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Deep learning-based phenotype imputation 
on population-scale biobank data increases 
genetic discoveries

Ulzee An    1  , Ali Pazokitoroudi1, Marcus Alvarez    2, Lianyun Huang    3,4,5, 
Silviu Bacanu    6, Andrew J. Schork7,8,9, Kenneth Kendler    6, 
Päivi Pajukanta    2,10, Jonathan Flint    2, Noah Zaitlen    11, Na Cai    3,4,5, 
Andy Dahl12 & Sriram Sankararaman    1,2,13 

Biobanks that collect deep phenotypic and genomic data across many 
individuals have emerged as a key resource in human genetics. However, 
phenotypes in biobanks are often missing across many individuals, limiting 
their utility. We propose AutoComplete, a deep learning-based imputation 
method to impute or ‘fill-in’ missing phenotypes in population-scale  
biobank datasets. When applied to collections of phenotypes measured 
across ~300,000 individuals from the UK Biobank, AutoComplete 
substantially improved imputation accuracy over existing methods. 
On three traits with notable amounts of missingness, we show that 
AutoComplete yields imputed phenotypes that are genetically similar to  
the originally observed phenotypes while increasing the effective sample 
size by about twofold on average. Further, genome-wide association 
analyses on the resulting imputed phenotypes led to a substantial increase 
in the number of associated loci. Our results demonstrate the utility of 
deep learning-based phenotype imputation to increase power for genetic 
discoveries in existing biobank datasets.

The past decade has seen the growth of datasets that collect deep 
phenotypic and genomic data across large numbers of individuals. 
Although these population-scale biobanks aim to capture a wide range 
of phenotypes across the population (including demographic infor-
mation, laboratory tests, imaging, medication usage and diagnostic 
codes), phenotypes in this setting are frequently missing across many of 

the individuals for reasons such as cost or difficulty of acquisition (for 
example, phenotypes derived from imaging scans and other potentially 
invasive procedures). As a result, our ability to study clinically relevant 
phenotypes or diseases using biobank data remains limited.

The ubiquity of missing data in the biomedical domain has moti-
vated extensive work into statistical methods for imputing or ‘filling-in’ 
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We demonstrate that genome-wide association studies (GWAS) on the 
imputed phenotypes yield associations that have consistent effects 
both in the originally observed phenotypes in UKBB and in the external 
studies. Beyond the replication of significantly associated variants, 
the polygenic architecture of the imputed phenotypes is highly con-
cordant with those of the originally observed phenotypes in UKBB  
and the phenotypes measured in the external studies (quantified by 
their genetic correlation). We observed an increase in effective sample 
size of 1.8-fold on average, with GWAS on the resulting imputed pheno
types leading to the discovery of 57 new loci. Our results illustrate the 
value of deep learning-based imputation for genomic discovery.

Results
Methods overview
AutoComplete is based on an autoencoder (a type of neural net-
work) that is capable of simultaneously imputing continuous and 
binary-valued features. Given a vector of features that represent the 
phenotypes measured on an individual (some of which might be miss-
ing), AutoComplete maps the features to a hidden representation using 
a nonlinear transformation (encoder), which is then mapped back to 
the original space of features to reconstruct the phenotypes (decoder). 
In this process, AutoComplete imputes missing phenotypes (Fig. 1).

AutoComplete aims to learn the autoencoder by masking fea-
tures that are originally observed in the data and searching for the 
parameters of the autoencoder that can reconstruct the masked and 
observed features with minimal error. To enable AutoComplete to 
impute in the presence of realistic missingness patterns, we employed 
copy-masking, a procedure that propagates missingness patterns 
already present in the data6.

Experiment overview
We evaluated the accuracy of phenotypes imputed by AutoComplete 
on two collections of UKBB phenotypes: a set of 230 cardiometabolic 
phenotypes derived from patient records and imaging data, and a 
larger set of 372 phenotypes related to psychiatric disorders from an 
on-going study of major depressive disorder (MDD)18. Each collection 
contains phenotypes measured across ~300,000 unrelated individuals 
of white British ancestry, where the median missingness rates across 
phenotypic entries were 47% and 67% (Supplementary Table 1). The 
phenotypes in each dataset were collected based on general guidance 
received from experts with an interest in cardiometabolic and psychi-
atric disorders, respectively. A focus was placed on phenotypes that 
were highly missing and of clinical relevance such that imputation 
would provide a clear utility.

We compared the accuracy of AutoComplete with a representa-
tive selection of imputation methods that could be applied at scale. 
We considered K-Nearest Neighbors (KNN), missForest19 and MICE3, 

missing data1–7 (see Supplementary Note Section S1 for additional 
related work). Accurate imputation of large numbers of phenotypes 
and individuals in population-scale biobank data presents several 
challenges. First, accurate imputation requires faithfully modeling 
the dependencies across the phenotypes. Such dependencies can 
arise because of genetic or environmental effects that are shared 
across phenotypes. Accumulating evidence for the abundance of 
shared genetic effects (pleiotropy) even among seemingly unrelated  
phenotypes suggests that the ability to model dependencies across 
large numbers of collected phenotypes could substantially improve 
imputation accuracy. Second, patterns of missingness in these datasets 
tend to be complex (for example, individuals who were not adminis-
tered a questionnaire will be missing for all answers relevant to the 
questionnaire). Third, the method needs to be scalable. Thus, methods 
that can accurately impute phenotypes in the presence of complex 
patterns of missingness while being scalable are needed.

Here we propose AutoComplete, a deep-learning method based 
on an autoencoder architecture designed for highly incomplete 
biobank-scale phenotype data. Our use of deep learning for imputa-
tion is motivated by the ability of neural networks to learn potentially 
complex dependencies among phenotypes, as shown in the applica-
tion of neural networks to other biological datasets8–12. Earlier works,  
however, have relied on access to individuals with no missing phe-
notypes to learn the imputation model13 (such an approach would  
substantially reduce the data available to learn the model) or have 
assumed that entries in a dataset are missing completely at random14,15. 
To be able to impute in the presence of realistic patterns of missingness, 
we employed copy-masking, a procedure that propagates missing-
ness patterns present in the data6. AutoComplete can impute both  
binary and continuous phenotypes while scaling with ease to  
datasets with half a million individuals and millions of entries.

