints when Planck priors are applied to
early-time physics. The differences we investigate in this work appear in the limit that LSS
analyses are sufficiently powerful to provide independent cosmological constraints, with only
a prior on ωb from BBN.

4 Analysis

We perform two classes of fits to the BOSS data, using the same model for bias, non-linearity
and redshift-space distortions and the same input data vector but differing in the parameters
being varied. The first is a “template” fit in which we hold the linear theory power spectrum
shape fixed to that of a ΛCDM cosmology with “fiducial” parameters and vary only the
amplitude and the AP parameters. In the second we vary the linear power spectrum shape
by sampling Ωm and h in addition to the power spectrum amplitude. The AP parameters are
self-consistently computed from the value of Ωm assuming the ΛCDM expansion history.

First we shall investigate for which of the subsamples of the BOSS data the differences
between the two approaches is the largest. Table 2 shows the marginalized fσ8 constraints
from each of the two approaches for the low- and high-redshift bin, fitting either the NGC,
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SGC, or both Galactic cap subsamples together. In addition, Fig. 3 shows the marginalized
fσ8 posteriors from each of the two approaches for the two redshift bins. When fitting the
NGC and SGC data jointly we see that the two analysis methods give very similar results for
marginal posteriors of the z1 bin (fσ8 = 0.434 ± 0.051 and 0.434 ± 0.044 for the template
and ΛCDM respectively), but for z3 the fixed template approach prefers a noticeably higher
fσ8 (0.461± 0.051) than the direct fit (0.414± 0.040). The preference for higher fσ8 in the
template approach holds for both the NGC and the SGC data in z3. For the combined NGC
and SGC sub-samples we fit a single set of fσ8 and AP parameters, but fit two independent
sets of bias parameters for the NGC and SGC data points. Going forward we perform tests
on the joint z3 data to try to isolate the cause of the difference in fσ8, but show only the
curves with the NGC bias parameters and data when appropriate.

Table 2 shows results including and excluding the post-reconstruction BAO data. Hence-
forth we will focus on the pre-reconstruction power spectrum multipoles. The inclusion of the
post-reconstruction, correlation function (BAO) data shifts the fσ8 distributions to higher
values, for both the template and ΛCDM fits, but does not significantly alter the sense or size
of the difference between the two methods (Table 2). We will omit the post-reconstruction
BAO data from our fits in order to highlight the impact of choosing a template vs. a cosmo-
logical model when fitting the pre-reconstruction power spectrum multipoles.

Figure 3 highlights two features that we wish to address. One is the shift between the
marginal posteriors for the template and ΛCDM fits. The second is the shift to lower fσ8

of the marginal posterior compared to the profile likelihood (dotted line in Fig. 3) for the
ΛCDM model, with a shift in the same direction but of much smaller amplitude in the case
of the template fit. The profile likelihood is a method for parameter estimation when the
likelihood L(θ, λ) depends on both a parameter of interest (θ) and nuisance parameters (λ)
that ‘profiles’ out the nuisance parameters by maximizing the likelihood Lθ(λ) at fixed θ.
This is different from the marginal likelihood which integrates over λ instead of maximizing
them. In our case, θ = fσ8 and λ refer to the remaining (α‖,α⊥, bias, stochastic, and
counterterms) parameters. For Gaussian posteriors the profile and marginal likelihoods are
expected to agree, but for non-Gaussian posteriors prior volume effects in the marginalization
can cause them to differ, making the profile likelihood a useful diagnostic for when these
effects occur. The observed discrepancy between fσ8 from the two likelihood distributions
suggests that some parameters are too poorly constrained for the posteriors to be Gaussian.
This discrepancy is more significant for the ΛCDM than the template fit, suggesting that
prior volume effects and a degeneracy with the power spectrum shape are causing a shift of
the peak of the marginal posterior away from the best-fitting model. We shall take each of
these two features in turn.

