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RESEARCH ARTICLE
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Abstract

microRNAs (miRNAs) are derived from self-complementary hairpin structures, while small-

interfering RNAs (siRNAs) are derived from double-stranded RNA (dsRNA) or hairpin pre-

cursors. The core mechanism of sRNA production involves DICER-like (DCL) in processing

the smallRNAs (sRNAs) and ARGONAUTE (AGO) as effectors of silencing, and siRNA bio-

genesis also involves action of RNA-Dependent RNA Polymerase (RDR), Pol IV and Pol V

in biogenesis. Several other proteins interact with the core proteins to guide sRNA biogene-

sis, action, and turnover. We aimed to unravel the components and functions of the RNA-

guided silencing pathway in a non-model plant species of worldwide economic relevance.

The sRNA-guided silencing complex members have been identified in the Coffea canephora

genome, and they have been characterized at the structural, functional, and evolutionary

levels by computational analyses. Eleven AGO proteins, nine DCL proteins (which include a

DCL1-like protein that was not previously annotated), and eight RDR proteins were identi-

fied. Another 48 proteins implicated in smallRNA (sRNA) pathways were also identified. Fur-

thermore, we identified 235 miRNA precursors and 317 mature miRNAs from 113 MIR

families, and we characterized ccp-MIR156, ccp-MIR172, and ccp-MIR390. Target predic-

tion and gene ontology analyses of 2239 putative targets showed that significant pathways

in coffee are targeted by miRNAs. We provide evidence of the expansion of the loci related

to sRNA pathways, insights into the activities of these proteins by domain and catalytic site

analyses, and gene expression analysis. The number of MIR loci and their targeted path-

ways highlight the importance of miRNAs in coffee. We identified several roles of sRNAs in

C. canephora, which offers substantial insight into better understanding the transcriptional

and post-transcriptional regulation of this major crop.
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Introduction

Small RNA (sRNA) silencing pathways have attracted increasing interest in the fields of genet-

ics and molecular biology, and our current knowledge regarding the mechanisms and compo-

nents involved in these pathways has rapidly evolved. Such RNA-based processes consist of

sequence-specific inhibition of gene expression at the transcriptional or translational level by

the action of small (20–26 nt) homologous RNA sequences [1].

Plant sRNAs are produced by processing of double-stranded duplexes from the helical

regions of larger RNA precursors and are classified according to the intra- or intermolecular

hybridization of the duplex [2]. microRNAs (miRNAs) are derived from self-complementary

hairpin structures, while small-interfering RNAs (siRNAs) are derived from double-stranded

RNA (dsRNA) or hairpin precursors [3, 4].

MIR genes are transcribed by RNA polymerase II (Pol II) [5] and undergo several modifica-

tions from transcription to maturity. Primary transcripts (pri-miRNAs) are similar to protein-

coding RNA precursors (pre-mRNA) in size [6] but possess a hairpin structure that is stabi-

lized by the RNA-binding protein DAWDLE (DDL) [7]. These molecules are processed by the

endonuclease activity of DICER-LIKE 1 (DCL1) [8] into precursors (pre-miRNAs) assisted by

additional enzymes, including HYPONASTIC LEAVES 1 (HYL1) [8], SERRATE (SE) [9, 10],

and TOUGH (TGH) [11]. The pre-miRNAs are then processed by the DCL complex to form a

duplex structure containing two 3’ nucleotide overhangs at each end. miRNAs are generally 21

nt long (DCL1 and DCL4), but their size varies depending on the DCL that induces cleavage,

being 22 nt for DCL2 and 24 nt for DCL3 [12]. miRNAs negatively regulate their target genes

through sequence-specific degradation or translational repression [13]. However, some miR-

NAs are also involved in DNA methylation [14].

The duplex is 3’ methylated by the methyltransferase HUA ENHANCER 1 (HEN1), which

protects it from further modification and degradation [15]. The exportin HASTY (HST) is

responsible for binding the duplex and transporting it from the nucleus to the cytoplasm [16].

Exportation in the absence of this protein is also possible but occurs via an unknown mecha-

nism [17]. In the cytoplasm, one strand of the duplex is loaded onto an ARGONAUTE (AGO)

family protein containing the PAZ and PIWI domains to form the RISC (RNA-Induced

Silencing Complex). The PIWI domain possesses endonuclease activity and cleaves the target

mRNA, which is also recognized by nearly perfect complementarity with the miRNA [12, 18].

The other major class of sRNAs, siRNAs, can act either at the transcriptional level by guid-

ing DNA methylation or at the post-transcriptional level by guiding the cleavage and degrada-

tion of homologous cellular transcripts [1, 19]. RNA-dependent RNA Polymerases (RDRs)

play an important role in siRNA production, synthesizing a second-strand RNA from the

RNA template and thus producing a double-stranded RNA (dsRNA) molecule [20] with initial

priming-dependent or priming-independent characteristics [21]. The biogenesis of siRNA

shares a core mechanism with miRNAs. siRNAs are processed by a DCL protein (DCL2,

DCL3, and DCL4), methylated by HEN1, and loaded onto a protein of the AGO family [2].

Additionally, two plant-specific DNA-Dependent RNA Polymerases, Pol IV and Pol V, are

involved in the biogenesis of 24-nt siRNAs, which mediate RNA-Dependent DNA Methyla-

tion (RdDM). RdDM occurs through cytosine methylation (CG, CHG, and CHH, where

H = A, C, or T) by the de novo methyltransferase DOMAINS REARRANGED METHYL-

TRANSFERASE 2 (DRM2) at the target DNA locus [22, 23]. Pol IV transcribes heterochro-

matic regions, which code for siRNAs [24], followed by dsRNA synthesis by RDR2, processing

by DCL3, and the assembly of the resulting siRNA duplexes in the AGO4 clade of AGOs [23].

Pol V produces transcripts from Intergenic Non-coding (IGN) regions at loci that will be fur-

ther methylated and is required for the recruitment of RdDM machinery, including DRM2
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and siRNA-loaded AGO [25, 26]. This recruitment occurs by the interaction between protein-

protein (Pol V-AGO) and nucleic acids, however, it remains unclear whether siRNA:IGN or

siRNA:DNA. [27, 28].

Along with the core mechanism of sRNA production described above, using DCL in pro-

cessing and AGOs as effectors, and additional participation of the RDR, Pol IV and Pol V in

siRNA biogenesis, several other proteins interact with these core proteins to guide sRNA bio-

genesis, action, and turnover. These proteins have been recently reviewed [17, 19]. For in-

stance, RECEPTOR FOR ACTIVATED C KINASE 1 (RACK1) and C-TERMINAL DOMAIN

PHOSPHATASE-LIKE 1 (CPL1) interact with SE and have been implicated in pri-miRNA

processing [29, 30]. Due to their recent emergence, the sRNA silencing pathways have not

been fully elucidated, and knowledge of these pathways is constantly evolving. More recently,

the protein REGULATOR OF CBF GENE EXPRESSION 3 (RCF3) has been described as a

cofactor affecting miRNA biogenesis in specific plant tissues by interacting with CPL1 and

CPL2 [31].

Aiming to expand the knowledge from model plants, the silencing complex has been identi-

fied in native and cultivated species, including rice (Oryza sativa) [32], common bean (Phaseo-
lus vulgaris) [33], sorghum (Sorghum bicolor), and soybean (Glycine max) [34]. In Coffea
arabica and Coffea canephora, the main economically important species of coffee, one of the

most important crops in the world and the second most traded global commodity, MIR fami-

lies have been identified based on Expressed Sequence Tags (EST), Genome Survey Sequences

(GSS), and other transcript-based analyses [35–38].

With the release of the C. canephora genome, miRNAs were also identified [39]. However,

the number of miRNAs was significantly underestimated. Moreover, the genes implicated in

the generation and function of the miRNAs and siRNAs have not been described in coffee

plants.

In this work, we present a thorough analysis of the identification and characterization of

the small RNA-guided silencing complex in the C. canephora genome. Eleven AGO proteins;

nine DCL-like proteins, including a previously unannotated DCL1; eight RDR proteins; and

48 other proteins implicated in the sRNA pathways, including HYL1, HST, HEN1, SE, and

TGH, were identified. Furthermore, we conducted a conserved domain, catalytic site, and phy-

logenetic analysis to characterize the main proteins of the silencing pathway and validated

their expression using RNA-seq libraries. We also identified 235 miRNA precursors producing

317 mature miRNAs belonging to 113 MIR families. We structurally and evolutionarily

characterized and identified the putative targets of the MIR families MIR156, MIR172, and

MIR390. A total of 2239 putative C. canephora miRNA targets were identified, and gene ontol-

ogy analyses showed that significant pathways were targeted by miRNAs, demonstrating the

importance of miRNAs in C. canephora.

The identification and analysis of the sRNA silencing pathways in C. canephora not only

provide insights into the species but also provide a basis for further study of C. canephora and

C. arabica regarding sRNA biogenesis and activity. The comprehension of these pathways in

such an important crop provides insights into the species for further use of genetic engineering

technologies available for crop breeding.

Materials and methods

miRNA and protein prediction datasets

The C. canephora genome data and genome features were accessed and downloaded from The

Coffee Genome Hub [39]. Mature plant miRNA sequences and precursor miRNA sequences

were downloaded from miRBase version 21. For protein prediction, Arabidopsis (Arabidopsis

RNA-guided silencing pathway in coffee
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thaliana) ortholog sequences were retrieved from the nucleotide and protein databases at the

NCBI (National Center for Biotechnology Information).

Prediction of genes and proteins involved in the sRNA pathway in C.

canephora

Putative proteins involved in the sRNA pathways were identified and selected by mining C.

canephora sequences in the Coffee Genome Hub, an integrated web-based database, using the

Basic Local Alignment Search Tool (BLAST) algorithm BLASTp with protein sequences from

Arabidopsis as queries to search previously annotated protein-coding genes. The resulting pro-

tein sequences were retrieved for further analysis.

Prediction of mature miRNAs and their precursors (pre-miRNAs)

To search for putative conserved miRNAs and their precursors, we applied an adapted algo-

rithm previously described by de Souza Gomes et al. (2011) to the genome and transcriptome

databases of C. canephora [40]. First, the genome and transcriptome sequences of C. canephora
were searched using BLASTN to identify putative hairpin-like structures. The retrieved

sequences were E-inverted (EMBOSS tool) using the maximum repeat parameters of 336

nucleotides and a threshold value of 25. Then, several filters were applied based on the thermo-

dynamics and structural characteristics of known miRNAs. These filters included a GC con-

tent (guanine and cytosine) between 20% and 65%, Minimum Free Energy (MFE), homology

with known mature miRNAs, homology to repetitive regions in RepeatMasker 4.0.2 [41], and

homology to non-coding RNAs, such as rRNA, snRNA, SL RNA, SRP, tRNA, and RNase P,

deposited in the Rfam microRNA Registry version 11.0 [42].

The sequences of pre-miRNAs identified in C. canephora were characterized according to

their structures and thermodynamic parameters. The assessed parameters included the MFE,

Adjusted Minimum Free Energy (AMFE), Minimum Free Energy Index (MFEI), size, A con-

tent, U content, C content, G content, GC and AU contents, GC ratio, AU ratio, Minimum

Free Energy of the thermodynamic ensemble (MFEE), Ensemble Diversity (Diversity), and fre-

quency of the MFE structure in the ensemble (Frequency). The adjusted MFE (AMFE) was

determined to be a sequence of 100 nt, and the MFEI was determined using the equation

MFEI = [(AMFE) X 100]/(G% + C%)] [43, 44]. The secondary structures of pre-miRNA,

diversity, MFE, frequency ensemble, and MFE were predicted using RNA-fold software

(http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi). The GC content and other structural proper-

ties were defined using Perl scripts.