We compared the accuracy of AutoComplete with state-of-the-art 
missing data imputation methods on two collections of phenotypes 
derived from the UK Biobank (UKBB)16: a set of 230 cardiometabolic- 
related phenotypes and a set of 372 phenotypes related to psychiatric 
disorders, each measured across ~300,000 unrelated white British 
individuals. AutoComplete improved squared Pearson correlation (r2) 
by 18% on average over the next best method (SoftImpute5) and 45% on 
average for binary phenotypes. AutoComplete is suitable for large-scale 
biobanks, demonstrating an empirical run time of one hour to fit and 
impute either dataset. We explored the utility of our method in increas-
ing the power to detect genetic associations for three phenotypes—
direct bilirubin, LifetimeMDD17 and cannabis ever taken—that had a 
substantial proportion of missing entries (21%, 80% and 67%, respec-
tively) and were imputed with adequate accuracy in simulations, and 
for which genome-wide association results could be further verified 
with studies of comparable phenotypes that did not overlap UKBB.  
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Fig. 1 | The architecture of AutoComplete. AutoComplete defines a feed-
forward encoder-decoder architecture h trained using copy-masking, a 
procedure that simulates realistic missingness patterns that the model uses to 

impute missing values. AutoComplete minimizes the loss function ℒ that is 
defined over the observed and masked values. AutoComplete supports the 
imputation of continuous and binary features.
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among the most widely used imputation methods routinely available 
in data science packages4. We also considered SoftImpute5 based on 
its consistently high imputation accuracy in previous works6,20. Finally, 
we also evaluated two recent deep learning-based imputation meth-
ods: a generative-adversarial imputation method, GAIN21, and a deep 
generative model, HI-VAE20 (see Supplementary Note Section S1 for a 
more detailed description of related methods).

In determining which methods scale and would therefore be suit-
able for practical use for the datasets of interest, we assessed the capa-
bility of each method to impute the psychiatric disorder dataset in a 
given amount of time (Supplementary Fig. 1 and Supplementary Note 
Section S3). Of the considered methods, we determined that missFor-
est and MICE would not be suitable for the scale of our datasets and 
these were excluded from our large-scale analysis. We also evaluated 
our method on a small-scale dataset consisting of 86 phenotypes and 
50,000 individuals sub-sampled from the cardiometabolic dataset, 
allowing comparisons with KNN, MissForest19 and MICE3 (Supplemen-
tary Note Section S5).

To quantify the accuracy of each method to impute previously 
unseen individuals, we adopted a 50% train–test split of the two data-
sets such that all hyperparameter tuning and training were performed 
on the training set, whereas evaluations of all methods were performed 
on the test set (Methods).

To evaluate the imputation methods, we simulated missing entries 
by masking originally observed phenotypes across a range of missing-
ness levels (1–50%). We examined r2 between imputed and originally 
observed values as the primary metric, given its compatibility with 
continuous and binary phenotypes and its interpretation in terms of 
the effective sample size22. We additionally examined imputation 
accuracy of binary phenotypes using r2, area under the precision-recall 
curve (AUPR) and the area under the receiver operating characteristic 
curve (AUROC). For each metric, we quantified standard error and 
confidence intervals using 50 bootstrap replicates. To test for signifi-
cant differences in the imputation accuracy obtained by each method, 
we performed a two-tailed significance test using the bootstrap stand-
ard errors.

We explored the utility of phenotypes imputed using AutoCom-
plete for improving power in GWAS for three phenotypes: direct biliru-
bin, LifetimeMDD and cannabis ever taken. To account for imputation 
uncertainty, we implemented a bootstrapping procedure to produce 
ten multiple imputations and combined our results across these mul-
tiple imputations (Methods). To determine whether using AutoCom-
plete for downstream analysis leads to reliable biological discoveries, 
we examined the consistency of effects at individual loci found to be 
significantly associated with the imputed phenotype and the similarity 
of the polygenic architecture of the imputed phenotype. We performed 
these analyses both within UKBB (comparing the imputed portion of 
a phenotype with its originally observed portion) and by comparing 
the UKBB imputed phenotypes with external GWAS that do not overlap 
with UKBB.

AutoComplete significantly improves imputation accuracy
AutoComplete obtained the most accurate imputations across all lev-
els of missingness (from 1% to 50%) in the tested datasets (Table 1 and 
Fig. 2). Imputation accuracy was generally higher in the cardiometa-
bolic dataset relative to the psychiatric disorders dataset, which we 
hypothesize can be attributed, in part, to the greater proportion of 
missing entries in the latter (Supplementary Table 1). Further, the impu-
tation accuracy of all methods decreased with increasing levels of 
missingness. Although SoftImpute (based on a linear model) was most 
accurate among the existing methods, AutoComplete obtained the 
highest overall accuracy with an average improvement over SoftImpute 
of 18% (P = 1.21 × 10−67  under two-tailed t-test). Separately for the 
cardiometabolic and psychiatric disorder datasets, AutoComplete 
obtained improvements of 11% and 25% (P = 3.54 × 10−26  and 
P = 2.28 × 10−301) respectively, indicating the value of modeling non-
linear relationships among phenotypes (Fig. 2).

AutoComplete significantly improved r2 for 20 (85) phenotypes 
over SoftImpute with 1% (20%) missingness in the cardiometabolic 
dataset (P < 0.05/230 correcting for the number of phenotypes tested). 
Analogously, AutoComplete significantly improved r2 for 36 (179) 
phenotypes with 1% (20%) missingness in the psychiatric disorders  
dataset (Supplementary Table 2; P < 0.05/372 correcting for the  
number of phenotypes tested), where the number of phenotypes on 
which AutoComplete improved accuracy was greater than those where 
it had lower accuracy in all settings (Supplementary Table 2).