4.1 Degeneracy with background geometry

First we investigated whether the discrepancy seen in Fig. 3 was caused by an unfortunate
choice of template. We switched the template from that chosen by the BOSS team2 to that
given by the best-fit ΛCDM model in our alternative analysis.3 Fixing Plin to this best fit
we find that ε and fσ8 are virtually unchanged (fσ8, ε = 0.461 ± 0.051, 0.992+0.044

−0.052 for the

2The BOSS fiducial cosmology has Ωm = 0.31, h = 0.676, Ωbh
2 = 0.022, σ8 = 0.8 and ns = 0.97 [25]. The

sound horizon scale is rd = 147.3Mpc. For this cosmology fD = 0.5831 at z = 0.38 and 0.5756 at z = 0.61,
which allows an easy conversion from fσ8(z) to σ8.

3The template from our best-fit ΛCDM model has Ωm = 0.318, h = 0.699, σ8 = 0.767, with Ωbh
2 and

ns = 0.97 fixed to the BOSS fiducial values. For this cosmology rd = 143.9Mpc.
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Galactic Pre/Post fσ8

zeff Cap Recon ΛCDM (best-fit) Template (best-fit)

0.38

SGC Pre 0.399± 0.072 (0.475) 0.494+0.110
−0.130 (0.501)

NGC Pre 0.457± 0.047 (0.479) 0.429± 0.059 (0.420)

Joint Pre 0.434+0.045
−0.040 (0.476) 0.434+0.047

−0.053 (0.435)
Post 0.425± 0.037 (0.434) 0.430± 0.045 (0.419)

0.59

SGC Pre 0.369± 0.061 (0.436) 0.385+0.087
−0.100 (0.372)

NGC Pre 0.434± 0.048 (0.461) 0.492+0.057
−0.069 (0.483)

Joint Pre 0.414± 0.040 (0.445) 0.461± 0.051 (0.485)
Post 0.429± 0.037 (0.442) 0.483+0.042

−0.047 (0.486)

Table 2. Marginalized fσ8 constraints from ΛCDM and template analyses (pre and post BAO
reconstruction) of the different redshift bin and galactic cap subsamples of BOSS. In each case we
quote the mean and 1σ error from the marginalized posterior, along with the value of the best-fit
model of the chains in parentheses.
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Figure 4. Best-fit model P`(k) fit to NGCz3 data (points with errors) for the template fit using
ΛCDM best-fit as the fixed template (cyan), using the fiducial BOSS cosmology as the template
(blue) and the ΛCDM fit (magenta). (Left) The monopole, P0 and (Right) the quadrupole, P2. In
the monopole plots, the cyan TΛCDM curve is underneath the magenta ΛCDM curve.

original Plin and 0.472± 0.050, 0.984+0.042
−0.048 for the fit using the best-fit ΛCDM model), while

α̃ shifts to keep the BAO peak fixed in physical coordinates (0.995± 0.015 to 1.011± 0.015).
The ' 0.2σ shift in fσ8 seen here, when compared to the ' 1σ shift between template and
ΛCDM methods, highlights the robustness of the template method to modest changes in the
template but indicates that the discrepancy observed in Fig. 3 must arise due to the fixing of
Plin rather than the specific shape of Plin.

In Table 3 we show the monopole, quadrupole, and total χ2 values for the two template
fits with different, fixed Plin as well as for the ΛCDM fit. We refer to the template fit that uses
Plin from the best-fitting ΛCDM model as “TΛCDM” and the template fit with the original
BOSS template Plin as “TBOSS”. When choosing the ΛCDM template instead of the BOSS
one we see an overall improvement in the fit. When compared to ΛCDM, the monopole terms
fit about as well; however there is a noticeable improvement in the quadrupole. If we take
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χ2

NGC SGC best-fit
Type P0 P2 Total P0 P2 Total fσ8 α̃ ε

ΛCDM 11.5 9.3 21.0 15.5 13.3 28.7 0.445 1.020 -0.001
TBOSS 14.8 7.4 22.5 13.6 13.7 27.4 0.485 0.993 -0.017
TΛCDM 11.7 8.3 19.9 15.3 13.6 29.0 0.470 1.002 -0.018

Table 3. Minimum χ2 values for the ΛCDM fit and the two template fits with different, but fixed, Plin