Analyses of the sRNA pathway proteins and miRNA precursors

The protein families, domains, and active sites were analyzed using PFAM (version 27.0, avail-

able at http://pfam.sanger.ac.uk) and the Conserved Domains Database (CDD; http://www.

ncbi.nlm.nih.gov/cdd/). The protein sequences from C. canephora and their orthologs from

different species were used to perform multiple sequence alignments using ClustalX 2.0 based

on the default settings (available at http://www.clustal.org/clustal2/; [45]). The homologs and

the C. canephora pre-miRNAs were aligned using ClustalX 2.0 based on the following align-

ment parameters: a gap opening of 22.50 and a gap extension of 0.83. They were also aligned

in RNAalifold (http://rna.tbi.univie.ac.at/cgi-bin/RNAalifold.cgi). Phylogenetic trees were

inferred using the neighbor-joining method, and sequence divergence was estimated using the

Jones–Taylor–Thornton model for proteins [46] and Kimura’s (1980) two-parameter model

for pre-miRNAs [47]. Statistical reliabilities of the internal branches were assessed using 2000

bootstrap replicates for proteins and 5000 bootstrap replicates for pre-miRNAs with values

RNA-guided silencing pathway in coffee
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greater than 30 above the branches. Molecular phylogenetic analyses were conducted using

MEGA 5 software [48]. The catalytic domains of ARGONAUTE and DICER-like proteins

were aligned using Clustal Omega. Pictures highlighting the catalytic residues were generated

from the alignment. Multiple Em for Motif Elicitation (MEME) (Version 4.11.2) [49] was then

used to find RDR-like catalytic motifs.

RNA-seq analysis

RNA-seq libraries were downloaded from the SRA (https://www.ncbi.nlm.nih.gov/sra/?term=

ERP003741) for the three leaf stages (young, expanded, and old) and stems of the C. canephora
samples.

For CcDCL1 prediction, the RNA-seq libraries were assembled using Trinity [50]. BLASTN

was run against the assembled data using AtDCL1 as a query. The six retrieved sequences were

re-assembled using CAP3 [51], and two novel contigs were formed. The protein sequence of

the largest contig was predicted using GenScan (http://genes.mit.edu/GENSCAN.html).

For expression validation, the transcriptome in different tissues was assembled using the

alignment of the RNA-seq reads against the C. canephora genome with the software TopHat2.

The subsequent identification of new genes and alternative splicing analysis were completed

with the Cufflinks package. After alignment, possible coding sequences were extracted and

identified with the Trans Decoder algorithm and subjected to homology analysis with BLAST.

After selecting the proteins involved in the sRNA pathways, differential expression analysis

was conducted with the CuffDiff software. The results were visualized and plotted using several

packages of the statistical environment R, including the cummeRbund package.

Prediction of C. canephora miRNA target genes

To search for putative target genes of the predicted miRNAs in C. canephora, transcript (CDS

+UTR) sequences were retrieved from the Coffee Genome Hub (http://coffee-genome.org/

download) and from RNA-seq libraries (transcript-predicted) of two tissue types: leaves and

stem. C. canephora miRNA target genes were predicted using the webtool psRNATarget [52].

To avoid false-positive predictions for the miRNA target genes, we used a stringent cutoff

threshold for a maximum expectation of 2.0. The other parameters were based on default set-

tings, which included a length for complementarity scoring (hspsize) of 20 bp, top number of

target genes for each small RNA of 200, target accessibility, maximum energy to unpair the tar-

get site (UPE) of 25, flanking length around the target site for target accessibility analysis of 17

bp upstream/13 bp downstream, and a range of the central mismatch leading to translational

inhibition of 9–11 nt.

Using the RNA-seq sequences, BLAST2GO was run with the resulting predicted targets for

each of the miRNAs MIR156, MIR172, and MIR390. BLAST2GO began with a BLASTP search

against SwissProt, followed by mapping and annotation.

GO classes of the miRNA targets were classified and grouped using the web tool SEA (Sin-

gular Enrichment Analysis) from agriGO (http://bioinfo.cau.edu.cn/agriGO/index.php) [53].

The input was the target genomic IDs, which were compared against all of the IDs of the Cof-

fee Genome Hub.

Results

sRNAs pathways proteins prediction and validation

The proteins involved in the miRNA pathways were identified by BLASTP in the Coffee

Genome using Arabidopsis orthologs as queries. The components of the miRNA pathway,

RNA-guided silencing pathway in coffee
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HYL1, SE, DDL and TGH [7, 9–11], were identified, and one copy of each of these proteins

was identified in the C. canephora genome (Table 1). Two core proteins of the sRNA pathways,

HEN1 and HST, were also identified. One putative CcHEN1 and one CcHST protein were

identified (Table 1). In addition, we also identified at least 48 proteins in the C. canephora
genome associated with the sRNA pathways described in the literature (S1 Table).

The core proteins of the sRNA pathways- DCL-like, AGO-like, and RDR-like—were identi-

fied and characterized as described below. The C. canephora protein name, locus position,

length, and identity with their respective orthologs from Arabidopsis are presented in Table 2.

The number of DCLs may vary among species. For instance, there are five DCLs in poplar,

maize (Zea mays), and sorghum (S. bicolor) [34, 54]; seven in tomato (Solanum lycopersicum)

[55]; eight in rice (O. sativa) [56]; and six in common bean (P. vulgaris) [33].

The annotated protein-coding sequences identified from the BLASTP of the DCL-like

search in the Coffee Genome Hub were retrieved, and conserved domain analysis revealed

that nine of these sequences contained DCL-like conserved domains (Table 3). Two of the

sequences (Cc02_14900 and Cc02_14910) that are sequential in chromosome 2 presented

complementary domains of a DCL protein. Then, the genomic region comprising both contigs

was retrieved, and the resulting protein was predicted using GenScan (http://genes.mit.edu/

GENSCAN.html) and used for further analyses.

Multiple alignments with ortholog DCLs from other angiosperm species and phylogenetic

analyses were performed to assign the coffee DCLs and to determine the evolutionary relation-

ship among species. One DCL3, one DCL4, and six DCL2s were assigned. No DCL1 was

found using this approach, then we identified one putative CcDCL1 from RNA-seq libraries.

Conserved domain analysis (Table 3) of the resulting sequence confirmed a DCL protein, and

BLASTP at the NCBI database matched DCL1 proteins with 99% coverage and an E-value of

0. The sequence was then searched by tBLASTN in the Coffee Genome Hub and aligned with

a genomic sequence in chromosome 0, an arbitrary pseudochromosome created with all of the

unmapped sequences from the 11 chromosomes [39] (S1 Fig). Therefore, although present in

the genome assembly, the CcDCL1 was not previously annotated as a protein-coding gene on

the Coffee Genome Hub.

The new phylogenetic analysis, including the putative CcDCL1, generated a tree in which

the CcDCL clustered similarly to their respective orthologs from other species (Fig 1). In total,

nine DCL-like proteins were found in the C. canephora genome (Table 2) and were distributed

in four distinct clades in the phylogenetic tree (Fig 1); the clades matched the four paralogous

DCL-like proteins described in Arabidopsis [57].

The DCL proteins have six domains types, DExD-helicase (DExDc), Helicase-C (HELICc),

Duf283, PAZ, RNAse III (RIBOc), and double-stranded RNA-binding (dsRB), although some

Table 1. HYL1, SE, DDL, TGH, HEN1, and HST orthologs of C. canephora.

Protein Name ID Arabidopsis Size (aa) C. canephora

Locus name

Locus Position Size (aa)

DDL NP_188691.1 314 Cc05_g13470 chr5:27034635..27039361 402

TGH NP_001031926.1 900 Cc04_g07720 chr4:6122482..6132431 852

HYL1 NP_563850.1 419 Cc10_g15960 chr10:26908423..26911736 321

HEN1 NP_001190782.1 942 Cc09_g07800 chr9:10021237..10030396 951

SE NP_565635.1 720 Cc01_g07580 chr1:25540845..25550602 761

HST NP_187155.2 1202 Cc02_g32190 chr2:43066609..43081800 1199

Protein name, ID, and size in Arabidopsis, C. canephora locus name, position, and protein size

https://doi.org/10.1371/journal.pone.0176333.t001
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of these may not be present [58]. Conserved domain analysis (Table 3) revealed that the

CcDCL1-like and CcDCL4-like proteins contain DExD, Helicase-C, Dicer-dimer, PAZ, two

RNAse III (RIBOc), and two dsRB (DSRM) domains. The CcDCL3-like, CcDCL2.1-like, and

DCL4-like proteins contain no DSRM domains. The CcDCL2 proteins have five more para-

logs, which appear to be partial sequences lacking the N-terminal domains (DExD, Helicase-

C, and DUF283). These sequences also lack one (CcDCL2.3, CcDCL2.4, and CcDCL 2.6) or

two (CcDCL2.5) DSRM domains. The shortest CcDCL2-like protein, CcDCL2.3, also lacks a

PAZ domain.

We also analyzed the conservation of the RNase III catalytic sites of CcDCL-like proteins in

the two RNase III domains (RIBOc I and II): glutamate (E), aspartate (D), glutamate (D),

aspartate (E) (EDDE) [59]. CcDCL1, CcDCL2.1, CcDCL3, and CcDCL4 contain these con-

served catalytic residues (Fig 2).

Table 2. The Coffea canephora DCL-like, AGO-like and RDR-like protein orthologs.

Protein

Name

ID Arabidopsis Protein length

(aa)

BLASTP

(e-value)

vs

A. thaliana

Identity C.

Canephora

ortholog

Locus Location coordinates Protein length

(aa)

AGO1 NP_171612.1 1060 0.0 84% CcAGO1 Cc04_g08880 chr4:7327522..7334534 1070

AGO2 NP_174413.2 1014 0.0 48% CcAGO2.2 Cc09_g06780 chr9:7781473..7787026 1103

NP_174413.2 1014 0.0 46% CcAGO2.1 Cc09_g06770 chr9:7773251..7777143 1072

AGO4 NP_001189613.1 924 4e-81 43% CcAGO4.1 Cc04 g10830

Cc04 g10840

chr4:10274296..10280759

AGO4 NP_001189613.1 924 0.0 74% CcAGO4.2 Cc01_g06780 chr1:24122477..24129690 869

AGO4 NP_001189613.1 924 0.0 69% CcAGO4.3 Cc00_g14230 chr0:103099681..103105365 867

AGO5 CcAGO5 Cc01_g10060 chr1:28754803..28760661 960

AGO7 NP_177103.1 0.0 69% CcAGO7 Cc11_g12560 chr11:29570089..29573706 1014

AGO10 NP_001190464.1 988 0.0 81% CcAGO10.1 Cc03_g04370 chr3:3329168..3336865 992

NP_001190464.1 988 0.0 73% CcAGO10.2 Cc06_g09120 chr6:7288302..7294655 932

AGO16 CcAGO16 Cc05_g02730 chr5:12039961..12045923 909

DCL1 NP_171612.1 1909 0.0 76% CcDCL1 - chr0:59461839..59481838 1747

DCL2 NP_566199.4 1388 0.0 55% CcDCL2.1 Cc09_g03980 chr9:3364371..3376041 1352

NP_566199.4 1388 0.0 47% CcDCL2.2 Cc02_g14900

Cc02_g14910

chr2:13049228..13060040 778

NP_566199.4 1388 3e-112 51% CcDCL2.5 Cc06_g19770 chr6:21807446..21809500 354

NP_566199.4 1388 0.0 48% CcDCL2.6 Cc06_g19980 chr6:22425311..22432933 762

NP_566199.4 1388 0.0 50% CcDCL2.4 Cc02_g14930 chr2:13070716..13077527 802

NP_566199.4 1388 0.0 48% CcDCL2.3 Cc02_g14920 chr2:13060040..13066011 727

DCL3 NP_001154662.2 1580 0.0 48% CcDCL3 Cc08_g06780 chr8:17408330..17423075 1584

DCL4 NP_001190348.1 1688 0.0 51% CcDCL4 Cc06_g07320 chr6:5843020..5862408 1656

RDR1 NP_172932.1 1107 0.0 63% CcRDR1.1 Cc11_g06970 chr11:23552744..23560803 1114

NP_172932.1 1107 0.0 64% CcRDR1.2 Cc11_g06940 chr11:23487397..23495045 1113

NP_172932.1 1107 0.0 60% CcRDR1.3 Cc11_g06960 chr11:23538795..23545065 1132

NP_172932.1 1107 0.0 56% CcRDR1.4 Cc11_g06950 chr11:23504270..23516759 1188

RDR2 NP_192851.1 1133 0.0 57% CcRDR2 Cc00_g08850 chr0:76051887..76058404 1121

RDR3 NP_179581.2 992 0.0 43% CcRDR3.1 Cc06_g10360 chr6:8381378..8392034 1020

NP_179581.2 992 0.0 47% CcRDR3.2 Cc06_g10350 chr6:8366687..8376181 876

RDR6 NP_190519.1 1196 0.0 67% CcRDR6 Cc08_g00760 chr8:779886..784083 1050

Protein name, ID, and length in Arabidopsis, BLASTp e-value and Identity of C. canephora vs. Arabidopsis. C. canephora ortholog name, locus name, locus

position, and protein length.

