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A B S T R A C T

Combining existing datasets to investigate key questions in developmental cognitive neuroscience brings exciting 
opportunities and unique challenges. However, many data pooling methods require identical or harmonized 
methodologies that are often not feasible. We propose Integrative Data Analysis (IDA) as a promising framework 
to advance developmental cognitive neuroscience with secondary data analysis. IDA serves to test hypotheses by 
combining data of the same construct from commensurate (but not identical) measures. To overcome idiosyn
crasies of neuroimaging data, IDA explicitly evaluates if measures across studies assess the same construct. 
Moreover, IDA allows investigators to examine meaningful individual variability by de-confounding source- 
specific differences. To demonstrate IDA’s potential, we explain foundational concepts, outline necessary steps, 
and apply IDA to volumetric measures of hippocampal subfields from 443 4- to 17-year-olds across three in
dependent studies. We identified commensurate measures of Cornu Ammonis (CA) 1, dentate gyrus (DG)/CA3, 
and Subiculum (Sub). Model testing supported use of IDA to create IDA factor scores. We found age-related 
differences in DG/CA3, not but CA1 and Sub volume in the integrated dataset. By successfully demonstrating 
IDA, our hope is that future innovations come from the combination of existing neuroimaging data to create 
representative integrated samples when testing critical developmental questions.

1. Introduction

As multi-site studies produce large-scale data to investigate key 
questions in developmental cognitive neuroscience, combining existing 
datasets brings exciting opportunity and unique challenges. Big Data 
methods have become popular to analyze data from population-based 
samples, but they have several requirements that limit their applica
tion, including identical data collection protocols and analytic ap
proaches across contributing datasets (e.g., Marzi et al., 2024; Tozzi 
et al., 2021). However, identical assessments are not always feasible for 
different samples across development. Applied to neuroimaging data, 
forced harmonization of parameters is not a perfect solution to 
site-specific and sample-specific variability (Marzi et al., 2024). The 

high cost associated with large-scale neuroimaging studies compels the 
research community to leverage existing datasets despite their differ
ences, underscoring the need for alternative approaches that might 
support analysis of combined data even when data collection protocols 
are not identical or harmonized from the start. Integrative Data Analysis 
(IDA) is a promising latent modeling approach to address this need that 
allows combining data from multiple studies with similar (but not 
necessarily identical) assessments (Curran et al., 2016; Curran and 
Hussong, 2009; Hussong et al., 2013). The IDA framework explicitly 
evaluates pooled measurements to ensure valid construct estimation, 
which can overcome idiosyncrasies of neuroimaging data from differ
ences in acquisition parameters, scanning environments, and anatomical 
segmentation protocols.
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In secondary data analysis, the data can be used to replicate or 
extend previous findings and potentially address questions not tested in 
the original studies from which the samples were drawn. Developmental 
cognitive neuroscientists can cover a larger range of development pe
riods and include participants from across the lifespan in a more time- 
and cost-effective manner than a single-site study can. Existing datasets 
have the clear benefit of having already been collected but are often 
viewed with the limitation to innovation as they are restricted to the 
specifics of a single sample. With IDA, investigators can leverage mul
tiple datasets to create an aggregated large sample, with greater de
mographic representation, and even with longitudinal measures if 
constructs of interest (not specific measures) can be identified within the 
sets and reasonable psychometric assumptions are met. The era of open 
data and cumulative science approaches provide a way to generate new 
hypotheses, address innovative research questions in a feasible time 
frame with minimal infrastructure investment, while setting the foun
dation for planning and optimization of future studies.

1.1. Approaches to cumulative science

Interest in combining data across studies to address developmental 
questions is not new (Greenhoot and Dowsett, 2012). At the core of 
developmental cognitive neuroscience are questions of individual dif
ferences in development and their contributing factors. Measured vari
ability is the sum of two parts: true individual differences in the 
population and measurement error (Schmidt et al., 2003). When 
combining data from multiple sources, measurement error that is 
source-specific and correlates with true individual differences cannot be 
easily filtered from the analysis. The well-known idiom, “Don’t throw 
the baby out with the bath water” (in the original German: 1512, 
Murner) aptly illustrates removing measurement error at the expense of 
meaningful variability. This has implications for our ability to draw 
meaningful inferences from the data; either too much measurement 
error remains and systematically biases inferences, or we have 
over-corrected and diminished the individual differences of interest. 
One logical response is to standardize measurement so to reduce po
tential source-specific differences at the start—all baths are the same 
size for all babies, and so we can perfectly filter the same volume of 
water. In practice this often falls short because even standardized 
measurement is imperfect and rarely does one-size fit all sub-groups. 
While addressing one problem, forced standardized methods often 
reduce sensitivity to true variability and diversity of samples, collec
tively obscuring the true individual differences in the population and 
generalization back to the individual. Not all babies are the same so not 
all baths should be identical, and yet our research still needs to collec
tively describe the experience of all babies without murky water. In this 
section, we briefly review different approaches available to analyze data 
from different sources that were not intentionally collected together so 
to highlight the value of IDA in the field of development cognitive 
neuroscience.

1.1.1. Meta-analysis
Rather than standardizing methods in data collection, meta-analytic 

techniques provide a means of integrating information across studies 
through the analysis of individual study summary statistics. This 
approach enables the integration of findings from a large number of 
studies into one analysis and it is minimally reliant on data sharing 
(Chan and Arvey, 2012). However, because meta-analysis does not 
integrate raw data, researchers are limited to addressing questions 
related to effects estimated and participant data reported in each indi
vidual study. The use of summary information also limits researchers’ 
ability to explicitly test equivalence of measurements across studies and 
account for different sources of variance, which are the foundational 
assumptions for inference from combined analysis. Combining summary 
statistics from samples with different diversity representation improves 
external validity over any one study with limited diversity; however, the 

individual study estimates are sample-specific and thus limited in that 
regard. Potential idiosyncrasies of the study protocols or sample repre
sentation can be coded and tested as covariates or moderators in the 
analysis. This highlights the use of meta-analysis to test new hypotheses 
of conditional effects, but as a solution to correlated measurement error 
it shares the same limitations as other regression covariate approaches. 
Moreover, meta-analytic approaches often rely on published findings. 
While some researchers solicit results from unpublished data, the “fil
e-drawer problem” may pose a practical problem if not considered. If 
there is bias identified (Lin and Chu, 2018) in the included studies, and 
null findings are not accounted for, it is difficult to draw meaningful 
inference from the results of the meta-analysis.

Overall, meta-analysis is particularly effective for summarizing the 
current state of the science, and to highlight trends and future directions 
for further investment. However, it has significant limitations as a 
technique to test new research questions with existing data.

1.1.2. Mega-analysis: regression models with adjustment by covariate or 
clustered data

Methods that apply regression to combine data from different sour
ces are organized under the umbrella of mega-analysis. In mega-analysis 
approaches, individual-level data pooled from multiple studies are 
analyzed simultaneously. Often, the original individual data are shared; 
when applied to neuroimaging, for example, the raw image files would 
be shared and processed using the same parameters (Bockholt et al., 
2010; De Wit et al., 2014). In mega-analysis, measurements are required 
to be identical (Hofer and Piccinin, 2009) and are combined into a 
common dataset (Boedhoe et al., 2019). Regression approaches that are 
applied (i.e., multiple regression, analysis of covariance, generalized 
estimating equations) provide parameter estimates and standard errors 
pooled across studies as a grand, fixed effect estimate (Hao et al., 2023). 
If all measurement error were identical across studies, this approach 
would be effective; however, this is a substantial statistical assumption. 
Pooled standard error typically includes multiple sources of variance, 
not all identical across data sources or individuals in any given sample, 
thus entangling it with the meaningful individual differences of interest. 
Under the umbrella of mega-analysis, mixed effects models allow 
additional options to account for individual- and study-related factors as 
either fixed or random effects.