(see text). The χ2 values correspond to fits to NGCz3 data and are broken up into the contribution
from the monopole, the quadrupole and both P0 and P2 (including their correlation). The full fit has
26 degrees of freedom so all of the best fits are statistically acceptable.

the best fit (fσ8, α̃, ε) values and map them to ΛCDM parameters, we find that TΛCDM
prefers a cosmology with (Ωm, h, log(1010As))=(0.443, 0.652, 2.661), whereas the best-fit
result from ΛCDM (which, recall, was used as the fiducial template for TΛCDM) was (ΩM ,
h, log(1010As)) = (0.318, 0.699, 2.793). So even when using the ΛCDM best-fit as the fiducial
template, the template fit is shifting α̃ and ε in a way that corresponds to drastically different
Ωm and h.

We show in Fig. 4 the model P`(k) curves from the ΛCDM and TΛCDM fits. Consistent
with the χ2 values, we do not observe a significant difference in the behaviors of the monopole
terms for the two models. In the quadrupole, however, the TΛCDM curve appears to better fit
the data points at k & 0.075hMpc−1 that oscillate above and below the best-fit ΛCDM curve,
with worse agreement for k < 0.075hMpc−1. The ΛCDM curve passes in an almost straight
line through the high-k data points, whereas TΛCDM can shift ε in a way that introduces
residual oscillations that better pass through the quadrupole data points. The consequence
of this is a poorer agreement with the data at lower k, but due to the larger error bars in this
regime there is little χ2 penalty. We also computed the correlation function quadrupoles for
these models. While these oscillatory differences are more pronounced in configuration space
they were nonetheless relatively minor (and well within the errorbars of the data), consistent
with the power spectrum analysis.

It is well known [21, 49] that in the template-based approach fσ8 is correlated with
ε, since both affect the amplitude of the quadrupole (see §2). We see this in the lower left
panel of Fig. 5. By contrast the ΛCDM fits explore a much narrower range of ε and no such
degeneracy is apparent (we shall return to the reason for this below). In particular this means
that a higher value of fσ8 can be compensated by a lower value of ε with little χ2 penalty in
the template approach, and since ε is constrained less well than α this has the ability to affect
the preferred fσ8. We checked that all of the values of α and ε explored by the template
chain in Fig. 5 can be realized within ΛCDM for some value of Ωm and h. Indeed this is
the case, however some of the values correspond to cosmologies that are not preferred by the
BOSS data themselves due to the implied change in the shape of P (k).

To further demonstrate that the change in fσ8 is being driven by ε, we perform a fit with
fσ8 along with all biases and nuisance terms free, while α̃ and ε are held fixed at the values
derived from the best-fit cosmology of the ΛCDM analysis. We find that when switching
from the α̃ and ε preferred by the template to those preferred by ΛCDM, fσ8 shifts from
0.461±0.051 to fσ8 = 0.433±0.035, consistent with the shift in marginalized constraint seen
in the two analyses.

Figure 6 shows how α̃ and ε at z = 0.59 depend upon Ωm and h within ΛCDM. Note
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Figure 5. Marginalized posterior distributions for the key cosmological parameters from the template
(cyan) and ΛCDM (magenta) fits to the BOSS Joint z3 pre-reconstruction power spectrum multipoles.
Three example models, discussed further in the text, are shown as the red, green and blue dots in the
α̃− ε panel.

that the range of α̃ and ε explored by the template chain covers a broad range of ΛCDM
models, particularly in Ωm. Changes in Ωm of this magnitude have a large effect on the shape
of the linear theory power spectrum, Plin, predicted by ΛCDM as can be seen in the right
panel of Fig. 6. Such large changes in shape turn out to be highly disfavored by the BOSS
data, which is why the ΛCDM chain does not explore a wide range of ε values. This in turn
means that the higher values of fσ8 that are preferred by the template fit, corresponding to
lower values of ε, are ruled out in the ΛCDM chain by the shape of the power spectra.

