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Possible Ancestral Structure in Human
Populations
Vincent Plagnol

*
, Jeffrey D. Wall

Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California, United States of America

Determining the evolutionary relationships between fossil hominid groups such as Neanderthals and modern humans
has been a question of enduring interest in human evolutionary genetics. Here we present a new method for
addressing whether archaic human groups contributed to the modern gene pool (called ancient admixture), using the
patterns of variation in contemporary human populations. Our method improves on previous work by explicitly
accounting for recent population history before performing the analyses. Using sequence data from the Environmental
Genome Project, we find strong evidence for ancient admixture in both a European and a West African population (p ’

10�7), with contributions to the modern gene pool of at least 5%. While Neanderthals form an obvious archaic source
population candidate in Europe, there is not yet a clear source population candidate in West Africa.

Citation: Plagnol V, Wall JD (2006) Possible ancestral structure in human populations. PLoS Genet 2(7): e105. DOI: 110.1371/journal.pgen.0020105

Introduction

A long-standing controversy in the field of human
evolution concerns the origin of modern humans [1,2]. The
debate focuses on the relationship between various groups of
archaic humans, such as Neanderthals or Asian Homo erectus,
and anatomically and behaviorally modern Homo sapiens (i.e.,
modern humans). At one end of the spectrum, the multire-
gional model claims that modern humans evolved in concert
across the Old World from various archaic groups [3]. At the
other end, the Recent African Origin (RAO) model posits that
modern humans evolved in a single location in Africa and
from there spread and replaced all other existing hominids
[4]. Currently, most but not all of the fossil evidence seems to
support the RAO model [5,6]. From a genetic perspective, we
can rephrase the debate in terms of what contribution
archaic human populations have made to the contemporary
human gene pool. The multiregional model predicts that this
contribution would be substantial while the RAO model
predicts that this contribution is negligible. Other models
predict intermediate contributions of archaic populations to
the modern gene pool [7].

The easiest way to answer this question is through a direct
comparison of DNA sequences from both archaic and
modern populations. Recently, researchers have managed to
sequence fragments of Neanderthal mtDNA from fossil bones
[8–11]. All published Neanderthal mtDNA sequences are
quite different from all known modern human mtDNA
sequences, and it is extremely unlikely that Neanderthals
made any contribution to the modern human mtDNA gene
pool. Although this observation is consistent with the RAO
model, it does not prove that Neanderthals and modern
humans did not interbreed—the two groups may have mixed
but Neanderthal mtDNA may have been lost by the chance
action of genetic drift. Subsequent studies have concluded
that the data are consistent with a Neanderthal contribution
of up to 25% of the modern gene pool [10,12]. A comparison
of Neanderthal nuclear DNA with modern human nuclear
DNA has the potential to clarify the precise genetic relation-
ship between Neanderthals and modern humans. So far no
Neanderthal nuclear DNA sequences have been determined,

though recent technological advances give us the hope that
such sequences may be recovered in the future [13,14].
In this paper, we take a different approach to the question.

We look for signs of Neanderthal admixture by analyzing the
patterns of linkage disequilibrium (LD) in contemporary
human DNA sequences. Our method relies on the observa-
tion that the genetic signature of ancient admixture is so
strong that even tens of thousands of years of random mating
is not enough to obscure it [15]. To see this, consider the
following crude approximation: at the time of (putative)
admixture, extensive LD would extend across the whole
genome. After 2,000 generations of random mating (40,000
years, assuming a generation time of 20 years), LD would still
extend roughly 0.05 cM on average, equivalent to approx-
imately 40 Kb, assuming 1.25 cM/Mb (cf. [16]). We look for
evidence of ancient admixture in patterns of LD at
intermediate distances (e.g., 5–50 Kb).
To avoid possible confounding effects, we first use extant

sequence data to estimate parameters for a demographic null
model that incorporates several known features of modern
human history: recent population growth, a bottleneck in
Europeans, and population differentiation between Euro-
pean and African populations [17]. Then, we introduce a new
measure of LD called S* which generalizes the work of [15].
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We use S* to test whether there has been archaic admixture in
the history of modern Europeans and West Africans.

Results

Estimation of Demographic Parameters
Our analysis is based on 135 finished genes from the NIEHS

Environmental Genome Project (EGP, as of February 2006,
see [18,19] and Materials and Methods for details). We first
model the recent history of European (CEPH [Centre d’Etude
du Polymorphisme Humain 1980 database of people living in
Utah with ancestry from Northern and Western Europe]) and
Yoruba populations. We restrict our study to these two
samples in order to limit the number of parameters that need
to be estimated. The model must be simple enough to allow a
precise estimation of its parameters yet sophisticated enough
to capture the characteristics of both populations. Differ-
ences between the samples are illustrated by commonly used
summary statistics (Table 1): Watterson’s estimator of h [20],
Hudson’s estimator of q [21], Tajima’s D [22], and FST [23].
The bottom part of the table gives the values of these statistics
for our best-fitting model.

