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Abstract

Data Analytics in Test:

Recognizing and Reducing Subjectivity

by Sebastian Siatkowski

Applying data analytics in production test has become a widely adopted industrial

practice in recent years. As the complexity of semiconductor devices scales and the

amounts of available test data continue to grow, the research direction in this field

is forced to shift away from solving specific problems with ad hoc approaches and

demands for deeper understanding of the fundamental issues. Two data-driven test

applications where this shift is apparent are production yield optimization and defect

screening, where the respective underlying data analytics approaches are correlation

analysis and outlier analysis. A core issue present in these two approaches stems from

the subjectivity that is inherent to data analytics. This dissertation delves into how

subjectivity manifests itself and what can be done to reduce it with respect to the two

test applications.

Outlier analysis is an approach used for identifying anomalies. The main goal

of outlier analysis in test is to capture statistically outlying parts with the hope that

their abnormal behavior is attributed to some defectivity. During creation of an outlier

model, the decisions about outlying behavior in the existing data are made by utilizing

known failures and the test engineer’s best judgment. In practice, outlier screening

methods are simply used for transforming data into an outlier score space. Even if

outlier analysis techniques are able to successfully classify a dataset into inliers and

outliers, outlier models require thresholds to be decided. A concept called Consistency

is introduced to provide an objective data-driven way to evaluate outlier models by

viii



utilizing all available data. The key observation underlying this concept is that outlier

analysis should be immune to noise introduced by sources of systematic variation.

Correlation analysis is a process comprising a search for related variables. The ap-

plication of production yield optimization involves searching for correlation between

the yield and various controllable parameters. The goal of this process is to uncover

parameters that, when adjusted, can result in yield improvement. This analytics pro-

cess is subjective to the perspective of the analyst and the quality of the result is highly

dependent on the analyst’s previous experiences. In order to reduce the subjectivity in

this application, a process mining methodology is introduced to learn from the experi-

ences of analysts. The key advantage of this methodology is that in addition to having

the capability to record and reproduce these analyses, it can also generalize to analytics

processes not contained in the learned experiences.
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Chapter 1

Introduction

1.1 Data Analytics in Test

The semiconductor production process comprises many stages from design, to man-

ufacturing, to test, to in-field deployment. At each step along the way, data is gener-

ated and collected, leading to parts typically having data for intended specifications,

usage profile of process tools and chambers, process parameters (E-tests), wafer sort

tests, burn-in, final tests, and in-field performance. These data stages are visualized

in Figure 1.1. Availability of this tremendous amount of data has greatly influenced

the interest in and profitability of applying modern data analytics in Test, which has

presented many research opportunities [1].

FIGURE 1.1: Data typically available in the production flow that is of
interest to test data analytics
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Chapter 1. Introduction

Research aimed at utilizing data mining along with statistical models in Test has

been ongoing for over a decade [2][3]. A broad objective for data analytics is to learn

from data. In view of this objective, data mining is seen as a knowledge discovery process

[4]. In the case of Test, this knowledge contains information on how the test flow can

be improved in terms of cost and quality.

The applications of data analytics in Test are quite extensive. Some of these applica-

tions include yield optimization [5][6], test cost reduction [7], customer return analysis

[8][9], burn-in reduction [10][11], and outlier detection [12][13]. Furthermore, the tools

used within these applications may differ when additional data aspects are taken into

consideration, such as wafer patterns [14], spatial correlations [15], multivariate test

spaces [16], data robustness [17], process variations [18], or systematic defects [19].

Though many of the application specific solutions are intricate and efficient, they often

tend to solve ad hoc problems which may not be desirable from the research stand-

point. The work in this dissertation aims to preserve the value of the multitude of

research in this field by introducing novel approaches which combine multiple solu-

tions and are easily expandable .

The ease of access to modern data mining tools may be one of the factors that con-

tributed to data analytics finding so many applications in Test. Multiple software ma-

chine learning packages and libraries are available online, with many of them being

free or open-source projects. One such library is Scikit-learn [20], available under the

minimally imposing BSD (Berkeley Software Distribution) license, which was utilized

to produce many of the results in this thesis.

Though numerous data analytics problems exist in Test, the underlying approaches

for solving those problems have some fundamental commonalities. At the core of

many yield optimization, test cost reduction, and some burn-in elimination problems

lies correlation analysis. The problems of outlier screening, customer return analysis,

and burn-in reduction frequently rely on outlier analysis. Sections 1.1.1 and 1.1.2 below
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introduce the concepts of correlation analysis and outlier analysis, respectively, and

discuss the nature of their applications in Test.

1.1.1 Correlation Analysis

A definition of correlation widely accepted by the statistics community is:

The degree to which two or more attributes or measurements on the same group of

elements show a tendency to vary together.

The measure of correlation between sets of variables can be calculated in multiple

ways. For instance, Pearson correlation can be used to evaluate the linear relationship

between variables, while Spearman correlation can be used to evaluate the monotonic

relationship between variables. To avoid constraining correlation to any particular

method, further discussions apply to any correlations satisfying the above definition.

In the context of Test, correlation is used to identify related measurements in data

from within or across production stages. The purpose of finding correlation varies

across applications.

Yield optimization techniques are often employed when the yield (# passing parts
# total parts ) of

a product is lower than expected. For these techniques, correlation serves as the metric

that is used to identify controllable parameters which can be used to correct known

sources of yield loss. Yield loss is typically manifested as failures at one of the test

stages (i.e. wafer sort, burn-in, or final test). If correlation can be found between the

failures and some E-test or manufacturing data, then some parameters can be identi-

fied as candidates for correcting the yield issue. Adjustment of those parameters can

then lead to fewer parts exhibiting those failures, resulting in improved yield.

Test cost reduction, as the name suggests, aims to bring down the cost of produc-

tion by cutting costs in the test stage. Through the use of data analytics this can be
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done by identifying and removing redundant or unnecessary tests, or by implement-

ing selective test methodologies. In either case, correlation is one metric that can be

used to make such decisions. For example, when two tests are very highly correlated,

an argument can be made for the case that running both tests is redundant. Finding

more intricate correlations can allow for test reordering and partial testing methodolo-

gies where, for example, a part is only run on test C if the right conditions were met on

its values for tests A and B.

Burn-in elimination can be fundamentally quite similar to test cost reduction. If

a set of preceding tests can be shown to cover all the failures captured by burn-in,

then the burn-in step can be removed. In practice this is difficult since burn-in aims

to capture failures that are not identifiable through tests. That being known, instead

of simply searching for correlation among existing tests, a common practice is adding

high-voltage stress tests intended to mimic the early life acceleration performed by

burn-in [21]. Then, correlation is used to justify burn-in elimination or devise selective

burn-in strategies.

Correlation analysis is the core step of many data mining problems in Test. It is

therefore not unreasonable to conjecture that studying and improving the process of

correlation analysis could lead to a key contribution in the field. The work presented in

Chapter 2 focuses on the application of correlation analysis within a yield optimization

context and the work in Chapter 3 focuses on learning the process undertaken by a data

analyst to resolve yield issues.

1.1.2 Outlier Analysis

Although outlier analysis is well researched, with many books covering the subject

extensively, there is no single agreed upon definition of an outlier. One definition that

has existed for a while and captures the essence of what an outlier is quite well was

coined by Hawkins [22]:
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An observation which deviates so much from other observations as to arouse sus-

picions that it was generated by a different mechanism.

Outlier analysis is a popular approach for capturing parametric defects [17]. The

goal of applying outlier analysis in Test is to capture defective parts that pass through

the existing test flow. To achieve this goal, outlier analysis works under the assumption

that it is possible that abnormal behavior within the test flow can be used to differenti-

ate defective parts from good parts.

Outlier analysis is based on an outlier model. When developing such an outlier

model, three components are to be considered, as illustrated by Figure 1.2. The first

component is the set of samples to be analyzed together. This set is referred to as the

base set. The second component is the method used to calculate an outlier score for each

sample. This method is often called the outlier analysis method or just outlier method.

After the outlier score calculation, samples are conceptually ordered by an outlier rank.

Because the outlier score is intended to be comparable across base sets, the outlier rank

can be established globally. The third component is a way to decide the threshold on

the outlier rank. This threshold separates the samples into inliers and outliers.

FIGURE 1.2: Three basic components in outlier analysis

Preemptive outlier screening is often adopted in the test flow for automotive prod-

ucts due to their extremely high quality requirement. In this application, an analyst
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decides the threshold by looking at the data for some selected base set and outlier

method. The objective is to improve the quality of the product by allowing for a yield

reduction, with the hope that the screened outliers were bad parts or future failures.

This approach follows the unsupervised leaning paradigm [23].

Customer return analysis is a reactive outlier analysis approach where a set of fu-

ture failures is known. Utilizing this knowledge, an analyst can select a threshold that

would have captured a failure, preventing similar parts from passing through the test

flow in the future. The three components of the outlier model are often adjusted to min-

imize the effect that the model will have on yield loss. Though the same underlying

outlier analysis components are used, this approach follows the supervised learning

paradigm [23].

One aspect of burn-in reduction is quite similar to customer return analysis. The

idea is that if parts failing burn-in could be captured in earlier test stages, then the need

for burn-in could be reduced. From the analyst’s standpoint, the experimental setup is

almost the same. And, in either case, the goal is to discover future failures early in the

production pipeline.

It is important to point out that outlier analysis alone often cannot justify making

changes to the test flow. In practice, data analytics findings are presented to teams who

posses the domain knowledge to assess if the findings make sense. For example, it may

be necessary to check if a test found to screen a customer return is related to the failure

mechanism.

Outlier analysis is used for multiple applications of data analytics in Test. The work

in Chapters 4 and 5 of this dissertation focuses on exposing problems with current the

outlier analysis approaches and exploring novel solutions.
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1.2 The Added Benefit of Data Analytics in Test

One reason why data analytics is attractive to test applications is because simple ana-

lytics approaches do not require modifications to the existing test flows. A considerable

portion of analytics can be applied in an offline fashion by using data that is already

being collected.

The rising interest in applying data analytics in Test, both among academics and

industry professionals, has largely been fueled by instances where data analytics was

shown to add clear benefit to the existing processes. This section highlights some ex-

amples where such benefit was shown.

The use of outlier screening has been demonstrated to successfully capture cus-

tomer returns [24]. Additionally, customer return parts have also been captured through

multivariate outlier screening models at wafer sort [25].

In one case, successful test cost reduction for an RF/A IC was achieved through

multivariate parametric testset optimization [7]. In another case, successful test cost

reduction for an RF radio transceiver was accomplished through chip performance

prediction [26].

One case of successful burn-in avoidance was demonstrated with the use of outlier

analysis [27]. A case where burn-in reduction is accomplished showed how failures

requiring longer burn-in times could be identified through analysis of parametric test

results [11].

Some other problems in Test have also found successful data analytics applications.

Analytics can be utilized to provide accurate yield estimates across design generations

and among facility locations [28]. Data-driven solutions can be devised for identifying

systematic faults in volume diagnosis [29]. In another problem, the cause for mismatch

between decoupled plasma nitridation chambers was identified by a data analytics

algorithm [30].
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The impact of data analytics on semiconductor manufacturing has been held in

high regard by industry leaders. A white paper from Intel [31] stated that big data was

instrumental in manufacturing at smart factories, which led to improved productivity

and quality. A white paper from Oracle [32] stated more broadly that big data solu-

tions can help improve manufacturing efficiency and can lead to improved and timely

decision making.

The promising impact of data analytics in Test has recently led to the formation of

multiple companies wishing to capitalize on the advances in this field. These com-

panies package analytics tools that simplify the task of applying data analytics for

semiconductor manufacturers. The tools have already found successes, for example

as shown by OptimalPlus [33] and by PDF Solutions [34].

Chapter 2 of this dissertation presents an example where correlation analysis leads

to successful yield optimization. This example is supported by a silicon experiment,

details of which are described within the chapter.

1.3 Related Works and Approaches

This section references works representing the industrial practice approaches as well as

the state-of-the-art research solutions to the respective problems of yield optimization

and outlier screening.

Yield is a subject that has been studied widely and extensively. For production

yield improvement, existing efforts may include approaches based on yield modeling,

volume diagnosis, and/or root-causing.

Earlier work such tried to identify the top parametric parameters that were most

sensitive to yield and model their impact using multivariate regression [5]. Another

work [18] used K-Means to cluster wafers into two groups, one with good yield and
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one with poor yield. Kruskall-Wallis and decision trees were applied to identify pro-

cess parameters that were most likely to explain the discrepancy between the two

groups.

Volume diagnosis is an effective approach for yield improvement [6][35][36]. For

example, one work [35] applied a novel statistical learning algorithm to produce accu-

rate feature failure probabilities to better understand yield limiters. Another work [36]

incorporated logic diagnosis data along with information on physical features in the

layout to identify dominant defect mechanisms among failing dies.

For lithographic induced systematic issues, one work [19] proposed methods to

extract features and cluster layout snippets to identify possible defect hotspots. These

methods wish to identify systematic defects as yield limiters.

The focus in Chapter 2 of this work is specific to yield optimization in the mass

production stage where large quantities of test data are available. The data comes

mostly from parametric tests where root causing the failures could be difficult. Hence,

the correlation approach is applied as an alternative to the root-causing effort. The goal

of finding relevant process parameters to improve yield is similar to previous works

[18]. However, the analysis is much more detailed than what has been previously

proposed.

To the best of the author’s knowledge, no prior work has attempted to study the

underlying process of applying correlation analysis to yield optimization or to auto-

mate the data analytics steps of this process. From that aspect, the work in Chapter 3

is the first of its kind.

Because outlier screening is a popular approach for capturing parametric defects,

many outlier methods have been proposed to achieve this purpose. Among them,

some are already being commonly used by semiconductor manufacturers. For exam-

ple, Part Average Testing (PAT) is a common practice applied to automotive product
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lines [37]. PAT can include Static PAT (SPAT), Dynamic PAT (DPAT), Automotive Elec-

tronics Council DPAT (AEC), and Robust DPAT (RDPAT) [38]. A PAT method deter-

mines outliers based on the distribution of the measured values on a set of parts. Such

methods will be referred to as distribution-based methods.

Another popular class of outlier methods includes methods such as Good Die in

a Bad Cluster (GDBC), GDBC with Specific Bins (GDBC SB), and Bad Bin in a Bad

Cluster (BBBC). These methods determine outliers by using the location information

of failing dies on a wafer [38]. They can be called location-based methods.

There are also methods that utilize both location information and measured values

to determine outliers. Popular examples include Nearest Neighbor Residual (NNR)

[27][39] and Location Averaging (LA) [27][40][41].

Traditional multivariate outlier analysis include the use of Mahalanobis distance

and the use of a linear regression model [42]. In recent years, multivariate outlier

analysis for screening parametric defects has gained more popularity. For example,

recent studies include methods using Principal Component Analysis (PCA) [10][12]

and Support Vector Machine (SVM) one-class algorithm [43][8].

The methods used in the studies in Chapters 4 and 5 comprise univariate and mul-

tivariate methods, as well as methods that utilize location information. The specific

details of the methods used are described in the respective chapter introductions.

1.4 The Issue of Subjectivity

Analytics can be viewed as an iterative search process that comprises the three steps

pictured in Figure 1.3: (1) dataset preparation, (2) running an analytics tool, and (3)

meaningfulness determination. In this process, dataset preparation and meaningful-

ness determination are largely empirical. From the raw data, an analyst decides how
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to prepare the dataset for the tool to analyze. After the tool outputs a result, the analyst

examines the result to determine if it is meaningful.

FIGURE 1.3: High Level Overview of Analytics Process

For learning to happen in analytics, two components are required [1]: data and do-

main knowledge. The need for domain knowledge to enable learning is an important

detail which inspired much of the work in this thesis. The domain knowledge in the

analytics process is responsible for most of the subjectivity. In the above steps, both

preparing the dataset and determining whether results are meaningful require domain

knowledge.

1.4.1 Subjectivity in Correlation Analysis

In correlation analysis, prior to feeding datasets to a correlation tool, an analyst must

prepare the datasets. This dataset preparation step is to a large extent subjective to

the analyst’s experience and domain knowledge. For instance in yield optimization,

when searching for correlation between a parametric test and a process parameter, just

a couple of the decisions that must be made involve population selection and feature

selection.

Population selection entails selecting a subset of data. Limiting the analysis to a

subset of lots or a subset of wafers can often lead to entirely different results. Sources

of systematic variation such as site-to-site variation or tester-to-tester variation can be

dealt with in various ways. Separating the datasets is one possible solution, but it

may lead to small datasets which could be statistically insignificant, especially when

wafer sort is performed on 32 or more sites and the number of testers is large. Another
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solution is to correct for variation by shifting the datasets, but this approach also has

obvious drawbacks since the exact variation may be incalculable. Furthermore, if the

period over which data was collected contained test revisions, process changes, or even

gradual process shifts, clustering the data may be necessary to uncover meaningful

results.

Feature selection may be even more convoluted. Data such as parametric tests and

process parameters does not have an easy one-to-one mapping to run correlation on.

Parametric tests are performed on every die on the wafer, while process parameters are

measured on some site locations on the wafer. Typically the number of dies is much

greater than the number of process parameter site locations. To make these datasets

comparable, the analyst must decide how to create a one-to-one value mapping. One

obvious approach is to perform correlation using the average values from each wafer,

but this may not suffice to uncover an existing relationship between variables. Even

when looking for correlation to a specific parametric test, using the actual test value, a

normalized value, the number of failures, the number of parts with a particular value,

or some statistic of the distribution all may be sound choices.

Many other decisions exist in preparing the datasets to feed into correlation tools

and also in interpreting the results. Even if an analyst sets out to perform an exhaustive

search based on all known perspectives, some perspectives may simply be unknown

to the analyst. The effectiveness of correlation analysis is dependent on the analyst’s

domain knowledge. Chapter 2 demonstrates a real scenario where the perspectives

applied by the analyst drastically affected the result of correlation analysis in yield op-

timization. Building on that result, the work in Chapter 3 proposes a methodology that

can learn from an analyst’s experience in order to reduce the subjectivity in subsequent

analyses.
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1.4.2 Subjectivity in Outlier Analysis

Recall that the general function of outlier analysis is to develop models that can identify

outliers in data. However, the available outlier analysis methods require user input.

In fact, each of the three components in Figure 1.2 requires the analyst to make subjec-

tive decisions. Thus, the performance of the resulting outlier models is dependent on

choices made by the analyst.

Given a particular outlier method, a decision has to be made with respect to the

samples in the base set. Common choices are using samples from one wafer or one

lot as the base set. Although, in some cases it may make sense to use samples from a

specific region of a wafer, samples tested on the same equipment, samples that meet

some parametric condition, etc. An outlier in one base set may be an inlier in another

base set. Hence, the choice of base directly impacts the effectiveness of the resulting

outlier model.

Furthermore, a wide variety of methods are typically available at the analyst’s dis-

posal, complicating the issue with more subjective choices. The resulting outlier ranks

produced by different methods may vary significantly. An analyst is often faced with

the decision of choosing the best method for a particular problem. The effectiveness of

methods can be assessed in many ways, for example by measuring the amount of vari-

ance reduction [39][40][41]. Also, it is common in practice for multiple methods to be

employed. In that case, the data can be analyzed in order to devise the best sequence

of outlier methods. For example, it has been shown that multivariate analysis meth-

ods can capture unique outliers that are not captured by univariate analysis methods

[8][12].

The third component involves determining a threshold which separates parts into

inliers and outliers in the outlier rank space. Threshold determination can be done

in either a reactive fashion, where some set of failures is known, or in a proactive
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fashion, where some yield reduction budget is established as an acceptable trade-off

for improved quality.

In the reactive case, the known failures constitute any future failures that outlier

analysis aims to capture at an earlier test stage, such as final test failures, burn-in fail-

ures, or customer returns. For final test failures, the tests where failures occur may not

be covered in earlier test stages or failures may be caused by packaging. The existence

of such false positives which are impossible to capture by outlier analysis leads to the

success of the analysis being highly dependent on the analyst’s ability to recognize

such cases. As for burn-in failures and customer returns, the set of failures may not be

sufficiently representative. The occurrence of these failures may be on the order of 1

PPM (parts per million) or even lower, which makes any resulting outlier models dif-

ficult to validate. Also, the complete set of failures can never be known because other

similar parts could be missing from the set for a variety of reasons, such as potential

customer returns no longer being used in the field or burn-in time being just short of

exciting the failure.

In the proactive case, the optimal yield reduction budget may be difficult to es-

tablish. It is not uncommon for products to have at least three wafer sort stages and

three final test stages, each with over 1000 tests. Therefore, even with a firm budget,

the number of features in the test data is far too large to allow for an objective deci-

sion to be made about a global outlier ranking across features. Furthermore, as will be

shown in Chapter 4, the performance of an outlier model can change as characteristics

in the test data change over time. As such, outlier models with thresholds that meet a

yield reduction constraint in some production data may result in far greater or lower

yield loss in future production. Hence, model validation may be required to adapt to

changes [44].

The subjectivities in outlier analysis can make it challenging to justify the outliers.

In practice, justification can be supported by detailed analysis verifying that some of

14



Chapter 1. Introduction

the outliers are indeed bad parts. This task is both expensive and time consuming.

There is also the concern that incomplete outlier sets lead the models to miss-classify

bad parts as inliers. Lastly, recall from Figure 1.2 that the a threshold is decided based

on an outlier ranking. This leads to an inherent limitation of outlier analysis which

makes it unable to determine if there are no outliers at all. Additional insight must be

provided by the analyst in order to decide that an outlier ranking contains no outliers.

The subject of outlier model justification is explored further in Chapter 5.

1.5 Dissertation Organization

This dissertation contains self-supporting chapters, each with an overview, introduc-

tion, background, experimental setup, results, and a summary. It is suggested that

Chapter 2 be read before Chapter 3 and that Chapter 4 be read before Chapter 5 if

the reader wishes to follow the thought process behind the developments in the re-

search. However, any chapter can be read independently based on reader interest. The

rest of the dissertation is organized as follows. Chapter 2 presents an example where

clear added benefit of data analytics is demonstrated for a yield optimization problem.

Chapter 3 discusses an approach for learning how an analyst conducts the process of

correlation analysis, using the result from Chapter 2 as the main supporting example.

Chapter 4 introduces uncertainties that exist in outlier analysis and explores the gen-

eralization of outlier models with the goal of reducing those uncertainties. Chapter 5

proposes a concept called Consistency which allows for assessment of outlier models.

Chapter 6 concludes the dissertation and discusses future research directions.
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Chapter 2

Yield Optimization Using Advanced

Statistical Correlation Methods

2.1 Overview

The work presented in this chapter introduces a novel yield optimization methodology

based on establishing a strong correlation between a group of fails and an adjustable

process parameter. The core of the methodology comprises three advanced statisti-

cal correlation methods. The first method performs multivariate correlation analysis

to uncover linear correlation relationships between groups of fails and measurements

of a process parameter. The second method partitions a dataset into multiple sub-

sets to maximize the average of the correlations calculated based on the subsets. The

third method performs statistical independence test to evaluate the risk of adjusting

a process parameter. The methodology was applied to an automotive product line to

improve yield. Silicon results are used to demonstrate how discovered process param-

eter changes led to significant improvement of the yield issue. This work is used to

show the added value of data analytics in Test.
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2.2 Introduction

Yield is one of the most important metrics to indicate the success of product manu-

facturing. Therefore, it is not unusual that efforts to improve yield continue into the

mass production stage. In this work, yield optimization specifically refers to such ef-

forts in production stage where mass amounts of test data become available and can

be utilized to improve yield.