https://doi.org/10.1371/journal.pone.0176333.t002
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ARGONAUTES have been observed in variable numbers in plants. For instance, there are

10 AGOs in Arabidopsis [60], 22 in soybean (G. max) [34], 17 in common bean (P. vulgaris)
[33], 19 in rice (O. sativa) [32], and 17 in maize (Z. mays) [54]. A BLASTP search using

AtAGO as a query in the Coffee Genome Hub resulted in 12 C. canephora protein-coding

sequences, which were retrieved and subjected to Conserved Domain analysis to confirm the

presence of the conserved domains of ARGONAUTE proteins (N-terminal, PAZ, ArgoMid,

and PIWI). Two of the sequences (Cc04_g10830 and Cc04_g10840) that were found sequen-

tially in Chromosome 4 presented as partial sequences, one containing a PIWI domain

(Cc04_g10830) and the other containing a PAZ (Cc04_g10840) domain. The genomic

sequence comprising both contigs was retrieved, and the protein product was predicted using

GenScan (http://genes.mit.edu/GENSCAN.html). BLASTP and Conserved Domain analysis

confirmed an AGO protein that was considered for further analyses. Therefore, in total, eleven

putative AGO proteins comprising seven homologs were found in C. canephora (Table 2).

Conserved domain analysis confirmed the presence of the N-terminal, PAZ, and PIWI

domains in all sequences but showed an only variable presence of ArgoMid (Table 4). AGO1

proteins have an additional glycine-rich region at the N-terminus (Gly-rich_Ago1), which was

present in one putative AGO sequence. To further determine the evolutionary conservation

and assign the AGO-like proteins found in C. canephora, we compared the sequences to ortho-

logs from other angiosperm species on a phylogenetic tree. The eleven AGO proteins were

assigned and found to cluster with their closest orthologs from other species; the C. canephora
AGO proteins also similarly grouped into three major phylogenetic clades [17, 61]: one AGO1,

one AGO5, and two AGO10s in Clade I; two AGO2s and one AGO7 in Clade II; and three

AGO4s in Clade III (Fig 3). One AGO16 was also identified, which grouped with the AGO4s

in Clade III. A similar pattern has been found in rice, maize, Arabidopsis, soybean, sorghum,

and other species, indicating the conservation of small RNA functions in higher plants [34].

To investigate whether CcAGOs possess conserved catalytic residues and could potentially

act as the slicer component of RISC, we aligned the PIWI domains of all of the CcAGOs and

searched for the Asp-Asp-His (DDH) catalytic triad in CcAGOs and for a residue correspond-

ing to the conserved H798 residue of AtAGO1 [62]. Four proteins (CcAGO1, CcAGO5,

CcAGO7, and CcAGO10.1) possessed the conserved DDH/H798 residues (Table 5). In four

CcAGOs, the DDH catalytic motif was conserved, but the H798 was replaced by a serine

(CcAGO16), proline (CcAGO4.2 and CcAGO4.3), or glutamine (CcAGO10.2). Two CcAGO

proteins contained an aspartate residue in place of the third histidine of the DDH motif

(CcAGO2.1 and Cc AGO2.2). CcAGO4.1 contained neither the catalytic DDH nor the H798

residue. The detailed alignment of the PIWI domain is presented in S2 Fig.

Table 3. Conserved domain analysis of the C. canephora DCL-like orthologs.

Locus Name Protein Name DExD Helicase-C DUF283 PAZ RIBOC RIBOC DSRM DSRM

- CcDCL1 114–266 503–619 693–784 1029–1164 1201–1387 1423–1579 1582–1643 1674–1742

Cc09_g03980 CcDCL2.1 2–137 318–436 507–592 760–887 935–1087 1119–1272 - -

Cc02_g14900

Cc02_g14910

CcDCL2.2 - - - 162–290 338–478 519–705 709–765 -

Cc06_g19770 CcDCL2.5 - - - - 48–85 126–280 284–340

Cc06_g19980 CcDCL2.6 - - - 174–291 339–490 524–679 685–738 -

Cc02_g14930 CcDCL2.4 - - - 177–305 353–497 538–692 - -

Cc02_g14920 CcDCL2.3 - - - 153–273 321–465 506–660 664–723 -

Cc08_g06780 CcDCL3 53–215 406–524 603–690 889–1037 1079–1243 1289–1439 - -

Cc06_g07320 CcDCL4 81–232 412–534 606–683 873–993 1041–1204 1242–1386 1395–1459 1572–1645

https://doi.org/10.1371/journal.pone.0176333.t003
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In C. canephora, eight putative RDR proteins were found after BLASTP on the Coffee

Genome Hub. Conserved domain analysis confirmed the presence of the RNA-dependent

RNA polymerase (RdRP) domain, and Multiple Em for Motif Elicitation (MEME) (Version

4.11.2) [49] analysis revealed that six coffee RDR proteins possess a DLDGD motif and two

possess a DFDGD motif (Fig 4). Multiple alignments with orthologs sequences and phyloge-

netic tree analysis were also performed to assign the coffee RDR proteins and to determine the

Fig 1. Phylogenetic tree of DCL-like proteins identified in Coffea canephora. Phylogenetic tree showing relationships between the paralogous and

orthologs proteins of the DCL family. The evolutionary history was inferred using the Neighbor-Joining method [46]. The bootstrap consensus tree inferred

from 2000 replicates is taken to represent the evolutionary history of the taxa analyzed. Branches corresponding to partitions reproduced in less than 50%

bootstrap replicates are collapsed. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (2000 replicates)

are shown next to the branches. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the

phylogenetic tree. The evolutionary distances were computed using the JTT matrix-based method and are in the units of the number of amino acid

substitutions per site [48]. The analysis involved 33 amino acid sequences. All positions containing gaps and missing data were eliminated. There were a

total of 286 positions in the final dataset.

https://doi.org/10.1371/journal.pone.0176333.g001
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Fig 2. Analysis of the catalytic residues of the CcDCL-like proteins. The two RNase III domains (RIBOc I and II) at the glutamate (E), aspartate (D),

glutamate (D), aspartate (E) (EDDE) position. The catalytic sites are highlighted.

https://doi.org/10.1371/journal.pone.0176333.g002

Table 4. Identification of the conserved domains and their start and end positions in the C. canephora AGO orthologs.

Locus Name Protein Name Gly-rich_Ago1 ArgoN PAZ ArgoMid Piwi

Cc04 g08880 CcAGO1 76–186 205–341 407–532 600–674 694–1013

Cc09 g06780 CcAGO2.2 - 253–393 458–581 - 758–1052

Cc09 g06770 CcAGO2.1 - 218–362 426–551 - 728–1022

Cc04 g10830/Cc04 g10840 CcAGO4.1 - 62–184 264–355 - 355–465

Cc01 g06780 CcAGO4.2 - 3–172 238–368 432–495 522–828

Cc00 g14230 CcAGO4.3 - 4–172 238–366 - 520–827

Cc01 g10060 CcAGO5 - 117–257 322–441 508–583 601–919

Cc11 g12560 CcAGO7 - 151–308 380–502 - 666–972

Cc03 g04370 CcAGO10.1 - 136–279 350–471 538–615 630–949

Cc06 g09120 CcAGO10.2 - 88–227 305–419 486–563 578–896

Cc05 g02730 CcAGO16 - 38–202 269–399 - 553–868

https://doi.org/10.1371/journal.pone.0176333.t004
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evolutionary relationship with the other angiosperm species. Four RDRs corresponded to

RDR1, one to RDR2, one to RDR6, and two to RDR3 (Fig 5). The name, locus position, length,

and identity of the CcRDR proteins with their respective orthologs from Arabidopsis are pre-

sented in Table 2.

In Arabidopsis, the six RDR proteins are divided into four families: RDR1, RDR2, RDR3

(RDR3a and RDR3b), and RDR6 [63]. RDR1, RDR2, and RDR6 function in the formation of

dsRNA from ssRNA sequences, which are processed into several types of siRNAs targeting

specific endogenous loci [64]. Among the six Arabidopsis RDR genes, AtRDR1, AtRDR2, and

AtRDR6 are involved in processes such as viral resistance, chromatin silencing, and Post-

Translational Gene Silencing (PTGS) [65]. The function of the RDR3 genes remains unknown,

but the presence of at least one copy of the RDR3 gene in several plant genomes and other

organisms suggests that these proteins may have functional significance [66].

In the phylogenetic tree, two main clades are observed, one consisting of RDR1, RDR2, and

RDR6 and the other consisting of RDR3. This observation is consistent with the division of the

two clades predicted based on their catalytic motifs (Fig 5). Although we found two RDR3

genes in C. canephora, similarly to tomato (SlRDR3a and SlRDR3b), the two CcRDR3 genes

grouped with SlRDR3a (Fig 5).

To confirm the expression of the main RNA-silencing components, we searched the RNA-

seq data of Coffea canephora publicly available in the Sequence Read Archive (SRA) of the

NCBI (https://www.ncbi.nlm.nih.gov/sra/?term=ERP003741). Sequencing data of leaves col-

lected at different development stages (young, expanded, and old) and stem tissues were ana-

lyzed to determine the expression profile of the sRNA silencing components identified in

coffee, including CcAGO, CcDCL,CcRDR, CcHYL1, CcSE, CcDDL, CcTG, CcHEN1, and

Fig 3. Phylogenetic tree of AGO proteins identified in Coffea canephora. Phylogenetic tree showing relationships between the paralogous and

orthologs proteins of the AGO family. The evolutionary history was inferred using the Neighbor-Joining method [46]. The bootstrap consensus tree inferred

from 2000 replicates is taken to represent the evolutionary history of the taxa analyzed. Branches corresponding to partitions reproduced in less than 50%

bootstrap replicates are collapsed. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (2000 replicates)

are shown next to the branches. The evolutionary distances were computed using the JTT matrix-based method and are in the units of the number of amino

acid substitutions per site [48]. The analysis involved 55 amino acid sequences. All positions containing gaps and missing data were eliminated. There were

a total of 333 positions in the final dataset.

https://doi.org/10.1371/journal.pone.0176333.g003

Table 5. Analysis of active site amino acids and their respective position in the conserved PIWI

domain (PF02171) from the CcAGO proteins.

CcAGO Motifs* POSITION

CcAGO1 DDH/H 777-863-1003/815

CcAGO2.1 DDD/H 807-880-1014/845

CcAGO2.2 DDD/H 837-910-1045/875

CcAGO4.1 ENR/R 384-445-489/422

CcAGO4.2 DDH/P 603-686-818/641

CcAGO4.3 DDH/P 601-684-816/639

CcAGO5 DDH/H 683-769-909/721

CcAGO7 DDH/H 750-823-963/788

CcAGO10.1 DDH/H 713-799-939/751

CcAGO10.2 DDH/Q 661-747-887/699

CcAGO16 DDH/S 634-725-857/672

*Motifs show the residues in C. canephora AGO proteins that correspond to D760, D845, H986/H798 of

AtAGO1

https://doi.org/10.1371/journal.pone.0176333.t005
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CcHST. The heatmap showed expression in all the tested tissues (Fig 6). However, Cufflinks

analysis assigned three loci annotated as DCL2 in the coffee genome (Cc02_g14900,

Cc02_g14910, and Cc02_g14920 –herein referred to as DCL2.2 and DCL2.3) as isoforms of

the same genetic locus; therefore, these were not included in the heatmap (S3 Fig). Further-

more, CcAGO4.1 was not expressed in any of the tissues.

miRNAs and miRNA target prediction

Homology-based miRNA search was conducted by comparing plant miRNAs deposited in the

miRBase database version 21 against the coffee genome. After applying filters to retrieve

miRNA precursors, a total of 235 precursors and 317 mature miRNAs were identified and

characterized, belonging to 113 MIR families (S2 Table). The mature miRNAs were found in

both the 3’ and 5’ arms of the precursor, with sizes ranging from 19 to 25 nt, most of which

were 21 nt (S2 Table). The preferred first 5’ nucleotide was Uracil (U). The location of the pre-

miRNAs in the genome was determined, including the chromosome, start and end point,

strand position, and genic/intergenic position (S2 Table). MIR genes were observed in all

chromosomes, and chromosome 2 contained the highest number of MIR genes (36 genes). A

total of 38 precursors were found either in antiparallel clusters or clustered with a maximum

distance of 10 kb between the two miRNAs, but most were widespread throughout the chro-

mosomes. A total of 193 precursors were identified in the intergenic regions, and the other 43

precursors were found within genes (S2 Table).