The improvements in imputation accuracy were particularly sub-
stantial for binary phenotypes. Here, AutoComplete obtained a relative 
improvement over the next best method (SoftImpute) of 51% in r2 on 
the cardiometabolic data and 39% on the psychiatric disorders data 
across all simulations (Fig. 2c). We found qualitatively similar trends 
for other metrics such as AUPR and AUROC (Supplementary Table 2). 
In comparison with SoftImpute, AutoComplete imputation obtained 
a relative increase in AUPR of 10% and AUROC of 5% in the cardiometa-
bolic dataset and an increase of 6% and 7% for both metrics in the 
psychiatric disorders dataset (Table 1).

We performed a separate experiment on a small-scale subset of 
UKBB in which we compare AutoComplete with missForest and MICE, 
which could not scale to the full UKBB phenotypes, and found that 
AutoComplete remains the most accurate method in this setting (Sup-
plementary Fig. 4 and Supplementary Note Section S5).

Finally, we also explored the importance of the copy-masking 
procedure to the accuracy of AutoComplete. We compared AutoCom-
plete trained with copy-masking and a denoising autoencoder trained 
with uniformly random masking (Supplementary Note Section S6). 
For the setting of 1% missingness, the highest average r2 obtained 
through uniformly random masking was 0.121 compared with 0.142 
with AutoComplete (15% lower with uniformly random masking) with 
similar trends in tests with increasing missingness (average 16% 
improvement using copy-masking; Supplementary Fig. 5 and Supple-
mentary Note Section S6). We further assessed the importance of 

Table 1 | Summary of imputation accuracy

Cardiometabolic Psychiatric disorders

r2 r2 binary AUPR AUROC r2 r2 binary AUPR AUROC

GAIN 0.071 (0.002) 0.015 (0.002) 0.245 (0.004) 0.587 (0.007) 0.020 (0.000) 0.013 (0.001) 0.281 (0.001) 0.428 (0.001)

KNN 0.237 (0.002) 0.025 (0.001) 0.259 (0.004) 0.600 (0.003) 0.049 (0.001) 0.041 (0.001) 0.398 (0.001) 0.596 (0.001)

HI-VAE 0.193 (0.002) 0.067 (0.003) 0.337 (0.001) 0.693 (0.001) 0.072 (0.001) 0.070 (0.001) 0.430 (0.001) 0.696 (0.001)

SoftImpute 0.269 (0.003) 0.064 (0.002) 0.327 (0.006) 0.689 (0.007) 0.087 (0.001) 0.071 (0.001) 0.425 (0.002) 0.658 (0.002)

AutoComplete 0.297 (0.002) 0.096 (0.004) 0.361 (0.006) 0.726 (0.005) 0.112 (0.001) 0.099 (0.001) 0.450 (0.002) 0.701 (0.001)

Average metrics across all simulations (1%, 5%, 10%, 20% and 50% missing data) are shown for Cardiometabolic and Psychiatric disorder phenotypes. We report the correlation coefficient (r2), 
the r2 restricted to binary-valued phenotypes (r2 binary), and AUPR and AUROC for binary-valued phenotypes. Standard errors are shown in parentheses.
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copy-masking in the evaluation step used to measure imputation  
accuracy. Instead of copying existing missing patterns, we chose values 
to be missing uniformly at random among all observed values until 
1–50% of the observed data was withheld for imputation(Supplementary 
Fig. 6 and Supplementary Note Section S6). When not propagating the 
existing missing data patterns for testing, the imputation accuracy (r2) 
of AutoComplete was inflated to 0.164 on average (0.117 originally), 
whereas the imputation accuracy of LifetimeMDD grew to 0.757 (0.407 
originally) across 1–50% simulations. We therefore conclude that 
copy-masking is integral to evaluating imputation accuracy and that 

AutoComplete benefits from mimicking realistic missingness patterns 
that aid the denoising behavior of the deep-learning model.

Imputed phenotypes lead to replicable genomic discoveries
We explored the utility of phenotypes imputed using AutoComplete 
for improving power in GWAS. We selected three phenotypes (direct 
bilirubin, LifetimeMDD and cannabis ever taken) that had a consider-
able fraction of missing entries (21%, 80% and 67%, respectively) and 
were imputed with reasonable accuracy in simulations (r2 = 0.510, 
0.507 and 0.310, respectively). To confirm that these phenotypes are 
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Fig. 2 | AutoComplete provides accurate imputations across a range of 
simulation settings. a, Average Pearson’s r2 imputation accuracy across 
phenotypes for a range (1–50%) of simulated missingness (bars denote 95% CIs 
obtained through 100 bootstraps). b, Comparisons of imputation accuracy per 
phenotype between AutoComplete (AC) and SoftImpute (SI; next best). Blue dots 
indicate a significant difference in accuracy (two-sided t-test withP < 2.17× 10−4 
and P < 1.34× 10−4, adjusted for the number of phenotypes, for 

cardiometabolic and psychiatric disorder phenotypes). c, Relative 
improvements in imputation accuracy for binary-valued phenotypes between 
AutoComplete and each compared method (percentages thresholded at 200% 
for clarity). Boxes indicate the first, median and third quartiles, and whiskers 
extend to 1.5× the interquartile range. The psychiatric disorders dataset 
contained 372 phenotypes and the cardiometabolic dataset contained 230 
phenotypes.
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accurately imputed in real data, we verified imputation quality meas-
ured as the ratio of the variance between the imputed portion of the 
phenotype and the variance of the observed portion (analogous to the 
metrics used to measure the quality of genotype imputation23,24) was 
sufficiently high across the three phenotypes (0.21, 0.52 and 0.28,  
respectively). The type of each phenotype differed, where direct  
bilirubin was continuous, cannabis ever taken was ordinal and  
LifetimeMDD was binary. Both direct bilirubin and cannabis ever taken 
were estimated as continuous phenotypes by AutoComplete, whereas 
LifetimeMDD was estimated as a binary phenotype in a continuous 
probability scale from 0 to 1. For the purpose of concise downstream 
analysis, all three phenotypes were treated as continuous phenotypes. 
Importantly, each of these phenotypes had sufficiently large GWAS 
summary statistics that did not overlap with UKBB. Furthermore, we 
implemented a bootstrapping procedure to produce ten multiple 
imputations to account for uncertainties that arise during the imputa-
tion process. We then combined genetic analyses across the multiple 
imputations using Rubin’s rule (Methods).