In Fig. 6 we have chosen three sets of (Ωm, h) values for which α̃ is approximately fixed
but ε varies. The tight constraint on α̃ fundamentally arises because of the well-detected
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Figure 6. Left : α̃ at z = 0.59 as a function of Ωm for different values of h. Markers indicate example
cosmologies for which α remains constant that we shall further explore. Middle: ε at z = 0.59 as a
function of Ωm (it is independent of h). Right : k Plin(k) for the three example cosmologies from the
previous panels. Note that the α̃ and ε values for these cosmologies all lie well within the 1σ contour
of the template fit (Fig. 5).
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Figure 7. Left : k P`(k) curves for the three different pairs of (Ωm, h) values of Fig. 6, where the
bias parameters and log(1010As) are adjusted to best fit the NGC z3 data (points with error bars).
Middle: Difference between the P` models for the three cosmology pairs and the P` of the best-fit
ΛCDM model. The upper and lower panels correspond to the monopole and quadrupole components
respectively. The shaded bands show the 1σ errors of the NGC z3 data. Right : Reduced χ2 as a
function of ε, from fitting a quadratic function to a series of points with varying (Ωm, h).

BAO feature in the high S/N monopole measurement. The value of Ωm represented by the
green marker is the same as the fiducial template cosmology, as well as being within 1σ of
the posterior mean value of the ΛCDM fit. The other Ωm values are more than 4σ away from
what is preferred by the ΛCDM fit. We see in the third panel that there is much variety in
the shape of the linear power spectrum for each of these sets of cosmological parameters. The
template fit is not penalized by this because the linear power spectrum is fixed, so it has the
freedom to choose AP parameters as needed to fit the data. Due to the ε − fσ8 degeneracy
the value of fσ8 can shift accordingly. This freedom is not available to the ΛCDM analysis.
For ΛCDM there is only a narrow range of ε that can fit the data because of how drastically
the implied change in Ωm would affect the linear power spectrum shape.

Figure 7 gives further details. For each of our three, example cosmologies (red, green
and blue points in Fig. 6) the left panel shows the predicted multipoles (after accounting
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Figure 8. Template and ΛCDM fits to mock data generated from the best-fitting template model.
While the template fit returns unbiased constraints the ΛCDM fit does not recover the correct fσ8
because the required ε and shape of Plin are not simultaneously allowed within ΛCDM.

for the BOSS NGC window function) compared to the data. The central panel shows the
residuals to the best-fit model, with the χ2 values marked while the right panel shows how
the χ2 depends upon ε for the ΛCDM model. Note how the ΛCDM fits highly disfavor the
values of ε that are preferred by the template model, due to the implied change in Plin(k)
shape associated with the Ωm and h values which map to such an ε in ΛCDM. It is worth
noting that models with more freedom in the expansion history than ΛCDM could allow for
more flexibility of this kind [26].

If ΛCDM is the correct model, then the preference for “low” ε in the z3 data must be due
to a noise fluctuation that affects the template and ΛCDM fits quite differently. In the case
of the template fit, a change in the shape of the P` to better match the data can be obtained
by varying ε. It would be up to external data (e.g. a Planck prior) to disfavor these points.
For the ΛCDM fit the additional constraint that the AP parameters be consistent with the
shape of Plin within the ΛCDM paradigm ‘regularizes’ this behavior so that such values of ε
are not explored.

As a cross-check of this hypothesis, we create mock P`(k) data using the ΛCDM theory
model at the best fit parameters for the z3 sample. We use the same covariance matrix and
window functions as is used for the real BOSS data and repeat both the ΛCDM and template
fits. Since the data are noiseless we expect be able to recover the correct model parameters
and indeed both the template and ΛCDM fits give consistent fσ8 posterior distributions with
best-fit values almost exactly matching the true fσ8. As a final test, we generate noiseless
data from the best-fit template model and repeat the exercise. While the template fit returns
unbiased constraints the ΛCDM fit is not able to recover the correct fσ8, reinforcing the idea
that the combination of background cosmology and Plin(k) inferred from the template mock
data lies outside the allowed space for ΛCDM. In Fig. 8 we show the fσ8 posteriors and best
fit results for the template and ΛCDM fits of the mock data created from the template best-fit
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Figure 9. Left : Template and ΛCDM marginal (dashed) and profile (dotted) likelihoods from fitting
to mock data generated with the fiducial BOSS template parameters. While the marginal and profile
likelihoods agree with the true value of fσ8, there is a 0.5σ shift between the marginal and profile
likelihood constraints peaks of the ΛCDM fit. Right : ΛCDM marginal (dashed) and profile (dotted)
likelihoods as in the left panel, along with marginal posteriors with covariance rescaled by 1/2 (orange)
and 1/5 (green).

parameters.

