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Measurement of the B! �l� Branching Fraction and Determination
of jVubj with Tagged BMesons
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52Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy

53NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
54University of Notre Dame, Notre Dame, Indiana 46556, USA

55Ohio State University, Columbus, Ohio 43210, USA
56University of Oregon, Eugene, Oregon 97403, USA
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We report a measurement of the B! �‘� branching fraction based on 211 fb�1 of data collected with
the BABAR detector. We use samples of B0 and B� mesons tagged by a second Bmeson reconstructed in a
semileptonic or hadronic decay and combine the results assuming isospin symmetry to obtain B�B0 !
��‘��� � �1:33� 0:17stat � 0:11syst� � 10�4. We determine the magnitude of the Cabibbo-Kobayashi-
Maskawa matrix element jVubj by combining the partial branching fractions measured in ranges of the
momentum transfer squared and theoretical calculations of the form factor. Using a recent lattice QCD
calculation, we find jVubj � �4:5� 0:5stat � 0:3syst

�0:7
�0:5FF� � 10�3, where the last error is due to the

normalization of the form factor.

DOI: 10.1103/PhysRevLett.97.211801 PACS numbers: 13.20.He, 12.15.Hh, 12.38.Qk, 14.40.Nd

The magnitude of the Cabibbo-Kobayashi-Maskawa
matrix [1] element Vub is a critical constraint on the
unitarity triangle. Our knowledge of jVubj comes from
measurements of the b! u‘� decay rate, where the had-
ronic system in the final state can be reconstructed either
inclusively or exclusively. The precisions are limited by the
uncertainties in the nonperturbative QCD calculations that
are used to extract jVubj from the measured decay rates. It
is therefore crucial to pursue both the inclusive and ex-
clusive approaches, which rely on different theoretical
methods, and to test their consistency.

The rate of the exclusive decay B! �‘� (‘ � e or�) is
related to jVubj through the form factor f��q2�, where q2 is
the momentum transfer squared. Measurements of the B!
�‘� branching fraction have been reported by CLEO [2],
BABAR [3], and Belle [4]. In this Letter, we report a
measurement in which B! �‘� decays are searched for
in ��4S� ! B �B events that are identified by reconstruction
of the second B meson (Btag). The technique, which was
also used in Ref. [4], allows us to constrain the kinematics,
reduce the combinatorics, and determine the charge of the
signal B. The result is an improved signal purity at the
expense of the efficiency compared with the traditional
measurements in which only the signal B meson is recon-
structed. We perform two analyses in which Btag is recon-
structed in semileptonic and hadronic decays, respectively,
and combine the measured partial branching fractions �B
in ranges of q2 with the recent form-factor calculations [5–
8] to determine jVubj.

The measurement uses a sample of approximately
232� 106 B �B pairs, corresponding to an integrated lumi-
nosity of 211 fb�1, recorded near the ��4S� resonance
with the BABAR detector [9] at the PEP-II asymmetric-
energy e�e� storage rings. We use a detailed Monte Carlo
(MC) simulation to estimate the signal efficiency and the
signal and background distributions.

In the first analysis, we reconstruct Btag in the semi-
leptonic decay B! D���‘�. We reconstruct D0 mesons in
K���,K�������,K����0, andK0

S�
��� decays and

D� mesons in K����� decays [10]. The D mass resolu-
tion (�) is between 4.6 and 12.9 MeV, depending on the
decay channel. The mass of the D candidate is required to
be within 2:6� and 3:0� of the expected value for the B0

and B� channels, respectively. We also use a sideband

sample, in which the D candidate mass is more than 3�
away from the nominal value, for subtracting the com-
binatoric background. We reconstruct D�� mesons in
D0�� and D��0 decays. The mass difference between
the D� and D is required to be within 3 MeV of the
expected value [11]. The reconstructed D and D� candi-
dates are paired with a charged lepton with a center-of-
mass (c.m.) momentum jp‘j> 0:8 GeV to form a Y �
D���‘ system. If the D decay contains a charged kaon,
the lepton must have the same charge as the kaon. The
lepton and the D meson are required to originate from a
common vertex. Assuming that only a massless neutrino
escaped detection, we calculate the cosine of the angle
between the B and Y momenta as cos�BY � �2EBEY �
m2
B �m

2
Y�=�2jpBjjpYj�, where mB, mY , EB, EY , pB, and

pY refer to the masses, c.m. energies, and momenta of B
and Y, respectively. For background events, cos�BY does
not correspond to the cosine of a physical angle and can
extend outside �1. We apply a loose selection of
j cos�BYj< 5 at this stage.