Here we provide a brief summary of three general approaches that 
could be taken to mega-analysis. As a starting point for discussion, one 
approach in concept could be that data are pooled and treated as if 
belonging to a single study and no statistical accounting of source is 
made. This approach would hold the loftiest assumptions that all mea
surements were perfectly reliable, and all variances should be treated as 
true individual differences. However, to our knowledge, this is rarely 
done in practice and existing literature has highlighted the risks of not 
accounting for the source of data when combining information into a 
single data set (Bayer et al., 2022). Second, a covariate that codes for 
source is included in the regression or in its extension of ANCOVA. The 
regression weights are independent effects, fully adjusted for the co
variate, thus any predictor effects can be interpreted as wholly separate 
from source. In this approach, the challenge presents with the common 
scenario of measurement error that is correlated with sample de
mographics or predictors of interest; that portion of the true variability 
is then removed along with the measurement error. For example, in a 
combined dataset if only one site collected data from 5–8-year-olds, age 
would be confounded with site; thus, when site is entered as a covariate 
it will reduce the independent estimate of age effects. This challenge 
becomes more insidious when we consider combining convenience 
samples, and representation of racial/ethnic diversity, socioeconomic 
factors, and environmental exposures that are specific to study sites. In 
addition, the individual data are clustered within source (as in the 
example, children within site) and this typically will not meet the 
assumption of independence of residuals that is required for unbiased 
estimates with ordinary least squares regression.
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The alternative third approach treats data as clustered within source 
and auto-correlations among residuals are adjusted via generalized 
estimating equations or mixed effects methods (Boedhoe et al., 2019). 
This approach allows a great deal of flexibility, especially in situations 
where the study design is unbalanced, requiring a level of data man
agement that may be easier to implement (Curran, 2003). Further, this 
approach has been applied successfully to neuroimaging data (e.g., 
Boedhoe et al., 2019). Overall, because covariance structures among 
individual-level data and higher-level data (e.g., study site) are dis
aggregated simultaneously, these methods are exceptionally effective as 
a correction for non-independence. Previous research with data simu
lation has effectively demonstrated that mixed effects modeling out
performs the other regression approaches we review in reducing bias in 
the point estimates, appropriately controls for type I error within the 
model, and improves inferences on the source of variability in IDA 
(Wilcox and Wang, 2023).

Similar benefits extend to IDA within the structural equation model 
(SEM) framework to model individual-level and study source-specific 
heterogeneity. Under certain constraints, mixed effect models and 
SEM can provide equivalent estimates with nested data, including op
tions for fixed and random effects, and longitudinal analysis (Curran, 
2003). The SEM framework to support IDA provides additional oppor
tunities to mixed effect models that will be appealing for some hy
pothesis tests in developmental cognitive neuroscience. For example, if 
the data to be integrated is an outcome measure in the hypothesis test (e. 
g., brain volume predicted by age), mixed effect models and IDA sup
ported by SEM are expected to perform similarly. But, if the integrated 
factor score is to be used as a predictor of other integrated factor scores 
(e.g., brain volume predicting cognition), the SEM framework support
ing IDA provides more flexibility to develop the factor specifications and 
the subsequent hypothesis models. Additionally, in SEM, factor loadings 
of separate indicators need not be identical, nor residual variances 
equated across indicators, and study-by-covariate interactions can be 
tested (Curran, 2003). Further, through the use of latent factors with 
multiple indicators, SEM has the ability to estimate parameters inde
pendent of measurement error estimates. In the context of IDA, this is a 
key strength that provides the means to assess meaningful develop
mental differences in similar, albeit not identical, measures (Curran, 
2003).

As a set of methods, mega-analysis is appealing for using familiar 
analytic strategies from single-study designs, but an investigator must 
consider the limitations of likely over-correcting for measurement error 
and reducing sensitivity to specific effects of interest when assumptions 
of equivalent factor loadings or residual variances cannot be met.

1.1.3. Principal component scores
Principal component analysis is an alternative to mega-analysis with 

a single measure, as it creates new individual scores that combine 
multiple measures of a construct with the opportunity to aggregate data 
across different sources. This approach reduces the number of variables 
in the combined dataset into a user-defined number of principal 
component (PC) scores via linear combination of the original variables 
(Jolliffe, 2002). The PC scores are intended to maximize the amount of 
variance retained from the original variables while remaining uncorre
lated with each other, and the unit of measurement for each variable 
becomes standardized via a correlation or covariance matrix. Although 
all to-be-combined samples must have the same assessments collected, 
the method does not require the measured variance to be identical 
across data sources to compute a PC score that can be directly compared 
in a combined analysis. Despite its advantages, the PC score can be 
difficult to interpret for at least two reasons. First, the PC procedure is 
designed for data reduction and so it does not independently estimate 
measurement error apart from the true individual differences that are 
assumed for interpretation (Raykov et al., 2017); a PC score will contain 
correlated error. Second, PC scores are descriptive rather than inferen
tial (Jolliffe and Cadima, 2016). As an example, applied to 

neuroimaging data, gray-white matter contrast on images is affected by 
true developmental changes in the brain and noise from imaging pa
rameters; the PC score cannot differentiate these sources when there are 
site differences in the distribution of age and without independent 
measures of imaging noise by site. The noted limitations reduce 
construct validity of the PC score in an effort to mitigate systematic 
measurement error, subsequently limiting the ability to make mean
ingful inferences about developmental constructs.

1.1.4. Machine learning
In recent years, machine learning (ML) approaches have gained 

traction in cognitive neuroscience research (Rosenberg et al., 2018). In 
general these approaches use neuroimaging data in tandem with pre
diction algorithms to account for correlations among features of data 
(Chen et al., 2022; Jollans et al., 2019; Marzi et al., 2024). Often, these 
approaches aim to harmonize neuroimaging data acquired from 
different sources by accounting for site-related differences in order to 
increase accuracy in predicted outcomes (Jollans et al., 2019). See 
Cohen et al. (2017) and Davatzikos (2019) for commentaries and re
views of the rapid expansion of these methods. A common limitation of 
these approaches, and most others we have reviewed, is forced harmo
nization and the requirement of identical scan parameters. For example, 
ML was applied to data from 36 neuroimaging studies to remove the 
effect of site from the covariance structure using a PC approach. 
Although successful in mitigating differences between sites, the authors 
noted an overcorrection of the data. While ML can provide exciting 
avenues for researchers when combining data, this study highlights the 
risk of ML approaches removing meaningful individual-level differences 
that correlate with site, including demographic and socioeconomic 
characteristics, and this risk is a warranted consideration of the method 
(Chen et al., 2022).

1.1.5. Summary discussion of limitations
An exhaustive treatment of each class of these statistical approaches 

is beyond the purview of this paper. Our intention is to summarize 
common approaches to cumulative data analysis in developmental 
research that have shared limitations to addressing the challenges of 
combining existing, multi-study data that were not intentionally 
collected together. The greatest limitation of these approaches is 
diminished sensitivity to detect individual differences in development in 
the procedure to account for source-specific measurement error. This 
can reduce statistical power and external validity of the results. The 
second noted limitation was requiring identical measurements, or 
harmonization, as a starting condition to combine original source data. 
Even with substantial amounts of open data sources, this requirement 
makes many research questions intractable and aggregated large sample 
sizes less feasible.

