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CTX-M �-lactamases are widespread in Gram-negative bac-
terial pathogens and provide resistance to the cephalosporin
cefotaxime but not to the related antibiotic ceftazidime. Never-
theless, variants have emerged that confer resistance to ceftazi-
dime. Two natural mutations, causing P167S and D240G sub-
stitutions in the CTX-M enzyme, result in 10-fold increased
hydrolysis of ceftazidime. Although the combination of these
mutations would be predicted to increase ceftazidime hydro-
lysis further, the P167S/D240G combination has not been
observed in a naturally occurring CTX-M variant. Here, using
recombinantly expressed enzymes, minimum inhibitory con-
centration measurements, steady-state enzyme kinetics, and
X-ray crystallography, we show that the P167S/D240G double
mutant enzyme exhibits decreased ceftazidime hydrolysis,
lower thermostability, and decreased protein expression levels
compared with each of the single mutants, indicating negative
epistasis. X-ray structures of mutant enzymes with covalently
trapped ceftazidime suggested that a change of an active-site
�-loop to an open conformation accommodates ceftazidime
leading to enhanced catalysis. 10-�s molecular dynamics simu-
lations further correlated �-loop opening with catalytic activ-
ity. We observed that the WT and P167S/D240G variant with
acylated ceftazidime both favor a closed conformation not con-
ducive for catalysis. In contrast, the single substitutions dramat-
ically increased the probability of open conformations. We con-
clude that the antagonism is due to restricting the conformation
of the �-loop. These results reveal the importance of conforma-
tional heterogeneity of active-site loops in controlling catalytic
activity and directing evolutionary trajectories.

Enzymes have evolved to catalyze reactions critical to the
functioning of the cell (1). Evolution of enzyme function pro-
ceeds through the accumulation of amino acid substitutions
that shape stability, solubility, and catalytic activity, among
other properties. How substitutions interact when combined
plays a key role in the trajectory of mutations that accumulate
during evolution (2, 3). For example, amino acid substitutions
can act additively on catalysis whereupon each substitution
increases activity, and upon combination, the increase in activ-
ity in the double mutant is the product of the fold changes of the
individual mutations (4). Alternatively, combinations of substi-
tutions are often nonadditive where the double mutant has a
greater activity or less activity than expected based on the activ-
ity of the single mutants. Such nonadditive effects are termed
epistasis and can strongly influence the mutational pathways
that are possible in the evolution of enzyme function (5, 6).

Enzymes act by binding substrates and stabilizing transi-
tion states of reactions (1). Toward this end, conformational
changes are often important, and flexible loops in the active site
are a common feature involved in enzyme function (7–9).
Moreover, conformational dynamics have been proposed to
play an important role in protein evolvability (10, 11). By this
view, conformational fluctuations can result in an enzyme
adopting multiple structures, some of which have properties
that allow interactions with alternate ligands. These conforma-
tions may be rare in the ensemble of WT structures, but muta-
tions may shift the distribution toward alternate conformations
that become dominant in an evolved enzyme, thereby allowing
for altered substrate specificity or new enzyme functions to
emerge on an enzyme scaffold (11, 12).

Here, we address the role of epistasis and conformational
diversity of active-site loops in the evolution of variants of
the CTX-M �-lactamase with a broadened substrate speci-
ficity for �-lactam antibiotics. �-Lactams are the most fre-
quently prescribed class of antibiotic worldwide, making up
65% of all use (13). However, bacterial resistance to these
drugs is a growing problem, and the most common mecha-
nism of resistance is enzyme-mediated hydrolysis of the
�-lactam ring (14). This hydrolysis is catalyzed by various
�-lactamases, which are divided into classes A–D based on
primary amino acid sequence homology (14, 15).

Class A �-lactamases, such as CTX-M, are widespread in
Gram-negative bacteria and share a similar mechanism of
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catalysis but can differ widely in substrate profile (16, 17). These
enzymes are serine hydrolases that hydrolyze the amide bond in
the �-lactam ring via sequential acylation and deacylation
steps. The conserved catalytic Ser70 residue is activated by Lys73

and Glu166 for attack on the carbonyl carbon to form an acyl-
enzyme intermediate. A catalytic water molecule is then acti-
vated by Glu166 for attack on the carbonyl of the covalent com-
plex to deacylate the enzyme and release the product (Fig. 1)
(17–19). The reaction scheme and mechanism of serine �-lac-
tamases is shown in Fig. 1.

CTX-M �-lactamases are a family of class A extended-spec-
trum �-lactamases that are so named because they efficiently
hydrolyze the oxyimino-cephalosporin cefotaxime (20) (Fig. 2).
To date, more than 140 variants of the CTX-M enzymes have
been identified (21). CTX-M-14 �-lactamase has become a
model system for studies of the structure and function of
CTX-M enzymes (22–25).

CTX-M enzymes efficiently hydrolyze cefotaxime but not
another commonly used oxyimino-cephalosporin, ceftazidime
(Fig. 2A). Natural variants containing either the P167S or
D240G substitutions have emerged, however, that more effi-
ciently hydrolyze ceftazidime (21, 26–28). These two substitu-
tions, when present, individually increase kcat/Km for ceftazi-
dime hydrolysis by 10-fold, resulting in increased ceftazidime
resistance for bacteria containing the mutants (22, 25). Multiple
natural variants in the CTX-M family possess one of these sub-
stitutions (21).

Pro167 resides in the �-loop that forms the bottom of the
active site in class A �-lactamases including CTX-M enzymes
(22, 29) (Fig. 2D). It is adjacent to Glu166, which is conserved
and serves as a general base to activate a water molecule for
deacylation of �-lactam substrates (29). The peptide bond pre-
ceding Pro167 is in a cis conformation in CTX-M enzymes,

which strongly influences the conformation of the �-loop and
the positioning of the Asn170 residue that hydrogen bonds to
Glu166 and the deacylation water. We previously used the CTX-
M-14 enzyme as a model system to examine the structural
changes caused by the P167S substitution (25). These studies
revealed a large conformational change of the �-loop that
results in a larger active-site cavity to accommodate ceftazi-
dime. This conformational change required both the P167S
substitution and the presence of acylated ceftazidime (25).
In addition, the structures showed that the conformational
change is associated with a shift in the peptide bond preceding
residue 167 from cis to trans and that the P167S substitution
was required for this shift. Thus, the P167S substitution appears
to cause increased ceftazidime hydrolysis through promoting a
conformational change to relieve steric restraints on catalysis.

Chen et al. (22) previously determined the X-ray structure of
the D240G mutant enzyme, and anisotropic B-factor analysis
revealed increased flexibility of the B3 �-strand that forms one
side of the CTX-M active site. The increased flexibility of the B3
�-stand was proposed to allow access for the bulky side chain of
ceftazidime.

Despite the increase in ceftazidime hydrolysis and bacterial
resistance resulting from each of the substitutions, there has yet
to be a CTX-M enzyme identified in clinical isolates that har-
bors both the P167S and D240G mutations. Based on simple
additivity, the combination of substitutions that each increase
hydrolysis by 10-fold would be expected to increased hydrolysis
100-fold relative to the WT enzyme (4). However, a P167S/
D240G double mutant created by site-directed mutagenesis in
a CTX-M-3 enzyme background exhibited a loss of ceftazidime
resistance, indicating an antagonist effect and negative epistasis
(30). The mechanism of this antagonism, however, was not
examined.

Here, we show that the P167S/D240G double mutant dis-
plays decreased ceftazidime hydrolysis compared with either of
the single mutants, indicating antagonism. Further, X-ray
structures of single and double mutants as apoenzymes and
acylated with ceftazidime show alternate open and closed con-
formations of the �-loop that are associated with high and low
activity. Finally, molecular dynamics simulations of the WT,
P167S, D240G, and P167S/D240G enzymes acylated with cef-
tazidime indicate that the single substitutions dramatically
increase the probability of open conformations of the �-loop,
whereas the WT and P167S/D240G variant both favor a well-
defined closed conformation not favorable for catalysis. Taken
together, the results suggest that the P167S/D240G double
mutant has not been observed in resistant clinical isolates
because the combination results in decreased catalysis, decreased
stability, and therefore decreased fitness in the presence of cefta-
zidime for bacteria containing this enzyme.