We estimated the effective gain in sample size resulting from 
imputation using AutoComplete for each phenotype. We observed 
an increase in sample size of around 1.8-fold on average: LifetimeMDD 
had an effective sample size of 193,379 from 67,164 original samples, a 
1.87-fold increase, whereas bilirubin had a 0.13-fold increase consistent 
with the lower missingness rate (Supplementary Table 4 and Methods). 
We performed GWAS on each of the imputed phenotypes and observed 
57 new significantly associated loci in total: 28 each for LifetimeMDD 
and cannabis ever taken and one new locus for bilirubin, consistent 
with the missingness rates across these phenotypes (Fig. 3 and Table 2).

To assess the reliability of phenotypes imputed using AutoCom-
plete for GWAS, we performed GWAS on only the imputed portions of 
the phenotypes in UKBB (termed Imp). For each of the three pheno-
types, we examined the consistency of effects at individual loci found 
to be significantly associated with the imputed phenotype and the 
similarity of the polygenic architecture of the imputed phenotype. 
We performed these analyses by comparing the results obtained from 
the imputed UKBB phenotypes (Imp) with the observed phenotypes 
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Fig. 3 | Imputation with AutoComplete increases GWAS power. Results of 
GWAS of the observed portions of bilirubin, LifetimeMDD and cannabis ever 
taken in the UKBB (indicated as Obs), where each phenotype had 21%, 80% and 
67% missingness respectively. GWAS was then performed for all individuals in the 

dataset after using AutoComplete to impute the missing entries for each 
phenotype (indicated as ImpAll). The significance threshold of P < 5× 10−8 is 
indicated by a red line, and SNPs passing the threshold are highlighted in red.

Table 2 | Significantly associated loci from GWAS analysis of three phenotypes of interest and increase in the number of hits 
through the use of imputed phenotypes

Phenotype Missing (%) AutoComplete (Imp) no. of loci Observed no. of loci AutoComplete (ImpAll) no. of loci More no. of loci

Bilirubin 21 17 42 43 1

LifetimeMDD 80 23 1 29 28

Cannabis ever taken 67 11 1 29 28

GWAS was performed on three phenotypes of interest on the observed, imputed (Imp) and the cohort of all individuals including imputed missing observations (ImpAll). The number of 
additionally discovered loci (More no. of loci) in applying AutoComplete were tallied in comparison with the original phenotype without imputation.
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within UKBB (Obs) and to external studies that do not overlap with 
UKBB (Ext). We analyzed four external cohorts: bilirubin from the 
Vanderbilt University Medical Center (VUMC)25, major depression 
from the Psychiatric Genomic Consortium (PGC)26 and from 23andMe 
(23andMe)17, and lifetime cannabis use from the International Cannabis 
Consortium (ICC)27.

We performed GWAS on each of the three Imp phenotypes within 
UKBB to detect 51 significantly associated loci (P < 5 × 10−8). For each 
of the significant loci, we first examined the concordance of its effect 
direction in the phenotypes originally observed in UKBB (Obs).  
Of the 51 loci, we specifically inspected 38 Obs loci that demonstrated 
effect sizes significantly distinct from zero (P < 0.05). All 38 loci had a 
matching direction of effects in the corresponding Obs phenotype 

(P = 7.3 × 10−12 for a binomial test; Fig. 4a and Table 3). We then performed 
the same validation procedure given summary statistics of the Ext 
phenotypes. Of the 51 loci, 43 could be located in the summary statistics 
of the nonUKBB studies, of which 26 loci had effects significantly dis-
tinct from zero (P < 0.05). Of the 26 loci, 25 had matching direction of 
effects (96%; P = 8.0 × 10−7 for a binomial test; Fig. 4a and Table 3). We 
observed that bilirubin was the only phenotype in which the direction 
of effects did not match across all associated loci, with 8 of 9 loci having 
consistent direction of effects. However, this rate is consistent with the 
rate of sign consistency that we observe for loci discovered to be associ-
ated with originally observed bilirubin (14 of 15; Table 3). We further 
report the number of matching effects regardless of being significantly 
different from zero in Supplementary Table 5. We observed qualitatively 
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Fig. 4 | Analysis of the genetic architecture of phenotypes imputed with 
AutoComplete. a, Effect sizes of significantly associated loci based on imputed 
phenotypes were examined in the association studies of the observed 
phenotypes in UKBB (Obs or observed) and comparable nonUKBB studies  
(Ext or external). Genome-wide analysis was performed across 5,776,313 SNPs. 
For imputed phenotypes, circles indicate the mean effect based on multiple 
imputation (black bars indicate the 95% CI). Mismatches in effect directions  
are highlighted in orange. Effects that were not significantly different from  

zero in Obs or Ext (at P < 0.05, two-sided t-test) are denoted using empty markers.  
Loci are visualized that were present across compared studies for each 
phenotype. b, Genetic correlation (rG) for bilirubin, LifetimeMDD and cannabis 
ever taken between UKBB observed and imputed (Obs and Imp, in blue) 
phenotypes and nonUKBB cohorts (Ext, in orange and purple). Bar heights for 
genetic correlations that involve imputed phenotypes indicate mean rG based on 
multiple imputation. Black bars indicate the 95% CI.

http://www.nature.com/naturegenetics


Nature Genetics | Volume 55 | December 2023 | 2269–2276 2275

Technical Report https://doi.org/10.1038/s41588-023-01558-w

similar results when testing the P values of the discovered loci in both 
the Obs and Ext datasets: 38 of 51 loci had P < 0.05 in the Obs dataset, 
whereas 28 of 43 had P < 0.05 in the Ext dataset (compared with 15 of 33 
for loci discovered in the Obs dataset; Table 3).