The precursor sizes varied from 68 to 338 nt, and the AU (Adenine+Uracil) content ranged

from 41% to 69% (S3 Table). The thermodynamic aspects of the precursors—Minimal Free

Energy (MFE), adjusted MFE (AMFE), MFE index (MFEI), Minimal Free Energy of the ther-

modynamic ensemble (MFEE), Ensemble Diversity (Diversity) and frequency of the MFE

structure in the ensemble (Frequency)—were measured (S3 Table). The MFE ranged from

-21.9 to -97.5 kcal mol-1, with a mean of -56.4 kcal mol-1; the AMFE ranged from -21.4 to -59.6

kcal mol-1, with a mean of -36.46 kcal mol-1; and the MFEI varied from 0.7 to 1.7, with a mean

of 0.88.

Fig 4. Analysis of the DxDGD catalytic motif of the RNA-dependent RNA polymerase (RdRP) conserved domain. Six coffee RDR possess a DLDGD

motif (CcRDR1.1–1.4, CcRDR2 and CcRDR6) and two have the DFDGD motif (CcRDR3.1 and CcRDR3.2), corresponding to the RDRα clade and the

RDRγ clade, respectively (Blue box). Additionally, the RDRα displays a conserved subsequences (C/A)SG(S/G) before the DLDGD motif and, all CcRDR1

and the CcRDR2 showed the CSGS sequence, while CcRDR6 showed the ASGS sequence (red box).

https://doi.org/10.1371/journal.pone.0176333.g004

RNA-guided silencing pathway in coffee

PLOS ONE | https://doi.org/10.1371/journal.pone.0176333 April 27, 2017 13 / 29

https://doi.org/10.1371/journal.pone.0176333.g004
https://doi.org/10.1371/journal.pone.0176333


We chose some of the highly conserved MIR families–MIR156, MIR172, and MIR390 –for

further characterization. We analyzed the conservation of their sequences and structure as well

as their phylogenetic distributions. For each of these MIR families, multiple sequence align-

ment and secondary structure prediction were performed to verify the primary and secondary

conservation relative to other plant species orthologs (Figs 7–9). These MIR families presented

high conservation between their primary and secondary structures and their orthologs (Figs

Fig 5. Phylogenetic tree of RDR proteins identified in C. canephora. Phylogenetic tree showing relationships between the paralogous and orthologs

proteins of the RDR family. The evolutionary history was inferred using the Neighbor-Joining method [46]. The bootstrap consensus tree inferred from 2000

replicates is taken to represent the evolutionary history of the taxa analyzed. Branches corresponding to partitions reproduced in less than 50% bootstrap

replicates are collapsed. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (2000 replicates) are shown

next to the branches. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic

tree. The evolutionary distances were computed using the JTT matrix-based method and are in the units of the number of amino acid substitutions per site

[48]. The analysis involved 33 amino acid sequences. All positions containing gaps and missing data were eliminated. There were a total of 312 positions in

the final dataset.

https://doi.org/10.1371/journal.pone.0176333.g005
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7–9). A phylogenetic tree was created to verify the evolutionary distribution of each MIR fam-

ily (Figs 7–9).

We also identified potential miRNA target genes using psRNATarget [67] based on the C.

canephora genome. In total, 2239 genes were identified as potential targets of the miRNAs,

many of which were targeted by more than one miRNA (S4 Table).

To classify and group the Gene Ontology (GO) classes of the miRNA targets, the web tool

SEA (Singular Enrichment Analysis) from agriGO (http://bioinfo.cau.edu.cn/agriGO/index.

php) was used [53]. A total of 1356 GO terms were annotated for the target genes in C.

Fig 6. Validation of the main proteins of genes involved in the coffee RNA-guided silencing pathways from RNAseq

libraries. Heatmap showing the expression pattern of the C. canephora RNA-silencing genes in three leaf developmental

stages—Young, Expandend (“exp” in the figure), and Old—and Stem. (Transcriptome available at https://www.ncbi.nlm.nih.

gov/sra/?term=ERP003741).

https://doi.org/10.1371/journal.pone.0176333.g006
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Fig 7. Alignment of pre-miRNA sequences (a), comparison of secondary structures (b) and phylogenetic tree (c) of

ccp-MIR156 miRNAs and their orthologues. ccp- Coffea canephora, ath–Arabidopsis thaliana, nta–Nicotiana tabacum,

mtr–Medicago truncatula, gma–Glycine max, mes–Manihot esculenta, ppe–Prunus persica, mdm–Malus domestica, vvi–Vitis
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canephora, and these were summarized in 57 main terms. The genes belonging to the 25 over-

represented terms among the three GO categories, namely the biological process (Fig 10A),

molecular function (Fig 10B), and cellular component (Fig 10C) categories, are presented.

We further identified the putative targets of ccp-MIR156, ccp-MIR172, and ccp-MIR390 in

the RNA-seq libraries of stem and leaf tissues. The complete list of the targets assigned to these

miRNAs is presented in S5 Table.

Discussion

Duplication events and domain and catalytic site configurations reveal

insights into the sRNA pathway core members in C. canephora

Duplication of DCL2 has been observed in several species [56, 68, 69]. The largest of the six

CcDCL2 members, CcDCL2.1, is located on chromosome 9 and is missing its DsRB (DSRM)

domain. DCL2 usually contains only one DsRB (DSRM) domain, but in the four tomato

DCL2s, only one member (SlDCL2d) possesses a DsRB (DSRM) domain [55]. The shortest

CcDCL2 identified, CcDCL2.5 (354 aa), is located on chromosome 6, along with CcDCL2.6

(762 aa). Both of these proteins are truncated. Similar findings were observed for CcDCL2.2,

CcDCL2.3, and CcDCL2.4, which are located sequentially on chromosome 2 and are also

incomplete according to the current version of the genome annotation.

Expression analyses demonstrated that at least four DCL2-like genes are active in coffee

(Fig 6 and S3 Fig), including the only complete sequence, CcDCL2.1. The other two DCL2

genes that are expressed are DCL2.4 (Cc02_g14930) and DCL2.6 (Cc06_g19980) (Fig 6). In

addition to that, a total of seven isoforms were assigned to the same locus (Cc02_g14900) (S3

Fig). This might indicate misannotation of the three DCL2 assigned to the sequential loci at

Chromosome 2 (Cc02_g14900, Cc02_g14910 and Cc02_g14920), which are probably exons of

a unique gene. Finally, DCL2.5 (Cc06_g19770), which is the most incomplete DCL2 annotated

in the genome, is not expressed in either tissue and could not be confirmed. Although it

remains unclear how many DCL-like proteins are present and where on the genome their

complete sequence can be found, an expansion of the DCL-like proteins appears to have

occurred in C. canephora through the duplication of the DCL2-like family.

DCL-like proteins might contain the characteristic catalytic residues of RNase III domain-

containing proteins [59]. The RNase III domains bind dsRNA and are responsible for cleavage

and processing; therefore, they are essential to sRNA generation [58]. Only the incomplete

CcDCL2 (CcDCL2.2-CcDCL2.6) proteins did not present the conserved residues (EDDE—

Glu-Asp-Asp- Glu) in one or both RNAse III domains, reinforcing the need for further investi-

gation into these short CcDCL2-like proteins.

The presence of CcAGO10, CcAGO2, and CcAGO4 paralogs indicates the occurrence of

duplication events in the C. canephora genome. Gene duplication is one possible reason for the

expansion of AGO proteins. The expansion of the AGO family in flowering plants suggests

functional diversification of the AGO proteins [61].

vinifera, tcc—Theobroma cacao, ptc–Populus trichocarpa, aly–Arabidopsis lyrata, sly–Solanum lycopersicum. The

evolutionary history was inferred using the Neighbor-Joining method[46]. The bootstrap consensus tree inferred from 5000

replicates is taken to represent the evolutionary history of the taxa analyzed. Branches corresponding to partitions reproduced

in less than 50% bootstrap replicates are collapsed. The percentage of replicate trees in which the associated taxa clustered

together in the bootstrap test (5000 replicates) are shown next to the branches. The tree is drawn to scale, with branch lengths

in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were

computed using the Kimura 2-parameter method [3] and are in the units of the number of base substitutions per site[47]. The

analysis involved 23 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total

of 68 positions in the final dataset.

https://doi.org/10.1371/journal.pone.0176333.g007

RNA-guided silencing pathway in coffee

PLOS ONE | https://doi.org/10.1371/journal.pone.0176333 April 27, 2017 17 / 29

https://doi.org/10.1371/journal.pone.0176333.g007
https://doi.org/10.1371/journal.pone.0176333


RNA-guided silencing pathway in coffee

PLOS ONE | https://doi.org/10.1371/journal.pone.0176333 April 27, 2017 18 / 29

https://doi.org/10.1371/journal.pone.0176333


PIWI domains contain the three conserved metal-chelating residue motif aspartate, aspar-

tate, histidine (DDH). The DDH motif functions as a catalytic triad. A conserved histidine

found at position 798 of AtAGO1 is also important for the catalytic function of the AGO pro-

teins [62]. The four CcAGO proteins that possess the DDH/H motif (CcAGO1, CcAGO5,

CcAGO7, and CcAGO10.1) potentially act as the slicer of RISC (Table 5). CcAGO2.1 and

CcAGO2.2 showed a third aspartate residue instead of histidine, which was also observed in

SlAGO2 [55], AtAGO2 and AtAGO3 [56]; GmAGO3a and SbAGO2 [34]; and OsAGO2 and

OsAGO3 [56]. The absence of catalytic amino acids could prevent the processing of target

RNA by cleavage; therefore, accessory factors for mediating mRNA turnover could be required

[56]. However, the presence of a third aspartate in the triad restores the catalytic activity to

function as slicer components of the silencing effector complexes in Arabidopsis and rice

AGO2 and AGO3 [56].

In another four CcAGOs (CcAGO4.2, CcAGO4.3, CcAGO10.2, and CcAGO16), the con-

served H798 residue has been replaced (Table 5). Previous studies showed variability in the

H798 residue in monocots [54, 56], while in tomato (S. lycopersicum), the H798 sites in the

AGO4 group (SlAGO4a, b, c, d and SlAGO6) were replaced by proline [55]. In C. canephora,

which is closely related to Solanaceae, the H798 residue was also replaced in the AGO4 mem-

bers, but in CcAGO10.2 and CcAGO16, the H798 residue was replaced by glutamine and ser-

ine, respectively.

CcAGO4.1 presented neither of the residues required for catalytic activity, which could rep-

resent either functionalization or loss of function. CcAGO4.1 expression was not found in the

RNA-seq libraries, corroborating the hypothesis that this protein is not active due to a lack of

effective catalytic residues. However, AGO4 proteins can function either dependent on or

independent of their catalytic activity [70]. The expression of CcAGO4.2 and CcAGO4.3 indi-

cates that Transcriptional Gene Silencing (TGS) guided by RNA is upregulated in coffee

because AGO4 has been implicated in RNA-Directed DNA Methylation (RdDM) [71].