Due to process variations, yield is not a constant across wafers and lots. For ex-

ample, Figure 2.1 illustrates a fluctuation of yield across wafers. The plot shows the

probability density distribution of yield estimated based on 2000+ wafers. The chip

is a sensor device for the automotive market, which contains a controller, sensors, and

analog and RF components.

FIGURE 2.1: Illustration of yield fluctuation and our goal

Given Figure 2.1, it is desirable to push the yield distribution to the high end. In

this sense, yield optimization can be thought of as both (1) pushing the mean of the

yield to the right and (2) reducing the variance of the yield.

Because yield is such an important metric, multiple teams are in charge of improv-

ing it. For example, yield is a function of test. Hence, it is possible to improve yield

by improving test (under the constraint that a measure of quality such as customer re-

turn rate is not worsened). From this end, note that result shown in Figure 2.1 was after
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multiple test revisions that did not succeed in achieving the desired yield optimization.

Yield can also be design dependent. It is noted that the result seen in Figure 2.1 was

also after one design revision. Therefore, additional yield improvement from Figure 2.1

would represent added value to both the design and test efforts.

The third way to improve yield is by adjusting the process. In order to identify

which process parameter(s) to tune, evidence is required to show strong correlation

relationships between process parameter(s) and certain types of fails of interest. This

task is carried out by another team which can be called the yield analysis team.

To search for a high correlation between process parameter and type of fails pairs,

an intuitive methodology can be based on a flow of the following five steps:

1. Identify a type of fails to investigate.

2. Calculate the numbers of fails across N wafers as ~x = {x1, . . . , xN}.

3. Calculate the measured value of a selected process parameter across theN wafers,

one value per wafer as ~y = {y1, . . . , yN}.

4. Calculate the (Pearson) correlation coefficient as in the equation below, where x̄

and ȳ are the mean of ~x and the mean of ~y, respectively.

Corr(~x, ~y) =

∑N
i (xi − x̄)(yi − ȳ)√∑N

i (xi − x̄)2
∑N

i (yi − ȳ)2
(2.1)

5. Rank the parameters by the correlation coefficients and identify the top parame-

ters.

Consider step (1) above. In test, failing parts are organized into different test bins.

Usually, similar categories of fails are grouped into the same bin. Hence, it is natural to

analyze each bin independently. For example, Figure 2.2 depicts the average number
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of fails for a list of test bins (left plot), and for the top three most failing bins, bins 26,

25, and 28, their wafer-to-wafer fail fluctuations over time (right plot).

FIGURE 2.2: Bins of fails and their fluctuations

Given Figure 2.2, it is natural to consider bin 26 first, followed by bin 25. Suppose

in step (1) bin 26 is chosen. Then, in step (2) the data vector ~x is extracted across the

2000+ wafers based on the failing dies (or "fails") recorded in bin 26.

Although partitioning the fails based on test bins makes sense, it is not the only way

one can define a type of fails. For example, Figure 2.3 shows failing statistics based on

individual tests in bins 26 and 25. As can be seen, tests A,B,C,D each have a significant

number of fails. Hence, the type of fails can also be defined based on each individual

test.

FIGURE 2.3: Failing statistics based on individual tests

Now consider step (3). Suppose t process parameters are measured for each wafer
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(In this particular product, t > 130). Typically, these t measurements are repeated

on multiple sites. Figure 2.4 gives an example of five sites and their locations on a

wafer. The right plot shows the (wafer-to-wafer) fluctuation of the average measured

value over the five sites for one process parameter. Given a process parameter, one can

therefore extract the data vector ~y based on the average values.

FIGURE 2.4: Measurement sites and a fluctuation example

Then, step (4) calculates the correlation coefficient Corr(~x, ~y). Steps (3)-(4) can be

applied to each process parameter to identify the one with the highest correlation. For

example, the highest correlations found for bin 26, test A, test B and test C are depicted

in Figure 2.5.

In these plots, the x-axis is the average value of the process parameter and y-axis is

the number of fails. Each dot is a wafer. Similar results were found for other fail types

(e.g. bin 25). Figure 2.5 basically shows that no strong correlation was found to support

any potential process parameter adjustment. In other words, the intuitive correlation

methodology described above had failed to uncover any useful information to support

taking the path of process change to improve yield.

Figure 2.5 illustrates the starting point of this work. It is important to note that

before this work, the yield analysis team had conducted extensive analysis of the test

data and did not find a strong correlation. While their results were much richer than
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FIGURE 2.5: Illustrating the starting point of this work

those shown in Figure 2.5, the conclusion that no strong correlation could be found

was the same.

The rest of this chapter is organized as below. Section 2.3 discusses potential issues

with the intuitive methodology. Section 2.4 explains a multivariate correlation method-

ology and demonstrates its usefulness in uncovering a strong correlation which could

not be found before. Section 2.5 describes a subset discovery problem formulated to

enable finding additional strong correlations. Section 2.6 presents a risk evaluation

method based on statistical independence test to assess the risk of a process parameter

adjustment. Following the uncovered process parameter changes, section 2.7 summa-

rizes the silicon results with significant yield improvement. Finally, section 2.8 pro-

vides a chapter summary.
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2.3 Potential issues with the intuitive methodology

An obvious concern with the intuitive methodology is the straightforward application

of Pearson correlation to evaluate statistical dependence. Pearson correlation coeffi-

cient, although popular, is not a robust statistic to test for dependence. For example, it

is known that the correlation coefficient can be quite sensitive to strong outliers. Fig-

ure 2.6 illustrates such an example.

FIGURE 2.6: Correlation can be sensitive to outliers

The left plot shows that an outlier is far from the majority of the distribution. The

correlation calculated based on this plot is 0.06. The right plot shows the result by

removing the outlier (consequently, the scale of y-axis changes). The correlation be-

comes 0.85. The sensitivity to outliers can be one reason to use other statistics such

as the rank correlation coefficients, e.g. Spearman’s ρ or Kendall’s τ . Alternatively, a

preprocessing step can be taken to remove outliers.

2.3.1 Need for multivariate analysis

While there are many other alternatives for univariate statistical dependence test, a

more fundamental issue is that the data used is inherently multivariate.

To apply a univariate analysis between ~x and ~y, one has to define how to calcu-

late ~x and ~y from the data. The correlation result can be dependent on the dataset
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preparation. For example, each process parameter was measured on five sites. In the

univariate analysis above, ~x was simply the average value of the five sites.

Figure 2.7 uses eight parameters P1-P8 to illustrate the variability across the five

measurement sites. For each parameter, dots represent the correlation coefficients be-

tween measured values from all pairs of sites. Since there are five sites, there are 10

(pairwise) correlation coefficients shown for each parameter. In total, therefore there

are 80 correlation coefficients (as shown in the x-axis) divided into eight blocks.

FIGURE 2.7: Examples of site-site pairwise correlations

Figure 2.7 shows that the correlations between two sites can range from below 0.6

to above 0.8. The main takeaway is that there can be significant variability across sites.

When that is the case, treating the data from process parameters as a single average

value may not be sufficient.

Furthermore, recall from Figure 2.3 that tests A-D are important due to their asso-

ciated large numbers of fails. Figure 2.8 depicts the distribution of test values for test

A and for test D.

Test A is a discrete test. Its values can fall into 6 categories. The left plot shows a

histogram of the test values across one lot of wafers. Test D is a continuous tests. The
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FIGURE 2.8: Discrete test A and continuous test D

right plot shows the probability distribution of the test values estimated based on one

lot of wafers.

In the intuitive methodology, ~x is based on the number of fails. The number of

fails does not include all the information contained in a test distribution as shown in

Figure 2.3. For example, a process parameter may be correlated to only a subset of the

fails (e.g. only having the X4 value) or to the shape of a test distribution. For capturing

these types of correlations, the correlation analysis needs to be extended to go beyond

just using the number of fails as the target of the correlation.

For example, for test A the goal may be to correlate directly to a multivariate vector

(X1, X2, X3, X4) as shown in Figure 2.3 (In general, the vector may beX1-Xn for a large

n). For test D, the goal may be to correlate to some characteristics of the distribution.

Both demand a multivariate correlation analysis.

Figure 2.9 gives another reason to consider multivariate analysis. Figure 2.9 plots

two wafer heat maps based on the number of fails in a single lot. Observe that test A

fails concentrate on the edge while test D fails reside more on an inner ring. This raises

the question: Would it be possible that a strong correlation exists only in a certain

region of a wafer but not others?

One way to address this question can be to partition the wafer into multiple regions.

A strong correlation may exist with each region individually or with a combination of
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FIGURE 2.9: Examples of failing wafer heat map

multiple regions collectively. Again, this can be formulated as a multivariate correla-

tion analysis problem.

2.4 Multivariate correlation and statistical dependence

It is well known that having no correlation does not imply statistical independence. In

other words, finding no strong correlation does not mean that the type of fails and the

process parameters have no strong relationship. The dependence relationship can still

exist. A very low correlation coefficient only guarantees statistical independence when

the joint probability distribution P (x, y) is normal. In test data analysis, this is often

not the case (see e.g., the left plot in Figure 2.8 is far from normal).

To go beyond correlation coefficient, one can follow the well established principles

for measuring statistical dependence, proposed by Rényi who showed that one sound

measure for statistical dependence is the following [45][46]:

Q(P (x, y)) = sup
f,g

Corr(f(x), g(y)) (2.2)

where f and g are Borel measurable and bounded functions. The notation "sup"
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denotes the least upper bound. Hence, equation (2.2) basically denotes the maxi-

mum correlation across all possible functions f, g. Rényi showed that the quantity

Q(P (x, y)) = 0 implies statistical independence. The quantity Q(P (x, y)) = 1 implies

x = h(y) or y = h(x) for some function h, i.e. there is a strict dependence between x

and y.

In equation (2.2), x and y are two random variables. Replacing them with two

random vectors X and Y and also replacing the "sup" with the maximum "max", the

following measure of dependence is obtained for two random vectors:

CC(X,Y ) = max
f,g

Corr(f(X), g(Y )) (2.3)

where f and g are functions that take a vector as input and output a real value. For

example, when f and g are dot-product functions with weight vectors Wx and Wy, we

have

CC(X,Y ) = max
Wx,Wy

Corr(〈Wx, X〉, 〈Wy, Y 〉) (2.4)

where 〈·, ·〉 denotes the dot-product of the two vectors.

In this case, the correlation calculated in equation (2.4) is the maximum correlation

across all possible linear transforms denoted by Wx,Wy. Equation (2.4) is the tradi-

tional Canonical Correlation Analysis (CCA) [47]. 〈Wx, X〉 and 〈Wy, Y 〉 represent the

linear transforms based on the weights Wx and Wy. Hence, equation (2.4) basically

looks for the maximum multivariate linear correlation.

A low CC(X,Y ) value in equation (2.4) does not guarantee statistical indepen-

dence because Wx and Wy are linear transforms and the functions f and g in the origi-

nal equation (2.3) can be non-linear. To extend CCA to consider non-linear transforms,

kernel CCA (KCCA) applies the so-called "kernel trick" [48].
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To apply the kernel trick, one starts with choosing a kernel function k(X,Z) that

measures the similarity between two vectors X and Z. A kernel k() corresponds to a

mapping function Φ() such that k(X,Z) = 〈Φ(X),Φ(Z)〉. The idea of KCCA is to apply

CCA on the transformed vectors [49]:

KCC(X,Y ) = CC(Φ(X),Φ(Y )) (2.5)

The "kernel trick" corresponds to calculating equation (2.5) without explicitly using

the mapping function Φ(). Instead, only the kernel function k() is involved in the com-

putation. To explore non-linear correlations, a kernel is chosen for which the Φ() is non-

linear. Equation (2.5) is called the kernel canonical correlation or the F − correlation

[49].

This section discusses discuss how CCA can be used to find strong correlations

beyond traditional correlation coefficient. Section 2.6 will discuss how KCCA can be

used as a statistical independence measure for evaluating the risk of adjusting a process

parameter.

2.4.1 Canonical Correlation Analysis (CCA)

Let X = (x1, . . . , xn) and Y = (y1, . . . , ym) be two random vectors where each xi and

each yj are random variables. In practice, the distribution of each xi is measured by N

sample points ~xi = (x1i, . . . , xNi). Similarly, each yj is measured by N sample points

~yj = (y1j , . . . , yNj). Hence, this results in a data matrix Sx for X and a data matrix Sy

for Y . This is illustrated in Figure 2.10 below.

Let wx = (wx1 , . . . , w
x
n) be a weight vector for X . In matrix multiplication "Sx×wx,"

the weight vector transforms each sample vector ~ui into a canonical value c(X)i as

below:
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FIGURE 2.10: Data Matrices

c(X)i = 〈wx, ~ui〉 =
n∑
k=1

(xikw
x
k) (2.6)

Therefore, the result of Sx ×wx is a vector (c(X)1, . . ., c(X)N ). Similarly, Sy ×wy is

also a vector of N values. The correlation coefficient between the two vectors can then

be calculated, denoted as Corr(Sxwx, Sywy). Then, the sample canonical correlation

between X and Y is defined as

CC(X,Y ) = max
wx,wy

Corr(Sxwx, Sywy) (2.7)

= max
wx,wy

〈Sxwx, Sywy〉
‖Sxwx‖‖Sywy‖

(2.8)

Sx is anN×nmatrix. wx is anN×1 matrix (a column vector of size n). Hence, Sxwx

is anN×1 matrix (a column vector of sizeN ). On the other hand,w′xS′x, where ′ denotes

the matrix transpose operator, corresponds to the same vector as a 1×N matrix. Hence,

using the notation w′xS′x, the numerator in equation (2.8) can be rewritten as w′xS′xSywy

without using the dot-product 〈·, ·〉 operator. Similar changes can be applied to the

denominator to rewrite equation (2.8) as:
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CC(X,Y ) = max
wx,wy

w′xS
′
xSywy√

w′xS
′
xSxwx

√
w′yS

′
ySywy

(2.9)

= max
wx,wy

w′xCxywy√
w′xCxxwxw

′
yCyywy

(2.10)

where S′xSy = Cxy denotes the sample covariance matrix betweenX and Y , S′xSx =

Cxx denotes the sample covariance matrix for X and S′ySy = Cyy denotes the sample

covariance matrix for Y .

Because scaling on the weight vectors does not change the result of equation (2.10),

the problem can be solved by maximizing the nominator w′xCxywy subject to the con-

straints that w′xCxxwx = 1 and w′yCyywy = 1. This is typically solved by applying

the Lagrangian method. This leads to solving a generalized eigenproblem of the form

Awx = λBwx where A = CxyC
−1
yy Cyx and B = Cxx [47].

Solving the generalized eigenproblem leads to a sequence of weight vectors for wx.

Then, each can be used to find the corresponding wy =
C−1

yy Cyxwx

λ . The number of

weight vector pairs is equal to min(n,m), the smallest dimension between X and Y .

The first weight vector pair gives the largest correlation. This can be called as the 1st

CC component. The second weight vector pair gives the second largest correlation (2nd

CC component), and so on.

2.4.2 Analysis of test A in bin 26

Refer back to the test A plot in Figure 2.8. Let X = (X1, X2, X3, X4) be the random

vector as shown in the plot. Each Xi is a random variable, representing on each wafer

the number of dies whose test A values fall into the Xi category. For test A, test values

of X1-X4 are considered as failing. The other two are passing.
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Given a process parameter P, let YP = (S1, S2, S3, S4, S5) be the random vector

denoting the measured values on the five sites (see Figure 2.4). Then, CCA can be run

on (X,YP ). This can be carried out for each process parameter P to determine which

one has the highest canonical correlation to X .

FIGURE 2.11: CCA results for Test A

Figure 2.11 plots the canonical correlations based on the first two CC components

for all process parameters under consideration. Observe the correlations of the 1st CC

components are consistently (much) higher than the correlations of the 2nd CC com-

ponents. Also, the highest canonical correlation is 0.84, indicating a strong correlation

between test A fails and the first process parameter shown in the plot (call this pro-

cess parameter PP1). The second highest correlation to X is 0.53 which is based on the

second process parameter in the plot.

The table on the right of Figure 2.11 shows the loadings for each random variable.

To understand what a loading is, suppose ~x1 is the column vector denoting the N

sample values measured on the random variable X1. The loading in CCA for X1 is

simply the regular correlation coefficient between ~x1 and the transformed vector Sxwx,

i.e. loading(~x1) = Corr(~x1, Sxwx).

30



Chapter 2. Yield Optimization Using Advanced Statistical Correlation Methods

In Figure 2.11, it can be seen that the loading for X4 is 0.96 that is much higher

than the loadings for other X’s. This indicates that the canonical correlation 0.84 is

contributed more from the X4 variable than from other X variables. In other words, it

is likely that the X4 type of fails by themselves have a high correlation to the PP1 pa-

rameter. On the Y variables, all sites have a fairly large loading. Hence, measurements

from every site contribute to the 0.84 correlation result.

Let Sxwx and Sywy be the transformed vectors forX and Y based on weight vectors

wx and wy, respectively. The left side of Figure 2.12 plots the values from Sxwx against

the values from Sywy to show how they correlate. The plot shows a clear linear trend.

FIGURE 2.12: Further illustration of results shown in Figure 2.11

Then, the right plot of Figure 2.12 shows how theX4 type of fails by itself correlates

to the PP1 parameter. The x-axis is the average measured values for PP1 from the five

sites (each dot is a wafer). As expected, a high correlation is observed with a negative

correlation coefficient −0.766 between X4 and PP1.

2.4.3 X1, X2, X3 types of fails (removing X4 fails)

Result in Figure 2.11 not only shows that X4 type of fails are highly correlated to PP1,

but also shows that no other high correlation can be found for X1, X2, X3 fails individ-

ually or collectively. This is because (1) no high correlation (e.g. > 0.7) is found for

other parameters (2) the 2nd component found for the PP1 parameter is quite low.
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FIGURE 2.13: CCA with new random vector X = (X1, X2, X3)

To verify the result, X4 type fails were removed from the analysis to let X =

(X1, X2, X3). CCA was then reran on the new X . The 1st CC component result is

shown in Figure 2.13, showing that no high correlation is found across all process pa-

rameters.

2.4.4 Analysis of test D (Bin 25)

FIGURE 2.14: Encoding a distribution into a multivariate vector

Refer back to Figure 2.8 where the distribution of test D (bin 25) is shown. Every

wafer can be represented by such a test distribution of test D estimated based on all dies

on the wafer. Figure 2.14 shows a way to encode the characteristics of the distribution

into a vector of five quantities, i.e. X = (D0, D1, D2, D3, D4). Then, CCA is ran with
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on this X and each process parameter vector YP . Note that the encoding here was for

the entire distribution, not just for the failing distribution.

The left plot of Figure 2.15 summarizes the CCA result where the highest canonical

correlation found is 0.82. It is interesting to note that this highest correlation is based

on the same parameter PP1 found in Figure 2.11. For comparison, the right plot of

Figure 2.16 shows that univariate correlation between the number of test D fails (test

D is the only test with bin 25) and the average PP1 value is only 0.305.

FIGURE 2.15: Canonical Correlation vs. Pearson Correlation

Figure 2.15 indicates that PP1 is highly correlated to some characteristics of the test

D distribution, but not highly correlated to the number of test D fails.

After examining the CCA loadings for D0 to D4, they revealed that the two highest

loadings were −0.74 for D1 (the mean) and −0.91 for D2 (the variance). This indicated

that the PP1 was mostly negatively correlated to the mean and variance of the test D

distribution. To confirm, Figure 2.16 shows the scatter plots for D1-vs-PP1 and D2-

vs-PP1 with their respective Pearson correlation coefficients. The negative correlation

trends can be observed in both plots.

2.4.5 Summary of the first finding - parameter PP1

In the above CCA analyses, CCA was used to identify a high correlation scenario.

Then, the loadings were analyzed to identify the variable(s) contributing the most to
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FIGURE 2.16: PP1 is correlated to the mean and variance of bin 25

the high correlation. Lastly, univariate correlation was used to confirm the findings.

Results from Figure 2.12 and Figure 2.16 both suggest to increase PP1 for yield

improvement. With Figure 2.12, the expected impact would be to reduce the number

of X4 fails. With Figure 2.16, the expected impact would be to decrease the mean and

variance of the test D distribution, resulting in fewer fails because the test limit is set

on the right of the distribution.

2.4.6 Note on applying CCA in location-based analysis

Figure 2.9 earlier shows that fails of a certain type can distribute unevenly across the

wafer. For example, in an analysis, one may desire to separate the fails close to the

center of the wafer from the fails on the edge of the wafer.

To illustrate how CCA can be applied to analyze location-based correlations, Fig-

ure 2.17 gives an example of partitioning the X4 type of fails in bin 26 into two groups,

the inner group and the outer group. Let I be the number ofX4 fails in the inner group

and O be the number of X4 fails in the outer group. Let the random vector X = (I,O)

in CCA.

Running CCA onX and YPP1 for process parameter PP1 gives canonical correlation

0.8, higher than the correlation −0.766 shown in Figure 2.12. Nevertheless, Figure 2.17

shows that the individual Pearson correlations are -0.754 and -0.745 for I-type of fails
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FIGURE 2.17: Partitioning X4 type of fails based on their locations

and for O-type of fails, respectively. These results are comparable to −0.766 but not

higher. Hence, this particular location-based CCA does not improve the correlation

result.

2.5 The subset discovery problem

Section 2.4.3 shows that with the CCA method, no high correlation can be found to

account for X1-X3 types of fails in bin 26. In this section, a subset discovery problem

is formulated, and it is shown that solving this problem can enable the analysis to find

additional strong correlations.

Given two random vectors X,Y , suppose X,Y are measured through a dataset S

of N wafers. Let S1, S2, . . . , Sk denote a sequence of subsets of S where each Si ⊂ S

and for any i 6= j, Si ∩ Sj = φ. Let |Si| denote the size of the subset Si. Let CC(X,Y )Si

denote the canonical correlation of the 1st CC component based on the wafers in subset

Si, i.e. the highest canonical correlation found. Then the subset discovery problem can

be stated as the following:
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Subset Discovery Problem:

SCC(X,Y )λ,η = max
S1,S2,...,Sk

[

∑k
i=1CC(X,Y )Si

k
] (2.11)

subject to |
⋃k
i=1 Si| ≥ λ|S| and ∀Si, |Si| ≥ η|S|,

where 0 < λ < 1 and 0 < η < λ are given parameters.

Let SCC(X,Y )λ,η be called the subset canonical correlation based on the user param-

eters λ and η.

Suppose λ = 0.5 (50%) and η = 0.1 (10%). The constraint |
⋃k
i=1 Si| ≥ λ|S| basically

says that the total number of samples used in the calculation of SCC has to be no less

than 50% of the size of S. On the other hand, the constraint ∀Si, |Si| ≥ η|S| says that

the size of each subset cannot be less than 10% of the total number of samples in S. It

is important to note that all subsets are disjoint. Let the two constraints be called the

λ-constraint and the η-constraint, respectively.

