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Towards semantically rich and recursive word learning models
Francis Mollica (fmollica@bcs.rochester.edu)

Steven T. Piantadosi (spiantadosi@bcs.rochester.edu)
Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627 USA

Abstract

Current models of word learning focus on the mapping be-
tween words and their referents and remain mute with regard
to conceptual representation. We develop a cross-situational
model of word learning that captures word-concept mapping
by jointly inferring the referents and underlying concepts for
each word. We also develop a variant of our model that incor-
porates recursion, which entertains the idea that children can
use learned words to aid future learning. We demonstrate both
models’ ability to learn kinship terms and show that adding
recursion into the model speeds acquisition.
Keywords: word learning; cross-situational learning; lan-
guage acquisition

Introduction
Most contemporary research on word learning examines how
children solve the word-to-referent mapping problem—i.e.,
how children who are presented with multi-word utterances in
multi-referent contexts learn which objects, events, or prop-
erties a word refers to. Real-life word learning is actually
much more interesting than discovering these simple corre-
spondences; discovery of the meaning of words often goes
hand-in-hand with true conceptual learning. Waxman and
Markow (1995) argue that, for kids, encountering a new word
provides an “invitation” for a conceptual distinction to be
made. It has even been shown in adults that having novel
words improves category learning (Lupyan, 2006). In this
light, it is not surprising that having conceptual knowledge
influences how children extend novel words (Booth & Wax-
man, 2002).

Here, we aim to extend formalized theories of cross-
situational word learning to capture not just the salient physi-
cal referents that are present, but the more abstract conceptual
meanings that adults posses. A useful framework for under-
standing our approach is the semiotic triangle put forth by
Peirce (1868):

concept

word referent

Competent word users must know each link—the mappings
from words to referents and words to abstract concepts, and
the relationship between abstract concepts and their referents.
In learning, children must use observed co-occurrences of,
say, the word “accordion” and physical accordions to infer
this mapping, as well as the abstract concept ACCORDION
that can, in principle, refer to infinitely many physical objects.

Cross-situational models of word learning capitalize on the
fact that a word is often heard when its referent is in the im-
mediate context. Repeated exposure of words and their cor-
responding referents in multiple contexts provides the basis
for the statistical learning of the association between words

and referents. Variants of cross-situational models have been
couched in terms of connectionist networks (Plunkett, Sinha,
Møller, & Strandsby, 1992), deductive hypothesis testing
(Siskind, 1996), hypothesis competition (Regier, 2005) and
probabilistic inference (Yu & Ballard, 2007; Frank, Good-
man, & Tenenbaum, 2009). These prior theories remain mute
about concept-word mappings or assume words label pre-
existing concepts, an assumption that is inherently problem-
atic. These theories leave unanswered both how conceptual
representations develop and how the word-concept mapping
interacts with the word-referent mapping.

An alternative approach is to treat conceptual development
and word learning as a joint inference problem. This is the
approach that we develop in this paper building on general
versions of ideas proposed in prior cross-situational learning
models. Our work provides a cross-situational word learning
model that aims to integrate the three aspects of word learn-
ing: word labels, object referents, and abstract concepts. It
works by combining a plausible (though simplified) semantic
representation with cross-situational evidence of words and
referents. Our model also captures the idea that children do
not just learn concepts but organize conceptual information
to form intuitive theories about the world (Carey, 1985; Well-
man & Gelman, 1992). There have been advances in compu-
tational modeling on learning how these theories might be
structured (Tenenbaum, Griffiths, & Kemp, 2006) and ac-
quired (Ullman, Goodman, & Tenenbaum, 2012).

Intuitive theories likely influence how a child approaches
word learning. For example, a child that has learned an ab-
stract conceptual structure might approach learning words as
denoting relationships across the structure; this kind of be-
havior is likely relevant in number word learning, where the
structure of the count list (“one”, “two”, “three”, etc.) likely
provides a placeholder structure for their meanings (Carey,
2009). Of course, such structures can be more complex than
lists: a child’s theory of kinship as a family tree might shape
how they approach the task of learning kinship terms. For in-
stance, a child might need to have the right conceptual struc-
ture (e.g. a tree) with the referents in their particular family
members in the right place in order to correctly determine ab-
stract relations like uncle.