We use a simple two-island model with islands representing

European and African populations. Initially, we considered
models where there was no migration between the two
populations after they split. These models did not fit the data
well (unpublished data) so we use a model that incorporates a
low level of migration between the populations. We include
population growth in each population as well as a bottleneck
in the European branch. We estimate a total of six parameters
and the likelihood is estimated over a grid of values to find
the maximum (see Materials and Methods for details). The
scaling in years has been done assuming an ancestral
population size of 10,000 diploid individuals (as estimated
in [17]) and a generation time of 20 years. We fitted a gamma
distribution to the variability of the recombination rate q to
reproduce the variability observed in the Yoruba sample (see
Materials and Methods).
To estimate parameters we use a composite-likelihood

approach based on various summary statistics (cf. [17]). We
used two sets of summary statistics. The first set consists of
four statistics: Tajima’s D in each sample, Fu and Li’s D* in the
CEPH sample, and FST. Tajima and Fu and Li’s D* measures
the frequency spectrum, and FST the level of divergence
between the populations. For a given value of the parameter,
the joint likelihood of these statistics is estimated by fitting to
the data a multivariate Gaussian distribution. Parameters of
this distribution are estimated using Monte Carlo simula-
tions.
The second set of summary statistics divides the SNPs at a

locus in three categories: private in the CEPH sample, private
in the Yoruba sample, and segregating in both samples. Sites
segregating in both samples are subsequently divided between
low and high frequency (we set the threshold at 10%). SNPs
segregating in both samples and at low frequency are
characteristic of recent migrations and help to estimate this
rate. This set of statistics has the useful property that the joint
distribution can be computed exactly for a given realization of
the genealogical process (Ancestral Recombination Graph
[ARG] [24]). The final likelihood is then averaged over a large
number of ARG using Monte Carlo simulations.
Even though these two sets of summary statistics are

correlated, we could not estimate their joint distribution. To
estimate the overall likelihood we use a composite-likelihood
approximation: precisely, we assume that both sets of
summary statistics are independent.

Table 1. Distribution of Summary Statistics for the NIEHS-EGP Dataset and Our Best-Fitting Model

Dataset/Model Summary Statistics Africa Europe Overall

NIEHS dataset, 135 genes, 12 Yoruba,

and 22 CEPH individuals

ĥper kb (SD) 0.87 (0.38) 0.58 (0.3) 0.88 (0.35)

q̂per kb (SD) 0.38 (0.38) 0.18 (0.26) –

Tajima’s D (SD) �0.54 (0.68) �0.09 (1.1) �0.75 (0.75)

FST (SD) – – 0.15 (0.11)

Best-fitting model, 12 Yoruba

and 22 CEPH individuals

ĥper kb (SD) 0.87 (0.23) 0.57 (0.2) 0.87 (0.18)

q̂per kb (SD) 0.37 (0.44) 0.17 (0.24) –

Tajima’s D (SD) �0.43 (0.76) �0.07 (1.1) �0.67 (0.81)

FST (SD) – – 0.15 (0.11)

We use Watterson’s estimator of h, Hudson’s estimator of q, Tajima’s D, and FST.
SD, standard deviation.
DOI: 110.1371/journal.pgen.0020105.t001
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Synopsis

Determining the evolutionary relationships between modern
humans and fossil hominine groups such as Neanderthals has been
a question of enduring interest in human evolutionary genetics. In
this paper, Plagnol and Wall present a new method for addressing
whether archaic human groups contributed to the modern gene
pool. Using sequence data from the Environmental Genome Project,
they find strong evidence for ancient admixture in both a European
and a West African population, with contributions to the modern
gene pool of at least 5%. While Neanderthals form an obvious
archaic source population candidate in Europe, there is not yet a
clear source population candidate in West Africa. The authors’
results have direct implications for the competing models of
modern human origins. In particular, their estimates of non-
negligible contributions of archaic populations to the modern gene
pool are inconsistent with strict forms of the Recent African Origin
model, which posits that modern humans evolved in a single
location in Africa and from there spread and replaced all other
existing hominines.



Our approach does not provide an accurate estimate of the
date of divergence between the populations. Interpreting
confidence intervals is difficult because we use a composite-
likelihood approach. Nevertheless, a v2 approximation for
the composite-log-likelihood ratio provides our best estimate
of the confidence interval. Using this approximation we find a
lower bound at 120,000 years and no upper bound. Precisely,
the goodness-of-fit for an equilibrium island model with a low
rate of migration between both populations is only slightly
worse than for our best-fitting model. We set the divergence
date to the lower bound of the confidence interval (more
consistent with our knowledge of human history) and verified
that this choice does not affect qualitatively the results
presented in this paper (see Discussion).

Our procedure estimates that the bottleneck event is more
ancient than the putative admixture event. We find that
precise dating of this bottleneck is difficult because beyond
50,000 years, a change in the date of the bottleneck has very
little effect on the pattern of polymorphism. The parameters
of this model are presented in Figure 1 and average values of
commonly used summary statistics are presented in Table 1.
The dashed line in Figure 1 represents the potential
admixture with an archaic population. We provide the
likelihood profiles in Figure S1 and the associated ms [25]
command line that generates this model in Protocol S1.