4.2 Nuisance parameter selection and priors

Now we turn to the second effect mentioned in §4 and highlighted in Fig. 3, the shift between
the marginal posterior and the profile likelihood. Fig. 3 shows that both the profile likelihood
and the marginalized posterior agree (for both z1 and z3) when performing a template fit.
However for the ΛCDM model the marginalized posterior peaks ≈ 1σ below the profile like-
lihood (see [18] for similar discussion). For z1 the marginalized posterior agrees better with
the template approach while for z3 it is the profile likelihood that shows the best agreement.
In both cases, parameter volume effects that arise due to degeneracies within the model cause
the posterior peak to be shifted with respect to the maximum likelihood point, and we wish
to investigate this in more detail.

In order to investigate degeneracies that are present within the ΛCDM model, we return
to mock data with cosmology fixed to the BOSS fiducial cosmology that we usefor our template
fits. The model parameters are simply taken from the best-fit ΛCDM model of the NGCz3
sample, and this is used to generate “mock” data. The window function and covariance matrix
are unchanged. In the left panel of Fig. 9 we show the marginal and profile likelihood results
of the two methods applied to this mock data. Consistent with the fits on the real data of
Fig. 3, we again see that the marginal and profile likelihoods of the template fit agree with
one another as well as with the ΛCDM profile likelihood, all peaking near the true fσ8 value
of 0.466. The ΛCDM marginal likelihood is again shifted to a lower fσ8 = 0.445± 0.041, and
it is this effect which we wish to understand.

Since all of the true parameter values of the mock data are known, we begin by fixing all
of the galaxy bias parameters ((1+b1)σ8, b2, bs, α0, α2, SN0, and SN2) to their true values4 and

4These values are: (1 + b1)σ8 = 1.77, b2 = -1.98, bs = 1.90, α0 = 1.42, α2 = -1.73, SN0 = -197 h−3 Mpc3.,
and SN2 = 13600 h−5 Mpc5.
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Figure 10. Marginalized posterior distributions for fσ8,b2, bs, and SN2 from the template (cyan)
and ΛCDM (magenta) fits to the NGCz3 Mock data.

run a ΛCDM fit with only Ωm, H0 and log(1010As) as free parameters. In this case the ΛCDM
fit almost exactly recovers the correct cosmological constraints (fσ8 = 0.4667±0.0061). This
suggests that the downward shift of the marginal likelihood must be caused by a degeneracy
between the ΛCDM and the nuisance parameters. In Table 3.1 we list the priors on all
cosmology and bias parameters used in the ΛCDM and template fitting methods, as a reference
to aid in the following discussion.

By fitting ΛCDM models to the mock data with different bias parameters fixed to their
true values we identify those that are most responsible for the shift in the fσ8 constraint,
namely b2, bs and SN2. Next, we run ΛCDM and template fits with all other parameters held
fixed to their “true” values keeping free Ωm, H0, log(1010As), b2, bs and SN2 for the ΛCDM fits
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Figure 11. P`(k) curves with different bias parameters fixed. The blue dashed curve shows the
best-fit model to the mock data. The orange dashed curve shows the model in which b2 is fixed to -3.0
while the rest of the parameters are kept at the best-fit values. The green curve takes the model of
the orange curve but additionally changes bs and SN2 to 3.0 and 15000 respectively (while b2 = −3.0
still). Finally, the solid green curve has the same bias parameters as the green dashed curve, i.e.
(b2, bs, SN2) = (-3.0, 3.0, 15000), but the ΛCDM parameters (ΩM , H0, log(1010As)) are shifted to
best fit the data. These new ΛCDM values are (ΩM , H0, log(1010As)) = (0.3049, 67.45, 2.813), with
fσ8 = 0.4070.

and fσ8, α‖, α⊥, b2, bs and SN2 for the template fits. Fig. 10 shows the posterior distributions
for fσ8, b2, bs and SN2 for the two cases. The ΛCDM constraint is fσ8 = 0.442+0.031

−0.027, which
is about 0.8σ below the true value. The template fit has fσ8 = 0.475± 0.044 which is within
0.25σ of the truth.