We measured the similarity in genome-wide SNP effects between 
the imputed (Imp), observed (Obs) and external (Ext) phenotypes by 
estimating the genetic correlation (rG) of their summary statistics using 
LD score regression (LDSC)28. The average rG between Imp and Obs 
phenotypes was 1.03 (95% confidence intervals (CIs) overlap 1 in all 
cases; Fig. 4b). When comparing the Imp and corresponding Ext phe-
notypes, rG was 0.83 on average. The lower rG (Imp, Ext) is not unex-
pected given the differences between UKBB and the external studies. 
For example, the cannabis ever taken phenotype in UKBB takes distinct 
values based on the number of times cannabis was used (never used, 
used 1–2, 3–10, 11–100 and more than 100 times), whereas the cannabis 
usage phenotype measured in ICC was a binary phenotype on whether 
or not an individual reported using cannabis in their lifetime. The ICC 
GWAS is a meta-analysis of 13 studies that report a wide range in the 
prevalence of lifetime cannabis use, reflecting differences across these 
studies. To place these rG estimates in context, we compared the rG of 
pairs of Imp and Ext phenotypes with the corresponding pairs of Obs 
and Ext phenotypes to find that the two sets of estimates are not sig-
nificantly different from each other (rG of 0.92 across the pairs of Obs 
and Ext phenotypes so that a test of the difference in rG(Obs, Ext) to rG
(Imp, Ext) failed to reject the null hypothesis of no difference in rG;  
Fig. 4b). Taken together, we conclude that the genetic architecture of 
the imputed phenotypes is similar to that of the originally observed 
phenotypes both at individual GWAS loci and across the genome.

Discussion
The ubiquity of missing data in population-scale biobanks  
necessitates effective methods for imputation. Here, we describe 
AutoComplete, a deep-learning approach to imputation, which we 
demonstrate to be accurate and efficient for imputing phenotypes 
in the UK Biobank.

AutoComplete increased the imputation accuracy of highly miss-
ing phenotypes related to cardiometabolic and psychiatric disor-
ders in comparison with state-of-the-art linear methods. This implies 
that understanding nonlinear dependencies among phenotypes in 
biobank data is important. Patterns of missingness are often struc-
tured for biobank-type data as a consequence of the data-gathering 
procedures. We also observed that realistic simulations of missing 
data make a substantial contribution to the accuracy of the model 
learned for imputation (Supplementary Note Section S6). Our use of 
copy-masking provides a straightforward and general approach for 
training deep-learning methods in the presence of complex, structured 
missingness that can be expanded and adapted to new settings.

For the application of our method to new datasets, it would be 
important to be able to quantitatively determine the quality of imputa-
tions for each phenotype. Given that we were able to validate a set of 
phenotypes chosen based on the variance ratio of the imputed to the 
observed phenotype (>0.2), accuracy measured on masked phenotypes 
(r2 > 0.2) and sufficient fraction of missing entries (>10%), we recom-
mend these metrics as a starting point for future analyses. To allow 
users to explore choices that might be most appropriate for their 
specific analyses, we provide the ability for a user of our software pack-
age to view these metrics for each phenotype similarly to how we have 
examined them for any imputed dataset.

We discuss limitations of our method and directions for future 
work. First, the basic autoencoder architecture underlying our method 
can be extended in many ways. Although we determined through 
cross-validation that the majority of the imputation accuracy is gained 
architecturally from the first three layers and the support for continu-
ous and binary imputations, a fuller exploration of the architecture of 
the neural network could lead to further improvements in accuracy. 
Second, because biobanks collect diverse data modalities, includ-
ing imaging, time-series and multiomic data, imputing missing data 
that arises in the context of these diverse data types remains a chal-
lenge. The phenotypes that we impute in our current work are a mix 
of continuous, binary and ordinal types, wherein we treat ordinal 
phenotypes as continuous. The modularity of the underlying neural 
network architecture will enable our method to deal with the diversity 
of phenotypic data types that are being gathered, and we leave this as a 
promising direction for future work. Finally, the consequence of using 
a deep-learning method is that the resulting imputation phenotypes 
are often challenging to interpret. Such interpretations are critical 
to understanding whether an imputed phenotype is enriched for the 
genetic component of the original phenotype. Methodology for inter-
preting deep-learning methods is an area of active research29,30 and 
could be extended to our setting. Analyzing the signals driving our 
imputation method when applied to biological datasets could reveal 
distinct subtypes of a disease and could provide insights into disease 
etiology. Interpretable components could also give higher credence 
to the imputed phenotypes.
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Methods
Datasets
The UKBB16 makes available genetic data for up to half a million  
individuals and thousands of traits. We gathered two collections of 
phenotypes in UKBB.

We collected a group of 230 cardiometabolic phenotypes31,32 
consisting of phenotypes and serum biomarkers derived from body 
imaging and laboratory measurements relevant to cardiometabolic 
disorders, consumption of prescribed drugs (for example, medication 
for cholesterol or aspirin), measures of daily physical activity and food 
consumption, as well as anthropometric and general demographic 
information. In addition, we collected International Statistical Clas-
sification of Diseases and Related Health Problems tenth revision 
(ICD-10) and ICD-9 codes relating to nonalcoholic fatty liver disease33,34, 
and ICD-10, ICD-9 and Office of Population Censuses and Surveys  
Classification of Interventions and Procedures version 4 codes relating 
to coronary artery disease as described35.