Results

Ceftazidime resistance levels of P167S/D240G double mutant
are reduced compared with single mutants

The P167S and D240G substitutions have been observed in
multiple CTX-M �-lactamase variants and are associated with
10-fold increased ceftazidime hydrolysis (22, 24). Further,

Figure 1. �-Lactamase mechanism. A, reaction scheme for �-lactamase
where E represents �-lactamase, ES represents the enzyme-substrate com-
plex, EAc represents the acyl-enzyme complex, and P represents product. k1
and k�1 are the rate constants for association and dissociation of the enzyme
substrate complex, and k2 and k3 are the rate constants for acylation and
deacylation, respectively. B, schematic illustration of �-lactamase mecha-
nism. The catalytic Ser70 hydroxyl group is activated for nucleophilic attack on
the carbonyl oxygen of the amide bond of the �-lactam by an active-site
residue serving as a general base. This residue is viewed as either Lys73 or
Glu166 acting through a water molecule. This leads to formation of the acyl-
enzyme intermediate, which is subsequently deacylated by a water that is
activated by Glu166 acting as a base and resulting in free enzyme and the
hydrolyzed product.
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introduction of the P167S and D240G substitutions into the
CTX-M-3 �-lactamase results in lower ceftazidime resistance
than either of the single mutants (30). We extended these find-
ings to the CTX-M-14 model system by determining minimum
inhibitory concentrations (MICs)3 for ceftazidime, cefotaxime,
and cephalothin for Escherichia coli harboring WT and the
mutants (Table 1). The results show that the P167S and D240G
individual substitutions both result in increased resistance to
ceftazidime, whereas the P167S/D240G double mutant exhibits
a loss of ceftazidime resistance compared with either the P167S
or D240G single mutants (Table 1) (24, 30). These data confirm
the apparent incompatibility of the P167S and D240G substitu-
tions as first suggested by Novais et al. (30) and extends the
findings to the CTX-M-14 enzyme background.

Antibiotic hydrolysis by the P167S/D240G double mutant is
reduced compared with single mutants

Although the P167S and D240G substitutions increase the
catalytic efficiency (kcat/Km) for ceftazidime hydrolysis by �10-
fold, the activity of the P167S/D240G double mutant enzyme
has not been examined (24, 26, 27, 31). Therefore, both WT and
the double mutant CTX-M-14 enzymes were purified, and
their kinetic parameters were determined for hydrolysis of the
oxyimino-cephalosporins cefotaxime and ceftazidime, as well
as cephalothin (Table 2).

Ceftazidime hydrolysis by the WT, P167S, and D240G
enzymes exhibits high Km values (�500 �M), which precluded
determination of kcat values (24). Nevertheless, kcat/Km values
for the P167S and D240G enzymes were 10-fold higher than
that observed for WT CTX-M-14. If the P167S and D240G
substitutions act additively, kcat/Km for ceftazidime by the dou-

ble mutant should be a further 10-fold higher than that
observed for the single mutants (4). However, kcat/Km for cef-
tazidime hydrolysis by the double mutant was �2-fold lower
than that observed for the P167S and D240G single mutants
(Table 2). Therefore, the P167S and D240G substitutions are
antagonistic with respect to ceftazidime hydrolysis. This sug-
gests that the presence of one substitution alters the environ-
ment of the other to perturb its contribution to catalysis (4).

The P167S and D240G substitutions were previously ob-
served to modestly increase kcat/Km for cefotaxime hydrolysis
(�2-fold) compared with the WT enzyme (24). The P167S/
D240G double mutant exhibited a kcat/Km value similar to WT
and 2-fold lower than the single mutants indicating possible
antagonism, as found for ceftazidime hydrolysis (Table 2).

The second-generation cephalosporin cephalothin is an
excellent substrate for the WT CTX-M-14 enzyme (Table 2)
(24). The P167S and D240G substitutions reduce both kcat and
Km values for cephalothin hydrolysis (Table 2). The P167S/
D240G double mutant exhibited a further reduction in kcat and
Km compared with the single mutants. Interestingly, the P167S
and D240G substitutions act additively in the double mutant
for cephalothin hydrolysis. Therefore, the additivity relation-
ship between the P167S and D240G substitutions is substrate-
dependent, with simple additivity observed for cephalothin and
antagonism observed for ceftazidime hydrolysis, suggesting

1 The abbreviations used are: MIC, minimum inhibitory concentration; PDB,
Protein Data Bank; ESBL, extended-spectrum �-lactamase; CMP, chloram-
phenicol; IPTG, isopropyl-�-D-galactopyranoside; MBP, maltose-binding
protein.

Figure 2. Structures of antibiotics and CTX-M-14 �-lactamase. A, cephalothin. R1 and R2 denote the groups that differ between cephalosporins. B,
cefotaxime. C, ceftazidime. D, structure of CTX-M-14 �-lactamase (PDB code 1YLT). The �-loop is colored green. The catalytic Ser70 is colored orange. Pro167 and
Asp240 are colored gray. Note that Pro167 is located on the �-loop.

Table 1
MICs for E. coli containing CTX-M-14 wild type, mutants, and no �-
lactamase control

WT or mutant
�-lactamase

MIC
Cephalothin Cefotaxime Ceftazidime

�g/ml
pTP123 12 0.0625 0.19
CTX-M-14 wt �256 1.5 0.75
P167S �256 0.375 12
D240G �256 1 1.5
P167S/D240G �256 0.19 0.75
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that the effects are mediated through interaction with the
substrates.

P167S/D240G double mutant exhibits reduced stability
compared with single mutants

Amino acid substitutions can affect catalysis, as shown
above, but also can impact protein stability. It was previously
shown that the P167S and D240G single mutants destabilize
CTX-M-14 (24). We extended this finding to the P167S/D240G
enzyme using CD spectroscopy to monitor �-helix ellipticity
with increasing temperature (Fig. 3). Previous studies showed
that the WT CTX-M-14 exhibited a melting temperature (Tm)
of 54.6 °C, and the single mutants D240G and P167S decreased
the Tm by 0.4 and 2.8 °C, respectively (24). The P167S/D240G
enzyme exhibited a Tm of 50.5 °C, indicating that the double
mutant is less stable than WT and the single mutants (Fig. 3).

Steady-state levels of the P167S/D240G enzyme in E. coli are
reduced compared with single mutants

The level of antibiotic resistance conferred to bacteria by a
�-lactamase depends on the rate of hydrolysis, as well as the
steady-state levels of enzyme expression (32). A correlation has
been shown between �-lactamase stability and expression lev-
els in E. coli caused by increased proteolysis and aggregation of
unstable proteins (32–34). Because the P167S and D240G sub-
stitutions decrease enzyme stability and the double mutant
decreases stability further, we hypothesized that the double
mutant would display lower expression levels. Immunoblot
analysis of whole cell lysates using �-CTX-M-14 �-lactamase
polyclonal antibody showed that the P167S mutant did not sig-
nificantly decrease expression levels relative to WT, consistent
with previous studies (Fig. 4) (24). The D240G mutant, which
shows only a 0.4 °C decrease in stability relative to WT, dis-
played lower expression levels. Thus, although D240G has
higher thermal stability than P167S, it displays lower expres-
sion levels, indicating that thermal stability does not fully cor-
relate with expression levels. However, the P167S/D240G
enzyme exhibited lower expression levels than either WT or the
P167S and D240G single mutants, consistent with the lower
thermal stability of this mutant. Taken together, these findings
provide a rationale for why the P167S/D240G double mutant
has not been observed in resistant clinical isolates in that it is
compromised for catalysis, stability, and expression levels com-
pared with the P167S and D240G single mutants.