Goodness of Fit
To be able to assess the significance of the pattern of LD,

one needs to measure the goodness of fit of the model to
confirm that it captures the main features of European and
West African demography. We provide quantile–quantile
plots between data and simulated distributions in Figures S2,
S3, and S4 for the summary statistics used in the inference
procedure as well as comparison of the simulated and
observed frequency spectrum. These figures show that the
model is mostly consistent with the data and explains well the
summary statistics used in the fitting procedure. Though not

directly comparable, it appears that our null model provides
at least as good a fit as the demographic model proposed by
[26]. However, we find some limitations in the goodness of fit.
Precisely, the frequency spectrum (see Figure S4) does not fit
very well: our model tends to simulate more singletons and
fewer low-frequency SNPs (excluding singletons) than are
observed in the Yoruba sample.
An important feature of our demographic model is that it

reproduces well the ratio of the estimated recombination rate
q between the CEPH and Yoruba populations. This is
remarkable because no aspect of LD information was used
in our fitting procedure.

Measure of LD: S*

We now show that we can detect a specific aspect of the
level of LD that is directly affected by the level of admixture
and that is not captured by the estimator of the recombina-
tion rate q. Our statistic S* is designed to identify which SNPs
are the most likely to have mutated in a putative archaic
population. Typically these mutations accumulate on the
same branch of the genealogical tree, generating an identical
pattern of mutations called congruent sites [15]. S* general-
izes this concept and can extract from the sequence the
largest subset of SNPs which are almost congruent, a concept
that we define formally in the Methods. S* is highly sensitive
to ancient admixture, with higher levels leading to larger
values if S*. We compute three different versions of S*. The
first version uses all the available polymorphism data.
However, if the admixture occurs within the European
population and in the absence of migration (or at least at a
very low level), the SNPs that originated in the archaic
population must be private to the European sample. Hence,
to test for a recent admixture in the European sample we
need to restrict the computation of S* to SNPs private to the
CEPH sample. Alternatively, we only use SNPs private to the
Yoruba sample when we test for admixture within the African
branch. We denote these values as S*All,S

*
Yor, and S*CEPH.

Figure 1. Demographic Model for European and African Populations with the Value of Our Best-Fitting Parameters

DOI: 110.1371/journal.pgen.0020105.g001

PLoS Genetics | www.plosgenetics.org July 2006 | Volume 2 | Issue 7 | e1050974

Ancestral Structure in Human Populations



While S*All typically captures information about the oldest
and deepest branches of the genealogical tree, S*CEPH
provides information about branches internal to the Euro-
pean tree. These branches are expected to be the signature of
an ancient admixture in Europe. An illustration of what
S*CEPH does is provided in Figure 2.

To illustrate the efficiency of the method, we compare a
scenario where there is no archaic population to another
where the admixture level is set to 5% in the European
population. We assume the admixture occurred 50,000 years
ago and use our best-fitting model, with and without
admixture. We simulate 40-kb regions and use the recombina-
tion andmutation rates thatwere estimated from theEGPdata.

We show a quantile–quantile plot comparing both simu-
lated distributions of S*CEPH in Figure 3. Distributions of S*All
and S*Yor are not significantly affected by this admixture
(unpublished data). We find that for S*CEPH the difference of
both simulated means is 60% of the standard deviation
(computed under the no-admixture hypothesis). With such
values a power study shows that a t-test with a sample size of
110 loci would provide a power of 95% for a type I error of
5%. Hence, at least in theory, the 135 genes in the dataset are
sufficient to distinguish both hypotheses.

Distribution of S* in the Data
To test the null hypothesis of no ancient admixture, we

calculate S*All,S
*
Yor and S*CEPH for each of the 135 loci. We

estimate a p-value for each locus and each statistic by running
simulations under the null model described in Figure 1 and
comparing the actual S* values to the distribution of
simulated S* values.

These 135 p-values are then combined to test if the data are
consistent with our null model (see Materials and Methods for
details). We then obtain an overall statistic that measures the
consistency of the data with our expectations. Under the null

this statistic is distributed as v2 with 2n ¼ 270 degrees of
freedom (n is the number of loci in the dataset). We used
various models of recombination rate heterogeneity (see
Materials and Methods) to assess the robustness of our
findings. Results are reported in Table 2.
We first find that a constant recombination rate (within

and between loci) cannot account for the distribution of S*All.
This observation is consistent with the fact that the observed
variability of q̂ exceeds the variance of the simulated
distribution under the assumption of a uniform q. This
discrepancy is associated with the strong heterogeneity of the
recombination rate in the human genome: a large fraction of
the loci has a lower recombination rate than the genome-
wide average, generating elevated values of S*All.
To account for this variability, we consider a random

distribution for q fitted to reproduce the variability observed
in the data (precisely by fitting the mean and the standard
deviation, seeMaterials andMethods). This model still assumes
that the recombination rate is homogeneous within a locus.
We find that this model reproduces well the observed values of
S*All. This consistent fit (see Table 2 and Figure 4) provides
additional evidence that our null model explains the data well
and that we calibrated the distribution of q reasonably.
We investigated a third model of recombination rate

variability. In this model, we assume a uniform background
rate and a random number of hotspots (parameters were
estimated based on [27], see Materials and Methods). Using
this model yields comparable results (see Table 2).
However, based on the values of S*CEPH we find that within

the CEPH sample the level of LD is higher than predicted by
our model. This discrepancy is very strong and observed for
all models of recombination. Even setting the recombination
rate to zero does not account for the large values of S*CEPH in
the CEPH sample (p ’ 0.04). This observation is also true for
the Yoruba sample: values of S*Yor found in the data are

Figure 2. Polymorphism Data Using the Visual Genotype Display Format

See [35,36] for the gene chrna4. The first 12 rows are Yoruba genotypes and the last 22 rows are CEPH genotypes.
For the gene chrna4, S*

CEPH picks 18 SNPs divided into three congruent sets. All selected SNPs, denoted by a black dot, are segregating in the European
sample and fixed in the Yoruba sample. The associated p-value is 0.039.
DOI: 110.1371/journal.pgen.0020105.g002
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significantly higher than expected. The distribution of the p-
values associated with S*CEPH and S*All are shown in Figure 4
(a list of the most significant genes in each sample is provided
in Tables S1 and S2). Overall p-values are approximately
equal to 10�7 for both samples, depending on the recombi-
nation model one considers (see Table 2). A complete list of
the SNPs selected by S*CEPH and S*Yor is provided in Figures
S5 and S6 (in the same format as Figure 2).