We constructed a second dataset of 372 phenotypes related to 
psychiatric disorders. This included lifetime and current MDD symp-
tom screens36,37, psychosocial factors, comorbidities, family history of 
common diseases, a broad range of demographic information, as well 
as both deep and shallow definitions of MDD derived from symptom 
questionnaires using clinical diagnostic criteria or self-reports17. Both 
datasets consist of ~300,000 white British unrelated individuals. Each 
of these collections included a mix of continuous and binary-valued 
phenotypes (Supplementary Table 1). Missingness rates for phenotypes 
across individuals varied from 0% (age, sex) and up to 99% (addiction, 
self-harm).

For each dataset containing N individuals and P phenotypes, a 
data matrix of dimension N × P was created including missing values. 
Approximately 50% of all individuals were reserved for testing (evalu-
ating the accuracy of the methods) and the remainder was used for 
training and any hyperparameter tuning for all methods (in an 80–20 
split). Continuous phenotypes were normalized to have zero mean 
with unit variance per phenotype. Binary-valued phenotypes were 
processed specific to the capabilities of each method; for methods that 
did not handle binary data, labels were converted from 0,1 to −0.5,0.5 
and treated as continuous values. To prevent information leakage, 
statistics of the training split were used to normalize the test split.

AutoComplete
AutoComplete is based on a type of neural network that is capable of 
simultaneously imputing continuous and binary-valued phenotypes. 
For each individual, AutoComplete considers a fixed list of pheno-
types including missing values and reconstructs all phenotypes from 
a latent representation using an autoencoder architecture. Of the 
input phenotypes, missing entries were masked (set to zero), then all 
observed phenotype values were transformed to a hidden representa-
tion in the encoding stage. The decoding stage transforms the hidden 
representation back to the input space such that all phenotypes were 
reconstructed. To support heterogeneous data types, imputed entries 
corresponding to binary phenotypes were obtained as the output of a 
sigmoid function so that these entries lie in the range [0,1].

Let X̃  denote a N × P phenotype matrix such that X̃ij is the value of 
the jth phenotype measured on the ith individual, M  denotes a N × P  
indicator matrix (termed the Mask matrix) where Mij = 1  if the jth  
phenotype is observed for the ith individual and Mij = 0 otherwise. For 
simplicity, continuous and binary phenotypes were organized in X̃  
such that the first C  phenotypes were continuous.

h denotes the nonlinear function corresponding to the auto
encoder. The function h imputes both missing phenotype values and 
reconstructs observed ones. During imputation, only the imputed 
missing values are used. Using the LeakyReLU function Φ as a nonlinear-
ity in the hidden layer and the sigmoid function s that was applied to 
binary-valued imputations, we define for the case of one hidden layer 

the following feed-forward function h (additional hidden layers could 
be defined analogously):

h(1) = Φ (W (1)X̃i,∶ + b(1))

h(2) = W (2)h(1) + b(2)

h (X̃i,∶) = ({h(2)
j
}
j=1,…,C

, {s (h(2)
j
)}
j=C+1,…,P

)

where

Φ (x) = max (0, x) − lΦ min (0, x) , and

s (x) = 1
1 + e−x

X̃i,∶ denotes row  of X̃  (equivalently the vector of phenotypes 
associated with individual i). For each layer, the learnable weight  
parameter W  is a D × P  matrix where D is the dimension of the hidden 
representation, whereas the bias vector b is of length D.

Given function h, the final imputed matrix ̂X  is constructed from 
X̃  as follows:

X̂i,∶ = Mi,∶ ⋅ X̃i,∶ + (1 −Mi,∶) ⋅ h (X̃i,∶) , 1 < i < N

Here · denotes entrywise product.
In training, we promoted imputation using h such that both truly 

observed and masked phenotype values were subject equally to a 
reconstruction loss. Observed values were withheld based on existing 
missingness patterns, which were randomly drawn from the dataset 
and then applied to other individuals—a process we refer to as 
copy-masking. To do this, a binary mask vector m̃ is drawn from the 
rows of the mask matrix M  and was applied to the input of h such that 
for individual i, the jth phenotype would be masked when m̃j = 0 or 
unmodified when m̃j = 1. We controlled the prevalence of masking in 
training by the parameter ρ, which was the probability one individual 
would receive a copy-mask. The masking process of AutoComplete is 
illustrated in Fig. 1.

A joint loss function was defined over observed and masked values 
such that mean square error and cross entropy loss were applied to 
continuous and binary phenotypes respectively. For simplicity the two 
types of phenotypes were partitioned by index C. The joint loss function 
was applied over all values that were originally observed:

yi,∶ = h (m̃ ⋅ X̃i,∶)

Li (ϴ) =
C

∑
j=1
Mij(yij − X̃ij)

2
−

P

∑
j=C+1

Mij [X̃ij log (yij) + (1 − X̃ij) log (1 − yij)]

L (ϴ) = ∑
i

Li (ϴ)

The parameters ϴ ≡ {W (1),b(1),W (2),b(2)}  of h were optimized  
with respect to the objective L. Stochastic Gradient Descent38 was used 
to fit the neural net, where the initial learning rate, momentum and 
mini-batch size were also determined on a validation split of each 
dataset. The weights and biases of the network were initialized using 
the Kaiming Uniform distribution, and the slope parameter of 
LeakyReLU was initialized as lϕ = 0.01 . Training proceeded given a 
maximum number of allowed epochs, up to 500, whereas the network 
weights were checkpointed based on a validation split which was ran-
domly sampled from the training set to avoid overfitting. After training, 
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the last checkpointed weights that attained the best validation loss 
were loaded back to the model for all imputation and downstream 
analysis. In Supplementary Fig. 2, we visualize the loss history recorded 
while fitting on the UKBB datasets. A single RTX8000 GPU was used to 
accelerate the fitting process of AutoComplete.