Our Approach
Here, we study the domain of kinship as an example of cross-
situational word learning that requires abstract conceptual
knowledge. Kinship is an ideal domain because it lends itself
to straightforward logical representation and it is one of the
early domains available to children, building on their initial
learning of terms like mom and dad. The domain is complex
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enough to need interesting cognitive mechanics, but simple
enough to be computationally and representationally tractable
(Katz, Goodman, Kersting, Kemp, & Tenenbaum, 2008). In
our demonstration, we focus on learning the word-concept-
referent mappings for following kinship terms of English:
parent, child, spouse, grandparent, sibling, uncle/aunt1 and
cousin.

We start by considering a cross-situational learning setup,
meaning that children and the model observe both words
and immediately available referents (e.g., parent spoken by
“Rose” to refer to “Brandy”). The model formalizes a se-
mantic space that includes the possibility of learning individ-
ual referents for each word (as in traditional word-learning
models), or more abstract logical concepts. This represen-
tation can be thought of as a function that, given a context,
returns a set of referents in that context. The simplest hy-
potheses explicitly “memorize” the set of referents for each
word; however, the model also allows logical hypotheses that
implicitly define this set. For instance, a word like parent
might return the pairs X ,Y such that X is the parent of Y . The
model is cross-situational because any instance of parent will
occur with only one particular X and Y (e.g. “Brandy” and
“Rose”). The learner must aggregate information across us-
ages in order to both figure out the more abstract, productive
form of the meaning, and learn that parent does not refer to a
particular parent (e.g. “Brandy”).

Our learning model uses two components, both of which
have been used in previous models of conceptual and lan-
guage learning (e.g. Goodman, Tenenbaum, Feldman, &
Griffiths, 2008; Ullman et al., 2012; Piantadosi, Tenenbaum,
& Goodman, 2013, 2012): a simplicity prior over semantic
representations and a size principle likelihood specifying how
well any hypothesized representation explains the observed
data.

Our prior takes the form of a Probabilistic Context Free
Grammar (PCFG) which specifies how learners may combine
our assumed semantic primitives and entities in the context
(see Table 1).

Table 1: The PCFG used for learning Kinship terms.
START→ SET SET→ parents(SET)
SET→ union(SET,SET) SET→ children(SET)
SET→ intersection(SET,SET) SET→ spouses(SET)
SET→ set difference(SET,SET) SET→ male(SET)
SET→ complement(SET) SET→ female(SET)
SET→ specific referent SET→ X

Our PCFG for learning kinship terms included the set-
theoretical primitives, union, intersection, set-difference and
complement, and primitives specific to the kinship domain,
parents, children, spouses, male and female. All entities in
the context were potential sets. Additionally, the speaker X
was included in the grammar as a potential set. The context

1For simplicity, we do not distinguish gender here, although
there is nothing to suggest the model could not handle it with the
addition of gender primitives.

Figure 1: Family tree serving as the context for our model.
Bold lines signify spouse relationships.

for our kinship model was based on the family tree shown in
Figure 1. All members of the family tree were seen by the
model as potential referents. We assume the learner has de-
veloped the abstract structure of a family tree, including the
primitive relations between entities. Future research will at-
tempt to integrate learning the tree structure and primitives
into the model.

The likelihood function gives the probability of a word Wi
correctly being mapped onto a referent Yi conditioned on the
speaker Xi, the context Ci, and the current hypotheses for each
word, i.e. the hypothesized lexicon L. We assume a noisy
likelihood process, where a correct word-referent pair is ob-
served with probability α and an incorrect word-referent pair
is observed with probability 1-α. Here, we fix α = 0.9.

The PCFG and the likelihood function specify a probabil-
ity model for all possible lexicons. With this model we can
rank the probability of a hypothesized lexicon conditioned on
observed word-referent mappings in a given context with a
given speaker according to Bayes Rule:

P(L|W,X ,Y,C) ∝ P(L) ·∏
i

P(Wi,Yi|L,Xi,Ci) (1)

Here, P(L) is the probability of L under the PCFG and
P(Wi,Yi|L,Xi,Ci) gives the likelihood of the word-referent
mappings under the hypothesized lexicon and the observed
data. The PCFG prior penalized complex lexicons, meaning
that this builds in a simplicity bias, a natural assumption for
learners (Feldman, 2003) especially for the kinship domain,
where it has been shown that kinship systems are the opti-
mal trade-off between simplicity and informativity (Kemp &
Regier, 2012). Thus, learners “score” any hypothesized lex-
icon (mapping of words to meanings) L by considering (i)
how complex L is and (ii) how well L explains the observed
word-referent usages.