Evidence for Ancestral Admixture
We now consider the effect of ancestral admixture on our

inference procedure and show that it significantly improves
the fit of our model, indicating strong evidence in favor of
some form of ancestral admixture in the history of European
and West African populations. We use the following
approach: for different levels of admixture we reestimate
the demographic parameters, and investigate if the newly
estimated demography is consistent with the observed
distribution of S*. One should remark that date of split and
admixture with the archaic population are not estimated but

chosen to correspond to plausible values for putative
Neanderthal admixture.
We first observe that the level of admixture in Europe has

little effect on the average q̂ in the European sample. Table 1
shows a slight decrease of the average q̂ in the CEPH sample,
which is the expected trend in the presence of admixture
(higher level of LD is associated with a lower estimated q).
Second, in the presence of admixture, the estimated

demographic parameters are only slightly modified (see
Protocol S1 for the associated ms command line). Moreover,
adding a 5% level of admixture significantly improves the
value of the composite likelihood: the log10-ratio between the
maximum value estimated with a 5% admixture and no
admixture equals three.
Third, this putative admixture in the European sample has

a limited effect on the distribution of S*All and S*Yor.
However, it increases strongly the values of S*CEPH, as shown
in Table 2. A level of admixture set to 3% is still not sufficient
to explain the high values of S*CEPH observed in the data (p ’

0.03). We find that approximately 5% is required to account
for the distribution of S*.

Figure 3. Quantile–Quantile Plot Comparing the Distribution of S* (Left

Graph) and the Recombination Rate q̂CEPH (Right Graph), When There Is

No Admixture (x-Axis) and When the Level of Admixture is 5% (y-Axis)

Since for S*
CEPH many points are far away from the diagonal, we can

conclude that the two models are easily distinguishable from each other.
This would not be possible based on the distribution of q̂CEPH.
DOI: 110.1371/journal.pgen.0020105.g003

Figure 4. Quantile–Quantile Plot Comparing the Distribution of p-Values

Associated with S*
All (Left) and S*

CEPH (Right) with the Expected Uniform

Distribution between 0 and 1

The deviation from the diagonal line shows a discrepancy between the
data and the null model for S*

CEPH but not for S*
All.

DOI: 110.1371/journal.pgen.0020105.g004

Table 2. p-Values Associated with S*
All, S*

Yor, S*
CEPH, and Average Values of q̂ in Each Sample for Three Different Levels of Neanderthal

Admixture and Three Scenarios for Recombination Rate Heterogeneity

Model for q Neanderthal Admixture Overall Yoruba CEPH

S*
All S*

Yor q̂ (SD) S*
CEPH q̂ (SD)

Hotspot 0% 0.163 3.88e-08 0.36 (0.43) 5.42e-07 0.2 (0.27)

3% 0.34 3.79e-08 0.37 (0.44) 0.0261 0.18 (0.24)

5% 0.404 1.95e-09 0.37 (0.44) 0.275 0.18 (0.25)

Variable between loci 0% 0.0914 8.13e-09 0.38 (0.45) 1.12e-06 0.17 (0.22)

3% 0.267 8.78e-09 0.39 (0.45) 0.0396 0.15 (0.19)

5% 0.338 6.58e-10 0.39 (0.45) 0.358 0.15 (0.19)

Uniform 0% 8.66e-09 9.55e-13 0.38 (0.24) 1.54e-08 0.16 (0.11)

3% 1.1e-05 7.84e-13 0.39 (0.24) 0.0195 0.14 (0.1)

5% 5.04e-05 2.95e-14 0.39 (0.24) 0.232 0.14 (0.1)

SD, standard deviation of this estimate, computed across loci.
See Materials and Methods for details about the different recombination rate models.
DOI: 110.1371/journal.pgen.0020105.t002
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Discussion

We use a model-based approach to describe the history of
European and West African populations. This model predicts
what pattern of polymorphism to expect in the absence of
ancient admixture, and how such an event would affect the
data. In the absence of admixture, the comparison of the data
with our model shows a clear discrepancy that can be
explained by an admixture rate of 5% in the European
population. Even though we cannot exclude the possibility
that an alternative demographic scenario is the cause of this
pattern, this aspect of the data was chosen to be the most
sensitive to an admixture event.

If the signal we observe is indeed the result of an admixture
event, then these results would change our understanding of
the origins of modern humans. It would indicate that archaic
populations such as Neanderthals must have made a sub-
stantial contribution to the modern gene pool in Europe. We
observe a similar pattern for West African populations even
though a clear source population has not yet been found.