Copy-masking
We implemented copy-masking, a simulation procedure to induce 
realistic patterns of missingness on observed data. This procedure was 
first used to simulate artificial missing data in the training and test 
splits of the datasets in the range of 1–50% for the purpose of assessing 
accuracy with structured missingness. For AutoComplete, we applied 
the same masking procedure as augmentations during training on top 
of the missing values already present with probability ρ for a given 
individual. This approach strives to maintain the realistic missingness 
patterns in datasets while introducing simulated missing values. By 
contrast, uniform randomly withholding observed values could distort 
the distribution of the features; for example, when two features have 
correlated missingness. To illustrate the impact of copy-masking for 
imputation, we describe in Supplementary Note Section S6 the effect 
of using uniform masking for imputation performance in place of 
copy-masking and observe that no amount of uniform random masking 
alone attains the accuracy obtained with copy-masking (Supplemen-
tary Fig. 5).

Hyperparameter tuning
For our simulation results, all methods were tested after tuning their 
hyperparameters on a validation dataset. For AutoComplete, HI-VAE 
and GAIN, we used the same predetermined portion (20%) of the sam-
ples not part of the test set as a validation set on which we evaluated 
hyperparameters after training on the remaining portion. SoftImpute 
was tuned using a k-fold (k = 5) cross-validation. For the AutoComplete 
final imputation results, we carried over the same hyperparameters 
which were found to be optimal in simulations.

In summary, the final set of notable hyperparameters chosen 
for AutoComplete were learning_rate = 0.1, copy_mask = 80%, batch_
size = 2,048 and max_epochs = 500 for the psychiatric disorders dataset; 
and copy_mask = 30% for the cardiometabolic dataset. The copy-mask 
percentage was the main contributor to optimal accuracy, and other 
hyperparameters such as the momentum for Stochastic Gradient Descent 
optimization, learning rate decay of the scheduler and Leaky ReLU param-
eters were left fixed. For HI-VAE, the final set of hyperparameters chosen 
were y = 5, z = 16, s = 1, batch_size = 4,096 and max_epochs = 100. For 
GAIN, the final set of hyperparameters chosen were hint = 0.9, alpha = 10, 
batch_size = 4,096 and max_epochs = 2,000. To tune SoftImpute, we 
followed a cross-validation procedure as used previously39, where we 
chose a nuclear norm (Lambda) value of 108. Because of the difficulty  
in KNN and missForest scaling to the size of the cardiometabolic  
and psychiatric disorders dataset, we did not perform hyperparameter 
tuning for these methods (which would require repeated fits and evalu-
ations). Reasonable values for hyperparameters were chosen instead. 
For KNN, the number of neighbors K was set to 10. For missForest, the 
number of trees per forest was set to 10 and up to 10 epochs were run. 
We did not alter hyperparameters that were not modifiable given each 
method’s software package. Supplementary Note Section S2 describes 
details on the specific hyperparameters that were tuned for each method.

Details of GWAS analysis
We used imputed genotypes available from the UKBB for the individuals 
that were included in the phenotype imputation. We performed strin-
gent filtering on the imputed variants, removing all insertions and 
deletions and multiallelic SNPs: we hard-called genotypes from 
imputed dosages at 9,720,420 biallelic SNPs with imputation INFO 
score >0.9, MAF >0.1% and P value for violation of Hardy–Weinberg 
equilibrium > 10−6, in individuals with a genotype probability threshold 

of 0.9 (individuals with genotype probabilities below 0.9 would be 
assigned a missing genotype). Of these, 5,776,313 SNPs are common 
(minor allele frequencies (MAF) >5%). We consistently use these SNPs 
for all analyses in this study.

We used 20 principal components (PCs) computed with Flash-
PCA40 on 337,126 white British individuals in UKBB and genotyping 
arrays as covariates for all GWAS. We performed principal component 
analysis on directly genotyped SNPs from samples in UKBB and used 
PCs as covariates in all our analyses to control for population structure. 
From the array genotype data, we first removed all samples that did 
not pass quality control, leaving 337,126 white British, unrelated  
samples. We then removed SNPs not included in the phasing and  
imputation and retained those with MAF ≥0.1%, and P value for violation 
of Hardy–Weinberg equilibrium > 10−6, leaving 593,300 SNPs. We  
then removed 20,567 SNPs that are in known structural variants and 
the major histocompatibility complex, as recommended by UKBB16, 
leaving 572,733 SNPs. Of these, 334,702 are common (MAF >5%), and 
from these common SNPs we further filtered based on missingness 
<0.002 and pairwise LD r2 < 0.1  with SNPs in a sliding window of  
1,000 SNPs to obtain 68,619 LD-pruned SNPs for computing PCs  
using FlashPCA. We obtained 20 PCs, their eigenvalues, loadings and 
variance explained, and consistently use these PCs as covariates for  
all our genetic analyses.

The number of loci were counted from the GWAS results through a 
chromosome-wide clumping procedure. The top significantly detected 
SNP from one chromosome was tallied as a hit, and then all signifi-
cant hits within 1 Mb from the SNP were ignored. The procedure was 
repeated for any remaining significant detection in the chromosome, 
and then repeated within all chromosomes.

GWAS on AutoComplete-imputed phenotypes
For the imputation of phenotypes for which we performed GWAS, 
AutoComplete was allowed to fit all available individuals to impute 
missing entries. For binary phenotypes, phenotypes were imputed in 
a continuous range of 0–1 reflective of confidence in the prediction. 
When fitting all individuals, optimal hyperparameters were carried 
over from the tuning result of 1% missing data simulation. Similar to 
the simulation phase, during the final imputation procedure a por-
tion of all samples were reserved as a validation set (20% by default), 
which was used to monitor for overfitting and perform weight saving. 
Therefore, all individuals present in the dataset were considered for 
the final imputation, and the sample size for downstream analyses was 
the total number of individuals in each dataset.