Methods
Using Equation 1 to determine the most likely lexicons given
the data is a complex inference problem because there are, in
principle, infinite possible lexicons generated from the PCFG.
Here, we solve the problem using sampling—Markov-Chain
Monte-Carlo (MCMC)—methods. MCMC provide samples
from the posterior distribution (in this case P(L|W,X ,Y,C) )
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Figure 2: Expected proportion of corrected hypotheses by the number of observed data points.

by walking around the space of hypotheses. In the limit, these
walks provably draw samples from the true posterior distri-
bution. Because our hypothesis space is discrete, this method
primarily allows us to determine the most likely lexicon given
the observed data.

We ran the model on simulated data constructed by sam-
pling data from a correct lexicon with the specified noise pa-
rameter α. Note that by sampling based on the true word-
referent mappings in the tree, the data selected is biased to-
wards the more common relationships in the specific tree used
as context. Additionally, we did not fix the speaker to a spe-
cific person. If we had fixed the speaker, the data would be
egocentric with regard to the speaker, meaning that the model
would be attempting to learn the referents of kinship terms for
that person as opposed to the underlying concepts for kinship
terms in general.

We varied the amount of data the model received from
10 data points to 250 data points at ten point intervals and
ran 16 sampling chains for one million steps at each data
amount. For each chain, we saved the 100 lexicons with the
highest posterior score, and used the union of these sets as
a finite hypothesis space representing the posterior distribu-
tion (Piantadosi et al., 2012). We used the finite hypothesis
space to calculate the learning trajectory for each word as the
amount of data observed increases. Given that the hypotheses
were generated based on varying amounts of data, their pos-
terior score and likelihood per data point were normalized by
recalculating them on a set of 1000 data points. The growth
trajectory is then represented as the posterior-weighted aver-
age of all lexicons’ accuracy.

Model Results
The model learned the correct hypothesis for each word2 (see
Table 2). As can be seen in Figure 2, the model learns the
correct hypotheses for simple concepts, such as PARENT and
GRANDPARENT, faster than it learns the correct hypotheses
for more complex concepts, such as SIBLING and COUSIN.
The logistic shape of the growth curves suggests that accurate
performance is not gradual. Therefore, the model predicts
that after observing a certain amount of data, a child should
be able to learn the correct concept for each word.

The posterior-weighted average of each hypothesis’ re-
call and precision3 can be used to identify patterns of over-
generalization and under-generalization of a word’s refer-
ents. The posterior-weighted average recall represents the
proposed hypotheses ability to select the correct referents. A
recall of one means that on average each hypothesis selected
all of the correct referents. The posterior weighted average
precision reflects the hypotheses’ specificity in selecting only
the correct referents. Recall greater than precision suggests
that a word is being over-extended to incorrect referents as
can be seen for siblings, cousins and uncles/aunts.

As expected by the pattern of precision and recall, the in-
correct hypotheses in the finite hypothesis space (see Table 2)
tend to over-generalize terms corresponding to complex con-
cepts. The most common incorrect hypotheses for siblings,
uncles/aunts and cousins are over-extensions of the terms to
respectively include the speaker herself, the speaker’s parents,
or everyone in the speakers generation including the speaker.

2For readability, all hypotheses presented in the paper have been
transformed into their simplest semantically equivalent form—i.e.,
the shortest composition of primitives denoting the same set of ref-
erents.

3Recall is the amount of correct referents proposed by the hy-
pothesis divided by the total amount of correct referents for the
word. Precision is the total amount of correct referents proposed by
the hypothesis divided by all referents proposed by the hypothesis.
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Table 2: Correct hypothesis and most common incorrect hypothesis for each word.
Word Correct Hypothesis Most Common Incorrect Hypothesis

Children children(X) children(spouses(X))
Parents parents(X) spouses(parents(X))

Grandparents parents(parents(X)) parents(spouses(parents(X)))
Spouses spouses(X) male(spouses(X))
Siblings set difference(children(parents(X)), X) children(parents(X))

Uncles/Aunts union(set difference(children(parents(parents(X))), parents(X)), union(children(parents(parents(X))),
spouses(set difference(children(parents(parents(X))), parents(X)))) spouses(children(parents(parents(X)))))

Cousins children(union(set difference(children(parents(parents(X))), parents(X)), children(spouses(children(parents(parents(X)))))
spouses(set difference(children(parents(parents(X))), parents(X)))))

Interestingly, the most common mistakes made learning the
simpler concepts tend to under-generalize a term by imposing
an additional constraint. For children, parent and grandpar-
ent, the incorrect hypotheses would be correct if every child
had two married parents, represented by spouse relationships.
The incorrect hypothesis for spouse places an unnecessary
male constraint on the correct hypothesis. At face value, these
mistakes seem like plausible mistakes a child learning kinship
terms could make.