While the putative source population may not be as
obvious as in Europe (Neanderthals), the fossil record shows
that transitional forms of Homo were widespread in Africa,
even after the time of emergence of modern humans. Other
genetic studies have also found evidence for ancient structure
in African populations [28–30]. In two of the three studies
[28,30], the divergent lineage was found only in Pygmies,
which suggests that the African population source differs
from the European one.

Our model was designed to be as simple as possible while
still capturing the main features of human polymorphism. We
assessed qualitatively its goodness of fit and we found that it
fits the data well: both the statistics we fitted and also the
estimates of the recombination rate in both populations are
consistent with the data. Our model makes simpler and fewer
assumptions about human demography than a previous study
with different findings [31], and we believe this makes our
estimates of significance more reliable.

Our inference procedure based on summary statistics has
similarities to two previous studies [17,26]. However, our
statistical approach differs as both of these studies try to
minimize an ad-hoc distance between simulations and data
using the mean and variance of the summary statistics
computed across loci. Instead, we estimate the composite
likelihood independently for each locus, which should be
more informative. Moreover, [26] use ascertained markers so
their results are sensitive to the particular method used to
correct for the ascertainment. In addition, the scale of the
NIEHS-EGP dataset is much larger than the datasets used in
both of these studies: Voight et al. [17] resequenced a total of
118 kb whereas the 135 loci we analyze add up to 3,305 kb of
sequences for a total of 13,460 markers (compared with 3,738
markers studied in [26]).

We found that the choice of summary statistics is very
important in our inference procedure. In particular, not
incorporating a statistic which measures the level of migra-
tion between European and African branches leads to a
different maximum of the composite likelihood where the
divergence date is much lower and the estimates of LD are
biased. If we had not added this summary statistic we could
not have observed this poor goodness of fit. Hence, we tried
to fit in our inference procedure all components of the data

which seemed relevant. However, we cannot exclude that an
important feature has been missed because our summary
statistics cannot measure it.
Our inference procedure cannot clearly reject an island

model where both populations remain separated indefinitely
with a low level of migration. Using a v2 approximation, the
p-value associated with this null hypothesis is 10�3. This is
relatively low but our composite-likelihood approach is likely
to narrow confidence intervals, and given the uncertainty
regarding our model (constant migration rate in particular)
we cannot clearly exclude this model. However, the discrep-
ancy between observations and expectations remain un-
changed when looking at S*Yor and S*CEPH (p , 10�7) and this
choice does not affect significantly our main findings. We
note that an equilibrium island model, along with all models
incorporating a substantial element of ancient admixture, is
not compatible with simple forms of the RAO model.
We investigated the pattern of polymorphism of the SNPs

selected by our method in both other samples available in the
NIEHS dataset: Hispanics and Han Chinese. We found that
75% of the SNPs selected by S*Yor in the Yoruba sample are
fixed in the Hispanic and Chinese samples. However this
number is not significantly different from other SNPs
segregating in the Yoruba sample and fixed in the CEPH
sample. Most SNPs selected by S*CEPH in the CEPH sample are
variable in the Hispanic (90%) and Chinese (50%) samples.
These numbers also do not differ significantly from other
SNPs fixed in the Yoruba sample and segregating in the
CEPH sample. However, there is no clear expectation
regarding those proportions because we do not precisely
know where and when the admixture occurred. In addition,
the pattern of polymorphism has been affected by recent
migrations, in particular between non-African populations.
Some alternate explanations can potentially explain the

elevated values of S*, including selective effects. Because
natural selection tends to affect single loci, while demog-
raphy affects the whole genome, we believe that considering
135 different loci allows us to capture the underlying
demographic signal. Nevertheless, a strong selective sweep
can generate a similar pattern of elevated level of LD.
Investigating the function of the genes selected based on S*

did not show any significant pattern (see Tables S1 and S2
for a complete list). We also compared these genes with two
genome-wide scans for selection [32,33]. We looked for our
most significant genes among those analyzed in [33] and did
not find significant correlations. Likewise, the ten most
significant genes selected by S*CEPH are not identified as
positively selected by Voight et al. [32] in Europeans. One
gene (xrcc4) is identified in the Yoruba sample by both
studies. However, we note that we find four significant genes
(p , 0.05 for S*CEPH) in the ADH cluster, where Voight et al.
[32] find a strong signal of selection in the East Asian
sample.
An advantage of our method is that in addition to showing

some evidence in favor of a significant rate of admixture, we
also specifically pick a subset of candidate ‘‘archaic’’ SNPs.
The only way to be certain of the answer would be to verify
that these SNPs are indeed mutated in the DNA of
Neanderthal fossils. Estimating the significance of the
observed pattern is difficult because modeling human
demography is a complex task. However, it is likely that if
there has been a significant level of admixture, the SNPs
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selected by S* are the best available trace of this event. Such
data is not available yet but technologies are currently being
developed to sequence fossil nuclear DNA (cf. [13,14]). We
should note, though, that fossil nuclear DNA sequencing
studies may have a difficult time distinguishing between
archaic human DNA sequences and modern human contam-
inants.

Materials and Methods
Dataset. Our approach requires resequencing polymorphism data

free of ascertainment bias and we based our analyses on data from
the EGP. The data were generated at the University of Washington
(Seattle, Washington, United States) (see [18,19]).