In the RDR-like proteins, the RdRP domain contains a DxDGD catalytic motif [72]. RDR1,

RDR2, and RDR6 (RDRα clade) share a DLDGD catalytic motif, whereas RDR3 (RDRγ clade)

possesses a DFDGD motif [63, 72]. The putative catalytic domains of the CcRDRs presented

with the respective expected motifs of the α (CcRDR1.1–1.4, CcRDR2, and CcRDR6) and γ
(CcRDR3.1 and CcRDR3.2) clades (Fig 4). Additionally, the RDRα clade displays a conserved

subsequence (C/A)SG(S/G) upstream of the DLDGD motif [72], and all CcRDR1s and

CcRDR2 present the CSGS sequence, whereas CcRDR6 possessed an ASGS sequence.

Interestingly, four RDR1 genes were found in C. canephora, all of which were located

sequentially on chromosome 11 (Table 2). RDR1 is involved in plant defenses against biotic

and abiotic components [17, 73]. Most enriched GO terms in C. canephora belong to the

defense response class [39]. It was also observed that the C. canephora genome includes several

species-specific gene family expansions, including the defense-related genes [39]; this could

also be the case for the RDR1 genes.

Fig 8. Alignment of pre-miRNA sequences (a), comparison of secondary structures (b) and phylogenetic tree (c) of ccp-

MIR172 miRNAs and their orthologues. ccp- Coffea canephora, ath–Arabidopsis thaliana, cme—Cucumis melo, gma–Glycine

max, lus—Linum usitatissimum, mtr–Medicago truncatula, vvi–Vitis vinifera, bra–Brassica rapa, stu–Solanum tuberosum, nta–

Nicotiana tabacum, aly–Arabidopsis lyrata, mdm–Malus domestica. The evolutionary history was inferred using the Neighbor-

Joining method[46]. The bootstrap consensus tree inferred from 5000 replicates is taken to represent the evolutionary history of

the taxa analyzed. Branches corresponding to partitions reproduced in less than 50% bootstrap replicates are collapsed. The

percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (5000 replicates) are shown next

to the branches. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to

infer the phylogenetic tree. The evolutionary distances were computed using the Kimura 2-parameter method and are in the units

of the number of base substitutions per site[47]. The analysis involved 28 nucleotide sequences. All positions containing gaps and

missing data were eliminated. There were a total of 46 positions in the final dataset.

https://doi.org/10.1371/journal.pone.0176333.g008
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The C. canephora genome possesses several conserved and non-

conserved MIR loci that target major cellular processes

Using a robust pipeline, we were able to significantly enrich the number of predicted miRNAs

annotated in Coffea spp [35–39]. We identified 235 precursors and 317 mature sequences,

whereas previous analyses of the coffee genome identified only 92 precursors [39]. The precur-

sors belonged to 113 MIR families, representing a considerable increase relative to the 33 fami-

lies originally described in the coffee genome report [39]. Our stringent and robust pipeline

predicted sequences that were real miRNA precursors and identified more paralogous loci for

several families already described.

The major MIR family was MIR171, with a total of 15 pre-miRNAs. Many highly conserved

MIR families among plants were identified, including MIR171, MIR172, MIR156, MIR159,

MIR160, MIR164, MIR167, MIR169, MIR390, and several others [74]. In contrast, some of the

precursors identified belong to MIR families annotated for one species in miRBase v.21, such

as ptc-MIR6476a (Populus trichocarpa) and stu-MIR8001b (Solanum tuberosum) [75, 76].

Some of the most conserved families in plants, MIR156, MIR172, and MIR390 [43], have

been identified in several species [33, 43, 75–77] and play central roles in plant development

and stress responses. For instance, miR156 targets SQUAMOSA PROMOTER BINDING

PROTEIN-LIKE (SPL) transcription factor family members, and miR156-SPL networks define

an essential regulatory module that controls phase transitions, leaf trichome development,

male fertility, embryonic patterning, and anthocyanin biosynthesis [78–82]. In the C. cane-
phora genome, miR156 has 24 putative targets (S4 Table). Based on the transcriptomes of the

stem and leaf tissue samples, we found that miR156 potentially targets SPL-6 and SPL-12 in

both tissues (S5 Table). In total, 15 putative targets were identified in the stems and leaves,

some of which were identified either in both tissues or in only one (S5 Table).

The MIR172 family consists of five precursors and ten mature miRNAs (S2 Table). This

highly conserved family is found in several species and is related to the regulation of flowering

time and floral organ identity by targeting APETALA2-like transcription factors in Arabidop-

sis [83, 84]. miR172 acts downstream of miR156 to regulate phase transition [84], as an in-

crease in miR156 levels corresponds to lower expression of miR172 and vice versa in several

species [84–87]. In the C. canephora genome, 118 putative targets for miR172 were identified

(S4 Table). Based on the transcriptome data, a total of 66 putative targets were identified,

including AP2 in stem tissue (S5 Table).

miR390 is involved in the regulation of development and the response to several stresses

[88–91]. Among its targets, miR390 regulates the Auxin Response Factor (ARF) by mediating

non-protein coding Trans-Acting siRNA locus 3 (TAS3) generation in an AGO7-dependent

manner [92]. miR390 also targets Leucine-Rich Repeat Receptor-like kinases (LRK) and regu-

lates a LRK protein in Oryza sativa in response to cadmium stress [91]. In the C. canephora
genome, 11 putative targets were identified (S4 Table). Four putative targets were identified in

Fig 9. Alignment of pre-miRNA sequences (a), comparison of secondary structures (b) and phylogenetic tree

(c) of ccp-MIR390 miRNAs and their orthologues. ccp- Coffea canephora, aly–Arabidopsis lyrata, ath–Arabidopsis

thaliana, bna—Brassica napus, gma–Glycine max, ptc–Populus trichocarpa, sly–Solanum lycopersicum, mdm–Malus

domestica, tcc—Theobroma cacao, lus—Linum usitatissimum. The evolutionary history was inferred using the

Neighbor-Joining method[46]. The optimal tree with the sum of branch length = 1.87754489 is shown. The percentage

of replicate trees in which the associated taxa clustered together in the bootstrap test (5000 replicates) are shown next

to the branches. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances

used to infer the phylogenetic tree. The evolutionary distances were computed using the Kimura 2-parameter method

and are in the units of the number of base substitutions per site[47]. The analysis involved 22 nucleotide sequences. All

positions containing gaps and missing data were eliminated. There were a total of 65 positions in the final dataset.

https://doi.org/10.1371/journal.pone.0176333.g009
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Fig 10. SEA (Singular Enrichment Analysis) of the GO terms of the predicted targets of the ccp-miRNAs. (A)

Biological process, (B) molecular function and (C) cellular component.

https://doi.org/10.1371/journal.pone.0176333.g010
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the transcriptomes of stems and leaves (S5 Table), among which a LRK (RKF1) was identified

in both tissues (S5 Table).

The ccp-MIR156, ccp-MIR172, and ccp-MIR390 members were highly conserved in their

primary and secondary structures relative to their respective orthologs from other species and

relative to their distributions within the phylogenetic tree in a clade of Eudicotyledons, consis-

tent with plant phylogeny (Figs 7–9) [93].

The GO terms of the putative C. canephora miRNA targets were categorized and compared

with the GO terms of the whole genome as background (Fig 10). In total, 1356 GO terms were

assigned to the putative targets, including a total of 14975 GO terms annotated to the genome.

The main overrepresented subcategories belonging to the ‘Biological Process’ category were

‘cellular process’ and ‘metabolic process’. In the ‘Cellular Component’ category, the main over-

represented terms were ‘cell part’ and ‘cell’. In the ‘Molecular Function’ category, the main

overrepresented terms were ‘catalytic activity’ and ‘binding’. Interestingly, the main categories

of the potential targets were also the main categories annotated for the genome (green bars–

Fig 10). Therefore, one can infer that miRNAs in C. canephora target major cellular processes.

Considering the importance of this pioneering work, we elucidated several aspects of

sRNAs in C. canephora, which offers a significant step towards a better understanding of the

transcriptional and post-transcriptional regulation of this major crop. An understanding of

the sRNA pathways in coffee provides insights for plant breeding through genetic engineering

technology.

Supporting information

S1 Fig. Alignment of a DCL1 identified in our analysis in RNAseq libraries with the C.

canephora genome in the Genome Browser on the Coffee Genome Hub (coffee-genome.

org). The alignment demonstrates that the DCL1 gene is present in the genome assembly, but

it was not previously annotated as a protein-coding gene.

(TIF)

S2 Fig. Multiple alignment of the CcAGO proteins for analysis of conservation of the

active site amino acids in the conserved PIWI domain (PF02171). Aminoacids correspond-

ing to the Aspartate-Aspartate-Histidine (DDH) motif at the positions 760, 845, and 986,and

an extra Histidine at the position 798 of the AtAGO1 (DDH/H798) [62] are highlighted. Four

proteins (CcAGO1, CcAGO5, CcAGO7, and CcAGO10.1) showed the conserved DDH/H798

residues. In four CcAGOs, the DDH catalytic motif was conserved, but the H798 was replaced

by a serine (CcAGO16), proline (CcAGO4.2 and CcAGO4.3) or glutamine (CcAGO10.2).

Two CcAGO proteins possessed an aspartate residue in place of the third histidine of the

DDH motif (CcAGO2.1 and CcAGO2.2). The CcAGO4.1 contains neither the catalytic DDH

motif nor the H798 residue.

(TIF)

S3 Fig. Expression profile of the 7 isoforms of CcDCL2 assigned to the same locus in the

Chromosome 2 (Cc02_g14900) identified in the RNAseq libraries. It was analyzed the

CcDCL2 expression in three developmental stages of C. canephora leaf—young, expanded

(exp in the figure) and old—and stem (Available at https://www.ncbi.nlm.nih.gov/sra/?term=

ERP003741). FPKM stands for Fragments Per Kilobase Million.

(TIF)

S1 Table. Proteins associated with the sRNA pathways in the Coffea canephora genome.

Protein name, literature reference of the first description in plants, the C. canephora ortholog,
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locus name and position, and respective protein length.

(DOCX)

S2 Table. Identification of pre-miRNAs in Coffea canephora. Precursor names, chromosome

numbers, start and end positions, strand and genic/intergenic locations, mature 5p and/or 3p

miRNAs, start and end positions in the precursor, and mature miRNA sizes.

(DOCX)

S3 Table. Structural characteristics and thermodynamic aspects of the precursors of the

pre-miRNA of Coffea canephora. Minimal Free Energy (MFE), adjusted MFE (AMFE), MFE

index (MFEI), Minimal Free Energy of the thermodynamic ensemble (MFEE), Ensemble

Diversity (Diversity), and frequency of the MFE structure in the ensemble (Frequency).

(DOCX)

S4 Table. Target prediction of the mature miRNAs in the C. canephora genome with

psRNATarget. miRNA names, Target ID (Locus Name) in C. canephora, Expectation scoring,

unpaired energy (UPE) required to open the secondary structure around the miRNA target

site, the start and end position on the miRNA and the Target, the sequence alignment of the

miRNA and Target sequences, and the type of inhibition method.

(DOCX)

S5 Table. The putative targets of ccp-MIR156, ccp-MIR172, and ccp-MIR390 in the RNA-

seq libraries of the stem and leaf tissues of Coffea canephora. miRNA in the respective tissue,

target description, and number of associated GO terms.

(DOCX)

Acknowledgments

The authors thank the members of the Laboratory of Plant Molecular Physiology (LFMP) of

the Federal University of Lavras (UFLA) for helping with the data mining and organization.

We also thank the Laboratory of Bioinformatics and Molecular Analysis (LBAM) of the Fed-

eral University of Uberlândia (UFU)–Campus Patos de Minas, for providing computational

structure for analyses.

Author Contributions

Conceptualization: CNFB MSG ACJ.

Data curation: CNFB PMR THCR TCSC LRA MSG.

Formal analysis: CNFB PMR THCR TCSC LRA MSG.

Funding acquisition: ACJ MSG.

Investigation: CNFB PMR THCR TCSC LRA MSG.

Methodology: LRA MSG.

Project administration: CNFB.

Resources: ACJ MSG LRA.

Software: PMR THCR LRA MSG.

Supervision: ACJ MSG.

Validation: RRO.