GWAS on originally observed UKBB phenotypes were performed 
with imputed genotype data at the 5,776,313 SNPs (MAF >5%, INFO score 
>0.9) using logistic regression or linear regression based on the data 
type of the phenotype (PLINK v.2)41. For all GWAS involving imputed 
phenotypes, linear regression was performed. We tally the number of 
significantly associated loci using the combination of observed and 
imputed individuals (all available individuals) and visualize their cor-
responding quantile-quantile plots in Supplementary Fig. 3.

External GWAS datasets
We compared the GWAS on AutoComplete-imputed phenotypes with 
four GWAS results on external datasets. Direct bilirubin levels (field 
30660) were measured for 226,876 unrelated white British individuals 
in the UKBB (58,531 missing). Imputed direct bilirubin was compared 
with measurements of bilirubin levels on 66,732 individuals from the 
Vanderbilt University Medical Center (VUMC) EHR system25. Diagnosis 
of LifetimeMDD17 for 67,165 individuals (269,963 missing) in the UKBB 
was validated against a comprehensive study of MDD across of 124,065 
individuals by the PGC (excluding UKBB and 23andMe)26 and a study 
of 307,354 individuals carried out using data from 23andMe17. Finally, 
comparisons were made between the cannabis ever taken status in 
the UKBB (field 20453) for 110,189 individuals (226,939 missing) and 
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a study of lifetime cannabis use across 32,330 individuals of European 
ancestry by the ICC27.

Accounting for imputation uncertainty in downstream 
genomic analysis
We implemented a procedure involving multiple imputations through 
bootstrap resampling to account for uncertainty arising from imputa-
tion. This approach was applied to account for imputation uncertainty 
in downstream analyses such as when testing for genetic associations 
and measuring genetic correlations.

For a given dataset, we repeated the imputation procedure ten 
times using AutoComplete, which was fitted from scratch to reflect 
variations in imputation. Although the fitting procedure and hyper-
parameters were kept the same, the seed of the random generation 
was altered such that the weights would be initialized differently, 
mini batches would be formed in a differently shuffled order and the 
sequence of individuals randomly selected to receive copy-masking 
would change. In addition, we introduced bootstrapping to the fitting 
process such that the model was fit on a bootstrapped dataset in which 
all individuals were sampled with replacement, while the fitted model 
was used to impute the original dataset. This bootstrapping procedure 
accounts for the variation in the imputation model due to variation in 
the training samples (reflected in differences in the bootstrap samples), 
missingness patterns encountered (since copy-masking is applied 
independently in each bootstrapped sample), and to dependence on 
random parameter initialization.

We applied Rubin’s rule3 to utilize the multiple imputed datasets 
to account for imputation uncertainty in a downstream statistic. In the 
context of GWAS, an association study was performed for each imputa-
tion such that multiple effect size estimates and their standard errors 
were estimated per SNP. The significance of each SNP was determined 
by combining the point estimates and standard errors. Tallies of sig-
nificantly associated loci in our results involving imputed phenotypes 
were based on this procedure. For genetic correlation analyses, the rG 
was measured between a nonimputation-based GWAS (UKBB or non-
UKBB) and multiple imputation-based GWAS, and their statistics were 
combined while accounting for imputation uncertainty. Empirical 
observations on the change in the statistics due to imputation are 
further described in Supplementary Note Section S4.

Additional analysis of imputed phenotypes
The effective sample size was calculated as a function of impu
tation accuracy for a given phenotype from simulations (1% mis
singness) and the number of missing values imputed, such that 
NEffective = NObserved + r2AutoComplete × NImputed for a given phenotype.

We examined genetic correlations (rG) between a subset of phe-
notypes within the psychiatric disorder dataset collected within the 
UK Biobank and related phenotypes collected from cohorts outside 
the UK Biobank. The three phenotypes examined based on the UK 
Biobank were direct bilirubin, LifetimeMDD17 and status of having ever 
taken cannabis. In the context of these phenotypes, we gathered GWAS 
summary statistics from external studies that examined bilirubin 
measurements25, MDD17,26 and lifetime cannabis use27. We used LDSC28 
to estimate rG between each pairing of phenotypes using LD Scores 
estimated from the 1,000 Genomes white European population42,43.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The genotype and phenotype data are available by application from 
the UKBB, https://www.ukbiobank.ac.uk. The LD Scores from the 
1000 Genomes project are available from https://alkesgroup.broa-
dinstitute.org/LDSCORE/. Further data are available as follows: 

Bilirubin GWAS25, http://ftp.ebi.ac.uk/pub/databases/gwas/sum-
mary_statistics/GCST90012001-GCST90013000/GCST90012749/; 
MDD GWAS by PGC (excluding UKBB and 23andMe)26, https://fig-
share.com/articles/dataset/mdd2018/14672085; MDD GWAS of 
23andMe cohort17, https://figshare.com/s/b61e44d5142cc0690772; 
Lifetime cannabis use GWAS27, https://www.ru.nl/bsi/research/
group-pages/substance-use-addiction-food-saf/vm-saf/genetics/
international-cannabis-consortium-icc/. The following GWAS of phe-
notypes after imputing all missing entries are available from the GWAS 
Catalog with the accession codes: bilirubin, GCST90277451; cannabis 
ever taken, GCST90277452; and LifetimeMDD, GCST90277450.

Code availability
The software can be accessed as follows: AutoComplete, https://
github.com/sriramlab/AutoComplete (https://doi.org/10.5281/
zenodo.8243106); Plink 2.0, https://www.cog-genomics.org/plink/2.0/; 
LDSC, https://github.com/bulik/ldsc; HI-VAE, https://github.com/
probabilistic-learning/HI-VAE; GAIN, https://github.com/jsyoon0823/
GAIN; KNN, https://scikit-learn.org/stable/modules/generated/sklearn.
impute.KNNImputer.html; MissForest, https://cran.r-project.org/
web/packages/missForest/index.html; MICE, https://github.com/
AnotherSamWilson/miceforest.
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