We can try to understand the role that the nuisance terms play in this shift in the
ΛCDM constraint by observing the 2D contours between fσ8 and the three parameters in
the first column of Fig.10. In each case the ΛCDM contours have a triangular shape that
is wider in the vertical direction at lower fσ8 and narrows at higher fσ8. This implies that
a ΛCDM chain has fewer models to explore at larger fσ8 without large χ2 penalties when
compared to the availability of models with acceptable χ2 in the lower fσ8 regime. As a
result the marginalized constraint is shifted to lower fσ8. What is quite interesting is that we
do not observe this in the template fit. This implies that due to the fixed Plin(k) shape in the
template method it is not able to increase the range of acceptable models with extreme values
in the nuisance parameters by going into a different fσ8 regime. This is because the preferred
fσ8 is not a byproduct of shape changes in Plin(k) like in the ΛCDM case. Therefore, while
there are degeneracies between fσ8 and the nuisance parameters, there is little shift in the
marginal constraints.

In order to further explore the degeneracy between Plin shape (i.e. cosmological parame-
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ters) and nuisance parameters that gives rise to the downward shift in the marginal posterior
of fσ8 we investigated how different parameters affected P`. In Fig. 11 we attempt to illus-
trate the degeneracies between the three parameters of interest and the shape of the power
spectrum. We begin with the best-fitting model of the mock data (blue dashed curve). Taking
this model but setting b2 = −3.0 causes the amplitude of P0 to shift up and P2(k ≥ 0.075) to
shift down (orange curve). Fig. 10 shows a negative correlation between b2 and both bs and
SN2, suggesting that the effect of lowering b2 to −3.0 can be partially mediated by shifting
bs and SN2 up (to 3.0 and 15, 000 respectively in our example). This is shown in the green
dashed curve in Fig. 11, where we observe that the amplitude of P0 decreases again to better
fit the data, but the high-k part of P2 is shifted down even further. To show that this can
be alleviated by a change in the cosmology we fix these nuisance parameters at (b2, bs, SN2)
= (−3.0, 3.0, 15000), and run a fit with only ΩM , H0 and log(1010As) free. The best fit is
shown as the green solid curve. We find that the shape change in the linear power spectrum
allowed by ΛCDM resolves the poor agreement with the data in the high-k part of the P2

curve. Even though the model shifts away from the data in the low-k regime of P2, the error
bars are much larger in that regime, so the χ2 penalty from a poorer fit at low-k is smaller
than the improvement in χ2 achieved by better fitting the high-k points. The fσ8 of this final
curve is 0.407 whereas the dashed curves all have fσ8 = 0.464, in closer agreement with the
true value (0.466).

We note that since the size of the error bars in the low-k part of P2 is what allows these
shape changes in the power spectrum to occur without large penalties in χ2, in the limit of
noiseless data this parameter volume effect should disappear. To check this, we ran the full
ΛCDM fits on the mock data after rescaling the covariance by factors of 1/2 and 1/5. These
artificial rescalings can be interpreted as if the “data” is being measured from regions of the
sky with 2× or 5× the volume compared to the original BOSS NGCz3 sample. The marginal
likelihoods using the rescaled covariance are shown in orange and green dashed lines in the
right panel of Fig. 9. We find that in the C × 1/2 case the fσ8 marginal constraint shifts up
from fσ8 = 0.445±0.041 to fσ8 = 0.457±0.031; and for C×1/5 we get fσ8 = 0.465±0.019,
which is in almost exact agreement with the profile likelihood and the “true” value of fσ8.
As expected, the parameter volume effects we see in the ΛCDM approach become less of an
issue as the data become more constraining. For reference, the volume of the BOSS survey is
approximately 5 h−3Gpc3 [10] while the forecast for DESI predicts a survey volume of about
50 h−3Gpc3 for redshifts between 0.65 < z < 1.65 [7], which suggests that these prior volume
effects will be very small for the final DESI data release.