In developmental research, the restriction of using identical mea
sures also hampers the ability to investigate constructs across the life
span, as many tasks are modified for developmental stage. For example, 
populations that require specialized sequences, such as shorter scan 
times for very young children, could not be combined with standard 
scans in older participants. Further, these approaches do not provide 
straightforward means to evaluate measurement invariance over time in 
cumulative analysis or valid estimates with partially missing data at the 
individual-level, both necessary features for longitudinal data modeling, 
which is central to investigations of developmental change. The IDA 
framework has been developed to address these limitations (Lambert 
et al., 2002; McArdle et al., 2002).

1.2. Integrative data analysis

IDA is an applied latent modeling technique that pools different 
measurements of the same construct across samples into a combined 
dataset (Curran et al., 2008, 2016; Curran and Hussong, 2009; Hussong 
et al., 2013). As a latent modeling method, all factor scores include 
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independent estimation of measurement error apart from the individual 
score, an advantage to the main critique of PC scores. The benefits of 
latent factor scores combined with larger integrated developmental 
samples spanning greater developmental periods, across different 
geographic regions, and with greater diversity representation collec
tively improve the validity of the IDA as compared to analysis of any 
single study (Hussong et al., 2013). IDA has advantages over 
meta-analysis by testing new hypotheses from aggregated data that go 
beyond the constraints of any single study, such as questions related to 
diversity and differential development effects (Hussong et al., 2013).

A unique feature of IDA that sets it apart from the other reviewed 
methods is that it does not require identical measures as a starting 
condition. A common construct is required to ensure valid interpreta
tion, but otherwise different assessments and protocols can be applied. 
This is a particular strength when applied to neuroimaging data. In 
addition, this approach does not require raw neuroimaging data, but 
instead can rely on derivative measures that help ensure no privacy 

issues arise in the sharing of data (White et al., 2022). Given that 
developmental research typically employs assessments designed to be 
tailored to the age group of interest, the ability to integrate data across 
study sites without the restriction of identical measurement creates an 
exciting opportunity to study wider developmental periods and new 
questions on individual-level contextual factors.

In this manuscript, we provide a proof of concept demonstrating the 
feasibility of applying IDA in developmental cognitive neuroscience 
using neuroimaging studies of hippocampal subfield volumes conducted 
at multiple sites. Descriptive statistics were calculated using IBM SPSS 
Statistics Version 28 (Chicago, IL) (Step 2B). All other analyses in our 
demonstration of IDA were conducted using Mplus 8.10 (Muthén and 
Muthén, 2017). However, any software suitable for SEM can be used (e. 
g., lavaan; Rosseel, 2012). To support the application of IDA to addi
tional areas of developmental cognitive neuroscience, we provide a 
detailed description of the IDA method applied to neuroimaging data 
and outline the conceptual and statistical modeling steps that other 

Fig. 1. Schematic figure depicting the process of Integrative Data Analysis (IDA).
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scientists can apply to their research questions.

1.3. Summary approach and methods

We apply the IDA framework to pool three existing pediatric samples 
examining hippocampal subfields into a combined dataset that is 
geographically and demographically diverse, to demonstrate good sta
tistical power and validity of results. As of the time of this writing, the 
field of research on in vivo hippocampal subfields has many variations of 
segmentation protocols that have many similarities but also substantial 
anatomical differences. Because there is currently no consensus on 
definitions on the boundaries of human hippocampal subfields for in vivo 
imaging, and all protocols have undergone validation with different 
histological reference materials, the various protocols are comparably 
valid. With variations in neuroimaging parameters, scanning environ
ments, and anatomical segmentation protocols, research questions using 
existing hippocampal subfield data should not be simply merged for a 
mega-analysis. We considered this an interesting opportunity to test IDA 
with measures of hippocampal subfields in which researchers chose 
imaging parameters and segmentation protocols that best suited their 
original research questions with their sample. Instead of “throwing out” 
different protocols, forcing adoption of a single protocol, or re- 
processing all data with one segmentation protocol that may be sub- 
optimal for an individual site sample, IDA leverages all data in combi
nation to extract shared variance indicative of true individual differ
ences in hippocampal subfield volumes apart from source-specific 
idiosyncrasies. Here we will demonstrate the use of this method to create 
estimates of developmental differences with independent estimation of 
measurement error from similar, but not identical, measurements of 
hippocampal subfields. Fig. 1

1.4. Step 0. Explicate theoretical question(s) of interest

The critical starting point of the IDA framework is determining if the 
research questions to be tested are suitable. As with other approaches to 
secondary data analysis, researchers are limited to data already 
collected. Existing datasets will vary in the sample characteristics, 
constructs assessed, and measures used to assess the constructs. Thus, 
the first step in evaluating the appropriateness of this approach is to 
determine whether existing datasets provide a good match to an in
vestigator’s research questions.

In the applied example, hippocampal subfield volumes are a key 
measurement in current investigation of memory development, yet 
these structures are measured using different definitions and acquisition 
parameters across studies—an example of a common construct but non- 
identical assessment. Work in non-human primates and post-mortem 
human samples suggests different developmental trajectories of hippo
campal subfields: earliest maturation of the subiculum (Sub), followed 
by Cornu Ammonis (CA) 1 and 2, and dentate gyrus (DG) as the most 
protracted (Lavenex and Banta Lavenex, 2013; Seress, 2001; Seress and 
Ábrahám., 2008). Most evidence using high-resolution imaging data of 
the Hippocampus comes from cross-sectional studies and is inconsistent. 
For example, studies report positive age-volume relations for DG 
(Canada et al., 2021; Schlichting et al., 2017) and Sub (Canada et al., 
2021); negative age-volume relations for DG/CA3 (Daugherty et al., 
2016), CA1 (Daugherty et al., 2016), and Sub (Schlichting et al., 2017); 
and null effects for CA1 (Canada et al., 2021; Riggins et al., 2018; 
Schlichting et al., 2017) and Sub (Daugherty et al., 2016; Lee et al., 
2014; Riggins et al., 2018). Extant findings likely vary because indi
vidual studies are limited in representation and sample size, and differ in 
the age-range examined, methodological approach, and atlases used to 
define hippocampal volumes. Inconsistencies in findings across studies 
are not specific to the study of hippocampal subfields, but this example 
highlights the difficulty researchers can face in drawing inferences 
related to normative development from this literature and the implica
tions variability in measurement has for integrated interpretation.

Despite variations in specific results, studies provide converging 
evidence that hippocampal subfields follow distinct non-linear devel
opmental trajectories, with larger CA1 and DG/CA3 volumes early in 
development followed by volumetric decreases as children enter 
adolescence and adulthood. Smaller volumes from childhood to adult
hood appear to reflect hippocampal subfield maturity: larger CA1 and 
DG/CA3 volumes correlate with better memory performance in younger 
children, whereas smaller volumes correlate with better performance in 
older children, adolescents, and young adults (Canada et al., 2018; 
Riggins et al., 2018; Schlichting et al., 2017; Tamnes et al., 2014; 
although there are exceptions, Bouyeure et al., 2021). Yet, due to the 
limitations within single studies noted above, this hypothesis of distinct 
developmental differences has not been adequately tested. Knowledge of 
typical developmental differences in hippocampal subfield volumes is a 
first step toward building a mechanistic view of neurodevelopmental 
disorder progression. This study demonstration will test the hypothesis 
that hippocampal subfield volumes differentially relate to age across 
development, with age-related differences in DG/CA3 volume, but not 
CA1 or Sub volume.