X-ray structures of P167S/D240G apo, E166A/D240G/CAZ, and
E166A/P167S/D240G/CAZ acyl-enzyme complexes reveal
alternate conformations of the �-loop

We previously determined the X-ray structure of the P167S
enzyme, which had a very similar overall structure as WT (25).
The �-loop, which forms the bottom of the active site, was in a
folded, closed conformation with the peptide bond preceding
Ser167 in a cis configuration (Fig. 5, A–C). The structure of the
D240G enzyme was previously determined, and it also is highly
similar to the WT structure (22) (Fig. 5D). We next determined
the structure of the P167S/D240G enzyme, which exhibits
lower ceftazidime hydrolysis than either of the single mutants.
The structure includes a boronic acid from the crystallization
buffer in complex with Ser70 and is very similar to the WT,
P167S, and D240G structures, with the Ser167 peptide bond in
the cis configuration and the �-loop in a folded, closed confor-
mation (Fig. 5, E–H, and Table S1). A difference was noted,
however, in the B-factors in the active-site 103–106 loop, sug-
gesting increased disorder. B-factors reflect the degree to which
electron density is scattered and therefore indicate how or-
dered an atom is in the structure (35). The B-factors for resi-

Table 2
Enzyme kinetic parameters of CTX-M-14 �-lactamase and mutant enzymes

Enzyme Parameter Cephalothin Cefotaxime Ceftazidime

CTX-M-14 kcat (s�1) 1400 � 38 161 � 9 NDa

Km (�M) 83 � 6 60 � 7 �500
kcat/Km (�M�1s�1) 17.0 � 0.7 2.71 � 0.16 0.0011 � 0.00007

P167Sb kcat (s�1) 681 � 36.8 297 � 29.7 ND
Km (�M) 32 � 0.8 37 � 6.3 �500
kcat/Km (�M�1s�1) 21.1 � 1.3 8.0 � 1.6 0.011 � 0.0002

D240Gb kcat (s�1) 471 � 10.9 321 � 46.2 ND
Km (�M) 47.1 � 41.7 52 � 8.6 �500
kcat/Km (�M�1s�1) 10.0 � 2.5 6.2 � 1.4 0.013 � 0.0007

P167S/D240G kcat (s�1) 165 � 11 139 � 3 ND
Km (�M) 15 � 3 42 � 0.5 �500
kcat/Km (�M�1s�1) 10.8 � 1.4 3.27 � 0.1 0.0060 � 0.00004

a ND, not determined.
b Kinetic parameters for P167S and D240G mutant enzymes from Patel et al. (24).

Figure 3. Thermal stability of WT and mutant �-lactamases, as measured
by CD. Mean ellipsivity is normalized and fit to a Boltzmann sigmoidal func-
tion. Tm, as determined by the Boltzmann equation, is also plotted, as is �Tm,
which is the change from the WT Tm. The Tm indicates that each single mutant
is less stable than the WT CTX-M-14 enzyme, and this instability has an addi-
tive effect in the double mutant, P167S/D240G CTX-M-14. The data for CTX-
M-14, D240G, and P167S are from Patel et al. (24).

Epistasis between resistance mutations in �-lactamase

J. Biol. Chem. (2020) 295(21) 7376 –7390 7379

https://www.jbc.org/cgi/content/full/RA119.012489/DC1


dues in the 103–106 loop and the 164 –179 �-loop were nor-
malized to the overall B-factor of each structure to facilitate
comparison across structures (Fig. 6). The normalized B-fac-
tors for the P167S/D240G structure for residues Val103 and
Asn104 were higher than in the WT, P167S, and D240G struc-
tures. These findings suggest increased disorder for residues
103–104 in the P167S/D240G structure. We have previously
shown that Asn104 is important for cefotaxime and ceftazidime
hydrolysis, and therefore increased disorder of this residue in
the P167S/D240G enzyme could result in the observed lower
activity for ceftazidime hydrolysis (36).

We next determined the structures of the mutant enzymes in
complex with ceftazidime to evaluate whether the presence
of substrate influences active-site structure (Table S1). The
E166A mutation blocks deacylation and allows for crystalliza-
tion of the acyl-enzyme complex (29). The previously deter-
mined structure of the acyl-enzyme complex of the CTX-M-14
pseudo WT E166A enzyme with ceftazidime (E166A/CAZ)
shows the Pro167 peptide bond in the cis configuration and the
�-loop in the folded, closed conformation (Fig. 7A) (25). Con-
tacts between ceftazidime and the enzyme include hydrogen
bonds between the side chains of Asn132 and Asn104 with the
carbonyl oxygen of the acylamide of the ceftazidime R-2 group,
as well as hydrogen bonds between the hydroxyls of Thr235 and
Ser237 with the C4 carboxylate of the dihydrothiazine ring (Figs.
2C and 7A). The imino group of ceftazidime is pointed to sol-
vent and does not interact with the enzyme. The previously
determined structure of E166A/P167S/CAZ (Fig. 7B) shows the
Ser167 peptide bond in the trans configuration and the �-loop

in an unraveled, open conformation, which widens the floor of
the active site by �5 Å to accommodate ceftazidime (25). This
leads to a change in conformation of ceftazidime in the acyl-
enzyme with the aminothiazole ring assuming a buried position
(Fig. 7B) (25). In addition, there are hydrogen bonds between
the C4 carboxylate of the dihydrothiazine ring and the side
chains of Thr235 and Ser237, as well as between the side chains of
Asn132 and Asn104 with the carbonyl oxygen of the acylamide
group (Fig. 7B). Further, there is a hydrogen bond between
Asn104 and the carboxyl group of the imino side chain of cefta-
zidime. These interactions are consistent with tighter binding
of ceftazidime and enhanced catalysis (25). In addition, the nor-
malized B-factors of Val103 and Asn104 are not increased rela-
tive to WT CTX-M-14, suggesting that the Asn104 residue is
well-ordered for interaction with ceftazidime (Fig. 6A). Resi-
dues 168 –170, however, show elevated B-factors, suggesting
that the �-loop has increased flexibility, consistent with its
unfolded structure (Fig. 6B).

The D240G substitution is also associated with increased cef-
tazidime hydrolysis (26, 28). We therefore determined the
structure of the E166A/D240G enzyme in complex with cefta-
zidime for comparison with the E166A and E166A/P167S acyl-
enzyme structures. It was found that the peptide bond preced-
ing Pro167 is in the cis configuration, and the �-loop is in the
folded, closed conformation similar to the D240G apo enzyme
structure and the E166A structure with ceftazidime (Fig. 7C). In
contrast to the E166A/CAZ structure, however, the E166A/
D240G/CAZ structure has the side chain of Ser237 rotated away
from the C4 carboxylate and instead forms hydrogen bonds to
the carboxylate of the imino side chain, which may facilitate
substrate binding and catalysis (Figs. 2C and 7C).