Finally, we check to what extent these parameter volume effects exist in a ShapeFit [19]
analysis of the same mock data, which is described in §3. We find that the shapefit method
gives fσ8 = 0.472 ± 0.061, in agreement with the standard template fit. This indicates
that the shapefit functional form is sufficiently rigid that the nuisance terms don’t interact
with the cosmology through degeneracies as they do in ΛCDM. This result is consistent with
ref. [33] who also did not find prior volume effects in their ShapeFit analyses of BOSS data.
Further testing of ShapeFit, along with comparisons to standard compression and direct
fitting methods will be performed on mocks simulating the heightened levels of precision of
future LSS surveys.
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5 Conclusion

One of the most puzzling discrepancies in cosmology today is the apparent mismatch between
the amplitude of clustering seen at low redshift compared to that predicted by evolution of the
CMB fluctuations in a (cold) dark matter dominated Universe. One of the key observables
for determining the amplitude of structure in the local Universe is the anisotropic clustering
of galaxies induced by RSD. Current surveys can put O(5%) constraints on the amplitude of
clustering, σ8, from the study of RSD and we anticipate that future surveys should be able
to reduce this uncertainty significantly [7, 8, 50].

Currently, however, different techniques for analyzing galaxy clustering in the BOSS
survey come to different conclusions about the amplitude of structure. While the discrepancy
is of only modest statistical significance, the fact that the difference arises entirely from
analysis methodology makes it worth understanding the source in some detail. In this paper
we take an in-depth examination of two prevailing fitting approaches in the literature. The
first, “template” method involves fixing the linear power spectrum via a template cosmology
and varying the compressed amplitude and distance scaling parameters that can then (in
principle) be interpreted in the context of a given cosmological model. The second approach
involves directly varying the underlying parameters of a cosmological model (ΛCDM in our
case) to fit the data. The included sensitivity to early-time physics, via the shape of the
transfer function, results in tighter constraints on cosmological parameters. Thus far, both
fitting approaches have been used in analyses of the BOSS and eBOSS data sets; however,
the additional differences in theoretical model, parametrization, window function, and priors
obscures the sources of discrepancies between the constraints obtained by these groups.

In this paper we have investigated the difference between the template fitting approach as
compared to a direct, ΛCDM fit holding the input data and theoretical model fixed. We have
found that the former tends to produce higher fσ8 values than the latter and the difference
arises through a combination of two effects. While differences between the template and
direct fitting approaches have been investigated before [19, 20, 26], these studies have tended
to compound the differences due to differing cosmological degrees of freedom between the
two approaches by additionally introducing different dynamical models for galaxy clustering,
using effective theory-based approaches in the case of ΛCDM fits but reverting to older models
combining perturbation theory with empirical parametrizations for fingers-of-god for template
fits. In this paper we have opted to use only the former, which represents the state-of-the-art
of our understanding of perturbation theory, in order to perform a clean comparison between
the two approaches. By using the same dynamical model, including identical priors on galaxy
bias and EFT parameters in both approaches, we are able to tease out two main physical
effects at the root of the different σ8 constraints between the methods.

The first effect is the well-known degeneracy between the “warping” parameter, ε, and
the amplitude fσ8. The warping, ε, is highly constrained in direct, ΛCDM fits to the BOSS
data because large changes in ε require similarly large changes in Ωm that in turn affect
the shape of the power spectrum. Such changes are disfavored by the shape of the power
spectrum measured in BOSS reducing the impact of this degeneracy. In the case of a template
fit, however, a broad range of ε is allowed because the power spectrum shape is not self-
consistently changed. This then leads to a broad range of allowed fσ8, including higher
values than preferred by the ΛCDM model. As long as only cosmologies consistent with
the template shape are explored, as originally envisioned, the conditional fσ8 constraints
are consistent between the two techniques. Indeed, if we put tight priors on the ΛCDM
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parameters other than σ8 and also put tight priors on (α̃, ε) in the template fit then the
results become identical. However if the full range of ε allowed by the BOSS data alone is
explored then an upward shift in fσ8 appears that we postulate is due to a noise fluctuation
in the z3 data that prefers ε inconsistent with the assumed template shape within ΛCDM.