1.5. Step 1. Find your team and obtain data

1.5.1. 1A. Identify IDA team and datasets
As noted above, the first step of identifying datasets in IDA is driven 

by the questions motivating the research. Early leaders in developing 
IDA threaded the importance of collaborative teams throughout the 
process (Curran and Hussong, 2009; Hussong et al., 2013). Gathering 
available data requires building a team that can provide input on the 
measures used and nuances of each study. The standout strength of IDA 
is the ability to include measures of the same construct from multiple 
samples that need not use identical measurement tools for all individuals 
across samples. However, some overlap in the measures used across 
samples or representation of key sample features, like age, is needed 
(Curran and Hussong, 2009; Hussong et al., 2013). Finally, IDA cannot 
overcome data with poor reliability or poor construct validity. The 
ability to draw strong inferences from the integrated sample begins with 
the quality of measurement in the original studies.

1.5.2. 1B. Obtain and organize data
A time intensive and often overlooked step in secondary data anal

ysis is the organization of existing data from different sources. Orga
nizing data for integration requires ensuring the shared data are both 
complete and variables of interest understood. This means, for example, 
a data dictionary for each source is provided to ensure understanding of 
the included variables such as the variable definition and measurement 
scale. This step might include initial recoding of identical variables to be 
on the same scale; for example, ensuring reported sex is coded the same 
across all studies. This step provides an opportunity to identify missing 
variables and ensure a clear understanding of which variables reflect the 
intended construct across studies.

1.5.3. Applied demonstration sample
Following steps 1A and 1B, the integrated sample in this demon

stration includes high-resolution images of the medial temporal lobe 
collected from 443 4- to 17-year-olds recruited to three existing inde
pendent studies of healthy brain development (Table 1). The full range 
of the integrated sample extended to age 25 years. However, given the 
reliance on a single site for estimates beyond age 13 years, we excluded 
individuals aged 18 years and above due to low coverage (n = 30).1

Studies differed in measurement methods and geographic diversity, and 
the overlapping age ranges allowed stitching the samples together to test 
hypotheses across a 14-year developmental span (Fig. 2).

1 Results of the example hippocampal subfields integrated sample did not 
substantially differ from the reported titrated sample.
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1.6. Step 2. Create integrated dataset

1.6.1. 2A. Select commensurate items
Once source data are identified, the next key step is to review vari

ables of the same construct. Although IDA does not require identical 
measures, all measures to be combined need to be commensurate. 
Commensurate measures are considered valid assessments of a shared 
construct and have scale properties that allow aggregation. For example, 
if two studies surveyed the presence of the same behavior, one survey 

might ask parents if the behavior is present (1) or absent (0), while the 
other survey may ask parents if the behavior is always present (2), 
sometimes present (1), or absent (0). Here, an investigator could recode 
responses from the second survey to combine always present (2→1) and 
sometimes present (1) into a single category to align with the first sur
vey. The value of a team for joint expertise to adjudicate items and 
determine recoding is at the heart of IDA.

In the presented example, we reviewed the boundaries and labels of 
the three different protocols prior to analysis (Bender et al., 2013; 
Iglesias et al., 2015; La Joie et al., 2010; Fig. 3). The protocols had a 
number of regions that were mostly redundant in anatomical repre
sentation, although specific boundaries did vary somewhat. The 
exception was different allocation of the CA2 label across protocols, in 
addition to the variable use of CA4 as a label across protocols. The team 
agreed that the commensurate measures reflected constructs of CA1, 
DG/CA3, and Sub across all three protocols. Another example was the 
length of the hippocampus measured: some protocols were exclusive to 
the body of the hippocampus (the majority of the length) whereas others 
included different extents of anterior regions. Because there is majority 
consensus from histologists regarding the boundaries of subfields within 
the hippocampal body, but continued disagreement about definitions 
within the hippocampal head (Wisse et al., 2020), data were selected for 
the hippocampal body to create commensurate measures. Note that the 
data required for this demonstration are not the original MR images 
(scan data). Instead, IDA leverages derivative measures of MRI, illus
trated here with estimated volumes, that can be shared using low 
resource intensive files, such as spreadsheets or comma-separated value 
text-based documents. This underscores the utility of IDA for open data 
sharing with low infrastructure cost. Once this step is completed, the 
investigator has a data file with commensurate measures aggregated in a 

Table 1 
Sample size by site and chronological age in years.

Site N 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Detroit 173 - 13 15 4 11 12 12 11 13 7 6 11 9 11
College Park 148 38 20 35 28 27 - - - - - - - - -
Davis 122 - - - 8 18 28 36 25 6 1 - - - -
Total 443 38 33 50 40 56 40 48 36 19 8 6 11 9 11

Fig. 2. Distribution of 443 participants in the full integrated sample by site and 
chronological age in years. Note overlap of the Detroit sample (n= 173; pink) 
with both the College Park (n = 148; purple), and Davis (n = 122; or
ange) samples.

Fig. 3. A) Conceptual depiction of commensurate measures of hippocampal subfield volumes using right and left ROIs integrated across B) three different study sites 
and protocols: Detroit (Bender et al., 2013, 2018), College Park (Riggins et al., 2018; adapted from La Joie et al., 2010), and Davis (Iglesias et al., 2015). C) Dis
tributions of unadjusted measured right and left measures of DG/CA3, CA1, and Sub subfield volumes from the College Park (purple), Detroit (pink), and Davis 
(orange) study sites.
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column vector.
IDA can still leverage the strengths of mixed methods approaches 

that we reviewed. When pooling data across studies, there are two ap
proaches to consider and evaluate heterogeneity in the combined sam
ple due to study source-specific characteristics (Curran and Hussong, 
2009). One approach is to treat each of the study samples as random 
draws from a large population of studies, called “random-effects IDA.” 
This approach allows investigators to assess the data using random ef
fects modeling and to treat study as a nesting variable to account for 
between-study variability. The “random-effects IDA” approach assumes 
the ability to theoretically establish that each included study is sampled 
from a single population of studies (Curran and Hussong, 2009). If the 
studies identified for IDA differ in theory or design, they should not be 
treated as random draws from a single population of studies, and a 
“fixed-effects IDA” instead treats each study as part of an available fixed 
set of studies (Curran and Hussong, 2009). In data simulations with 
mixed linear modeling, random effects models appeared to provide the 
most robust control of type I error across individual- and source-specific 
levels of the analysis; however, these models are difficult to converge 
when integrating data from only a few studies, in which case a fixed 
effects approach is recommended (Wilcox and Wang, 2023). In the 
current demonstration, we adopted a fixed-effects IDA and study site 
becomes a covariate in the model to account for between-study vari
ability in the measurement.

1.6.2. Step 2B. Data visualization and screening
After selecting and organizing data, the combined dataset should be 

examined with common data screening practices and to ensure variables 
are correctly coded by site.

In the presented example, data were examined for univariate and 
multivatiate outliers within each individual study to ensure no errors in 
data entry or processesing occurred (e.g., negative volumes are impos
sible). Univariate and multivariate outliers were then identified in the 
combined sample to be flagged for subsequent analyses. Univariate 
outliers were determined by examining Z value of |3.3| reflecting more 
than 3 standard deviations from the mean, and multivariate outliers 
using Mahalanobis distance. Nine multivariate outliers were identified 
in this demonstration: 3 from the Detroit sample, 2 from the College Park 
sample, and 4 from the Davis sample. Univariate and multivariate out
liers were identified in the combined dataset and model results with and 
without outliers were compared to ensure effects were not obscured or 
inflated by outlying data points.