Our analysis requires that the ethnicity of the samples is known.
135 out of the 505 genes in the EGP dataset fit this criterion. The
average length of the genes included in the study is 50 kb. The
average sequenced length is 25 kb. We restricted our study to the 12
Yoruba and 22 Caucasian (CEPH) individuals. We excluded genes on
the sex chromosomes. Indels as well as SNPs with more than two
alleles are also excluded.

Demographic inference. We make several assumptions about the
demographic scenario in order to limit the number of parameters to
estimate. First, we assume that the population growth is 100-fold in
each population. Second, we assume that the bottleneck lasts 1,000
years, and we only estimate the reduction of the population size
during this period. The six parameters left to be estimated are: the
date of the beginning of growth (one parameter for each population),
the date of the bottleneck, and its intensity (reduction of the
population size during the bottleneck), the date of divergence
between European and African populations, and the migration rate
after this divergence.

We use a grid for the parameter values on which we estimate the
composite likelihood. The grid consists of ten values per parameter
(106 total) and we refined this grid several times to locate the
maximum of the composite-likelihood surface. For each value of the
parameters, the same set of simulations is used across different loci in
the data (using the mean sequenced length). The log-likelihood is
then summed across loci to obtain the final value.

The first set of summary statistics consists of Tajima’s D in each
sample, Fu and Li’s D* in the CEPH sample, and FST. We assume that
the distribution of these parameters is multivariate Gaussian and for
each value of the parameter on the grid, we estimate the vector of
means and the covariance matrix using Monte Carlo simulations.

The second set of summary statistics divides the SNPs at a locus in
four categories: private in the CEPH sample, private in the Yoruba
sample, and segregating in both samples at low or high frequency (we
set the threshold at 10%). For each branch of the ARG [24], all
mutations on this branch will belong to a single category. Hence,
given one realization of the ARG, one can parse this graph to estimate
the probability (f1,f2,f3,f4) for a random SNP to belong to each of the
four classes. Conditional on the ARG and the total number of SNPs n,
the distribution of (n1,n2,n3,n4) is multinomial and can be obtained
explicitly. By simulating a large number of ARGs and averaging the
computed probabilities for each simulated ARG si, we obtain an
estimate of the likelihood at a given locus:

Pðn1; n2; n3; n4 j nÞ¼
X

i

Pðn1; n2; n3; n4 j n; siÞ ð1Þ

For each point on the grid, we found that 80,000 simulated ARGs
are needed to obtain a precise value of the likelihood. The
computation of the likelihood of the data at one point of the grid
requires approximately five minutes on a 1.8-GHz Opteron process-
or. A significant amount of time is saved by stopping the computation
after 20,000 simulations if the estimated likelihood at this point of the
grid is clearly lower than the current maximum. The total computing
time over the 106 points of the grid takes approximately three days on
100 processors. All simulations in this paper use a modified version of
ms [25].

Recombination rate. We consider various scenarios for the
recombination rate. To describe the simulated distribution of q, we
first estimate the average mutation rate h, using all available loci, and
parametrize the recombination rate q in terms of f¼q/h. We consider
first a model where q is uniform within and between loci with f ¼
0.375.

A second model includes variability between loci but not within.
Specifically, we set the distribution of f to be a gamma distribution

with mean l¼ 0.375 and standard deviation r/l¼ 0.29 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
500;000=l

p

where l is the length of the locus we simulate (to account for a larger
variability of the overall q in shorter loci). Within each simulated
locus, the rate is uniform. With these parameters, the mean and the
standard deviation of q̂ are consistent with observations (see Table 1).

Finally, we consider a model consisting of a background rate and a
random number of hotspots. The background rate is variable with
mean l¼ �f ¼ 0.21 and standard deviation r/l¼ 0.23

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
500;000=l

p
. The

distribution of the number of hotspots is Poisson, whose intensity is
chosen to obtain on average one hotspot per 57 kb (as estimated in
[27]). Hotspots have a 2-kb width and an intensity 60 times higher
than the background rate. Recombination rates for each locus are
scaled so that the average overall recombination rate is proportional
to the DECODE estimates [16]. With these parameters 80% of
recombination events occur on average in 15% of the sequence (as
estimated in [27]). Note that with this hotspot model the overall
expected recombination rate must be significantly higher than under
a uniform model to account for the distribution of q̂ (including
hotspots �f ¼ 0.65 under this model).

Definition of S*. We define S* as follows:

S� ¼ SðIÞ ¼ max
J�f1;...;ng

SðJÞ ð2Þ

where

Sði1; . . . ; ikÞ ¼
X

j

Sðij ; ijþ1Þ ð3Þ

f1,. . .,ng designates the set of SNPs at this locus and I is the subset of
SNPs that maximizes the score.

The score is computed as a sum over successive pairs of SNPs in the
optimum subset I. Note that SNPs in I are not necessarily adjacent.
We tried various definitions for S(i,j), and we chose the one that
maximized the difference between our null model and the same
model where the level of admixture is set to 10%.

We call the distance between two SNPs the number of chromo-
somes in the data at which the genotypes differ. Note that when—for
a given pair of SNPs—an individual is a double heterozygote, we
assume that the distance between both SNPs is zero (in other words
we assume that both genotypes are in phase). If the total distance
(summed over all individuals) between two SNPs is zero, both sites are
congruent and the score is equal to the distance in bp between them
plus 5,000. If this distance is greater than five, the score is set to�‘. If
the distance is between one and five, the score is equal to�10,000. We
also impose a minimum distance between sites within the optimum
set I of at least 10 bp, to avoid contiguous and congruent SNPs
(overrepresented in the human genome) to bias our estimates.