RNA-guided silencing pathway in coffee

PLOS ONE | https://doi.org/10.1371/journal.pone.0176333 April 27, 2017 24 / 29

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0176333.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0176333.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0176333.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0176333.s008
https://doi.org/10.1371/journal.pone.0176333


Visualization: CNFB PMR THCR.

Writing – original draft: CNFB.

Writing – review & editing: RRO MSG ACJ.

References

1. Brodersen P, Voinnet O. The diversity of RNA silencing pathways in plants. Trends in Genetics. 2006;

22(5):268–80. https://doi.org/10.1016/j.tig.2006.03.003 PMID: 16567016

2. Axtell MJ. Classification and comparison of small RNAs from plants. Annu Rev Plant Biol. 2013; 64

(1):137–59.

3. Chen X. Small RNAs and Their Roles in Plant Development. Annual Review of Cell and Developmental

Biology. 2009; 25(1):21–44.

4. Borges F, Martienssen RA. The expanding world of small RNAs in plants. Nat Rev Mol Cell Biol. 2015;

16(12):727–41. Epub 2015/11/05. PubMed Central PMCID: PMCPmc4948178. https://doi.org/10.1038/

nrm4085 PMID: 26530390

5. Kim YJ, Zheng B, Yu Y, Won SY, Mo B, Chen X. The role of Mediator in small and long noncoding RNA

production in Arabidopsis thaliana. The EMBO journal. 2011; 30(5):814–22. Epub 2011/01/22. PubMed

Central PMCID: PMCPmc3049218. https://doi.org/10.1038/emboj.2011.3 PMID: 21252857

6. Tang G. Plant microRNAs: an insight into their gene structures and evolution. Semin Cell Dev Biol.

2010; 21(8):782–9. https://doi.org/10.1016/j.semcdb.2010.07.009 PMID: 20691276

7. Yu B, Bi L, Zheng B, Ji L, Chevalier D, Agarwal M, et al. The FHA domain proteins DAWDLE in Arabi-

dopsis and SNIP1 in humans act in small RNA biogenesis. Proc Natl Acad Sci U S A. 2008; 105

(29):10073–8. PubMed Central PMCID: PMC2481372. https://doi.org/10.1073/pnas.0804218105

PMID: 18632581

8. Kurihara Y, Takashi Y, Watanabe Y. The interaction between DCL1 and HYL1 is important for efficient

and precise processing of pri-miRNA in plant microRNA biogenesis. RNA (New York, NY). 2006; 12

(2):206–12. Epub 2006/01/24. PubMed Central PMCID: PMCPmc1370900.

9. Dong Z, Han MH, Fedoroff N. The RNA-binding proteins HYL1 and SE promote accurate in vitro pro-

cessing of pri-miRNA by DCL1. Proc Natl Acad Sci U S A. 2008; 105(29):9970–5. PubMed Central

PMCID: PMC2481344. https://doi.org/10.1073/pnas.0803356105 PMID: 18632569

10. Lobbes D, Rallapalli G, Schmidt DD, Martin C, Clarke J. SERRATE: a new player on the plant micro-

RNA scene. EMBO reports. 2006; 7(10):1052–8. Epub 2006/09/16. PubMed Central PMCID:

PMCPmc1618363. https://doi.org/10.1038/sj.embor.7400806 PMID: 16977334

11. Ren G, Xie M, Dou Y, Zhang S, Zhang C, Yu B. Regulation of miRNA abundance by RNA binding pro-

tein TOUGH in Arabidopsis. Proc Natl Acad Sci U S A. 2012; 109(31):12817–21. Epub 2012/07/18.

PubMed Central PMCID: PMCPmc3412041. https://doi.org/10.1073/pnas.1204915109 PMID:

22802657

12. Rogers K, Chen X. Biogenesis, Turnover, and Mode of Action of Plant MicroRNAs. Plant Cell. 2013; 25

(7):2383–99. https://doi.org/10.1105/tpc.113.113159 PMID: 23881412

13. Yamaguchi A, Abe M. Regulation of reproductive development by non-coding RNA in Arabidopsis: to

flower or not to flower. J Plant Res. 2012; 125(6):693–704. PubMed Central PMCID: PMC3485539.

https://doi.org/10.1007/s10265-012-0513-7 PMID: 22836383

14. Hu W, Wang T, Xu J, Li H. MicroRNA mediates DNA methylation of target genes. Biochemical and Bio-

physical Research Communications. 2014; 444(4):676–81. https://doi.org/10.1016/j.bbrc.2014.01.171

PMID: 24508262

15. Li J, Yang Z, Yu B, Liu J, Chen X. Methylation protects miRNAs and siRNAs from a 3’-end uridylation

activity in Arabidopsis. Current biology: CB. 2005; 15(16):1501–7. Epub 2005/08/23. https://doi.org/10.

1016/j.cub.2005.07.029 PMID: 16111943

16. Zeng Y, Cullen BR. Structural requirements for pre-microRNA binding and nuclear export by Exportin 5.

Nucleic acids research. 2004; 32(16):4776–85. Epub 2004/09/10. PubMed Central PMCID:

PMCPmc519115. https://doi.org/10.1093/nar/gkh824 PMID: 15356295

17. Bologna NG, Voinnet O. The Diversity, Biogenesis, and Activities of Endogenous Silencing Small RNAs

in Arabidopsis. Annual Review of Plant Biology. 2014; 65(1):473–503.

18. Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R. MicroRNA-dependent localization of targeted

mRNAs to mammalian P-bodies. Nature cell biology. 2005; 7(7):719–23. Epub 2005/06/07. PubMed

Central PMCID: PMCPmc1855297. https://doi.org/10.1038/ncb1274 PMID: 15937477

RNA-guided silencing pathway in coffee

PLOS ONE | https://doi.org/10.1371/journal.pone.0176333 April 27, 2017 25 / 29

https://doi.org/10.1016/j.tig.2006.03.003
http://www.ncbi.nlm.nih.gov/pubmed/16567016
https://doi.org/10.1038/nrm4085
https://doi.org/10.1038/nrm4085
http://www.ncbi.nlm.nih.gov/pubmed/26530390
https://doi.org/10.1038/emboj.2011.3
http://www.ncbi.nlm.nih.gov/pubmed/21252857
https://doi.org/10.1016/j.semcdb.2010.07.009
http://www.ncbi.nlm.nih.gov/pubmed/20691276
https://doi.org/10.1073/pnas.0804218105
http://www.ncbi.nlm.nih.gov/pubmed/18632581
https://doi.org/10.1073/pnas.0803356105
http://www.ncbi.nlm.nih.gov/pubmed/18632569
https://doi.org/10.1038/sj.embor.7400806
http://www.ncbi.nlm.nih.gov/pubmed/16977334
https://doi.org/10.1073/pnas.1204915109
http://www.ncbi.nlm.nih.gov/pubmed/22802657
https://doi.org/10.1105/tpc.113.113159
http://www.ncbi.nlm.nih.gov/pubmed/23881412
https://doi.org/10.1007/s10265-012-0513-7
http://www.ncbi.nlm.nih.gov/pubmed/22836383
https://doi.org/10.1016/j.bbrc.2014.01.171
http://www.ncbi.nlm.nih.gov/pubmed/24508262
https://doi.org/10.1016/j.cub.2005.07.029
https://doi.org/10.1016/j.cub.2005.07.029
http://www.ncbi.nlm.nih.gov/pubmed/16111943
https://doi.org/10.1093/nar/gkh824
http://www.ncbi.nlm.nih.gov/pubmed/15356295
https://doi.org/10.1038/ncb1274
http://www.ncbi.nlm.nih.gov/pubmed/15937477
https://doi.org/10.1371/journal.pone.0176333


19. Matzke MA, Mosher RA. RNA-directed DNA methylation: an epigenetic pathway of increasing complex-

ity. Nat Rev Genet. 2014; 15(6):394–408. Epub 2014/05/09. https://doi.org/10.1038/nrg3683 PMID:

24805120

20. Schiebel W, Haas B, Marinkovic S, Klanner A, Sanger HL. RNA-directed RNA polymerase from tomato

leaves. II. Catalytic in vitro properties. The Journal of biological chemistry. 1993; 268(16):11858–67.

PMID: 7685023

21. Moissiard G, Parizotto EA, Himber C, Voinnet O. Transitivity in Arabidopsis can be primed, requires the

redundant action of the antiviral Dicer-like 4 and Dicer-like 2, and is compromised by viral-encoded sup-

pressor proteins. RNA (New York, NY). 2007; 13(8):1268–78. Epub 2007/06/27. PubMed Central

PMCID: PMCPmc1924903.

22. Cao X, Jacobsen SE. Role of the arabidopsis DRM methyltransferases in de novo DNA methylation

and gene silencing. 2002;(0960–9822 (Print)).

23. Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA methylation patterns in plants and

animals. Nat Rev Genet. 2010; 11(3):204–20. https://doi.org/10.1038/nrg2719 PMID: 20142834

24. Onodera Y, Haag JR, Ream T, Costa Nunes P, Pontes O, Pikaard CS. Plant nuclear RNA polymerase

IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell. 2005; 120

(5):613–22. https://doi.org/10.1016/j.cell.2005.02.007 PMID: 15766525

25. Wierzbicki AT, Cocklin R, Mayampurath A, Lister R, Rowley MJ, Gregory BD, et al. Spatial and func-

tional relationships among Pol V-associated loci, Pol IV-dependent siRNAs, and cytosine methylation in

the Arabidopsis epigenome. Genes & Development. 2012; 26(16):1825–36.

26. Zhou M, Law JA. RNA Pol IV and V in gene silencing: Rebel polymerases evolving away from Pol II’s

rules. Current opinion in plant biology. 2015; 27:154–64. https://doi.org/10.1016/j.pbi.2015.07.005

PMID: 26344361

27. Wierzbicki AT, Ream TS, Haag JR, Pikaard CS. RNA polymerase V transcription guides ARGO-

NAUTE4 to chromatin. Nature genetics. 2009; 41(5):630–4. PubMed Central PMCID: PMC2674513.

https://doi.org/10.1038/ng.365 PMID: 19377477

28. Matzke MA, Kanno T, Matzke AJM. RNA-Directed DNA Methylation: The Evolution of a Complex Epige-

netic Pathway in Flowering Plants. Annual Review of Plant Biology. 2015; 66(1):243–67.

29. Speth C, Willing EM, Rausch S, Schneeberger K, Laubinger S. RACK1 scaffold proteins influence

miRNA abundance in Arabidopsis. The Plant journal: for cell and molecular biology. 2013; 76(3):433–45.

30. Jeong IS, Aksoy E, Fukudome A, Akhter S, Hiraguri A, Fukuhara T, et al. Arabidopsis C-terminal

domain phosphatase-like 1 functions in miRNA accumulation and DNA methylation. PLoS One. 2013; 8

(9):e74739. PubMed Central PMCID: PMC3776750. https://doi.org/10.1371/journal.pone.0074739

PMID: 24058624

31. Karlsson P, Christie MD, Seymour DK, Wang H, Wang X, Hagmann J, et al. KH domain protein RCF3 is

a tissue-biased regulator of the plant miRNA biogenesis cofactor HYL1. Proceedings of the National

Academy of Sciences. 2015; 112(45):14096–101.

32. Kapoor M, Arora R, Lama T, Nijhawan A, Khurana J, Tyagi A, et al. Genome-wide identification, organi-

zation and phylogenetic analysis of Dicer-like, Argonaute and RNA-dependent RNA Polymerase gene

families and their expression analysis during reproductive development and stress in rice. BMC Geno-

mics. 2008; 9(1):451.

33. de Sousa Cardoso TC, Portilho LG, de Oliveira CL, McKeown PC, Maluf WR, Gomes LA, et al.

Genome-wide identification and in silico characterisation of microRNAs, their targets and processing

pathway genes in Phaseolus vulgaris L. Plant Biol 2016; 18(2):206–19. https://doi.org/10.1111/plb.

12377 PMID: 26250338

34. Liu X, Lu T, Dou Y, Yu B, Zhang C. Identification of RNA silencing components in soybean and sor-

ghum. BMC Bioinformatics. 2014; 15(1):4.