The P167S/D240G enzyme displays lower catalytic activity
toward ceftazidime than either single mutant (Table 2). To bet-
ter understand the basis of this antagonism, we determined the
structure of the E166A/P167S/D240G enzyme in complex with
ceftazidime. Two structures from different space groups were
obtained, and interestingly, they show different conformations
of ceftazidime and the �-loop. In the first structure, the peptide
bond preceding Ser167 is in the trans configuration, which is in
contrast to the cis bond found in the P167S/D240G apo struc-
ture (Fig. 5, D and E). However, the �-loop in the E166A/
P167S/D240G/CAZ-1 structure remains in the folded, closed
conformation with ceftazidime located in a similar position as
that in the E166A/D240G/CAZ structure (Fig. 7D). There are
differences, however, between these structures. First, the car-
boxylate group of the imino side chain of ceftazidime in the
E166A/P167S/D240G/CAZ-1 structure does not contact the
enzyme, in contrast to the E166A/D240G/CAZ structure (Fig.
7, C and D). More importantly, the positioning of the active-site
103–106 loop is altered, and the side chain of Asn104 is shifted
out of the active site in the E166A/P167S/D240G/CAZ-1 struc-
ture (Fig. 7D). In addition, the normalized B-factors for residues
Val103 and Asn104 are elevated compared with the E166A/CAZ,
E166A/P167S/CAZ, and E166A/D240G/CAZ structures, sug-
gesting that Val103 and Asn104 are disordered (Fig. 6A). We have
previously shown that the hydrogen bond between Asn104 and
the acyl-amide of cefotaxime and ceftazidime is important, and
a N104A mutant exhibits 10-fold lower kcat/Km for both sub-

Figure 4. Steady-state protein levels of WT CTX-M-14 and mutant �-lac-
tamases. Western blotting analysis with an anti-CTX-M-14 polyclonal anti-
body shows protein expression levels of WT CTX-M-14 and the P167S, D240G,
and P167S/D240G mutants in the periplasm of recombinant E. coli cells. Anal-
ysis with a polyclonal antibody to the periplasmic protein MBP was used as a
loading control. The hybridization signal was visualized by chemilumines-
cence and quantified by densitometry. The signal for CTX-M-14 �-lactamase
was normalized to that for MBP in the same sample. The protein levels of
mutant CTX-M-14 �-lactamase are expressed relative to that of WT CTX-M-14
�-lactamase in the bar graph. The quantification data in the bar graph are the
averages of two independent experiments, and one representative immuno-
blot result is shown above the bar graph.
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strates (36). These observations suggest that the conformation
of the enzyme and ceftazidime observed in the E166A/P167S/
D240G/CAZ-1 structure is not consistent with hydrolysis.

It is noteworthy that the E166A/P167S/D240G/CAZ-1
structure described above was obtained by soaking a crystal

with ceftazidime. Another crystal was also soaked, and the
structure was determined with the same space group, but cef-
tazidime was not present in the active site. Interestingly, this
apo structure is very similar to the structure with bound cefta-
zidime. The peptide bond preceding Ser167 is in the trans con-

Figure 5. Structures of the active-site region of WT CTX-M14 �-lactamase (PDB code 1YLT), as well as P167S (PDB code 5TWD), D240G (PDB code
1YLP), and P167S/D240G mutant enzymes in the apo form. A, ribbon diagram showing structural alignment of the CTX-M-14 WT (salmon), P167S (gray),
D240G (blue), and P167S/D240G (cyan) enzymes. The active-site region shown in B–H is boxed. B–E, active-site regions of CTX-M-14 WT (B), P167S (C), D240G (D),
and P167S/D240G (E). Note that the P167S/D240G structure has a boronic acid in complex with Ser70, which is not shown for clarity. F, structural alignment of
active-site region of P167S apo enzyme (gray) with the P167S/D240G double mutant (cyan). G, structural alignment of D240G apo enzyme (blue) with
P167S/D240G (cyan). H, structural alignment of CTX-M-14 WT apo enzyme with P167S/D240G (cyan). In all panels, oxygen is shown in red, and nitrogen is in
blue.

Figure 6. Normalized B-factors for the 103–106 loop and the 164 –179 �-loop in the CTX-M enzyme structures. The B-factors were normalized by
dividing the B-factor for a given residue by the average B-factor for the entire structure. Thus, a normalized B-factor of 1 means the B-factor at that residue is the
same as the average B-factor of the structure. A, normalized B-factors for the 103–106 loop. B, normalized B-factors for the 164 –179 �-loop. Black circle,
E166A/CAZ; blue square, E166A/P167S/CAZ; black triangle, E166A/D240G/CAZ; inverted red triangle, E166A/P167S/D240G/CAZ-1; green diamond, E166A/P167S/
D240G/CAZ-2; open circle, P167S/D240G apo; open square, P167S apo; open triangle, D240G apo; inverted open triangle, E166A/P167S/D240G apo; open
diamond, CTX-M-14 WT.
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figuration and the �-loop is in the folded, closed conformation
(Fig. 8, C and D). In addition, the 103–106 loop is in a similar
position as in the ceftazidime-bound structure with the side
chain of Asn104 pointed out of the active site and with elevated
B-factors for Val103 and Asn104 (Fig. 6A). Thus, this conforma-
tion of the enzyme, and particularly the 103–106 loop, occurs in
the absence of ceftazidime, in contrast to the different confor-
mations of the E166A/P167S apo and E166A/P167S/CAZ
structures where the presence of ceftazidime is apparently re-
quired to produce the conformational change.

The second E166A/P167S/D240G/CAZ structure is super-
imposable with that of the E166A/P167S/CAZ structure where
the peptide bond preceding Ser167 is in the trans configuration,
and the �-loop is in an unfolded, open conformation to accom-
modate ceftazidime (Fig. 7E). Because the P167S enzyme exhib-
its enhanced ceftazidime hydrolysis, these findings suggest that
the conformation of the enzyme in the E166A/P167S/D240G/
CAZ-2 structure is competent to hydrolyze ceftazidime.

The two structures of E166A/P167S/D240G/CAZ with dis-
tinct conformations of the enzyme and ceftazidime suggests
there are at least two conformational substates of the P167S/
D240G enzyme in the presence of ceftazidime. We suggest that
the form with the closed �-loop and altered 103–106 loop with
Asn104 pointed out of the active site does not efficiently hydro-
lyze ceftazidime, whereas the form with the open �-loop is
catalytically competent.

Molecular dynamics simulations reveal that conformational
heterogeneity of the �-loop is greater in the single mutants
than in the WT or double mutant

To directly probe the conformational heterogeneity of the
�-loop and acyl-enzyme complex, we conducted molecular
dynamics simulations of the acylated forms of WT, D240G,
P167S, and P167S/D240G. In addition to providing atomically
detailed models of the distribution of structures that CTX-M
adopts, the fact that no chemical reactions occur in these sim-

Figure 7. Structures of the active-site region of CTX-M-14 mutant �-lactamase acyl-enzyme complexes with ceftazidime. A, structure of the E166A
mutant (tan) with ceftazidime (dark gray) trapped in the acyl-enzyme form (PDB code 5U53). Oxygen is shown in red, and nitrogen is in blue. Hydrogen bonds
are indicated by thin black lines. Active-site residues are labeled. B, structure of the E166A/P167S/CAZ acyl-enzyme (light blue) (PDB code 5TW6). C, structure of
the E166A/D240G/CAZ acyl-enzyme (light green). D, structure of the E166A/P167S/D240G/CAZ-1 acyl-enzyme (pink). E, structure of the E166A/P167S/D240G/
CAZ-2 acyl-enzyme (white). F, structural alignment of the E166A/CAZ (tan) and E166A/D240G/CAZ (green) acyl-enzyme complexes. The ceftazidime from the
E166A/CAZ structure is shown in dark gray, and that from E166A/D240G/CAZ is shown in white. The �-loop region remains folded in the closed form and the
ceftazidime occupies a similar position with the aminothiazole ring surface exposed in these structures.

Epistasis between resistance mutations in �-lactamase

7382 J. Biol. Chem. (2020) 295(21) 7376 –7390

https://doi.org/10.2210/pdb5U53/pdb
https://doi.org/10.2210/pdb5TW6/pdb


ulations allowed us to include Glu166 and interrogate its inter-
actions with ceftazidime and CTX-M. Simulations of WT were
initiated from a crystal structure of the acyl-enzyme complex
(PDB code 5U53) (25), and simulations of P167S were initiated
based on a previous model of the E166A/P167S/CAZ structure
(PDB code 5TW6) (25). Simulations of D240G were initiated
from the E166A/D240G/CAZ crystal structure presented
in this work. The closed-conformation crystal structure of
E166A/P167S/D240G/CAZ-1 was the initial starting structure
for simulations of P167S/D240G/CAZ. In all structures, Ala166

was mutated back to a glutamic acid, and a total of 2.5 �s of
simulation was run for each variant.