2.5.1 Assumption for subset discovery to be useful

The subset discovery problem tries to find k disjoint subsets under the two size con-

straints, to maximize the average canonical correlation across the k subsets. This is

based on the assumption that for some subset Si, CC(X,Y )Si is much higher than

CC(X,Y )S . In other words, the correlation relationship can become a lot more ap-

parent when focusing on a particular subset (and the correlation relationship becomes

blurred if the entire dataset is used).

Using less data can be better because the original dataset can contain noise. For

example, the measurements at a certain period may be more noisy than others. The

parameter λ allows the user to drop a portion of the data to maximize the resulting

correlation. Another reason can be because there is a drift of the correlation relation-

ship over time. Given two subsets Si and Sj produced at different times, a strong
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correlation relationship can be identified based on each subset individually but not on

both subsets collectively. This drift property will be discussed in detail shortly when

the results are presented.

2.5.2 Heuristic to approach the problem

The objective function in the subset discovery problem involves calculation of canon-

ical correlations CC(X,Y )Si . Further, in search for the best subsets S1, . . . , Sk, it may

be necessary to consider all possible partitions (that satisfy the constraints) of the set

S. Exhaustively searching for the optimal answer can be overly expensive.

A straightforward heuristic is to incrementally find the subsets following a greedy

approach. In other words, the heuristic finds a sequence of subsets S1, . . . , Sk such that

CC(X,Y )S1 > CC(X,Y )S2 > . . . > CC(X,Y )Sk
. The heuristic can be described as

repeating a two-step process:

1. Given S, find the subset Si that results in maximum CC(X,Y )Si where |Si| satis-

fies the η-constraint.

2. If the λ-constraint is not yet satisfied, let S = S−Si and repeat step (1); Otherwise,

stop.

Let Si and Si+1 be two consecutive subsets found by the heuristic. Let s be a wafer

such that s ∈ Si+1. Note that it is possible to have the situation where CC(X,Y )Si +

CC(X,Y )Si+1 < CC(X,Y )Si∪{s} + CC(X,Y )Si+1−{s}. In other words, if the sample s

is moved from Si+1 back to Si, the sum of the two correlations improves.

It is important to note that if the algorithm to solve the maximization problem in

step (1) is ideal, then it should be true that CC(X,Y )Si > CC(X,Y )Si∪{s}. However,

this does not mean that s should not be included in Si because s may decrease the

correlation based on Si+1 more than it decreases the correlation based on Si. Therefore,

the straightforward heuristic is not optimal.
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Because computing the objective function in the subset discovery problem itself can

be expensive, it is preferable not to follow a process that goes beyond the linear com-

plexity. This preference justifies the use of the greedy heuristic. Hence, the objective

function in step (1) is modified by introducing a regularization term based on the size

of the subset.

In step (1), instead of finding a subset to maximize CC(X,Y )Si , the objective be-

comes to maximize CC(X,Y )Si + γ |Si|
|S| . In other words, if adding more samples to

Si does not decrease the correlation too much, then those samples should be added.

Notice that 0 < |Si|
|S| ≤ 1 and 0 ≤ CC(X,Y )Si ≤ 1. Hence, value ranges of the two

terms are comparable. This means that the choice of γ would not be too far from 1. The

optimal choice of γ can be determined experimentally.

2.5.3 Analysis of X1-X3 types of fails from test A

Recall that Figure 2.13 summarizes the best result found for X1-X3 types of fails from

test A in bin 26, where no canonical correlation was found to be greater than 0.6.

TABLE 2.1: Subset canonical correlations for four parameters PP2-PP5
found to have high correlations to the X1-X3 types of fails

S1 S2 S3 S4 S5 S6 S7 S8 S9
PP2 0.84 0.78 0.643 0.69 0.641 0.63 - - -
PP3 0.88 0.85 0.69 0.82 0.68 0.61 0.53 0.52 -
PP4 0.86 0.87 0.85 0.82 0.83 0.82 0.81 0.79 0.75
PP5 0.86 0.81 0.82 0.77 0.68 0.59 0.61 - -

Table 2.1 summarizes the results of applying subset discovery to analyze X1-X3

types of fails. For λ-constraint, we set λ = 0.5. For η-constraint, we set η = 0.0625 which

means using a minimum of 125 wafers in each subset for a total of 2000+ wafers. In the

table, the Si represents the ith subset found by following the greedy heuristic discussed

above. Each number shown is the canonical correlation of the 1st CC component based

on the particular subset.
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Notice that for the same parameter, it is not always true that the correlation found

with Si is greater than or equal to that with Si+1. For example, for PP2 the corre-

lation found with S4 (0.69) is higher than that found with S3 (0.643). This is due to

the regularization discussed above, where in each step we try to maximize the term

CC(X,Y )Si + γ |Si|
|S| instead of just maximizing the canonical correlation CC(X,Y )Si .

2.5.4 Result illustration

Table 2.1 shows that the four parameters PP2-PP5 can be highly correlated to theX1-X3

types of fails. To illustrate why subset discovery is needed for finding these correla-

tions, Figure 2.18 and Figure 2.19 show, for each parameter, a scatter plot based on

selected two subsets (green and blue). The correlations shown in these plots are Pear-

son correlation coefficients between the number of fails in the subset and the average

parameter measured value across five sites.

FIGURE 2.18: Subset discovery found two process parameters, PP2 and
PP3, highly correlated to X1-X3 types of fails in bin 26

Consider the first plot in Figure 2.18, the two subsets individually correlate to the

PP2 by -0.78 and -0.83. Collectively, the correlation drops to -0.66. The reason can be

seen clearly from the plot that between the two subsets, there is a shift of the trend.

Therefore, when all the data points are analyzed together, the trend becomes less ap-

parent.
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Examination of the two subsets showed that the wafers used in these two subsets

were produced from two time periods. In other words, the shift of the correlation trend

happened over time.

Similar shifts of trends can be observed for the PP3 plot in Figure 2.18 and for PP4

and PP5 in the two plots in Figure 2.19. In all cases, the correlations based on each

subset of wafers are higher than the correlations based on the two subsets combined.

FIGURE 2.19: Subset discovery found two more process parameters,
PP4 and PP5, correlated to X1-X3 types of fails in bin 26

Figure 2.18 and Figure 2.19 also show that subset discovery can be applied inde-

pendently of CCA to find correlations. In the two figures, all correlations are based on

Pearson correlation and it is sufficient to uncover high correlations once the appropri-

ate subsets are identified.

2.5.5 Double check X4 types of fails from test A

Earlier with Figure 2.12, the X4 type of fails was established to be highly correlated to

the parameter PP1. This is supported by the highest canonical correlation found, 0.84,

as well as by the Pearson correlation itself, -0.766.

Table 2.2 shows the result of applying subset discovery to rerun the CCA analysis

with X = (X1, X2, X3, X4). The same subset discovery parameter settings were used,

λ = 0.5 and η = 0.0625. Table 2.2 shows that all subset canonical correlations are
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greater than the canonical correlation 0.84 found before. Four subsets give correlations

above 0.9.

TABLE 2.2: Confirming strong correlation between X4 fails and PP1

S1 S2 S3 S4 S5 S6 S7 S8
PP1 0.93 0.92 0.91 0.90 0.89 0.889 0.874 0.864

The left plot of Figure 2.20 shows results for X4 type of fails from two subsets.

Notice that individually the Pearson correlation coefficients are -0.91 and -0.85 which

are much improved from the correlation coefficient -0.766 found before.

FIGURE 2.20: Subset discovery confirms X4 type of fails highly corre-
lated to PP1 while X1-X3 types of fails do not

For comparison, the right plot of Figure 2.20 shows results for X1-X3 types of fails.

The result earlier shows that they do not have a high correlation to parameter PP1. The

plot confirms the finding by showing two subsets with low (and opposite) correlations

and with near zero combined correlation.

2.5.6 Summary of findings

Table 2.3 summarizes the correlation findings. Based on the results, the recommenda-

tion was: increasing PP1, PP2, PP3, PP4, and decreasing PP5.
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TABLE 2.3: Summary of findings and supporting evidences

Para Fail Type Trend Support
PP1 X4 type, test A, Bin 26 Negatively correlated Figures 2.12,2.20
PP1 Bin 25 Negatively correlated Figure 2.16
PP2 X1-X3 types, test A, Bin 26 Negatively correlated Figure 2.18
PP3 X1-X3 types, test A, Bin 26 Negatively correlated Figure 2.18
PP4 X1-X3 types, test A, Bin 26 Negatively correlated Figure 2.19
PP4 tests B,C, Bin 26 Negatively correlated omitted
PP5 X1-X3 types, test A, Bin 26 Positively correlated Figure 2.19

2.6 Risk evaluation

Silicon experiments are expensive. Therefore, before any recommendation of process

change was implemented, the risk associated with that change had to be evaluated.

For example, the result above shows that increasing PP1 would improve the yields in

bin 25 and bin 26. However, it might also simultaneously increase the failing rates of

other bins. One way to sure that this was unlikely to happen was by assessing the

statistical dependence between PP1 and other bins. In other words, for risk evaluation,

it was desirable to demonstrate that PP1 was statistically independent from all other

bins.

The CCA and subset CCA methods described above could be used as a basis for

risk evaluation. However, CCA and subset CCA being unable to find high correlation

between PP1 and a test is not sufficient to conclude that PP1 and the test fails are

statistically independent. As discussed in Section 2.4, this is because CCA only looks

for linear correlations. Hence, to take the evaluation one step further, it is necessary to

also consider non-linear correlations.

2.6.1 Kernel CCA (KCCA) looks for non-linear correlations

For non-linear CCA, the idea of kernel CCA was employed, as stated in equation (2.5)

in Section 2.4 before. Figure 2.21 illustrates the basic principle of kernel CCA.
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FIGURE 2.21: Illustration of kernel CCA

Let k() be a kernel function and Φ() be corresponding mapping function where

k(X,Z) = 〈Φ(X),Φ(Z)〉. Essentially, Φ() takes an input sample vector and maps it into

another vector in the feature space. In Figure 2.21, for example, ~ui is an n-dimensional

sample vector (see also the matrix illustration in Section 2.4). Φ(~ui) maps it to an n′-

dimensional feature vector |Φ1(~ui), . . .Φn′(~ui)| in the feature space.

Common kernels include the Gaussian kernel: k(X,Z) = e−g‖X−Z‖
2

and polyno-

mial kernel of degree d: k(X,Z) = (〈X,Z〉+ R)d for some constant R. For a Gaussian

kernel, the dimensionality in the feature space is infinity (n′ = ∞). For a polynomial

kernel of degree d, the dimensionality n′ =
(
n+d
d

)
where n is the input dimension [48].

Kernel CCA is equivalent to performing the regular CCA in the feature space based

on the mapped vectors. Refer back to equation (2.8) earlier for CCA formulation. The

trick is to recognize that CCA is based on the dot-product operations between two

vectors, i.e. such as 〈X,Z〉. Because 〈Φ(X),Φ(Z)〉 in the feature space is the same as

k(X,Z) in the input space, to perform CCA in the feature space, one can simply use the

kernel operations k(X,Z) in the input space to achieve the same purpose as illustrated

in Figure 2.21. Hence, the mapping Φ() is never explicitly involved in kernel CCA.

Rather, the computation is carried out using k(X,Z) in the input space.

Let Sx be the data matrix for X containing N sample vectors (~u1, . . . , ~uN ). The
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kernel matrixKx is anN×N matrix |k(~ui, ~uj)|∀i,j . Also letKy denote the kernel matrix

for Y . Notice that Ky is also an N ×N matrix because there are N samples (wafers).

With the kernel trick, the kernel CCA can be stated as the following (α, β are N -

dimensional vectors) [49]:

KCC(X,Y ) = max
α,β

α′KxKyβ√
α′K2

xα
√
β′K2

yβ
(2.12)

Comparing equation (2.12) to the original CCA formulation equation (2.10), the

only changes are that Sx is replaced with Kx and Sy is replaced with Ky [47]. Given a

kernel with a non-linear mapping Φ(), performing CCA in the feature space is therefore

equivalent to maximizing the non-linear correlation in the input space.

2.6.2 Kernel CCA as a statistical independence test

It turns out that the formulation of equation (2.12) is not very useful in practice. This

is because with a powerful enough kernel, it is almost guaranteed that KCC = 1. For

example, with a well defined universal kernel [50] (e.g. a Gaussian kernel mentioned

above is a universal kernel), it can be shown that the KCC result is always 1 [51],

independent of the dataset. In other words, one can always find a mapping function

Φ() complex enough to overfit the data so that the resulting correlation is 1.

The most popular way to resolve the overfitting issue is through regularization

[51] - In equation (2.12) the objective function is changed by replacing
√
α′K2

xα with√
α′K2

xα+ γα′Kxα and
√
β′K2

yβ with
√
β′K2

yβ + γβ′Kyβ. The user-input parameter

γ controls the "complexity" of the linear transform functions used by CCA in the fea-

ture space. A small γ allows higher complexity and vice versa. It was proven that

with regularization and universal kernels, KCC(X,Y ) = 0 if and only if X and Y are

independent [51].
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2.6.3 Practical implementation of kernel CCA

Experimentation with the regularized kernel CCA found that in practice the results

were hard to interpret. For example, depending on the choice of γ, kernel CCA may

give a lower correlation than regular CCA which uses an unconstrained linear trans-

form. This property is undesirable because for risk evaluation the kernel CCA is ex-

pected to always be more powerful than CCA, i.e. to always give an equal or higher

correlation. A more practical implementation was therefore used, based on an idea

proposing an alternative calculation [52].

The idea is to approximate kernel CCA by (1) running kernel Principal Component

Analysis (KPCA) [53] to extract the first C principal components in the feature space

and (2) running regular CCA based on the transformed dataset by the C principal

components. In other words, in Figure 2.22 the kernel trick is applied to perform PCA

in the feature space (kernel PCA), and CCA is then applied directly in the feature space

by selecting only the first C kernel PCA components.

To illustrate the use of kernel CCA for dependence test, Figure 2.22 shows results

based on parameter PP1. The CCA based analyses uncovered high correlations be-

tween PP1 and test A and test D, respectively. The analysis also showed that PP1 was

not highly correlated to the most-frequent failing tests in bins 20, 28 and 30. Figure 2.22

shows how kernel CCA differentiates these two groups.

The x-axis represents the number C where the first C KPCA components are se-

lected. Suppose X is an n dimensional vector (X1, . . . , Xn). In the analysis, X is ex-

panded to X ′ that is an n + C dimensional vector (X1, . . . , Xn, PC1, . . . , PCC) where

each PCi is a KPCA component. Hence, for C = 0, it is the same as the regular CCA.

As seen in Figure 2.22, as more KPCA components are used, the correlations become

higher.

In Figure 2.22, the separation between the correlated cases and uncorrelated cases is
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FIGURE 2.22: Kernel CCA risk evaluation on known results

clear across all selections of C. The number of KPCA components C = 50 was selected

to apply the kernel CCA to check if there is a dependence between all other types of

fails and PP1.

FIGURE 2.23: Risk evaluation with respect to adjusting parameter PP1

Figure 2.23 shows an example result of risk evaluation. This result illustrates the

evaluation of the risk of adjusting PP1 by assessing the dependence between the result

of a test and PP1. A test bin may comprise multiple tests. The figure shows the highest
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KCCA correlation found in each test bin. In each case, it shows the correlation based

on CCA and then the additional correlation based on the kernel CCA (with C = 50).

For all cases, the CCA correlations are low. For all but bin 31, the KCCA correlations

are also not high. However, for bin 31, its CCA correlation is very low but KCCA

correlation is very high - indicating a strong non-linear dependence between this test

in bin 31 and the process parameter PP1.

FIGURE 2.24: Detailed analysis of the test in bin 31 vs. PP1

Figure 2.24 provides more information on the test from bin 31. This test in bin 31 is

henceforth referred to as test E. The left plot is similar to the plot shown in Figure 2.22.

Observe that the KCCA correlation to PP1 increases significantly when the 17th KPCA

component is included. The KCCA correlation increases to almost 1 as more compo-

nents are added. This clearly indicates a strong non-linear correlation.

Since the dependence is non-linear, it is difficult to visualize. To contain the risk,

the right plot shows a scatter plot where the y-axis is based on the average value of test

E across each wafer. The plot shows that the distribution is not close to the test limits,

i.e. the process capability index (Cpk) [54] is high. Hence, even though adjusting PP1

may somehow affect test E result, the risk of this adjustment causing a fallout on test E

is not high.

The risk with test E was presented to the product team for further evaluation. It

was determined that the association between PP1 and the devices tested by test E was
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not high. In this case, the benefit of adjusting PP1 out-weighted the risk and hence, the

adjustment was kept.

The same the kernel CCA based risk evaluation was used to assess the risk of ad-

justing other parameters PP2-PP5. A few other risky tests were found like that shown

in Figure 2.23. However, all risky tests were contained either by showing a large mar-

gin of the distribution to the test limits (Cpk) and/or by domain knowledge from the

product team. Although risk evaluation did not invalidate any of the recommended

changes, it was an essential step to sign-off the silicon experiment.

2.7 Yield improvement based on silicon results

After the risk evaluation, findings from Table 2.3 were all accepted to design a split-

lot experiment with multiple experimental wafers. The five parameter changes were

implemented as three process changes, one for PP5 (call it ADJ #1), another for PP2-

PP4 (call it ADJ #2), and the third for PP1. In the split lot experiment, change for PP1

was applied across the board. A first set of wafers was based on applying only ADJ

#1 (and PP1 adjustment). A second set of wafers was based on applying only ADJ #2

(and PP1 adjustment). A third set of wafers was based on applying both ADJ #1 and

ADJ #2 (and PP1 adjustment). Of course, lots manufactured previously without any of

the changes were used for comparison.

FIGURE 2.25: Silicon split-lot results show yield improvement
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Figure 2.25 summarizes the result from the split-lot experiment. The right side con-

tains a box plot showing the mean and range of the yield distributions before and after

adjustments. It can be clearly seen that ADJ #1 and ADJ #2 each uniquely contribute

to the yield improvement and together achieve the best yield result. After the split-

lot experiment and confirmation of the yield improvement, the process changes were

accepted and applied in production.

2.8 Summary

This work in this chapter presents a novel production yield optimization methodol-

ogy based on three advanced statistical correlation methods: CCA, subset CCA and

kernel CCA. The methodology was applied to optimize the production yield for an au-

tomotive product line. Silicon split-lot experiment confirmed the effectiveness of the

findings by showing significant yield improvement and significant reduction of the

yield fluctuation.

Recall that prior to employing the proposed methodology, unsuccessful yield op-

timization efforts were carried out by the test, design, and yield analysis teams. The

silicon result demonstrates the clear benefit that applying data analytics had in this

particular instance of the yield optimization application.

The success of the described analysis can be largely attributed to the recognition

and treatment of correlation as a multivariate problem. In this sense, what contributed

to the positive result most was simply employment of a perspective that had not been

considered by in previous efforts. This finding inspired the work presented next in

Chapter 3, which studies the development of new perspectives and proposes a method-

ology to learn from that process.
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Chapter 3

Learning the Process for Correlation

Analysis

3.1 Overview

An analytics process is subjective to the perspective of the analyst. This chapter presents

a learning approach that models the process of how an analyst conducts analytics. The

approach is applied in the context of correlation analysis for production yield optimiza-

tion. The benefit is demonstrated by showing that learning from resolving a yield issue

for one automotive product line can help resolve a yield issue for another automotive

product line.

3.2 Introduction

Analytics has found many applications in test and has shown great promises. One

example is yield optimization where, as shown in Chapter 2, analytics provides a clear

added value to the efforts for improving production yield. As mentioned in Section

1.4, analytics can be viewed as an iterative search process that comprises three steps:

1. Dataset Preparation
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2. Running an Analytics Tool

3. Meaningfulness Determination

These steps are visualized with some additional detail in Figure 3.1 .

FIGURE 3.1: Analytics can be viewed as an iterative search process

An analyst has to decide how to construct the dataset to feed to the analysis tool.

Then, the analyst has to interpret the result output by the tool to determine if it is mean-

ingful. Therefore, the dataset preparation and meaningfulness determination steps are

subjective to the experience and domain knowledge of the analyst.

For example, in the context of production yield optimization [55], an analyst desires

to find a high correlation between a process parameter measurement (E-test) and a

type of fails. Suppose for an E-test, its average measured values over multiple sites on

a wafer, across n wafers, are ~e = {e1, . . . , en}. On the other hand, the numbers of fails,

based on a test bin, across the wafers are ~f = {f1, . . . , fn}. The analyst prepares a data

file of two vectors (~e, ~f). Then, with p E-tests and k test bins, the analyst prepares a

dataset of p× k data files.

Each data file is fed into an analytics tool. For example, the analyst can use a sta-

tistical correlation tool from the Scikit-Learn Python library [56] to analyze each data

file. This results in p× k correlation values. The analyst then examines these values to

determine if any are meaningful.
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If none of the correlation values are perceived to be meaningful, the analyst might

decide to construct a different dataset. For example, instead of using each test bin as

the basis for a data file, the basis can be each individual test.

In Chapter 2, ideas were presented for how to construct a dataset to search for

high correlation between E-test and fails. Each construction represents one particular

perspective for how the correlation might exist. In view of Figure 3.1, it is obvious that

the effectiveness of the analytics depends on the set of perspectives the analyst has in

mind. If the desired high correlation existed only in a perspective that the analyst had

never thought of, then the analytics process would not find it.

Even though the work in Chapter 2 demonstrates that analytics helps improve the

yield significantly, the above observation leads to two fundamental questions that arise

when the analytics methodology is to be used for another product line:

• What if for another product line, high correlation only exists in a dataset that

requires a perspective that was never considered when conducting the work in

Chapter 2?

• What if the task of improving the yield for another product line is given to an

engineer with little analytics experience who, for example, has no idea of the

different perspectives examined in Chapter 2?

These two questions motivate the work presented in this chapter. Because of these

two questions, it is desirable that different ways to prepare a dataset can be learned

and generalized by a learning software. If this can be accomplished, the software can

become a “surrogate” for the analyst in future tasks after learning how an analyst per-

forms an analytics task. Therefore, this chapter presents a learning approach which

aims to demonstrate the feasibility of such a learning software.
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In particular, the learning approach will be shown to be able to learn from the ana-

lytics process for resolving the yield issue presented in Chapter 2 and apply the learn-

ing model to resolve another yield issue for another product line.

The rest of this chapter is organized as below. Section 3.3 provides a brief review

of the work in Chapter 2. Section 3.4 discusses the learning problem studied in this

work. Section 3.5 presents the approach for learning an analytics process. Section 3.6

explains the software design needed to bring process learning into the context of corre-

lation analysis. Section 3.7 demonstrates the effectiveness of the approach. Section 3.8

discusses some limitations of the proposed approach. And finally, Section 3.9 provides

a chapter summary.

3.3 Perspectives in yield optimization

A perspective is a particular way to construct a dataset. In test data analytics, yield

optimization refers to the task of finding a high correlation between an a controllable

parameter (e.g. E-test) and a set of failing dies. The analysis is wafer-based, meaning

that two values are calculated for each wafer, one for E-test and the other for failing

dies. Then, correlation is analyzed across a set of wafers. Using two values is for the

case when one desires to use a standard correlation tool. If a canonical correlation tool

[47] is used, two vectors of values are extracted for each wafer.