After identifying the Btag meson, we require the remain-
ing particles in the event to be consistent with a B! �‘�
decay. Charged tracks that are not identified as a lepton
or a kaon are considered charged pion candidates. Neutral
pion candidates are formed from pairs of photon can-
didates with invariant mass between 115 and 150 MeV.
For the B0 channel, the lepton must have jp‘j> 0:8 GeV,
and its charge must be opposite to that of the charged pion.
The lepton charge must be opposite to that of the Btag for
the B� channel. We reject the lepton candidate if, when
combined with an oppositely charged track, it is consistent
with a J= ! ‘�‘� decay or a photon conversion. Once
the signal B candidate is identified, we require that the
event contain no other charged particles and a small total
c.m. energy Eres of the residual neutral particles. In mea-
suring Eres, we remove the neutral candidates that are
consistent with coming from a D� ! D�0 or D� decay,
bremsstrahlung from an electron, or beam-related back-
ground. We require Eres < 70 MeV for the B0 channel and
Eres < 250 MeV for the B� channel, the latter being re-
laxed to allow for additional photons from decays of D�0

and higher resonances. We calculate the cosine of the angle
between the B and �‘ momenta as cos�B�‘ � �2EBE�‘ �
m2
B �m

2
�‘�=�2jpBjjp�‘j�, where m�‘, E�‘, and p�‘ are the
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mass, c.m. energy, and momentum of the �‘ system,
respectively. We require j cos�B�‘j< 5.

Ignoring the small c.m. momentum of the B meson, the
invariant mass squared of the lepton-neutrino system in a
B! �‘� decay can be inferred as q2 � �mB � E��2 �
jp�j2, where E� and p� are the c.m. energy and momen-
tum of the pion, respectively. We divide the data into three
bins: q2 < 8 GeV2, 8< q2 < 16 GeV2, and q2 >
16 GeV2. We use simulated B! �‘� events to estimate
and to correct for the small (< 8%) migration between the
q2 bins due to resolution, which is approximately 0:8 GeV2

at q2 � 8 GeV2 and improves with increasing q2.
Having identified the two B mesons that decayed semi-

leptonically, conservation of the total momentum deter-
mines the angle �B between the direction of the B
momenta and the plane defined by the Y and �‘ momenta:

 cos 2�B �
cos2�BY � cos2�B�‘ � 2 cos�BY cos�B�‘ cos�

sin2�
;

(1)

where � is the angle between the Y and �‘ momenta. The
variable cos2�B satisfies cos2�B 	 1 for correctly recon-
structed signal events and is broadly distributed for the
background (see Fig. 1). We use the cos2�B distributions to
extract the signal yield in the data in each q2 bin. We did
not require stringent cuts on cos�BY and cos�B�‘ because
they are incorporated in cos2�B.

We express the data distribution as a sum of three
contributions: dN=dcos2�B � NsigP sig � NbkgP bkg �

NcmbP cmb, where Nc and P c are the number of events
and the probability density function (PDF) for each cate-
gory c, defined as the signal (sig), background with cor-
rectly reconstructed D mesons (bkg), and other
backgrounds (cmb). The events in the D mass sideband
are also used in the fit to constrain the NcmbP cmb term. The
PDF shapes are determined from the MC simulation. The
signal PDF is a combination of a smeared step function and

an exponential tail. The background PDFs are either an
exponential plus a constant or a second order polynomial.
The two data samples (D mass peak and sideband) and the
MC samples are used in an unbinned maximum likelihood
fit that determines Nsig, Nbkg, Ncmb, and the PDF parame-
ters simultaneously. Figure 1 shows the fit results summed
over the q2 bins. We find the signal yields and their
statistical errors to be 57�13

�12 and 92�26
�24 events for the B0

and B� channels, respectively.
We use simulated B! �‘� events to estimate the signal

efficiencies. Control samples are used to derive corrections
for the data-MC differences in the Btag reconstruction,
charged and neutral particle reconstruction, and lepton
identification. The largest uncertainty comes from the
Btag reconstruction efficiency, which is determined from
a sample of events in which two nonoverlapping Btag

candidates are reconstructed. The efficiency correction
factors for the Btag reconstruction are found to be 1:00�
0:07 and 0:99� 0:02 for the B0 and B� channels, respec-
tively. The average signal efficiencies after the correction
are 1:1� 10�3 for the B0 channel and 3:0� 10�3 for the
B� channel. The latter is larger mainly because of the
higher efficiency of reconstructing a D0 meson compared
with a D� or D�� meson.

The measured branching fractions are summarized in
Table I. The largest sources of systematic error [12] are the
Btag reconstruction efficiency (discussed above), the shape
of the background cos2�B distribution (studied with con-
trol samples that fail the signal selection criteria), and the
branching fractions of the B semileptonic decays other
than B! �‘� (varied within the current knowledge [11]).