The model also demonstrated that under simple assump-
tions, rational statistical learners will not learn specific refer-
ents but prefer abstract logical hypotheses. For instance, the
posterior probability of a hypothesis containing any specific
referent was at most 10−25 by 5 data points. The pressure for
abstraction occurs because any particular referent is unlikely
in the prior and the speaker varies, meaning that accurate
word-referent maps are hard to create4. For example, propos-
ing that sibling refers to rose is only true when spoken by
Rose’s siblings. To avoid under-generalizing, the model con-
structed abstract hypotheses that over-generalized the word
to many referents. As the model observed more data, it nar-
rowed down the set of potential referents in an attempt to find
the simplest correct hypothesis.

Comparison to Child Data Our model’s predicted learn-
ing trajectories can, in principle, be compared to child ac-
quisition data. We used the Words and Gestures MacArthur-
Bates Communicative Development Inventory (MCDI) data
from Word Bank5 to calculate child learning trajectories for
parents, grandparents, siblings and uncle/aunts. The MCDI
data is a parent report measure of their child’s understanding
of a specific list of words. As our model did not differentiate
gender, we averaged over the gendered terms in the MCDI for
each concept in our model (e.g., mommy/daddy corresponds
to parents). While the MCDI is the best data set available, the
child’s understanding of a word is based on parental report
rather than experiments and, thus, might incorrectly capture
children’s true understanding. For example, without proper
controls, over-generalization can be mistaken for correct un-
derstanding.

Figure 3a shows smoothed growth curves fit to MCDI
data. The order of acquisition that the model pre-

4When the model is provided with ego-centric data, hypotheses
with specific referents are more likely.

5Retrieved from wordbank.stanford.edu on 2015-01-20.

dicts roughly matches the qualitative pattern observed
in this data: mommy/daddy (parent) is learned quickly,
grandma/grandpa (grandparent) is learned somewhat less
quickly, and brother/sister (sibling) and uncle/aunt take much
more time. Intuitively, the model explains this acquisition tra-
jectory by penalizing complex hypotheses. When the model
has not observed much data, it relies heavily on its prior,
which is biased to favor simplicity. If you compare the com-
plexity of the correct hypotheses the model learns (see Table
2), PARENT is a single semantic primitive, GRANDPARENT
requires two primitives, and SIBLINGS and UNCLES/AUNTS
are much more complex.

However, beyond the relative difficulty of words, the gen-
eral shape of the model predictions do not closely match chil-
dren’s trajectory. The child data suggest a gradual acquisi-
tion of kinship terms. As discussed in Ullman et al. (2012),
one possible explanation for this discrepancy is that the model
predicts an individual child’s learning trajectory; whereas, the
MCDI data is an average growth trajectory over children. If
we consider that children might differ in the rate at which
they observe data, curves that are individually logistic might
suggest gradual learning when averaged together.

To further explore the relationship between children’s be-
havior and the model, we considered transforming both learn-
ing curves to relate performance to the number of instances
of each word; however, there is no directly analogous way to
convert the child data. We tried fitting a logistic regression
for each word as a function of age in months and dividing
the coefficient for age by an estimate of the number of in-
stances of that word a child hears in a month. In doing so,
we assumed children hear 360,000 words per month and esti-
mated instances of a specific word using frequency data from
CHILDES6 (see Figure 3b).

Interestingly, this transformation suggests that higher fre-
quency words need more data to be learned. For instance,
mommy, which is learned very quickly, is also extremely fre-
quent. Its learning curve, therefore, stretches out, showing
that children require many instances to learn. Conversely, un-
cle/aunt, which is learned slowly, is relatively infrequent and
its learning curve suggests that children require very few in-
stances to learn.