35. Loss-Morais G, Ferreira DCR, Margis R, Alves-Ferreira M, Corrêa RL. Identification of novel and con-

served microRNAs in Coffea canephora and Coffea arabica. Genetics and Molecular Biology. 2014; 37

(4):671–82. https://doi.org/10.1590/S1415-47572014005000020 PMID: 25505842

36. Rebijith KB, Asokan R, Ranjitha HH, Krishna V, Nirmalbabu K. In silico mining of novel microRNAs from

coffee (Coffea arabica) using expressed sequence tags. Journal of Horticultural Science and Biotech-

nology 2013; 88(3):325–37.

37. Akter A, Islam MM, Mondal SI, Mahmud Z, Jewel NA, Ferdous S, et al. Computational identification of

miRNA and targets from expressed sequence tags of coffee (Coffea arabica). Saudi Journal of Biologi-

cal Sciences. 2014; 21(1):3–12. https://doi.org/10.1016/j.sjbs.2013.04.007 PMID: 24596494

38. Chaves SS, Fernandes-Brum CN, Silva GF, Ferrara-Barbosa BC, Paiva LV, Nogueira FT, et al. New

Insights on Coffea miRNAs: Features and Evolutionary Conservation. Appl Biochem Biotechnol. 2015;

177(4):879–908. https://doi.org/10.1007/s12010-015-1785-x PMID: 26277190

RNA-guided silencing pathway in coffee

PLOS ONE | https://doi.org/10.1371/journal.pone.0176333 April 27, 2017 26 / 29

https://doi.org/10.1038/nrg3683
http://www.ncbi.nlm.nih.gov/pubmed/24805120
http://www.ncbi.nlm.nih.gov/pubmed/7685023
https://doi.org/10.1038/nrg2719
http://www.ncbi.nlm.nih.gov/pubmed/20142834
https://doi.org/10.1016/j.cell.2005.02.007
http://www.ncbi.nlm.nih.gov/pubmed/15766525
https://doi.org/10.1016/j.pbi.2015.07.005
http://www.ncbi.nlm.nih.gov/pubmed/26344361
https://doi.org/10.1038/ng.365
http://www.ncbi.nlm.nih.gov/pubmed/19377477
https://doi.org/10.1371/journal.pone.0074739
http://www.ncbi.nlm.nih.gov/pubmed/24058624
https://doi.org/10.1111/plb.12377
https://doi.org/10.1111/plb.12377
http://www.ncbi.nlm.nih.gov/pubmed/26250338
https://doi.org/10.1590/S1415-47572014005000020
http://www.ncbi.nlm.nih.gov/pubmed/25505842
https://doi.org/10.1016/j.sjbs.2013.04.007
http://www.ncbi.nlm.nih.gov/pubmed/24596494
https://doi.org/10.1007/s12010-015-1785-x
http://www.ncbi.nlm.nih.gov/pubmed/26277190
https://doi.org/10.1371/journal.pone.0176333


39. Denoeud F, Carretero-Paulet L, Dereeper A, Droc G, Guyot R, Pietrella M, et al. The coffee genome

provides insight into the convergent evolution of caffeine biosynthesis. Science. 2014; 345

(6201):1181–4. https://doi.org/10.1126/science.1255274 PMID: 25190796

40. de Souza Gomes M, Muniyappa MK, Carvalho SG, Guerra-Sa R, Spillane C. Genome-wide identifica-

tion of novel microRNAs and their target genes in the human parasite Schistosoma mansoni. Geno-

mics. 2011; 98(2):96–111. Epub 2011/06/07. https://doi.org/10.1016/j.ygeno.2011.05.007 PMID:

21640815

41. Smit AFA, Hubley R, Green P. RepeatMasker at http://repeatmasker.org. Accessed 20 January 2016.

42. Gardner PP, Daub J, Tate JG, Nawrocki EP, Kolbe DL, Lindgreen S, et al. Rfam: updates to the RNA

families database. 2009;(1362–4962 (Electronic)). D—NLM: PMC2686503 EDAT- 2008/10/28 09:00

MHDA- 2009/03/04 09:00 CRDT- 2008/10/28 09:00 PHST- 2008/10/25 [aheadofprint] AID—gkn766

[pii] AID.

43. Zhang B, Pan X, Cannon CH, Cobb GP, Anderson TA. Conservation and divergence of plant microRNA

genes. The Plant journal: for cell and molecular biology. 2006; 46(2):243–59. Epub 2006/04/21.

44. Zhang BH, Pan XP, Cox SB, Cobb GP, Anderson TA. Evidence that miRNAs are different from other

RNAs. Cell Mol Life Sci. 2006; 63(2):246–54. https://doi.org/10.1007/s00018-005-5467-7 PMID:

16395542

45. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and

Clustal X version 2.0. Bioinformatics (Oxford, England). 2007; 23(21):2947–8. Epub 2007/09/12.

46. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees.

Molecular biology and evolution. 1987; 4(4):406–25. Epub 1987/07/01. PMID: 3447015

47. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative

studies of nucleotide sequences. Journal of molecular evolution. 1980; 16(2):111–20. Epub 1980/12/

01. PMID: 7463489

48. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genet-

ics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.

Molecular biology and evolution. 2011; 28(10):2731–9. Epub 2011/05/07. PubMed Central PMCID:

PMCPmc3203626. https://doi.org/10.1093/molbev/msr121 PMID: 21546353

49. Bailey TL, Elkan C. Fitting a mixture model by expectation maximization to discover motifs in biopoly-

mers. Proceedings / International Conference on Intelligent Systems for Molecular Biology; ISMB Inter-

national Conference on Intelligent Systems for Molecular Biology. 1994; 2:28–36. Epub 1994/01/01.

50. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome

assembly from RNA-Seq data without a reference genome. Nature biotechnology. 2011; 29(7):644–52.

Epub 2011/05/17. PubMed Central PMCID: PMC3571712. https://doi.org/10.1038/nbt.1883 PMID:

21572440

51. Huang X, Madan A. CAP3: A DNA sequence assembly program. Genome research. 1999; 9(9):868–

77. Epub 1999/10/06. PubMed Central PMCID: PMCPmc310812. PMID: 10508846

52. Dai X, Zhao PX. psRNATarget: a plant small RNA target analysis server. Nucleic acids research.

2011;39.

53. Du Z, Zhou X, Ling Y, Zhang Z, Su Z. agriGO: a GO analysis toolkit for the agricultural community.

Nucleic acids research. 2010; 38(Web Server issue):W64–70. Epub 2010/05/04. PubMed Central

PMCID: PMCPmc2896167. https://doi.org/10.1093/nar/gkq310 PMID: 20435677

54. Qian Y, Cheng Y, Cheng X, Jiang H, Zhu S, Cheng B. Identification and characterization of Dicer-like,

Argonaute and RNA-dependent RNA polymerase gene families in maize. Plant cell reports. 2011; 30

(7):1347–63. Epub 2011/03/16. https://doi.org/10.1007/s00299-011-1046-6 PMID: 21404010

55. Bai M, Yang GS, Chen WT, Mao ZC, Kang HX, Chen GH, et al. Genome-wide identification of Dicer-

like, Argonaute and RNA-dependent RNA polymerase gene families and their expression analyses in

response to viral infection and abiotic stresses in Solanum lycopersicum. Gene. 2012; 501(1):52–62.

Epub 2012/03/13. https://doi.org/10.1016/j.gene.2012.02.009 PMID: 22406496

56. Kapoor M, Arora R, Lama T, Nijhawan A, Khurana JP, Tyagi AK, et al. Genome-wide identification,

organization and phylogenetic analysis of Dicer-like, Argonaute and RNA-dependent RNA Polymerase

gene families and their expression analysis during reproductive development and stress in rice. BMC

Genomics. 2008; 9(1):1–17.

57. Liu B, Li P, Li X, Liu C, Cao S, Chu C, et al. Loss of function of OsDCL1 affects microRNA accumulation

and causes developmental defects in rice. Plant Physiol. 2005; 139.

58. Margis R, Fusaro AF, Smith NA, Curtin SJ, Watson JM, Finnegan EJ, et al. The evolution and diversifi-

cation of Dicers in plants. FEBS Letters. 2006; 580(10):2442–50. https://doi.org/10.1016/j.febslet.2006.

03.072 PMID: 16638569

RNA-guided silencing pathway in coffee

PLOS ONE | https://doi.org/10.1371/journal.pone.0176333 April 27, 2017 27 / 29

https://doi.org/10.1126/science.1255274
http://www.ncbi.nlm.nih.gov/pubmed/25190796
https://doi.org/10.1016/j.ygeno.2011.05.007
http://www.ncbi.nlm.nih.gov/pubmed/21640815
http://repeatmasker.org
https://doi.org/10.1007/s00018-005-5467-7
http://www.ncbi.nlm.nih.gov/pubmed/16395542
http://www.ncbi.nlm.nih.gov/pubmed/3447015
http://www.ncbi.nlm.nih.gov/pubmed/7463489
https://doi.org/10.1093/molbev/msr121
http://www.ncbi.nlm.nih.gov/pubmed/21546353
https://doi.org/10.1038/nbt.1883
http://www.ncbi.nlm.nih.gov/pubmed/21572440
http://www.ncbi.nlm.nih.gov/pubmed/10508846
https://doi.org/10.1093/nar/gkq310
http://www.ncbi.nlm.nih.gov/pubmed/20435677
https://doi.org/10.1007/s00299-011-1046-6
http://www.ncbi.nlm.nih.gov/pubmed/21404010
https://doi.org/10.1016/j.gene.2012.02.009
http://www.ncbi.nlm.nih.gov/pubmed/22406496
https://doi.org/10.1016/j.febslet.2006.03.072
https://doi.org/10.1016/j.febslet.2006.03.072
http://www.ncbi.nlm.nih.gov/pubmed/16638569
https://doi.org/10.1371/journal.pone.0176333


59. Ji X. The Mechanism of RNase III Action: How Dicer Dices. In: Paddison PJ, Vogt PK, editors. RNA

Interference. Berlin, Heidelberg: Springer Berlin Heidelberg; 2008. p. 99–116.

60. Vaucheret H. Plant ARGONAUTES. Trends Plant Sci. 2008; 13(7):350–8. https://doi.org/10.1016/j.

tplants.2008.04.007 PMID: 18508405

61. Zhang H, Xia R, Meyers BC, Walbot V. Evolution, functions, and mysteries of plant ARGONAUTE pro-

teins. Current opinion in plant biology. 2015; 27:84–90. https://doi.org/10.1016/j.pbi.2015.06.011 PMID:

26190741

62. Baumberger N, Baulcombe DC. Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits

microRNAs and short interfering RNAs. Proc Natl Acad Sci USA. 2005; 102.

63. Wassenegger M, Krczal G. Nomenclature and functions of RNA-directed RNA polymerases. Trends

Plant Sci. 2006; 11(3):142–51. https://doi.org/10.1016/j.tplants.2006.01.003 PMID: 16473542

64. Voinnet O. Use, tolerance and avoidance of amplified RNA silencing by plants. Trends Plant Sci. 2008;

13(7):317–28. Epub 2008/06/21. https://doi.org/10.1016/j.tplants.2008.05.004 PMID: 18565786

65. Wang XB, Wu Q, Ito T, Cillo F, Li WX, Chen X, et al. RNAi-mediated viral immunity requires amplifica-

tion of virus-derived siRNAs in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2010; 107(1):484–9.

Epub 2009/12/08. PubMed Central PMCID: PMCPmc2806737. https://doi.org/10.1073/pnas.

0904086107 PMID: 19966292

66. Willmann MR, Endres MW, Cook RT, Gregory BD. The Functions of RNA-Dependent RNA Polymer-

ases in Arabidopsis. The Arabidopsis Book / American Society of Plant Biologists. 2011; 9:e0146.

67. Dai XB, Zhao PX. psRNATarget: a plant small RNA target analysis server. Nucleic Acids Research.

2011; 39:W155–W9. https://doi.org/10.1093/nar/gkr319 PMID: 21622958

68. Liu H, Guo S, Xu Y, Li C, Zhang Z, Zhang D, et al. OsmiR396d-Regulated OsGRFs Function in Floral

Organogenesis in Rice through Binding to Their Targets OsJMJ706 and OsCR4. Plant Physiology.