The distribution of �-loop conformations observed in our
simulations suggests a correlation between �-loop opening and
ceftazidime hydrolysis activity. The WT and P167S/D240G
variant with acylated ceftazidime both favor a well-defined
closed conformation (Fig. 9). However, we note that the P167S/

D240G variant with acylated ceftazidime sparsely samples open
conformations of the �-loop, some of which are very similar to
the crystallographic structure capturing the open state (Fig. 7, D
and E, and Fig. S3). A previous combination of simulations and
experiments have also demonstrated that the WT has a sparsely
populated state with an open �-loop (38). In contrast, the
P167S and D240G substitutions dramatically increase the prob-
ability of a diversity of open conformations. The conforma-
tional heterogeneity of P167S is consistent with the open struc-
ture and elevated B-factors observed in the E166A/P167S/CAZ
crystal structure (Figs. 6 and 7B). Although D240G also displays
substantial conformational heterogeneity, it has a deeper min-
ima for the closed state than P167S, potentially explaining why
only the closed state of D240G has been observed crystallo-
graphically so far (Fig. 7C).

These simulations suggest that the closed conformation
inhibits catalysis by favoring a conformation of Glu166 that is

Figure 8. Structures of the active-site region of the CTX-M-14 E166A/P167S and E166A/P167S/D240G enzymes in the apo and compared with the
respective ceftazidime acyl-enzyme complexes. A, E166A/P167S apo enzyme structure (PDB code 5VTH) (brown). Oxygen is shown in red, and nitrogen is in
blue. B, structural alignment of E166A/P167S apo enzyme structure (brown) with the E166A/P167S/CAZ structure (light blue) (PDB code 5TW6). C, E166A/P167S/
D240G apo enzyme structure (yellow). D, structural alignment of E166A/P167S/D240G apo enzyme structure (yellow) with E166A/P167S/D240G/CAZ structure
(pink).
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incompatible with a deacylation reaction, whereas the open
conformation of the �-loop allows Glu166 to adopt a wider
range of conformations, at least some of which are compatible

with the requirements for deacylation. Previous work has estab-
lished that Glu166 coordinates a water that plays a role in the
deacylation reaction (39) and that mutation of Glu166 traps the
acyl intermediate by inhibiting deacylation (29). Examining
closed structures preferentially adopted by WT and P167S/
D240G reveals that the carboxyl group of Glu166 tends to
hydrogen bond with Asn170, trapping Glu166 under the �-loop
and preventing it from coordinating the water required for
deacylation (Figs. 9, B and C, and 10). In the open conforma-
tions preferentially sampled by the D240G and P167S variants,
the hydrogen bond between Asn170 and Glu166 is disrupted.
This open conformation is stabilized by a rearrangement of the
hydrogen-bonding network in the active site where Asn132

hydrogen bonds with Glu166 (Figs. 9C and 10).
The opening and closing of the �-loop is also associated with

a rearrangement of ceftazidime in the acyl-enzyme complex
(Fig. 10 and Fig. S1). One major feature observed in both crystal
structures and simulations is that the aminothiazole ring of
ceftazidime is buried under the �-loop when it is open (Figs. 7,
B and E, and 10). Consistent with the crystal structures of the
single-mutant variants, this rearrangement of ceftazidime in
the acyl-enzyme complex is facilitated by new interactions with
Asn104 and the �3 loop. In the D240G and P167S constructs,
Ser237 and Asn104 form interactions with ceftazidime (Fig. 10
and Figs. S1 and S2). We also note an additional interaction
between the imino group of ceftazidime and Ser237 that is pres-
ent in the more open, active variants but not the more closed,
inactive variants (Fig. S2). These interactions with ceftazidime
are rare in the WT and P167S/D240G simulations (Figs. S1 and
S2). Furthermore, Asn104 appears to point outward toward the
solvent in the closed configuration (Fig. 10), similar to what is
seen in the crystal structure of the closed configuration of the
P167S/D240G/CAZ variant (Fig. 7D).

Overall, our simulations suggest that the CTX-M acyl-en-
zyme complex is in equilibrium between inactive and active
conformations and that the P167S and D240G variants have a
higher probability of adopting active conformations (Fig. 10). In
the inactive conformation the �-loop is closed, burying the
Asn170–Glu166 hydrogen bond under the aminothiazole ring
(Fig. 10). Opening of the �-loop and rearrangement of ceftazi-
dime via burial of the aminothiazole ring and coordination
between the imino group and Asn104 and the �3 loop likely
transitions CTX-M into a catalytically competent state. These
rearrangements of the �-loop and ceftazidime allow Glu166 to
coordinate a water molecule that can access the ester bond of
the ceftazidime–acyl-enzyme complex, facilitating the deacyla-
tion reaction. Taken together, the crystallography and molecu-
lar dynamics results indicate that the P167S and D240G substi-
tutions promote an open conformation of the �-loop that
creates access for ceftazidime and allows Glu166 to sample con-
formations consistent with deacylation, whereas the WT and
P167S/D240G mutant exhibit a closed �-loop conformation
that constrains access for ceftazidime and prevents Glu166 from
efficiently coordinating water for deacylation.

Discussion

The CTX-M �-lactamases emerged in the late 1980s and are
characterized by their ability to efficiently hydrolyze cepha-

Figure 9. The conformational heterogeneity of the �-loop is greater in the
single mutants than in the WT or double mutant. A, joint distributions of two
C�–C� distances that capture the conformational heterogeneity of the �-Loop:
(i) Asn104 to position 167 on one side of the �-loop and (ii) Thr171 to position 240
on the other side. Distributions are shown for WT (top left panel), D240G (top right
panel), P167S (bottom left panel), and P167S/D240G (bottom right panel). Each
point represents a snapshot from the molecular dynamics simulations colored
according to its probability based on a 2D histogram. B, cumulative distribution
of distances between the C� atom of Glu166 and the N� atom of Asn170 for WT
(black), D240G (blue), P167S (red), and P167S/D240G (purple), capturing the loss of
interaction between Glu166 and Asn170 in the open state. C, distribution of dis-
tances between the sidechain N� atom of Asn132 and the C� of Glu166 for WT
(black), D240G (blue), P167S (red), and P167S/D240G (purple), capturing the newly
formed interaction between Glu166 and Asn132 in the open state.
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losporins, particularly the oxyimino-cephalosporin cefotaxime
(20, 21). For example, the catalytic efficiency for cefotaxime
hydrolysis by CTX-M enzymes is 1500-fold higher than that
exhibited by the common TEM-1 �-lactamase (17). Neverthe-
less, the related oxyimino-cephalosporin ceftazidime is poorly
hydrolyzed by CTX-M enzymes with kcat/Km values 1000-fold
lower than those observed for cefotaxime (17). Natural variants
of the TEM-1 enzyme have evolved through mutations that
provide increased rates of ceftazidime catalysis. Similarly, the
P167S and D240G substitutions have been found in multiple
variants of CTX-M enzymes that exhibit increased ceftazidime
hydrolysis (21, 26 –28, 41). Each of these substitutions results in
a 10-fold increased kcat/Km value for ceftazidime hydrolysis (22,
24). However, variants containing both substitutions have not
been observed, despite the prediction that such variants would
exhibit increased hydrolysis. Here we have shown that the fail-
ure of the double mutant to emerge in natural isolates is due to
epistasis resulting from decreased stability and lower bacterial
expression levels of the P167S/D240G enzyme, as well as antag-
onism between the substitutions with respect to catalysis.

The combination of amino acid substitutions that each
increase catalytic activity can display simple additivity or coop-
erativity when introduced together into an enzyme (4). For
additive interactions, the fold change of the double mutant is
expected to be the product of the fold changes of the single
mutants. Such additive combinations indicate that the substi-
tutions have independent effects on catalysis (4). However, not
all substitutions act additively. The CTX-M P167S and D240G
substitutions are antagonizing in the double mutant (Table 2).
This negative cooperativity suggests that the substitutions
interact, either directly or indirectly, and that the interaction

has a negative effect on ceftazidime catalysis (4). In the case of
the P167S and D240G substitutions, the interaction is not via
direct contact, because the �-carbons are located 10.7 Å apart.