However, this pattern in the transformed data may not re-
flect what happens with children. The word frequency es-
timates from corpus data may overestimate the amount of

6Data retrieved on 2015-01-20 using ChildFreq (Bååth, 2010).
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Figure 3: (a) Growth trajectories of MCDI data by age. (b) Growth trajectories from MCDI data by number of instances.

data actually considered by the learner. At the same time, if
the pattern of learning trajectories from the transformed child
data is accurate, there is a discrepancy with the model. Ac-
cording to the child data, the more complex concepts such as
UNCLE/AUNT require relatively few data points and the sim-
ple concepts require many data points. This is the exact oppo-
site prediction from our model and any other with a simplicity
bias. One possibility for this discrepancy is that while word
learning is a joint learning problem, the learning of concept-
word mappings and word-referent mappings might not occur
on the exact same time scale. In this domain, children might
learn word-referent mappings before they learn word-concept
mappings. As a result, the transition from associative link
to abstract conceptual representation might require additional
data points. Whether or not word-referent mappings must
precede word-concept mappings is an empirical question.

Another possible explanation is that in kinship and other
semantic domains, a conceptual representation’s dependence
on an abstract structural representation (e.g., tree or taxon-
omy) limits a child’s ability to learn word-concept mappings
until the abstract structural representation has been devel-
oped. This explanation could plausibly explain the transfor-
mation requiring more words for simple concepts. If you con-
sider the learner using early relationships, such as PARENT
and SPOUSE, to construct a family tree, the high instance re-
quirement might reflect the development of the kinship tree.
Future research will explore these possibilities.

Recursive vs. Non-Recursive
One of the most interesting aspects of children’s theory learn-
ing is that theories can be rich, interconnected systems of
ideas and concepts. Our model allows us to explore learn-
ing interconnected representations in the domain of kinship
by potentially allowing words to be defined in terms of other
words, a capacity essentially for recursion.

In a second version of the model, we built recursive rules
into the PCFG. For instance, the recursive grammar allows
a function like SET → uncle(SET), giving the referents that
are considered “uncles” by the model’s current hypothesized
lexicon (which may or may not be correct). To prevent infinite
recursion, hypotheses were restricted to recurse maximally

ten times.
As with the non-recursive model, we varied the amount of

data given to the model from 5 data points to 200 data points
at five point intervals and ran 16 sampling chains for 500,000
steps at each data amount. Again, we created a finite hypoth-
esis space and calculated the learning trajectories using the
same method as before (see Figure 4).

For the words with simple hypotheses, there is no substan-
tial difference in allowing the model to recurse; however, for
the more complex hypotheses, allowing recursion decreases
the number of data points that need to be observed. This is
because some word meanings can be expressed more con-
cisely by referencing other word meanings. For instance,
COUSIN becomes easier to learn once UNCLE is known be-
cause COUSIN can be expressed as children(uncle(X)), in-
stead of the more arduous form in Table 2 above.

As our model shows, acquisition of this kind of recursive,
interrelated theories is possible through essentially the same
mechanisms as non-recursive theories. By creating a repre-
sentation language that permits recursion and doing inference
over that language with cross-situational data, we are able to
learn word meanings that are richly interconnected. A general
prediction of this system is that permitting recursion of the
referents of concepts to each other will speed learning of cer-
tain types of meanings by allowing them a much more concise
representation. This exact mechanism might also account for
how complex semantic primitives develop from simple prim-
itives.

Discussion
In this paper, we have provided a possible mechanism for
simultaneously learning a conceptual representation and the
mapping of that representation to a word. This model dif-
fers from previous models attempting to learn word-concept
mappings (e.g. Fazly, Alishahi, & Stevenson, 2010) in that
we focus on the learning of concepts requiring abstract re-
lations between entities. We offer this model as a first step
in suggesting that children could learn hierarchical concepts
and their corresponding words jointly. We expect that this
mechanism will generalize to other hierarchical domains.
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Figure 4: Growth trajectories of the model with and without recursion.

Here, we focused on conceptual development as the for-
mulation and refinement of hypotheses about the relationship
between speakers and referents on a pre-existing kinship tree.
Future work will attempt to integrate the tree construction
into the model.

Both our model and other models of cross-situational
concept-word mapping learning rely heavily on the seman-
tic primitives or features posited to represent concepts. The
scalability of our model depends on uncovering what prim-
itives people use when constructing conceptual representa-
tions. Ongoing research is focused on discovering the primi-
tives people use and future research will investigate both the
development of complex primitives from simple primitives
and the time course of primitive development.

Conclusion
We have developed a cross-situational word learning model
that captures richer semantic representations than associative
links. Instead, it captures the acquisition of abstract semantic
relations in the context of a rich theory of the world. We
developed two variants of the model: one which permitted
recursion and one which did not. We show that the recursive
model not only can be made to work—explaining how word
learning may interface with rich semantic theories—but also
speeds acquisition.
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