We also examined differences in predictors and covariates of interest 
(i.e., Age, Sex, intracranial volume; ICV) across study sites using 
ANOVA. Age of participants differed by study site (see Fig. 2). The result 
of this screening step supports a need to disengtagle the effects of site 
and age in subsequent analyses in order to draw valid inferences. The 
ability to integrate across samples to examine larger developmental 
spans is a strength of IDA, but, researchers must be cognizant of how to 
best analyze the combined dataset.

1.7. Step 3. Establish factor invariance

Up to this step, the previous procedures have aggregated data similar 
to mega-analysis. In step 3, we now confirm that the combined 
commensurate measures operate comparably between sites. We estab
lished factor invariance by testing the necessary assumptions that allow 
commensurate (not identical) measures to be combined, with indepen
dent estimation of measurement error. This is the linchpin step that 
distinguishes IDA from all the other approaches we reviewed. In IDA, 
integrating data across studies requires establishing that the same 
construct is assessed across studies, which is represented in the latent 
score (Curran and Hussong, 2009). This is an implicit assumption to all 
other methods we reviewed, but an explicit test in IDA that determines 
the feasibility of the approach for the selected measures and samples. In 
our example, different protocols for defining hippocampal subfield 

volumes are used for measurement of each regional construct. In other 
aspects of developmental cognitive neuroscience, it is likely that dif
ferences will exist in measurements of cognition or psycho-social factors 
across developmental groups and other subgroups. To draw valid con
clusions from integrated data across groups or over time, formal infer
ential tests of measurement invariance for identified commensurate 
items are conducted using confirmatory factor analysis (e.g., Meade and 
Lautenschlager, 2004).

Latent factor scores have no inherent scale by definition, and so must 
be identified with equivalent measurement scale across groups or time 
to allow for valid inferences. This is established with measurement 
invariance. Different levels of measurement invariance can be met: 
configural, weak (i.e., metric), strong (i.e., scalar), and strict invariance 
(Meredith, 1993). Configural invariance tests equivalence of the factor 
structure across groups; weak invariance tests the equivalence of factor 
loadings across groups; strong invariance tests the equivalence of indi
cator intercepts across groups; and strict invariance tests the equiva
lence of indicator residuals across groups (see Fig. 4 for illustrated 
depiction). Much of the literature on measurement invariance is framed 
in comparing groups in cross-sectional study. However, the same prin
ciples apply for variance over time in longitudinal study. Strict mea
surement invariance is not required for IDA; however, it provides the 
strongest evidence that commensurate measures reflect the constructs of 
interest similarly across studies.

At a minimum, weak invariance is required for IDA, otherwise no 
common construct for the aggregated items can exist (Davoudzadeh 
et al., 2020). Specifically, the factor structure and factor loadings should 
be invariant across studies. This allows the metric of the latent factor to 
be estimated consistently and compared across individuals in a com
bined dataset of included studies. This example of partial invariance, 
wherein a subset of the parameters can be held equal over groups or 
time, is sufficient for accurate cross-group comparisons (Byrne et al., 
1989; Van De Schoot et al., 2012; Yoon and Millsap, 2007). The inability 
to establish, at minimum, weak invariance of the latent factor across 
studies indicates a need for investigators to reassess the commensurate 
items selected, ensure measures are comparably coded and re-code if 
necessary, or consider an alternative approach to secondary data 
analysis.

Invariance is tested by imposing model constraints to hold parame
ters equal across sources, or time for longitudinal study. For between- 

Fig. 4. Illustrated depiction of model parameters and constraints needed to 
meet different levels of measurement invariance. Factor loadings (purple) must 
be equal across groups to establish weak invariance (IDA minimum require
ment). Factor loadings (purple) and intercepts (blue) must be equal across 
groups to establish strong invariance. Factor loadings (purple), intercepts 
(blue), and residual variances (pink) must be equal across groups to establish 
strict invariance.
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group comparisons (i.e., different sources, study protocols, sites), multi- 
group models are useful to test the invariance of indicators (Meade and 
Lautenschlager, 2004; Meredith, 1993; Reise et al., 1993; Widaman and 
Reise, 1997). When combining samples across developmental groups or 
other subgroups, different grouping variables can be included to test 
invariance, making IDA a flexible tool to accommodate the different 
idiosyncrasies across designs.

In the current example, invariance was tested using change in fit 
indices with nested model comparisons and set constraints across study 
sites. This begins with an initial model that is evaluated for objectively 
good fit by a set of acceptable fit indices: root mean square error of 
approximation (RMSEA ≤ 0.08 supports good fit; Browne and Cudeck, 
1992), comparative fit index (CFI ≥ 0.95 indicates good fit; Hu and 
Bentler, 1999), and standardized root mean residual (SRMR ≤ 0.08 
supports good fit; Hu and Bentler, 1999). A constrained model was 
rejected if the loss in CFI value was .02 or greater (Putnick and Born
stein, 2016; Rutkowski and Svetina, 2014). Acceptability of models was 
determined using multiple fit indicators, as reliance on a single index to 
assess model fit is often insufficient.

As is the case in most applications of IDA to neuroimaging data, and 
in our example, only two indicator measures are available: right and left 
ROIs. Latent factors are reflective of their indicators, and identification 
typically is with three or more indicators per latent factor (Mueller and 
Hancock., 2018). In applications of IDA with a greater number of in
dicators, differential item functioning of commensurate measures can be 
assessed using moderated nonlinear factor analysis (MNLFA; Curran 
et al., 2014), which is beyond the scope of the current example. The 
“problem of 2” indicators limits the options for constraint to identify a 
latent factor, before even beginning tests of the additional equivalence 
constraints for measurement invariance. Although the “problem of 2” is 
rare in studies of cognitive, psychological, and social constructs, it is a 
common occurrence for neuroimaging data. MRI derivative measures 
typically include two hemisphere measures that represent the same re
gion of interest, or common construct, and so can be used as indicators of 
a factor. The advantage of using the sum volume by hemisphere opposed 
to several individual slice measures is to have higher reliability of the 
measure to start with. Because IDA is beholden to the quality of data that 
goes into this step, measures with high reliability will provide better 
opportunity to isolate true variability in the factor score apart from 
measurement error. There are straightforward solutions to the “problem 
of 2” indicators, whereas there is little to be done with poor reliability of 
starting measures.

Latent factor identification is a balance of degrees of freedom and 
constraints that are plausible in the population. To provide the latent 
factor with scale, factor loadings, measure residuals and intercepts, or 
latent variances can be constrained, and thus not costing a degree of 
freedom to estimate. In a scenario with two indicators, at least two pa
rameters must be constrained to identify the latent factor. When applied 
to neuroimaging data, in which both hemisphere measures are partially 
dependent and equally relevant to the regional construct, it is logical to 
fix the factor loadings for left and right hemisphere measures each to 1. 
In applications to other types of data, typically one indicator would be 
fixed to 1 and the other non-dependent measure would have a factor 
loading estimated but constrained to be equal across groups to meet 
weak invariance. In our application, we identify the latent factor and 
begin with weak invariance by constraining the factor loadings of both 
hemisphere indicators to 1. This factor score is conceptually similar to a 
bilateral sum volume, with consistent calculation across study sites.