For simplicity, take standard correlation as the example. On the E-test side, one

can have different ways to calculate the value representing the wafer. For example, a

process parameter is measured on multiple sites, say 5. The value can be calculated

based on taking the average of all 5 sites or a selected subset of sites.

On the side of failing dies, the choices can be many. A few examples that the value

fi used to represent a wafer Wi can take are:

• fi is the number of fails due to a test bin (as mentioned before).
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• fi is the number of fails due to a test.

• fi is the number of fails based on a particular test value.

• fi is the number of fails based on a test value range.

• fi is the mean value of a distribution of test values based on a test.

• fi is the variance value of a distribution of test values based on a test.

In addition to the above diverse choices for the two values, a dataset can be con-

structed by taking two additional aspects into account: (1) a spatial aspect that restricts

the population to a selected wafer region, (2) a temporal aspect that restricts the popu-

lation to a set of selected wafers.

3.3.1 What contributed to the success in Chapter 2

The work in Chapter 2 presented a successful application of data analytics for resolv-

ing a yield issue for an automotive product line (a sensor product). Prior to the work,

attempts for yield improvement were made through one design revision, multiple test

revisions, and analytics to find high correlations, but all those attempts failed to im-

prove the yield.

Note that the work in Chapter 2 presents other important methods (e.g. risk eval-

uation) than the diverse perspectives for dataset construction, which all contributed to

the final success. However, a fundamental reason why the earlier analytics attempts

failed but that work succeeded was indeed due to the fact that earlier attempts never

analyzed the data from the perspectives the work employed.

For example, the highest correlation values found by the earlier analytics attempts

were all below 0.5 which were not strong enough for the foundry to change their pro-

cess. On the other hand, Figure 3.2 shows two example results (composed from results

in Figures 2.12 and 2.16) and with (absolute) correlation values both above 0.75.
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FIGURE 3.2: Examples of high correlations found

In the left plot (every dot is a wafer), the number ofX4 category of fails is correlated

to the average E-test value from a process parameter PP1. Note that X4 denotes a

particular test value of a discrete test. In the right plot, the variance of measured values

on another test D is also correlated to PP1. This example shows that the correlation can

exist to some statistics of a test value distribution.

Figure 3.3 shows another example result by considering the temporal aspect (from

result in Figure2.19). In this example, parameter PP5 is correlated to the number of

X1-X3 categories of fails. The wafers are separated into two groups, colored as green

and blue dots. The separation is based on the time of their production. Not all wafers

are included. The separation improves the correlation values individually from their

combined analysis result of 0.63.

As explained in Chapter 2, the high correlation results discovered were later trans-

lated into process adjustments which resulted in significant yield improvement on sil-

icon. The adjustments were therefore adopted for mass production later.

3.4 The Learning Problem

As pointed out in the previous section, the main reason why the earlier analytics at-

tempts did not discover the results as shown in Figure 3.2 and Figure 3.3 is that the
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FIGURE 3.3: An example of uncovering the temporal effect

analysts conducting those attempts never constructed the particular datasets to look

for those particular ways to correlate E-test and fails.

Suppose one desires to make a technology deployment of the work in Chapter 2 to

all the product teams. The common practice today is to implement every perspective

employed in the work into a software tool and deploy the tool. However, this approach

is may not be sufficiently effective.

For a future task, it is possible that the required perspective to analyze the data

is not in the set of the perspectives implemented. When that happens, the tool will

fail. Then, because the product team usually does not understand the implementation

of the software, they will ask the tool developer (the analytics expert) to debug and

enhance the tool. This “centralized” approach puts all the burden on the expert.

Instead of providing a fixed set of perspectives, it would be more desirable for the

tool to provide a set of toolboxes to enable the product team to conduct the search

based on their own perspectives. More importantly, the tool could record and generalize

from those perspectives and share that experience with other product teams. With this

approach, the burden would be “distributed.”
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Developing such a tool demands answering the key question: “How can we learn

(record and generalize) from someone’s perspectives?”

3.4.1 Unsuccessful analytics trials

Learning the perspectives provides another advantage. It is common in practice that an

analyst remembers the analytics process instances that lead to good results but forgets

those that do not. With the proposed learning tool, all process instances (and their

perspectives) can be recorded.

For example, for resolving the yield issue in Chapter 2, not only were different

types of statistical correlation tried, but different attempts to establish an association re-

lationship were also tried. Those association attempts were never reported in Chapter

2 nor the published in the related work [55] because they did not lead to successful

results.

Unsuccessful example 1

For example, Figure 3.4 shows a heatmap association that led to an unsuccessful search.

The left plot shows a heatmap constructed based on one lot of wafers. The color in-

dicates the number of fails from the test bin that has the largest number of fails. Red

means more fails.

The right plot shows the measured values of a frequency test. The interesting point

to observe is that the wafer pattern exposed by the frequency test is similar to the

failing heatmap. Figure 3.4 seemed to suggest that future search could be based on the

frequency test. However, this was not successful.
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FIGURE 3.4: One example triggering unsuccessful search

Unsuccessful example 2

Figure 3.5 shows another unsuccessful example. The plot shows a 2-dimensional space

with two E-tests, Px and Py. Each dot is a wafer, positioned by its average measured

E-test values.

FIGURE 3.5: Another example triggering unsuccessful search

The red dots are the 20 wafers with the lowest yield. Notice that they concentrate

on the bottom left corner of the plot. This plot associates lowest-yield wafers to the

two process parameters. Hence, it was thought that future search could focus on these
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two parameters. However, this again did not lead to successful resolution of the yield

issue.

Even though the different types of association analysis were unsuccessful for that

particular problem instance, it does not mean that they will not be useful for another

task in the future. Hence, learning should also take such unsuccessful trials into ac-

count.

3.5 Learning the perspectives

As mentioned above, the objective of learning in this work is to record and to generalize

the analytics process. The main subject of the learning is the set of perspectives, or ways

to construct a dataset.

In order to learn perspectives, a way to represent a perspective is needed first. The

learning algorithm and the effectiveness of learning depend on this representation.

The representation employed in this work treats each perspective as a sequence of

steps that manipulate the data. If each perspective can be represented as a sequence of

steps, or a path, then Process Mining (PM) [57][58] can be applied.

Process mining was originally motivated by the need to analyze logs from Work-

flow Management systems in business applications. It has its root in the early research

of inductive inference [59] that studies the classes of learnable formal languages. In

theory, the PM problem is similar to learning a finite state machine (regular language)

from the machine’s inputs and outputs.

Though extensive research has been done in the field of process mining and an

open-source PM framework is available [60], the existing PM tools are not optimal for

the yield optimization application. Accordingly, a tailor fit methodology is proposed,

which serves a similar purpose to existing PM tools but is tuned toward learning the

process of correlation analysis.
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The input to this methodology is a log file which contains process instances, hence-

forth referred to as traces, corresponding to execution paths. When translated to a

directed graph structure, these traces can be viewed as independent paths from START

to END. Suppose there are five possible steps denoted by letters A through E, and

there are two example paths, ACB and DCE, that have been executed. The log file is

composed of the set {ACB, BCE}. Each instance in the set is a trace.

FIGURE 3.6: Simple state merging example

Figure 3.6 shows two possible process models that can be learned from the log.

Model (A) basically records the two traces. Model (B), on the other hand, recognizes

that step C is common in both traces. By merging step C into a single node, model (B)

represents four traces, ACB, DCE, ACB, and DCE where the latter two are new. In this

case, model (B) generalizes the log to include new traces.

When the log file becomes rather large, the number of possible merges grows quickly.

This phenomena is illustrated using another simple example in Figure 3.7, where the

input log contains 5 traces: {ABCF, AEF, ACE, BCDF, BDE}

In this example, model (A) again simply records all traces. Model (B) merges every

step with the same name into a single node. Model (B) generalizes to have a total of 27
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FIGURE 3.7: Another state merging example

traces in the model, including the original 5.

The rate at which the generalization scales brings up an important aspect of this

process learning methodology. Recall that the goal of generalization is to aid an analyst

by suggesting new analytics paths. However, an overwhelming number of such paths

may not be desirable. A fundamental consideration in this approach is the trade-off

between overfitting and underfitting. Because generalization is set as one the goals,

maximum overfitting (i.e. only containing the input paths) is not useful. However,

underfitting can get out of hand if it is not controlled.

One solution to underfitting lies in constraining when merging of process steps is

allowed. With the simplistic state merging discussed thus far, any steps with multiple

occurrences in the log were treated as having an identical state and were therefore

merged into a single node. One way to constrain which steps are allowed to merge is to

consider their preceding steps. This view redefines the underlying notion of identical
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states from simply being instances of the same step to being instances of the same step

with a matching prefix.

Consider Model (C) in Figure 3.7 which is based on a prefix rule. Suppose two

partial traces are pX and qX where p and q are two sequences of steps each containing

at least 1 step. Given a length l, let pl be the last l steps in p and ql be the last l steps in

q. An l-prefix rule means that the two X nodes are merged only if pl = ql. Model (C) is

obtained based on 1-prefix rule.

Notice in model (C) that every sequence is assumed to begin with a special step

START and end at a special step END. Therefore, the three A steps in AEF, ACE, and

ABCF, are merged into one node. However, this merging does not create any new

traces. The two C steps in BCDF and ABCF are merged into one node because the

steps before both C steps are B. This merging creates two new traces in the model, BCF

and ABCDF, which are the only new traces in the model.

By using a prefix rule and by controlling the length l, one can control how many

new traces are added into the model, i.e. how generalized the model is. This point will

be shown later with an experimental result.

Implementation of a prefix rule poses a subtle issue – if two steps are merged, then

the prefix for a step that follows the merged steps can be altered. For example, in

Figure 3.7 model (B), after the C steps are merged, the 2-prefix of step E is altered. In

the log, the 2-prefix of step E is only BC. After the merge, the 2-prefix of step E is {BC,

AC}. Hence, a decision needs to be made for how a prefix rule applies if the prefix

becomes a set.

In the implementation used for this work, if any pair of prefixes from two prefix

sets are the same, the prefix sets are considered to be compatible and trigger merging

of the two steps. Experimentally, this enables more (but not too many more) merges

to take place, resulting in a more useful model. In practice, this makes sense because

reaching a matching process node through the same sequence of steps confirms that
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the nodes are likely to correspond to comparable states within the process.

The ordering of the merges is based on a partial ordering graph built based on the

log. For two steps, X and Y, let X > Y if Y only appears after X in the log. The merging

begins with the more restricted graph like models (A) shown above. Then, it proceeds

by following the partial ordering graph (i.e. following the topological ordering in the

ordering graph).

Note that the usage of the prefix rule here is similar to that proposed in an existing

algorithm [61]. However, this implementation is different because the existing algo-

rithm [61] considers loops in the resulting model and this one does not. Also, this

implementation additionally considers the prefix set merging rule.

Let X and Y be two steps and let p represent a sequence of steps. If a path XpY is in

the log, it is possible that in order to execute Y, X has to be executed somewhere before

the process. This type of cross-steps dependency can complicate process mining. This

work does not consider step dependency other than that imposed by the prefix rule.

The step dependency problem is avoided through careful design of the process steps.

3.6 Designing The Process Steps

The most challenging aspect of process mining is the design of the process steps. Each

step essentially is a script (Python script in this case) that applies some manipulations

of the current data and passes the resulting data to another step.

The importance of the step definition is similar to the importance of feature selec-

tion in machine learning. It has been widely shown that while the learning algorithm

matters, the features to define the learning space can significantly impact the learning

result. A notable recent example is the deep learning network [62] where much of the

computation is for learning the importance of features.
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Steps in process mining are like features. Hence, the design of the steps is a crucial

part of the overall learning approach. An important stage for the development of the

work is to recognize that, in correlation analysis, the end result is basically a figure as

shown in Figure 3.8.

Figure 3.8 is important because it provides a view to design the steps. In this simple

view, steps can be divided into 7 categories:

1. Defining the meaning of a dot

2. Defining the population of the dots

3. Defining the meaning along the x axis

4. Defining how the x value is calculated for a dot

5. Defining the meaning along the y axis

6. Defining how the y value is calculated for a dot

7. Optionally, defining how the dots are classified into colors

FIGURE 3.8: Dimensions to consider in designing process steps

These 7 categories of steps basically define how the dataset should be constructed

to generate such a plot. Then, two additional categories of steps are defined:
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1. Selection of the analysis tool to apply

2. Declaration of what type of result is to be reported (e.g. correlation value)

The following provides an example list of process steps to illustrate the software

design:

• Dot type:

PA (part)

WF (wafer)

• Wafer grouping:

WBTH (binary grouping using a threshold on the number of fails)

• Population (lot/wafer):

LS (select all lots)

L1S (select a lot)

LSS (subset of lots)

LSW (subset of wafers)

• Population (dynamic):

CD (cluster lots by date)

CLY (cluster lots by yield)

CWY (cluster wafers by yield)

• Population (equipment):

RS (restrict to a test site)

RSS (restrict to a subset of test sites)

RT (restrict to a tester)

RST (restrict to a subset of testers)

• Population (location):

RR (restrict to a ring on wafer)

RC (restrict based on a radius from the center of wafer)

• X/Y axis (test):

X-TS/Y-TS (select all tests)

X-T1S/Y-T1S (select a test)

65



Chapter 3. Learning the Process for Correlation Analysis

X-TSS/Y-TSS (select a subset of tests)

X-T1B/Y-T1B (select a test bin)

X-TSB/Y-TSB (select a subset of test bins)

• X/Y axis (E-test):

X-P1S/Y-P1S (select an E-test from a site)

X-PAS/Y-PAS (select an E-test from all sites)

X-PSS/Y-PSS (select an E-test from a subset of sites)

• X/Y value (test):

X-1V/Y-1V (use single test value)

X-AV/Y-AV (use average value)

X-WNF/Y-WNF (use number of failures)

X-WST1/Y-WST1 (use statistics of the distribution)

X-WNV1/Y-WNV1 (use number of parts with a particular test value)

X-WNV/Y-WNV (use number of parts with value in a set of test values)

• XY coloring:

X-TH/Y-TH (coloring based on dot property, e.g. pass/fail)

Three analysis tools are included: (1) statistical correlation (SC), (2) heatmap associ-

ation (HA) (e.g. Figure 3.4), and (3) association analysis (AA) (e.g. Figure 3.5). Table 3.1

below shows how the above process steps can be concatenated into traces that produce

the figures shown earlier in this chapter.

TABLE 3.1: Traces used for producing figures

Figure produced Trace taken to produce the dataset
Figure 3.2 (left) [WF, LS, X-PAS, X-AV, Y-T1S, Y-WNV1, SC]
Figure 3.2 (right) [WF, LS, X-PAS, X-AV, Y-T1S, Y-WST1, SC]
Figure 3.3 [WF, CD, X-PAS, X-AV, Y-T1S, Y-WNV, SC]
Figure 3.4 [PA, L1S, X-TS, X-WNF, Y-T1S, Y-WNF, HSC]
Figure 3.5 [WF, WBTF, LS, X-P1S, X-1V, Y-P1S, Y-1V, AA]

Take Figure 3.2 (left) as an example. The first step “WF” defines each dot as a wafer.

The second step “LS” defines the population to comprise all wafers. Then, “X-PAS”

defines the x-axis to be based on values of E-test from all sites. The “X-AV” defines
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the x value to be the average. Similarly, “Y-T1S” defines the y-axis to be a test. Then,

“Y-WNV1” defines the y value to be the number of parts having a particular test value.

Lastly, the resulting dataset is analyzed by a statistical correlation tool (SC).

In this design, steps such as “X-PAS,” “Y-T1S,” and “Y-WNV1” involve implicit

enumeration across all possible choices. Hence, a trace involving them constructs a

number of datasets through these implicit enumerations.

Note that adding new steps to the above set is straightforward. For example, if

we desire to include Canonical Correlation (CC) [47] in the analysis, we just need to

include new steps to define the x value and the y value. For instance, instead of a single

x value, the x would be defined as a vector of values. Also, a new analytics step CCA

would be added.

3.7 Applying PM Model

The product for the study of the second yield issue is an automotive part that oper-

ates in the 76-77 GHz band allocated for vehicular radars on an unlicensed basis (see

e.g. FCC document [63]). To meet the specification, packaged chips are tested in cold

temperature by operating at 76 GHz and in hot temperature by operating at 77 GHz.

In both conditions, the voltage required to drive the oscillator is measured. An upper

limit for the hot testing and a lower limit for the cold testing are set for the measured

voltage. Unexpected yield drop is observed on some assembly lots with the cold and

hot temperature tests.

Final test data are organized by assembly lots. Using each chip’s ECID, the data are

reorganized into their production lots. Figure 3.9 shows wafer-to-wafer variations of

the test values at cold and hot temperatures. There are 175 wafers arranged by their

production lots.
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FIGURE 3.9: Yield issue due to cold/hot voltage tests

For every wafer, two vertical bars are shown, corresponding to the cold and hot

results. Each bar shows the range of measured values from dies on the respective

wafer. This range is [µ − σ, µ + σ] where µ stands for the mean and σ stands for the

standard deviation. The upper and lower limits are shown as two horizontal dash

lines. As seen, hot values drift more frequently beyond the limit than cold values.

3.7.1 Learning a PM model

The goal is to learn a PM model from the analytics traces conducted to resolve the yield

issue in Chapter 2 and apply the model to analyze the yield issue of the automotive

radar chip product line.

In the earlier discussion, a path was described as a sequence of steps to construct a

dataset. In the actual implementation, a trace can be a concatenation of multiple paths.

For example, the first path can be used to narrow the search to a particular test and

then the subsequent path would represent exploring the temporal aspect (as discussed

above) based on that test.

The extension of a trace to comprise multiple paths requires defining a few ad-

ditional conjoining steps. For example, the step HRY restricts the choices of y to the
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selected datasets from the previous step. Similarly, the step HRX restricts the choices of

x. And the step HR restricts choices of both the x-axis and y-axis. These steps contain

an evaluation for the selection, for example based on a correlation value > t where t is

an input parameter. Finally, a general step PLOT is implemented to generate a plot.

For the result presented in this section, the input log contains 39 traces. A trace can

contain 1, 2, or 3 paths. Different prefix lengths are explored and results are shown in

the table below.

TABLE 3.2: Prefix length vs number of traces

Prefix length l 0 1 2 3 4 5 6
Number of traces 98990 1271 160 63 53 42 39

As the table shows, for an l-prefix rule, a larger l leads to fewer traces contained in

the resulting PM model. At l = 6, there is no generalization. For l ≤ 1, the numbers

of traces are large, which might be considered as over generalized. One can select a

perceived reasonable model to apply. For example, this can depend on the desirable

runtime - a more generalized model would run slower because there are more traces

to execute. In this example the model based on the 2-prefix rule was selected.

Let Sa be the set of traces in the la-prefix PM model, and Sb be the set of traces in

the lb-prefix PM model. Note that the property Sa ⊆ Sb holds true if la > lb. That is, the

traces in a model with some prefix constraint are always all contained in models with

shorter prefix constraints.

The 2-prefix PM model learned from the 39 traces is shown in Figure 3.10. Two

traces are highlighted. The first trace has three paths, marked as A1, A2, and A3. This

is the trace that leads to Figure 3.3. The three paths are explained below:

A1: This step uses CCA to identify that there is a high (CCA) correlation between

test A and E-test PP5.
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FIGURE 3.10: 2-prefix PM model learned from the 39 traces

A2: By restricting to test A, this subsequent step determines that the number of

fails due to test values X1, X2, X3 is highly correlated to PP5. This analysis is

through standard statistical correlation

A3: This step applies a temporal consideration (i.e. step CD) to uncover the result

seen in Figure 3.3.

The second trace with paths B1 and B2 is a new trace generalized by PM that was

not among the 39 traces in the original input log. Though, it should be noted that this

trace only exists when prefix ≤ 2 which means that it exists among 121 new traces

that had to be executed. This trace was a successful trace for analyzing the yield issue

discussed in this section. The results of paths B1 and B2 are explained through the two

plots in Figure 3.11.
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FIGURE 3.11: Finding association(left); Finding statistical correlation
(right)

The left plot shows that hot pass (blue) is associated with the variable trim count.

Every dot is a part. Before the cold/hot final test, the frequency of an on-chip oscillator

is measured at room temperature. Then, the oscillator is tuned by a trim process. Trim

count is treated as a test value. In stage B1, association analysis based on two tests is

conducted. The plot shows that all dies passing the hot test have a low trim count.

Because the trim count and the frequency test are known to be associated, in the

subsequent path B2, frequency test is shown to be highly correlated to an E-test C. This

correlation is shown in the right plot. Note that the direct relationship between the

trim count and E-test was also explored, but it did not find any meaningful result.

The trace B1→B2 is new because during analysis conducted for the work in Chapter

2, association analysis using two tests was never considered. What was considered was

the association analysis shown in Figure 3.5 using two E-tests. However, the learning

was able to generalize to include association analysis using two tests.

To be more specific, association analysis can be thought of as finding two lines in

a 2D space as shown in Figure 3.12. In this plot, suppose red dots are failing dies and

blue dots are passing dies. If one can find a vertical line such that one side of the

line contains only (or mostly) one type of dots, then one can say the type of dots is

associated with the x variable. Similarly, finding a horizontal line can decide if there is

an association to the y variable.
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FIGURE 3.12: Association by finding two lines

In the left plot of Figure 3.11, the red type is associated with the hot test. However,

this is not useful because failing dies are decided by the test. The blue type is associated

with the trim count. This is useful because that indicates all passing dies have a lower

trim count.

3.8 Limitations of the PM Model

While the result is encouraging, generalizing the approach to other application scenar-

ios may require further enhancement of the current PM design.

As mentioned before, one limitation of the current PM approach is that it does not

consider cross-steps dependency. Dealing with such a dependency is avoided in the

PM algorithm by taking special consideration in designing the process steps. How-

ever, the consideration also constrains the design of the steps. For other applications,

the PM algorithm may need to be enhanced to explicitly take cross-steps dependency

into account. In addition, this PM approach does not allow loops in the process. Con-

sidering loops will drastically increase the complexity of the PM algorithm. However,

it can further relax the constraint on what types of steps can be defined.

In general, there is a trade-off between the objective to simplify the PM algorithm

and the objective to allow flexibility in designing the process steps. The capability of a
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PM model is limited by the set of process steps. How to learn to refine and enhance a

set of process steps can be another interesting future research question.

Furthermore, how applicable a PM approach is to other types of analytics applica-

tions in test remains questionable. For example, if for an application the main challenge

in Figure 3.1 is not with the dataset preparation box but with the meaningfulness de-

termination box, then further research is needed to determine if the meaningfulness

determination requires a complex process or not. If the process is simple, then apply-

ing the PM approach might not make sense.

3.9 Summary

This chapter conveys the message that the analytics process is not automatic. It is

shown that the result of analytics is subjective to how an analyst prepares the datasets

and decides the meaningfulness of results. The proposed process mining (PM) ap-

proach was designed to learn the experience of preparing datasets from one analyst

and provide that experience to another analyst, thereby reducing the subjectivity due

to that step.