In the second analysis, we reconstruct the Btag meson in
a set of purely hadronic final states B! D���X. We recon-
struct D0 mesons in K���, K����0, K�������, and
K0
S�
��� decays and D� mesons in K�����,

K������0, K0
S�
�, K0

S�
��0, and K0

S�
����� decays.

The D� mesons are reconstructed in D0��, D0�0, and
D0� decays. The hadronic system X has a total charge
�1 and is composed of n1�� � n2K� � n3�0 � n4K

0
S,

where n1 � n2 < 6, n3 < 3, and n4 < 3. The total recon-
struction efficiency for a B0 (B�) meson is 0.3% (0.5%).

We separate correctly reconstructed Btag mesons from
the background using two kinematic variables: the beam-
energy substituted mass mES �

���������������������
s=4� jpB

p
j2 and the en-

ergy difference �E � EB �
���
s
p
=2, where

���
s
p

is the c.m.
energy of the e�e� system. We select signal candidates in
mode-dependent �E windows around zero. We apply a
loose selection 5:2<mES < 5:3 GeV and fit the mES dis-
tribution at a later stage to extract the signal yield.

After reconstructing Btag, we look for the signature of a
B! �‘� decay in the recoiling system. The selection
criteria for the pion and lepton candidates are similar to
the first analysis, except (a) the minimum jp‘j for electrons
is 0.5 GeV, and (b) the �0 mass window is 110–160 MeV.
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FIG. 1. Distributions of cos2�B of the (a) B0 ! ��‘�� and
(b) B� ! �0‘�� candidates. The points with error bars and the
shaded histograms are the data in the D mass peak and sideband,
respectively. The curves are the fit results representing the total
(solid), background (dashed), and ‘‘cmb’’ (dotted) components
defined in the text. The fits were performed in bins of q2, but the
results shown are for the complete q2 range.
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We require Eres < 450 MeV for the B0 channel to reduce
the B0 ! ��‘�� background, and no requirement is made
for the B� channel.

The full reconstruction of Btag allows us to determine the
neutrino four-momentum precisely from the missing four-
momentum pmiss � p��4S� � pBtag

� p� � p‘. The miss-
ing mass squared m2

miss peaks near zero for the signal and
extends above zero for the background (see Fig. 2). We
require jm2

missj< 0:3 GeV2 for the B0 channel and�0:5<
m2

miss < 0:7 GeV2 for the B� channel, with the latter being
broader and asymmetric due to the resolution of the �0

energy measurement.
Precise knowledge of pmiss allows us to calculate q2 with

small uncertainties. We divide the signal candidates into
the same three q2 bins as before and subtract the small bin-
to-bin migration as background. In each q2 bin, we obtain
the number of correctly tagged events by an unbinned
maximum likelihood fit to the mES distribution. The PDF
for the signal is determined from MC simulation as a
Gaussian function joined to an exponential tail. For the
background, we use a threshold function of the form
x
��������������
1� x2
p

exp��	�1� x2��, where x � 2mES=
���
s
p

and the
parameter 	 is allowed to float in the fit. Figure 2 shows the
m2

miss distribution obtained by splitting the data samples in
bins of m2

miss and repeating the mES fit.
The signal side of the correctly tagged events may not be

a B! �‘� decay. Contributions from this type of back-
ground are estimated with the MC simulation, as indicated
by shaded histograms in Fig. 2, which are scaled to match
the data in the sideband region 1<m2

miss < 4 GeV2. After
background subtraction, we find signal yields of 31� 7
and 26� 7 events for the B0 and B� channels, respec-
tively, where the errors are statistical.

Instead of estimating the absolute signal efficiency, we
normalize the signal yield to the number of inclusive B
semileptonic decays, B! X‘�, in the recoil of Btag. The
reconstruction efficiencies of Btag and of the lepton cancel
to first order in the ratio between the yields of the signal
and normalization samples. The inclusive branching frac-
tion B�B! X‘�� is taken as 10:73� 0:28% [11]. The
yield of the normalization sample is extracted by a fit to
the mES distribution. The component of the background

that peaks in themES distribution is estimated from the MC
simulation and subtracted. Efficiency differences between
the signal and normalization samples are estimated with
the MC simulation, and the corresponding corrections are
applied to the result.

The measured branching fractions are summarized in
Table I. The largest source of systematic error is the limited
statistics of the signal MC sample. Other significant
sources include the modeling of the signal PDF (studied
with alternative fitting methods), photon-energy measure-
ment, �0 reconstruction, muon identification, and the
branching fractions of nonsignal B! Xu‘� decays.