There is the added benefit of allowing the residuals and intercepts for 
each left and right hemisphere indicators to be estimated and available 
to test for constraints to evaluate what degree of measurement invari
ance is supported. The additional constraints, if supported, improve the 
quality of subsequent hypothesis testing, including sensitivity of the 
analyses. This is the bedrock of the extracted “IDA factor score.” How
ever, a perfect solution with strict invariance is not required for valid 
inferences in the aggregated data. Note that in applications with 

multiple regions of interest, the same level of measurement invariance 
does not need to be met across regions. Instead, consider a minimum 
standard of weak invariance for each factor to move forward, and note 
all other tests as information gathering for limitations of the subsequent 
analysis. Moreover, the information on the scale properties of the 
measures across samples is highly valuable to the field at large; failures 
in measurement invariance point to future directions for instrument and 
protocol development, not abandonment of the line of research.

In the presented example, partial measurement invariance was sup
ported for all hippocampal subfields. As we described, the specified 
factor loadings each at 1 begins with weak invariance, and all additional 
constraints were imposed sequentially to evaluate if the model fit was 
objectively acceptable, and no meaningful loss in fit by change in CFI. 
When indicator intercepts were constrained to be equal across sites, 
model fit was acceptable using at least two indices of model fit. CA1: CFI 
= 1.00, RMSEA = 0.000 (.000,.083), SRMR = 0.008; DG/CA3: CFI 
=0.992, RMSEA = 0.120 (.000,.237), SRMR =.056; Sub: CFI =.981, 
RMSEA =.132 (.031,.248), SRMR =.042. The models were specified as 
depicted in Fig. 5, with Site used as the grouping variable.

Strict measurement invariance was not met across Site groups for 
CA1, DG/CA3, or Sub. When residual variances were constrained to be 
equal across sites, model fit decreased beyond the acceptable amount (i. 
e., >.02 for CFI). CA1: CFI = 0.769, RMSEA = 0.268 (.211,.329), SRMR 
=.337; DG/CA3: CFI =.767, RMSEA = 0.367 (.311,.427), SRMR =.180; 
Sub: CFI =.819, RMSEA =.237 (.181,.299), SRMR =.205. In the applied 
example, we considered the minimum requirement of partial measure
ment invariance was met for continued analysis.

1.8. Step 4. Latent factor specification

In step 4, we fine tune the integrated factor scores. The tests of 
measurement invariance and the constraints across data sources that are 
supported in step 3 serve to ensure commensurate (rather than identical) 
measures can be integrated and begins to address source-specific idio
syncrasies in the data. We build upon this by adding additional cova
riates at the measurement and latent factor levels to refine statistical 
estimation of measurement error apart from true individual variability. 
There is a rich literature on the use of covariates and demographic 
features to improve the estimation of factor scores as valid representa
tions of the construct in the population (Curran et al., 2016; Curran and 
Hussong, 2009; Davoudzadeh et al., 2020). In IDA, covariates that are 
added predicting the indicator are acting to adjust the individual mea
surement separate from the factor score, whereas covariates of the factor 
are accounting for sources of individual variability that may be mean
ingfully related to the construct. As an example, regional brain volumes 
are typically adjusted for ICV to account for sexual dimorphism in head 
size; a common adjustment is by residualization (i.e., ANCOVA 
approach Jack et al., 1989), which can be implemented by including ICV 
as a predictor of the hemisphere indicators in the measurement model 
(see Fig. 5). Age is a demographic factor of interest, and so can be 
included as a covariate of the factor score in the latent model; inclusion 
at this level of the model improves the estimation of the measurement 
residuals so that true age-related variability is at the factor score and 
mitigate lost to correlated measurement error.

In the present example, after establishing partial invariance of 
measures for each hippocampal subfield independently, the latent 
models for each region were combined into the full integrated model 
from which model-based estimates of each factor score were extracted 
for each individual. All constraints from prior steps were carried for
ward: indicator loadings were constrained to 1 for right and left mea
sures of CA1, DG/CA3, and Sub; indicator intercepts were estimated but 
constrained to be equal across groups; and indicator residual variances 
were freely estimated. To account for correlations between hippocampal 
subfields, latent constructs of CA1, DG/CA3, and Sub were correlated. 
To account for potential hemispheric differences in indicator measures 
due to imaging protocol (e.g., protocols that were aligned to one 
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hemisphere for acquisition), right and left indicator measures were 
correlated.

Age and Sex predicted latent constructs of CA1, DG/CA3, and Sub, as 
well as measured ICV. Biological sex was included in the model to ac
count for potential differences in volume between reported females and 
males. As in the prior steps’ models, all individual hippocampal subfield 
volume measures were regressed on ICV. Age and Sex were correlated by 
virtue of the convenience samples in the source data. Models were fit 
and estimated with robust full information maximum likelihood, which 
is not an imputation approach and instead leverages all available data to 
produce unbiased estimates with data missing at random and including 
auxiliary variables to account for patterns of missing data (e.g., site ef
fects in missing data patterns; Little et al., 2014; McNeish, 2017). Fit for 
the full integrated model was good, CFI = 0.986, RMSEA = 0.074 (.040, 
105), SRMR =.060. Model fit provides evidence that the specified model 
reproduces the observed data well and provides support for the validity 
of the specified factor scores.

From this model, IDA factor scores were estimated per individual and 
exported as a new variable to be used in subsequent hypothesis testing. 
Extraction of the IDA factor score is not often explicit in the literature. 
Instead, there is often reference to “creating harmonized scores for 
subsequent hypothesis testing” (p. 1033, Hussong et al., 2021). This is a 
compromise, in part, out of practical necessity due to the complexity of 
the model and number of parameters to estimate in proportion to 

feasible sample sizes (Hussong et al., 2020). Fig. 6 illustrates the IDA 
factor score estimation and histogram distributions of the scores. There 
remain site differences in the distributions, which is to be expected 
because the distribution of age and other meaningful factors differ by 
site. In the practice of combined secondary data analysis, the purpose is 
not to obliterate all possible site-related differences, but to precisely 
remove the bias of source-specific error in the measurement of interest 
while leaving true individual differences intact.

Although we demonstrate the usefulness of extracted IDA factor 
score in making population-level inferences, it is important to note that 
the extracted model based-estimates are specific to the integrated sam
ple used and as a latent factor score, and thus its metric cannot be 
directly compared to other external measures of the construct (Curran 
et al., 2014). Moreover, the factor score scale is defined within its native 
model, which does not include additional variables planned for hy
pothesis testing. These limitations should be weighed against the 
strengths of the approach including the ability to estimate IDA scores 
from non-identical measurements, with thorough testing of measure
ment invariance, which can still be used to thoughtfully test hypotheses 
in other models.

1.9. Step 5. Hypothesis testing

Finally, having completed steps 1–4, the extracted IDA factor score 

Fig. 5. Supported partial invariance structures across Site for each subfield. Loadings were constrained to 1 for right and left measures of DG/CA3, CA1, and Sub, 
indicator intercepts were estimated but constrained to be equal across groups, and residual variances were freely estimated across groups.

Fig. 6. A) IDA model resulting in factor scores for all 443 individual subjects in the combined dataset. Loadings were constrained to 1 for right and left measures of 
CA1, DG/CA3, and Sub, indicator intercepts were estimated but constrained to be equal across groups, and residual variances were freely estimated across groups. 
Although omitted for simplicity, all subfield indicators were predicted by measured ICV, and measured ICV was predicted by both Age and Sex. This model provides 
measures of hippocampal subfield with equivalent meaning across study sites. B) Distributions of model-estimated values of hippocampal subfields for DG/CA3 
(blue), CA1 (red), and Sub (green) are shown for Detroit (orange), College Park (purple), Davis (pink). The IDA factor scores here reflect the disattenuation of study 
site from ROI measures.