We also need to account for missing data. For a pair of SNPs to be
congruent, we allow no more than two chromosomes with the
property that a missing call at one SNP is associated with the minor
allele at the other SNP. When one of the two SNPs has a minor allele
frequency of two, we make this criteria more stringent and allow only
one such chromosome.

The computation of S* can be done efficiently using a forward–
backward algorithm, sometimes called dynamic programming and
typically used in the Smith-Waterman algorithm [34]. Specifically, if
we define:

S�j ¼ max
J�f1;...;j�1g

SðJ [ fjgÞ; ð4Þ

then we have the recursion:

S�jþ1 ¼ max
k¼1;...;j

½S�k þ Sðk; j þ 1Þ� ð5Þ

Computation of p-values. Because each locus has a different length,
and different regions were not scanned for polymorphism, different
sets of simulations (which reproduce these precise characteristics) are
used for each locus to estimate the distribution of S*All,S

*
Yor, and

S*CEPH. On each simulated ARG we place a number of mutations
equal to the number of variable sites at this locus in the data. This is
done to avoid biases due to variability in the mutation rate. Also, a
random fraction of the genotyping calls is labeled missing. The
probability of being missing is equal to the fraction of missing calls in
the data at this locus.

For each simulated genealogical tree, we obtain a value for
S*All,S

*
Yor, and S*CEPH defined as P(S* � S*data) where S*data is the

value computed from the data. We can obtain an overall p-value by
using the fact that if ðXiÞni¼1 is uniformly distributed between 0 and
1 then

Pn
i¼1 �2logðXiÞ is distributed as v2 with 2n degrees of

freedom.

PLoS Genetics | www.plosgenetics.org July 2006 | Volume 2 | Issue 7 | e1050978

Ancestral Structure in Human Populations



Supporting Information

Figure S1. Profile Likelihood for the Demographic Inference

Found at DOI: 110.1371/journal.pgen.0020105.sg001 (100 KB PDF).

Figure S2. QQ-Plot between Simulated and Observed Values for the
First Set of Summary Statistics

Found at DOI: 110.1371/journal.pgen.0020105.sg002 (100 KB PDF).

Figure S3. QQ-Plot between Simulated and Observed Values for the
Second Set of Summary Statistics

Found at DOI: 110.1371/journal.pgen.0020105.sg003 (120 KB PDF).

Figure S4. Comparison of Frequency Spectrum between Data and
Best-Fitting Model

Found at DOI: 110.1371/journal.pgen.0020105.sg004 (64 KB PDF).

Figure S5. List of Selected SNPs in the CEPH Sample

Found at DOI: 110.1371/journal.pgen.0020105.sg005 (2.8 MB PDF).

Figure S6. List of Selected SNPs in the Yoruba Sample

Found at DOI: 110.1371/journal.pgen.0020105.sg006 (2.8 MB PDF).

Protocol S1. ms Command Lines Associated with the Best-Fitting
Models

Found at DOI: 110.1371/journal.pgen.0020105.sd001 (28 KB PDF).

Table S1. Most Significant Genes in the CEPH Sample

Found at DOI: 110.1371/journal.pgen.0020105.st001 (21 KB PDF).

Table S2. Most Significant Genes in the Yoruba Sample

Found at DOI: 110.1371/journal.pgen.0020105.st002 (29 KB PDF).

Acknowledgments

We thank M. Hammer, M. Przeworski, and three anonymous referees
for helpful comments on a previous draft of this paper.

Author contributions. VP and JDW analyzed the data and wrote the
paper.

Funding. This work was supported by NSF grant BCS-0423123 to
JDW.

Competing interests. The authors have declared that no competing
interests exist.

References
1. McBrearty S, Brooks AS (2000) The revolution that wasn’t: A new

interpretation of the origin of modern human behavior. J Hum Evolution
39: 453–563.

2. Wolpoff MH (1999) Paleoanthropology. New York: Mc Graw-Hill. 878 p.
3. Wolpoff MH, Wu X, Thorne AG (1984) Modern Homo sapiens origins: A

general theory of hominid evolution involving the fossil evidence from East
Asia. In: In Smith FH, Spencer F, editors. The origins of modern humans: A
world survey of the fossil evidence. New York: Liss. pp. 411–483.

4. Stringer CB, Andrews P (1988) Genetic and fossil evidence for the origin of
modern Humans. Science 239: 1263–1268.

5. Duarte C, Mauricio J, Pettitt PB, Souto P, Trinkaus E, et al. (1999) The early
Upper Paleolithic human skeleton from the Abrigo do Lagar Velho
(Portugal) and modern human emergence in Iberia. PNAS 96: 7604–7609.

6. Foley R, Lahr MM (1997) Mode 3 technologies and the evolution of modern
humans. Camb Arch 7: 3–36.

7. Brauer G (1984) The Afro–European sapiens hypothesis and hominid
evolution in East Asia during the late Middle and Upper Pleistocene. Cour
Forschungsinst Senckenb 69: 145–165.

8. Krings M, Stone A, Schmitz RW, Krainitzki H, Stoneking M, et al. (1997)
NeandertalDNAsequences and the origin ofmodernHumans. Cell 90: 19–30.