X-ray crystallography and molecular dynamics simulations
of the P167S, D240G, and P167S/D240G mutants provide a
rationale for the increased ceftazidime hydrolysis by the single
mutants and the negative cooperativity observed for the double
mutant. The acyl-enzyme complex of the E166A/P167S/CAZ
X-ray structure shows a trans configuration peptide bond pre-
ceding residue 167 and an unfolded �-loop in an open confor-
mation with the aminothiazole ring of the antibiotic in a buried
position. This interaction increases van der Waals contacts and
hydrogen bonds between the enzyme and ceftazidime and is
consistent with enhanced catalytic efficiency toward ceftazi-
dime. In contrast, the E166A/D240G/CAZ structure revealed a
closed conformation. Two structures were obtained for the
E166A/P167S/D240G ceftazidime acyl-enzyme, one of which is
superimposable with the open �-loop structure of E166A/
P167S/CAZ and, based on this similarity, is proposed to hydro-
lyze ceftazidime. The second structure, however, displays a
closed �-loop and an altered conformation of the 103–106 loop
such that the critical Asn104 residue is turned out of the active
site and does not interact with ceftazidime, suggesting reduced
ceftazidime catalysis.

Although the E166A/P167S/CAZ and E166A/D240G/CAZ
structures suggest that the substitutions act by different mech-
anisms, 2.5-�s molecular dynamics simulations of each variant
indicate that both the P167S and D240G substitutions promote
an open conformation of the �-loop to accommodate ceftazi-
dime and that the WT and P167S/D240G enzymes exhibit

Figure 10. Conformational changes between inactive and active forms of the acyl-enzyme. Representative structures of the CTX-M acyl-enzyme complex
with ceftazidime (labeled CAZ, green) highlighting inactive (blue, left panels) and active (orange, right panels) conformations. Conformations of the �-loop (top
panels) and residues contacting ceftazidime (bottom panels) are shown, with relevant residues labeled. Key hydrogen bond interactions are depicted in dashed
lines (black).
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reduced ceftazidime hydrolysis because open conformations of
the �-loop are less probable.

The TEM-1 �-lactamase is �35% identical in amino acid
sequence to CTX-M enzymes and efficiently hydrolyzes peni-
cillins and many cephalosporins, but oxyimino-cephalosporins
are poor substrates (17). Nevertheless, natural variants of
TEM-1 have evolved that exhibit increased catalytic efficiency
for cefotaxime and ceftazidime hydrolysis (42, 43). These vari-
ants, termed extended-spectrum �-lactamases (ESBLs), con-
tain 1–5 amino acid substitutions, and multiply substituted
enzymes are common. Many of the substitutions found in these
variants act additively when combined (17). Some combina-
tions of mutations, however, are not additive. A well-studied
example is the combination of the R164S and G238S substitu-
tions. The Gly238 residue is on the �3 strand (analogous to
Gly238 in CTX-M-14), and Arg164 is at the base of the �-loop.
Each of these substitutions results in increased enzyme activity
toward cefotaxime and ceftazidime, yet the double mutant has
reduced activity (6, 44). Dellus-Gur et al. (6) determined the
structure of the TEM-1 G238S and R164S enzymes. The
G238S-containing enzyme exhibited two dominant conforma-
tions of the G238 loop, whereas the R164S substitution induced
an ensemble of conformations of the �-loop. The structure of
the R164S/G238S double mutant, however, exhibited a wider
ensemble of conformations of the �-loop than the single
mutants (6). Based on these results, it was hypothesized that the
entropic cost of the substrate selecting suitable conformations
among many alternatives results in the low activity for cefo-
taxime hydrolysis by the double mutant, accounting for the
negative epistasis observed for the combination (6).

In the case of the negative epistasis observed with the P167S
and D240G combination in CTX-M �-lactamase, multiple con-
formations of the enzyme also appear to play a role. Based on
our molecular dynamics simulation results, the P167S and
D240G substitutions are analogous to the R164S substitution in
TEM-1, where the substitutions induce an ensemble of confor-
mations, some of which are predicted to be capable of hydro-
lyzing ceftazidime. The CTX-M P167S and D240G substitu-
tions antagonize each other in the double mutant, similar to the
TEM-1 R164S and G238S substitutions. The mechanism of
antagonism, however, is different, with the CTX-M P167S/
D240G double mutant showing a reduced probability of
sampling multiple conformations of the �-loop, whereas the
TEM-1 R164S/G238S double mutant �-loop samples an
excess of conformations (6). Nevertheless, both cases dem-
onstrate the importance of conformational heterogeneity of
active-site loops in controlling catalytic activity and evolu-
tionary trajectories.

Several studies have provided evidence that the conforma-
tion of the �-loop is an important determinant of substrate
specificity of class A �-lactamases, particularly with regard to
the hydrolysis of oxyimino-cephalosporins. As described
above, the TEM ESBL mutation R164S is thought to broaden
the specificity of the enzyme by increasing the conformational
heterogeneity of the �-loop (6). In addition, the structure of an
apo enzyme form of a triple mutant of the TEM enzyme con-
taining the substitutions W165Y/E166Y/P167G that hydro-
lyzes ceftazidime shows the �-loop in an unfolded, open con-

formation similar to that observed for the CTX-M E166A/
P167S/CAZ and E166A/P167S/D240G/CAZ-2 structures (45).
Further, computational studies predict that TEM ESBL substi-
tutions that broaden the specificity of the enzyme to include
cefotaxime stabilize conformations of the �-loop that facilitate
substrate binding (46).

The results also suggest an important role for the active-site
103–106 loop in cefotaxime and ceftazidime hydrolysis. We
recently showed that an N106S mutation in the 103–106 loop
that is found in CTX-M enzymes from clinical isolates lowers
cefotaxime and ceftazidime hydrolysis because of a change in
conformation of the loop (36). Asn106 is at the base of the loop
and not in the active site. However, the N106S substitution
changes the hydrogen-bonding network connectivity in the
loop such that the side chain of Asn104 rotates out of the active
site, thereby eliminating a hydrogen bond with substrate. Fur-
ther experiments showed that an N104A mutant exhibits
10-fold reduced catalytic efficiency for oxyimino cephalosporin
hydrolysis, suggesting that the hydrogen bond is important for
catalysis. Thus, the conformation of the 103–106 loop is a
determinant of substrate specificity (36). In this study, it was
found that the P167S/D240G enzyme, which exhibits reduced
ceftazidime hydrolysis, has increased B-factors for the 103–106
loop, suggesting disorder in Asn104 that is consistent with
reduced activity. In addition, in the structure of the E166A/
P167S/D240 apo enzyme the B-factors of the 103–106 loop are
increased, and in one of the structures of E166A/P167S/D240G
in complex with ceftazidime, the side chain of Asn104 is rotated
out of the active site, again consistent with decreased ceftazi-
dime hydrolysis. Thus, although the P167S and D240G substi-
tutions are not in the 103–106 loop, the antagonism between
the substitutions is at least partially reflected in changes in the
conformation of the loop.

Thermal stability studies of the WT, P167S, D240G, and
P167S/D240G enzymes show that the single mutants are less
stable than WT, whereas the double mutant is less stable than
either single mutant. There is some correlation between stabil-
ity and protein expression levels in that the P167S/D240G
mutant is the least stable and is also expressed at the lowest
levels among the mutants. However, also note the P167S
mutant is less stable than D240G but is expressed at higher
levels, suggesting there are exceptions to the stability/protein
expression level correlation. Some recent studies have shown
that lower enzyme stability correlates with increased flexibility
and increased cephalosporin hydrolysis in �-lactamases (47,
48). Here, we do not observe a correlation between stability and
flexibility in that the P167S and D240G mutants readily sample
multiple conformations and yet are more stable than P167S/
D240G, which samples fewer conformations. Further, we do
not observe a correlation between stability and catalytic activity
toward ceftazidime because P167S/D240G has low stability but
also low activity.