The presented approach is specific to learning the process of correlation analysis. A

PM algorithm tailored to this application was introduced and the design of the process

steps to enable learning was explained. The effectiveness of this approach was demon-

strated by applying the PM model resulting from the work in Chapter 2 to resolve a

yield issue in a new (and different type of) automotive product line.
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Chapter 4

Generalization of an Outlier Model

into a “Global” Perspective

4.1 Overview

This chapter explores the generalization of an outlier model from two perspectives,

temporal and spatial. It is shown that model generalization with existing distribution-

based outlier analysis methods can vary significantly. Part of this variation is shown

to be due to temporal and spatial uncertainties, both of which are explained in detail.

A “big data” outlier analysis approach is proposed together with a probability-based

outlier evaluation for improving model generalization. Experiments are conducted

based on two automotive product lines to explain the concepts and demonstrate the

effectiveness of the proposed approach.

4.2 Introduction

The work in this chapter focuses on distribution-based methods, including both uni-

variate and multivariate approaches. Recall from Section 1.1.2 and Figure 1.2 that

distribution-based outlier model comprises three components:
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1. A set of parts used in the analysis, called the base set and denoted as B

2. A method to calculate an outlier score s, denoted asM

3. A modelR based on outlier scores to classify parts as inliers or outliers

Constructing an outlier model can be subjective. For example, in wafer-probe test-

ing, a common practice is to let the base set B to comprise dies from the same wafer.

This intends to find wafer-based outliers. Alternatively, one may expand the base set to

find lot-based outliers.

Assume each base set is a wafer of dies. In outlier analysis, the main source of

subjectivity is in the selection of the model R. A simple experiment is presented to il-

lustrate the impact of this subjectivity, comparing the three univariate methods: DPAT,

AEC (DPAT), and RDPAT.

A DPAT model is of the form: x is an outlier iff x 6∈ [µ − kσ, µ + kσ]. Here, µ is

the mean and σ is the standard deviation of the distribution based on all dies in B. For

each die, its test value v is converted into the outlier score x = v
σ to be evaluated by the

model. Therefore, determining the model is just determining the k value in the model.

An AEC model is like a DPAT model, except that the inlier range is defined differ-

ently as: [me − 0.43 × k(me − p1),me + 0.43 × k(p99 −me)], where me is the median,

p1 is value at the 1% percentile point and p99 is the value at the 99% percentile point of

the distribution [38]. Similarly, determining the model means determining its k value.

Robust DPAT can be thought of as a hybrid of DPAT and AEC [38]. A wafer dis-

tribution is run through a process involving outlier removal [64] and a Normality test.

If the distribution fails the Normality test, transformation to Normal distribution is in-

voked [65][66]. The resulting distribution is then checked by the Normality test. For

those distributions that pass the Normality test (before or after the transformation),

DPAT modeling is applied. If a transformed distribution still fails the Normality test,

then AEC is applied as the last resort. For the test used in the simple experiment, all
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wafer distributions pass the Normality test (before or after the transformation). Hence,

one k value is determined for the RDPAT outlier model.

In the experiment, the following assumption is adopted for constructing an outlier

model. Given N wafers ordered chronologically by their test time, the first 10% of the

wafers are used to determine the model. Then, the model is applied to the remaining

90% of the wafers to observe its outcome. Figure 4.1 summarizes the results based on

one wafer probe test for an automotive sensor product. The experiment covers 658

wafers as shown in the figure. This figure is explained below.

FIGURE 4.1: Comparing three univariate outlier methods

An outlier model is usually developed based on some initial qualification data.

Further, an outlier model determines an outlier locally, for example usually based on

only parts from the same wafer. This initial and local perspective raises an interesting

question as whether an outlier property initially and locally determined can be gener-

alized into a “global” perspective based on the future data collected over a long period

of time.

To determine the k value, a PPM (part per million) yield reduction target is usually

established. In the experiment, 10 PPM is assumed as the target, i.e. it is aimed at the

10 most outlying parts per million parts. The first 10% of the wafers contain roughly

96K parts. With a 10 PPM target, the k value is therefore set to screen out exactly one
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part. For DPAT, this results in k = 8.117. For AEC, it is k = 8.242. And for RDPAT, the

most outlying die resides at k = 8.317.

Figure 4.1 shows that on the 10% of the wafers, the three methods find the same

part as the most outlying part. This is depicted as a single circle (with a “1” inside) to

indicate the overlap of the three 1-die outlier sets.

Results of applying the models to the remaining 90% of the wafers are shown on

the right. Note that these wafers contain roughly 810K parts. Hence, with 10 PPM

target, the expected number of outliers is about 8 parts.

First, observe that the number of outliers screened out by each model (i.e. by using

the k value determined earlier based on 10% of the wafers) deviates quite significantly

from the expected number, 8. DPAT finds 66 outliers, AEC finds 89, and RDPAT finds

121. The Venn diagram then shows their overlaps. Observe that all DPAT outliers are

RDPAT outliers. Moreover, the intersection of the three outlier sets has 61 outliers.

Overall, the result from one method can deviate significantly from another method.

4.2.1 Multivariate outlier example

Figure 4.2 shows results from a similar experiment comparing two commonly-used

multivariate methods: Mahalanobis (Mah) and Linear Regression (LR). Two highly-

correlated (correlation > 0.9) tests are selected to build a 2-dimensional outlier model.

FIGURE 4.2: Comparing two multivariate outlier methods

A scikit-learn package [56] is used to estimate covariance and calculate the Maha-

lanobis distance. In linear regression, a regression line is estimated. Then, the distance
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of each die to the line is calculated. These distances are treated as the “new measured

values” for the dies. Then, DPAT is applied on the new measured values.

To show the effect only on multivariate outliers, in the experiment the two respec-

tive AEC models (one for each test) are applied first, to remove univariate outliers.

Then, the two multivariate methods are applied to the remaining dies independently.

Using the first 10% of wafers, the two multivariate models find their respective

most outlying die. These two most outlying dies are different as shown in Figure 4.2.

When the two multivariate models are applied to the remaining 90% of wafers, the

numbers of outliers (Mah:186, LR:205) are much larger than the expected number of

8 parts. While they share 173 outliers, each model has a number of its own unique

outliers as well.

The two observations with Figure 4.1 earlier apply to Figure 4.2 as well. First, the

number of outliers screened out by each model deviated quite significantly from the ex-

pected number, 8. Second, the result of one method can deviate from the other method.

4.2.2 Temporal and spatial uncertainties

Figure 4.1 and Figure 4.2 reveal two uncertainties for an outlier model. The first uncer-

tainty is exemplified with the different PPM numbers screened out by a model on the

first 10% of the wafers and on the remaining 90% of the wafers. Call this temporal un-

certainty. The second uncertainty is exemplified by the diverse results using different

outlier methods. Call this spatial uncertainty.

Note that these two uncertainties are not necessarily independent of each other. For

example, the spatial uncertainty makes it harder to justify the excessive yield loss seen

in the above examples, due to the temporal uncertainty.

The two uncertainties motivate a search for an outlier analysis approach that im-

proves on the existing methods by satisfying two properties:
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1. The outcome of outlier screening is more robust over the production time (i.e.

less temporal uncertainty)

2. The outliers screened out are more agreeable among the methods (i.e. less spatial

uncertainty)

The term model generalization is used to denote such properties because the outcome

from such a model would be more generalizable over time and across methods.

4.3 Understanding the uncertainties

In this work, model development is done in a proactive fashion by assuming a PPM

target. Ideally, one would like to screen out only those dies that are defective. Hence,

instead of starting with a PPM target, a common practice could to conduct the the

model development in a reactive fashion by using a set of known defective parts based

in some qualification lots. For example, these parts can be parts that fail in a burn-in

experiment [11] or parts returned by the customer [8].

However, starting with qualification lots with known defective parts does not fun-

damentally change the issues with the two uncertainties discussed above. When a

model is applied in future production, the outcome of the model can still deviate sig-

nificantly from that observed on the qualification lots.

There are additional challenges that present themselves in practice. For example, it

is challenging to ensure that the set of known defective parts is sufficient to represent

the underlying defect universe of interest. Moreover, determining if there exists an

outlier model to screen a given defective part could also be challenging as well [16].

Compounding to this challenge is the fact that outlier model existence also depends on

the allowable PPM loss.

In some scenarios, it is preferable to not wait until known defective parts become

available. For example, for customer return prevention, it is undesirable to wait for a
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customer return. In such a scenario, one would like to develop outlier models without

customer returns.

For these reasons, this work simply assumes a PPM target to start the model devel-

opment. This allows the study to focus on the two uncertainties highlighted above.

4.3.1 Further illustration of temporal uncertainty

The temporal uncertainty observed in Figure 4.1 is not unique to that particular test.

Figure 4.3 shows results of running similar experiments across 756 wafer probe tests on

the sensor product. In these experiments, the same 10 PPM budget and the same strat-

egy of 10%-90% split of total wafers are used. In the plots, each (blue) dot represents a

test.

FIGURE 4.3: Temporal uncertainty across 756 tests

Figure 4.3 shows that the temporal uncertainty exists for many tests, and for both

DPAT and AEC, i.e. the actual PPM deviates significantly from the target 10 PPM.

Moreover, this uncertainty has almost no correlation to the k value.

Table 4.1 then shows the results of repeating the experiments by varying the PPM

target. With each PPM target and each method, the table reports two numbers: the

mean which is the average of actual PPM numbers obtained for all tests, and the std

which is their standard deviation.
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TABLE 4.1: Actual PPM for a PPM target across all tests

PPM DPAT AEC RDPAT
Target mean std mean std mean std

10 51.5 244.2 32.4 75.9 153.1 561.4
20 94.2 449.3 54.5 96.5 226.9 767.7
30 120.4 480.7 72.6 109.1 280.7 842.7
40 150.2 516.2 88.4 118.5 326.8 940.7
50 185.3 581.4 106.1 130.5 377.5 1058.4
60 220.9 819.4 121.6 138.4 427.3 1241.3
70 247.2 934.9 136.4 146.0 464.5 1347.2
80 271.8 978.1 150.8 154.1 494.8 1390.0
90 297.7 1039.5 164.6 161.2 528.9 1461.3
100 317.6 1064.2 178.6 170.3 556.3 1501.4

Table 4.1 essentially shows that temporal uncertainty is not unique to the 10 PPM

target used in the earlier experiments. As the PPM target increases, both the mean and

std increase. The table shows that AEC is more immune to temporal uncertainty, i.e. it

consistently has smaller numbers compared to the other two methods. However, even

with PPM target 100, the AEC method results in mean + std = 178.6 + 170.3 = 348.9

PPM, which means there are tests whose actual PPM numbers are more than three

times larger than the PPM target. In fact, there are 74 such AEC models (from 74 tests).

4.3.2 Further illustration of spatial uncertainty

FIGURE 4.4: Spatial uncertainty across 756 tests
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Figure 4.4 then illustrates the spatial uncertainty between DPAT and AEC across all

the tests. Again in these plots, each (blue) dot is a test. On the left plot, observe that

on many tests the number of DPAT outliers is quite different from the number of AEC

outliers. On the right plot, observe that their k values can also differ quite significantly,

especially for DPAT models with a large k value.

4.3.3 Analyzing the result in Figure 4.1

The above results show that temporal and spatial uncertainties are not unique to the

one test used to produce the result shown in Figure 4.1. The result in Figure 4.1 is

analyzed in more detail below.

FIGURE 4.5: Temporal fluctuation and its impact to DPAT limits

Figure 4.5-(a) plots the mean, min, and max measured test values for each wafer

across the 658 wafers. The first 10% of the wafers are highlighted in the plot. Observe

that after 400 wafers there are significant fluctuations of the min/max values. It there-

fore makes sense that because the k value of an outlier model is determined using the

first 10% wafers, the resulting model does not account for the much larger test value

fluctuations seen later in production.

To confirm this conjecture, Figure 4.5-(b) shows the upper and lower limits set by

the DPAT model on each wafer (recall k = 8.117). The DPAT outliers are shown as
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red dots. Observe that the outliers show some concentration on the area with large

fluctuation. Figure 4.6-(a) shows a similar plot using the AEC limits and their resulting

outliers.

FIGURE 4.6: AEC outliers, and comparing to DPAT outliers

From these plots, it can be seen that temporal uncertainty is due to the significant

change of statistics between the first 10% wafers and the remaining 90% wafers. In

other words, the first 10% wafers are not representative enough to capture the statistics

seen on later wafers.

Figure 4.1 earlier shows that 28 AEC outliers are not DPAT outliers. Figure 4.6-(b)

highlights where those 28 AEC-unique outliers (green dots) are located. It is interesting

to observe that these 28 AEC outliers tend to be “marginal” where most of them are

close to the AEC limits.

Figure 4.6-(b) reveals that the divergence seen in the Venn diagram in Figure 4.1

might be largely due to the fact that different models treat “marginal” outliers differ-

ently. If that is the case, then the divergence (i.e. spatial uncertainty) can be reduced

by focusing on finding only the “gross” outliers.
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4.4 Identifying “gross” outliers

To confirm the conjecture that spatial uncertainty mostly occurs on marginal outliers,

a method is needed to differentiate marginal outliers from gross outliers. For this pur-

pose, a so-called marginality test is developed. The desired functionality of this test

is such that if an outlier passes the marginality test, it is classified as a gross outlier.

Otherwise, it is deemed as a marginal outlier.

4.4.1 The concept of marginality test

Recall that an outlier is a die that has its outlier score s falling beyond the inlier range

[L,U ] where L is the lower limit and U is the upper limit. Different methods calculate

the outlier score and the inlier range differently. Regardless of how they are calculated,

the calculations are based on the parts in the base set B.

In the experiments above, the base set contains dies from the same wafer. Hence,

an outlier is found relatively to other parts in the same wafer. To test if the outlier

is marginal, the idea is to move the outlier into another similar wafer. If the outlier

becomes an inlier on a similar wafer using its respective inlier range, then the outlier is

marginal. In other words, a marginal outlier is defined as an outlier where there exists

a similar wafer that treats the part as an inlier.

4.4.2 Using the N most similar wafers

Suppose the marginality test is applied using the N most similar wafers. This requires

a definition of wafer similarity. In this work, wafer similarity is defined by measuring

the similarity between two wafer distributions.

There are many choices of measurements for the similarity between two probability

distributions, such as Kolmogorov-Smirnov (KS) statistic, differential entropy, or using

moments as features. The work in this chapter simply encodes a distribution by its
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mean and standard deviation as a 2-dimensional vector. Then, given two vectors, their

Euclidean distance is used as the inverse measure of wafer similarity. To avoid bias,

both mean and standard deviation values are normalized to a value in range [0, 1].

For the experiments reported, this simple encoding works quite well in most cases.

Hence, optimization of the wafer similarity measure was left to future work.

FIGURE 4.7: Illustration of 300 most similar wafers to the wafer contain-
ing a marginal outlier

Figure 4.7 shows an example wafer and its 300 most similar wafers. On the left,

the blue dots are the similar wafers under consideration, while the gray dots are the

remaining wafers. Each dot represent the wafer distribution positioned by its normal-

ized mean (x-axis) and standard deviation (y-axis). The right plot shows where those

300 similar wafers are located chronologically with respect to the example wafer. The

x-axis shows the lot indices arranged chronologically by test time. The y-axis shows

the number of similar wafers in the lot.

4.4.3 Examples of marginality test

Figure 4.8 shows a marginal outlier example and a gross outlier example (i.e. not

marginal). The marginal outlier example is the same example shown in Figure 4.7.

The two examples in Figure 4.8 are based on the DPAT model. Recall that the DPAT

model has the k value = 8.117, i.e. the inlier range is [µ − 8.117σ, µ + 8.117σ]. The
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FIGURE 4.8: Examples of marginal and gross outliers

x-axis is the measured test value where both plots are shown with the same scale. The

location of the outlier is marked by a short vertical red bar.

For the marginal outlier, its outlier score is 8.17 (the test value = 8.17σ where the σ

is specific to the wafer). Hence, the part is classified as an outlier based on the wafer

distribution (blue). Then, this outlier is tested against 300 most similar wafers. The

distributions of these 300 similar wafers are plotted using gray color to show their

overall span in the background.

With the 300 wafers, each wafer gives a new outlier score for the part using its

respective σ. Among them, the minimum is 4.58 as illustrated in the plot. The wafer

distribution producing this minimum is plotted in purple. Because 4.58 < k = 8.117,

the outlier is deemed marginal based on the earlier marginality definition.

In contrast, the second plot shows a gross outlier example. Among the 300 most

similar wafers, the minimum outlier score is 18.3 which is much larger than the k value

8.117. Hence, this outlier is not marginal. Comparing the two plots it can be seen pic-

torially that the marginal and gross outliers meet our intuition — the marginal outlier

is much closer to the distributions than the gross outlier.
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4.4.4 Gross outliers in view of Figure 4.1

The marginality test is implemented based on finding the 300 most similar wafers.

Then, it is applied with the DPAT, AEC, and RDPAT models independently to find

their respective gross outliers.

Figure 4.9 shows the resulting gross outliers for each model. The numbers of gross

outliers found for DPAT, AEC and RDPAT models are 33, 48 and 74, respectively. They

are shown in three separate Venn diagrams in view of the the original Venn diagram

in Figure 4.1.

FIGURE 4.9: Gross outliers in view of the Venn diagram shown in Fig-
ure 4.1. A(B): A is the number of gross outliers and B is the number of

outliers copied from Figure 4.1.

Notice in Figure 4.9 that the 33 DPAT gross outliers are all inside the intersection of

the original three outlier sets. In other words, if one could have a model that finds only

those 33 gross outliers, the spatial uncertainty issue discussed earlier would have been

resolved because every outlier found by this model would be agreeable by the original

three PAT models as well.

Improvement to the AEC outlier set is less noticeable. However, notice that the two

AEC-unique outliers shown in Figure 4.1 are no longer present in Figure 4.9 (a “0” is

shown). In other words, those two AEC-unique outliers are marginal and get removed

by the marginality test. Consequently, spatial uncertainty is reduced.

There is no obvious improvement to RDPAT. The RDPAT gross outliers still spread

across different regions of the Venn diagram as in Figure 4.1, except the numbers in
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undesirable regions are relatively smaller.

4.4.5 Gross outliers vs. marginal outliers

Let the outliers in the union of the three gross outlier sets be called the gross outliers.

Hence, a gross outlier is an outlier defined to be gross with respect to any of the three

methods. Let the outliers in the intersection of the three gross outlier sets be called the

shared gross outliers. Note that there are 32 shared gross outliers (1 DPAT gross outlier

is not shared). Let any outlier that is not a gross outlier be called a marginal outlier.

FIGURE 4.10: Marginal vs. gross vs. shared gross outliers

Figure 4.10 then shows where those different types of outliers are located using a

similar illustration to that in Figure 4.6. On the left plot, marginal outliers are seen to

reside closer to the mean of the wafer distribution than the gross outliers. Pictorially

this matches our intuition for what a marginal outlier should be. Interestingly on the

right plot, a similar situation is observed between shared gross outliers and gross out-

liers (that are not shared). Shared gross outliers tend to be further away from the wafer

distribution mean.

The above results show that the proposed marginality test concept is reasonable

and can be used to differentiate marginal outliers from gross outliers in an intuitive

sense. Moreover, spatial uncertainty can be reduced as different models tend to be
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more agreeable on gross outliers. Building on these observations, a new outlier analy-

sis approach is devised in section 4.5.

4.5 The proposed outlier analysis approach

The idea of a marginality test can be incorporated into an outlier analysis approach to

find gross outliers. Such an approach can potentially provide two benefits:

(1) By avoiding marginal outliers, excessive yield loss is reduced. This in turn re-

duces temporal uncertainty. For instance, in the example in Figure 4.1, DPAT originally

finds 66 outliers (with respect to the expected number 8). After the marginality test, 33

gross outliers remain. In a sense, the temporal uncertainty is reduced from 66
8 = 8.25

(8.25 times over the expected target) to 33
8 = 4.125.

(2) Gross outliers are more likely to be agreeable among various methods, and

hence, focusing on finding gross outliers can help reduce or even remove spatial un-

certainty.

4.5.1 A “big data” perspective

To incorporate marginality test, a new outlier analysis approach is proposed, which fol-

lows a “big data” perspective. The term big data is used to emphasize that the outlying

property of a given part is evaluated using all wafer data available prior to the wafer

containing the part. Hence, the data in use is accumulative. Figure 4.11 illustrates this

perspective.

As illustrated in the figure, the approach comprises three components:

(1) A component to decide potential outliers on a given wafer wi which should

be evaluated further

(2) A component to decide N most similar wafers to the wafer wi
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FIGURE 4.11: Outlier analysis following a big data perspective

(3) A component to perform outlier evaluation using the marginality test idea

discussed above

4.5.2 Issue with using a DPAT or AEC model

If Figure 4.11 were to be implemented with a DPAT or AEC model, the model would

be used in component (1) to decide the potential outliers. This is how it is used with

the marginality test experiments presented earlier in Section 4.4. Figure 4.12 illustrates

this use in component (1).

FIGURE 4.12: Potential outliers decided by a DPAT or AEC model

The issue with using a DPAT or AEC model alike is that the k value (i.e. the outlier

boundary) is predefined. For the one example discussed earlier this would not be a

problem because the problem there is that the k value is too small, resulting in more

outliers than desired. On the contrary, if the predefined k value is too large, then a
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gross outlier on a later wafer would not have been selected into the potential outlier set.

Consequently, such a gross outlier would have no chance to enter the outlier evaluation

component.

FIGURE 4.13: Under-screen example for PPM target = 10

Figure 4.13 exemplifies such a situation. The plots show the min/max measured

values (green) as well as the upper and lower limits (blue) of the outlier models. The

outliers found are shown as red dots. On the left, the DPAT model finds 2 outliers in

the remaining 90% wafers. On the right, the AEC model finds only 1 outlier. In a sense

the k value decided based on the first 10% wafer is too large. From the min/max values

(green), one can infer that there can more potential outliers could be extracted.

4.5.3 Adaptive k value and its potential issue

One potential way to fix the issue above is to adaptively adjust the the k value. Fig-

ure 4.14 illustrates this process.

For a PPM target of 10, on average one most outlying die is supposed to be identi-

fied every 100K dies. Intuitively, after ever 100K dies the k value could be recomputed

as shown in Figure 4.14. While this might alleviate the under-screen problem, it does

not resolve it. For example, suppose there is a gross outlier in wi. Whether or not this
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FIGURE 4.14: Issue with adaptive k value (10 PPM target)

die can be selected into the potential outlier set for further evaluation depends on the

previous km, which can still be too large.

The idea of adapting k becomes less effective when the PPM target is even smaller.

For example, for a 1 PPM target, k would be adjusted every 1M dies. This may be too

infrequent to capture the change of statistics in the production data.

4.6 Probability-based outlier evaluation

This section first describes the implementation of the outlier evaluation component,

then continues to describe how potential outliers are decided in light of the implemen-

tation.

Assume that a PPM target t is given. For example, for 10 PPM, t = 10−5. To

evaluate a potential outlier die, calculate its probability of occurrence. For a measured

test value v, this probability is either p(x ≥ v) if v is on the right side of the distribution,

or p(x ≤ v) if v is on the left side. Here p() is the probability density function estimated

based on the set of dies, i.e. the base set.