9. Krings M, Capelli C, Tschentscher F, Geisert H, Meyer S, et al. (2000) A view
of Neandertal genetic diversity. Nat Genet 26: 144–146.

10. Serre D, Langaney A, Chech M, Teschler-Nicola M, Paunovic M, et al. (2004)
No evidence of Neandertal mtDNA contribution to early modern humans.
PLoS Biol 2: e57. DOI: 10.1371/journal.pbio.0020057

11. Ovchinnikov IV, Gotherstrom A, Romanova GP, Kharitonov VM, Liden K,
et al. (2000) Molecular analysis of Neanderthal DNA from the Northern
Caucasus. Nature 404: 490–493.

12. Nordborg M (1998) On the probability of Neanderthal ancestry. Am J Hum
Genet 63: 1237–1240.

13. Noonan JP, Hofreiter M, Smith D, Priest JR, Rohland N, et al. (2005)
Genomic sequencing of Pleistocene cave bears. Science 309: 597–599.

14. Poinar HN, Schwarz C, Qi J, Shapiro B, MacPhee RDE, et al. (2006)
Metagenomics to paleogenomics: Large-scale sequencing of mammoth
DNA. Science 311: 392–394.

15. Wall JD (2000) Detecting ancient admixture in humans using sequence
polymorphism data. Genetics 154: 1271–1279.

16. Kong A, Gudbjartsson DF, Sainz J, Jonsdottir GM, Gudjonsson SA, et al.
(2002) A high-resolution recombination map of the human genome. Nat
Genet 31: 241–247.

17. Voight BF, Adams AM, Frisse LA, Qian Y, Hudson RR, et al. (2005)
Interrogating multiple aspects of variation in a full resequencing dataset to
infer human population size changes. PNAS 102: 18508–18513.

18. Livingston RJ, Niederhausern A, Jegga AG, Crawford DC, Carlson CS, et al.
(2004) Pattern of sequence variation across 213 environmental response
genes. Genome Res 14: 1821–1831.

19. Nickerson DA, Rieder MJ, Crawford DC (2003) An overview of the
environmental genome project, essays on the future of environmental
health research. EHP Online 113.

20. Watterson GA (1975) On the number of segregating sites in genetical
models without recombination. Theor Pop Biol 7: 256–276.

21. Hudson RR (2001) Two-locus sampling distributions and their applications.
Genetics 159: 1805–1817.

22. Tajima F (1989) Statistical method for testing the neutral mutation
hypothesis by DNA polymorphism. Genetics 123: 585–595.

23. Hudson RR, Slatkin M, Maddison WP (1992) Estimation of levels of gene
flow from DNA sequence data. Genetics 132: 583–589.

24. Griffiths RC, Marjoram P (1996) Ancestral inference from samples of DNA
sequences with recombination. J Comp Biol 3: 479–502.

25. Hudson RR (2002) Generating samples under a Wright-Fisher neutral
model. Bioinformatics 18: 337–338.

26. Schaffner SF, Foo C, Gabriel S, Reich D, Daly MJ, et al. (2005) Calibrating a
coalescent simulation of human genome sequence variation. Genome Res
15: 1576–1583.

27. HapMap (2005) A haplotype map of the human genome. Nature 437: 1299–
1320.

28. Garrigan D, Mobasher Z, Severson T, Wilder JA, Hammer MF (2005)
Evidence for archaic Asian ancestry on the human X chromosome. Mol Biol
Evol 22: 189–192.

29. Barreiro LB, Patin E, Neyrolles O, Cann HM, Gicquel B, et al. (2005) The
heritage of pathogen pressures and ancient demography in the human
innate-immunity cd209/cd209l region. Am J Hum Genet 77: 869–886.

30. Hayakawa T, Aki I, Varki A, Satta Y, Takahata N (2006) Fixation of the
human-specific CMP-N-acetylneuraminic acid hydroxylase pseudogene
and implications of haplotype diversity for human evolution. Genetics
172: 1139–1146.

31. Currat M, Excoffier L (2004) Modern humans did not admix with
Neanderthals during their range expansion into Europe. PLoS Biol 2
(12): e421.

32. Voight BF, Kudaravalli S, Wen X, Pritchard JK (2006) A map of recent
positive selection in the human genome. PLoS Biol 4: e42. DOI: 10.1371/
journal.pbio.0040042

33. Clark AG, Glanowsk S, Nielsen R, Thomas PD, Kejariwal A, et al. (2003)
Inferring nonneutral evolution from human–chimp–mouse orthologous
gene trios. Science 302: 1960–1963.

34. Smith TF, Waterman MS (1981) Identification of common molecular
subsequences. J Mol Biol 147: 195–197.

35. Nickerson DA, Taylor SL, Weiss KM, Clark AG, Hutchinson RG, et al. (1995)
DNA sequence diversity in a 9.7-kb region of the human lipoprotein lipase
gene. Nat Genet 19: 233–240.

36. Rieder MJ, Taylor SL, Clark AG, Nickerson DA (1999) Sequence variation in
the human angiotensin converting enzyme. Nat Genet 22: 59–62.

PLoS Genetics | www.plosgenetics.org July 2006 | Volume 2 | Issue 7 | e1050979

Ancestral Structure in Human Populations