2014; 165(1):160–74. https://doi.org/10.1104/pp.114.235564 PMID: 24596329

69. Tworak A, Urbanowicz A, Podkowinski J, Kurzynska-Kokorniak A, Koralewska N, Figlerowicz M. Six

Medicago truncatula Dicer-like protein genes are expressed in plant cells and upregulated in nodules.

Plant cell reports. 2016; 35(5):1043–52. https://doi.org/10.1007/s00299-016-1936-8 PMID: 26825594

70. Qi Y, He X, Wang XJ, Kohany O, Jurka J, Hannon GJ. Distinct catalytic and non-catalytic roles of

ARGONAUTE4 in RNA-directed DNA methylation. Nature. 2006; 443(7114):1008–12. Epub 2006/09/

26. https://doi.org/10.1038/nature05198 PMID: 16998468

71. Zilberman D, Cao X, Jacobsen SE. ARGONAUTE4 control of locus-specific siRNA accumulation and

DNA and histone methylation. Science. 2003; 299(5607):716–9. Epub 2003/01/11. https://doi.org/10.

1126/science.1079695 PMID: 12522258

72. Zong J, Yao X, Yin J, Zhang D, Ma H. Evolution of the RNA-dependent RNA polymerase (RdRP)

genes: Duplications and possible losses before and after the divergence of major eukaryotic groups.

Gene. 2009; 447(1):29–39. https://doi.org/10.1016/j.gene.2009.07.004 PMID: 19616606

73. Zhang C, Wu Z, Li Y, Wu J. Biogenesis, Function, and Applications of Virus-Derived Small RNAs in

Plants. Frontiers in Microbiology. 2015; 6:1237. https://doi.org/10.3389/fmicb.2015.01237 PMID:

26617580

74. Axtell MJ, Bartel DP. Antiquity of MicroRNAs and Their Targets in Land Plants. The Plant Cell. 2005; 17

(6):1658–73. https://doi.org/10.1105/tpc.105.032185 PMID: 15849273

75. Puzey JR, Karger A, Axtell M, Kramer EM. Deep annotation of Populus trichocarpa microRNAs from

diverse tissue sets. PLoS One. 2012; 7(3):e33034. PubMed Central PMCID: PMC3307732. https://doi.

org/10.1371/journal.pone.0033034 PMID: 22442676

76. Zhang R, Marshall D, Bryan GJ, Hornyik C. Identification and Characterization of miRNA Transcriptome

in Potato by High-Throughput Sequencing. PLoS ONE. 2013; 8(2):e57233. https://doi.org/10.1371/

journal.pone.0057233 PMID: 23437348

77. Liang G, Li Y, He H, Wang F, Yu D. Identification of miRNAs and miRNA-mediated regulatory pathways

in Carica papaya. Planta. 2013; 238(4):739–52. https://doi.org/10.1007/s00425-013-1929-6 PMID:

23851604

78. Wang JW, Czech B, Weigel D. miR156-regulated SPL transcription factors define an endogenous flow-

ering pathway in Arabidopsis thaliana. Cell. 2009; 138(4):738–49. Epub 2009/08/26. https://doi.org/10.

1016/j.cell.2009.06.014 PMID: 19703399

79. Wang Y, Wang Z, Amyot L, Tian L, Xu Z, Gruber MY, et al. Ectopic expression of miR156 represses

nodulation and causes morphological and developmental changes in Lotus japonicus. Molecular genet-

ics and genomics: MGG. 2015; 290(2):471–84. Epub 2014/10/09. PubMed Central PMCID:

PMCPmc4361721. https://doi.org/10.1007/s00438-014-0931-4 PMID: 25293935

80. Xing S, Salinas M, Hohmann S, Berndtgen R, Huijser P. miR156-targeted and nontargeted SBP-

box transcription factors act in concert to secure male fertility in Arabidopsis. Plant Cell. 2010; 22

RNA-guided silencing pathway in coffee

PLOS ONE | https://doi.org/10.1371/journal.pone.0176333 April 27, 2017 28 / 29

https://doi.org/10.1016/j.tplants.2008.04.007
https://doi.org/10.1016/j.tplants.2008.04.007
http://www.ncbi.nlm.nih.gov/pubmed/18508405
https://doi.org/10.1016/j.pbi.2015.06.011
http://www.ncbi.nlm.nih.gov/pubmed/26190741
https://doi.org/10.1016/j.tplants.2006.01.003
http://www.ncbi.nlm.nih.gov/pubmed/16473542
https://doi.org/10.1016/j.tplants.2008.05.004
http://www.ncbi.nlm.nih.gov/pubmed/18565786
https://doi.org/10.1073/pnas.0904086107
https://doi.org/10.1073/pnas.0904086107
http://www.ncbi.nlm.nih.gov/pubmed/19966292
https://doi.org/10.1093/nar/gkr319
http://www.ncbi.nlm.nih.gov/pubmed/21622958
https://doi.org/10.1104/pp.114.235564
http://www.ncbi.nlm.nih.gov/pubmed/24596329
https://doi.org/10.1007/s00299-016-1936-8
http://www.ncbi.nlm.nih.gov/pubmed/26825594
https://doi.org/10.1038/nature05198
http://www.ncbi.nlm.nih.gov/pubmed/16998468
https://doi.org/10.1126/science.1079695
https://doi.org/10.1126/science.1079695
http://www.ncbi.nlm.nih.gov/pubmed/12522258
https://doi.org/10.1016/j.gene.2009.07.004
http://www.ncbi.nlm.nih.gov/pubmed/19616606
https://doi.org/10.3389/fmicb.2015.01237
http://www.ncbi.nlm.nih.gov/pubmed/26617580
https://doi.org/10.1105/tpc.105.032185
http://www.ncbi.nlm.nih.gov/pubmed/15849273
https://doi.org/10.1371/journal.pone.0033034
https://doi.org/10.1371/journal.pone.0033034
http://www.ncbi.nlm.nih.gov/pubmed/22442676
https://doi.org/10.1371/journal.pone.0057233
https://doi.org/10.1371/journal.pone.0057233
http://www.ncbi.nlm.nih.gov/pubmed/23437348
https://doi.org/10.1007/s00425-013-1929-6
http://www.ncbi.nlm.nih.gov/pubmed/23851604
https://doi.org/10.1016/j.cell.2009.06.014
https://doi.org/10.1016/j.cell.2009.06.014
http://www.ncbi.nlm.nih.gov/pubmed/19703399
https://doi.org/10.1007/s00438-014-0931-4
http://www.ncbi.nlm.nih.gov/pubmed/25293935
https://doi.org/10.1371/journal.pone.0176333


(12):3935–50. Epub 2010/12/24. PubMed Central PMCID: PMCPmc3027167. https://doi.org/10.1105/

tpc.110.079343 PMID: 21177480

81. Yu N, Cai WJ, Wang S, Shan CM, Wang LJ, Chen XY. Temporal control of trichome distribution by

microRNA156-targeted SPL genes in Arabidopsis thaliana. Plant Cell. 2010; 22(7):2322–35. Epub

2010/07/14. PubMed Central PMCID: PMCPmc2929091. https://doi.org/10.1105/tpc.109.072579

PMID: 20622149

82. Ostria-Gallardo E, Ranjan A, Chitwood DH, Kumar R, Townsley BT, Ichihashi Y, et al. Transcriptomic

analysis suggests a key role for SQUAMOSA PROMOTER BINDING PROTEIN LIKE, NAC and

YUCCA genes in the heteroblastic development of the temperate rainforest tree Gevuina avellana (Pro-

teaceae). New Phytologist. 2016; 210(2):694–708. https://doi.org/10.1111/nph.13776 PMID: 26680017

83. Aukerman MJ, Sakai H. Regulation of flowering time and floral organ identity by a MicroRNA and its

APETALA2-like target genes. Plant Cell. 2003; 15(11):2730–41. Epub 2003/10/14. PubMed Central

PMCID: PMCPmc280575. https://doi.org/10.1105/tpc.016238 PMID: 14555699

84. Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS. The sequential action of miR156 and

miR172 regulates developmental timing in Arabidopsis. Cell. 2009; 138.

85. Belli Kullan J, Lopes Paim Pinto D, Bertolini E, Fasoli M, Zenoni S, Tornielli GB, et al. miRVine: a micro-

RNA expression atlas of grapevine based on small RNA sequencing. BMC Genomics. 2015; 16(1):1–

23.

86. Chuck G, Cigan AM, Saeteurn K, Hake S. The heterochronic maize mutant Corngrass1 results from

overexpression of a tandem microRNA. Nature genetics. 2007;39.

87. Zhu QH, Helliwell CA. Regulation of flowering time and floral patterning by miR172. J Exp Bot. 2011; 62

(2):487–95. Epub 2010/10/19. https://doi.org/10.1093/jxb/erq295 PMID: 20952628

88. Sunkar R, Girke T, Jain PK, Zhu JK. Cloning and characterization of microRNAs from rice. Plant Cell.

2005; 17(5):1397–411. Epub 2005/04/05. PubMed Central PMCID: PMCPmc1091763. https://doi.org/

10.1105/tpc.105.031682 PMID: 15805478

89. Sunkar R, Li YF, Jagadeeswaran G. Functions of microRNAs in plant stress responses. Trends Plant

Sci. 2012; 17(4):196–203. https://doi.org/10.1016/j.tplants.2012.01.010 PMID: 22365280

90. Chen L, Wang T, Zhao M, Tian Q, Zhang WH. Identification of aluminum-responsive microRNAs in

Medicago truncatula by genome-wide high-throughput sequencing. Planta. 2012; 235(2):375–86. Epub

2011/09/13. https://doi.org/10.1007/s00425-011-1514-9 PMID: 21909758

91. Ding Y, Ye Y, Jiang Z, Wang Y, Zhu C. MicroRNA390 Is Involved in Cadmium Tolerance and Accumula-

tion in Rice. Front Plant Sci. 2016; 7:235. Epub 2016/03/15. PubMed Central PMCID:

PMCPmc4772490. https://doi.org/10.3389/fpls.2016.00235 PMID: 26973678

92. Montgomery TA, Howell MD, Cuperus JT, Li D, Hansen JE, Alexander AL, et al. Specificity of ARGO-

NAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell. 2008;

133(1):128–41. Epub 2008/03/18. https://doi.org/10.1016/j.cell.2008.02.033 PMID: 18342362

93. Stevens PF. Angiosperm Phylogeny Website. Version 12, July 2012 [and more or less continuously

updated since]. http://wwwmobotorg/MOBOT/research/APweb/. 2001 onwards.

RNA-guided silencing pathway in coffee

PLOS ONE | https://doi.org/10.1371/journal.pone.0176333 April 27, 2017 29 / 29

https://doi.org/10.1105/tpc.110.079343
https://doi.org/10.1105/tpc.110.079343
http://www.ncbi.nlm.nih.gov/pubmed/21177480
https://doi.org/10.1105/tpc.109.072579
http://www.ncbi.nlm.nih.gov/pubmed/20622149
https://doi.org/10.1111/nph.13776
http://www.ncbi.nlm.nih.gov/pubmed/26680017
https://doi.org/10.1105/tpc.016238
http://www.ncbi.nlm.nih.gov/pubmed/14555699
https://doi.org/10.1093/jxb/erq295
http://www.ncbi.nlm.nih.gov/pubmed/20952628
https://doi.org/10.1105/tpc.105.031682
https://doi.org/10.1105/tpc.105.031682
http://www.ncbi.nlm.nih.gov/pubmed/15805478
https://doi.org/10.1016/j.tplants.2012.01.010
http://www.ncbi.nlm.nih.gov/pubmed/22365280
https://doi.org/10.1007/s00425-011-1514-9
http://www.ncbi.nlm.nih.gov/pubmed/21909758
https://doi.org/10.3389/fpls.2016.00235
http://www.ncbi.nlm.nih.gov/pubmed/26973678
https://doi.org/10.1016/j.cell.2008.02.033
http://www.ncbi.nlm.nih.gov/pubmed/18342362
http://wwwmobotorg/MOBOT/research/APweb/
https://doi.org/10.1371/journal.pone.0176333