4.6.1 Estimating probability of occurrence

Kernel density estimation (KDE) is a popular approach for estimating the probability

density function of a set of points [67][20]. Figure 4.15 illustrates its basic concept.
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FIGURE 4.15: Illustration of kernel density estimation (KDE)

Suppose there are n dies x1, . . . , xn with measured test values µ1, . . . , µn. Suppose

xn is a potential outlier. In KDE, each die xi is associated with a Normal distribution

pi = N(µi, σ). Figure 4.15 then shows how the probability of occurrence for xn is

calculated as Prob(x ≥ µn). Note that pn(x ≥ µn) = 1
2 . In KDE, the bandwidth σ is

estimated based on the n points in the set. Bandwidth estimation for the experiments

in this chapter is performed using the popular Scott & Silverman method [67].

4.6.2 Heuristic for fast probability estimate

KDE calculations illustrated in Figure 4.15 can be expensive: n−1 Normal distributions

need to be evaluated. A heuristic is therefore used to speed up the evaluation.

Suppose the PPM target is t = 10−5. In Figure 4.15, for xn to be an outlier, its prob-

ability needs to be Prob(x ≥ µn) < 10−5. Suppose the distance between xn−1 and xn

is D and D > 4.754σ. Then, based on the Normal distribution for pn−1 = N(µn−1, σ),

it follows that pn−1(x ≥ µn) < 10−6. Because the distances of x1, . . . , xn−2 to xn are

all larger than D, it also follows that ∀i, pi(x ≥ µn) < 10−6. As a result the term

“
∑n−1

i=1 pi(x ≥ µn)” would be < (n− 1) ∗ 10−6.

To get Prob(x ≥ µn) < 10−5, n has to be:

(n− 1) ∗ 10−6 + 0.5

n
< 10−5 ⇒ n >

5

9
∗ 105 (4.1)
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In other words, verifying thatD > 4.754σ with n ≥ 55556 dies implies thatProb(x ≥

µn) < 10−5 under a normality assumption.

4.6.3 Probability-based marginality test

The above heuristic provides a convenient way to merge probability estimation into

marginality test. Suppose N wafers w1, . . . , wN are given where wN contains one po-

tential outlier o to be evaluated. Suppose on wafer wi, the closest die to o has a distance

Di. Then, the evaluation can proceed by simply checking that Di > 4.754σ (for PPM

target t = 10−5) for all i = 1, . . . , N .

Further, ensuring that the N wafers contain more than, say 55556 dies, indicates

that the probability of occurrence is < 10−5. Hence, as long as N is large enough, the

check would find outliers that simultaneously meet the PPM constraint and pass the

marginality test.

Without the fast heuristic, alternatively suppose the term “
∑n−1

i=1 pi(x ≥ µn)” is

calculated by letting pi(x ≥ µn) = 0 for all pi(x ≥ µn) < 10−9. This would speed up the

computation. However, a complete experiment run for all tests would still take more

than a week to finish for the data from the the sensor product used for this chapter. In

contrast, with the fast heuristic, the same run would take about 1 day.

4.6.4 Evaluating multiple potential outliers

One caveat with using the heuristic arises when there are multiple potential outliers to

be evaluated together. For example, in Figure 4.15, suppose there is another potential

outlier xn+1 residing on the right and close to xn. In this case, equation (4.1) needs to

be modified.

It is intuitive that the modification can simply be changing the “0.5” in equation

(4.1) to “1.5”. As a result, a larger n would be required with n > 15
9 ∗ 105, which means
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about 167K dies would be needed. In general, to consider k potential outliers together,

n > 10∗(k−1)+5
9 ∗ 105 dies are needed for the PPM target t = 10−5.

4.6.5 Deciding potential outliers

Suppose the distance constraint D has been calculated (as shown in Figure 4.15 and

explained above). Based on the heuristic discussed above, Figure 4.16 illustrates how

potential outliers can be decided. On each tail of a wafer distribution, the objective is

to scan inward to find the first “gap” where the distance between two dies is > D. For

example, in Figure 4.16 the first gap is found with D1. Then, the dies o3, o4 are treated

as the first group to be evaluated. If o3, o4 are deemed as outliers, then scan proceeds to

the next gap, in this case D2. As a result, o1, o2 are evaluated. The process stops when

either the dies evaluate to be inliers or no more gaps can be found.

FIGURE 4.16: Deciding potential outliers

4.7 Probability-based online outlier evaluation

For the experiment, suppose there aremwafersW = {w1, . . . , wm} ordered chronolog-

ically by their test time. Figure 4.17 explains the setup for the experiment where wafers

are processed following the ordering. This scheme is called online evaluation because

when processing wi, future wafers wi+1, . . . , wm are assumed unavailable.
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FIGURE 4.17: Setup for online outlier evaluation

When wi is processed, N most similar wafers from among the historical wafers

w1, . . . , wi−1 are found. Let N = min(0.9 ∗ i, U). The term ′′0.9 ∗ i′′ means that no more

than 90% of the historical wafers would be used. This is to exclude the situation where

very dissimilar wafers are used. The term U is an upper bound on how many wafers

to use. U is set to half the size ofW but no more than 2K due to run time consideration.

For a PPM target t, a minimum constraintM is calculated such that the first bwafers

contain just enough dies to have more than M . For example, the above discussion

explains that for t = 10−5, at least 55556 dies are needed. With the constraint on N

using up to 90% of the wafers, enough wafers are needed so that 90% of them contain

more than 55556 dies. For the experiments with the sensor product, setting b = 50

wafers (2 lots) would be more than sufficient.

When an outlier is found on wi, it is removed so that when wi is selected in the

future as one of the most similar wafers, the outlier will not have an impact.

4.7.1 Handling the first b wafers

The first b wafers are handled separately. These b wafers are assumed to be given

together. First, all dies in these wafers are ranked based on their test values. Then,

working from the largest value, each time the most outlying die is checked by the

outlier evaluation. The evaluation uses 90% of the most similar wafers among the b

wafers. If the die is deemed an outlier, it is removed, and the next most outlying die is
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considered. This continues until a die fails the evaluation. The process also repeats by

working from the smallest value to find outliers on the opposite side of the distribution.

After the two processes, outliers are removed from the first b wafers. This is done

before the online evaluation starts from wafer wb+1.

4.7.2 Online outlier vs. Global outlier

The outliers found by the online evaluation above are called online outliers. Suppose

the run finishes to the last wafer wm. Also suppose all outliers are removed from their

wafers. Then, for each outlier, outlier evaluation is re-applied by finding the N most

similar wafers from the entire wafer set W . This use of the entire wafer set is parallel

to the marginality test discussed earlier in Section 4.4.2. The goal here is to check if an

online outlier would still be an outlier if the evaluation were allowed to include the

future wafers. If an outlier passes this check, it is called a global outlier.

4.7.3 Comparison to earlier results

The probability-based outlier approach is applied to the test used to produce Figure 4.1

and its subsequent results, and also to the under-screen test example from Section 4.5.2.

The result is first compared to the result in Figure 4.10-(b). Recall that there are 32

shared gross outliers, representing the best result in the discussion before. In contrast, the

probability-based approach finds 13 online outliers. Figure 4.18-(a) shows the locations

of these 13 online outliers and the remaining 32− 13 = 19 shared gross outliers where

all 13 online outliers are also shared gross outliers. The upper and lower limits (blue)

given by the probability method are also shown. Recall that b = 50 wafers. Hence, the

region of the first 50 wafers is highlighted in pink.
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Pictorially, observe that those 19 remaining outliers tend to be more marginal than

the online outliers (and recall from the earlier discussion that other DPAT/AEC /RD-

PAT outliers tend to be more marginal than the shared gross outliers).

FIGURE 4.18: Comparison to result in Figure 4.10-(b)

Plot (b) shows the locations of 7 global outliers out of the 13 online outliers. The

background shows the min/max values (green) across wafers. It is interesting to note

that the 7 global outliers are the most outlying dies (5 on one side and 2 on the other

side), if all dies from all wafers had simply been ranked using their measured test

values.

Given all wafers at once and asked to find 7 outliers, the 7 global outliers would

be the ideal answer. In practice, achieving this exact answer is hard because wafers

become available sequentially, and an outlier decision has to be made at each wafer

appearance (in an online way).

The 13 online outliers are contained in the 32 shared gross outliers which are con-

tained in the 61 shared outliers (i.e. the intersection in Figure 4.1). Hence, the set of the

online outliers would be the best with respect to temporal uncertainty.

For spatial uncertainty, the 13 online outliers are inside the intersection of DPAT,

AEC, RDPAT gross outlier sets, and hence, have no spatial uncertainty in that regard.

Next, the probability-based approach is applied to the under-screen example and

results are compared to Figure 4.13-(a). The probability-based approach finds 16 online
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outliers shown in Figure 4.19-(a) (with upper/lower limits (blue)). In comparison, the

DPAT model originally finds only 3.

FIGURE 4.19: Comparison to result in Figure 4.13-(a)

All 16 online outliers are also global outliers. Plot (b) shows their locations in the

min/max value (green) plot. It is interesting to note again that these 16 outliers were

the most outlying dies if all dies from all wafers had been ranked using their test val-

ues. Pictorially, except for the 1st outlier, the other 15 outliers deviate significantly

from the trend. Hence, even if the target is to screen 9 outliers in total, one would not

consider screening those 15 an unreasonable result.

The results above show that for the over-screen example (excessive yield loss), the

presented approach finds much fewer outliers by focusing on finding the truly gross

outliers. For the under-screen example, the approach finds more outliers by finding

outliers deviating significantly from the overall trend. Both are desired properties for

outlier screening.

Figure 4.19 suggests that a PPM target should be used as a guide rather as a strict

constraint. If there are many dies that deviate significantly from the trend, going over

the target might be more reasonable than trying to put an inlier/outlier cut between

two grossly outlying dies.
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4.8 Comprehensive experimental results

The proposed outlier approach is applied to the 756 tests from the sensor product.

The intersection of the two outlier sets found by DPAT and AEC models is used for

comparison. For simplicity, these are called the “I-outliers.”

Based on the discussion above, the results are separated into two categories: (1) The

first comprises tests where the number of I-outliers > 9 (based on the 10 PPM target).

Call this the over-screen category. (2) The second comprises the remaining tests where

the number of the I-outliers ≤ 9. Call this the under-screen category.

The symbol I is used to denote the set of I-outliers. Symbols O and G are used to

denote the sets of online outliers and global outliers, respectively (see Section 4.7.2).

Figure 4.20 shows the results of the 306 tests in the over-screen category. For this

category, the comparison focuses on the number of I-outliers (|I|), the number of online

outliers (|O|), and their intersection (|I ∩O|).

FIGURE 4.20: Result summary for over-screen cases

Observe that: (1) the number |O| is consistently smaller than |I|, indicating reduced

temporal uncertainty; (2) the intersection |I ∩O| is close to |O| for most cases. In fact,
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an I-coverage calculated as 100 ∗ |I∩O||O| results in an average value of 90.95% across the

tests (excluding tests having zero online outliers). This means that most of the online

outliers are also I-outliers, i.e. low spatial uncertainty.

Six examples (tests) are selected from Figure 4.20 for further illustration. Results

are shown in Figure 4.21. In each plot, the min/max measured values (green) on each

wafer are shown (similar to other plots shown before). Different types of outliers are

shown in different colors. Outliers common to both I-outliers and online outliers are

shown in red. Outliers unique to I-outliers are shown in light blue. Outliers unique to

online outliers are shown in purple.

Example (1) shows a case with 22 I-outliers and 7 online outliers. All the 7 online

outliers are also I-outliers and hence, the I-coverage is 100% (“I ∩O = O:7”). Observe

that the remaining 22 − 7 = 15 I-outliers are all more marginal than the 7 shared out-

liers. In this case, it can be said that the online outliers exhibit less temporal uncertainty,

zero spatial uncertainty, and make more intuitive sense.

Example (2) shows a case with zero online outliers. Even though there are 16 I-

outliers, pictorially they tend to be marginal outliers. In this case, it can also be seen

that having zero outliers makes more sense.

Examples (3) and (4) show two cases where the I-coverage is not 100%. In example

(3) |I| < |O|, and in example (4) |I| � |O|.

For example (3), notice that there are several online outliers right before the wafer

index 100. Those outliers are missed by both the DPAT and AEC models (not I-outliers).

Also, there are two online outliers above the trend line which are not I-outliers. More-

over, those 11 I-outliers not covered by the online outliers tend to be visually more

marginal.

For example (4), there are only 2 online outliers which are also the most outlying

dies. One of them is an I-outlier but the other is not. Hence, the DPAT and AEC models

capture 124 outliers but miss one of the two obvious ones.
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FIGURE 4.21: Interesting over-screen cases

Examples (3) and (4) show two cases where the online approach disagrees with the

DPAT and AEC models. Nevertheless, the online outliers seem to make more intuitive

sense than the outliers deemed by the DPAT and AEC models.

The 761 I-outliers in example (5) represent the largest number in Figure 4.20. Ex-

ample (5) is similar to example (4) where online outliers make better sense while DPAT

and AEC models over-screen many marginal outliers.

Example (6) shows the case where the number of online outliers is the largest. The

number of I-outliers is also large. The I-coverage = 100∗7286 = 83.72%. Notice that many
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I-outliers are more marginal than the online outliers. However, this case also shows

that even with the online approach, some marginal outliers still cannot be avoided.

Figure 4.22 shows the results of the remaining 450 tests in the under-screen cate-

gory. The comparison focuses on the number of I-outliers (|I|), the number of online

outliers (|O|), and the number of global outliers (|G|).

FIGURE 4.22: Result summary for under-screen cases

As illustrated in Figure 4.19 before, the online approach can find more outliers than

a PAT model in the under-screen situation. Hence, for the under-screen category, the

metric of interest is no longer the I-coverage. Instead, the focus is on the coverage on

the global outliers, G-coverage = 100∗ |G||O| . The average G-coverage across the 450 tests

is 97.06% (excluding tests with zero online outliers), showing that most of the online

outliers are also global outliers, a desirable property if global outliers are treated as the

ideal answer.

Four examples are selected from Figure 4.22 for illustration. They are shown in

Figure 4.23. All four examples have 100% G-coverage, so global outliers are not high-

lighted.
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Examples (1) and (2) show two cases where |I| > |O|. Pictorially, the I-outliers in

example (1) all appear to be marginal. The I-outliers in example (2) also appear to be

marginal, except for the one shared outlier which is also the most outlying die.

FIGURE 4.23: Interesting under-screen cases

Examples (3) and (4) then show two cases where |I| � |O| (but the additional

online outliers are reasonable). Example (3) is the case where the number of online

outliers, 39, is the largest while there are only 3 I-outliers. Upon visual inspection, one

can see that most of the online outliers are similar in their test values to the 3 shared

outliers. There are 2 online outliers which are slightly more inlying. However, they are

validated by being global outliers.

Example (4) depicts an instance where the DPAT and AEC models capture only

one die (which is also the most outlying die). This die appears in an early wafer. The

online approach captures 16 outliers, where pictorially the additional 15 online outliers

appear to also deviate from the trend.

Results presented above are further summarized in Table 4.2. The table includes
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three additional sets of results. The “MCU/Uni-v” shows results based on an auto-

motive micro-controller with univariate analysis (Uni-v). The micro-controller data

contains about 8K wafers. Hence, for finding N most similar wafers, let N ≤ 2K. Also

let b = 100 wafers due to each wafer having fewer dies.

The notation “Multi-v” denotes the multivariate analysis where the I-outliers stand

for the outliers shared by the Mah and LR methods. The probability-based online

approach is applied with the LR method where instead of using a DPAT model on the

“new measured values,” the online approach is applied. Each model is a 2D model

based on two correlated tests (> 0.9). No test is used in more than one model.

TABLE 4.2: Result summary on two automotive product lines

Product Cate- #tests, or |O| |I| Average Average
/Case gory #models ave max ave max G-Cov. I-cov.
Sensor over 306 8.65 86 45.91 761 60.57% 90.95%
/Uni-v under 450 3.60 39 3.51 9 97.06% 57.67%
MCU over 42 8.21 45 38.59 126 77.47% 81.74%

/Uni-v under 218 8.09 49 5.61 19 97.61% 37.99%
Sensor over 58 12.21 97 56.92 344 56.43% 88.76%

/Multi-v under 108 5.69 44 3.41 9 96.51% 49.50%
MCU over 5 12.6 58 39.0 83 60.49% 99.14%

/Multi-v under 55 10.42 35 4.25 19 92.44% 13.21%

Results in Table 4.2 are also divided into over-screen and under-screen categories.

For the over-screen category, observe that the average (ave) and the max (max) of the

|O| numbers across tests are consistently smaller than the average and max of the |I|

numbers. This shows that the online approach achieves reduced temporal uncertainty.

The I-coverage (I-cov) numbers are between 80% and 99%, indicating small spatial

uncertainty, though the I-cov results for the MCU/Uni-v are not as high as others,

showing more divergence in the outliers found by the online approach and the DPAT

and AEC models.

For the under-screen category, the G-coverage (G-cov) numbers are all above 92%,
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showing most of the online outliers are global outliers. If global outliers are treated as

the golden reference (see discussion in Sections 4.7.2 and 4.7.3 and examples (3) and

(4) in Figure 4.23 before), then the online approach is an effective way to obtain those

ideal answers.

As discussed earlier, the I-coverage for the under-screen category is not as mean-

ingful. On the other hand, notice that the G-coverage numbers for the over-screen

category are much lower than those for the under-screen category. This reveals that,

as the online approach finds more outliers, more of them cannot be validated as global

outliers. For online evaluation, this could be due to the lack of information contained

in the future wafers.

4.9 Summary

In this chapter, the potential issues with the existing distribution-based outlier meth-

ods were explored. These issues were highlighted in terms of two concepts: temporal

uncertainty and spatial uncertainty. It was then shown that these uncertainties can be

reduced if an outlier approach is designed to find only the gross outliers. Additionally,

a marginality test and a probability-based outlier measure are proposed to realize such

an approach. Their benefits are demonstrated based on experiments using two auto-

motive products. Note that in Section 4.8, online outliers were compared to I-outliers

shared by DPAT and AEC models. If the comparison was instead based on the shared

gross outliers (Section 4.4.5) from DPAT and AEC, the findings would be similar.

While the results from the proposed probability-based outlier method are very

promising, in the scope of research contribution it is just another outlier method. The

calculations required to implement it are quite expensive and it may be unlikely to

be adopted into manufacturing flows. Therefore, though the method has theoretical

and experimental backing, it may lack practical value. However, the discoveries about
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some core aspects of outlier analysis made throughout this work inspired further re-

search into the subject. The study in this chapter served as an important stepping

stone toward developing the universal outlier model evaluation framework presented

in Chapter 5.
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Chapter 5

Consistency in Wafer Based Outlier

Screening

5.1 Overview

Outlier screening is a popular approach for testing automotive products. In practice,

developing an outlier model can be subjective, making justification of the model chal-

lenging. A new concept called Consistency, which provides a data-driven objective way

to assess an outlier model, is proposed and described in this chapter. The development

of outlier models in view of this consistency concept is studied and experimental find-

ings are reported based on an automotive product line.

5.2 Introduction

Recall from Section 1.1.2 and Figure 1.2 that three components are considered in devel-

oping an outlier model. These components are the base set, the sample outlier scores,

and the threshold.

The decision for classifying a sample as an outlier involves subjectivities. First, an

outlier decision is made with respect to the samples in the base set. Altering this set
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may change an outlier to an inlier and vice versa. In practice, when outlier screening is

applied in wafer sort test, a common strategy is to let a base set include dies from the

same wafer. It is then understood that the screening is looking for wafer-based outliers,

in contrast to for example lot-based outliers. This is also the strategy considered in this

work.

The choice of outlier score calculation can also be subjective. Many methods have

been proposed for outlier score calculation. For example, Part Average Testing (PAT) is

popularly used for automotive product lines [37]. PAT can include Static PAT (SPAT),

Dynamic PAT (DPAT), Automotive Electronic Council DPAT (AEC), and Robust DPAT

(RDPAT) [38]. PAT methods determine outliers based on measured values of the sam-

ples (dies) in the base set. They can be called distribution-based methods.

Different outlier score calculation can produce different outlier ranks. Two ques-

tions might be asked in practice: (1) Which outlier analysis method is the best? (2) If

one method has been applied, what will be the next best method to apply? For ex-

ample, the amount of variance reduction is a good metric to show merits of an outlier

method [39][40][41]. If a univariate outlier screen has been applied, it is also shown that

multivariate outlier screen can capture unique (and failure-analysis-verifiable) outliers

[12][8].

There can be two basic strategies for determining the threshold. One strategy is

based on known fails such as burn-in [41][10], wafer sort fails [13], and customer re-

turns [8]. The other strategy is based on setting a yield reduction budget to be tolerated,

e.g. 10 PPM [68]. If known fails are to be used, there is an issue of knowing whether

or not the fails are sufficiently representative. If a yield budget is given, it can be chal-

lenging to foresee what level of yield reduction is optimal. The performance of an

outlier model can change as characteristics in the test data change over time, as was

demonstrated in Chapter 4, and hence, require model validation to adapt to the change

[44].
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The subjectivities in building an outlier model can make it challenging to justify

the outliers. In practice, one way to justify the outliers is through detailed analysis

verifying that some of the outliers are indeed defective parts. However, such analysis is

both expensive and time consuming. A lagging indicator is great for confirmation, but

deploying the screening method earlier is often desirable in order to protect the WIP

and enable the continuity of supply. Moreover, there is also the question of whether

defective parts are miss-classified as inliers. The practical strategy to approach this

question typically depends on monitoring the customer return rate.

In this chapter, a new concept is proposed to provide another statistical perspective

for justifying outliers. It is called consistency. Note that this consistency and the study

presented alongside it are purely statistical, without referencing to actual defects. The

consistency is based on the following assumption:

Outlier decisions on one wafer should be consistent with outlier decisions

on other similar wafers.

This assumption led to the development of a consistency check for outliers identified

by a model. The check further classifies outliers into consistent outliers and inconsis-

tent outliers. The goal of this work is therefore to understand what properties can be

stated for those consistent outliers.

The rest of this chapter is organized as follows. In Section 5.3, three outlier methods

are selected as examples, and are used to experimentally illustrate the inconsistency

among their outlier decisions. Section 5.4 explains the proposed consistency check in

detail. The main point to illustrate there is that ensuring consistency among outlier de-

cisions across wafers using one method leads to improved consistency among outlier

decisions across methods. Section 5.5 then focuses the discussion on determining the

sets of similar wafers. A clustering based method is presented for detecting systematic
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shifts in the wafer test data. The impact of applying this clustering method with the

consistency check is discussed. Lastly, Section 5.6 summarizes the chapter.

5.3 Potential inconsistency among methods

As mentioned in the previous section, different outlier methods calculate outlier scores

differently, resulting in different outlier ranks. Consequently, if a threshold is set to

screen top j outliers, their outlier sets can be different.