Taken together, the results presented here suggest that
active-site loops play an important role in the substrate speci-
ficity and evolutionary capacity of �-lactamases. Class A �-lac-
tamases such as TEM and CTX-M can evolve altered substrate
specificity by mutations that change the conformation of ac-
tive-site loops. An active site with flexible loops loosely associ-
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ated with a highly ordered, stable scaffold structure has been
described as fold polarity, and there is evidence that such an
organization facilitates the evolution of new functions because
of a tolerance to changes in the loops without drastically desta-
bilizing the enzyme (7). Such an organization is clearly advan-
tageous for antibiotic resistance enzymes such as CTX-M
�-lactamases that are under selective pressure for altered sub-
strate specificity.

Experimental procedures

Bacterial strains and plasmids

The CTX-M-14-pTP123 plasmid was used for site-directed
mutagenesis, MIC determinations, and immunoblotting. This
plasmid was constructed by inserting the blaCTX-M-14 gene
into the previously described pTP123 plasmid. CTX-M-14-
pTP123 has a chloramphenicol (CMP) resistance marker and
�-lactamase expression is controlled by the isopropyl-�-D-ga-
lactopyranoside (IPTG)–inducible Ptrc promoter (49). Under
conditions without IPTG, protein expression is maintained at a
basal level; these were the conditions under which MIC deter-
mination and immunoblotting were performed. The E. coli
strain XL1-Blue {recA1 endA1 gyrA96 thi-1 hsdR17 supE44
relA1 lac [F9 proAB lacIqZM15 Tn10 (Tetr)]} (Stratagene, Inc.,
La Jolla, CA) was used as the host for the construction of the
P167S/D240G CTX-M-14 mutant via site-directed mutagene-
sis, as well as MIC determination. The E. coli strain RB791
(W3110 lacIqL8) was used as the host for the determination of
protein expression levels of WT CTX-M-14 �-lactamase and
its mutants (50). For protein purification, WT CTX-M-14 and
the mutants were expressed in the pET28a plasmid using the
protocol outlined by Patel et al. (24). CTX-M-14 and mutants in
the pET28a plasmid were expressed in BL21(DE3) [fhuA2 (lon)
ompT gal (� DE3) (dcm) �hsdS � DE3 � �sBamHIo �EcoRI-B
int::(lacI::PlacUV5::T7 gene1) i21 �nin5] (51).

Site-directed mutagenesis

The CTX-M-14 P167S/D240G mutant was constructed
using the D240G mutant in pTP123 as template for
QuikChange mutagenesis using 1 unit of Phusion DNA po-
lymerase (New England Biolabs, Ipswich, MA) and 0.4 �M

P167S primer (5	-CTGGATCGCACTGAAAGCACGCTG-
AATACCGCC-3	) (24). Primers were obtained from Inte-
grated DNA Technologies (Coralville, IA). Thermocycler
products were digested with DpnI (New England Biolabs)
and transformed into electrocompetent E. coli XL1-Blue
cells and selected on LB agar supplemented with 12.5 �g/ml
chloramphenicol. The DNA sequence of the resulting
mutant was confirmed by DNA sequencing (Genewiz,
Plainfield, NJ). The E166A/P167S/D240G mutant was con-
structed by QuikChange mutagenesis with a primer encod-
ing the E166A/P167S mutations (5	-GATCGCACTGCTC-
CTACGCTGAAT-3	) using CTX-M-14 P167S/D240G pTP123
as template and confirmed using DNA sequencing.

Minimum inhibitory concentration determinations

MICs for cephalothin were determined by Etest strip (Bio-
Mérieux, Marcy-l’Étoile, France). This was performed by grow-

ing a single colony of E. coli XL1-Blue harboring the pTP123
plasmid with either WT, mutant CTX-M-14, or empty vector
overnight in LB supplemented with 12.5 �g/ml CMP in a shak-
ing incubator at 37 °C. The overnight culture was diluted 102

and spread onto LB agar containing CMP, an Etest strip was
placed on the agar, and the MIC was determined based on the
zone of inhibition.

MIC determinations for cefotaxime were performed by
broth dilution. Again, a single colony of E. coli XL1-Blue har-
boring pTP123 with WT or mutant CTX-M-14 or empty vector
was grown overnight in LB with CMP in a shaking incubator at
37 °C. The cultures were diluted 104, and 100 �l of culture was
used to inoculate 2 ml of LB supplemented with increasing con-
centrations of cefotaxime in 14-ml test tubes. Concentrations
of cefotaxime (in �g/ml) used for WT and D240G were 0, 1, 1.5,
2, and 3. The concentrations used for the P167S and P167S/
D240G mutants were 0, 0.1875, 0.25, 0.375, and 0.5, and for
pTP123 empty vector control, the concentrations were 0, 0.03,
0.045, and 0.06. The cultures were incubated with shaking for
18 h at 37 °C. The concentration at which no visible growth was
observed was reported as the MIC.

MIC determinations for ceftazidime were performed by
broth dilution, with a single colony of E. coli XL1-Blue harbor-
ing pTP123 with WT or mutant CTX-M-14 or empty vector
being grown overnight in LB with CMP, as above. Saturated
cultures were diluted 104, and 25 �l was used to inoculate 500
�l of LB supplemented with increasing concentrations of cef-
tazidime in a deep-well 96-well plate. Concentrations of cefta-
zidime (in �g/ml) used for WT, D240G, P167S/D240G, and
pTP123 empty vector were 0, 0.12, 0.19, 0.25, 0.38, 0.5, 0.75, 1,
1.5, 2, 3, and 4; for P167S, the concentrations were 0, 0.38, 0.5,
0.75, 1, 1.5, 2, 4, 6, 8, and 12. The 96-well plate was covered with
a sterile, breathable seal (Excel Scientific, Victorville, CA) and
incubated shaking at 37 °C for 18 h. The concentration at which
no growth was observed (A600 
 0.1) was recorded as the MIC.

Immunoblotting

To determine the effects of the P167S/D240G mutation on
steady-state protein expression, single colonies of E. coli RB791
harboring pTP123 or the recombinant pTP123 encoding WT
or mutant CTX-M-14 �-lactamase were incubated overnight
with shaking in 2� YT medium supplemented with 12.5 �g/ml
CMP at 37 °C. A total of 10 ml of 2� YT medium with CMP was
inoculated with 100 �l of overnight culture and incubated at
37 °C while shaking until the A600 reached between 0.9. The
cells were pelleted, and the periplasmic proteins were extracted
by osmotic shock as described previously (36). The proteins
were fractionated by SDS-PAGE and transferred onto a nitro-
cellulose membrane (GE Healthcare). The membrane was
probed with a rabbit serum raised against CTX-M-14 protein
and a rabbit serum raised against maltose-binding protein
(MBP) (a gift from Dr. Anna Konovalova, University of Texas
Health Science Center at Houston), which functions as a load-
ing control. Then the membrane was probed with a donkey
anti-rabbit secondary antibody conjugated with horseradish
peroxidase (GE Healthcare). After development of the immu-
noblot with the SuperSignal West Pico chemiluminescent sub-
strate (Thermo Fisher Scientific), the hybridization signals of
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CTX-M-14 �-lactamase and MBP were quantified by densi-
tometry using ImageJ software (National Institutes of Health).
The signal for WT and mutant CTX-M-14 �-lactamase was
normalized to that for MBP.