We take weighted averages of the measured partial
branching fractions in each q2 bin. The results for the B0

and B� channels are consistent with the isospin relation
��B0 ! ��‘��� � 2��B� ! �0‘��� and the lifetime ra-
tio 
B�=
B0 � 1:081� 0:015 [11], with �2 � 5:2 for 3 de-
grees of freedom. Assuming isospin symmetry, we
combine the B0 and B� channels and express the results
as the B0 branching fraction in the last row in Table I. The
overall �2 is 10.2 for 9 degrees of freedom.

We extract jVubj from the partial branching fractions
�B using jVubj �

���������������������������
�B=�
B0���

p
, where 
B0 � �1:536�

0:014� ps [11] is the B0 lifetime and �� � ��=jVubj2 is
the normalized partial decay rate predicted by the form-
factor calculations. We use the light-cone sum rules calcu-
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FIG. 2. Distributions of m2
miss of the (a) B0 ! ��‘�� and

(b) B� ! �0‘�� candidates. The points with error bars are
the data. The histograms represent, from the lightest to the
darkest, the MC simulation of the B! �‘� signal, b! u‘�,
b! c‘�, and other backgrounds. The arrows indicate the re-
gions in which the signals are extracted.

TABLE I. Partial and total branching fractions, in units of 10�4, measured with the semileptonic and hadronic tag analyses. The q2

ranges are in GeV2. The errors are statistical and systematic. The combined results are expressed as B0 ! ��‘�� branching fractions.

q2 < 8 8< q2 < 16 q2 > 16 q2 < 16 Total

B0 Semileptonic 0:50� 0:16� 0:05 0:33� 0:14� 0:04 0:29� 0:15� 0:04 0:83� 0:22� 0:08 1:12� 0:25� 0:10
Hadronic 0:09� 0:10� 0:02 0:33� 0:15� 0:05 0:65� 0:20� 0:13 0:42� 0:18� 0:05 1:07� 0:27� 0:15
Average 0:38� 0:12� 0:04 0:33� 0:10� 0:03 0:47� 0:13� 0:06 0:72� 0:16� 0:06 1:19� 0:20� 0:10

B� Semileptonic 0:18� 0:08� 0:02 0:45� 0:13� 0:05 0:10� 0:12� 0:04 0:63� 0:16� 0:06 0:73� 0:18� 0:08
Hadronic 0:16� 0:11� 0:03 0:39� 0:16� 0:06 0:26� 0:12� 0:06 0:56� 0:19� 0:08 0:82� 0:22� 0:11
Average 0:18� 0:07� 0:02 0:43� 0:10� 0:04 0:22� 0:09� 0:05 0:61� 0:12� 0:05 0:82� 0:15� 0:09

Combined 0:36� 0:09� 0:03 0:52� 0:10� 0:04 0:46� 0:10� 0:06 0:87� 0:13� 0:06 1:33� 0:17� 0:11
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lation [5] for q2 < 16 GeV2 and the lattice QCD calcula-
tions [6–8] for q2 > 16 GeV2. The results are shown in
Table II.

In conclusion, we have measured the B! �‘� branch-
ing fraction as a function of q2 using tagged B meson
samples and have extracted jVubj. The measured total
branching fraction B�B0 ! ��‘��� � �1:33� 0:17stat �

0:11syst� � 10�4 has the smallest systematic uncertainty
among the existing measurements [2–4] thanks to the
superior signal purity, and the overall precision is compa-
rable to the best. Using theoretical calculations of the form
factor, we obtain values of jVubj ranging between 3:2�
10�3 and 4:5� 10�3. As an example, the recently pub-
lished unquenched lattice QCD calculation [6] gives
jVubj � �4:5� 0:5stat � 0:3syst

�0:7
�0:5FF� � 10�3. Improve-

ment will be possible with additional data combined with
more precise form-factor calculations.
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TABLE II. Values of jVubj derived using the form-factor cal-
culations. The first two errors on jVubj come from the statistical
and systematic uncertainties of the partial branching fractions.
The third errors correspond to the uncertainties on �� due to the
form-factor calculations and are taken from Refs. [5–8].

q2 (GeV2) �� (ps�1) jVubj (10�3)

Ball-Zwicky [5] <16 5:44� 1:43 3:2� 0:2� 0:1�0:5
�0:4

Gulez et al. [6] >16 1:46� 0:35 4:5� 0:5� 0:3�0:7
�0:5

Okamoto et al. [7] >16 1:83� 0:50 4:0� 0:5� 0:3�0:7
�0:5

Abada et al. [8] >16 1:80� 0:86 4:1� 0:5� 0:3�1:6
�0:7
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