To illustrate this inconsistency across methods, three outlier methods are selected as

examples. The first method is a variation of the distribution-based method SPAT. The

second is the distribution-based method DPAT. The third is a variation of the hybrid

distribution and location-based method called location averaging (LA). It is important

to note that the purpose of this study is not trying to assess which method is better.

Rather, the methods are simply used as examples to illustrate the inconsistency.

Suppose a wafer contains n dies whose measured values from a single test are

{m1, . . . ,mn}. Let their mean value be denoted as µ. In the particular SPAT calcu-

lation considered, the outlier scores are simply {s1 = |m1 − µ|, . . . , sn = |mn − µ|}. A

threshold Ts is set such that if si > Ts, mi is classified as an outlier.

Let the standard deviation of the measured values be denoted as σ. In the DPAT

calculation, the outlier scores are {d1 = s1
σ , . . . , dn = sn

σ }. A threshold Td is set such

that if di > Td, mi is classified as an outlier.

For calculating LA-like outlier scores, a window size is chosen. For example, a 9×9

window would include 81 dies. Then, another parameter k is set. For a given die with

value mi, first the 80 dies surrounding the die are identified. The number of dies may

be smaller if the die resides near a wafer or if there are missing values. Among them,

the k dies with closest values to mi are identified. For example, k = 40. The mean of
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these 40 values is calculated as µi. The outlier score is then calculated as the residual

li = |mi − µi|. A threshold Tl is set such that if li > Tl, mi is classified as an outlier.

The SPAT and DPAT methods are described based on the assumption that the dis-

tribution of {m1, . . . ,mn} is somewhat symmetric. If it is asymmetric, adjustment can

be made to the outlier scores by normalizing the scores on the left of the distribution

with distance of the x quantile point px to the mean of the distribution, and on the right

of the distribution with the distance of the y quantile point py to the mean of the distri-

bution. For example, one can use x = 1% and y = 99%, which are similar to those used

in an AEC DPAT implementation [38]. On the other hand, LA scores are inherently

immune to the asymmetric issue because the LA residual is a rank statistics based on

non-parametric modeling of a distribution [40][69].

5.3.1 Two test examples

The wafer test data used for the study in this chapter came from a recent automotive

SoC product line. The data comprises roughly 5000 wafers and 3 million parts. Because

the focus of the study is to understand the consistency issue, it does not consider appli-

cation of an outlier model in an online fashion as that studied in Chapter 4. Instead, all

wafers are used in the study collectively. In other words, this work does not consider

temporal uncertainty [68], i.e. the discrepancy between the performance of an outlier

model on initial qualification lots versus the performance of the model on future lots.

To illustrate inconsistency among methods, the experiment is conducted as follows.

An outlier method calculates an outlier score for each of the 3M dies. Thresholds are

chosen to screen out the top j dies, for j = 300, 30, and 3, which correspond to 100

PPM, 10 PPM, and 1 PPM yield reduction, respectively. Figure 5.1 and Figure 5.2 show

the results based on two test examples.

Observe in Figure 5.1-(c) that for j = 3, the three methods agree on which three

dies should be screened. However, when j increases to 30 in (b), they agree on 20 out
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FIGURE 5.1: Test example 1

FIGURE 5.2: Test example 2

of the top 30 outliers, about 66%. When j = 300 in (a), the agreement drops to 39, or

13%.

Figure 5.2 shows another example where the trend reverses. When j = 3, no out-

lier is shared by all the three methods. When j = 30, 8 outliers are shared by the

three methods, about 27%. When j = 300, 73.3%, or 220 outliers are shared. In both

examples, the three methods do not always agree on which top j outliers to screen,

depending on the setting of j.

To illustrate what test data characteristics might contribute to the opposite trends,

Figure 5.3 shows two plots for test example 1, each plotting the minimum and maxi-

mum test values (green) on each wafer across all chronologically ordered wafers. The

two plots differ on their vertical scale.

The first plot shows that there are 7 dies whose test values are well above the rest

(circled red). Those 7 dies are so outlying that they are easy to be identified as outliers.

In Figure 5.1-(c), when the three methods were asked to find the top 3 outliers, all of
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FIGURE 5.3: Min/Max value plot for test example 1

them found the highest two dies. The values of the next three top dies are close to each

other. While they are visually indifferentiable in the plot with the particular vertical

scale, the three methods identify the same die as the 3rd outlier, resulting in Figure 5.1-

(c).

The second plot is with a different vertical scale so that next batch of outlying dies

can be visualized more easily. Figure 5.1-(b) shows that there are 20 shared outliers.

Excluding the top 7 outliers, the second plot shows where the remaining 13 shared

outliers reside. Most of them are visually easy to accept as outliers while a few are not.

Figure 5.3 reveals that if a die is “clearly” outlying, it should be easy to identify

and hence, it can be found by all methods, resulting in the sharing. The converse is not

true. A shared outlier can still be “marginal” - The sharing can happen, depending on

the statistics in the data and how different methods utilize the statistics.

For test example 2, Figure 5.4 shows a similar plot. Unlike test example 1, in this

plot, there are no clearly outlying dies. This characteristic difference hints a reason for
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FIGURE 5.4: Min/Max value plot for test example 2

the opposite trends observed in Figure 5.1 and Figure 5.2.

Conceptually, if two dies on two different wafers have test valuesm1 andm2 where

m1 ≈ m2, one method can calculate the two outlier scores such that m1 is treated as

more outlying than m2 while another method may decide that m2 is more outlying

than m1. This is because different score calculations utilize different statistics in the

data. For example, the SPAT calculation utilizes the mean. DPAT utilizes the mean and

standard deviation. LA utilizes the mean of the closest test values in a spatial window.

Therefore, if the difference between m1 and m2 is not large enough to offset the

difference in the score calculations, their ordering in the outlier rank by one method

can be reversed by another method, leading to different outlier classification by the

two methods.

The discussion above indicates that “very gross” outliers tend to be shared by dif-

ferent methods. Beyond those, it is difficult to say one way or the other. All that is

known is that one method can disagree with another on their outlier sets, even for a

small PPM reduction level.

5.4 Consistency check

Suppose an outlier screening methodology is constrained to use only one method.

Could we know what is an optimal threshold, e.g. an optimal j value, such that the
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top j outliers would likely be agreed by other outlier methods (without running those

methods)? This motivates the consistency check discussed below.

Figure 5.5 illustrates the setting for consistency check. Suppose there are N dies

across W wafers w1, . . . , wW . Given a method, a die with test value mi is converted

into an outlier score si based on some statistics on the wafer the die is located on. The

outlier scores across all dies are comparable and hence, a global rank can be obtained.

A threshold is then set on this global rank to identify outliers. This is how, conceptually,

outlier methods operate and the experiments in Section 5.3 were performed.

FIGURE 5.5: Illustration of the setting for consistency

In the new setting, each test value mi is converted into a vector ~vi of W scores

(si1 , . . . , siW ). Each sih is calculated based on the statistics on waferwh. In other words,

the die mi is assumed to be on the wafer wh for calculating sih .

Given two outlier score vectors ~v = (v1, . . . , vW ) and ~u = (u1, . . . , uW ), ~v > ~u is only

true if ∀i, vi > ui, (or ≥). Then, given a threshold, suppose a die with ~vo is classified

as an outlier and a die with ~vi is classified as an inlier. This classification is said to be

consistent if ~vo > ~vi.

A given threshold is said to be consistent if ~vo > ~vi holds true ∀~vo and ∀~vi. In this

case, the outliers themselves are said to be consistent outliers, and the outlier decision
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is consistent.

Figure 5.5 illustrates that given N vectors, ~v1, . . . , ~vN , for N dies, there no longer

exists a single global rank across all dies. On this matrix, the objective is therefore to

search for a minimum threshold such that the threshold is consistent.

5.4.1 Finding minimum consistent threshold

Earlier it was shown, based on two test examples, that different methods can disagree

on their outlier sets for a given yield reduction level. Figure 5.6 includes more results

to illustrate the same point. The figure contains 250 tests. For each test, the percentage

of shared outliers among the three methods is shown for two cases, the top 1 PPM

(3 dies) and the top 100 PPM (300 dies). For example, for 1 PPM, if there is 1 outlier

shared, then the percentage shown is 33.3%.

FIGURE 5.6: % of shared outliers by all three methods

Along the x-axis, the tests are ordered by their percentages from the 100 PPM case.

The smallest percentage is 4.3% and the largest is 95%. The results are shown as a blue
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region. For 1 PPM, there are four possible percentages, 0%, 33.3%, 66.6%, and 100%.

The results are shown as red stars.

For 100 PPM, the inconsistency exists in every test, i.e. none has 100% sharing. The

percentages for the 1 PPM case can be divided into two categories: those above the

blue curve representing a trend similar to Figure 5.1 and those below the blue curve

representing the reverse trend similar to Figure 5.2. The two cases contain 115 tests

above the curve and 135 tests below.

FIGURE 5.7: Results with minimum consistent threshold - DPAT

Next, Figure 5.7 shows the number of outliers identified by the minimum consis-

tent threshold for each test based on the DPAT method. The tests are presented in the

same order as in Figure 5.6. This number is always smaller than the number of shared

outliers for the 100 PPM case shown in Figure 5.6.

Suppose that for a test t, the number of consistent outliers shown in Figure 5.7 is

c. Then, for every test, these c consistent outliers from DPAT are exactly the same top

c outliers classified by SPAT and LA. In other words, every outlier of the c consistent

outliers from DPAT is agreed by the SPAT and LA methods as one of their respective

top c outliers.
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LA

If LA was used instead of DPAT in the experiment associated with Figure 5.7, the sets

of outliers would be exactly the same as DPAT results for 243 out of the 250 tests.

The numbers of consistent outliers found by each method for the remaining 7 tests is

reported in table 5.1 below.

TABLE 5.1: DPAT and LA disagree on consistent outliers

Test index 149 151 174 175 185 218 220
# DPAT-consistent outliers 7 0 3 0 0 11 10

# LA-consistent outliers 9 10 5 1 8 12 24

Recall that every DPAT-consistent outlier is LA-consistent outlier. Hence, for those

7 tests, LA found additional consistent outliers.

FIGURE 5.8: Illustration of test index 151 result

Take test index 151 as an example. Figure 5.8 first shows where the 10 LA-consistent

outliers locate in the LA space where min/max LA scores are shown for each wafer.
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Then, the second plot is shown in the DPAT space, where the top 11 DPAT outliers

are inconsistent because of one outlier highlighted in red. If this outlier was removed,

the remaining 10 would become DPAT-consistent by themselves. The underlying rea-

son behind this is that DPAT treats outliers on the two sides of the distribution together

while LA treats them separately, resulting in LA finding additional consistent outliers.

The seven tests show that there can be aspects of difference between two methods

which are not resolved by the consistency check. Nevertheless, for most tests, consis-

tency check ensures that outliers found by DPAT and LA are mutually consistent.

SPAT

Figure 5.9 shows the number of SPAT-consistent outliers. SPAT agrees with DPAT on

consistent outliers for 121 tests. For the remaining 129 tests, there are more SPAT-

consistent outliers.

Let Cd, Cl, Cs be the sets of consistent outliers from DPAT, LA, and SPAT on a test,

respectively. It is important to note that in the results for the 250 tests under consider-

ation, Cd ⊆ Cl ⊆ Cs is always true.

In Figure 5.9, there are 33 tests with more than 400 SPAT-consistent outliers. For 32

of them, DPAT has zero consistent outliers. These 32 tests happen to be the same class

of opens tests with similar behavior.

Noise band

Figure 5.10 uses one of the 32 tests to explain what happens. For a test value mi,

recall from Figure 5.5 that consistency check calculates a vector ~vi = (si1 , . . . , siW ).

Without loss of generality, assume si1 is the original outlier score si. Let smin =

min{si2 , . . . , siW }. A noise band for the die is defined as: Ni = si − smin.

For a given threshold T , when mi is classified as an outlier, it means that si > T . In

consistency check, if (si −Ni) ≤ T then si becomes inconsistent. In other words, for a
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FIGURE 5.9: # of SPAT-consistent outliers (vs DPAT)

threshold to be consistent, every outlier must satisfy the property that its outlier score

minus its noise band is still greater than T .

Figure 5.10 plots one hypothetical threshold in the SPAT space and another in the

DPAT space, with noise bands shown only for the hypothetical outliers. Notice that

SPAT noise bands are much smaller and hardly observable in the plot. In contrast,

DPAT noise bands are much larger. Consequently, it is much easier for SPAT to find a

vertical “gap” in the space where none of the noise bands would touch the threshold.

On the other hand, DPAT could not find a threshold without any noise band touching

it, leading to zero consistent outliers.

The source of a noise band is the wafer-to-wafer variation in the statistics used to

calculate the outlier scores. In SPAT, this statistic is the mean of the distribution. In

DPAT, it is the mean divided by the standard deviation. Hence, the DPAT calculation is

subject to more noise.

The fact we haveCd ⊆ Cl ⊆ Cs indicates that DPAT calculation has more noise than

LA calculation which in turn has more noise than SPAT. This result suggests that if the
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FIGURE 5.10: SPAT noise bands vs. DPAT noise bands

intention was to choose a method such that the consistent outliers from the method

are also to be consistent from the perspectives of other methods, one would choose the

method with the largest noise.

5.5 Detecting systematic shift

In Figure 5.7, DPAT finds zero consistent outliers on 173 tests. Because consistency

check depends on wafer-to-wafer statistical variations, it is possible that capturing zero

consistent outliers is due to systematic shifts in the statistics. To address this issue, a

clustering based method is developed for detecting systematic shifts.

Given a set of wafers, the first step is to project them into a space defined by some

selected features of statistics, for example mean and standard deviation. Clustering is

then applied in this space.

It is well-known that for unsupervised learning such as clustering, model selection

is one of the biggest issues. For example, with the K-means algorithm, determining the
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k is a key consideration. The model selection in this work adopts the idea of empirical

risk minimization (ERM) [70].

Given a set of wafers, begin by dividing them into two sets S1, S2. A clustering

modelM1 is built for S1 and a clustering modelM2 is built for S2 by applying the same

clustering algorithm. A mapping is used to map every wafer in S2 to a wafer in S1. For

example, this mapping is based on the nearest neighbor. With this mapping, wafers in

S2 are re-clustered using the model M1. The result is a new model M ′2. A model stability

is calculated as the percentage of wafers that M2 and M ′2 agree on.

To avoid statistical bias in stability calculation, a Monte Carlo process is involved

to randomly sample S1, S2 many times and calculate an average model stability (AMS).

The AMS is then used to select the model. To obtain a clean partitioning on wafers, the

desired resulting model will have a very high AMS, e.g. >99.9%.

Computing the AMS can be computationally expensive. Attention is needed to op-

timize the process. For example, the KD-tree was used to find the nearest neighbors

[71] which obtained orders-of-magnitude speedup. Since the focus here is to assess the

impact of systematic shifts to consistency check, details of the clustering implementa-

tion are omitted.

Figure 5.11 shows two examples. On the left two plots, every dot represents a wafer.

In the first example, two clusters are found, colored red and green. The AMS measure

is 99.93% for this clustering model. When the two clusters are seen in the wafer-to-

wafer temporal view on the right (shown with the same cluster colors) where each

wafer’s [µ− σ, µ+ σ] range is shown in blue, systematic shifts can clearly be observed,

matching the clustering result.

The second example has five clusters. The AMS measure is 99.97% for this model.

The temporal view shows that four clusters are from the early wafers. After about 550

wafers, all remaining wafers belong to the same cluster (yellow).
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FIGURE 5.11: Two examples to illustrate clustering results

5.5.1 Impact of clustering on consistency check

After applying the clustering, DPAT finds more consistent outliers for 68 tests while

finding the same number of consistent outliers for the other 182 tests. Out of these

68 test, 54 are among the 173 tests where DPAT found zero consistent outliers before

(Figure 5.7). Hence, even after the clustering, 119 tests still have zero DPAT-consistent

outlier.

FIGURE 5.12: Impact of clustering on consistency check
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Figure 5.12 shows the results on the 68 tests. The top portion shows the numbers of

outliers before clustering in blue and the numbers of outliers after clustering in pink.

The bar graph in the bottom portion shows the resulting number of clusters for each

test. The test shown with 83 consistent outliers is the 5-cluster example shown in Fig-

ure 5.11 earlier. This is also the test with the largest number of consistent outliers

among the 68 tests. This test had zero DPAT-consistent outliers before.

5.5.2 Finding no DPAT-consistent outlier

Figure 5.13 shows an example from the 119 tests with no DPAT-consistent outliers after

clustering. The left plot shows one cluster and the right plot shows there is no clear

shift of the mean and standard deviation in the temporal view. In other words, the

clustering method did not detect a systematic shift in the data and this finding can

be visually verified. In such a case, the result with clustering is identical to the result

without clustering.

FIGURE 5.13: An example of no DPAT-consistent outlier

The right plot also shows the min/max values as purple points. From the discus-

sion in Section 5.4.1, finding a consistent threshold is akin to finding a large enough

vertical gap in such a plot, where the length of the gap is at least as long as the shortest

distance between an inlier and an outlier. On the right plot, it can be observed that the

dies are densely distributed and it is hard to obtain such a vertical gap. This visualiza-

tion may help to intuitively understand why DPAT finds no consistent outlier.
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It is important to note that the minimum consistent threshold can be used as a lower

bound on the threshold. This lower bound enables the assertion that some tests have

no outliers with a particular method. Such a property can be very desirable in practice,

allowing the analysis to identify situations where there is no outlier.

5.6 Summary

In this chapter, a new perspective called consistency was proposed for justifying out-

liers. The consistency check enables an outlier method to find a minimum threshold

using a large number of wafers to obtain consistent outliers. When a method with large

noise in the outlier score calculation is used with the consistency check, the resulting

consistent outliers are likely to be agreeable by other methods as their respective con-

sistent outliers.

A clustering method was proposed to detect systematic shifts which can alter the

results of the consistency check. While in the experiments the shifts are with respect to

the mean and standard deviation, other features, such as wafer spatial patterns, can be

used to detect different types of shifts.

This study was carried out by analyzing all wafers together (including the clus-

tering experiments). In practice, wafers come one by one. Hence, how to implement

the consistency check and the clustering based systematic shift detection in an online

fashion is the next interesting question.

While the objective of this work is not to compare different methods, the results

seem to provide another new perspective to say that LA is better, as suggested in earlier

works [41][69]. On one hand, LA finds much fewer consistent outliers than SPAT. On

the other hand, LA finds a few additional outliers over DPAT. In this sense, consistency

could serve a purpose as a theoretical tool to compare different methods.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

The work in this thesis explored the effect of subjectivity on data analytics in Test. In

Chapter 1, it was shown that many of the applications of data analytics in Test can

be reduced to correlation analysis or outlier analysis. Chapters 2 and 3 focused on

correlation analysis, while Chapters 4 and 5 focused on outlier analysis.

The added value of data analytics in Test was clearly demonstrated using a real

production yield issue in Chapter 2. A novel methodology using advanced statisti-

cal correlation methods was applied to optimize production yield for an automotive

product line, and the result was confirmed by a silicon split-lot experiment. The yield

optimization was successful despite previous failed efforts carried out by the test, de-

sign, and yield analysis teams. This finding supports the claim that effectiveness of

yield optimization efforts through data analytics is dependent on the experience of the

analyst.

An important conclusion to draw is that the data analytics process is not automatic

even if efficient state-of-the-art analytic tools are available. The analytics steps where

subjectivity was recognized to originate in correlation analysis were data preparation

and meaningfulness determination (in the process in Figure 3.1). Chapter 3 proposed
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an approach for learning the process of correlation analysis by using a process mining

(PM) model. The effectiveness of the approach was demonstrated by applying the PM

model learned from resolving the yield issue in one product line to a yield issue in

another automotive product line.

Chapter 4 explored the potential issues with distribution-based outlier methods

and introduced the concepts of temporal uncertainty and spatial uncertainty as mea-

sures of those issues. A marginality test was proposed to differentiate between marginal

outliers and gross outliers, and it was shown that focusing only on gross outliers lead

to a reduction in both uncertainties. Additionally, a new probability-based outlier

method was proposed and the findings were demonstrated using data from two auto-

motive products.

Lastly, Chapter 5 proposed a methodology called consistency, which uses wafer-

to-wafer noise to justify outliers. The methodology is equipped with a check that can

evaluate outlier thresholds across a large number of wafers to obtain consistent out-

liers. The idea behind consistent outliers was that true outliers should still be seen as

outliers when projected onto other wafers. Experiments corroborating the methodol-

ogy were conducted on an automotive SoC product. One interesting finding was that

even though identifying outlier sets that were agreed upon by different outlier meth-

ods was not a direct goal of the methodology, a containment property across methods

held true for the consistent outliers in the experiments. This finding suggests that con-

sistency inadvertently reduces spatial uncertainty, which is a desirable property for an

outlier analysis methodology.

6.1.1 Subjectivity Reduction in Correlation Analysis

Integration of the PM based approach proposed in Chapter 3 into a semiconductor pro-

duction process would directly target and reduce the subjectivity in yield optimization.
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A large portion of the subjectivity in correlation analysis stems from the data prepara-

tion step. The proposed approach could be used to develop a tool that is able to learn

and reproduce the data preparation steps conducted by multiple analysts. A less expe-

rienced analyst could then apply correlation analysis as if he or she had the previous

analysis experience that was learned by the tool.

The work of utilizing PM for correlation analysis is a first step towards autonomous

analytics. The main idea is to learn from past usage experience and apply what is

learned to future analytics problems. The biggest challenge with enabling this type

of approach is the careful design and definition of the process steps. A set of process

steps must be designed to be modular and expandable. If the set was immutable,

subjectivity would exist with respect to the set itself. The work in Chapter 3 focused

specifically on yield optimization where, although already difficult, designing such a

set was relatively simple. This work serves as a proof of concept that learning from

experience in correlation analysis is viable and is effective at reducing subjectivity.

An important property of the proposed approach is that it does not invalidate any

prior work done in this field. On the contrary, a tool based on this approach would

enable for easier integration of novel solutions into existing yield optimization flows.

It makes sense for an analyst to prefer using methods and data preparation steps that

led to successes in previous analyses. When a novel solution is proposed by another

analyst, it may lack some of the steps that contributed to prior analyses being success-

ful. A tool implementing the proposed approach would only need to be updated with

the process steps relevant to the novel solution. Then, the tool could produce a gener-

alized analytics path containing the various known good steps combined with the new

process steps.
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6.1.2 Subjectivity Reduction in Outlier Analysis

Recall that the main sources of subjectivity in outlier analysis were identified to be

due to the choice of the base set, choice of the outlier scoring method, and threshold

selection. The proposed consistency check based methodology targets the subjectiv-

ity due to threshold selection. By utilizing a large number of wafers, consistency can

objectively search for thresholds that separate the true outliers from inliers.

The experiments in Chapter 5 showed that when a method with large noise in the

outlier score calculation is used with the consistency check, the resulting consistent

outliers are likely to be agreeable by other methods as their respective consistent out-

liers. In that sense, the subjectivity from outlier method selection can also be reduced

through applying consistency. Being aware of what type of noise each method is prone

to be affected by may allow an analyst to select methods that are more likely to consis-

tently screen outliers at the desired yield reduction budget.