Protein purification

WT CTX-M-14 �-lactamase and the P167S/D240G mutant
were expressed from a pET28a vector in E. coli BL21(DE3) cells.
Proteins expressed in this plasmid have an N-terminal His tag
with a TEV protease cleavage site. E. coli BL21(DE3) cells har-
boring the CTX-M-14 plasmid were used to inoculate LB sup-
plemented with 25 �g/ml kanamycin and incubated at 37 °C in
a shaking incubator until the A600 reached �0.9, at which time
IPTG was added to yield a final concentration of 0.2 mM to
induce protein expression. The culture was then grown for 20 h
at 23 °C in a shaking incubator. The culture was centrifuged at
8000 rpm at 4 °C, and the pellet was stored overnight at �80 °C.
The pellet was then thawed on ice and resuspended in 30 ml of
lysis buffer (20 mM HEPES, pH 7.4, 300 mM NaCl, 20 mM imid-
azole). The cells were lysed using a French Press at 1250 p.s.i.
and a probe sonicator, followed by centrifugation for 50 min at
10,000 rpm and filtration of the supernatant with a 0.45-�m
filter (EMD Millipore, Billerica, MA). Filtered lysate was then
bound to a HisTrap FF column (GE Healthcare) equilibrated
with the lysis buffer. The CTX-M-14 enzyme was eluted using
20 –500 mM imidazole gradient in the lysis buffer. Pure frac-
tions containing His-CTX-M-14 protein were pooled, concen-
trated, and buffer-exchanged to the lysis buffer using 10-kDa
molecular mass cutoff centrifugal filters (EMD Millipore). 0.25
mg of TEV protease was added to the His-tagged enzyme and
incubated overnight at 4 °C. TEV protease and uncleaved His-
CTX-M-14 protein were removed by incubation with nickel–
Sepharose Hi-Performance beads (GE Healthcare). CTX-M-14
proteins were further purified by gel-filtration chromatography
with Superdex 75 Increase column using (20 mM HEPES, pH
7.4, 150 mM NaCl) as running buffer. The fractions correspond-
ing to monomer of CTX-M-14 WT or P167S/D240G mutant
protein were pooled and concentrated with 10-kDa molecular
mass cutoff centrifugal filters. The purity of purified proteins
was �95% determined by SDS-PAGE. Their concentrations
were determined by measuring the absorbance at 280 nm with
DU800 spectrophotometer (Beckman Coulter) and using an
extinction coefficient of 23, 950 M�1 cm�1.

Determination of thermal stabilities

Thermal stabilities of the WT and mutant enzymes were
determined as previously described (24). In short, the fraction
of folded protein was measured with a spectropolarimeter at
222 nm, while the temperature was increased from 30 to 70 °C
at a rate of 0.01 °C/s. The melting temperature (Tm), the tem-
perature midpoint of protein unfolding, was determined by fit-
ting the data to a single Boltzmann two-state model using
GraphPad Prism 6 (San Diego, CA) (33).

Steady-state enzyme kinetic parameters

Michaelis–Mentensteady-statekineticparametersweremea-
sured as previously described (24, 52). The kinetic parameters
for CTX-M-14 P167S and D240G are from Patel et al. (24).

Antibiotic hydrolysis was measured at 30 °C in 50 mM phos-
phate buffer (pH 7.0) containing 1 �g/ml BSA. BSA was added
to stabilize �-lactamase when it is diluted to low concentration
for kinetic assays. Cephalothin, cefotaxime, and ceftazidime hy-
drolysis were measured at 262, 264, and 260 nm, respectively
(24). Km and kcat were determined by fitting the initial velocities
of increasing substrate concentrations to the Michaelis–
Menten equation using GraphPad Prism 6. For ceftazidime,
which has a Km � 500 �M, kcat/Km was estimated using the
equation, v � kcat/Km[E][S], where [S] 

 Km. All measure-
ments were performed at least in duplicate. kcat and Km values
from each run were averaged, and the standard deviations
reported are the sums of the percent standard deviations of kcat
and Km (24).

Protein crystallization and structure determination

Crystallization conditions were screened based on previously
solved crystal structures for CTX-M-14. Purified P167S/
D240G enzyme in 50 mM phosphate buffer, pH 7.0, was con-
centrated to 40 mg/ml, and protein was mixed with mother
liquor 1:1 in a 200-nl drop and grown by hanging-drop vapor
diffusion. Diffraction-quality crystals were obtained in 0.1 M

MIB buffer (malonic acid, imidazole, and boric acid buffer), pH
4.0, 25% (w/v) PEG 1500, and were harvested and cryoprotected
in 25% glycerol: 75% mother liquor. The crystals were plunged
in liquid nitrogen and sent to Beamline 5.0.2 at the Advanced
Light Source (Berkeley, CA) for data collection. Because the
first data set appeared to show high twinning, a second data set
was collected on the same crystal. This data set was processed at
1.5 Å in the space group P41212 using HKL200 and the Phaser
program from the CCP4 suite was used for molecular replace-
ment. CTX-M-14 (PDB code 1YLT) was used as a phasing
model (22). Refinement was performed using REFMAC5 and
phenix.refine, as part of the Phenix program suite (53). The
model was built manually using COOT (54).

E166A/P167S/D240G was crystallized by concentrating the
protein in 50 mM phosphate buffer, pH 7.0, to 40 mg/ml and
mixing with mother liquor 1:1 in a 200-nl drop and grown by
hanging-drop vapor diffusion. Crystals from the condition con-
taining 0.1 M PCB buffer, pH 6, 25% (w/v) PEG 1500 were
soaked for 24 h in 25 mM ceftazidime, 20% glycerol:80% mother
liquor. Structure determination indicated an acyl-enzyme com-
plex with ceftazidime. Crystals grown in the condition contain-
ing 0.2 M CaCl, 0.1 M sodium acetate, pH 5, 20% (w/v) PEG 6000
were also soaked for 24 h in 25 mM ceftazidime, 20% glycerol:
80% mother liquor but were not in complex with ceftazidime,
resulting in the apoenzyme. The data were collected on Beam-
line ALS 501 and was processed as described above. The
E166A/P167S/D240G enzyme was also crystallized by concen-
trating the protein in 50 mM phosphate buffer, pH 7.0, to 36
mg/ml, mixing with mother liquor 1:1 in a 200-nl drop, and
grown by hanging-drop vapor diffusion. Crystals obtained in
the condition 0.1 M MMT (1:2:2 ratio of DL-malic acid:MES:
Tris base), pH 6.0, 25% (w/v) PEG 1500 were soaked for 24 h in
25 mM ceftazidime, 25% glycerol:75% mother liquor. The data
were collected on Beamline ALS 821. Structure determination
revealed an acyl-enzyme complex with ceftazidime with the
�-loop in an open conformation.
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E166A/D240G was crystallized by concentrating the protein
in 50 mM phosphate buffer, pH 7.0, to 36 mg/ml and mixing
with mother liquor 1:1 in a 200-nl drop and grown by hanging-
drop vapor diffusion. Crystals grown in 0.1 M Tris-HCl, pH 8.5,
25% (w/v) PEG 3000 were soaked for 24 h in 25 mM ceftazidime,
25% glycerol:75% mother liquor. The data were collected on
Beamline ALS 822. However, structure determination revealed
this to be the apo enzyme. Crystals grown in the condition 0.2 M

NaCl, 0.1 M Tris, pH 8.0, 20% (w/v) PEG 6000 were soaked for
24 h in 15 mM ceftazidime, 25% glycerol:75% mother liquor, the
data were collected on Beamline ALS 822, and structure deter-
mination revealed an acyl-enzyme complex with ceftazidime.
The data set was processed as described above for the P167S/
D240G enzyme. X-ray crystallography statistics are listed in
Table S1.

Molecular dynamics simulations

As described previously (46), simulations were run at 300 K
with the GROMACS software package (46, 55–57) using the
Amber03 force field (58) and TIP3P explicit solvent (59). Muta-
tions were introduced in PyMOL (60), and parameters for the
acyl group were generated with the generalized amber force
field (40, 61, 37). A total of 2.5 �s of simulation were run for
each variant.
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