The second effect arises because perturbative models of galaxy clustering come with a
large set of nuisance parameters that can be partially degenerate with cosmological parameters
influencing the shape of the linear theory power spectrum (e.g. Ωm and h). This degeneracy
can cause a “prior volume effect” in which the peak of the marginalized fσ8 posterior is offset
from the best-fit model, i.e. the peak in the profile likelihood. In our case such a parameter
volume effect results in a shift in the marginal posterior for fσ8 approximately 1σ down from
the peak of the profile likelihood. To better understand this effect, we worked with mock
data mimicking the BOSS NGCz3 sample, and were able to identify the three parameters
(b2, bs, and SN2) most responsible for the downward shift. We demonstrated how changes
in P`(k) due to varying b2, bs, and SN2 can be “counteracted” by changing the shape of the
linear power spectrum through the ΛCDM parameters ΩM and H0. Thus, the ΛCDM fit can
explore a larger volume of parameter space for models with low fσ8 without significant χ2

penalties, resulting in a downward shift in marginal constraint from the maximum-likelihood
region. However, we also show that this shift is reduced when the error bars in the data
(particularly the low-k part of the quadrupole) shrink via rescalings of the covariance matrix.
This suggests that future for surveys, such as DESI, that can provide tighter constraints on
P`(k) at large scales this volume effect will not be as significant a concern.

In this paper, we have seen that “template” fits of spectroscopic survey data wherein
cosmological information is compressed into a small set of physical observables — in this
case the anisotropic clustering amplitude fσ8 and the physical size of baryon acoustic oscil-
lations along and perpendicular to the line of sight — do not (by design!) capture the full
phenomenology specific cosmological models (e.g. ΛCDM) imprint into galaxy clustering. In
particular, models like ΛCDM predict not only the Friedman metric and structure formation
at low redshifts but also the high-redshift initial conditions set by pre-decoupling physics,
such that parts of parameter space allowed when considering geometry alone can be excluded
by this extra information. Within ΛCDM, for example, we showed that the Alcock-Paczynski
distortion ε is strongly constrained to be small not due to the AP effect itself but because the
same parameter (ΩM ) that governs it also affects the power spectrum shape. This implies
that the template fit is not always an optimal compression of galaxy clustering data even
for models with as many cosmological parameters as the compressed variables. For physical
models with more degrees of freedom the compressed parameters will be less constrained than
in ΛCDM but, on the other hand, the phenomenology not captured by changes in total am-
plitude or dilations of the BAO will be richer. We also tested an extension of the template-fit
methodology, “ShapeFit”, showing that like the standard template fit it does not capture the
full flexibility of the linear power spectrum shape when compared to direct fits of cosmological
parameters, and consequently is not subject to the same volume effects.

The “template” fitting method was originally conceived as a way to test the consistency
of late-universe large-scale structure data with ΛCDM at a time when the most stringent
constraints on early-universe physics and power spectrum shape came from the CMB. This
was sufficient so long as the goal was not to yield constraints on fundamental parameters
competitive with, and independent of, the CMB. Looking forward, we expect constraints from
galaxy clustering to improve significantly in the coming years. Constraints on the shape of the
power spectrum from spectroscopic surveys like BOSS [10] are already somewhat competitive
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with the CMB, and future surveys [7, 50, 51] will allow us to go further still. As measurements
of the linear power spectrum shape become an increasingly important part of the power of
spectroscopic surveys, it will be important to incorporate the full physical implication of
cosmological models on galaxy clustering beyond late-time effects so that our constraints
reflect physically interesting parameter spaces.
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