Consistency effectively removes most of the subjectivity due to threshold selection

and some of the subjectivity due to the choice of outlier method. However, the sub-

jectivity due to base set selection remain unaffected. Although some subjectivity still

remains, the present reduction in subjectivity is already beneficial, as shown through

real data examples in Chapter 5. This result confirms that subjectivity reduction is

the correct objective and that further work in this direction is likely to further benefit

outlier analysis.

Because consistency is designed to be applicable with any method, prior and future

works introducing novel outlier methods are still valuable. The availability of consis-

tency henceforth allows future development to focus on aspects other than the subjec-

tivity in threshold selection. As such, it may be easier for future methods to further

improve the robustness of outlier analysis by explicitly considering the subjectivity of

base set selection.
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One very significant way in which consistency enables robust outlier analysis is by

making it possible for any outlier method to reach the conclusion that no outliers exist

in the data. This distinction is a key contribution because consistency can be integrated

into any outlier method, thereby removing the subjectivity of threshold selection from

any method. Generally for most methods, outlier scores have a direct mapping to the

outlier rankings, leaving the decision for where to draw the cutoff to the analyst. Con-

sistency entirely eliminates that decision by using a global data perspective to evaluate

the threshold.

6.2 Future Research Directions

The work described in this dissertation explored the sources of subjectivity in correla-

tion analysis and outlier analysis. The disadvantages of the subjectivities were demon-

strated and solutions were proposed to reduce some of those subjectivities. Since the

need for robust data analytics was shown and many problems still remain unsolved,

a number of promising future research directions exist that may lead to significant ad-

vances in Test.

The work in Chapter 3 showed how a PM algorithm can be used to learn the pro-

cess of correlation analysis for yield optimization. As mentioned before in Section 3.8,

one limitation of the current PM approach is that cross-step dependency was not con-

sidered. Special consideration was taken in designing the process steps to avoid such

a dependency. In future work, the PM algorithm may need to be enhanced to explic-

itly take cross-step dependency into account. Another drawback of the proposed PM

approach is that it does not allow loops in the process. It is conceivable that some ana-

lytics processes will contain loops, and accounting for those will substantially increase

the complexity of the algorithm.
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Additionally, the applicability of a PM approach to other types of data analytics

applications is not guaranteed. The solution with respect to yield optimization was

mainly focused on the dataset construction step in the analytics search process pictured

in Figure 3.1. The meaningfulness determination step may require further research to

become compatible with a PM approach.

The biggest contribution to outlier analysis presented in this dissertation is the

consistency concept from Chapter 5. However, that study was done by analyzing all

wafers together, where a true global view of the data was available. In practice, future

wafers would not be known. Modification to the consistency check to enable such a

practical scenario is an important future work. Another modification that can be made

to consistency would be to change the clustering method used for removal of system-

atic variation. Other features besides the mean and standard deviation can be used to

detect clustering, and the clustering would also be affected by the modification made

for the consistency check to be applicable in an online fashion.

An important consideration for any outlier model would be uncovering the phys-

ical meaning behind a defect model. With the consistency check, it is possible for a

defective part to be categorized as an inconsistent outlier. The consistency check is

not proposed to ensure capturing all defects. Rather, it is a way to differentiate statis-

tically easy-to-justify ones (consistent outliers) from hard-to-justify ones (inconsistent

outliers). Correlating them in terms of a defect model is an important future work.

6.2.1 Learning the Process of Outlier Analysis

One obvious future work would be to set out to learn the process of outlier analysis.

Combining the insights gathered from developing a PM approach for yield optimiza-

tion and the consistency check sounds like the logical next step. However, yield op-

timization was selected as the flagship analytics application for PM for a reason. The
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scope of the yield optimization problem is less complex and more controllable than the

scope of many outlier analysis applications.

Though the result for yield optimization is encouraging, generalizing the approach

to an outlier analysis application such as customer return analysis will require en-

hancement of the current PM design. As mentioned before in Section 3.8, there is a

trade-off between the objective to simplify the PM algorithm and the objective to allow

flexibility in designing the process steps. The capability of a PM model is limited by

the set of process steps. Devising the modular process steps required for a functioning

PM implementation will require careful planning.

The proposed consistency check would play a key role in learning the process of

outlier analysis. As it was stated earlier, the main steps of the analytics process to be

learned are dataset preparation and meaningfulness determination. In a sense, consis-

tency could be directly used as the meaningfulness determination component of out-

lier analysis. This approach would simplify the implementation of the PM algorithm.

Generalization of the PM approach to outlier analysis is an interesting future work that

will serve as another stepping stone towards autonomous analytics.

6.2.2 Applicability of Outlier Methods

Though consistency is an effective concept for assessing outlier models, it may not be

sufficient on its own. Recall that the high-level idea behind consistency was to make

outlier analysis immune to noise introduced from wafer-to-wafer variations. However,

the information contained in wafer-to-wafer noise may not contain information about

the shape of the distribution on each wafer. In other words, even if all wafers have

similar distributions, that distribution may violate some underlying assumptions of

outlier methods.

For example, the DPAT method is intended to be applied on normal distributions.
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For applying DPAT, in addition to checking consistency across wafers, it may be desir-

able to check the normality of the distributions. Such a check would be used to ensure

that application of the outlier method is justifiable.

The concepts of consistency and justifiability could be used together to define a

notion of applicability for outlier models. Some initial work into this notion has already

been done, and any interested reader is advised to please refer to a paper titled "Some

Considerations on Choosing An Outlier Method for Automotive Product Lines" that

was submitted to the International Test Conference 2017. The work in that submission

is an example of how future works can expand on the work in this dissertation in

pursuit of robust data analytics.

134



Bibliography

[1] L.-C. Wang, “Experience of Data Analytics in EDA and Test - Principles, Promises,

and Challenges”, IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. PP, no. 99, 2016.

[2] W. B. Nelson, Accelerated Testing: Statistical Models, Test Plans, and Data Analysis, 1

edition. Wiley-Interscience, 2004.

[3] K. M. Butler, A. Nahar, and W. R. Daasch, “What We Know After Twelve Years

Developing and Deploying Test Data Analytics Solutions”, ITC, 2016.

[4] K. Cios, W. Pedrycz, R. Swiniarski, and L. Kurgan, Data Mining - A Knowledge

Discovery Approach. Springer, 2007.

[5] A. Wong, “A statistical parametric and probe yield analysis methodology”, De-

fect and Fault Tolerance in VLSI Systems, pp. 131–139, 1996.

[6] M. Sharma, C. Schuermyer, and B. Benware, “Determination of Dominant- Yield-

Loss Mechanism with Volume Diagnosis”, IEEE Design & Test of Computers, vol.

27, no. 3, pp. 54–61, 2010.

[7] D. Drmanac, L. C. Wang, and M. Laisne, “Wafer probe test cost reduction of an

RF/A device by automatic testset minimization - A case study”, International Test

Conference, 10 pages, 2011.

[8] N. Sumikawa, J. Tikkanen, L. C. Wang, L. Winemberg, and M. S. Abadir, “Screen-

ing Customer Returns with Multivariate Test Analysis”, Proceedings - Interna-

tional Test Conference, pp. 1–10, 2012.

135



BIBLIOGRAPHY

[9] N. Sumikawa, D. Drmanac, L. C. Wang, L. Winemberg, and M. S. Abadir, “Im-

portant test selection for screening potential customer returns”, VLSI-DAT 2011,

pp. 171–174, 2011.

[10] A. Nahar, R. Daasch, and S. Subramaniam, “Burn-in reduction using principal

component analysis”, IEEE International Test Conference, pp. 146–155, 2005.

[11] N. Sumikawa, L.-C. Wang, and M. S. Abadir, “An experiment of burn-in time

reduction based on parametric test analysis”, IEEE International Test Conference,

2012.

[12] P. M. O’Neill, “Production Multivariate Outlier Detection Using Principal Com-

ponents”, IEEE International Test Conference, 2008.

[13] A. Nahar, K. M. Butler, J. M. C. Jr, and C. Weinberger, “Statistical Outlier Method

Applications”, D3T workshop at ITC, 2009.

[14] N. Sumikawa, L. C. Wang, and M. S. Abadir, “A pattern mining framework for

inter-wafer abnormality analysis”, International Test Conference, 10 pages, 2013.

[15] C. K. Hsu, F. Lin, K. T. Cheng, W. Zhang, X. Li, J. M. Carulli, and K. M. Butler,

“Test data analytics - Exploring spatial and test-item correlations in production

test data”, International Test Conference, pp. 1–10, 2013.

[16] J. Tikkanen, N. Sumikawa, L. C. Wang, and M. S. Abadir, “Multivariate outlier

modeling for capturing customer returns - How simple it can be”, IEEE Interna-

tional On-Line Testing Symposium, pp. 164–169, 2014.

[17] W. R. Daasch, C. G. Shirley, and A. Nahar, “Statistics in semiconductor test: Go-

ing beyond yield”, IEEE Design and Test of Computers, vol. 26, no. 5, pp. 64–73,

2009.

136



BIBLIOGRAPHY

[18] C.-F. Chien, W.-C. Wang, and J.-C. Cheng, “Data mining for yield enhancement

in semiconductor manufacturing and an empirical study”, Expert Systems with

Applications, vol. 33, no. 1, pp. 192–198, 2007.

[19] W. C. Tam, O. Poku, and R. D. Blanton, “Systematic defect identification through

layout snippet clustering”, International Test Conference, 2010.

[20] S. learn developers, Density Estimation. [Online]. Available: http://scikit-

learn.org/stable/modules/density.html (visited on 04/08/2017).

[21] M. P. L. Ooi, Z. A. Kassim, and S. N. Demidenko, “Shortening burn-in test: Ap-

plication of HVST and weibull statistical analysis”, IEEE Transactions on Instru-

mentation and Measurement, vol. 56, no. 3, pp. 990–999, 2007.

[22] D. M. Hawkins, Identification of Outliers, 1st ed. Springer Netherlands, 1980.

[23] C. C. Aggarwal, Outlier Analysis, 1st ed. Springer-Verlag New York, 2013.

[24] J. Tikkanen, N. Sumikawa, L. C. Wang, L. Winemberg, and M. S. Abadir, “Sta-

tistical outlier screening for latent defects”, IEEE International Reliability Physics

Symposium, pp. 5–8, 2013.

[25] N. Sumikawa, D. Drmanac, L. C. Wang, L. Winemberg, and M. S. Abadir, “Un-

derstanding customer returns from a test perspective”, IEEE VLSI Test Sympo-

sium, pp. 2–7, 2011.

[26] H.-M. S. Chang, K.-T. T. Cheng, W. Zhang, X. Li, and K. M. Butler, “Test cost

reduction through performance prediction using virtual probe”, International Test

Conference, pp. 1–9, 2011.

[27] K. M. Butler, S. Subramaniam, A. Nahar, J. M. C. Jr., T. J. Anderson, and W. R.

Daasch, “Successful Development And Implementation Of Statistical Outlier Tech-

niques On 90nm And 65nm Process Driver Devices”, IEEE IRPS, pp. 552–559,

2006.

137

http://scikit-learn.org/stable/modules/density.html
http://scikit-learn.org/stable/modules/density.html


BIBLIOGRAPHY

[28] A. Ahmadi, H.-G. Stratigopoulos, K. Huang, A. Nahar, B. Orr, M. Pas, J. M.

Carulli, and Y. Makris, “Yield Forecasting Across Semiconductor Fabrication Plants

and Design Generations”, IEEE Transactions on Computer-Aided Design of Inte-

grated Circuits and Systems, vol. PP, no. 99, pp. 1–1, 2017.

[29] T. Ishida, I. Nitta, K. Banno, and Y. Kanazawa, “A volume diagnosis method for

identifying systematic faults in lower-yield wafer occurring during mass pro-

duction”, Asia and South Pacific Design Automation Conference, ASP-DAC, vol. Di,

pp. 670–675, 2014.

[30] C. Knepfler, D. Lammers, and J. O. Nan, “Data analytics: Finding what matters”,

Nanochip Fab Solutions, no. 2, 2014.

[31] S. J. Meyer, “Using Big Data in Manufacturing at Intel’s Smart Factories”, White

Paper, no. April, 2016.

[32] Oracle, “Improving Manufacturing Performance with Big Data Architect’s Guide

and Reference Architecture Introduction”, Oracle corporation, no. April, 2015.

[33] D. Park, “The Quest for the Quality of Things: Can the Internet of Things deliver

a promise of the quality of things?”, IEEE Consumer Electronics Magazine, vol. 5,

no. 2, pp. 35–37, 2016.

[34] H. Matsuhashi, W. Xie, L. Hong, H. Lo, D. Bailey, P. Fernandez, N. Akiya, and J.

Jensen, “Online Deployment of Robust Metrology Prediction Model”, AEC/APC

Symposium Asia, pp. 1–2, 2009.

[35] H. Tang, S. Manish, J. Rajski, M. Keim, and B. Benware, “Analyzing volume di-

agnosis results with statistical learning for yield improvement”, IEEE European

Test Symposium, ETS, 2007.

[36] M. Sharma, B. Benware, L. Ling, D. Abercrombie, L. Lee, M. Keim, H. Tang, W. T.

Cheng, T. P. Tai, Y. J. Chang, R. Lin, and A. Man, “Efficiently performing yield

138



BIBLIOGRAPHY

enhancements by identifying dominant physical root cause from test fail data”,

International Test Conference, 2008.

[37] Automotive Electronics Council, “Guidelines for Part Average Testing”, AEC-

Q001, vol. Rev-D, no. December 9, 2011, 2011.

[38] M. J. Moreno-Lizaranzu and F. Cuesta, “Improving electronic sensor reliability

by robust outlier screening.”, Sensors, vol. 13, no. 10, pp. 13 521–13 542, 2013.

[39] W. R. Daasch, J McNames, D Bockelman, and K Cota, “Variance reduction using

wafer patterns in IDDQ data”, IEEE International Test Conference, pp. 189–198,

2000.

[40] W. R. Daasch, K. Cota, J. McNames, and R. Madge, “Neighbor Selection for Vari-

ance Reduction in IDDQ and Other Parametric Data”, International Test Confer-

ence, pp. 92–100, 2001.

[41] A. Nahar, K. M. Butler, J. M. C. Jr., and C. Weinberger, “Quality Improvement

and Cost Reduction Using Statistical Outlier Methods”, ICCD, pp. 64–69, 2009.

[42] P. J. Rousseeuw and B. C. van Zomeren, “Unmasking multivariate outliers and

leverage points.”, Journal of the American Statistical Association, vol. 85, no. 411,

pp. 633–639, 1990.

[43] N. Sumikawa, D. G. Drmanac, L.-C. Wang, L. R. Winemberg, and M. S. Abadir,

“Forward prediction based on wafer sort data - A case study”, International Test

Conference, pp. 1–10, 2011.

[44] W. R. Daasch, “Third- and Fourth-Generation Test Data Analytics”, ITC, 2015.

[45] A. Rényi, “On measures of dependence”, Acta Mathematica Academiae Scientiarum

Hungaricae, vol. 10, no. 3-4, pp. 441–451, 1959.

[46] J. Jacod and P. Protter, Probability Essentials. 2000.

139



BIBLIOGRAPHY

[47] D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor, “Canonical correlation analy-

sis: an overview with application to learning methods.”, Neural Computation, vol.

16, no. 12, pp. 2639–2664, 2004.

[48] J Shawe-Taylor and N Cristianini, Kernel Methods for Pattern Analysis. 2004.

[49] F. R. Bach and M. I. Jordan, “Kernel Independent Component Analysis”, Journal

of Machine Learning Research, vol. 3, pp. 1–48, 2002.

[50] I. Steinwart, “On the influence of the kernel on the consistency of support vector

machines”, J. Mach. Learn. Res., vol. 2, pp. 67–93, 2001.

[51] A. Gretton, R. Herbrich, A. J. Smola, O. Bousquet, and B. Schölkopf, “Kernel

Methods for Measuring Independence”, Journal of Machine Learning Research, vol.

6, pp. 2075–2129, 2005.

[52] M. Kuss and T. Graepel, “The Geometry of Kernel Canonical Correlation Analy-

sis”, Tech. Rep. Technical Report 108, 2003, May.

[53] B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear Component Analysis as a

Kernel Eigenvalue Problem”, Neural Computation, vol. 10, no. 5, pp. 1299–1319,

1998.

[54] Kane V, Process Capability Indices_1986, 1986.

[55] J. Tikkanen, S. Siatkowski, N. Sumikawa, L.-c. Wang, and M. S. Abadir, “Yield

Optimization Using Advanced Statistical Correlation Methods”, International Test

Conference, 2014.

[56] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-

napeau, M. Brucher, M. Perrot, and É. Duchesnay, “Scikit-learn: Machine Learn-

ing in Python”, Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2012.

140



BIBLIOGRAPHY

[57] R. Agrawal, D. Gunopulos, and F. Leymann, “Mining Process Models from Work-

flow Logs”, International Conference on Extending Database Technology, 1998.

[58] W. M. P. van der Aalst, A. J.M. M. Weijters, and L Maruster, “Workflow Mining:

Discovering process models from event logs”, IEEE Trans. Knowl. Data Eng., vol.

16, no. 9, 2004.

[59] D. Angluin and C. H. Smith, “Inductive Inference: Theory and Methods”, ACM

Computing Surveys, vol. 15, no. 3, pp. 237–269, 1983.

[60] W. van der Aalst, B. van Dongen, C. Günther, M. R.S., A. de Medeiros, R. A.K.,

R. A., S. V., H. M. Verbeek, and A. Weijters, “ProM 4.0: comprehensive support

for real process analysis”, In: Kleijn J., Yakovlev A. (eds) Petri Nets and Other Models

of Concurrency – ICATPN 2007., no. Lecture Notes in Computer Science, vol 4546,

2007.

[61] W. M. P. van der Aalst, V. Rubin, H. M. W. Verbeek, B. F. van Dongen, E. Kindler,

and C. W. Günther, “Process mining: A two-step approach to balance between

underfitting and overfitting”, Software and Systems Modeling, vol. 9, no. 1, pp. 87–

111, 2010.

[62] Ian Goodfellow, Y. Bengio, and A. Courville, “Deep learning”, MIT Press, no.

http://www.deeplearningbook.org, 2016.

[63] FederalCommunicationsCommission, “Operation of Radar Services in the 76-81

GHz Band”, vol. FCC-15-16, 2015. [Online]. Available: https://www.fcc.

gov/document/operation-radar-services-76-81-ghz-band.

[64] F. E. Grubbs, “Procedures for Detecting Outlying Observations in Samples”, Tech-

nometrics, vol. 11, no. 1, pp. 1–21, 1969.

141

https://www.fcc.gov/document/operation-radar-services-76-81-ghz-band
https://www.fcc.gov/document/operation-radar-services-76-81-ghz-band


BIBLIOGRAPHY

[65] F Hernandez and R. Johnson, “The large-sample behavior of transformations to

normality”, Journal of American Statistical Association, vol. 75, no. 372, pp. 855–861,

1980.

[66] Y.-M. Chou, A. M. Polansky, and R. L. Mason, “Transforming non-normal data

to normality in statistical process control”, Journal of Quality Technology, vol. 30,

no. 2, pp. 133–141, 1998.

[67] B. Silverman, “Density estimation for statistics and data analysis”, Chapman and

Hall, vol. 37, no. 1, pp. 1–22, 1986.

[68] S. Siatkowski, C.-L. Chang, L.-C. Wang, N. Sumikawa, L. Winemberg, and W. R.

Daasch, “Generalization of an outlier model into a "global" perspective”, Inter-

national Test Conference, 2015.

[69] R. W. Daasch and R. Madge, “Variance reduction and outliers: statistical analysis

of semiconductor test data”, ITC, 2005.

[70] J. M. Buhmann, “Information theoretic model validation for clustering”, IEEE

International Symposium on Information Theory Proceedings (ISIT), pp. 1398 –1402,

2010.

[71] S. Maneewongvatana and D. M. Mount, “On the Efficiency of Nearest Neighbor

Searching with Data Clustered in Lower Dimensions”, Computational Science -

ICCS 2001, pp. 842–851, 2001.

142


	Curriculum Vitae
	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Data Analytics in Test
	Correlation Analysis
	Outlier Analysis

	The Added Benefit of Data Analytics in Test
	Related Works and Approaches
	The Issue of Subjectivity
	Subjectivity in Correlation Analysis
	Subjectivity in Outlier Analysis

	Dissertation Organization

	Yield Optimization Using Advanced Statistical Correlation Methods
	Overview
	Introduction
	Potential issues with the intuitive methodology
	Need for multivariate analysis

	Multivariate correlation and statistical dependence
	Canonical Correlation Analysis (CCA)
	Analysis of test A in bin 26
	X1, X2, X3 types of fails (removing X4 fails)
	Analysis of test D (Bin 25)
	Summary of the first finding - parameter PP1
	Note on applying CCA in location-based analysis

	The subset discovery problem
	Assumption for subset discovery to be useful
	Heuristic to approach the problem
	Analysis of X1-X3 types of fails from test A
	Result illustration
	Double check X4 types of fails from test A
	Summary of findings

	Risk evaluation
	Kernel CCA (KCCA) looks for non-linear correlations
	Kernel CCA as a statistical independence test
	Practical implementation of kernel CCA

	Yield improvement based on silicon results
	Summary

	Learning the Process for Correlation Analysis
	Overview
	Introduction
	Perspectives in yield optimization
	What contributed to the success in Chapter 2

	The Learning Problem
	Unsuccessful analytics trials
	Unsuccessful example 1
	Unsuccessful example 2


	Learning the perspectives
	Designing The Process Steps
	Applying PM Model
	Learning a PM model

	Limitations of the PM Model
	Summary

	Generalization of an Outlier Model into a “Global” Perspective
	Overview
	Introduction
	Multivariate outlier example
	Temporal and spatial uncertainties

	Understanding the uncertainties
	Further illustration of temporal uncertainty
	Further illustration of spatial uncertainty
	Analyzing the result in Figure 4.1

	Identifying ``gross'' outliers
	The concept of marginality test
	Using the N most similar wafers
	Examples of marginality test
	Gross outliers in view of Figure 4.1
	Gross outliers vs. marginal outliers

	The proposed outlier analysis approach
	A ``big data'' perspective
	Issue with using a DPAT or AEC model
	Adaptive k value and its potential issue

	Probability-based outlier evaluation
	Estimating probability of occurrence
	Heuristic for fast probability estimate
	Probability-based marginality test
	Evaluating multiple potential outliers
	Deciding potential outliers

	Probability-based online outlier evaluation
	Handling the first b wafers
	Online outlier vs. Global outlier
	Comparison to earlier results

	Comprehensive experimental results
	Summary

	Consistency in Wafer Based Outlier Screening
	Overview
	Introduction
	Potential inconsistency among methods
	Two test examples

	Consistency check
	Finding minimum consistent threshold
	LA
	SPAT
	Noise band


	Detecting systematic shift
	Impact of clustering on consistency check
	Finding no DPAT-consistent outlier

	Summary

	Conclusion and Future Work
	Conclusion
	Subjectivity Reduction in Correlation Analysis
	Subjectivity Reduction in Outlier Analysis

	Future Research Directions
	Learning the Process of Outlier Analysis
	Applicability of Outlier Methods


	Bibliography