K.L. Canada et al.                                                                                                                                                                                                                              Developmental Cognitive Neuroscience 70 (2024) 101475 

9 



(s) can then be used in subsequent analysis of the hypothesis originally 
identified in step 0, and subject to all typical data screening and 
modeling procedures. In this example, the hypothesis test was done 
using a path model that included the extracted IDA factor scores. This 
final model allows us to test developmental differences in hippocampal 
subfield volumes that are de-confounded from site-related error 
(Fig. 7A). Sex was tested as a covariate and found to be not significant, 
and therefore omitted from further hypothesis testing for parsimony (its 
exclusion did not change the pattern of results). Larger DG/CA3 volume 
significantly related to older age (standardized β = 0.107 p = 0.018; 
Fig. 7B). Similar direction of effects was observed in CA1 (β = 0.052, p =
0.155; Fig. 7C) and Sub volume (β = 0.037, p = 0.051, Fig. 7D), but these 
did not reach statistical significance. Estimated age effects statistically 
significantly differed between DG/CA3 and CA1 (p =.01), but not be
tween DG/CA3 and Sub (p =.25) nor CA1 and Sub (p =.62). Notably, 
Site was still included as a potential covariate of regional volumes in 
order to disentangle the effects of age and study site identified during 
initial data screening (all β = -1.08–.01, p =.00− .86). Remaining site- 
related differences likely reflect differences in meaningful 

demographic factors of interest that vary by geographic regions across 
studies, such as race/ethnicity and sociodemographic status, that can be 
confidently tested in further study with the benefits of the extracted IDA 
factor score. The promise of IDA for testing new questions is on display, 
as other commensurate variables can be included in the model based on 
the hypothesis testing planned.

2. Discussion

Here, we review IDA as a promising method to advance develop
mental cognitive neuroscience with secondary data analysis. IDA allows 
investigators to leverage meaningful variability across individuals while 
de-confounding source-specific differences in neuroimaging measures; 
that is, IDA can help ensure researchers are not “throwing out the baby 
with the bath water.” We found age-related differences in DG/CA3 
volume, but not CA1 and Sub, in an integrated sample of 443 in
dividuals. Our demonstration illustrates the potential of this method to 
enable and facilitate progress in the study of brain development by 
leveraging existing efforts to generate robust insights based on large, 

Fig. 7. A) Model testing hypothesis of age-related differences in hippocampal subfield volumes using extracted IDA factor scores accounting for Site differences not 
related to the measurement. Results of the bolded paths are depicted in scatterplots B, C, and D. In the scatterplots of relations between hippocampal subfield volume 
and age in the full integrated sample, age and each measure of subfield volume have been residualized. These plots demonstrate the strength of the approach, as the 
relation between measures is disentangled from study site differences. Importantly, the distributions still overlap on the y-axis but rank order differences between site 
are no longer present. B) Significant relation between age and DG/CA3 volume in the full integrated sample; C) Non-significant relation between age and CA1 volume 
in the full integrated sample; D) Non-significant relation between age and Sub volume in the full integrated sample.

K.L. Canada et al.                                                                                                                                                                                                                              Developmental Cognitive Neuroscience 70 (2024) 101475 

10 



representative samples.
We have outlined the necessary steps involved in using IDA and 

included a complete demonstration using volumetric measures of hip
pocampal subfields. The existing IDA methods literature has provided a 
strong starting point in foundational concepts (Shrout, 2009), and we 
have built on it to provide a procedural guide for developmental 
cognitive neuroscience researchers to implement on their data. In 
particular, we outline and demonstrate special considerations when 
working with neuroimaging data. As a flexible analytic tool for sec
ondary data, IDA has the potential to set new frontiers in developmental 
cognitive neuroscience, addressing some of the challenges of using other 
cumulative science methods. Beyond providing insights into age-related 
differences in hippocampal subfield volumes across the period of 4- 
to-17-years, our demonstrated successful application and integration of 
commensurate volume measures opens the possibility to test new 
questions of individual differences in brain development that can go 
beyond the limitations of any one study. Given the susceptibility of the 
brain during development to both positive and negative influences, a 
critical goal of many developmental cognitive neuroscientists is to 
identify factors that modify development. However, investigations are 
often limited by sample size and the relatively homogenous de
mographic of individual samples. The IDA approach allows an increased 
sample size and representation of different sociodemographic back
grounds for analysis. In the current demonstration, samples included 
individuals from three different regions of the United States of America: 
the Midwest (Detroit, MI), East Coast (College Park, MD), and West 
Coast (Davis, CA). In addition to differences in the protocols used to 
assess hippocampal subfield volumes, individuals across each of these 
sites likely vary in their racial and socioeconomic makeup. Thus, a next 
step for the combined dataset used in our demonstration is to examine 
how early life SES impacts age-related differences in brain and 
cognition.

Applied to other brain regions and hypotheses, the IDA approach 
outlined here can allow researchers to build understanding of neuro
cognitive development based on large, representative samples that do 
not require identical neuroimaging or cognitive measures (Curran and 
Hussong, 2009; Hussong et al., 2013). The value of IDA to our field is 
further underscored by the limited feasibility of conducting new 
large-scale MRI studies due to time, access, and potential issues of 
sample diversity. In this manner, integrated secondary data analysis is a 
complementary approach to new data collection: we can progress our 
understanding of how the brain develops and supports improvements in 
cognition across development by working collaboratively. Moreover, 
this framework allows researchers to test questions of developmental 
change while explicitly testing the equivalence of constructs across both 
sources of data and time.

Taken together, IDA of existing developmental data can provide 
standalone hypothesis testing of new research questions and provide 
critical information for future data collection efforts to optimize for the 
time and financing available. For example, selection of assessments that 
have compatible psychometric properties but can be customized to 
samples without forced harmonization. Additionally, sensitive devel
opmental periods to prioritize for new data collection can be identified. 
In our future work we will be applying this to test individual differences 
in longitudinal change of hippocampal subfield volumes to identify not 
only average trajectories, but also sensitive periods to sociodemographic 
factors across the integrated diverse sample.

While the focus of our demonstration is the novel application of IDA 
to neuroimaging data, IDA is appealing to developmental research more 
broadly. This framework provides a means for assessing the same 
cognitive and psychosocial constructs across development using 
different stimuli that are age- and population-appropriate. Examples 
include verbal and non-verbal stimuli; computerized vs. paper-pencil 
administration; lab vs. community-based data collection; child vs. 
parent or teacher reporting. Further, it facilitates study of diverse pop
ulations, offering the opportunity to use measures that differ in cultural 

content or administration language. Because assumptions of comparable 
constructs and commensurate measures are explicitly tested in the IDA 
framework, results showing a lack of equivalence in measures provides 
important insights into how we study development across different 
contexts.

A major strength of IDA supported by the SEM framework is the 
ability to estimate parameters independent of measurement error esti
mates. However, it is important to recognize that in practice we cannot 
completely account for all error. Hypothesis testing in IDA relies on the 
use of extracted factor scores. Because factor scores are defined in the 
context of the model they are estimated in, they require careful 
consideration of interpretation when moved outside of that context. Said 
differently, IDA factor scores derived from one combined sample are 
valid only within the context of that sample and the constraints of its 
native model. While it is not uncommon to use factor scores outside of 
their native models for subsequent hypothesis testing, there is still the 
risk of bias (Hoshino and Bentler, 2011) and others have discussed 
additional considerations for mitigating such issues (Hayes and Usami, 
2020; Skrondal and Laake, 2001).

Moreover, the quality of the IDA factor score begins with the reli
ability of the individual measures in each sample. Investing time and 
best practices to ensure high quality data may reduce user-related error 
in the measures of interest and improve the likelihood of successful 
integration. There are a growing number of resources available to re
searchers to support data quality procedures. For example, the hippo
campal subfield volumes used in this demonstration were reviewed for 
quality using different procedures (e.g., Canada et al., 2024; Homayouni 
et al., 2021), and reviews on structural (e.g., Backhausen et al., 2016, 
2021) and functional (e.g, Teves et al., 2023) data quality are also 
available.

As developmental cognitive neuroscientists continue to leverage 
existing data, we think it is worthwhile to reflect upon longstanding 
conversations surrounding family-wise error (Ranganathan et al., 2016). 
In relation to IDA, investigators may publish on their study samples 
using the same variables included in the IDA as a combined sample. One 
can consider if the conceptual repetition of tests in samples included for 
IDA constitutes a family of tests with implications for type I error con
trol. In practice, adjustments for type I error based on the number of 
previous analyses in mega-analysis or meta-analysis, or even in the same 
program of research is, to our knowledge, rare in the cognitive neuro
science field. While there is the possibility for increased type I error rate 
in analysis of combined data for which hypotheses in contributing 
samples have been independently tested, and results should be consid
ered in the context of the literature, the true strength of IDA is the ability 
to open up hypothesis testing that is not otherwise possible in any single 
study. Introducing new hypothesis tests in a combined sample with 
different demographic representation creates an interesting philosoph
ical question if IDA would fall within the same family of tests as anything 
done in the originating samples. While it is unclear how the field might 
proceed for applications of IDA, there has been some discussion of 
sequential analysis by different investigators on the same open data 
source (Thompson et al., 2020). We hope future work addressing these 
questions from other investigators will offer guidance on best practices, 
as open data will only become more prolific in the future.

Conclusion. Our successful application and demonstration of IDA for 
neuroimaging data sets the stage for other investigators to pursue 
fundamental questions related to promoting healthy brain development, 
to identify factors that modify development, and to promote early 
detection of and intervention for neurodevelopmental disorders. Our 
application of IDA to hippocampal subfield measures serves as a blue
print for a feasible alternative to redundant study design, forced 
harmonization, and new large-scale multi-site studies. Our hope is that 
future innovations in cognitive neuroscience will come from collabo
ration among scientists to combine existing data and create represen
tative integrated samples when testing critical developmental questions.

K.L. Canada et al.                                                                                                                                                                                                                              Developmental Cognitive Neuroscience 70 (2024) 101475 

11 



Grants and acknowledgements

We thank Patrick J. Curran for helpful conversations surrounding our 
application of Integrative Data Analysis to neuroimaging data. This 
work was supported by funding by the NIH/NICHD F32-HD108960 (K.L. 
Canada), NIH/NIA P30AG072931 and NIH/NIA 5R01-AG011230 (A.M. 
Daugherty), NIH/NIMH R01-MH107512 (N. Ofen), NIH/NIMH R01- 
MH091109 (S. Ghetti), and NIH/NICHD R01-HD079518 (T. Riggins).

CRediT authorship contribution statement

Ana M Daugherty: Writing – review & editing, Supervision, Re
sources, Funding acquisition, Formal analysis, Conceptualization. Noa 
Ofen: Writing – review & editing, Supervision, Resources, Funding 
acquisition, Conceptualization. Simona Ghetti: Writing – review & 
editing, Resources. Tracy Riggins: Writing – review & editing, Re
sources. Kelsey L Canada: Writing – review & editing, Writing – orig
inal draft, Visualization, Project administration, Methodology, 
Investigation, Funding acquisition, Formal analysis, Data curation, 
Conceptualization.

Declaration of Competing Interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Appendix A

Example Mplus Code for IDA Step 4 – Latent Factor Specification and 
Extraction

TITLE:
IDA Three Site Example Syntax for IDA Factor Score Extraction
DATA:
FILE IS IDA_Mplus_Import_Site.inp;
VARIABLE:

NAMES ARE MPLUSID Age Sex
left_sub left_CA1 left_DG right_sub right_CA1 right_DG
ICV Site;
IDVAR IS MPLUSID;

USEVARIABLES ARE
Age
Sex
left_sub right_sub
left_CA1 right_CA1
left_DG right_DG
ICV_Scaled;
GROUPING IS Site(-1=Site1, 0=Site2, 1=Site3);
MISSING IS ALL (-999);

DEFINE:
ICV_Scaled = ICV/10000;

ANALYSIS:
MODEL:

CA1 BY left_CA1@1 right_CA1@1;
left_CA1 right_CA1;
left_CA1 ON ICV_Scaled;
right_CA1 ON ICV_Scaled;
CA1 WITH ICV_Scaled@0;
Sub BY left_sub@1 right_sub@1;
left_sub right_sub;
left_sub ON ICV_Scaled;
right_sub ON ICV_Scaled;
Sub WITH ICV_Scaled@0;
DG BY left_DG@1 right_DG@1;
left_DG right_DG;
left_DG ON ICV_Scaled;

right_DG ON ICV_Scaled;
DG WITH ICV_Scaled@0;
left_DG ON Sex@0 Age@0;
right_DG ON Sex@0 Age@0;
DG ON Sex Age;
left_CA1 ON Sex@0 Age@0;
right_CA1 ON Sex@0 Age@0;
CA1 ON Sex Age;
left_sub ON Sex@0 Age@0;
right_sub ON Sex@0 Age@0;
SUB ON Sex Age;
ICV_Scaled ON Sex;
ICV_Scaled ON AGE;
left_sub left_CA1 WITH left_DG left_sub;
right_sub right_CA1 WITH right_DG right_sub;
SUB CA1 WITH DG SUB;

MODEL Site1:
left_sub right_sub;
left_CA1 right_CA1;
left_DG right_DG;

MODEL Site2:
left_sub right_sub;
left_CA1 right_CA1;
left_DG right_DG;

MODEL Site3:
left_sub right_sub;
left_CA1 right_CA1;
left_DG right_DG;

OUTPUT:
SAMPSTAT STANDARDIZED RESIDUAL MODINDICES (4)

SAVEDATA:
FILE IS HcExtractedIDAScores.csv;
SAVE IS FSCORES;

Appendix B 

Example Mplus Code for IDA Step 5 – Hypothesis Testing
TITLE:
IDA Three Site Path Model Example Syntax with Extracted IDA 

Factor Score
DATA:
FILE IS HcExtractedIDAScores.inp;
VARIABLE:
NAMES ARE LEFT_SUB RIGHT_SU LEFT_CA1 RIGHT_CA LEFT_DG 

RIGHT_DG ICV_SCAL AGE SEX CA1 CA1_SE SUB SUB_SE DG DG_SE 
MPLUSID SITE;

IDVAR IS MPLUSID;
USEVARIABLES ARE
Age
Sex
CA1
DG
Sub
Site;

ANALYSIS:
MODEL:

CA1 ON Age Sex Site;
DG ON Age Sex Site;
Sub ON Age Sex Site;
CA1 SUB WITH DG SUB;
Age WITH Sex@0;
Age WITH Site;
Sex WITH Site@0;

OUTPUT:
SAMPSTAT STANDARDIZED RESIDUAL MODINDICES (4)
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Data availability
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